WO2022262312A1 - 用于控制二氧化碳吸附模块的方法、装置和智能空调 - Google Patents

用于控制二氧化碳吸附模块的方法、装置和智能空调 Download PDF

Info

Publication number
WO2022262312A1
WO2022262312A1 PCT/CN2022/078522 CN2022078522W WO2022262312A1 WO 2022262312 A1 WO2022262312 A1 WO 2022262312A1 CN 2022078522 W CN2022078522 W CN 2022078522W WO 2022262312 A1 WO2022262312 A1 WO 2022262312A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
concentration
adsorption
current
air volume
Prior art date
Application number
PCT/CN2022/078522
Other languages
English (en)
French (fr)
Inventor
商庆浩
王宁
李宗强
马晨
武凤玲
Original Assignee
重庆海尔空调器有限公司
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆海尔空调器有限公司, 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 重庆海尔空调器有限公司
Publication of WO2022262312A1 publication Critical patent/WO2022262312A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0071Indoor units, e.g. fan coil units with means for purifying supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/95Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying specially adapted for specific purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • F24F2110/70Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • F24F2120/14Activity of occupants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present application relates to the technical field of intelligent air conditioners, for example, to a method and device for controlling a carbon dioxide adsorption module, and an intelligent air conditioner.
  • the volume concentration of carbon dioxide in natural air is generally in the range of 300-400ppm. At present, many studies have proved that although it has no real harm to the human body, it will affect people's work efficiency and learning status. Studies have shown that when the concentration of carbon dioxide exceeds 1000ppm, the human body will feel the air is dirty and drowsy; when the concentration of carbon dioxide exceeds 2000ppm, it may cause drowsiness, inability to concentrate and other symptoms; Lead to hypoxia, coma, etc.
  • Carbon dioxide adsorbents can be used to make carbon dioxide adsorption modules, which can absorb carbon dioxide in the room to reduce the indoor carbon dioxide concentration.
  • the carbon dioxide adsorption module can be arranged on the air conditioner, so that the air conditioner can have the function of absorbing carbon dioxide.
  • a carbon dioxide adsorption module installed on an air conditioner may include a carbon dioxide sensor, a carbon dioxide adsorption material, a micromotor, and a movable partition. The carbon dioxide sensor is used to detect the indoor carbon dioxide concentration, and the micromotor is used to drag the movable partition.
  • the movable partition can completely cover the carbon dioxide adsorption material or completely expose the carbon dioxide adsorption material.
  • the carbon dioxide adsorption module is in a non-working state.
  • the movable partition is used When the carbon dioxide adsorption material is fully exposed, the carbon dioxide adsorption module is in the working state. In this way, the micro-motor can be turned on according to the value change of the carbon dioxide sensor, and the movable partition is moved to make the carbon dioxide adsorption module in the working state and the non-working state. Switching to ensure that the indoor carbon dioxide concentration is lower than the standard limit value to ensure the healthy life and work efficiency of indoor personnel.
  • the existing carbon dioxide adsorption module switches between the working state and the non-working state, and it is difficult to easily achieve a balance between carbon dioxide adsorption performance and power consumption of the carbon dioxide adsorption module.
  • Embodiments of the present disclosure provide a method, device and intelligent air conditioner for controlling a carbon dioxide adsorption module, so as to solve the technical problem existing in the prior art that it is difficult to easily achieve a balance between carbon dioxide adsorption performance and power consumption of the carbon dioxide adsorption module.
  • the method for controlling the carbon dioxide adsorption module includes: obtaining the current indoor carbon dioxide concentration; determining the set fan air volume and the set adsorption area of the carbon dioxide adsorption module according to the current carbon dioxide concentration; according to the set Adjusting the air volume of the fan and the set adsorption area to adjust the carbon dioxide adsorption module; wherein, the set air volume of the fan and/or the set adsorption area are positively correlated with the current carbon dioxide concentration.
  • determining the set fan air volume and the set adsorption area according to the current carbon dioxide concentration includes: within a preset concentration range, determining the current concentration range where the current carbon dioxide concentration is; The corresponding relationship of the adsorption rate determines the current adsorption rate corresponding to the current concentration range; and determines the set fan air volume and the set adsorption area according to the current adsorption rate.
  • determining the set air volume of the fan and the set adsorption area according to the current adsorption rate includes: determining the air volume corresponding to the current adsorption rate according to the correspondence between the adsorption rate, the air volume of the fan and the adsorption area. The set air volume of the fan and the set adsorption area.
  • the method for controlling the carbon dioxide adsorption module further includes: obtaining a first average carbon dioxide concentration at the inlet of the carbon dioxide adsorption module and a second average carbon dioxide concentration at the outlet of the carbon dioxide adsorption module within a set time period ; Obtain the concentration difference between the second average carbon dioxide concentration and the first average carbon dioxide concentration.
  • determining the set air volume of the fan and the set adsorption area according to the set carbon dioxide concentration includes: determining the set air volume of the fan and the set adsorption area according to the set carbon dioxide concentration and the concentration difference The set adsorption area, so that the ratio of the set adsorption area to the set fan air volume is inversely correlated with the concentration difference.
  • determining the set air volume of the fan and the set adsorption area according to the current carbon dioxide concentration and the concentration difference includes: obtaining a ratio inversely correlated with the concentration difference; according to the ratio and The current carbon dioxide concentration determines the set air volume of the fan; the set adsorption area is determined according to the set air volume of the fan and the ratio.
  • determining the set fan air volume and the set adsorption area according to the current carbon dioxide concentration and the concentration difference includes: determining the set adsorption area according to the current carbon dioxide concentration; The ratio of the anti-correlation of the concentration difference; the set air volume of the fan is determined according to the set adsorption area and the ratio.
  • the method for controlling the carbon dioxide adsorption module further includes: obtaining the number of people in the room and the activity status of the people; and determining the current carbon dioxide generation rate corresponding to the number of people and the activity status of the people.
  • obtaining the current indoor carbon dioxide concentration includes: obtaining the current detected concentration through a carbon dioxide sensor; compensating the current detected concentration according to the current carbon dioxide production rate to obtain the current carbon dioxide concentration.
  • compensating the current detected concentration according to the current carbon dioxide production rate to obtain the current carbon dioxide concentration includes: obtaining an integral of the current carbon dioxide production rate for a preset time period; determining a predicted change concentration according to the integral; The sum of the current detected concentration and the predicted change concentration is determined as the current carbon dioxide concentration.
  • the device for controlling the carbon dioxide adsorption module includes a first obtaining module, a first determining module, and a first control module; the first obtaining module is configured to obtain the current carbon dioxide concentration in the room; the first determining module is configured to The current carbon dioxide concentration determines the set fan air volume and the set adsorption area of the carbon dioxide adsorption module; the first control module is configured to adjust the carbon dioxide adsorption module according to the set fan air volume and the set adsorption area; wherein , the set air volume of the fan and/or the set adsorption area are positively correlated with the current carbon dioxide concentration.
  • the device for controlling the carbon dioxide adsorption module includes a processor and a memory storing program instructions, and the processor is configured to execute the method for controlling carbon dioxide provided by the foregoing embodiments when executing the program instructions.
  • Method for snapping modules are configured to execute the method for controlling carbon dioxide provided by the foregoing embodiments when executing the program instructions.
  • the smart air conditioner includes the device for controlling the carbon dioxide adsorption module provided in the foregoing embodiments.
  • the method, device and intelligent air conditioner for controlling the carbon dioxide adsorption module provided by the embodiments of the present disclosure can achieve the following technical effects:
  • Fig. 1a is a schematic structural diagram of a carbon dioxide adsorption module provided by an embodiment of the present disclosure
  • Fig. 1b is a schematic structural diagram of a carbon dioxide adsorption module provided by an embodiment of the present disclosure
  • Fig. 1c is a schematic structural diagram of a carbon dioxide adsorption module provided by an embodiment of the present disclosure
  • Fig. 2 is a schematic diagram of a method for controlling a carbon dioxide adsorption module provided by an embodiment of the present disclosure
  • Fig. 3 is a schematic diagram of a device for controlling a carbon dioxide adsorption module provided by an embodiment of the present disclosure
  • Fig. 4 is a schematic diagram of a device for controlling a carbon dioxide adsorption module provided by an embodiment of the present disclosure.
  • A/B means: A or B.
  • a and/or B means: A or B, or, A and B, these three relationships.
  • Fig. 1 is a schematic structural diagram of a carbon dioxide adsorption module provided by an embodiment of the present disclosure.
  • the carbon dioxide adsorption module includes an adsorption material, and removes carbon dioxide by adsorbing carbon dioxide on the adsorption material.
  • the adsorption material here can be composed of one or more of solid amines, molecular sieves, metal organic framework compounds and activated carbon. These adsorption materials either contain basic groups themselves, or have basic groups such as amine groups after post-modification. group, which can specifically adsorb weakly acidic carbon dioxide gas molecules in the air. This kind of adsorption is generally a weak form of chemical adsorption.
  • the interaction between carbon dioxide and the adsorption material can be released, so that the carbon dioxide is desorbed, and the carbon dioxide is released again.
  • the adsorption material obtains regeneration.
  • the carbon dioxide adsorption module includes a movable shutter and a motor.
  • the movable shutter moves under the drag of the motor.
  • the movable shutter covers part or all of the adsorption materials in the carbon dioxide adsorption module.
  • the adsorption materials covered by the movable shutter are not Participate in the adsorption process of carbon dioxide, the air passes through the adsorption material not covered by the movable shutter, the adsorption material absorbs carbon dioxide in the air, and reduces the concentration of carbon dioxide in the air.
  • the more adsorption materials involved in the adsorption process in the carbon dioxide adsorption module the better the effect of the carbon dioxide adsorption module on reducing the concentration of carbon dioxide in the air.
  • the amount of the adsorption material participating in the adsorption in the carbon dioxide adsorption module can be reflected by the area of the adsorption material not covered by the movable shutter.
  • the "adsorption area" in the embodiments of the present disclosure refers to The area of the adsorption material of the carbon dioxide adsorption module that is not covered by the movable shutter.
  • the adsorption area can be the actual value representing the area, or it can be the ratio of the area of the adsorption material that is not covered by the movable shutter to the total area of the entire adsorption material .
  • the carbon dioxide adsorption module in the embodiments of the present disclosure can be independently applied in a carbon dioxide remover, and can also be installed in air-conditioning equipment such as air purifiers, fresh air fans, and air conditioners.
  • the carbon dioxide adsorption module may be provided with an independent fan.
  • Fig. 2 is a schematic diagram of a method for controlling a carbon dioxide adsorption module provided by an embodiment of the present disclosure.
  • the method for controlling the carbon dioxide adsorption module can be executed by the controller of the carbon dioxide adsorption module, can be executed by the controller of the carbon dioxide remover, and can also be executed by a smart home system.
  • the method for controlling the carbon dioxide adsorption module can be executed by the controller of the carbon dioxide adsorption module, and can be performed by the air purifier It can be executed by the controllers of air-conditioning equipment such as fresh air fans, air conditioners, etc., and can also be executed by the server in the smart home system.
  • the method for controlling the carbon dioxide adsorption module includes:
  • the carbon dioxide concentration here can be the carbon dioxide concentration directly detected by the carbon dioxide sensor detection.
  • Independent carbon dioxide sensors at other locations in the room directly detect the carbon dioxide concentration in the room.
  • the current carbon dioxide concentration is the carbon dioxide concentration obtained after compensating the current detected concentration directly detected by the carbon dioxide sensor.
  • the method for controlling the carbon dioxide adsorption module further includes: obtaining the number of people in the room and their activity status; and determining the current carbon dioxide production rate corresponding to the number of people and their activity status.
  • obtaining the current indoor carbon dioxide concentration may include: obtaining the current detected concentration through a carbon dioxide sensor; compensating the current detected concentration according to the current carbon dioxide production rate to obtain the current carbon dioxide concentration.
  • Indoor image information can be obtained through camera equipment, and the number of people in the image information can be obtained through image analysis technology.
  • the current carbon dioxide production rate is positively correlated with the number of people. The larger the number of people, the greater the current carbon dioxide production rate; through the analysis of multiple continuous
  • the position of the person in the captured image changes, and the moving distance of the person is obtained.
  • the moving speed of the person is determined, that is, the state of the person's activity is obtained (the state of the person's activity includes the moving speed of the person), and the current carbon dioxide production rate and
  • the movement speed of people is positively correlated, the greater the movement speed of people, the greater the current carbon dioxide production rate.
  • the number of people and the activity status of people can also be obtained through wearable devices.
  • the number of wearable devices in the room can be obtained, and the number of wearable devices can be determined as the number of people; the heart rate of people can be obtained through wearable devices.
  • the corresponding relationship between the number of personnel, personnel status and carbon dioxide production rate can be pre-stored in the database. After obtaining the number of personnel and the status of personnel, the current carbon dioxide production rate corresponding to the number of personnel and the status of personnel can be obtained .
  • the corresponding relationship between the current carbon dioxide production rate and the compensation value can be stored in advance. After the current carbon dioxide production rate and the current detection concentration are obtained, the compensation value corresponding to the current carbon dioxide production is obtained in the database, and the sum of the compensation value and the current detection concentration is obtained. The sum of the compensation value and the current detection concentration is determined as the current carbon dioxide concentration.
  • the higher the carbon dioxide concentration the greater the adsorption rate of the carbon dioxide adsorption module.
  • the current carbon dioxide concentration is higher than the current detection concentration, and the adsorption rate of the carbon dioxide adsorption module can be increased in advance to offset the current carbon dioxide production rate. In this way, the concentration of indoor carbon dioxide can be better maintained within a reasonable range.
  • the current detected concentration is compensated according to the current carbon dioxide production rate to obtain the current carbon dioxide concentration, including: obtaining the integral of the current carbon dioxide production rate for the preset time length; determining the predicted change concentration according to the integral; combining the current detected concentration and the predicted change concentration , determined as the current carbon dioxide concentration.
  • the preset duration indicates the duration required for the current carbon dioxide production rate to affect the room.
  • the preset duration is positively correlated with the indoor volume. The larger the indoor volume, the longer the preset duration; the smaller the indoor volume, the shorter the preset duration.
  • the above technical solution can realize accurate compensation for the current detection concentration.
  • the air volume of the set fan and/or the set adsorption area are positively correlated with the current carbon dioxide concentration.
  • the air volume of the set fan can be kept unchanged and the adsorption area can be increased; or, the air volume of the set fan can be increased to maintain the same adsorption area; or, the air volume of the set fan and the adsorption area can be increased at the same time.
  • the air volume of the fan can be set at the same position to reduce the adsorption area; or, the air volume of the set fan can be reduced to maintain the same adsorption area; or, the air volume of the set fan and the adsorption area can be reduced at the same time.
  • determining the set air volume of the fan and the set adsorption area according to the current carbon dioxide concentration includes: within the preset concentration range, determining the current concentration range where the current carbon dioxide concentration is located; according to the corresponding relationship between the concentration range and the adsorption rate, determining and The current adsorption rate corresponding to the current concentration range; determine the set fan air volume and set adsorption area according to the current adsorption rate.
  • the preset concentration range includes a plurality of concentration ranges, for example, the first concentration range within the preset concentration range may be greater than 400ppm and less than 1000ppm, and the second concentration range within the preset concentration range may be greater than or equal to 1000ppm and Less than or equal to 2000ppm, a third concentration range within the preset concentration range may be greater than 2000ppm.
  • the more the number of concentration ranges, the more precise the control of the carbon dioxide adsorption module, the smaller the span of a concentration range (for example, the span of the second concentration range is 2000ppm-1000ppm 1000ppm), the more precise the control of the carbon dioxide adsorption module, here
  • the divided three concentration ranges are only exemplary illustrations and do not limit the embodiments of the present disclosure. Those skilled in the art can divide appropriate concentration ranges according to actual needs.
  • the adsorption rate here can be expressed by a specific numerical value or by a gear, such as the first gear, the second gear and the third gear, wherein the specific value of the adsorption rate corresponding to the first gear is smaller than the adsorption rate corresponding to the second gear.
  • the specific value of the rate, the specific value of the adsorption rate corresponding to the second gear is smaller than the specific value of the adsorption rate corresponding to the third gear.
  • the specific values of the adsorption rates corresponding to the first gear, the second gear and the third gear can be determined according to the specific values of the maximum adsorption rate of the carbon dioxide adsorption module, for example, the specific value of the maximum adsorption rate of the carbon dioxide adsorption module 95% of the value, as the specific value of the adsorption rate corresponding to the third gear, take 2/3 of the specific value of the adsorption rate corresponding to the third gear as the specific value of the adsorption rate corresponding to the second gear, and take the specific value of the adsorption rate corresponding to the third gear 1/3 of the specific value of the adsorption rate is used as the specific value of the adsorption rate corresponding to the first gear.
  • gears The greater the number of gears, the more precise the control of the carbon dioxide adsorption module, the smaller the difference in the adsorption rates corresponding to adjacent gears, the more precise the control of the carbon dioxide adsorption module, the three gears here are only for illustration , does not limit the embodiment of the present disclosure. Those skilled in the art can set an appropriate number of gears according to actual needs, and determine specific values of different adsorption rates for different gears.
  • determining the set air volume of the fan and the set adsorption area according to the current adsorption rate includes: determining the set air volume of the fan and the set adsorption area corresponding to the current adsorption rate according to the corresponding relationship between the adsorption rate, the air volume of the fan, and the adsorption area area.
  • the corresponding relationship between the concentration range and the adsorption rate can be stored in the database in advance. After the current carbon dioxide concentration is determined and the current concentration range is determined within the preset concentration range, the adsorption corresponding to the current concentration range can be queried in the database. rate.
  • the set fan air volume and the set adsorption area can be determined, and then the carbon dioxide adsorption module can be accurately controlled.
  • the adsorption performance of the adsorption material of the carbon dioxide adsorption module decreases.
  • the air volume of the fan and the specific adsorption area control the operation of the carbon dioxide adsorption module, and the adsorption rate of the carbon dioxide adsorption module at this time is recorded as the first rate; after the carbon dioxide adsorption module has been used for many days, the operation of the carbon dioxide adsorption module is still controlled according to the specific fan air volume and specific adsorption area , and record the adsorption rate of the carbon dioxide adsorption module at this time as the second rate, then the first rate is greater than the second rate.
  • the method for controlling the carbon dioxide adsorption module may further include: obtaining the first average carbon dioxide concentration at the inlet of the carbon dioxide adsorption module and the second average carbon dioxide concentration at the outlet of the carbon dioxide adsorption module within a set period of time; obtaining The concentration difference between the first average carbon dioxide concentration and the second average carbon dioxide concentration; on this basis, determining the set fan air volume and the set adsorption area according to the set carbon dioxide concentration may include: determining according to the set carbon dioxide concentration and the concentration difference The air volume of the fan is set and the adsorption area is set, so that the ratio of the set adsorption area to the air volume of the fan is inversely related to the concentration difference.
  • the set duration can be the set duration in each test cycle, for example, the set duration after the start of each test cycle; the test cycle here refers to the cycle of detecting the adsorption performance of the adsorption material in the carbon dioxide adsorption module, for example , the test cycle can be one day, two days or more days.
  • the set duration may also be the set duration before the current moment, and the current moment refers to the moment when the module for controlling carbon dioxide adsorption is executed.
  • the above-mentioned set duration may be 10min, 20min, 30min, 1h or longer.
  • the concentration difference can reflect the carbon dioxide adsorption performance of the adsorption material of the carbon dioxide adsorption module.
  • the larger the concentration difference the better the carbon dioxide adsorption performance of the adsorption material; the smaller the concentration difference, the worse the carbon dioxide adsorption performance of the adsorption material.
  • the carbon dioxide adsorption module absorbs carbon dioxide The lower the performance.
  • the difference in concentration becomes smaller, it means that the performance of the adsorption material of the tested carbon dioxide adsorption module to absorb carbon dioxide is reduced.
  • the ratio of the set adsorption area to the set fan air volume remains unchanged, the performance of the carbon dioxide adsorption module will be reduced.
  • increasing the ratio of the set adsorption area to the set fan air volume will help improve the overall carbon dioxide adsorption performance of the carbon dioxide adsorption module. In this way, the carbon dioxide adsorption performance of the carbon dioxide adsorption module can be maintained in a better state.
  • the anti-correlation relationship between the ratio of the set adsorption area and the set fan air volume and the concentration difference can be stored in the database. After obtaining the concentration difference, the ratio of the anti-correlation to the concentration difference can be obtained by querying the database.
  • determining the set fan air volume and the set adsorption area according to the current carbon dioxide concentration and the concentration difference including: obtaining a ratio that is inversely correlated with the concentration difference; determining the set fan air volume according to the current carbon dioxide concentration; according to the set fan air volume and the ratio to determine the set adsorption area.
  • the adsorption rate of the carbon dioxide adsorption module is positively correlated with the current carbon dioxide concentration.
  • the set air volume of the fan can be determined according to the current carbon dioxide concentration, and then the set air volume of the fan can be converted to the set value according to the ratio Adsorption area (set the adsorption area as the product of the air volume of the fan and the ratio). In this way, the set air volume of the fan and the set adsorption area can be obtained.
  • determining the set fan air volume and the set adsorption area according to the current carbon dioxide concentration and the concentration difference may include: determining the set adsorption area according to the current carbon dioxide concentration; obtaining a ratio that is inversely correlated with the concentration difference; according to the set adsorption area and The ratio determines the set fan air volume.
  • the adsorption rate of the carbon dioxide adsorption module is positively correlated with the current carbon dioxide concentration.
  • the set adsorption area can be determined according to the current carbon dioxide concentration, and then the set adsorption area can be converted into the set value according to the ratio.
  • Air volume of the fan (set the air volume of the fan to be the quotient of the set adsorption area divided by the ratio). In this way, the set air volume of the fan and the set adsorption area can be obtained.
  • Conventional adjustment methods can be used here, for example: obtain the actual air volume of the fan, and increase the actual air volume of the fan when the set air volume of the fan is greater than the set air volume of the fan, so that the actual air volume of the fan reaches the set air volume of the fan; In the case of the actual fan air volume, reduce the actual fan air volume so that the actual fan air volume reaches the set fan air volume.
  • the set adsorption area When the set adsorption area is larger than the actual adsorption area, increase the actual adsorption area so that the actual adsorption area reaches the set adsorption area; when the set adsorption area is smaller than the actual adsorption area, reduce the actual adsorption area so that the actual adsorption area Reach the set adsorption area.
  • Fig. 3 is a schematic diagram of a device for controlling a carbon dioxide adsorption module provided by an embodiment of the present disclosure.
  • the device for controlling the carbon dioxide adsorption module includes: a first obtaining module 31 , a first determining module 32 and a first control module 33 ; the first obtaining module 31 is configured to obtain the current indoor carbon dioxide concentration;
  • the first determination module 32 is configured to determine the set fan air volume and the set adsorption area of the carbon dioxide adsorption module according to the current carbon dioxide concentration;
  • the first control module 33 is configured to adjust the carbon dioxide adsorption module according to the set fan air volume and the set adsorption area; Wherein, the air volume of the set fan and/or the set adsorption area are positively correlated with the current carbon dioxide concentration.
  • the first determination module includes a first determination unit, a second determination unit and a third determination unit, wherein the first determination unit is configured to determine the current concentration range of the current carbon dioxide concentration within the preset concentration range;
  • the second determination unit is configured to determine the current adsorption rate corresponding to the current concentration range according to the corresponding relationship between the concentration range and the adsorption rate;
  • the third determination unit is configured to determine the set fan air volume and the set adsorption area according to the current adsorption rate .
  • the third determining unit is specifically configured to determine a set fan air volume and a set adsorption area corresponding to the current adsorption rate according to the corresponding relationship between the adsorption rate, the fan air volume and the adsorption area.
  • the device for controlling the carbon dioxide adsorption module further includes a second obtaining module and a third obtaining module.
  • the second obtaining module is configured to obtain the first average carbon dioxide concentration at the inlet of the carbon dioxide adsorption module and the second average carbon dioxide concentration at the outlet of the carbon dioxide adsorption module within a set time period;
  • the third obtaining module is configured to obtain the second carbon dioxide The concentration difference between the average concentration and the first carbon dioxide average concentration.
  • the third determination unit is specifically configured to determine the set fan air volume and the set adsorption area according to the set carbon dioxide concentration and the concentration difference, so that the ratio of the set adsorption area to the set fan air volume is inversely correlated with the concentration difference .
  • the third determining unit is specifically configured to obtain a ratio that is inversely correlated with the concentration difference; determine the set fan air volume according to the ratio and the current carbon dioxide concentration; and determine the set adsorption area according to the set fan air volume and the ratio.
  • the third determining unit is specifically configured to determine the set adsorption area according to the current carbon dioxide concentration; obtain a ratio inversely related to the concentration difference; and determine the set fan air volume according to the set adsorption area and the ratio.
  • the device for controlling the carbon dioxide adsorption module further includes a fourth obtaining module and a second determining module, the fourth obtaining module is configured to obtain the number of people in the room and the activity state of the people; the second determining module is configured to determine and The current CO2 production rate corresponding to the number of people and their activity status.
  • the first obtaining module includes a first obtaining unit and a second obtaining unit; the first obtaining unit is configured to obtain the current detected concentration through a carbon dioxide sensor; the second obtaining unit is configured to compensate the current detected concentration according to the current carbon dioxide production rate , to obtain the current carbon dioxide concentration.
  • the second obtaining unit is specifically configured to obtain the integral of the current carbon dioxide production rate for the preset time period; determine the predicted change concentration according to the integral; and determine the sum of the current detected concentration and the predicted change concentration as the current carbon dioxide concentration.
  • the device for controlling the carbon dioxide adsorption module includes a processor and a memory storing program instructions, and the processor is configured to execute the method for controlling the carbon dioxide adsorption module provided in the foregoing embodiments when executing the program instructions. .
  • Fig. 4 is a schematic diagram of a device for controlling a carbon dioxide adsorption module provided by an embodiment of the present disclosure. As shown in Figure 4, the device for controlling the carbon dioxide adsorption module includes:
  • a processor (processor) 41 and a memory (memory) 42 may also include a communication interface (Communication Interface) 43 and a bus 44. Wherein, the processor 41 , the communication interface 43 , and the memory 42 can communicate with each other through the bus 44 .
  • the communication interface 43 can be used for information transmission.
  • the processor 41 can call the logic instructions in the memory 42 to execute the method for controlling the carbon dioxide adsorption module provided in the foregoing embodiments.
  • logic instructions in the memory 42 may be implemented in the form of software functional units and when sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the memory 42 can be used to store software programs and computer-executable programs, such as program instructions/modules corresponding to the methods in the embodiments of the present disclosure.
  • the processor 41 executes functional applications and data processing by running software programs, instructions and modules stored in the memory 42, that is, implements the methods in the foregoing method embodiments.
  • the memory 42 may include a program storage area and a data storage area, wherein the program storage area may store an operating system and at least one application required by a function; the data storage area may store data created according to the use of the terminal device, and the like.
  • the memory 42 may include a high-speed random access memory, and may also include a non-volatile memory.
  • An embodiment of the present disclosure provides an intelligent air conditioner, including the device for controlling a carbon dioxide adsorption module provided in the foregoing embodiments.
  • An embodiment of the present disclosure provides a computer-readable storage medium, which stores computer-executable instructions, and the computer-executable instructions are configured to execute the method for controlling a carbon dioxide adsorption module provided in the foregoing embodiments.
  • An embodiment of the present disclosure provides a computer program product.
  • the computer program product includes a computer program stored on a computer-readable storage medium.
  • the computer program includes program instructions. When the program instructions are executed by a computer, the computer is made to execute the information provided in the foregoing embodiments.
  • the above-mentioned computer-readable storage medium may be a transitory computer-readable storage medium, or a non-transitory computer-readable storage medium.
  • the technical solutions of the embodiments of the present disclosure can be embodied in the form of software products, which are stored in a storage medium and include one or more instructions to enable a computer device (which may be a personal computer, a server, or a network equipment, etc.) to execute all or part of the steps of the methods in the embodiments of the present disclosure.
  • the aforementioned storage medium can be a non-transitory storage medium, including: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.
  • the term “comprise” and its variants “comprises” and/or comprising (comprising) etc. refer to stated features, integers, steps, operations, elements, and/or The presence of a component does not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components and/or groupings of these.
  • an element qualified by the statement “comprising a " does not preclude the presence of additional identical elements in the process, method or apparatus comprising the element.
  • what each embodiment focuses on may be the difference from other embodiments, and the same and similar parts of the various embodiments may refer to each other.
  • the relevant part can refer to the description of the method part.
  • the disclosed methods and products can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of units may only be a logical function division.
  • multiple units or components may be combined or may be Integrate into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • a unit described as a separate component may or may not be physically separated, and a component displayed as a unit may or may not be a physical unit, that is, it may be located in one place, or may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to implement this embodiment.
  • each functional unit in the embodiments of the present disclosure may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • each block in a flowchart or block diagram may represent a module, program segment, or part of code that includes one or more executable instruction.
  • the functions noted in the block may occur out of the order noted in the figures. For example, two blocks in succession may, in fact, be executed substantially concurrently, or they may sometimes be executed in the reverse order, depending upon the functionality involved.
  • Each block in the block diagrams and/or flowcharts, and combinations of blocks in the block diagrams and/or flowcharts can be implemented by a dedicated hardware-based system that performs the specified function or action, or can be implemented by dedicated hardware implemented in combination with computer instructions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

提供了一种用于控制二氧化碳吸附模块的方法、装置和智能空调,包括获得室内的当前二氧化碳浓度,根据当前二氧化碳浓度确定设定风机风量以及二氧化碳吸附模块的设定吸附面积,根据设定风机风量和设定吸附面积调节二氧化碳吸附模块,其中,设定风机风量和/或设定吸附面积与当前二氧化碳浓度正相关,可实现吸附二氧化碳性能和功耗的平衡。

Description

用于控制二氧化碳吸附模块的方法、装置和智能空调
本申请基于申请号为202110667487.9、申请日为2021年6月16日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及智能空调技术领域,例如涉及一种用于控制二氧化碳吸附模块的方法、装置和智能空调。
背景技术
二氧化碳在自然空气中的体积浓度一般在300~400ppm的范围内,目前,很多研究证明,虽然对人体无实质危害,却会影响人的工作效率、学习状态等。研究表明,当二氧化碳浓度超过1000ppm时,人体会感到空气污浊,并昏昏欲睡;当二氧化碳浓度超过2000ppm时,可能会导致嗜睡、注意力无法集中等症状;当浓度高于5000ppm时,有可能导致缺氧、昏迷等。
近年来二氧化碳吸附剂的研究进展比较快,可利用二氧化碳吸附剂制作二氧化碳吸附模块,吸附室内的二氧化碳从而达到降低室内二氧化碳浓度的效果。并且,该二氧化碳吸附模块可设置在空调上,这样可以使空调具备吸附二氧化碳的功能。例如,设置在空调上的二氧化碳吸附模块可包括二氧化碳传感器、二氧化碳吸附材料、微动电机以及可移动式隔板,二氧化碳传感器用于检测室内二氧化碳浓度,微动电机用于拖动可移动式隔板,可移动式隔板可完全遮盖二氧化碳吸附材料或使二氧化碳吸附材料完全露出,在可移动式隔板完全遮盖二氧化碳吸附材料的情况下,二氧化碳吸附模块处于非工作状态,在可移动式隔板使二氧化碳吸附材料完全露出的情况下,二氧化碳吸附模块处于工作状态,这样,可根据二氧化碳传感器的数值变化开启微动电机,拖动可移动式隔板移动,使得二氧化碳吸附模块在工作状态与非工作状态切换,确保室内二氧化碳浓度低于标准限定值,保障室内人员的健康生活和工作效率。
在实现本公开实施例的过程中,发现相关技术中至少存在如下问题:
现有二氧化碳吸附模块工作状态和非工作状态之间切换,难以容易实现二氧化碳吸附模块吸附二氧化碳性能和功耗的平衡。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供了一种用于控制二氧化碳吸附模块的方法、装置和智能空调,以解决现有技术存在的难以容易实现二氧化碳吸附模块吸附二氧化碳性能和功耗的平衡的技术问题。
在一些实施例中,用于控制二氧化碳吸附模块的方法包括:获得室内的当前二氧化碳浓度;根据所述当前二氧化碳浓度确定设定风机风量以及所述二氧化碳吸附模块的设定吸附面积;根据所述设定风机风量和所述设定吸附面积调节二氧化碳吸附模块;其中,所述设定风机风量和/或所述设定吸附面积与所述当前二氧化碳浓度正相关。
可选地,根据所述当前二氧化碳浓度确定所述设定风机风量以及所述设定吸附面积,包括:在预设浓度范围内,确定所述当前二氧化碳浓度所在的当前浓度范围;根据浓度范围与吸附速率的对应关系,确定与所述当前浓度范围相对应的当前吸附速率;根据所述当前吸附速率确定所述设定风机风量和所述设定吸附面积。
可选地,根据所述当前吸附速率确定所述设定风机风量和所述设定吸附面积,包括:根据吸附速率、风机风量和吸附面积的对应关系,确定与所述当前吸附速率相对应的所述设定风机风量和所述设定吸附面积。
可选地,用于控制二氧化碳吸附模块的方法还包括:在设定时长内,获得所述二氧化碳吸附模块的入口处的第一二氧化碳平均浓度以及所述二氧化碳吸附模块出口处的第二二氧化碳平均浓度;获得所述第二二氧化碳平均浓度与所述第一二氧化碳平均浓度的浓度差值。
可选地,根据所述设定二氧化碳浓度确定所述设定风机风量以及所述设定吸附面积,包括:根据所述设定二氧化碳浓度和所述浓度差值确定所述设定风机风量以及所述设定吸附面积,使所述设定吸附面积与所述设定风机风量的比值与所述浓度差值反相关。
可选地,根据所述当前二氧化碳浓度和所述浓度差值确定所述设定风机风量以及所述设定吸附面积,包括:获得与所述浓度差值反相关的比值;根据所述比值和所述当前二氧化碳浓度确定所述设定风机风量;根据所述设定风机风量和所述比值确定所述设 定吸附面积。
可选地,根据所述当前二氧化碳浓度和所述浓度差值确定所述设定风机风量以及所述设定吸附面积,包括:根据所述当前二氧化碳浓度确定所述设定吸附面积;获得与所述浓度差值反相关的比值;根据所述设定吸附面积和所述比值确定所述设定风机风量。
可选地,用于控制二氧化碳吸附模块的方法还包括:获得室内的人员数量以及人员活动状态;确定与所述人员数量以及所述人员活动状态相对应的当前二氧化碳产生速率。
可选地,获得室内的当前二氧化碳浓度,包括:通过二氧化碳传感器获得当前检测浓度;根据所述当前二氧化碳产生速率补偿所述当前检测浓度,获得所述当前二氧化碳浓度。
可选地,根据所述当前二氧化碳产生速率补偿所述当前检测浓度,获得所述当前二氧化碳浓度,包括:获得所述当前二氧化碳产生速率对预设时长的积分;根据所述积分确定预测变化浓度;将所述当前检测浓度与所述预测变化浓度的和,确定为所述当前二氧化碳浓度。
可选地,用于控制二氧化碳吸附模块的装置包括第一获得模块、第一确定模块和第一控制模块;第一获得模块被配置为获得室内的当前二氧化碳浓度;第一确定模块被配置为根据所述当前二氧化碳浓度确定设定风机风量以及所述二氧化碳吸附模块的设定吸附面积;第一控制模块,被配置为根据所述设定风机风量和所述设定吸附面积调节二氧化碳吸附模块;其中,所述设定风机风量和/或所述设定吸附面积与所述当前二氧化碳浓度正相关。
在一些实施例中,用于控制二氧化碳吸附模块的装置包括处理器和存储有程序指令的存储器,所述处理器被配置为在执行所述程序指令时,执行前述实施例提供的用于控制二氧化碳吸附模块的方法。
在一些实施例中,智能空调包括前述实施例提供的用于控制二氧化碳吸附模块的装置。
本公开实施例提供的用于控制二氧化碳吸附模块的方法、装置和智能空调,可以实现以下技术效果:
根据当前二氧化碳浓度确定设定风机风量和二氧化碳吸附模块的设定吸附面积,在室内的二氧化碳浓度越高的时候,设定风机风量和/或设定吸附面积越大,此时二氧 化碳吸附模块的功耗越高,但对二氧化碳的吸附性能也越高,有利于快速降低室内二氧化碳浓度;在室内二氧化碳浓度越低的时候,设定风机风量和/或设定吸附面积越小,此时二氧化碳吸附模块的功耗越低,但对二氧化碳的吸附性能也越低,有利于将室内二氧化碳浓度维持在一定浓度。采用技术方案,可实现吸附二氧化碳性能和功耗的平衡。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或一个以上实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件视为类似的元件,并且其中:
图1a是本公开实施例提供的一种二氧化碳吸附模块的结构示意图;
图1b是本公开实施例提供的一种二氧化碳吸附模块的结构示意图;
图1c是本公开实施例提供的一种二氧化碳吸附模块的结构示意图;
图2是本公开实施例提供的一种用于控制二氧化碳吸附模块的方法的示意图;
图3是本公开实施例提供的一种用于控制二氧化碳吸附模块的装置的示意图;
图4是本公开实施例提供的一种用于控制二氧化碳吸附模块的装置的示意图。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或一个以上实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
本公开实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开实施例的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
除非另有说明,术语“多个”表示两个或两个以上。
本公开实施例中,字符“/”表示前后对象是一种“或”的关系。例如,A/B表示:A或B。
术语“和/或”是一种描述对象的关联关系,表示可以存在三种关系。例如,A和/或B,表示:A或B,或,A和B这三种关系。
图1是本公开实施例提供的一种二氧化碳吸附模块的结构示意图。
该二氧化碳吸附模块包括吸附材料,是通过吸附材料吸附二氧化碳的方式实现去除二氧化碳的。这里的吸附材料可以是由固态胺、分子筛、金属有机骨架化合物和活性炭的其中一种或者几种组成,这些吸附材料或者本身含有碱性基团,或者后期修饰后带有胺基等碱性基团,能够特异性吸附空气中的弱酸性二氧化碳气体分子。这种吸附一般为弱的化学吸附形式,通过加热(例如将吸附材料加热至大于或等于80℃),即可解除二氧化碳与吸附材料的作用,使得二氧化碳解吸,二氧化碳再次释放出来,同时吸附材料获得再生。
二氧化碳吸附模块包括可移动遮板和电机,可移动遮板在电机的拖动下移动,可移动遮板遮盖对二氧化碳吸附模块中的部分或全部吸附材料,被可移动遮板遮盖的吸附材料不参与二氧化碳的吸附过程,空气在未被可移动遮板遮盖的吸附材料中通过,吸附材料吸附空气中的二氧化碳,降低空气中的二氧化碳浓度。
在本公开实施例中,二氧化碳吸附模块中参与吸附过程的吸附材料越多,二氧化碳吸附模块降低空气中二氧化碳浓度的效果越好。其中,二氧化碳吸附模块中参与吸附作用的吸附材料的量,可通过未被可移动遮板遮盖的吸附材料的面积来体现,为便于描述,本公开实施例中的“吸附面积”,指的是二氧化碳吸附模块的吸附材料未被可移动遮板遮盖的面积,吸附面积可以是表示面积的实际数值,可以是吸附材料中未被可移动遮板遮盖的面积,占全部吸附材料的全部面积的比值。
在图1a中,可移动遮板未遮盖二氧化碳吸附模块中的吸附材料,全部吸附材料参与二氧化碳的吸附过程,图1a中所示的二氧化碳吸附模块的吸附面积Sa=S1+S2+S3;图1b中所示的二氧化碳吸附模块的吸附面积为Sb=S1+S2;图1c中所示的二氧化碳吸附模块的吸附面积为Sc=S1。
本公开实施例中的二氧化碳吸附模块可独立应用在除二氧化碳器中,也可设置在空气净化器、新风机、空调等空气调节设备中。
本公开实施例中二氧化碳吸附模块,可设置有独立风机。
图2是本公开实施例提供的一种用于控制二氧化碳吸附模块的方法的示意图。在该二氧化碳吸附模块独立地设置在除二氧化碳器中的情况下,该用于控制二氧化碳吸附模块的方法可由二氧化碳吸附模块的控制器执行,可由除二氧化碳器的控制器执行,还 可由智能家居系统中的服务器执行;在该二氧化碳吸附模块设置在空气净化器、新风机、空调等空气调节设备中的情况下,该用于控制二氧化碳吸附模块的方法可由二氧化碳吸附模块的控制器执行,可由空气净化器、新风机、空调等空气调节设备的控制器执行,还可由智能家居系统中的服务器执行。
结合图2所示,用于控制二氧化碳吸附模块的方法包括:
S201、获得室内的当前二氧化碳浓度。
这里的二氧化碳浓度可以是通过二氧化碳传感器检测直接检测到的二氧化碳浓度,例如,在二氧化碳吸附模块设置在空调上时,可通过设置在空调上的二氧化碳传感器直接检测室内的二氧化碳浓度,或者,可通过设置在室内其他位置的独立的二氧化碳传感器直接检测室内的二氧化碳浓度。
或者,当前二氧化碳浓度是通过对二氧化碳传感器检测直接检测到的当前检测浓度进行补偿后,获得的二氧化碳浓度。
例如,在获得室内的当前二氧化碳浓度之前,用于控制二氧化碳吸附模块的方法还包括:获得室内的人员数量以及人员活动状态;确定与人员数量以及人员活动状态相对应的当前二氧化碳产生速率。在获得当前二氧化碳产生速率的基础上,获得室内的当前二氧化碳浓度,可包括:通过二氧化碳传感器获得当前检测浓度;根据当前二氧化碳产生速率补偿当前检测浓度,获得当前二氧化碳浓度。
可通过摄像设备获得室内的图像信息,通过图像分析技术获得图像信息中的人员数量,当前二氧化碳产生速率与人员数量正相关,人员数量越大,当前二氧化碳产生速率越大;可通过分析多张连续拍摄的图像中人员的位置变化,获得人员移动距离,根据图像的拍摄间隔时长和人员移动距离,确定人员移动速度,即获得人员活动状态(人员活动状态包括人员移动速度),当前二氧化碳产生速率与人员移动速度正相关,人员移动速度越大,则当前二氧化碳产生速率越大。
还可通过可穿戴设备获得人员数量以及人员活动状态,例如,获得室内的可穿戴设备的数量,将可穿戴设备的数量确定为人员数量;通过可穿戴设备获得人员心率,人员心率越高,表示人员活动状态越剧烈,活动状态越剧烈,则二氧化碳产生速率越大,也即,人员速率与二氧化碳产生速率正相关。
在一些实际应用中,可将人员数量、人员状态和二氧化碳产生速率的对应关系预存在数据库中,在获得人员数量和人员状态后,即可获得与人员数量、人员状态相对应的当前二氧化碳产生速率。
在根据当前二氧化碳产生速率补偿当前检测浓度,获得当前二氧化碳浓度的过程中,当前二氧化碳产生速率越高,则当前二氧化碳产生速率对当前检测浓度的补偿作用越大,使当前二氧化碳浓度与当前检测浓度的第一差值越大。
可预先存储当前二氧化碳产生速率与补偿值的对应关系,在获得当前二氧化碳产生速率和当前检测浓度后,在数据库中获得与当前二氧化碳产生相对应的补偿值,获得补偿值与当前检测浓度的和,将补偿值与当前检测浓度的和确定为当前二氧化碳浓度。
二氧化碳浓度越高,则二氧化碳吸附模块的吸附速率越大,在上述技术方案中,当前二氧化碳浓度高于当前检测浓度,可提前提高二氧化碳吸附模块的吸附速率,以抵消当前二氧化碳产生速率对室内实际二氧化碳浓度的影响,这样可更好将室内二氧化碳的浓度维持在合理范围内。
可选地,根据当前二氧化碳产生速率补偿当前检测浓度,获得当前二氧化碳浓度,包括:获得当前二氧化碳产生速率对预设时长的积分;根据积分确定预测变化浓度;将当前检测浓度与预测变化浓度的和,确定为当前二氧化碳浓度。
预设时长表示当前二氧化碳产生速率对室内产生影响所需的时长,预设时长与室内体积正相关,室内体积越大,预设时长越长;室内体积越小,预设时长越短。
上述技术方案可实现对当前检测浓度的精确补偿。
S202、根据当前二氧化碳浓度确定设定风机风量以及二氧化碳吸附模块的设定吸附面积。
其中,设定风机风量和/或设定吸附面积与当前二氧化碳浓度正相关。
在当前二氧化碳浓度提高后,可维持设定风机风量不变,提高吸附面积;或者,可提高设定风机风量,维持吸附面积不变;或者,同时提高设定风机风量和吸附面积。
在当前二氧化碳浓度降低后,可位置设定风机风量不变,降低吸附面积;或者,可降低设定风机风量,维持吸附面积不变;或者,同时降低设定风机风量和吸附面积。
可选地,根据当前二氧化碳浓度确定设定风机风量以及设定吸附面积,包括:在预设浓度范围内,确定当前二氧化碳浓度所在的当前浓度范围;根据浓度范围与吸附速率的对应关系,确定与当前浓度范围相对应的当前吸附速率;根据当前吸附速率确定设定风机风量和设定吸附面积。
预设浓度范围内包括多个浓度范围,例如,预设浓度范围内的第一个浓度范围可为大于400ppm且小于1000ppm,预设浓度范围内的第二个浓度范围可为大于或等于1000ppm且小于或等于2000ppm,预设浓度范围内的第三个浓度范围可为大于 2000ppm。浓度范围的数量越多,对二氧化碳吸附模块的控制越精确,一个浓度范围的跨度(例如第二个浓度范围的跨度为2000ppm-1000ppm=1000ppm)越小,对二氧化碳吸附模块的控制越精确,这里划分的三个浓度范围仅为示例性说明,不对本公开实施例构成限定,本领域技术可根据实际需求,划分合适的浓度范围。
这里的吸附速率,可以用具体的数值表示,也可用档位表示,例如第一档、第二档和第三档,其中,第一档对应的吸附速率的具体数值小于第二档对应的吸附速率的具体数值,第二档对应的吸附速率的具体数值小于第三档对应的吸附速率的具体数值。在实际应用中,可依据二氧化碳吸附模块的最大吸附速率的具体数值来确定第一档、第二档和第三档对应的吸附速率的具体数值,例如,以二氧化碳吸附模块的最大吸附速率的具体数值的95%,作为第三档对应的吸附速率的具体数值,以第三档对应的吸附速率的具体数值的2/3作为第二档对应的吸附速率的具体数值,以第三档对应的吸附速率的具体数值的1/3作为第一档对应的吸附速率的具体数值。档位的数量越多,对二氧化碳吸附模块的控制越精确,相邻档位对应的吸附速率的差值越小,对二氧化碳吸附模块的控制越精确,这里的三个档位仅为示例性说明,不对本公开实施例构成限定,本领域技术人员根据实际需求,设置合适数量的档位,并为不同档位确定不同的吸附速率的具体数值。
可选地,根据当前吸附速率确定设定风机风量和设定吸附面积,包括:根据吸附速率、风机风量和吸附面积的对应关系,确定与当前吸附速率相对应的设定风机风量和设定吸附面积。
浓度范围与吸附速率的对应关系,可预先存储在数据库中,在确定了当前二氧化碳浓度,并在预设浓度范围内确定了当前浓度范围后,可在数据库中查询出与当前浓度范围对应的吸附速率。
采用上述技术方案即可确定出设定风机风量和设定吸附面积,进而对二氧化碳吸附模块进行准确地控制。
在实际应用中,随着二氧化碳吸附模块的吸附材料吸附的二氧化碳越来越多,二氧化碳吸附模块的吸附材料的吸附性能降低,具体体现为:在二氧化碳吸附模块中的吸附材料刚更新后,按照特定风机风量以及特定吸附面积控制二氧化碳吸附模块运行,将此时二氧化碳吸附模块的吸附速率记为第一速率;在二氧化碳吸附模块被使用多天后,仍按照特定风机风量以及特定吸附面积控制二氧化碳吸附模块运行,将此时二氧化碳吸附模块的吸附速率记为第二速率,则第一速率大于第二速率。
这种情况下,用于控制二氧化碳吸附模块的方法还可包括:在设定时长内,获得二氧化碳吸附模块的入口处的第一二氧化碳平均浓度以及二氧化碳吸附模块出口处的第二二氧化碳平均浓度;获得第一二氧化碳平均浓度与第二二氧化碳平均浓度的浓度差值;在此基础上,根据设定二氧化碳浓度确定设定风机风量以及设定吸附面积,可包括:根据设定二氧化碳浓度和浓度差值确定设定风机风量以及设定吸附面积,使设定吸附面积与设定风机风量的比值与浓度差值反相关。
设定时长可以是每个测试周期内的设定时长,例如每个测试周期开始时刻后的设定时长;这里的测试周期,指的是检测二氧化碳吸附模块内吸附材料的吸附性能的周期,例如,测试周期可以是一天、两天或更多天。
设定时长还可以是当前时刻前的设定时长,当前时刻指的是执行该用于控制二氧化碳吸附模块的时刻。
上述设定时长可以是10min、20min、30min、1h或更长时间。
浓度差值可反映二氧化碳吸附模块的吸附材料吸附二氧化碳的性能,浓度差值越大,吸附材料吸附二氧化碳的性能越好;浓度差值越小,吸附材料吸附二氧化碳的性能越差。
在二氧化碳吸附模块工作过程中,在风机风量不变的情况下,吸附面积越大,单位体积的空气以该吸附面积通过吸附材料,该单位体积内二氧化碳浓度降低的越多,即,二氧化碳吸附模块吸附二氧化碳的性能越高;在吸附面积不变的情况下,风机风量越大,单位体积的空气以该风机风量通过吸附材料,该单位体积内二氧化碳浓度降低的少,即,二氧化碳吸附模块吸附二氧化碳的性能越低。
采用前述技术方案,如果浓度差值变小,表示测试到的二氧化碳吸附模块的吸附材料吸附二氧化碳的性能降低,在设定吸附面积和设定风机风量的比值不变的情况下,二氧化碳吸附模块表现出的吸附二氧化碳的性能将会降低,此时提高设定吸附面积与设定风机风量的比值,有利于提高二氧化碳吸附模块整体表现出的吸附二氧化碳的吸附性能。这样,可使二氧化碳吸附模块表现出的吸附二氧化碳的性能维持在较佳的状态。
可将设定吸附面积与设定风机风量的比值与浓度差值的反相关关系存储在数据库中,获得浓度差值后,通过查询数据库,即可获得与浓度差值反相关的比值。
可选地,根据当前二氧化碳浓度和浓度差值确定设定风机风量以及设定吸附面积,包括:获得与浓度差值反相关的比值;根据当前二氧化碳浓度确定设定风机风量;根据设定风机风量和比值确定设定吸附面积。二氧化碳吸附模块的吸附速率与当前二氧化碳 浓度正相关,设定风机风量和设定吸附面积的乘积;在获得与浓度差值反相关的比值后,依据该比值,将设定吸附面积替换为设定风机风量,则设定风机风量的平方与比值的乘积,与当前二氧化碳浓度正相关,这样,即可依据当前二氧化碳浓度确定出设定风机风量,再依据比值,将设定风机风量转换为设定吸附面积(设定吸附面积为风机风量与比值的乘积)。这样,即可获得设定风机风量与设定吸附面积。
或者,根据当前二氧化碳浓度和浓度差值确定设定风机风量以及设定吸附面积,可包括:根据当前二氧化碳浓度确定设定吸附面积;获得与浓度差值反相关的比值;根据设定吸附面积和比值确定设定风机风量。二氧化碳吸附模块的吸附速率与当前二氧化碳浓度正相关,设定风机风量和设定吸附面积的乘积;在获得与浓度差值反相关的比值后,依据该比值,将设定风机风量替换为设定吸附面积,则设定吸附面积的平方与比值的乘积,与当前二氧化碳浓度正相关,这样,即可依据当前二氧化碳浓度确定出设定吸附面积,再依据比值,将设定吸附面积转换为设定风机风量(设定风机风量为设定吸附面积除以比值的商)。这样,即可获得设定风机风量与设定吸附面积。
S203、根据设定风机风量和设定吸附面积调节二氧化碳吸附模块。
这里可采用常规的调节方式,例如:获得实际风机风量,在设定风机风量大于设定风机风量的情况下,提高实际风机风量,使实际风机风量达到设定风机风量;在设定风机风量小于实际风机风量的情况下,降低实际风机风量,使实际风机风量达到设定风机风量。
在设定吸附面积大于实际吸附面积的情况下,提高实际吸附面积,使实际吸附面积达到设定吸附面积;在设定吸附面积小于实际吸附面积的情况下,降低实际吸附面积,使实际吸附面积达到设定吸附面积。
根据当前二氧化碳浓度确定设定风机风量和二氧化碳吸附模块的设定吸附面积,在室内的二氧化碳浓度越高的时候,设定风机风量和/或设定吸附面积越大,此时二氧化碳吸附模块的功耗越高,但对二氧化碳的吸附性能也越高,有利于快速降低室内二氧化碳浓度;在室内二氧化碳浓度越低的时候,设定风机风量和/或设定吸附面积越小,此时二氧化碳吸附模块的功耗越低,但对二氧化碳的吸附性能也越低,有利于将室内二氧化碳浓度维持在一定浓度。采用技术方案,可实现吸附二氧化碳性能和功耗的平衡。另外,当二氧化碳吸附模块在低功率运行时,还可降低噪声。
图3是本公开实施例提供的一种用于控制二氧化碳吸附模块的装置的示意图。结合图3所示,用于控制二氧化碳吸附模块的装置,包括:第一获得模块31、第一确定 模块32和第一控制模块33;第一获得模块31被配置为获得室内的当前二氧化碳浓度;第一确定模块32被配置为根据当前二氧化碳浓度确定设定风机风量以及二氧化碳吸附模块的设定吸附面积;第一控制模块33被配置为根据设定风机风量和设定吸附面积调节二氧化碳吸附模块;其中,设定风机风量和/或设定吸附面积与当前二氧化碳浓度正相关。
可选地,第一确定模块包括第一确定单元、第二确定单元和第三确定单元,其中,第一确定单元被配置为在预设浓度范围内,确定当前二氧化碳浓度所在的当前浓度范围;第二确定单元被配置为根据浓度范围与吸附速率的对应关系,确定与当前浓度范围相对应的当前吸附速率;第三确定单元被配置为根据当前吸附速率确定设定风机风量和设定吸附面积。
可选地,第三确定单元,被具体配置为根据吸附速率、风机风量和吸附面积的对应关系,确定与当前吸附速率相对应的设定风机风量和设定吸附面积。
可选地,用于控制二氧化碳吸附模块的装置还包括第二获得模块和第三获得模块。第二获得模块被配置为在设定时长内,获得二氧化碳吸附模块的入口处的第一二氧化碳平均浓度以及二氧化碳吸附模块出口处的第二二氧化碳平均浓度;第三获得模块被配置为获得第二二氧化碳平均浓度与第一二氧化碳平均浓度的浓度差值。
可选地,第三确定单元被具体配置为根据设定二氧化碳浓度和浓度差值确定设定风机风量以及设定吸附面积,使设定吸附面积与设定风机风量的比值与浓度差值反相关。
可选地,第三确定单元被具体配置为获得与浓度差值反相关的比值;根据比值和当前二氧化碳浓度确定设定风机风量;根据设定风机风量和比值确定设定吸附面积。
可选地,第三确定单元被具体配置为根据当前二氧化碳浓度确定设定吸附面积;获得与浓度差值反相关的比值;根据设定吸附面积和比值确定设定风机风量。
可选地,用于控制二氧化碳吸附模块的装置还包括第四获得模块和第二确定模块,第四获得模块被配置为获得室内的人员数量以及人员活动状态;第二确定模块被配置为确定与人员数量以及人员活动状态相对应的当前二氧化碳产生速率。
可选地,第一获得模块包括第一获得单元和第二获得单元;第一获得单元被配置为通过二氧化碳传感器获得当前检测浓度;第二获得单元被配置为根据当前二氧化碳产生速率补偿当前检测浓度,获得当前二氧化碳浓度。
可选地,第二获得单元被具体配置为获得当前二氧化碳产生速率对预设时长的积 分;根据积分确定预测变化浓度;将当前检测浓度与预测变化浓度的和,确定为当前二氧化碳浓度。
在一些实施例中,用于控制二氧化碳吸附模块的装置包括处理器和存储有程序指令的存储器,处理器被配置为在执行程序指令时,执行前述实施例提供的用于控制二氧化碳吸附模块的方法。
图4是本公开实施例提供的一种用于控制二氧化碳吸附模块的装置的示意图。结合图4所示,用于控制二氧化碳吸附模块的装置包括:
处理器(processor)41和存储器(memory)42,还可以包括通信接口(Communication Interface)43和总线44。其中,处理器41、通信接口43、存储器42可以通过总线44完成相互间的通信。通信接口43可以用于信息传输。处理器41可以调用存储器42中的逻辑指令,以执行前述实施例提供的用于控制二氧化碳吸附模块的方法。
此外,上述的存储器42中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器42作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令/模块。处理器41通过运行存储在存储器42中的软件程序、指令以及模块,从而执行功能应用以及数据处理,即实现上述方法实施例中的方法。
存储器42可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器42可以包括高速随机存取存储器,还可以包括非易失性存储器。
本公开实施例提供了一种智能空调,包含前述实施例提供的用于控制二氧化碳吸附模块的装置。
本公开实施例提供了一种计算机可读存储介质,存储有计算机可执行指令,计算机可执行指令设置为执行前述实施例提供的用于控制二氧化碳吸附模块的方法。
本公开实施例提供了一种计算机程序产品,计算机程序产品包括存储在计算机可读存储介质上的计算机程序,计算机程序包括程序指令,当程序指令被计算机执行时,使计算机执行前述实施例提供的用于控制二氧化碳吸附模块的方法。
上述的计算机可读存储介质可以是暂态计算机可读存储介质,也可以是非暂态计算机可读存储介质。
本公开实施例的技术方案可以以软件产品的形式体现出来,该计算机软件产品存 储在一个存储介质中,包括一个或一个以上指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开实施例中方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机读取存储器(Random Access Memory,RAM)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
以上描述和附图充分地示出了本公开的实施例,以使本领域的技术人员能够实践它们。其他实施例可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。而且,本申请中使用的用词仅用于描述实施例并且不用于限制权利要求。如在实施例以及权利要求的描述中使用的,除非上下文清楚地表明,否则单数形式的“一个”(a)、“一个”(an)和“所述”(the)旨在同样包括复数形式。另外,当用于本申请中时,术语“包括”(comprise)及其变型“包括”(comprises)和/或包括(comprising)等指陈述的特征、整体、步骤、操作、元素,和/或组件的存在,但不排除一个或一个以上其它特征、整体、步骤、操作、元素、组件和/或这些的分组的存在或添加。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法或者设备中还存在另外的相同要素。本文中,每个实施例重点说明的可以是与其他实施例的不同之处,各个实施例之间相同相似部分可以互相参见。对于实施例公开的方法、产品等而言,如果其与实施例公开的方法部分相对应,那么相关之处可以参见方法部分的描述。
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,可以取决于技术方案的特定应用和设计约束条件。技术人员可以对每个特定的应用来使用不同方法以实现所描述的功能,但是这种实现不应认为超出本公开实施例的范围。技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本文所披露的实施例中,所揭露的方法、产品(包括但不限于装置、设备等),可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,可以仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多 个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例。另外,在本公开实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
附图中的流程图和框图显示了根据本公开实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,模块、程序段或代码的一部分包含一个或一个以上用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。

Claims (10)

  1. 一种用于控制二氧化碳吸附模块的方法,其特征在于,包括:
    获得室内的当前二氧化碳浓度;
    根据所述当前二氧化碳浓度确定设定风机风量以及所述二氧化碳吸附模块的设定吸附面积;
    根据所述设定风机风量和所述设定吸附面积调节二氧化碳吸附模块;
    其中,所述设定风机风量和/或所述设定吸附面积与所述当前二氧化碳浓度正相关。
  2. 根据权利要求1所述的方法,其特征在于,根据所述当前二氧化碳浓度确定所述设定风机风量以及所述设定吸附面积,包括:
    在预设浓度范围内,确定所述当前二氧化碳浓度所在的当前浓度范围;
    根据浓度范围与吸附速率的对应关系,确定与所述当前浓度范围相对应的当前吸附速率;
    根据所述当前吸附速率确定所述设定风机风量和所述设定吸附面积。
  3. 根据权利要求2所述的方法,其特征在于,根据所述当前吸附速率确定所述设定风机风量和所述设定吸附面积,包括:
    根据吸附速率、风机风量和吸附面积的对应关系,确定与所述当前吸附速率相对应的所述设定风机风量和所述设定吸附面积。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,还包括:
    在设定时长内,获得所述二氧化碳吸附模块的入口处的第一二氧化碳平均浓度以及所述二氧化碳吸附模块出口处的第二二氧化碳平均浓度;获得所述第二二氧化碳平均浓度与所述第一二氧化碳平均浓度的浓度差值;
    根据所述设定二氧化碳浓度确定所述设定风机风量以及所述设定吸附面积,包括:根据所述设定二氧化碳浓度和所述浓度差值确定所述设定风机风量以及所述设定吸附面积,使所述设定吸附面积与所述设定风机风量的比值与所述浓度差值反相关。
  5. 根据权利要求4所述的方法,其特征在于,根据所述当前二氧化碳浓度和所述浓度差值确定所述设定风机风量以及所述设定吸附面积,包括:
    获得与所述浓度差值反相关的比值;根据所述比值和所述当前二氧化碳浓度确定所述设定风机风量;根据所述设定风机风量和所述比值确定所述设定吸附面积;
    或者,
    根据所述当前二氧化碳浓度确定所述设定吸附面积;获得与所述浓度差值反相关的比值;根据所述设定吸附面积和所述比值确定所述设定风机风量。
  6. 根据权利要求1至3任一项所述的方法,其特征在于,还包括:获得室内的人员数量以及人员活动状态;确定与所述人员数量以及所述人员活动状态相对应的当前二氧化碳产生速率;
    获得室内的当前二氧化碳浓度,包括:通过二氧化碳传感器获得当前检测浓度;根据所述当前二氧化碳产生速率补偿所述当前检测浓度,获得所述当前二氧化碳浓度。
  7. 根据权利要求6所述的方法,其特征在于,根据所述当前二氧化碳产生速率补偿所述当前检测浓度,获得所述当前二氧化碳浓度,包括:
    获得所述当前二氧化碳产生速率对预设时长的积分;
    根据所述积分确定预测变化浓度;
    将所述当前检测浓度与所述预测变化浓度的和,确定为所述当前二氧化碳浓度。
  8. 一种用于控制二氧化碳吸附模块的装置,其特征在于,包括:
    第一获得模块,被配置为获得室内的当前二氧化碳浓度;
    第一确定模块,被配置为根据所述当前二氧化碳浓度确定设定风机风量以及所述二氧化碳吸附模块的设定吸附面积;
    第一控制模块,被配置为根据所述设定风机风量和所述设定吸附面积调节二氧化碳吸附模块;
    其中,所述设定风机风量和/或所述设定吸附面积与所述当前二氧化碳浓度正相关。
  9. 一种用于控制二氧化碳吸附模块的装置,包括处理器和存储有程序指令的存储器,其特征在于,所述处理器被配置为在执行所述程序指令时,执行如权利要求1至7任一项所述的用于控制二氧化碳吸附模块的方法。
  10. 一种智能空调,其特征在于,包括如权利要求8或9所述的用于控制二氧化碳吸附模块的装置。
PCT/CN2022/078522 2021-06-16 2022-03-01 用于控制二氧化碳吸附模块的方法、装置和智能空调 WO2022262312A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110667487.9 2021-06-16
CN202110667487.9A CN113405164B (zh) 2021-06-16 2021-06-16 用于控制二氧化碳吸附模块的方法、装置和智能空调

Publications (1)

Publication Number Publication Date
WO2022262312A1 true WO2022262312A1 (zh) 2022-12-22

Family

ID=77684419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/078522 WO2022262312A1 (zh) 2021-06-16 2022-03-01 用于控制二氧化碳吸附模块的方法、装置和智能空调

Country Status (2)

Country Link
CN (1) CN113405164B (zh)
WO (1) WO2022262312A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113405164B (zh) * 2021-06-16 2022-08-19 重庆海尔空调器有限公司 用于控制二氧化碳吸附模块的方法、装置和智能空调
US11801476B2 (en) 2022-01-02 2023-10-31 AirMyne, Inc. Efficient and fully automated catalytic direct carbon dioxide capture from air system
US11612853B1 (en) * 2022-01-02 2023-03-28 AirMyne, Inc. Fully automated direct air capture carbon dioxide processing system
US20230213246A1 (en) 2022-01-02 2023-07-06 AirMyne, Inc. Using Carbon Dioxide From A Direct Air Capture System As A Low Global Warming Car And Industrial Refrigerant
CN114777277B (zh) * 2022-04-19 2024-05-24 青岛海尔空调器有限总公司 空调器的除二氧化碳控制方法
CN116897746B (zh) * 2023-09-13 2023-11-28 昆山市永宏温室有限公司 一种正压温室二氧化碳内循环调节装置及调节方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107120734A (zh) * 2017-06-13 2017-09-01 南京工业大学 一种适用于吊顶式空调机组的室内二氧化碳吸附系统
JP2018065069A (ja) * 2016-10-17 2018-04-26 日立化成株式会社 吸着剤及びその製造方法、二酸化炭素の除去方法、並びに、空調装置
CN109529563A (zh) * 2018-12-10 2019-03-29 湖北航天化学技术研究所 一种二氧化碳净化装置和二氧化碳吸收剂药包
KR20200082165A (ko) * 2018-12-28 2020-07-08 삼성전자주식회사 공기 조화 장치 및 이의 제어 방법
CN112747440A (zh) * 2021-01-04 2021-05-04 青岛海尔空调器有限总公司 用于空调器的空气清洁控制方法及空调器
CN112762590A (zh) * 2021-01-04 2021-05-07 青岛海尔空调器有限总公司 用于空调器的空气清洁控制方法及空调器
CN113405164A (zh) * 2021-06-16 2021-09-17 重庆海尔空调器有限公司 用于控制二氧化碳吸附模块的方法、装置和智能空调

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5048454B2 (ja) * 2007-10-30 2012-10-17 日本バイリーン株式会社 吸脱着エレメント、およびそれを用いた二酸化炭素濃度調整装置、二酸化炭素濃度調整システム、並びに二酸化炭素濃度調整方法。
JP2011183382A (ja) * 2010-02-15 2011-09-22 Yamagata Promotional Organization For Industrial Technology 吸着剤
JP5475605B2 (ja) * 2010-09-30 2014-04-16 大成建設株式会社 空気清浄ダクト型中空構造物
JP6238277B2 (ja) * 2013-06-04 2017-11-29 株式会社Ihiエアロスペース 二酸化炭素除去装置
US10005019B2 (en) * 2014-02-21 2018-06-26 Sharp Kabushiki Kaisha Carbon dioxide concentration-controlling device and electronic apparatus
CN204534834U (zh) * 2015-03-20 2015-08-05 重庆交通大学 多功能空调
WO2017018160A1 (ja) * 2015-07-27 2017-02-02 シャープ株式会社 空調システムおよび二酸化炭素吸収ユニット
CN205939540U (zh) * 2016-06-28 2017-02-08 深圳中物兴华科技发展有限公司 一种智能二氧化碳吸收控制系统
JP2020089891A (ja) * 2020-03-11 2020-06-11 株式会社西部技研 吸収式除去・濃縮装置
CN111649458B (zh) * 2020-05-25 2021-11-30 珠海格力电器股份有限公司 空气净化方法、装置、系统、计算机设备和存储介质
CN111735114A (zh) * 2020-06-16 2020-10-02 森垚能源科技(上海)有限公司 一种基于内循环的节能净化装置、空调系统及其控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018065069A (ja) * 2016-10-17 2018-04-26 日立化成株式会社 吸着剤及びその製造方法、二酸化炭素の除去方法、並びに、空調装置
CN107120734A (zh) * 2017-06-13 2017-09-01 南京工业大学 一种适用于吊顶式空调机组的室内二氧化碳吸附系统
CN109529563A (zh) * 2018-12-10 2019-03-29 湖北航天化学技术研究所 一种二氧化碳净化装置和二氧化碳吸收剂药包
KR20200082165A (ko) * 2018-12-28 2020-07-08 삼성전자주식회사 공기 조화 장치 및 이의 제어 방법
CN112747440A (zh) * 2021-01-04 2021-05-04 青岛海尔空调器有限总公司 用于空调器的空气清洁控制方法及空调器
CN112762590A (zh) * 2021-01-04 2021-05-07 青岛海尔空调器有限总公司 用于空调器的空气清洁控制方法及空调器
CN113405164A (zh) * 2021-06-16 2021-09-17 重庆海尔空调器有限公司 用于控制二氧化碳吸附模块的方法、装置和智能空调

Also Published As

Publication number Publication date
CN113405164A (zh) 2021-09-17
CN113405164B (zh) 2022-08-19

Similar Documents

Publication Publication Date Title
WO2022262312A1 (zh) 用于控制二氧化碳吸附模块的方法、装置和智能空调
US11648504B2 (en) Air conditioning device and control method thereof
KR20170096730A (ko) 공기질 관리 시스템 및 방법, 및 분석서버
KR102450172B1 (ko) IoT 기술 기반으로 센싱 데이터를 모니터링하여 동작 상태를 제어하는 지능형 산소 발생 시스템
CN107461860B (zh) 一种智能新风净化系统及其控制方法
CN106918113B (zh) 一种智能家居的管理方法和系统
CN105444377B (zh) 一种空气净化器控制方法及装置
CN104033958A (zh) 一种空调器空气净化系统及其控制方法
CN113623798A (zh) 一种空调器控制方法、装置及存储介质
WO2023024574A1 (zh) 用于控制新风机的方法、装置和智能新风机
CN110701746A (zh) 空气净化控制方法、装置、空调器和存储介质
CN102824791A (zh) 一种空气净化装置
CN111237900A (zh) 一种家庭式空气净化机器人及其污染源确定与净化方法
CN201844476U (zh) 智能空气湿度调节器
CN204693727U (zh) 一种全自动空气净化器
CN205919473U (zh) 室内空气监测与净化智能控制系统
CN102778010B (zh) 空气净化装置的自控系统
WO2023185577A1 (zh) 室内空气的调节方法、调节装置和智能家居系统
CN204165168U (zh) 智能空气净化保健仪
CN102322657B (zh) 油烟浓度检测装置的控制系统
CN204693620U (zh) 一种新型空气净化器
CN107270398A (zh) 一种具有环境调节功能的空调
CN203718951U (zh) 室内空气智能监测及净化装置
CN107869795A (zh) 一种具有热再生的壁挂式空气净化器及其控制方法
CN206973743U (zh) 智能空气净化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22823804

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE