WO2022262435A1 - 信号状态显示方法、终端及可读存储介质 - Google Patents

信号状态显示方法、终端及可读存储介质 Download PDF

Info

Publication number
WO2022262435A1
WO2022262435A1 PCT/CN2022/089395 CN2022089395W WO2022262435A1 WO 2022262435 A1 WO2022262435 A1 WO 2022262435A1 CN 2022089395 W CN2022089395 W CN 2022089395W WO 2022262435 A1 WO2022262435 A1 WO 2022262435A1
Authority
WO
WIPO (PCT)
Prior art keywords
standard network
signal
signal state
cell
network
Prior art date
Application number
PCT/CN2022/089395
Other languages
English (en)
French (fr)
Inventor
李强
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP22823918.2A priority Critical patent/EP4354943A1/en
Priority to US18/569,399 priority patent/US20240276577A1/en
Publication of WO2022262435A1 publication Critical patent/WO2022262435A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • H04W76/16Involving different core network technologies, e.g. a packet-switched [PS] bearer in combination with a circuit-switched [CS] bearer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/12Inter-network notification
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/18Management of setup rejection or failure

Definitions

  • the present disclosure relates to the technical field of wireless communication, and in particular to a signal state display method, a terminal and a readable storage medium.
  • the current 5G network is developing rapidly, and the 5G network based on the NSA (Non-Standalone, non-independent networking) architecture has already started commercial use due to cost advantages and simple architecture.
  • the NSA architecture adopts a dual connection scheme, that is, the terminal can simultaneously access the LTE (Long Term Evolution, long-term evolution) core network + NR (New Radio, new air interface) access network.
  • LTE Long Term Evolution, long-term evolution
  • NR New Radio, new air interface
  • the main performance is that the terminal first accesses the LTE cell with NR reconfiguration capability, and then the LTE cell uses the RRC (Radio Resource Control, radio resource control) reconfiguration message to reconfigure the terminal for the terminal. connection to the NR access network.
  • the terminal measures the 5G signal according to the RRC reconfiguration message of the LTE cell.
  • the terminal initiates 5G network registration and displays the 5G signal icon, otherwise it displays the 4G signal icon.
  • the terminal can display whether it is currently accessing a 4G signal or a 5G signal during the access phase, but the display time is not long enough.
  • the terminal is connected to the 5G network, if there is no continuous service, the LTE standard of the terminal is in an idle state, and the network The RRC Release message will be sent to release network resources, resulting in the deactivation of the 5G system, and the 5G signal cannot be detected in real time, and it is impossible to judge whether the current area of the terminal is still in the 5G signal coverage area. Only 4G signals can be displayed, which obviously does not meet the requirements. The actual situation.
  • Embodiments of the present disclosure provide a signal state display method, a terminal, and a readable storage medium, which can accurately display the current signal state of the terminal in the case of dual connections of the terminal.
  • an embodiment of the present disclosure provides a method for displaying signal status, which is applied to a user terminal UE, where the UE is dual-connected to a first standard network and a second standard network, and the first standard network provides the UE with Access the anchor frequency point of the second standard network.
  • the method for displaying the signal status includes: when the UE is in an idle state, monitoring the signal change value of the first standard network of the UE in the current cell; when the signal change value is greater than a preset signal threshold, Triggering an access request to enable the UE to establish a connection with the network of the first standard; when accessing the network of the second standard through the anchor frequency point of the network of the first standard, updating the current signal state to the network of the second standard The signal status corresponding to the standard network; and the updated signal status will be continuously displayed until the next update of the signal status.
  • an embodiment of the present disclosure provides a method for displaying signal status, which is applied to a user terminal UE, where the UE is dual-connected to a first-standard network and a second-standard network, and the first-standard network provides the UE with Access the anchor frequency point of the second standard network.
  • the signal state display method includes: when the UE is in an idle state, receiving a periodically sent paging message; when receiving the paging message, triggering an access request to make the UE communicate with the second Establishing a connection with a standard network; when accessing the second standard network through the anchor frequency point of the first standard network, updating the current signal state to the signal state corresponding to the second standard network; and continuously displaying the updated Signal state until the next signal state update.
  • an embodiment of the present disclosure further provides a terminal, including at least one processor and a memory configured to communicate with the at least one processor.
  • the memory stores instructions that can be executed by the at least one processor, and the instructions are executed by the at least one processor, so that the at least one processor can execute the signal state display method according to the first aspect or execute Such as the signal state display method of the second aspect.
  • an embodiment of the present disclosure further provides a computer-readable storage medium, the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are used to make a computer execute the signal according to the first aspect.
  • Fig. 1 is an overall method flowchart of a signal state display method provided by an embodiment of the present disclosure
  • FIG. 2 is a flow chart of judging an anchor cell provided by an embodiment of the present disclosure
  • Fig. 3 is a flowchart of determining a signal change value provided by an embodiment of the present disclosure
  • Fig. 4 is a flowchart of judging cell ID changes provided by an embodiment of the present disclosure.
  • Fig. 5 is a flow chart of triggering an access request provided by an embodiment of the present disclosure
  • Fig. 6 is an overall method flowchart of a signal state display method provided by an embodiment of the present disclosure
  • Fig. 7 is a flowchart of judging cell ID changes provided by an embodiment of the present disclosure.
  • FIG. 8 is a flow chart of triggering an access request provided by an embodiment of the present disclosure.
  • FIG. 9 is a structural connection diagram of a device provided by Example 1 of the present disclosure.
  • FIG. 10 is a flow chart of a signal state display method provided by Example 2 of the present disclosure.
  • FIG. 11 is a flow chart of a signal state display method provided by Example 3 of the present disclosure.
  • Fig. 12 is a schematic structural diagram of a terminal provided by an embodiment of the present disclosure.
  • 5G network for 5G network architecture, 3GPP has proposed multiple networking architecture options, which are divided into independent networking (Standalone, SA) and non-standalone networking (Non-Standalone, NSA) , Among them, the 5G network of NSA's networking architecture has already started commercial use due to cost advantages and simple architecture.
  • the NSA architecture adopts a dual-connection solution, that is, the LTE core network + NR access network, and the user equipment (UE) is simultaneously connected to the LTE network and the 5G network.
  • UE user equipment
  • There are several types of NSA architecture networking In the most widely used networking architecture, the control plane of the UE uses the LTE core network, and the user plane uses the NR access network.
  • the above-mentioned application is the most widely used in the embodiments of the present disclosure. Based on the NSA networking architecture, the description will be given.
  • the main performance is that the UE first accesses the LTE cell capable of reconfiguring the UE to the NR access network, and the LTE cell adds the NR access network to the connection of the UE through RRC reconfiguration.
  • LTE cells capable of reconfiguring to the NR access network they are called anchor cells, and corresponding LTE cells that do not have the capability of reconfiguring to the NR access network are called non-anchor cells.
  • this ability to reconfigure the UE from the anchor cell to the NR access network is called the ENDC (Dual Connectivity of E-UTRA with NR) capability.
  • the anchor cell is not a term provided in the protocol standard.
  • the protocol requires the LTE cell to provide an anchor point to provide UE with 5G access capability to access to NR.
  • the support point of the access network This point is generally a certain frequency point in the LTE cell.
  • the UE switches to the NR access network according to the frequency point.
  • the UE needs to measure the 5G signal according to the RRC reconfiguration information of the LTE cell.
  • the UE initiates 5G registration and displays the corresponding signal status of the 5G network; when the UE cannot measure the 5G signal signal, it means that there is no 5G signal around the UE, and it can only stay in the anchor cell, in the LTE access state, and the signal state corresponding to the LTE network is displayed.
  • the network will issue RRC Release to release network resources, and the UE will enter the idle state (idle), and the 5G connection will also be released at this time, even if the UE is still in 5G Within the coverage of the network, the UE can only display the signal status corresponding to the LTE network, which obviously cannot accurately represent the 5G coverage for users.
  • an embodiment of the present disclosure provides a signal state display method, a terminal, and a readable storage medium.
  • two measurement methods in the idle state are provided. Through Measure the results to determine the current network coverage and continuously display the corresponding signal status to prevent the UE from changing the displayed signal status again after re-entering the idle state.
  • an embodiment of the present disclosure provides a method for displaying signal status, which is applied to a UE.
  • the UE is dual-connected to a first-standard network and a second-standard network.
  • the first-standard network provides an anchor for the UE to access the second-standard network.
  • the method for displaying the signal status of frequency points includes but not limited to the following steps S100, S200, S300 and S400.
  • Step S100 when the UE is in an idle state, monitor the signal change value of the first standard network of the UE in the current cell.
  • Step S200 when the signal change value is greater than a preset signal threshold, an access request is triggered so that the UE establishes a connection with the network of the first standard.
  • Step S300 when accessing the network of the second standard through the anchor frequency point of the network of the first standard, update the current signal state to the signal state corresponding to the network of the second standard.
  • Step S400 continuously displaying the updated signal status until the next update of the signal status.
  • the UE when the UE completes the random access process or performs continuous services in the LTE cell, the UE enters the connected state.
  • the connected state an RRC connection has been established between the UE and the base station corresponding to the LTE cell, and the UE In the RRC context of the connected state, the UE in the connected state can perform acquisition of system information, measurement and measurement reporting, data reception and transmission with the network, monitoring of control channels, etc.; when the UE subsequently camps in the LTE cell and disconnects
  • the network actively sends RRC Release to the UE to release network resources.
  • the UE in the idle state does not have an RCC context on the base station but has a context in the Mobility Management Entity (MME). There is no RCC connection between them.
  • MME Mobility Management Entity
  • the first standard network is an LTE network
  • the second standard network is a 5G network as an example.
  • the UE monitors the signal value of the LTE network in the idle state. When the monitored signal change value is greater than the preset signal threshold, it is considered that the UE has moved a certain range, which may have exceeded or Entering the coverage of the 5G signal, therefore, the UE initiates an access request to the LTE network, and on the premise that the LTE cell is determined to be the anchor cell, the UE attempts to perform dual connectivity.
  • the UE Since the access request is initiated, the UE has transitioned from the idle state to the connected state at this time.
  • this disclosure will continue to display the signal status corresponding to the 5G network until the next time the signal status is updated by means of signal measurement or the like.
  • the signal state corresponding to the LTE network can be 4G icon, LTE icon, etc.
  • the signal state corresponding to the 5G network can be 5G icon, NR icon, etc.
  • the disclosure does not limit the style of the icon.
  • the UE even if the UE triggers an access request to establish a connection with the anchor cell, it may not be able to connect to the 5G network through the anchor frequency, because the coverage of 5G signals is often smaller than that of 4G signals.
  • the UE can only display the signal status corresponding to the LTE network, that is, when the UE passes If the anchor frequency point of the first-standard network fails to access the second-standard network, update the current signal status to the signal status corresponding to the first-standard network.
  • the current common method is to determine whether the current LTE cell is an anchor cell according to whether the SIB2 message delivered by the LTE cell contains the "upperLayerIndication-r15" field.
  • this field is not required by the protocol to be broadcast by the network.
  • Some networks provided by equipment vendors do not display this field, and do not necessarily indicate the anchor cell according to this field. Therefore, in order to judge whether the current LTE cell is an anchor cell, an embodiment of the present disclosure provides a method for judging an anchor cell, which can be specifically implemented through the following steps, referring to FIG. 2:
  • Step S501 receiving a system message issued by the network of the first standard
  • Step S502 when the system message includes an NSA capability indication field, judge whether the first standard network provides an anchor frequency point according to the NSA capability indication field;
  • Step S503 when the system message does not include the NSA capability indication field, determine whether the first standard network provides an anchor frequency point according to whether a measurement event or a reconfiguration message sent by the first standard network is received.
  • LTE system messages include MIB, SIB1, SIB2, etc.
  • SIB2 messages usually include parameters used to determine whether a cell is suitable for cell selection, as well as other time domain scheduling information, etc., according to the current 3GPP protocol
  • the defined upperLayerIndication-r15 field uses a value of "true" to indicate that the current LTE cell supports the ENDC function.
  • the upperLayerIndication-r15 field is not mandatory. In the case of other protocols, the upperLayerIndication-r15 field does not exist, or is represented by other fields.
  • step S501 and step S502 generally describe the system information sent by the LTE cell
  • the NSA capability indication field in the system message the UE can know that the current LTE cell is an anchor cell; if there is no NSA capability indication field in the system message, the LTE cell with ENDC capability can still reconfigure the UE to the 5G network, when the UE is reconfigured
  • the LTE cell with ENDC capability can still reconfigure the UE to the 5G network, when the UE is reconfigured
  • the UE receives the RRC reconfiguration message it can also indicate that the current LTE cell is the anchor cell.
  • the determination process of the anchor cell can not only be applied to the UE in the idle state, but also can be determined through the above steps S501 to S503 when the UE randomly accesses the LTE network.
  • steps S100 and S200 actually indicate that the basis for displaying the signal status corresponding to the second standard network is whether the UE is currently still in the 5G signal coverage area, so the range of terminal movement is judged according to the magnitude of the LTE signal change value measured by the UE .
  • the monitoring of the signal change value in step S100 can be realized through the following steps:
  • Step S110 successively acquire the first signal strength and the second signal strength of the UE under the first standard network of the current cell according to the preset monitoring time interval;
  • Step S120 determining a signal change value according to the first signal strength and the second signal strength.
  • the UE When the UE is in the idle state, it can continuously measure the signal strength of the LTE signal. Generally speaking, when the UE is fixed near a location and does not move, the measured LTE signal strength will not change significantly. When the UE moves beyond a certain range Only when the measured LTE signal strength changes significantly, will the access request be triggered only if the range of change exceeds the preset signal threshold. During this process, the UE successively measures the first signal strength and the second signal strength at preset time intervals, so as to obtain the signal change value through calculation according to the first signal strength and the second signal strength. It is worth noting that, for the case where the UE moves slowly and the LTE signal strength changes slowly, the UE can calculate the signal change value by considering two signal values measured between consecutive time intervals.
  • the UE moves so that the UE leaves the current LTE cell.
  • the first signal value and the second signal value are obtained in the above step S110 After setting the value, refer to Figure 4, and the following steps are required for specific judgment:
  • Step S111 determining a first cell identification number corresponding to the first signal strength and a second cell identification number corresponding to the second signal strength
  • Step S112 when the first cell ID is different from the second cell ID, send a random access request to the cell corresponding to the second cell ID.
  • the cell ID of the LTE cell is used to determine whether the UE is still in the same LTE cell.
  • the cell ID of the LTE cell changes, it indicates that the UE has moved out of the previous LTE cell and into the next LTE cell. Judging from the two signal measurement results before and after, the two signal strength measurements can determine which LTE cell the UE is currently in. Once the cell IDs obtained by the two measurements are different, it is necessary to re-judge whether the latter LTE cell is an anchor cell. , and then execute the subsequent double connection process.
  • step S200 the triggering of the access request in step S200 above can be achieved through the following steps:
  • Step S210 sending an access request to the current cell, where the access request is a data service request or a random access request;
  • Step S220 triggering a radio resource control RRC connection with the network of the first standard.
  • the UE When the change value of the UE monitoring signal exceeds the preset signal threshold, the UE triggers a service and establishes an RRC connection with the first-standard network. After the RRC connection is established, it can try to connect to the second-standard network through the first-standard network. It can be understood that there are multiple ways to trigger the establishment of the RRC connection. For example, the UE can generate a data service to trigger the RRC connection, or trigger a random access service to trigger the RRC connection.
  • the 5G signal coverage can also be measured by regularly sending paging messages from the base station side.
  • an embodiment of the present disclosure also provides a method for displaying signal status, which is applied to a UE.
  • the UE is dual-connected to the first standard network and the second standard network, and the first standard network provides the UE with access to the second standard network.
  • the method for displaying the anchor frequency point and signal state includes but not limited to the following steps S600, S700, S800 and S900.
  • Step S600 when the UE is in an idle state, receive a periodically sent paging message
  • Step S700 when a paging message is received, an access request is triggered to enable the UE to establish a connection with the first standard network;
  • Step S800 when accessing the second standard network through the anchor frequency point of the first standard network, update the current signal state to the signal state corresponding to the second standard network;
  • Step S900 continuously displaying the updated signal status until the next update of the signal status.
  • the base station side periodically sends a paging message to trigger the UE's access request.
  • the UE When the UE is in an idle state and receives the paging message sent by the base station, the UE automatically triggers an access request to connect to the first-standard network. If it successfully reconfigures to the second-standard network through the first-standard network, it can update the current
  • the signal state is the signal state corresponding to the second standard network.
  • the signal display process is the same as that of the previous embodiment, and no further description is given here.
  • Step S710 determining the third cell identification number and the fourth cell identification number of the cell where the UE is located before and after receiving the paging message;
  • Step S720 when the third cell ID is different from the fourth cell ID, send a random access request to the cell corresponding to the fourth cell ID.
  • the UE Under the solution of using the paging message to trigger the access request, the UE measures the cell ID of the LTE cell. When receiving the paging message, it determines the two cell IDs before and after receiving the paging message, so as to determine whether the LTE cell has changed. If the measured cell ID of the LTE cell changes, the UE needs to re-access the latter LTE cell, thus triggering the initiation of a random access procedure.
  • the above access request can also trigger the RRC connection in different ways, referring to Figure 8, the specific steps are as follows:
  • Step S730 sending an access request to the current cell, where the access request is a data service request or a random access request;
  • Step S740 triggering a radio resource control RRC connection with the network of the first standard.
  • the network signal status cannot be monitored when the user terminal is idle.
  • the user terminal switches from the connected state to the idle state, or is currently in the idle state (disconnected from the current network), monitors the signal of the first standard network, or receives the paging message sent regularly by the first standard network, and automatically triggers Access request, so that the user terminal can try to perform dual connections.
  • the user terminal When successfully connecting to the 5G network through the LTE network, the user terminal will continue to display the signal status corresponding to the 5G network.
  • the connection to the 5G network fails, the user terminal will continue to display the signal status corresponding to the LTE network.
  • Signal status which will continue to be displayed until the next update; in this way, the problem that the user terminal cannot display the corresponding signal status of the 5G network even if the user terminal is in the idle state is solved, so that it can More accurately judge the 5G coverage area.
  • This example provides a terminal device for displaying 5G signal status by a UE in an NSA network.
  • the terminal device 200 includes:
  • the anchor cell judgment module 201 judges whether the current LTE cell is an anchor cell according to whether the LTE cell registered by the UE sends an NR reconfiguration message or NR measurement event information;
  • LTE signal monitoring module 202 this module only operates in the anchor cell, when the LTE signal change value of the UE in the anchor cell exceeds the preset signal threshold, a message is sent to the service trigger module 204, and the module also monitors the cells of the LTE cell Whether the ID changes, if the cell ID of the LTE cell changes, it is necessary to notify the anchor cell judgment module 201 to determine whether the changed cell is an anchor cell;
  • the paging information receiving module 203 which only runs in the anchor cell, sends a message to the service trigger module 204 when receiving the paging message sent by the LTE network;
  • the service trigger module 204 triggers a service according to the message sent by the LTE signal monitoring module 202 or the paging information receiving module 203, so that the UE initiates an RRC Connect Request, and then performs NR signal measurement and attempts to access the NR access network;
  • the 5G area judgment module 205 judges whether the current location is the coverage area of the 5G signal according to the NR signal measured during the execution of the service trigger module 204 and the success of accessing the NR access network;
  • the 5G display judgment module 206 judges whether 5G is currently displayed on the UE; some UE signal display requirements require the terminal to display the 5G icon as long as it enters the anchor cell, and some UE's The signal display requirements will require that the UE must enter the 5G signal coverage area to display the 5G icon;
  • the display module 207 updates and displays the current standard information (5G or 4G), and the display status remains until the next information report by the "5G display judgment module 206", that is to say, the currently displayed
  • the standard information (5G or 4G) is the result of the last judgment of the "5G display judgment module 206", and the display module 207 does not update the displayed standard information (4G or 5G) within the time interval between two judgment results.
  • This example provides a method for displaying the signal state of the device 200 in Application Example 1, the method flow is shown in FIG. 10 , and includes the following steps:
  • Step S301 start the process
  • Step S302 the UE starts up and accesses the LTE cell
  • Step S303 The UE judges in the cell whether the network has issued an NR measurement event (such as the B1 event in TS38.331 in the 3GPP protocol) message or an NR reconfiguration message. This step is performed by the anchor cell judging module 201 in the device 200;
  • Step S304 When step S303 determines that the cell has issued NR reconfiguration information or NR measurement events, it is determined that the current cell is an anchor cell;
  • Step S305 Whether the attempt to access 5G in the anchor cell is successful. This step is performed by the 5G area judgment module 205 in the device 200;
  • Step S306 When the access to 5G is successful, the update standard icon is displayed as 5G. This step is performed by the 5G display judgment module 206 and the display module 207 in the device 200;
  • Step S307 When the access to 5G fails, the update standard icon is displayed as 4G. This step is performed by the 5G display judgment module 206 and the display module 207 in the device 200;
  • Step S308 Regardless of whether the access to 5G is successful or not, record the current LTE signal value. This step is performed by the LTE signal monitoring module 202 in the device 200;
  • Step S309 Continuously monitor the change of the LTE signal value, and at the same time monitor whether the cell ID of the LTE cell changes. This step is performed by the LTE signal monitoring module 202 in the device 200;
  • Step S310 judging whether the cell ID of the LTE cell has changed, if the cell ID of the LTE cell has changed, return to step S303, and judge whether the changed LTE cell is an anchor cell;
  • Step S311 Determine whether the difference between the current LTE signal value and the signal value recorded in step S309 is greater than the preset signal threshold, if the difference between the current LTE signal value and the signal value recorded in step S309 is not greater than the preset signal threshold, return to step S309 to continue Monitor the LTE signal value.
  • This step is only executed after step S310 judges that the LTE cell ID has not changed, and is executed by the LTE signal monitoring module 202 in the device 200;
  • Step S312 When step S311 judges that the difference between the current LTE signal value and the signal value recorded in step S309 is greater than the preset signal threshold, a service (data service or random access service, etc. that can trigger RRC connection) is triggered, and an RRC connection is established. This step is performed by the service trigger module 204 in the device 200;
  • Step S313 After the RRC connection is established in step S312, the UE tries to access 5G. This step is performed by the service triggering module 204 in the device 200 . Then return to step S305 to determine whether the 5G access is successful;
  • Step S314 In step S303, if the LTE cell does not send an NR reconfiguration message or an NR measurement event message, the update standard icon is displayed as 4G, that is, it is judged that the current cell is not an anchor cell, and the terminal cannot access 5G, and then perform the steps S315;
  • Step S315 the process ends.
  • This example provides a method for displaying the signal state of the device 200 in Application Example 1.
  • the method flow is shown in FIG. 11 , and includes the following steps:
  • Step S401 start the process
  • Step S402 the UE starts up and accesses the LTE cell
  • Step S403 The UE judges in the cell whether the network has issued an NR measurement event (such as the B1 event in TS38.331 in the 3GPP protocol) message or an NR reconfiguration message. This step is performed by the anchor cell judging module 201 in the device 200;
  • Step S404 When step S403 determines that the cell has issued NR reconfiguration information or NR measurement events, it is determined that the current cell is an anchor cell;
  • Step S405 Whether the attempt to access 5G in the anchor cell is successful. This step is performed by the 5G area judgment module 205 in the device 200;
  • Step S406 When the access to 5G is successful, the update standard icon is displayed as 5G. This step is performed by the 5G display judgment module 206 and the display module 207 in the device 200;
  • Step S407 When the access to 5G fails, the update standard icon is displayed as 4G. This step is performed by the 5G display judgment module 206 and the display module 207 in the device 200;
  • Step S408 No matter whether the access to 5G is successful or not, the UE will wait for the paging message sent by the network. This step is performed by the paging information receiving module 203 in the device 200;
  • Step S409 While waiting for the network to send a paging message, continuously monitor whether the cell ID of the LTE cell changes. If the cell ID of the LTE cell changes, return to step S403 to determine whether the changed LTE cell is an anchor cell. This step is performed by the LTE signal monitoring module 202 in the device 200;
  • Step S410 the terminal receives a paging message from the network, and this step is executed by the paging message receiving module 203 in the device 200;
  • Step S411 After receiving the paging message from the network, an access service is triggered to establish an RRC connection. This step is performed by the service trigger module 204 in the device 200;
  • Step S412 After the RRC connection is established in step S411, the terminal tries to access 5G. This step is performed by the service triggering module 204 in the device 200 . Then return to step S405 to determine whether the 5G access is successful;
  • Step S413 In step S403, if the LTE cell does not send an NR reconfiguration message or an NR measurement event message, the update standard icon is displayed as 4G, that is, it is judged that the current cell is not an anchor cell, and the terminal cannot access 5G, and then perform the steps S414;
  • Step S414 the process ends.
  • An embodiment of the present disclosure also provides a terminal, including at least one processor and a memory for communicating with the at least one processor; the memory stores instructions that can be executed by the at least one processor, and the instructions are executed by the at least one processor , so that at least one processor can execute the aforementioned signal state display method.
  • the memory 1002 can be used to store non-transitory software programs and non-transitory computer-executable programs.
  • the memory 1002 may include a high-speed random access memory, and may also include a non-transitory memory, such as at least one disk memory, a flash memory device, or other non-transitory solid-state storage devices.
  • the storage 1002 may optionally include storages that are set remotely relative to the control processor 1001, and these remote storages may be connected to the terminal 1000 through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the device structure shown in FIG. 12 does not constitute a limitation on the terminal 1000, and may include more or less components than shown in the figure, or combine some components, or arrange different components.
  • Embodiments of the present disclosure also provide a computer-readable storage medium, the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are executed by one or more control processors, for example, by the Executed by one control processor 1001, the above-mentioned one or more control processors can execute the signal state display method in the above-mentioned method embodiment, for example, execute the method steps S100 to S400 in FIG. 1 described above, and the method in FIG. 2 Method step S501 to step S502, method step S110 to step S120 in Fig. 3, method step S111 to step S112 in Fig. 4, method step S210 to step S220 in Fig. 5, method step S600 and step in Fig. 6 S900, method step S710 and step S720 in FIG. 7 and method step S730 and step S740 in FIG. 8 .
  • the above-mentioned one or more control processors can execute the signal state display method in the above-mentioned method embodiment, for example, execute the method
  • the signal status display method provided by the embodiment of the present disclosure has at least the following beneficial effects: the embodiment of the present disclosure aims at the problem of inaccurate display of the signal status of the two network standards on the dual-connection user terminal under the NSA architecture, and provides a user
  • the solution to the inability to monitor the network signal state when the terminal is idle is to monitor the signal of the first standard network when the user terminal transitions from the connected state to the idle state, or is currently in the idle state (disconnected from the current network), or Receive the paging message regularly sent by the first standard network, and automatically trigger the access request, so that the user terminal can try to perform dual connection.
  • the user terminal When the user terminal successfully connects to the 5G network through the LTE network, the user terminal will continue to display the signal status corresponding to the 5G network.
  • the user terminal will continue to display the signal status corresponding to the LTE network, and this signal status will continue to be displayed until the next update; this method solves the problem that the user terminal is in an idle state, even if the user terminal is located in the coverage area of the 5G network. However, it cannot display the signal status corresponding to the 5G network, so that the 5G coverage area can be judged more accurately.
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, tape, magnetic disk storage or other magnetic storage devices, or can Any other medium used to store desired information and which can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种信号状态显示方法、终端及可读存储介质,其中所述信号状态显示方法应用于用户终端UE,所述UE双连接到第一制式网络和第二制式网络,所述第一制式网络为所述UE提供接入所述第二制式网络的锚点频点。所述信号状态显示方法包括:在所述UE处于空闲态的情况下,监测所述UE在当前小区的所述第一制式网络的信号变化值(S100);当所述信号变化值大于预设信号阈值,触发接入请求以使所述UE与所述第一制式网络建立连接(S200);当通过所述第一制式网络的锚点频点接入所述第二制式网络,更新当前信号状态为所述第二制式网络对应的信号状态(S300);持续显示更新后的信号状态,直到下一次更新信号状态(S400)。

Description

信号状态显示方法、终端及可读存储介质
相关申请的交叉引用
本申请基于申请号为202110677352.0、申请日为2021年06月18日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及无线通信技术领域,尤其涉及一种信号状态显示方法、终端及可读存储介质。
背景技术
当前5G网络发展迅速,基于NSA(Non-Standalone,非独立组网)架构的5G网络由于成本优势和架构简单等原因已经开始商用。NSA架构采用双连接方案,即终端可以同时接入LTE(Long Term Evolution,长期演进)核心网+NR(New Radio,新空口)接入网。在终端具体接入NR接入网的过程中,主要表现在终端先接入到具备NR重配能力的LTE小区,然后LTE小区通过RRC(Radio Resource Control,无线资源控制)重配消息为终端加上NR接入网的连接。
终端在双连接过程中,根据LTE小区的RRC重配消息测量5G信号,当能测量到5G信号时,终端发起5G网络注册并显示5G信号图标,否则显示4G信号图标。上述过程中,终端在接入阶段能够显示当前接入4G信号还是5G信号,但是显示时间不够长久,例如终端接入了5G网络,如果没有持续的业务,终端所在的LTE制式处于闲置状态,网络会下发RRC Release消息释放网络资源,从而导致5G制式也处于去激活状态,不能实时检测5G信号,无法判断终端的当前区域是否还处于5G信号覆盖区域,只能显示4G信号,显然并不符合实际情况。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本公开实施例提供了一种信号状态显示方法、终端及可读存储介质,能够在终端双连接情况下准确显示终端当前的信号状态。
第一方面,本公开实施例提供了一种信号状态显示方法,应用于用户终端UE,所述UE双连接到第一制式网络和第二制式网络,所述第一制式网络为所述UE提供接入所述第二制式网络的锚点频点。所述信号状态显示方法包括:在所述UE处于空闲态的情况下,监测所述UE在当前小区的所述第一制式网络的信号变化值;当所述信号变化值大于预设 信号阈值,触发接入请求以使所述UE与所述第一制式网络建立连接;当通过所述第一制式网络的锚点频点接入所述第二制式网络,更新当前信号状态为所述第二制式网络对应的信号状态;以及持续显示更新后的信号状态,直到下一次更新信号状态。
第二方面,本公开实施例提供了一种信号状态显示方法,应用于用户终端UE,所述UE双连接到第一制式网络和第二制式网络,所述第一制式网络为所述UE提供接入所述第二制式网络的锚点频点。所述信号状态显示方法包括:在所述UE处于空闲态的情况下,接收周期性发送的寻呼消息;当接收到所述寻呼消息,触发接入请求以使所述UE与所述第一制式网络建立连接;当通过所述第一制式网络的锚点频点接入所述第二制式网络,更新当前信号状态为所述第二制式网络对应的信号状态;以及持续显示更新后的信号状态,直到下一次更新信号状态。
第三方面,本公开实施例还提供了一种终端,包括至少一个处理器和用于与所述至少一个处理器通信连接的存储器。所述存储器存储有能够被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如第一方面的信号状态显示方法或者执行如第二方面的信号状态显示方法。
第四方面,本公开实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使计算机执行如第一方面的信号状态显示方法或者执行如第二方面的信号状态显示方法。
本公开的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本公开而了解。本公开的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本公开技术方案的进一步理解,并且构成说明书的一部分,与本公开的示例一起用于解释本公开的技术方案,并不构成对本公开技术方案的限制。
图1是本公开一个实施例提供的信号状态显示方法的整体方法流程图;
图2是本公开一个实施例提供的判断锚点小区的流程图;
图3是本公开一个实施例提供的确定信号变化值的流程图;
图4是本公开一个实施例提供的判断小区I D变化的流程图;
图5是本公开一个实施例提供的触发接入请求的流程图;
图6是本公开一个实施例提供的信号状态显示方法的整体方法流程图;
图7是本公开一个实施例提供的判断小区I D变化的流程图;
图8是本公开一个实施例提供的触发接入请求的流程图;
图9是本公开示例一提供的装置结构连接图;
图10是本公开示例二提供的信号状态显示方法的流程图;
图11是本公开示例三提供的信号状态显示方法的流程图;以及
图12是本公开实施例提供的终端的结构示意图。
具体实施方式
为了使本公开的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本公开进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本公开,并不用于限定本公开。
随着5G网络的发展,对于5G的网络架构,3GPP提出了多个组网架构选项,这些组网架构选项分为独立组网(Standalone,SA)和非独立组网(Non-Standalone,NSA),其中,NSA的组网架构的5G网络由于成本优势和架构简单等原因已经开始商用。NSA架构采用双连接方案,即LTE核心网+NR接入网,用户终端(User Equipment,UE)同时接入到LTE网络和5G网络。当然,NSA架构的组网也有好几种,其中应用最为广泛的组网架构中,UE的控制面走LTE核心网,用户面走NR接入网,本公开实施例以上述这种应用最为广泛的NSA组网架构为基础进行说明。
UE在双连接过程中,主要表现在UE首先接入到具备将UE重配到NR接入网能力的LTE小区,该LTE小区通过RRC重配将NR接入网加到UE的连接中。一般来说,为了方便区分这种具备重配到NR接入网能力的LTE小区称为锚点小区,对应的不具备重配到NR接入网能力的LTE小区,则称为非锚点小区,而这种能将UE从锚点小区重配到NR接入网的能力,叫做ENDC(Dual Connectivity of E-UTRA with NR)能力。可以理解的是,锚点小区并非协议标准中提供的名词,协议中对于NSA组网下的双连接技术,要求LTE小区提供一个锚点,为当前具备5G接入能力的UE提供接入到NR接入网的支撑点,该点一般是设定LTE小区中的某个频点,通过该锚点频点,UE根据频点转换接入到到NR接入网。
在ENDC接入过程中,UE需要根据LTE小区的RRC重配信息测量5G信号,当UE能测量到5G信号时,UE才发起5G注册,显示5G网络对应的信号状态;当UE测量不到5G信号时,就代表UE周围没有5G信号,只能停留在锚点小区,处于LTE接入状态,显示LTE网络对应的信号状态。
当UE接入NR接入网后如果没有持续的业务,网络下发RRC Release释放网络资源,UE将会进入空闲态(idle),此时5G连接也随之释放,此时即使UE还处于5G网络的覆盖范围内,UE上也只能显示LTE网络对应的信号状态,显然无法为用户准确表示5G覆盖范围。
基于此,本公开实施例提供了一种信号状态显示方法、终端及可读存储介质,针对UE处于空闲态无法准确表示当前网络覆盖情况的问题,提供了两种空闲态下的测量手段,通过测量结果来确定当前的网络覆盖情况并持续显示对应的信号状态,防止UE重新进入空闲态后再次更改所显示的信号状态。
参照图1,本公开实施例提供了一种信号状态显示方法,应用于UE,UE双连接到第一制式网络和第二制式网络,第一制式网络为UE提供接入第二制式网络的锚点频点,信号状态显示方法包括但不限于以下步骤S100、步骤S200、步骤S300和步骤S400。
步骤S100,在UE处于空闲态的情况下,监测UE在当前小区的第一制式网络的信号变化值。
步骤S200,当信号变化值大于预设信号阈值,触发接入请求以使UE与第一制式网络建立连接。
步骤S300,当通过第一制式网络的锚点频点接入第二制式网络,更新当前信号状态为第二制式网络对应的信号状态。
步骤S400,持续显示更新后的信号状态,直到下一次更新信号状态。
相关技术下,当UE在LTE小区完成随机接入过程或者进行持续的业务,那么UE进入连接态,在连接态下,UE和LTE小区对应的基站之间已经建立了RRC连接,并保存有UE的RRC上下文,在连接态下的UE可执行捕获系统消息、测量和测量上报、与网络之间进行数据的接收和发送、监听控制信道等;当UE后续在该LTE小区驻留,并断开业务连接一段时间,网络则主动向UE发送RRC Release释放网络资源,处于空闲态的UE,在基站上并没有RCC的上下文而在移动管理实体(Mobility Management Entity,MME)中存在上下文,与基站之间不存在RCC连接。空闲态下的UE可执行接收系统信息广播、监听寻呼信道、小区重选等。
为方便表述,本公开实施例中以第一制式网络为LTE网络、第二制式网络为5G网络为例。为了准确表示5G网络的覆盖信号,UE在空闲态下对LTE网络的信号值的监测,当监测得到的信号变化值大于预设信号阈值,则认为UE已经移动了一段范围,有可能已经超出或者进入5G信号的覆盖范围内,因此,由UE向LTE网络发起接入请求,确定该LTE小区是锚点小区的前提下,UE尝试进行双连接。当成功连接到5G网络,则将UE当前显示的信号状态更新为5G网络对应的信号状态。由于发起了接入请求,此时UE已经从空闲态转换到连接态,为了避免之后UE从连接态切换到空闲态时将5G网络对应的信号状态自动改成LTE网络对应的信号状态,本公开实施例将持续显示5G网络对应的信号状态,直到下一次通过信号测量等方式来更新信号状态。可以理解的是,LTE网络对应的信号状态可 以是4G图标、LTE图标等,而5G网络对应的信号状态可以是5G图标、NR图标等,本公开不对图标的样式做限定。
通过上述方式,即使UE在后续从连接态切换到空闲态,只要LTE的信号变化值没有超过预设信号阈值,都可以认为UE还处于5G网络的覆盖范围内,从而为用户提供准确的5G信号覆盖提示。
可以理解的是,即使UE触发接入请求与锚点小区建立连接,但并不一定就能够通过锚点频点连接到5G网络,因为5G信号的覆盖范围往往比4G信号的覆盖范围要小,当UE处于LTE网络的覆盖范围内且不在NR接入网的覆盖范围内时,UE进行双连接的过程中无法测量到5G信号,那么UE也只能显示LTE网络对应的信号状态,即当通过第一制式网络的锚点频点接入第二制式网络失败,更新当前信号状态为第一制式网络对应的信号状态。
关于锚点小区的判断,目前通用的方法是根据LTE小区下发的SIB2消息中是否包含“upperLayerIndication-r15”字段来判断当前LTE小区是否是锚点小区。但该字段并不是协议规定网络必须广播的,有些设备商提供的网络就不显示这个字段,并且也不一定按照这个字段来指示锚点小区。因此为了判断当前LTE小区是否为锚点小区,本公开实施例提供了一种锚点小区的判断方法,具体可以通过以下步骤实现,参照图2:
步骤S501,接收第一制式网络下发的系统消息;
步骤S502,当系统消息中包含有NSA能力指示字段,根据NSA能力指示字段判断第一制式网络是否提供锚点频点;
步骤S503,当系统消息中不包含有NSA能力指示字段,根据是否接收到第一制式网络下发的测量事件或重配消息,确定判断第一制式网络是否提供锚点频点。
在当前常用协议标准下,LTE的系统消息包括MIB、SIB1、SIB2等等,SIB2消息通常包含用来判断某小区是否适合用于小区选择的参数,以及其他时域调度信息等,根据当前3GPP协议定义的upperLayerIndication-r15字段,以“true”值来表示当前LTE小区支持ENDC功能。当然,upperLayerIndication-r15字段并非强制规定,在按照其他协议的情况下,该upperLayerIndication-r15字段不存在,或者以其他字段表示,因此步骤S501和步骤S502概括性地说明通过LTE小区下发的系统消息中的NSA能力指示字段,UE能够知道当前LTE小区是锚点小区;如果系统消息中没有任何NSA能力指示字段,那么具备ENDC能力的LTE小区仍可以将UE重配到5G网络,当UE被重配到5G网络,显然需要对5G信号进行测量来确定信号强度;那么从这一过程入手,当UE接收到LTE小区的测量事件或重配消息,则表面该LTE小区是锚点小区。可以理解的是,LTE测量事件包括很多种,通常采用3GPP协议TS38.331中的B1事件。另一方面,在UE接收到RRC重配消息的时候, 也能表示当前LTE小区是锚点小区。
可以理解的是,锚点小区的判断过程不但可以应用于空闲态的UE,在UE随机接入LTE网络的过程中,也可以通过上述步骤S501至步骤S503来判断锚点小区。
上述步骤S100和步骤S200实际表示了,显示第二制式网络对应的信号状态的依据是UE当前是否还在5G信号覆盖区域,因此根据UE测量到的LTE信号变化值的大小来判断终端移动的范围。具体来说,参照图3,步骤S100中对信号变化值的监测可以通过以下步骤实现:
步骤S110,根据预设监测时间间隔先后获取UE在当前小区的第一制式网络下的第一信号强度和第二信号强度;
步骤S120,根据第一信号强度和第二信号强度确定信号变化值。
UE在空闲态状态下,可以持续测量LTE信号的信号强度,一般来说,UE固定在一个位置附近不移动的情况下,测量得到的LTE信号强度不会大幅度变化,当UE移动超过一定范围的时候,测量得到的LTE信号强度才可能发生大幅度变化,那么这个变化幅度超过预设信号阈值,才触发接入请求。在这过程中,UE以预设时间间隔先后测量得到第一信号强度和第二信号强度,从而根据第一信号强度和第二信号强度计算得到信号变化值。值得注意的是,对于UE缓慢移动而使得LTE信号强度缓慢变化的情况,UE可以考虑在多个连续时间间隔之间测量的前后两个信号值,来计算得到信号变化值。
在一些情况下,UE移动使得UE脱离了当前的LTE小区,那么在判断信号变化值之前,还需要判断UE是否还处于同一个LTE小区,因此上述步骤S110中获取第一信号值和第二信号值后,参照图4,具体还要做以下步骤的判断:
步骤S111,确定第一信号强度对应的第一小区标识号和第二信号强度对应的第二小区标识号;
步骤S112,当第一小区标识号和第二小区标识号不相同,向第二小区标识号对应的小区发送随机接入请求。
通常来说,通过LTE小区的小区ID来判断UE是否还处于同一个LTE小区,当LTE小区的小区ID发生变化,则表明UE已经移动出前一个LTE小区而进入到后一个LTE小区。从前后两次信号测量结果来看,两次信号强度测量都可以确定UE当前处于哪个LTE小区,一旦前后两次测量得到的小区ID不相同,则需要重新判断后一个LTE小区是否为锚点小区,再执行后续的双连接过程。
参照图5,上述步骤S200中触发接入请求可以通过以下步骤实现:
步骤S210,向当前小区发送接入请求,接入请求为数据业务请求或随机接入请求;
步骤S220,触发与第一制式网络的无线资源控制RRC连接。
当UE监测信号变化值超过预设信号阈值,此时UE触发一个业务,与第一制式网络建立RRC连接,在建立RRC连接之后才可以通过第一制式网络尝试连接到第二制式网络。可以理解的是,触发建立RRC连接的方式有多种,例如,UE可以自生成一个数据业务来触发RRC连接,也可以是触发随机接入业务来触发RRC连接。
除了上述通过信号强度的变化值来测量5G信号覆盖范围,还可以通过基站侧定期发送寻呼消息来测量5G信号覆盖范围。
参照图6,本公开实施例还提供了一种信号状态显示方法,应用于UE,UE双连接到第一制式网络和第二制式网络,第一制式网络为UE提供接入第二制式网络的锚点频点,信号状态显示方法包括但不限于以下步骤S600、步骤S700、步骤S800和步骤S900。
步骤S600,在UE处于空闲态的情况下,接收周期性发送的寻呼消息;
步骤S700,当接收到寻呼消息,触发接入请求以使UE与第一制式网络建立连接;
步骤S800,当通过第一制式网络的锚点频点接入第二制式网络,更新当前信号状态为第二制式网络对应的信号状态;
步骤S900,持续显示更新后的信号状态,直到下一次更新信号状态。
在本实施例中,基站侧定期发送寻呼消息来触发UE的接入请求。当UE处于空闲态并接收到基站发送的该寻呼消息,UE自动触发接入请求来连接到第一制式网络,如果通过该第一制式网络成功重配到第二制式网络,则可以更新当前信号状态为第二制式网络对应的信号状态。信号显示过程与上一实施例的方式相同,在此不再展开说明。
同样地,当通过第一制式网络的锚点频点接入第二制式网络失败,更新当前信号状态为第一制式网络对应的信号状态。
可以理解的是,UE在接收到寻呼消息之后,发起接入请求之前,仍然需要判断UE是否还处于当前的LTE小区,具体可以通过以下步骤实现,参照图7:
步骤S710,确定接收寻呼消息前后UE所在小区的第三小区标识号和第四小区标识号;
步骤S720,当第三小区标识号和第四小区标识号不相同,向第四小区标识号对应的小区发送随机接入请求。
采用寻呼消息来触发接入请求的方案下,UE测量LTE小区的小区ID,当接收到寻呼消息,则确定接收寻呼消息前后的两个小区ID,从而确定LTE小区是否发生了变化。如果测量得到的LTE小区的小区ID发生了变化,则UE需要重新接入到后一个LTE小区,因此触发发起随机接入过程。
同理,上述接入请求也可以通过不同的方式触发RRC连接,参照图8,具体如下步骤:
步骤S730,向当前小区发送接入请求,接入请求为数据业务请求或随机接入请求;
步骤S740,触发与第一制式网络的无线资源控制RRC连接。
通过上述两个实施例,针对在NSA架构下,双连接的用户终端上两种网络制式的信号状态显示不准确的问题,提供了在用户终端空闲态下无法监测网络信号状态的解决办法,当用户终端从连接态转换到空闲态,或者当前处于空闲态(与当前网络断开连接)下,对第一制式网络的信号进行监测,或者接收第一制式网络定期发送的寻呼消息,自动触发接入请求,从而用户终端可以尝试进行双连接,当成功通过LTE网络连接到5G网络,则用户终端持续显示5G网络对应的信号状态,当连接5G网络失败,则用户终端持续显示LTE网络对应的信号状态,此信号状态持续显示到下一次更新;通过这一方式,解决了用户终端处于空闲态下,即使用户终端位于5G网络的覆盖范围却无法显示5G网络对应的信号状态的问题,从而能够更加准确地判断5G覆盖区域。
下面以实际三个示例对本公开实施例的信号状态显示方法进行说明:
示例一
本示例提供了一种在NSA网络中UE显示5G信号状态的终端装置,如图9所示,终端装置200包括:
锚点小区判断模块201,根据UE所注册的LTE小区是否下发NR重配消息或者NR测量事件信息,判断当前LTE小区是否是锚点小区;
LTE信号监测模块202,该模块只在锚点小区运行,当UE在锚点小区中LTE信号变化值超过预设信号阈值时,发送消息给业务触发模块204,同时该模块还监测LTE小区的小区ID是否发生了变化,如果LTE小区的小区ID发生变化,则需要通知锚点小区判断模块201判断变化后的小区是否是锚点小区;
寻呼信息接收模块203,该模块只在锚点小区运行,当接收到LTE网络发送的寻呼消息时,发送消息给业务触发模块204;
业务触发模块204,根据LTE信号监测模块202或者寻呼信息接收模块203发来的消息,触发一次业务,使UE发起RRC Connect Request,进而执行NR信号测量以及尝试接入NR接入网;
5G区域判断模块205,根据业务触发模块204执行过程中测量的NR信号以及接入NR接入网的成功与否,判断当前位置是否是5G信号的覆盖区域;
5G显示判断模块206,根据5G区域判断模块上报的结果以及5G显示需求,判断当前是否在UE上显示5G;有些UE的信号显示需求是要求终端只要进入锚点小区就显示5G图标,有些UE的信号显示需求会要求UE必须进入5G信号覆盖区域才能显示5G图标;
显示模块207,根据5G显示判断模块206的信息上报,更新显示当前的制式信息(5G或者4G),该显示状态一直保持到“5G显示判断模块206”下次信息上报,也就是说当前显示的制式信息(5G或者4G)是“5G显示判断模块206”上一次判断的结果,在两次判断结果时间间隔之内,显示模块207不更新显示的制式信息(4G或者5G)。
示例二
本示例提供了一种应用示例一装置200的信号状态的显示方法,其方法流程参照图10所示,包括以下步骤:
步骤S301:开始流程;
步骤S302:UE开机接入LTE小区;
步骤S303:UE在该小区中判断网络是否下发了NR测量事件(比如3GPP协议中TS38.331中的B1事件)消息或者NR重配消息。该步骤由装置200中的锚点小区判断模块201来执行;
步骤S304:当步骤S303判断该小区下发了NR重配信息或者NR测量事件时,判断当前小区是锚点小区;
步骤S305:在锚点小区尝试接入5G是否成功。该步骤由装置200中的5G区域判断模块205来执行;
步骤S306:当接入5G成功时,则更新制式图标显示为5G。该步骤由装置200中的5G显示判断模块206和显示模块207执行;
步骤S307:当接入5G失败时,则更新制式图标显示为4G。该步骤由装置200中的5G显示判断模块206和显示模块207执行;
步骤S308:不管接入5G是否成功,都记录当前的LTE信号值大小。该步骤由装置200中的LTE信号监测模块202执行;
步骤S309:持续监测LTE信号值变化,同时监测LTE小区的小区ID是否发生变化。该步骤由装置200中的LTE信号监测模块202执行;
步骤S310:判断LTE小区的小区ID是否发生了变化,如果LTE小区的小区ID发生变化,则回到步骤S303,判断变化后的LTE小区是否是锚点小区;
步骤S311:判断当前LTE信号值与步骤S309记录的信号值差异是否大于预设信号阈值,如果当前的LTE信号值与步骤S309记录的信号值差异没有大于预设信号阈值,则回到步骤S309继续监测LTE信号值。该步骤只有当步骤S310判断LTE小区ID没有变化之后执行的,由装置200中的LTE信号监测模块202执行;
步骤S312:步骤S311判断当前LTE信号值与步骤S309记录的信号值差异大于预设信 号阈值时,则触发一个业务(数据业务或者随机接入业务等能触发RRC连接的业务),建立RRC连接。该步骤由装置200中的业务触发模块204执行;
步骤S313:步骤S312在建立RRC连接之后,UE尝试接入5G。该步骤由装置200中的业务触发模块204执行。之后回到步骤S305,判断5G接入是否成功;
步骤S314:在步骤S303,如果LTE小区没有下发NR重配消息或者NR测量事件消息时,更新制式图标显示为4G,即判断当前小区不是锚点小区,终端不可能接入5G,之后执行步骤S315;
步骤S315:流程结束。
示例三
本示例提供了一种应用示例一装置200的信号状态的显示方法,其方法流程参照图11所示,包括以下步骤:
步骤S401:开始流程;
步骤S402:UE开机接入LTE小区;
步骤S403:UE在该小区中判断网络是否下发了NR测量事件(比如3GPP协议中TS38.331中的B1事件)消息或者NR重配消息。该步骤由装置200中的锚点小区判断模块201来执行;
步骤S404:当步骤S403判断该小区下发了NR重配信息或者NR测量事件时,判断当前小区是锚点小区;
步骤S405:在锚点小区尝试接入5G是否成功。该步骤由装置200中的5G区域判断模块205来执行;
步骤S406:当接入5G成功时,则更新制式图标显示为5G。该步骤由装置200中的5G显示判断模块206和显示模块207执行;
步骤S407:当接入5G失败时,则更新制式图标显示为4G。该步骤由装置200中的5G显示判断模块206和显示模块207执行;
步骤S408:不管接入5G是否成功,UE都将等待网络发送的寻呼消息。该步骤由装置200中的寻呼信息接收模块203执行;
步骤S409:等待网络发送寻呼消息的同时,持续监测LTE小区的小区ID是否发生变化,如果LTE小区的小区ID发生变化,则回到步骤S403,判断变化后的LTE小区是否是锚点小区。该步骤由装置200中的LTE信号监测模块202执行;
步骤S410:终端收到网络下发的寻呼消息,该步骤由装置200中的寻呼消息接收模块203执行;
步骤S411:收到网络下发的寻呼消息后,会触发一个接入业务,建立RRC连接。该步骤由装置200中的业务触发模块204执行;
步骤S412:步骤S411在建立RRC连接之后,终端尝试接入5G。该步骤由装置200中的业务触发模块204执行。之后回到步骤S405,判断5G接入是否成功;
步骤S413:在步骤S403,如果LTE小区没有下发NR重配消息或者NR测量事件消息时,更新制式图标显示为4G,即判断当前小区不是锚点小区,终端不可能接入5G,之后执行步骤S414;
步骤S414:流程结束。
本公开实施例的还提供了一种终端,包括至少一个处理器和用于与至少一个处理器通信连接的存储器;存储器存储有能够被至少一个处理器执行的指令,指令被至少一个处理器执行,以使至少一个处理器能够执行前述的信号状态显示方法。
参照图12,以终端1000中的控制处理器1001和存储器1002可以通过总线连接为例。存储器1002作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序以及非暂态性计算机可执行程序。此外,存储器1002可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器、闪存器件、或其他非暂态固态存储器件。在一些实施方式中,存储器1002可选包括相对于控制处理器1001远程设置的存储器,这些远程存储器可以通过网络连接至终端1000。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本领域技术人员可以理解,图12中示出的装置结构并不构成对终端1000的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
本公开实施例的还提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个控制处理器执行,例如,被图12中的一个控制处理器1001执行,可使得上述一个或多个控制处理器执行上述方法实施例中的信号状态显示方法,例如,执行以上描述的图1中的方法步骤S100至步骤S400、图2中的方法步骤S501至步骤S502、图3中的方法步骤S110至步骤S120、图4中的方法步骤S111至步骤S112、图5中的方法步骤S210至步骤S220、图6中的方法步骤S600和步骤S900、图7中的方法步骤S710和步骤S720以及图8中的方法步骤S730和步骤S740。
本公开实施例提供的信号状态显示方法,至少具有如下有益效果:本公开实施例针对在NSA架构下,双连接的用户终端上两种网络制式的信号状态显示不准确的问题,提供了在用户终端空闲态下无法监测网络信号状态的解决办法,当用户终端从连接态转换到空闲态,或者当前处于空闲态(与当前网络断开连接)下,对第一制式网络的信号进行监测, 或者接收第一制式网络定期发送的寻呼消息,自动触发接入请求,从而用户终端可以尝试进行双连接,当成功通过LTE网络连接到5G网络,则用户终端持续显示5G网络对应的信号状态,当连接5G网络失败,则用户终端持续显示LTE网络对应的信号状态,此信号状态持续显示到下一次更新;通过这一方式,解决了用户终端处于空闲态下,即使用户终端位于5G网络的覆盖范围却无法显示5G网络对应的信号状态的问题,从而能够更加准确地判断5G覆盖区域。
以上所描述的装置实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上是对本申请的较佳实施进行了具体说明,但本申请并不局限于上述实施方式,熟悉本领域的技术人员在不违背本申请精神的前提下还可作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (13)

  1. 一种信号状态显示方法,应用于用户终端UE,所述UE双连接到第一制式网络和第二制式网络,所述第一制式网络为所述UE提供接入所述第二制式网络的锚点频点,所述信号状态显示方法包括:
    在所述UE处于空闲态的情况下,监测所述UE在当前小区的所述第一制式网络的信号变化值;
    当所述信号变化值大于预设信号阈值,触发接入请求以使所述UE与所述第一制式网络建立连接;
    当通过所述第一制式网络的锚点频点接入所述第二制式网络,更新当前信号状态为所述第二制式网络对应的信号状态;以及
    持续显示更新后的信号状态,直到下一次更新信号状态。
  2. 根据权利要求1所述的信号状态显示方法,还包括:
    当通过所述第一制式网络的锚点频点接入所述第二制式网络失败,更新当前信号状态为所述第一制式网络对应的信号状态。
  3. 根据权利要求1所述的信号状态显示方法,其中,所述监测所述UE在当前小区的所述第一制式网络的信号变化值,包括:
    根据预设监测时间间隔先后获取所述UE在当前小区的所述第一制式网络下的第一信号强度和第二信号强度;以及
    根据所述第一信号强度和所述第二信号强度确定信号变化值。
  4. 根据权利要求3所述的信号状态显示方法,其中,获取所述第一信号值和所述第二信号值后,还包括:
    确定所述第一信号强度对应的第一小区标识号和所述第二信号强度对应的第二小区标识号;以及
    当所述第一小区标识号和所述第二小区标识号不相同,向所述第二小区标识号对应的小区发送随机接入请求。
  5. 根据权利要求1所述的信号状态显示方法,其中,所述触发接入请求以使所述UE与所述第一制式网络建立连接,包括:
    向所述当前小区发送接入请求,所述接入请求为数据业务请求或随机接入请求;以及
    触发与所述第一制式网络的无线资源控制RRC连接。
  6. 根据权利要求1所示的信号状态显示方法,其中,在通过所述第一制式网络的锚点频点接入所述第二制式网络之前,还包括:
    接收所述第一制式网络下发的系统消息;
    当所述系统消息中包含有NSA能力指示字段,根据所述NSA能力指示字段判断所述第一制式网络是否提供所述锚点频点;以及
    当所述系统消息中不包含有所述NSA能力指示字段,根据是否接收到所述第一制式网络下发的测量事件或重配消息,确定判断所述第一制式网络是否提供所述锚点频点。
  7. 一种信号状态显示方法,应用于用户终端UE,所述UE双连接到第一制式网络和第二制式网络,所述第一制式网络为所述UE提供接入所述第二制式网络的锚点频点,所述双连接小区的信号状态显示方法包括:
    在所述UE处于空闲态的情况下,接收周期性发送的寻呼消息;
    当接收到所述寻呼消息,触发接入请求以使所述UE与所述第一制式网络建立连接;
    当通过所述第一制式网络的锚点频点接入所述第二制式网络,更新当前信号状态为所述第二制式网络对应的信号状态;以及
    持续显示更新后的信号状态,直到下一次更新信号状态。
  8. 根据权利要求7所述的信号状态显示方法,还包括:
    当通过所述第一制式网络的锚点频点接入所述第二制式网络失败,更新当前信号状态为所述第一制式网络对应的信号状态。
  9. 根据权利要求7所述的信号状态显示方法,其中,接收到所述寻呼消息之后,还包括:
    确定接收所述寻呼消息前后所述UE所在小区的第三小区标识号和第四小区标识号;以及
    当所述第三小区标识号和所述第四小区标识号不相同,向所述第四小区标识号对应的小区发送随机接入请求。
  10. 根据权利要求7所述的信号状态显示方法,其中,所述触发接入请求以使所述UE与所述第一制式网络建立连接,包括:
    向所述当前小区发送接入请求,所述接入请求为数据业务请求或随机接入请求;以及
    触发与所述第一制式网络的无线资源控制RRC连接。
  11. 根据权利要求7所示的信号状态显示方法,其中,在通过所述第一制式网络的锚点频点接入所述第二制式网络之前,还包括:
    接收所述第一制式网络下发的系统消息;
    当所述系统消息中包含有NSA能力指示字段,根据所述NSA能力指示字段判断所述第一制式网络是否提供所述锚点频点;以及
    当所述系统消息中不包含有所述NSA能力指示字段,根据是否接收到所述第一制式网络下发的测量事件或重配消息,确定判断所述第一制式网络是否提供所述锚点频点。
  12. 一种终端,包括至少一个处理器和用于与所述至少一个处理器通信连接的存储器,其中,所述存储器存储有能够被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如权利要求1至6中任意一项所述的信号状态显示方法,或者执行如权利要求7至11中任意一相所述的信号状态显示方法。
  13. 一种计算机可读存储介质,存储有计算机可执行指令,其中,所述计算机可执行指令用于使计算机执行如权利要求1至6中任意一项所述的信号状态显示方法或执行如权利要求7至11中任意一项所述的信号状态显示方法。
PCT/CN2022/089395 2021-06-18 2022-04-26 信号状态显示方法、终端及可读存储介质 WO2022262435A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22823918.2A EP4354943A1 (en) 2021-06-18 2022-04-26 Signal state display method, terminal and readable storage medium
US18/569,399 US20240276577A1 (en) 2021-06-18 2022-04-26 Signal state display method, terminal and readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110677352.0 2021-06-18
CN202110677352.0A CN115499865A (zh) 2021-06-18 2021-06-18 信号状态显示方法、终端及可读存储介质

Publications (1)

Publication Number Publication Date
WO2022262435A1 true WO2022262435A1 (zh) 2022-12-22

Family

ID=84465429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089395 WO2022262435A1 (zh) 2021-06-18 2022-04-26 信号状态显示方法、终端及可读存储介质

Country Status (4)

Country Link
US (1) US20240276577A1 (zh)
EP (1) EP4354943A1 (zh)
CN (1) CN115499865A (zh)
WO (1) WO2022262435A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024073975A1 (en) * 2023-01-13 2024-04-11 Lenovo (Beijing) Ltd. Accessing nes cell
CN116095738B (zh) * 2023-04-10 2023-06-27 深圳传音控股股份有限公司 信号显示方法、智能终端及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190379469A1 (en) * 2018-06-06 2019-12-12 T-Mobile Usa, Inc. Network symbol display in dual connectivity regions
CN111246543A (zh) * 2020-03-20 2020-06-05 捷开通讯(深圳)有限公司 图标显示方法、装置、存储介质及电子终端
CN111343699A (zh) * 2020-03-03 2020-06-26 惠州Tcl移动通信有限公司 图标显示方法、装置、存储介质及电子设备
CN112714475A (zh) * 2019-10-24 2021-04-27 中兴通讯股份有限公司 一种信号显示方法、装置和终端设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190379469A1 (en) * 2018-06-06 2019-12-12 T-Mobile Usa, Inc. Network symbol display in dual connectivity regions
CN112714475A (zh) * 2019-10-24 2021-04-27 中兴通讯股份有限公司 一种信号显示方法、装置和终端设备
CN111343699A (zh) * 2020-03-03 2020-06-26 惠州Tcl移动通信有限公司 图标显示方法、装置、存储介质及电子设备
CN111246543A (zh) * 2020-03-20 2020-06-05 捷开通讯(深圳)有限公司 图标显示方法、装置、存储介质及电子终端

Also Published As

Publication number Publication date
US20240276577A1 (en) 2024-08-15
EP4354943A1 (en) 2024-04-17
CN115499865A (zh) 2022-12-20

Similar Documents

Publication Publication Date Title
WO2022262435A1 (zh) 信号状态显示方法、终端及可读存储介质
US10849041B2 (en) Relay selection or reselection method and apparatus and system
US9743456B2 (en) Communication control method, user terminal, processor, storage medium, and base station
WO2021203989A1 (zh) Scg失败的处理方法和装置、终端及网络侧设备
US8447298B2 (en) Mobile station for cell selection and detecting radio link failure
US20170164281A1 (en) Secondary cell group configuration
US8645526B2 (en) Information processing apparatus and control method therefor, information processing system, computer program and storage medium
KR102209415B1 (ko) 저성능 무선 단말에 의한 셀룰러 네트워크 기반 측정 제어를 위한 방법
EP3711448B1 (en) Mac reset procedures
WO2013097432A1 (zh) 异频测量方法及系统、移动终端以及基站
US20230057669A1 (en) Terminal 5g icon display method, device and computer-readable medium
CN114731522A (zh) 用户辅助信息处理方法及装置、通信设备及存储介质
EP3841788B1 (en) Method and system for prioritizing cell selection
EP3913989A1 (en) Method and device for sending and receiving wake up signal, and electronic device
US9894598B2 (en) Network override of device volte setting
WO2019141194A1 (zh) 更新系统消息的方法及装置
US20230308250A1 (en) Managing cellular radio access technology operations
CN103686770B (zh) 一种无线局域网的检测及通知方法、装置和系统
US9319841B2 (en) Location information notification method, user equipment, and application service gateway
WO2022183388A1 (zh) 信息处理方法及装置、通信设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22823918

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18569399

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022823918

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022823918

Country of ref document: EP

Effective date: 20231213

NENP Non-entry into the national phase

Ref country code: DE