WO2022262333A1 - 波束赋形方法和装置、电子设备、计算机可读存储介质 - Google Patents

波束赋形方法和装置、电子设备、计算机可读存储介质 Download PDF

Info

Publication number
WO2022262333A1
WO2022262333A1 PCT/CN2022/080652 CN2022080652W WO2022262333A1 WO 2022262333 A1 WO2022262333 A1 WO 2022262333A1 CN 2022080652 W CN2022080652 W CN 2022080652W WO 2022262333 A1 WO2022262333 A1 WO 2022262333A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
azimuth angle
beam gain
observation point
cell
Prior art date
Application number
PCT/CN2022/080652
Other languages
English (en)
French (fr)
Inventor
何森
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2022262333A1 publication Critical patent/WO2022262333A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station

Definitions

  • the embodiments of the present disclosure relate to the technical field of communications, and in particular, to a beamforming method and device, electronic equipment, and a computer-readable storage medium.
  • eMBB enhanced Mobile Broadband
  • URLLC Ultra-relaible and Low Latency Communication
  • mMTC Massive Machine Type Communication
  • beamforming is a signal preprocessing technology based on antenna array. Beamforming generates directional beams by adjusting the weighting coefficient of each array element in the antenna array, so as to obtain obvious Array gain. Therefore, beamforming technology has great advantages in expanding coverage, improving edge throughput, and interference suppression.
  • the beamforming method in the related art has the problems of uneven energy distribution in the cell, poor beam energy utilization efficiency, weak signal at the edge of the cell, and unavoidable over-area coverage.
  • Embodiments of the present disclosure provide a beamforming method and device, electronic equipment, and a computer-readable storage medium.
  • An embodiment of the present disclosure provides a beamforming method, including: determining the beam gains corresponding to different azimuth angles in the cell corresponding to the base station according to the target radiation direction function corresponding to the antenna array of the base station, wherein the beam forming method is performed by using the target radiation direction function After shaping, the absolute value of the difference in received power corresponding to different azimuth angles in the cell is less than or equal to the first preset threshold; determine the amplitude of each antenna element in the antenna array according to the beam gain corresponding to different azimuth angles weighting coefficients and phase weighting coefficients; and performing beamforming according to the amplitude weighting coefficients and phase weighting coefficients of the antenna elements.
  • An embodiment of the present disclosure also provides an electronic device, including: at least one processor; and a memory, on which at least one program is stored, and when the at least one program is executed by the at least one processor, the implementation according to the present disclosure Beamforming method.
  • An embodiment of the present disclosure further provides a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the beamforming method according to the present disclosure is implemented.
  • An embodiment of the present disclosure also provides a beamforming device, including: a gain determination module, configured to determine the beam gains corresponding to different azimuth angles in the cell corresponding to the base station according to the target radiation direction function corresponding to the antenna array of the base station, wherein, using the After beamforming is performed on the target radiation direction function, the absolute value of the difference in received power corresponding to different azimuth angles in the cell is less than or equal to the first preset threshold; the weighting coefficient determination module is used to determine the beam according to the different azimuth angles The gain determines the amplitude weighting coefficient and phase weighting coefficient of each antenna element in the antenna array; and the beamforming module is used to perform beamforming according to the amplitude weighting coefficient and phase weighting coefficient of the antenna element.
  • a gain determination module configured to determine the beam gains corresponding to different azimuth angles in the cell corresponding to the base station according to the target radiation direction function corresponding to the antenna array of the base station, wherein, using the After beamforming is performed on the target radiation direction function, the absolute
  • FIG. 1 is a beam radiation pattern of an antenna array of a base station in the related art
  • FIG. 2 is a schematic diagram of the beam coverage effect of the antenna array of the base station in the related art
  • FIG. 3 is a flowchart of a beamforming method provided by the present disclosure
  • FIG. 4 is a schematic diagram of base station beam coverage provided by the present disclosure.
  • FIG. 5 is a schematic diagram of a beam radiation pattern of an antenna array of a base station provided by the present disclosure
  • FIG. 6 is a schematic diagram of a linear array provided by the present disclosure.
  • FIG. 7 is a schematic diagram of the beam coverage effect of the antenna array of the base station provided by the present disclosure.
  • Fig. 8 is a block diagram of a beamforming device provided by the present disclosure.
  • the far-field radiation of electromagnetic waves in free space can be considered first.
  • the signal is isotropically attenuated, that is, there is no direction selectivity; when an antenna dipole with the same polarization direction is added, and When the two antenna elements are at the same position, even if there is a certain phase difference between the two antennas, the phase difference of the two waves emitted by the two antenna elements does not change with the change of the observation angle when viewed from any angle.
  • the angles at which the two waves emitted by the two antenna elements reach the observation point are the same.
  • the phase difference of the two waves will change with the change of the observation angle.
  • the superposition of the two waves in the same direction will lead to an increase in amplitude, while in some directions, the anti-phase superposition will result in a decrease in amplitude.
  • the weighting coefficient of each element in the antenna array can be properly controlled according to the channel conditions, it is possible to reduce the interference to the undesired direction as much as possible while enhancing the signal strength in the desired direction.
  • FIG. 1 is a beam radiation pattern diagram of an antenna array of a base station in the related art.
  • the beam radiation pattern of the antenna array of the base station has the largest gain in the main direction and the gain on both sides gradually decreases, so the beam coverage effect of the antenna array of the base station in the related art is shown in FIG. 2 .
  • the energy distribution of the beam in the cell is not uniform, and the maximum gain direction of the beam can only point to the bottom of the base station, otherwise it will lead to serious cross-over coverage and dark conditions under the lights.
  • the maximum gain direction of the beam of the antenna array of the base station points to the bottom of the base station, the signal at the cell edge will be weak.
  • the power of the base station is increased blindly in order to improve the coverage effect at the cell edge, the signal strength in the maximum gain direction of the base station will be excessive, resulting in energy waste. and radiation problems.
  • the gain of the beam of the antenna array of the base station decreases slowly in the direction close to the adjacent cell, over-area coverage cannot be avoided.
  • the beamforming method in the related art has the problems of uneven energy distribution in the cell, poor beam energy utilization efficiency, weak signal at the edge of the cell, and unavoidable over-area coverage.
  • FIG. 3 is a flow chart of the beamforming method provided by the present disclosure.
  • the present disclosure provides a beamforming method including steps 300 to 302 .
  • step 300 the beam gains corresponding to different azimuths in the cell corresponding to the base station are determined according to the target radiation direction function corresponding to the antenna array of the base station.
  • the absolute value of the received power difference corresponding to the angle is less than or equal to the first preset threshold.
  • an antenna array is an antenna system formed by arranging several antennas according to certain rules. Desired radiation characteristics, such as higher gain, desired directivity pattern, etc., can be obtained with an antenna array.
  • the antenna array of the base station may be a linear array, a planar array, or the like.
  • the individual units that make up an antenna array are called antennas.
  • the radiation characteristics of the antenna array depend on the type, number, arrangement, spacing, and current amplitude and phase of each array element.
  • the beam gain at the azimuth angle of the observation point in the first area is the largest, where the first area may include an edge coverage area of the cell.
  • the beam gain of the edge coverage area of the cell can be set to the maximum, and the beam gain of the area close to the base station (that is, the fifth area mentioned later) can be set to be smaller than the beam gain of the edge coverage area of the cell, thereby increasing
  • the gap between the signal strength of the area close to the base station and the signal strength of the edge coverage area of the cell is narrowed, that is, the gap between the received power of the fifth area and the received power of the first area is narrowed, so that the cell
  • the internal energy distribution is relatively uniform, and the beam energy utilization efficiency is high.
  • FIG. 4 is a schematic diagram of beam coverage of a base station provided by the present disclosure.
  • Frisian transmission formula it can be known that when the transmitting power P t is constant and the transmitting antenna gain G t and receiving antenna gain G r are constant, the received power P r and the distance from the observation point to the antenna proportional to the square of , that is:
  • is the wavelength
  • ⁇ i is the ith azimuth angle
  • the distance from the observation point to the antenna It can be determined according to the erection height H and azimuth angle ⁇ i of the antenna array of the base station, namely:
  • ⁇ 0 is the azimuth corresponding to the maximum gain of the beam.
  • the azimuth angle of the observation point in the first area is greater than ⁇ -A 1 ⁇ and smaller than ⁇ -A 2 ⁇ , and the beam gain corresponding to the azimuth angle of the observation point in the first area is equal to
  • the ratio of the maximum value of the beam gain is 1, where ⁇ is the downtilt angle of the antenna array, ⁇ is the beam width, and A 1 and A 2 are coefficients.
  • a 1 is greater than or equal to A 3 -0.05, A 3 is less than or equal to 0.5, and the value of A 2 can be set according to the width of the edge coverage area of the cell.
  • the difference between A 1 and A 2 The difference is less than or equal to 0.1.
  • the azimuth angle of the observation point in the first area is larger than ⁇ -0.46 ⁇ and smaller than ⁇ -0.36 ⁇ .
  • the decrease speed of the beam gain of the azimuth angles of the observation points in the second area and the third area is greater than or equal to the second preset threshold, and the fourth area
  • the falling speed of the beam gain of the azimuth angle of the observation point within is less than or equal to the third preset threshold, wherein the second area may include an area outside the cell and adjacent to the fourth area, the The fourth area may include an area located between an edge coverage area of the cell and the second area, and the third area may include an area located within the cell and having a distance from the base station less than or equal to a second area.
  • the purpose of setting the decreasing speed of the beam gain in the second area and the third area to be greater than or equal to the second preset threshold is to avoid the problem of over-area coverage
  • the purpose of being equal to or equal to the third preset threshold is to ensure the signal coverage of the edge coverage area of the cell, that is, to enhance the cell edge signal and avoid the problem of over-area coverage.
  • the azimuth angle of the observation point in the second area is greater than ⁇ -A 3 ⁇ and smaller than ⁇ -A 4 ⁇ , and the beam gain corresponding to the azimuth angle of the observation point in the second area is equal to
  • the ratio of the maximum value of the beam gain is:
  • is the downtilt angle of the antenna array
  • is the beam width
  • G( ⁇ 1 ) is the beam gain corresponding to the azimuth angle of the observation point in the second area
  • G( ⁇ 0 ) is the beam gain
  • the maximum value of , ⁇ 1 is the azimuth angle of the observation point in the second area
  • ⁇ 0 is the azimuth angle corresponding to the maximum value of the beam gain
  • a 3 and A 4 are coefficients.
  • A3 is less than or equal to 0.5
  • A4 can be set according to the actual situation, as long as the beam coverage of the edge coverage area can be satisfied and the problem of over-area coverage can be avoided.
  • the azimuth angle of the observation point in the second area is greater than ⁇ -0.5 ⁇ and less than ⁇ -0.48 ⁇
  • the beam gain corresponding to the azimuth angle of the observation point in the second area is the maximum value of the beam gain
  • the azimuth angle of the observation point in the third area is greater than ⁇ +A 5 ⁇ and smaller than ⁇ +A 3 ⁇
  • the beam gain corresponding to the azimuth angle of the observation point in the third area is equal to
  • the ratio of the maximum value of the beam gain is:
  • is the downtilt angle of the antenna array
  • is the beam width
  • G( ⁇ 2 ) is the beam gain corresponding to the azimuth angle of the observation point in the third area
  • G( ⁇ 0 ) is the beam gain
  • the maximum value of , ⁇ 2 is the azimuth angle of the observation point in the third area
  • ⁇ 0 is the azimuth angle corresponding to the maximum value of the beam gain
  • a 2 , A 3 , A 5 , and A 6 are coefficients.
  • a 5 is greater than or equal to A 6 -0.05
  • a 6 is less than or equal to 0.5
  • the value of A 2 can be set according to the width of the edge coverage area of the cell.
  • the difference between A 1 and A 2 The difference is less than or equal to 0.1.
  • the azimuth angle of the observation point in the third area is greater than ⁇ +0.49 ⁇ and less than ⁇ +0.5 ⁇
  • the beam gain corresponding to the azimuth angle of the observation point in the third area is the maximum value of the beam gain
  • the ratio is:
  • the azimuth angle of the observation point in the fourth area is greater than ⁇ -A 4 ⁇ and smaller than ⁇ -A 1 ⁇
  • the beam gain corresponding to the azimuth angle of the observation point in the fourth area is equal to
  • the ratio of the maximum value of the beam gain is:
  • is the downtilt angle of the antenna array
  • is the beam width
  • G( ⁇ 3 ) is the beam gain corresponding to the azimuth angle of the observation point in the fourth area
  • G( ⁇ 0 ) is the beam gain
  • the maximum value of , ⁇ 3 is the azimuth angle of the observation point in the fourth area
  • ⁇ 0 is the azimuth angle corresponding to the maximum value of the beam gain
  • a 1 and A 4 are coefficients.
  • a 1 is greater than or equal to A 3 ⁇ 0.05, A 3 is less than or equal to 0.5, and A 4 can be set according to actual conditions.
  • the azimuth angle of the observation point in the fourth area is greater than ⁇ -0.48 ⁇ and less than ⁇ -0.46 ⁇ , and the beam gain corresponding to the azimuth angle of the observation point in the fourth area is the maximum value of the beam gain
  • the ratio is:
  • the decrease speed of the beam gain of the azimuth angle of the observation point in the fifth area is less than or equal to the fifth preset threshold
  • the fifth area can be Including an area between the third area and the edge coverage area of the cell
  • the third area may include an area located in the cell and the distance between the base station and the base station is less than or equal to a fourth preset threshold .
  • the azimuth angle of the observation point in the fifth area is greater than ⁇ -A 2 ⁇ and less than ⁇ +A 5 ⁇ , and the beam gain corresponding to the azimuth angle of the observation point in the fifth area is equal to
  • the ratio of the maximum value of the beam gain is:
  • is the downtilt angle of the antenna array
  • is the beam width
  • G( ⁇ 4 ) is the beam gain corresponding to the azimuth angle of the observation point in the fifth area
  • G( ⁇ 0 ) is the beam gain
  • the maximum value of , ⁇ 4 is the azimuth angle of the observation point in the fifth area
  • ⁇ 0 is the azimuth angle corresponding to the maximum value of the beam gain
  • a 2 and A 5 are coefficients.
  • the value of A 2 can be set according to the width of the edge coverage area of the cell.
  • the difference between A 1 and A 2 is less than or equal to 0.1
  • a 5 is greater than or equal to A 6 -0.05
  • a 6 is less than or equal to 0.5.
  • the azimuth angle of the observation point in the fifth area is greater than ⁇ -0.36 ⁇ and less than ⁇ +0.49 ⁇
  • the beam gain corresponding to the azimuth angle of the observation point in the fifth area is the maximum value of the beam gain
  • the ratio is:
  • FIG. 5 is a schematic diagram of a beam radiation pattern of an antenna array of a base station provided in the present disclosure.
  • the corresponding beam radiation pattern is obtained by substituting the above normalized gain formula, that is, according to the target The radiation direction function is calculated to obtain the corresponding beam radiation pattern.
  • the azimuth angle in the beam radiation pattern in Figure 5 is only taken as a range from -20 degrees to 30 degrees for illustration, and the default gain of other azimuth angles is 0.001.
  • the amplitude weighting coefficient and the phase weighting coefficient of each antenna element in the antenna array are determined according to beam gains corresponding to different azimuth angles.
  • the beam gains corresponding to different azimuth angles can be substituted into formula (4) to solve the equations to obtain the amplitude weighting coefficient and phase weighting coefficient of each antenna element.
  • f( ⁇ i ) is the value of the direction function (that is, the target radiation direction function) of the field strength amplitude of the antenna array at the i-th azimuth angle ⁇ i , that is, the beam gain of the above-mentioned i-th azimuth angle ⁇ i ;
  • f 1 ( ⁇ i ) is the value of the direction function of the antenna element at the i-th azimuth angle ⁇ i , which is only related to the type and size of the antenna element, and is called the unit factor;
  • f a ( ⁇ i ) is related to the k1th
  • the current I Mk1 of an antenna element, the spatial distribution d 1k1 are related to the number n of antenna elements in the antenna array, and have nothing to do with the type and size of the antenna element, which is called the array factor;
  • d 1k1 is the first antenna The distance between the array element and the k1th antenna array element.
  • the following takes the antenna array as a linear array as an example to illustrate the derivation process of the formula (4), and the case where the antenna array is a planar array can be deduced by analogy.
  • the radiation field strength E of the linear array at the observation point P is:
  • E k1 is the radiation field strength of the k1th antenna element at the observation point P
  • I Mk1 is the current of the k1th antenna element
  • r k1 is the distance from the k1th antenna element to the observation point
  • azimuth vector which does not represent the specific value and is omitted when converted into a scalar radiation field.
  • m k1 is the amplitude ratio of the current of the k1th antenna element to the first antenna element, that is, the weighting coefficient of the amplitude
  • ⁇ k1 is the phase ratio of the current of the k1th antenna element to the first antenna element , which is the weighting coefficient of the phase.
  • step 302 beamforming is performed according to the amplitude weighting coefficients and phase weighting coefficients of the antenna elements.
  • Fig. 7 is a schematic diagram of the beam coverage effect of the antenna array of the base station provided by the present disclosure. As shown in Figure 7, after beamforming is performed on the amplitude weighting coefficient and phase weighting coefficient of the antenna element obtained by the above normalized gain formula, the received power in the cell is basically equal, and the energy distribution is relatively uniform. Moreover, the signal strength of the edge coverage area of the cell is also relatively strong, and the problem of over-area coverage is avoided.
  • the absolute value of the difference in received power corresponding to different azimuth angles in the cell is less than or equal to the first preset threshold, because different azimuth angles correspond to different Observation points, that is to say, the received power corresponding to different observation points in the cell has little difference, the energy distribution in the cell is relatively uniform, and the beam energy utilization efficiency is high.
  • the present disclosure also provides an electronic device, including: at least one processor; and a memory, at least one program is stored in the memory, and when the at least one program is executed by the at least one processor, beamforming according to various embodiments of the present disclosure is realized method.
  • Processor is a device with data processing capability, which includes but not limited to central processing unit (CPU), etc.; memory is a device with data storage capability, which includes but not limited to random access memory (RAM, more specifically SDRAM, DDR etc.), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory (FLASH).
  • RAM random access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • FLASH flash memory
  • the processor and memory may be connected to each other and, in turn, to other components of the computing device via a bus.
  • the present disclosure also provides a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the beamforming method according to each embodiment of the present disclosure is implemented.
  • Fig. 8 is a block diagram of a beamforming device provided by the present disclosure.
  • the present disclosure provides a beamforming device, including a gain determining module 801 , a weighting coefficient determining module 802 and a beamforming module 803 .
  • the gain determination module 801 is configured to determine the beam gains corresponding to different azimuth angles in the cell corresponding to the base station according to the target radiation direction function corresponding to the antenna array of the base station, wherein, after beamforming is performed by using the target radiation direction function, the The absolute value of the received power difference corresponding to different azimuth angles is less than or equal to the first preset threshold.
  • the weighting coefficient determination module 802 is configured to determine the amplitude weighting coefficient and the phase weighting coefficient of each antenna element in the antenna array according to beam gains corresponding to different azimuth angles.
  • the beamforming module 803 is configured to perform beamforming according to the amplitude weighting coefficient and the phase weighting coefficient of the antenna elements.
  • the beam gain at the azimuth angle of the observation point in the first area is the largest, where the first area may include an edge coverage area of the cell.
  • the azimuth angle of the observation point in the first area is greater than ⁇ -A 1 ⁇ and smaller than ⁇ -A 2 ⁇ , and the beam gain corresponding to the azimuth angle of the observation point in the first area is equal to
  • the ratio of the maximum value of the beam gain is 1, where ⁇ is the downtilt angle of the antenna array, ⁇ is the beam width, and A 1 and A 2 are coefficients.
  • the decrease speed of the beam gain of the azimuth angles of the observation points in the second area and the third area is greater than or equal to the second preset threshold
  • the fourth area The falling speed of the beam gain of the azimuth angle of the observation point within is less than or equal to the third preset threshold
  • the second area may include an area outside the cell and adjacent to the fourth area
  • the The fourth area may include an area located between an edge coverage area of the cell and the second area
  • the third area may include an area located within the cell and a distance from the base station less than or equal to The area of the fourth preset threshold.
  • the azimuth angle of the observation point in the second area is greater than ⁇ -A 3 ⁇ and smaller than ⁇ -A 4 ⁇ , and the beam gain corresponding to the azimuth angle of the observation point in the second area is equal to
  • the ratio of the maximum value of the beam gain is:
  • is the downtilt angle of the antenna array
  • is the beam width
  • G( ⁇ 1 ) is the beam gain corresponding to the azimuth angle of the observation point in the second area
  • G( ⁇ 0 ) is the beam gain
  • the maximum value of , ⁇ 1 is the azimuth angle of the observation point in the second area
  • ⁇ 0 is the azimuth angle corresponding to the maximum value of the beam gain
  • a 3 and A 4 are coefficients.
  • the azimuth angle of the observation point in the third area is greater than ⁇ +A 5 ⁇ and smaller than ⁇ +A 3 ⁇
  • the beam gain corresponding to the azimuth angle of the observation point in the third area is equal to
  • the ratio of the maximum value of the beam gain is:
  • is the downtilt angle of the antenna array
  • is the beam width
  • G( ⁇ 2 ) is the beam gain corresponding to the azimuth angle of the observation point in the third area
  • G( ⁇ 0 ) is the beam gain
  • the maximum value of , ⁇ 2 is the azimuth angle of the observation point in the third area
  • ⁇ 0 is the azimuth angle corresponding to the maximum value of the beam gain
  • a 2 , A 3 , A 5 , and A 6 are coefficients.
  • the azimuth angle of the observation point in the fourth area is greater than ⁇ -A 4 ⁇ and smaller than ⁇ -A 1 ⁇
  • the beam gain corresponding to the azimuth angle of the observation point in the fourth area is equal to
  • the ratio of the maximum value of the beam gain is:
  • is the downtilt angle of the antenna array
  • is the beam width
  • G( ⁇ 3 ) is the beam gain corresponding to the azimuth angle of the observation point in the fourth area
  • G( ⁇ 0 ) is the beam gain
  • the maximum value of , ⁇ 3 is the azimuth angle of the observation point in the fourth area
  • ⁇ 0 is the azimuth angle corresponding to the maximum value of the beam gain
  • a 1 and A 4 are coefficients.
  • the decrease speed of the beam gain of the azimuth angle of the observation point in the fifth area is less than or equal to the fifth preset threshold
  • the fifth area can be Including an area between the third area and the edge coverage area of the cell
  • the third area may include an area located in the cell and the distance between the base station and the base station is less than or equal to a fourth preset threshold .
  • the azimuth angle of the observation point in the fifth area is greater than ⁇ -A 2 ⁇ and less than ⁇ +A 5 ⁇ , and the beam gain corresponding to the azimuth angle of the observation point in the fifth area is equal to
  • the ratio of the maximum value of the beam gain is:
  • is the downtilt angle of the antenna array
  • is the beam width
  • G( ⁇ 4 ) is the beam gain corresponding to the azimuth angle of the observation point in the fifth area
  • G( ⁇ 0 ) is the beam gain
  • the maximum value of , ⁇ 4 is the azimuth angle of the observation point in the fifth area
  • ⁇ 0 is the azimuth angle corresponding to the maximum value of the beam gain
  • a 2 and A 5 are coefficients.
  • the functional modules/units in the system, and the device can be implemented as software, firmware, hardware, and an appropriate combination thereof.
  • the division between functional modules/units mentioned in the above description does not necessarily correspond to the division of physical components; for example, one physical component may have multiple functions, or one function or step may be composed of several physical components. Components cooperate to execute.
  • Some or all of the physical components may be implemented as software executed by a processor, such as a central processing unit, digital signal processor, or microprocessor, or as hardware, or as an integrated circuit, such as an application-specific integrated circuit .
  • Such software may be distributed on computer readable media, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • computer storage media includes both volatile and nonvolatile media implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules, or other data. permanent, removable and non-removable media.
  • Computer storage media include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, tape, magnetic disk storage or other magnetic storage, or may be used Any other medium that stores desired information and can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本公开提供了一种波束赋形方法和装置、电子设备、计算机可读存储介质,波束赋形方法包括:根据基站的天线阵列对应的目标辐射方向函数确定基站对应的小区内不同方位角对应的波束增益,其中,采用所述目标辐射方向函数进行波束赋形后,所述小区内不同方位角对应的接收功率之差的绝对值小于或等于第一预设阈值;根据不同方位角对应的波束增益确定所述天线阵列中每一个天线阵元的幅度加权系数和相位加权系数;以及根据所述天线阵元的幅度加权系数和相位加权系数进行波束赋形。

Description

波束赋形方法和装置、电子设备、计算机可读存储介质 技术领域
本公开实施例涉及通信技术领域,特别涉及波束赋形方法和装置、电子设备、计算机可读存储介质。
背景技术
大规模波束赋形技术是第五代移动通信技术(5G,5 th Generation Mobile Communication Technology)新空口(NR,New Radio)满足增强移动宽带(eMBB,Enhanced Mobile Broadband)、超高可靠低时延(URLLC,Ultra-relaible and Low Latency Communication)以及海量机器间通信(mMTC,Massive Machine Type Communication)三大场景性能指标的核心技术。波束赋形作为5G通信的重要技术之一是一种基于天线阵列的信号预处理技术,波束赋形通过调整天线阵列中每个阵元的加权系数产生具有指向性的波束,从而能够获得明显的阵列增益。因此,波束赋形技术在扩大覆盖范围、改善边缘吞吐量以及干扰抑制等方面都有很大的优势。
相关技术的波束赋形方法存在小区内能量分布不均匀、波束能量利用效率差、小区边缘信号弱和无法避免越区覆盖的问题。
发明内容
本公开实施例提供一种波束赋形方法和装置、电子设备、计算机可读存储介质。
本公开实施例提供一种波束赋形方法,包括:根据基站的天线阵列对应的目标辐射方向函数确定基站对应的小区内不同方位角对应的波束增益,其中,采用所述目标辐射方向函数进行波束赋形后,所述小区内不同方位角对应的接收功率之差的绝对值小于或等于第一预设阈值;根据不同方位角对应的波束增益确定所述天线阵列中每一个天线阵元的幅度加权系数和相位加权系数;以及根据所述天线阵元的幅度加权系数和相位加权系数进行波束赋形。
本公开实施例还提供一种电子设备,包括:至少一个处理器;以及存储器,存储器上存储有至少一个程序,当所述至少一个程序被所述至少一个处理器执行时,实现根据本公开的波束赋形方法。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现根据本公开的波束赋形方法。
本公开实施例还提供一种波束赋形装置,包括:增益确定模块,用于根据基站的天线阵列对应的目标辐射方向函数确定基站对应的小区内不同方位角对应的波束增益,其中,采用所述目标辐射方向函数进行波束赋形后,所述小区内不同方位角对应的接收功率之差的绝对值小于或等于第一预设阈值;加权系数确定模块,用于根据不同方位角对应的波束增益确定所述天线阵列中每一个天线阵元的幅度加权系数和相位加权系数;以及波束赋形模块,用于根据所述天线阵元的幅度加权系数和相位加权系数进行波束赋形。
附图说明
图1为相关技术中基站的天线阵列的波束辐射方向图;
图2为相关技术中基站的天线阵列的波束覆盖效果示意图;
图3为本公开提供的波束赋形方法的流程图;
图4为本公开提供的基站波束覆盖示意图;
图5为本公开提供的基站的天线阵列的波束辐射方向图的示意图;
图6为本公开提供的直线阵的示意图;
图7为本公开提供的基站的天线阵列的波束覆盖效果示意图;以及
图8为本公开提供的波束赋形装置的组成框图。
具体实施方式
为使本领域的技术人员更好地理解本公开的技术方案,下面结合附图对本公开提供的波束赋形方法和装置、电子设备、计算机可读 存储介质进行详细描述。
在下文中将参考附图更充分地描述示例实施例,但是所述示例实施例可以以不同形式来体现且不应当被解释为限于本文阐述的实施例。反之,提供这些实施例的目的在于使本公开透彻和完整,并将使本领域技术人员充分理解本公开的范围。
在不冲突的情况下,本公开各实施例及实施例中的各特征可相互组合。
如本文所使用的,术语“和/或”包括至少一个相关列举条目的任何和所有组合。
本文所使用的术语仅用于描述特定实施例,且不意欲限制本公开。如本文所使用的,单数形式“一个”和“该”也意欲包括复数形式,除非上下文另外清楚指出。还将理解的是,当本说明书中使用术语“包括”和/或“由……制成”时,指定存在所述特征、整体、步骤、操作、元件和/或组件,但不排除存在或添加至少一个其它特征、整体、步骤、操作、元件、组件和/或其群组。
除非另外限定,否则本文所用的所有术语(包括技术和科学术语)的含义与本领域普通技术人员通常理解的含义相同。还将理解,诸如那些在常用字典中限定的那些术语应当被解释为具有与其在相关技术以及本公开的背景下的含义一致的含义,且将不解释为具有理想化或过度形式上的含义,除非本文明确如此限定。
关于波束赋形的基本原理,可以首先考虑自由空间中电磁波的远场辐射情况。
当只存在单个天线振子,且以同极化方向从各个角度对电场辐射进行观测时,信号是各向同性衰减的,即不存在方向选择性;当增加一个同极化方向的天线振子,且两个天线振子处于同一位置时,即使两个天线发射信号存在一定的相差,但从任何角度观测,两个天线振子发射的两列波的相差并不随观测角度的变化而发生变化,因此,仍然不存在方向选择性;当增加一个同极化方向的天线振子,且两个天线振子保持一定间隔时,两个天线振子发射的两列波之间会发生干涉现象,即某些方向振幅增强,某些方向振幅减弱(振幅增强部分的 能量来自于振幅减弱部分)。
假设观测点距离天线振子很远,可以认为两个天线振子发射的两列波到达观测点的角度是相同的。此时两列波的相位差将随观测角度的变化而变化,在某些角度两列波同向叠加导致振幅增强,而在某些方向反相叠加导致振幅减小。
因此,如果能够根据信道条件,适当地控制天线阵列中的每个阵元的加权系数,就有可能在增强期望方向信号强度的同时,尽可能降低对非期望方向的干扰。
图1为相关技术的基站的天线阵列的波束辐射方向图。如图1所示,相关技术中,基站的天线阵列的波束辐射方向图是主方向增益最大且两边增益逐渐递减,所以相关技术中基站的天线阵列的波束覆盖效果如图2所示。从图2可以看出波束在小区中的能量分布不均匀,波束最大增益方向只能指向基站下方,否则会导致严重的越区覆盖和灯下黑的情况。而当基站的天线阵列的波束的最大增益方向指向基站下方时会导致小区边缘信号弱,如果为了改善小区边缘覆盖效果而一味增大基站功率,基站最大增益方向信号强度又会过剩从而造成能量浪费和辐射过强的问题。另外,由于基站的天线阵列的波束在靠近邻区的方向上增益下降缓慢,越区覆盖无法避免。
相关技术的波束赋形方法存在小区内能量分布不均匀、波束能量利用效率差、小区边缘信号弱和无法避免越区覆盖的问题。
图3为本公开提供的波束赋形方法的流程图。
参照图3,本公开提供波束赋形方法包括步骤300至302。
在步骤300,根据基站的天线阵列对应的目标辐射方向函数确定基站对应的小区内不同方位角对应的波束增益,其中,采用所述目标辐射方向函数进行波束赋形后,所述小区内不同方位角对应的接收功率之差的绝对值小于或等于第一预设阈值。
在本公开中,天线阵列是将若干个天线按照一定规律排列组成的天线系统。利用天线阵列可以获得所期望的辐射特性,诸如更高的增益、需要的方向性图等。基站的天线阵列可以是直线阵、平面阵等。
组成天线阵列的独立单元是天线称为阵元。天线阵列的辐射特 性取决于阵元的型号、数目、排列方式、间距、以及各个阵元上的电流振幅和相位等。
在根据目标辐射方向函数确定的不同方位角对应的波束增益中,第一区域内的观测点的方位角的波束增益最大,其中,所述第一区域可以包括所述小区的边缘覆盖区域。
可以将小区的边缘覆盖区域的波束增益设置为最大,而将靠近基站的区域(也就是后续提到的第五区域)的波束增益设置为小于小区的边缘覆盖区域的波束增益,从而在增大基站的发射功率时,将靠近基站的区域的信号强度和小区的边缘覆盖区域的信号强度的差距缩小,也就是将第五区域的接收功率和第一区域的接收功率的差距缩小,从而使得小区内能量分布比较均匀、波束能量利用效率较高。
下面结合图4简要介绍将小区的边缘覆盖区域的波束设置为最大能使得小区内能量分布比较均匀、波束能量利用效率较高的原理。图4为本公开提供的基站波束覆盖示意图。
根据弗里斯传输公式可知在发射功率P t恒定以及发射天线增益G t和接收天线增益G r不变的情况下,接收功率P r和观测点到天线的距离
Figure PCTCN2022080652-appb-000001
的平方成正比,即:
Figure PCTCN2022080652-appb-000002
其中,λ为波长,θ i为第i个方位角。
如图4所示,观测点到天线的距离
Figure PCTCN2022080652-appb-000003
可以根据基站的天线阵列的架设高度H和方位角θ i确定,即:
Figure PCTCN2022080652-appb-000004
因此,要保持波束在θ 0到θ i的覆盖范围内的接收功率不变,则需要使不同方位角θ i处的波束增益满足公式(3),即:
Figure PCTCN2022080652-appb-000005
其中,θ 0为波束最大增益对应的方位角。
从公式(3)可以看出,在将小区的边缘覆盖区域的波束增益设置为最大的情况下,
Figure PCTCN2022080652-appb-000006
不可能大于
Figure PCTCN2022080652-appb-000007
因此
Figure PCTCN2022080652-appb-000008
小于或等于1,即
Figure PCTCN2022080652-appb-000009
小于或等于
Figure PCTCN2022080652-appb-000010
这样才能保证小区覆盖范围内的接收功率不变。
在本公开中,所述第一区域内的观测点的方位角大于α-A 1β,且小于α-A 2β,并且所述第一区域内的观测点的方位角对应的波束增益与波束增益的最大值的比值为1,其中,α为所述天线阵列的下倾角,β为波束宽度,A 1、A 2为系数。
在本公开中,A 1大于或等于A 3-0.05,A 3小于或等于0.5,A 2的取值可以根据小区的边缘覆盖区域的宽度进行设定,一般情况下,A 1和A 2之差小于或等于0.1即可。例如,所述第一区域内的观测点的方位角大于α-0.46β,且小于α-0.36β。
在根据目标辐射方向函数确定的不同方位角对应的波束增益中,第二区域和第三区域内的观测点的方位角的波束增益的下降速度大于或等于第二预设阈值,并且第四区域内的观测点的方位角的波束增益的下降速度小于或等于第三预设阈值,其中,所述第二区域可以包括位于所述小区外且与所述第四区域相邻的区域,所述第四区域可以包括位于所述小区的边缘覆盖区域和所述第二区域之间的区域,并且所述第三区域可以包括位于所述小区内且与所述基站之间的距离小于或等于第四预设阈值的区域。
在本公开中,设置第二区域和第三区域的波束增益的下降速度大于或等于第二预设阈值的目的是要避免越区覆盖的问题,而设置第四区域的波束增益的下降速度小于或等于第三预设阈值的目的是为了保证小区的边缘覆盖区域的信号覆盖,也就是说,增强了小区边缘信号并且避免了越区覆盖的问题。
在本公开中,所述第二区域内的观测点的方位角大于α-A 3β,且小于α-A 4β,并且所述第二区域内的观测点的方位角对应的波束增益与波束增益的最大值的比值为:
Figure PCTCN2022080652-appb-000011
其中,α为所述天线阵列的下倾角,β为波束宽度,G(θ 1)为所述第二区域内的观测点的方位角对应的波束增益,G(θ 0)为所述波束增益的最大值,θ 1为所述第二区域内的观测点的方位角,θ 0为所述波束增益的最大值对 应的方位角,A 3、A 4为系数。
在本公开中,A 3小于或等于0.5,A 4可以根据实际情况进行设定,只要能够满足边缘覆盖区域的波束覆盖,并避免越区覆盖的问题就可以。例如,所述第二区域内的观测点的方位角大于α-0.5β,且小于α-0.48β,并且所述第二区域内的观测点的方位角对应的波束增益与波束增益的最大值的比值为:
Figure PCTCN2022080652-appb-000012
在本公开中,所述第三区域内的观测点的方位角大于α+A 5β,且小于α+A 3β,并且所述第三区域内的观测点的方位角对应的波束增益与波束增益的最大值的比值为:
Figure PCTCN2022080652-appb-000013
其中,α为所述天线阵列的下倾角,β为波束宽度,G(θ 2)为所述第三区域内的观测点的方位角对应的波束增益,G(θ 0)为所述波束增益的最大值,θ 2为所述第三区域内的观测点的方位角,θ 0为所述波束增益的最大值对应的方位角,A 2、A 3、A 5、A 6为系数。
在本公开中,A 5大于或等于A 6-0.05,A 6小于或等于0.5,A 2的取值可以根据小区的边缘覆盖区域的宽度进行设定,一般情况下,A 1和A 2之差小于或等于0.1即可。例如,所述第三区域内的观测点的方位角大于α+0.49β,且小于α+0.5β,并且所述第三区域内的观测点的方位角对应的波束增益与波束增益的最大值的比值为:
Figure PCTCN2022080652-appb-000014
在本公开中,所述第四区域内的观测点的方位角大于α-A 4β,且小于α-A 1β,并且所述第四区域内的观测点的方位角对应的波束增益与波束增益的最大值的比值为:
Figure PCTCN2022080652-appb-000015
其中,α为所述天线阵列的下倾角,β为波束宽度,G(θ 3)为所述第四区域内的观测点的方位角对应的波束增益,G(θ 0)为所述波束增益的最大值,θ 3为所述第四区域内的观测点的方位角,θ 0为所述波束增益的最大值对应的方位角,A 1、A 4为系数。
在本公开中,A 1大于或等于A 3-0.05,A 3小于或等于0.5,A 4可以根据实际情况进行设定。例如,所述第四区域内的观测点的方位角大于α-0.48β,且小于α-0.46β,并且所述第四区域内的观测点的方位角对应的波束增益与波束增益的最大值的比值为:
Figure PCTCN2022080652-appb-000016
在根据目标辐射方向函数确定的不同方位角对应的波束增益中,第五区域内的观测点的方位角的波束增益的下降速度小于或等于第五预设阈值,其中,所述第五区域可以包括位于第三区域到所述小区的边缘覆盖区域之间的区域,并且所述第三区域可以包括位于所述小区内且与所述基站之间的距离小于或等于第四预设阈值的区域。
在本公开中,通过设置第五区域的波束增益的下降速度小于或等于第五预设阈值,可以保证小区内的信号覆盖。
在本公开中,所述第五区域内的观测点的方位角大于α-A 2β,且小于α+A 5β,并且所述第五区域内的观测点的方位角对应的波束增益与波束增益的最大值的比值为:
Figure PCTCN2022080652-appb-000017
其中,α为所述天线阵列的下倾角,β为波束宽度,G(θ 4)为所述第五区域内的观测点的方位角对应的波束增益,G(θ 0)为所述波束增益的最大值,θ 4为所述第五区域内的观测点的方位角,θ 0为所述波束增益的最大值对应的方位角,A 2、A 5为系数。
在本公开中,A 2的取值可以根据小区的边缘覆盖区域的宽度进行设定,一般情况下,A 1和A 2之差小于或等于0.1即可,A 5大于或等于A 6-0.05,A 6小于或等于0.5。例如,所述第五区域内的观测点的方位角大于α-0.36β,且小于α+0.49β,并且所述第五区域内的观测点的方位角对应的波束增益与波束增益的最大值的比值为:
Figure PCTCN2022080652-appb-000018
图5为本公开提供的基站的天线阵列的波束辐射方向图的示意图。如图5所示,假设基站的天线阵列的架设高度为40,波束下倾角为10度,波束宽度为8度,代入上面的归一化增益公式得到对应的波束辐射方向图,也就是根据目标辐射方向函数计算得到对应的波束辐射方向图。为了较为清晰的显示波束辐射方向图的主波束,图5中的波束辐射方向图中的方位角只取了-20度到30度的范围作为示意,其他方位角默认的增益为0.001。
回到图3,在步骤301,根据不同方位角对应的波束增益确定所述天线阵列中每一个天线阵元的幅度加权系数和相位加权系数。
可以将不同方位角对应的波束增益代入公式(4)求解方程组以得到每一个天线阵元的幅度加权系数和相位加权系数。
|f(θ i)|=|f 1i)|·|f ai)|              (4)
其中,f(θ i)为天线阵列的场强幅度的方向函数(即,目标辐射方向函数)在第i个方位角θ i的值,即,上述第i个方位角θ i的波束增益;f 1i)为天线阵元的方向函数在第i个方位角θ i的值,仅仅与天线阵元采用的型号和尺寸相关,称为单元因子;f ai)与第k1个天线阵元的电流I Mk1、空间分布d 1k1和天线阵列中的天线阵元的数量n有关,而与天线阵元采用的型号和尺寸无关,称为阵因子;d 1k1为第1个天线阵元和第k1个天线阵元之间的距离。
下面以天线阵列为直线阵为例说明公式(4)的推导过程,天线阵列为面阵的情况以此类推。
直线阵是由分立的相同天线阵元排列在一条直线上构成的天线阵列。假设相同的天线阵元是对称振子,共有n个,沿X轴共轴排列,如图6所示,各个天线阵元与第1个天线阵元的中心距离分别为d 11(=0),d 12,……,d 1n,各个天线阵元的电流依次为I M1,I M2,……,I Mn,并且各个天线阵元到观测点P的距离依次为r 1,r 2,……,r n
根据叠加定理,直线阵在观测点P的辐射场强E为:
Figure PCTCN2022080652-appb-000019
其中,E k1为第k1个天线阵元在观测点P的辐射场强,I Mk1为第k1个天线阵元的电流,r k1为第k1个天线阵元到观测点的距离,k2=2π/λ为波数,
Figure PCTCN2022080652-appb-000020
为方位角矢量,不代表具体数值在转化为标量辐射场时略去。
假设观测点P距离天线足够远,可以认为各天线阵元到观测点P的射线是相互平行的,则满足以下公式(6):
Figure PCTCN2022080652-appb-000021
且天线阵列中各对称振子是相同天线阵元,故f 1i)=f 2i)=…=f ni)。
那么,公式(5)可以简化为公式(7)。
Figure PCTCN2022080652-appb-000022
假设
Figure PCTCN2022080652-appb-000023
那么
Figure PCTCN2022080652-appb-000024
m k1为第k1个天线阵元与第1个天线阵元的电流的幅度比,也就是幅度的加权系数,β k1为第k1个天线阵元与第1个天线阵元的电流的相位比,也就是相位的加权系数。
在步骤302,根据所述天线阵元的幅度加权系数和相位加权系数进行波束赋形。
图7为本公开提供的基站的天线阵列的波束覆盖效果示意图。如图7所示,根据上面的归一化增益公式得到的天线阵元的幅度的加权系数和相位加权系数进行波束赋形后,小区内的接收功率基本上是相等的,能量分布比较均匀,而且小区的边缘覆盖区域的信号强度也比较强,并且避免了越区覆盖的问题。
根据本公开提供的波束赋形方法,通过目标辐射方向函数进行波束赋形后,小区内不同方位角对应的接收功率之差的绝对值小于或等于第一预设阈值,由于不同方位角对应不同观测点,也就是说,在小区内的不同观测点对应的接收功率相差不大,小区内能量分布比较均匀、波束能量利用效率较高。
本公开还提供一种电子设备,包括:至少一个处理器;以及存储器,存储器上存储有至少一个程序,当至少一个程序被至少一个处理器执行时,实现根据本公开各实施例的波束赋形方法。
处理器为具有数据处理能力的器件,其包括但不限于中央处理器(CPU)等;存储器为具有数据存储能力的器件,其包括但不限于随机存取存储器(RAM,更具体如SDRAM、DDR等)、只读存储器(ROM)、带电可擦可编程只读存储器(EEPROM)、闪存(FLASH)。
处理器和存储器可以通过总线相互连接,进而与计算设备的其它组件连接。
本公开还提供一种计算机可读存储介质,计算机可读存储介质 上存储有计算机程序,所述计算机程序被处理器执行时实现根据本公开各实施例的波束赋形方法。
图8为本公开提供的波束赋形装置的组成框图。
参照图8,本公开提供波束赋形装置,包括增益确定模块801、加权系数确定模块802和波束赋形模块803。
增益确定模块801用于根据基站的天线阵列对应的目标辐射方向函数确定基站对应的小区内不同方位角对应的波束增益,其中,采用所述目标辐射方向函数进行波束赋形后,所述小区内不同方位角对应的接收功率之差的绝对值小于或等于第一预设阈值。
加权系数确定模块802用于根据不同方位角对应的波束增益确定所述天线阵列中每一个天线阵元的幅度加权系数和相位加权系数。
波束赋形模块803用于根据所述天线阵元的幅度加权系数和相位加权系数进行波束赋形。
在根据目标辐射方向函数确定的不同方位角对应的波束增益中,第一区域内的观测点的方位角的波束增益最大,其中,所述第一区域可以包括所述小区的边缘覆盖区域。
在本公开中,所述第一区域内的观测点的方位角大于α-A 1β,且小于α-A 2β,并且所述第一区域内的观测点的方位角对应的波束增益与波束增益的最大值的比值为1,其中,α为所述天线阵列的下倾角,β为波束宽度,A 1、A 2为系数。
在根据目标辐射方向函数确定的不同方位角对应的波束增益中,第二区域和第三区域内的观测点的方位角的波束增益的下降速度大于或等于第二预设阈值,并且第四区域内的观测点的方位角的波束增益的下降速度小于或等于第三预设阈值,其中,所述第二区域可以包括位于所述小区外且与所述第四区域相邻的区域,所述第四区域可以包括位于所述小区的边缘覆盖区域和所述第二区域之间的区域,并且所述第三区域可以包括位于所述小区内,且与所述基站之间的距离小于或等于第四预设阈值的区域。
在本公开中,所述第二区域内的观测点的方位角大于α-A 3β,且小于α-A 4β,并且所述第二区域内的观测点的方位角对应的波束增益 与波束增益的最大值的比值为:
Figure PCTCN2022080652-appb-000025
其中,α为所述天线阵列的下倾角,β为波束宽度,G(θ 1)为所述第二区域内的观测点的方位角对应的波束增益,G(θ 0)为所述波束增益的最大值,θ 1为所述第二区域内的观测点的方位角,θ 0为所述波束增益的最大值对应的方位角,A 3、A 4为系数。
在本公开中,所述第三区域内的观测点的方位角大于α+A 5β,且小于α+A 3β,并且所述第三区域内的观测点的方位角对应的波束增益与波束增益的最大值的比值为:
Figure PCTCN2022080652-appb-000026
其中,α为所述天线阵列的下倾角,β为波束宽度,G(θ 2)为所述第三区域内的观测点的方位角对应的波束增益,G(θ 0)为所述波束增益的最大值,θ 2为所述第三区域内的观测点的方位角,θ 0为所述波束增益的最大值对应的方位角,A 2、A 3、A 5、A 6为系数。
在本公开中,所述第四区域内的观测点的方位角大于α-A 4β,且小于α-A 1β,并且所述第四区域内的观测点的方位角对应的波束增益与波束增益的最大值的比值为:
Figure PCTCN2022080652-appb-000027
其中,α为所述天线阵列的下倾角,β为波束宽度,G(θ 3)为所述第四区域内的观测点的方位角对应的波束增益,G(θ 0)为所述波束增益的最大值,θ 3为所述第四区域内的观测点的方位角,θ 0为所述波束增益的最大值对应的方位角,A 1、A 4为系数。
在根据目标辐射方向函数确定的不同方位角对应的波束增益中,第五区域内的观测点的方位角的波束增益的下降速度小于或等于第五预设阈值,其中,所述第五区域可以包括位于第三区域到所述小区的边缘覆盖区域之间的区域,并且所述第三区域可以包括位于所述小区内且与所述基站之间的距离小于或等于第四预设阈值的区域。
在本公开中,所述第五区域内的观测点的方位角大于α-A 2β,且小于α+A 5β,并且所述第五区域内的观测点的方位角对应的波束增益与波束增益的最大值的比值为:
Figure PCTCN2022080652-appb-000028
其中,α为所述天线阵列的下倾角,β为波束宽度,G(θ 4)为所述第五区域内的观测点的方位角对应的波束增益,G(θ 0)为所述波束增益的最大值,θ 4为所述第五区域内的观测点的方位角,θ 0为所述波束增益的最大值对 应的方位角,A 2、A 5为系数。
上述波束赋形装置的具体实现过程与前述实施例波束赋形方法的具体实现过程相同,这里不再赘述。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其它数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其它存储器技术、CD-ROM、数字多功能盘(DVD)或其它光盘存储、磁盒、磁带、磁盘存储或其它磁存储器、或者可以用于存储期望的信息并且可以被计算机访问的任何其它的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其它传输机制之类的调制数据信号中的其它数据,并且可包括任何信息递送介质。
本文已经公开了示例实施例,并且虽然采用了具体术语,但它们仅用于并仅应当被解释为一般说明性含义,并且不用于限制的目的。在一些实例中,对本领域技术人员显而易见的是,除非另外明确指出,否则可单独使用与特定实施例相结合描述的特征、特性和/或元素,或可与其它实施例相结合描述的特征、特性和/或元件组合使用。因此,本领域技术人员将理解,在不脱离由所附的权利要求阐明的本公开的范围的情况下,可进行各种形式和细节上的改变。

Claims (12)

  1. 一种波束赋形方法,包括:
    根据基站的天线阵列对应的目标辐射方向函数确定基站对应的小区内不同方位角对应的波束增益,其中,采用所述目标辐射方向函数进行波束赋形后,所述小区内不同方位角对应的接收功率之差的绝对值小于或等于第一预设阈值;
    根据不同方位角对应的波束增益确定所述天线阵列中每一个天线阵元的幅度加权系数和相位加权系数;以及
    根据所述天线阵元的幅度加权系数和相位加权系数进行波束赋形。
  2. 根据权利要求1所述的波束赋形方法,其中,在根据所述目标辐射方向函数确定的不同方位角对应的波束增益中,第一区域内的观测点的方位角的波束增益最大,
    其中,所述第一区域包括所述小区的边缘覆盖区域。
  3. 根据权利要求2所述的波束赋形方法,其中,所述第一区域内的观测点的方位角大于α-A 1β,且小于α-A 2β,并且所述第一区域内的观测点的方位角对应的波束增益与波束增益的最大值的比值为1,
    其中,α为所述天线阵列的下倾角,β为波束宽度,A 1、A 2为系数。
  4. 根据权利要求1所述的波束赋形方法,其中,在根据所述目标辐射方向函数确定的不同方位角对应的波束增益中,第二区域和第三区域内的观测点的方位角的波束增益的下降速度大于或等于第二预设阈值,并且第四区域内的观测点的方位角的波束增益的下降速度小于或等于第三预设阈值,
    其中,所述第二区域包括位于所述小区外且与所述第四区域相 邻的区域,所述第四区域包括位于所述小区的边缘覆盖区域和所述第二区域之间的区域,并且所述第三区域包括位于所述小区内且与所述基站之间的距离小于或等于第四预设阈值的区域。
  5. 根据权利要求4所述的波束赋形方法,其中,所述第二区域内的观测点的方位角大于α-A 3β,且小于α-A 4β,并且所述第二区域内的观测点的方位角对应的波束增益与波束增益的最大值的比值为:
    Figure PCTCN2022080652-appb-100001
    其中,α为所述天线阵列的下倾角,β为波束宽度,G(θ 1)为所述第二区域内的观测点的方位角对应的波束增益,G(θ 0)为所述波束增益的最大值,θ 1为所述第二区域内的观测点的方位角,θ 0为所述波束增益的最大值对应的方位角,A 3、A 4为系数。
  6. 根据权利要求4所述的波束赋形方法,其中,所述第三区域内的观测点的方位角大于α+A 5β,且小于α+A 3β,并且所述第三区域内的观测点的方位角对应的波束增益与波束增益的最大值的比值为:
    Figure PCTCN2022080652-appb-100002
    其中,α为所述天线阵列的下倾角,β为波束宽度,G(θ 2)为所述第三区域内的观测点的方位角对应的波束增益,G(θ 0)为所述波束增益的最大值,θ 2为所述第三区域内的观测点的方位角,θ 0为所述波束增益的最大值对应的方位角,A 2、A 3、A 5、A 6为系数。
  7. 根据权利要求4所述的波束赋形方法,其中,所述第四区域内的观测点的方位角大于α-A 4β,且小于α-A 1β,并且所述第四区域内的观测点的方位角对应的波束增益与波束增益的最大值的比值为:
    Figure PCTCN2022080652-appb-100003
    其中,α为所述天线阵列的下倾角,β为波束宽度,G(θ 3)为所述第四区域内的观测点的方位角对应的波束增益,G(θ 0)为所述波束增益的最大值,θ 3为所述第四区域内的观测点的方位角,θ 0为所述波 束增益的最大值对应的方位角,A 1、A 4为系数。
  8. 根据权利要求1所述的波束赋形方法,其中,在根据所述目标辐射方向函数确定的不同方位角对应的波束增益中,第五区域内的观测点的方位角的波束增益的下降速度小于或等于第五预设阈值,
    其中,所述第五区域包括位于第三区域到所述小区的边缘覆盖区域之间的区域,并且所述第三区域包括位于所述小区内且与所述基站之间的距离小于或等于第四预设阈值的区域。
  9. 根据权利要求8所述的波束赋形方法,其中,所述第五区域内的观测点的方位角大于α-A 2β,且小于α+A 5β,并且所述第五区域内的观测点的方位角对应的波束增益与波束增益的最大值的比值为:
    Figure PCTCN2022080652-appb-100004
    其中,α为所述天线阵列的下倾角,β为波束宽度,G(θ 4)为所述第五区域内的观测点的方位角对应的波束增益,G(θ 0)为所述波束增益的最大值,θ 4为所述第五区域内的观测点的方位角,θ 0为所述波束增益的最大值对应的方位角,A 2、A 5为系数。
  10. 一种电子设备,包括:
    至少一个处理器;以及
    存储器,所述存储器上存储有至少一个程序,当所述至少一个程序被所述至少一个处理器执行时,实现根据权利要求1-9任意一项所述的波束赋形方法。
  11. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现根据权利要求1-9任意一项所述的波束赋形方法。
  12. 一种波束赋形装置,包括:
    增益确定模块,用于根据基站的天线阵列对应的目标辐射方向函数确定基站对应的小区内不同方位角对应的波束增益,其中,采用 所述目标辐射方向函数进行波束赋形后,所述小区内不同方位角对应的接收功率之差的绝对值小于或等于第一预设阈值;
    加权系数确定模块,用于根据不同方位角对应的波束增益确定所述天线阵列中每一个天线阵元的幅度加权系数和相位加权系数;以及
    波束赋形模块,用于根据所述天线阵元的幅度加权系数和相位加权系数进行波束赋形。
PCT/CN2022/080652 2021-06-16 2022-03-14 波束赋形方法和装置、电子设备、计算机可读存储介质 WO2022262333A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110665004.1A CN115483954A (zh) 2021-06-16 2021-06-16 波束赋形方法和装置、电子设备、计算机可读存储介质
CN202110665004.1 2021-06-16

Publications (1)

Publication Number Publication Date
WO2022262333A1 true WO2022262333A1 (zh) 2022-12-22

Family

ID=84419564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/080652 WO2022262333A1 (zh) 2021-06-16 2022-03-14 波束赋形方法和装置、电子设备、计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN115483954A (zh)
WO (1) WO2022262333A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102110883A (zh) * 2010-12-01 2011-06-29 西安空间无线电技术研究所 一种赋形可变波束阵列天线的波束赋形方法
US20180331740A1 (en) * 2017-05-11 2018-11-15 Intel Corporation Multi-finger beamforming and array pattern synthesis
CN111541046A (zh) * 2020-05-08 2020-08-14 中国联合网络通信集团有限公司 一种龙伯透镜天线及基站

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102110883A (zh) * 2010-12-01 2011-06-29 西安空间无线电技术研究所 一种赋形可变波束阵列天线的波束赋形方法
US20180331740A1 (en) * 2017-05-11 2018-11-15 Intel Corporation Multi-finger beamforming and array pattern synthesis
CN111541046A (zh) * 2020-05-08 2020-08-14 中国联合网络通信集团有限公司 一种龙伯透镜天线及基站

Also Published As

Publication number Publication date
CN115483954A (zh) 2022-12-16

Similar Documents

Publication Publication Date Title
US20230034005A1 (en) Power wave transmission techniques to focus wirelessly delivered power at a receiving device
US11296416B2 (en) Metamaterial structure antenna and metamaterial structure array
US9130611B2 (en) Method of using zoning map for beam searching, tracking and refinement
CN101848021B (zh) 一种智能天线阵广播波束权值的生成方法和装置
CN106848552B (zh) 基于空间相位补偿的圆极化天线阵结构及相位补偿方法
CN114584238B (zh) 一种面向智能超表面无线通信的射线追踪信道建模方法
US10193606B2 (en) Beam configuration method and device
Suárez et al. Experimental validation of linear aperiodic array for grating lobe suppression
JP7096843B2 (ja) ブロードバンドアンテナ
WO2022262333A1 (zh) 波束赋形方法和装置、电子设备、计算机可读存储介质
WO2019019983A1 (en) SYSTEM AND METHOD FOR FORMING BEAMS USING A PHASE CONTROL NETWORK ANTENNA
CN209804892U (zh) 一种加载寄生贴片的微带天线
CN107968264B (zh) 多边形环路天线以及通信设备和天线制造方法
CN114245954B (zh) 介质谐振器天线和介质谐振器天线阵列
CN102447167B (zh) 天线阵列
Zhang et al. Metamaterial‐based linear phased array antenna with improved wide‐angle scanning bandwidth by parasitic metal strips
Mappatao Patterns of sidemount four-bay FM antenna system
US20230208029A1 (en) Method for Controlling Antenna Polarization Direction and Antenna System
KR102308344B1 (ko) 상호 결합 특성이 개선된 유전체 안테나
KR102672496B1 (ko) 광시야각을 갖는 mimo 안테나 어레이
WO2024037014A1 (zh) 天线控制方法、控制终端以及通信系统
US11509073B2 (en) MIMO antenna array with wide field of view
Rayavarapu et al. Minimization of side lobe level for linear antenna arrays using improved particle swarm optimization
JPH05283924A (ja) アレーアンテナ
US20230074879A1 (en) Wireress communication apparutus and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22823824

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE