WO2022262146A1 - 仿真地质过程的生排烃动力学实验装置及方法 - Google Patents

仿真地质过程的生排烃动力学实验装置及方法 Download PDF

Info

Publication number
WO2022262146A1
WO2022262146A1 PCT/CN2021/121828 CN2021121828W WO2022262146A1 WO 2022262146 A1 WO2022262146 A1 WO 2022262146A1 CN 2021121828 W CN2021121828 W CN 2021121828W WO 2022262146 A1 WO2022262146 A1 WO 2022262146A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
expulsion
hydrocarbon
kinetics
reaction kettle
Prior art date
Application number
PCT/CN2021/121828
Other languages
English (en)
French (fr)
Inventor
胡宗全
马中良
郑伦举
赵永强
王强
倪春华
俞凌杰
杜伟
何川
马健飞
刘忠宝
边瑞康
申宝剑
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司石油勘探开发研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司石油勘探开发研究院 filed Critical 中国石油化工股份有限公司
Priority to US18/571,401 priority Critical patent/US20240290225A1/en
Priority to EP21945726.4A priority patent/EP4357014A1/en
Publication of WO2022262146A1 publication Critical patent/WO2022262146A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/0073Sealings
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/40Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for geology
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/04Pressure vessels, e.g. autoclaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/002Component parts of these vessels not mentioned in B01J3/004, B01J3/006, B01J3/02 - B01J3/08; Measures taken in conjunction with the process to be carried out, e.g. safety measures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/03Pressure vessels, or vacuum vessels, having closure members or seals specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • G01N33/241Earth materials for hydrocarbon content
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00004Scale aspects
    • B01J2219/00011Laboratory-scale plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00162Controlling or regulating processes controlling the pressure
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B25/00Models for purposes not provided for in G09B23/00, e.g. full-sized devices for demonstration purposes
    • G09B25/06Models for purposes not provided for in G09B23/00, e.g. full-sized devices for demonstration purposes for surveying; for geography, e.g. relief models

Definitions

  • the invention belongs to the technical fields of oil and gas geochemistry and petroleum geological exploration, and in particular relates to an experimental device for the dynamics of hydrocarbon generation and expulsion controlled by temperature and pressure.
  • the invention also relates to an experimental method for the kinetics of hydrocarbon generation and expulsion controlled by temperature and pressure.
  • this field also proposes a simulation experiment of hydrocarbon generation and expulsion kinetics for students of hydrocarbon expulsion.
  • This experimental method is based on the theoretical model of geological processes and chemical kinetics. Several groups of hydrocarbon generation and expulsion experiments are carried out at different heating rates, and the activation energy and reaction frequency factor of hydrocarbon generation and expulsion reactions are obtained. Then, after specific data processing, the kinetic parameters of hydrocarbon generation and expulsion of source rocks obtained in the experiment are extrapolated to the geological process, and there is no need to measure Ro again.
  • This experimental method can not only predict oil and gas production in different stages, but also make more precise inferences on oil and gas composition, and has become an important means of oil and gas research and oil and gas exploration.
  • the most important thing is the similarity between the experimental process and the geological process.
  • the most commonly used experimental devices mainly include open system and closed system devices.
  • Open system experimental devices include, for example, Rock-Eval pyrolysis instrument, PY-GC pyrolysis-gas chromatograph, etc.
  • the disadvantage of the open system simulation experiment device is that it cannot consider the influence of pressure on the hydrocarbon generation process.
  • source rocks are not completely open for hydrocarbon generation. Therefore, there are some differences between the experimental conditions of this open system simulation experiment device and the actual geological conditions.
  • Closed system experimental devices include, for example, a small-volume sealed simulation device MSSV, a gold tube-autoclave confining system, and the like.
  • the closed system experimental device will not carry out the hydrocarbon expulsion process in time. Therefore, the liquid components generated in the device cannot be discharged in time for analysis and measurement, and both liquid hydrocarbons and heavy hydrocarbon gas components will be cracked under high temperature conditions, which will exaggerate the amount of natural gas generated and underestimate the amount of natural gas produced. oil potential.
  • CN108961967A describes a hot-pressed hydrocarbon generation simulation tank.
  • the products produced by the rock sample can be discharged through the porous sintered plate above it and the first liquid discharge port.
  • Using this hot-pressed hydrocarbon generation simulation tank to carry out experiments can discharge most of the products out of the reactor. However, there is still a part of the product remaining between the rock sample and the inner wall of the reactor, which is difficult to discharge. This is very unfavorable for quantitative collection and analysis of products.
  • CN106153434A describes a reaction kettle. A sheathing assembly is sheathed between the reaction kettle and the rock sample for adapting to smaller rock samples.
  • the product of the rock sample is discharged through the first filter element, the space regulator, the central blind hole and the first flow hole above it, or through the second filter element and the second filter element below it. orifice discharge. This is similarly prone to product carryover between the inner wall of the jacket assembly and the rock sample.
  • the reactors in these two documents also had other problems with sealing and properly clamping the rock samples.
  • existing pressure structures cannot achieve dynamic sealing under high temperature and high pressure conditions during simulation of ultra-deep formations (that is, more than 10,000 meters buried depth, static rock pressure exceeding about 250 MPa, and fluid pressure exceeding about 150 MPa).
  • Only one simulation experiment of temperature, pressure, and time can be carried out each time (4-5 days), and it takes a long time to carry out the experiment of hydrocarbon generation and expulsion kinetics (at least 3 groups of different heating rates).
  • the product separation and collection system only uses cold traps for simple gas-liquid separation.
  • the constant weight method is used for the quantification of liquid hydrocarbons, and a large amount of light hydrocarbons are lost during the quantification process, which affects the accuracy of the kinetic model data.
  • the present invention aims to propose a hydrocarbon generation and expulsion dynamics experimental device and method for simulating geological processes, which can solve or at least weaken at least one of the above problems.
  • an experimental device for hydrocarbon generation and expulsion kinetics including a reaction kettle, a sample chamber is formed in the reaction kettle, and the sample chamber is configured to place a sample, and in the sample chamber
  • a sample cover for accommodating samples is provided, the sample cover includes a cylindrical body surrounding the sample in the circumferential direction, the outer side wall of the cylindrical body is joined with the inner side wall of the reaction kettle, and the cylindrical body It is configured as a perforated structure to form a channel for product circulation between the outer wall of the sample and the inner wall of the reaction kettle.
  • a circulation channel is formed between the outer side wall of the sample and the inner side wall of the reaction kettle through the hole structure of the sample cover.
  • said cylindrical body comprises: a plurality of constricted portions with a smaller outer diameter, each constricted portion is configured with at least one flow through said constricted portion in radial direction hole, when the sample cover is set in the reaction kettle, the necking part is spaced apart from the inner wall of the reaction kettle to form a gap, and the gap communicates with the flow hole, and the sample When arranged in the sample cover, the flow hole overlaps with the outer side wall of the sample; and a plurality of closed parts with larger outer diameters, the plurality of closed parts and the plurality of constricted parts are arranged alternately in the longitudinal direction , when the cylindrical body is arranged in the reaction kettle, the closed part is attached to the inner wall of the reaction kettle; wherein, the cylindrical body is configured with a A flow channel, the flow channel communicates with the gap between each necked portion and the inner wall of the reaction kettle, and is formed between the outer wall of the sample and the reaction kettle through the flow hole, the gap and the flow channel The channel between the inner side walls for
  • the cylindrical body is formed by a porous media liner through which holes are formed for product communication between the outer side wall of the sample and the inner side wall of the reaction vessel. channel.
  • the porosity of the porous medium liner is in the range of 15%-30%.
  • the permeability of the porous media liner is in the range of 0.1-1 ⁇ m 2 .
  • the sample cover further includes a top cover capable of sealing connection with the cylindrical body, the top cover surrounds the sample together with the cylindrical body, and the top cover is configured as a structure with holes , to allow the sample to communicate with the sample chamber through the top cover.
  • the top cover is configured with a communication hole penetrating the top cover in an axial direction.
  • the cap is formed from a porous media liner.
  • the experimental device for hydrocarbon generation and expulsion kinetics includes: the reaction kettle, the reaction kettle is configured as a cylinder, and the opposite ends of the reaction kettle are configured with the sample chamber. an opening; a stationary clamp configured to be inserted into the sample chamber from one end of the reaction vessel; and a pressure applicator.
  • the pressure applicator includes: a piston cylinder arranged at the other end of the reaction kettle, an inner piston rod, one end of the inner piston rod is inserted into the piston cylinder and is in sealing sliding fit with the piston cylinder, The other end of the inner piston rod extends out of the piston cylinder and can be inserted into the sample chamber of the reaction kettle to clamp the sample in the sample chamber together with the fixed holder, and the annular an outer piston rod, the outer piston rod is sleeved outside the inner piston rod, one end of the outer piston rod is inserted into the piston cylinder, and can slide sealingly relative to the piston cylinder, the The other end of the outer piston rod extends out of the piston cylinder and can be inserted into the sample chamber of the reaction kettle; wherein, the fixed clamp and the pressure applicator are clamped on the two sides of the sample cover end, and together with the sample cover, realize the seal in the reaction kettle.
  • a first sealing assembly is provided between the part of the fixed clamp inserted into the sample chamber and the sample sleeve, and the other end of the outer piston rod is connected to the sample chamber.
  • a second sealing assembly is arranged between the sleeves, and when the outer piston rod moves toward the reaction kettle, the first sealing assembly is squeezed and expands radially, so that the fixed clamping member and the reaction vessel A seal is formed between the inner side walls of the kettle, and the second seal assembly is compressed to radially expand to form a seal between the inner piston rod and the inner side walls of the reaction kettle.
  • a first wedging portion extending in the longitudinal direction is configured at one end of the cylindrical body, the first sealing assembly includes a first sealing ring matched with the first wedging portion, the The first sealing ring is configured with a first notch facing the first wedging portion, and when the first wedging portion is inserted into the first notch, the first sealing ring radially expands for sealing;
  • a second wedging portion extending along the longitudinal direction is configured at the other end of the cylindrical body, the second sealing assembly includes a second sealing ring matched with the second wedging portion, the second sealing ring A second notch is configured facing the second wedging portion, and when the second wedging portion is inserted into the second notch, the second sealing ring expands radially to form a seal.
  • the inner piston rod includes an inner plunger inserted into the sample chamber of the reaction kettle, and the inner plunger includes a cylindrical inner plunger main body and an end of the inner plunger main body
  • the outer piston rod includes a lower pressure ring inserted into the sample chamber of the reaction kettle, and the lower pressure ring is sleeved between the reaction kettle and the inner piston rod. Between the push rods, the upper end surface of the lower pressure ring at least partially overlaps the lower end surface of the inner push rod flange, and the lower pressure ring includes a cylindrical lower pressure ring main body and The end of the lower pressure ring flange extends radially outward.
  • the reaction system further includes a fixed ring, the fixed ring is sleeved between the reactor and the pressure ring, and is detachably connected with the reactor, the The upper end surface of the fixing ring at least partially overlaps the lower end surface of the lower pressure ring flange.
  • the experimental device includes: a plurality of reaction systems connected in parallel; a control system for controlling the temperature, pressure and time parameters of each reaction system; a formation fluid injection system for injecting Formation fluid is injected into the medium; corresponding to the hydrocarbon expulsion system connected to the outlet of each reaction system, the hydrocarbon expulsion system is used to discharge products from the reaction system during the hydrocarbon generation and expulsion kinetics simulation experiment;
  • a product separation and quantification system for separation, collection and quantification, the product separation and quantification system includes a solvent displacer connected to the inlet of each reaction system and a gas-liquid separation tank connected to the outlet of the hydrocarbon removal system;
  • a vacuum pumping system between the hydrocarbon exhaust system and the gas-liquid separation tank, the vacuum pump system is used to vacuum the reaction system, the hydrocarbon exhaust system and the product separation and quantification system.
  • the product separation and quantitative system further includes a gas metering collector and a liquid light hydrocarbon collection tank communicated with the gas-liquid separation tank, the gas metering collector and the liquid light hydrocarbon collection tank are respectively used It is used to collect the gas and liquid light hydrocarbons separated in the gas-liquid separation tank.
  • a light hydrocarbon purifier for removing water is provided between the liquid light hydrocarbon collection tank and the gas-liquid separation tank, the liquid light hydrocarbon collection tank is set in a cold trap, and the gas The liquid separation tank is set in the electronic cold and hot trap.
  • a method for simulating the kinetics of hydrocarbon generation and expulsion using the above-mentioned experimental device includes the following steps: installing the sample in the sample sleeve, and then putting them into the reactor together; Hydrocarbon expulsion kinetics experiment.
  • the outer piston rod when the sample is put into the reaction kettle, the outer piston rod is moved upwards, so that the outer piston rod is supported at both ends of the sample sleeve together with the fixed clamping piece, and forming a seal within the autoclave; the inner piston rod is then moved upwards to clamp the sample with the stationary clamp.
  • the fixed clamp is disassembled to form an opening communicating with the sample chamber at one end of the reaction kettle, and through the opening at the other end of the reaction kettle.
  • the inner piston rod pushes the sample within the sample chamber until the sample exits the autoclave through the opening.
  • the products in the reactor are collected, wherein liquid light hydrocarbons and gases are collected separately.
  • the present application has the advantage that the experimental device according to the present invention can realize the hydrocarbon generation and expulsion experimental process of multiple samples simultaneously through multiple parallel reaction systems, and can greatly improve the experimental efficiency.
  • the experimental device can separately collect, quantify and analyze different components in the product (heavy hydrocarbons, liquid light hydrocarbons, water and gas) through the product separation and quantification system.
  • the sample sleeve with a hole structure is used to avoid product residues in the reactor, and can cooperate with the displacement of the solvent displacer to effectively avoid the loss of products (especially liquid light hydrocarbons).
  • Fig. 1 is a schematic structural diagram of an experimental device for hydrocarbon generation and expulsion kinetics according to the present invention.
  • Fig. 2 shows a schematic structural diagram of the high temperature and high pressure reaction system in the hydrocarbon generation and expulsion kinetics experimental device shown in Fig. 1 .
  • Fig. 3 shows a schematic structural diagram of an embodiment of a high-temperature and high-pressure reaction system in an experimental device for hydrocarbon generation and expulsion kinetics according to the present invention.
  • Figure 4 shows a partial enlarged view of the high temperature and high pressure reaction system in Figure 3;
  • Fig. 5 and Fig. 6 respectively show the local enlarged view of a part of the high temperature and high pressure reaction system in Fig. 4;
  • Fig. 7 has shown the structural representation of an embodiment of the sample cover of the high temperature and high pressure reaction system in Fig. 5;
  • Figure 8 shows an end view of the sample sleeve in Figure 7;
  • FIG. 9 shows a partially enlarged view of another part of the high temperature and high pressure reaction system in FIG. 4 .
  • Fig. 1 is a schematic structural diagram of an experimental device 100 for hydrocarbon generation and expulsion kinetics according to the present invention.
  • a hydrocarbon generation and expulsion kinetics experimental device 100 includes a plurality of high-temperature and high-pressure reaction systems 10 connected in parallel.
  • the reaction system 10 is used to simulate hydrocarbon generation and expulsion of source rocks under different geological constraints (such as different temperatures, pressures, times, etc.).
  • the reaction system 10 includes a high-temperature and high-pressure reaction vessel 11 , and a sample chamber 12 is formed in the reaction vessel 11 , and a sample 13 can be placed therein.
  • the high-temperature and high-pressure reactor 11 can be made of, for example, KA4145 high-temperature high-strength alloy material.
  • the high temperature and high pressure reaction system 10 further includes a sample sleeve 14 arranged inside the sample chamber 12 .
  • the sample case 14 is configured to include a cylindrical body 14A and a top cover 14B fit and installed with the cylindrical body 14A.
  • the sample 13 is intended to be arranged inside the cylindrical body 14A.
  • the top cover 14B and the cylindrical body 14A are fixedly installed and sealed by screw connection.
  • the sample 13 may be, for example, a collected source rock sample. In an experiment, the source rock sample needs to be cut to form the sample 13 that can be put into the sample set 14 .
  • the sample 13 may be cut into a cylindrical shape with a diameter smaller than the inner diameter of the cylindrical body 14A and a length smaller than the length of the cylindrical body 14A.
  • the sample cover 14 is made of a material with high porosity and permeability, so that the cylindrical body 14A and the top cover 14B are formed as a porous medium layer.
  • the porosity of the porous medium liner is in the range of 15%-30%, and the permeability of the porous medium liner 14 is in the range of 0.1-1 ⁇ m 2 .
  • the porous medium liner can be made of stainless steel sintered material.
  • the porous media liner can form better porosity and permeability conditions, thereby effectively preventing the oil generated by the source rock from staying in the sample and on the surface of the sample, and can be directly discharged into the porous media liner, which is conducive to cleaning and collection.
  • the oil in the sample 13 can be conducted axially out through the lateral cylindrical body 14A.
  • the porous medium liner can simulate the reservoir rock (reservoir) near the underground source rock, so that the simulation experiment environment of the hydrocarbon generation and expulsion dynamics experimental device 100 is closer to the geological conditions.
  • FIG. 7 Another preferred embodiment of a cylindrical body 150 is shown in FIG. 7 .
  • the cylindrical body 150 includes a flow hole 153 penetrating the cylindrical body 150 in a radial direction.
  • Fluid for example, inert gas and water body, etc.
  • Fluid can be injected into between the cylindrical body 150 and the reaction kettle 105 through the lower joint 113 arranged at the lower part of the side wall of the reaction kettle 105, and then enter the cylindrical shape through the flow hole 153. inside the body 150 and injected into the void space of the sample 106.
  • the provision of the flow hole 153 enables easier and faster injection of fluid into the void space of the sample 106 . This is very important for the smooth running of the experiment.
  • the cylindrical body 150 includes a reduced diameter portion 152 with a smaller outer diameter, and a closed portion 151 with a larger outer diameter.
  • a plurality of reduced diameter portions 152 and a plurality of closed portions 151 are arranged alternately in the longitudinal direction.
  • FIG. 8 shows a top view of the cylindrical body 150 of FIG. 7 .
  • a flow groove 156 penetrating through the cylindrical body 150 in the longitudinal direction is provided on the outer side of the cylindrical body 150 .
  • the circulation groove 156 can communicate with the gaps between the respective diameter-reducing parts 152 and the reaction kettle 105 , so that these gaps are all connected with the lower joint 113 .
  • the fluid can enter each gap through the flow groove 156, and be injected into the sample through the flow hole 153 on each reduced-diameter portion 152. 106 in the interstitial space. This arrangement is very beneficial for evenly and rapidly injecting fluid into the interstitial space of the rock sample 106 .
  • fluid in the pores of the sample 106 can flow through the flow hole 153 and the flow groove 156 to the upper connection 111 and/or the lower connection 113 during fluid discharge through the upper connection 111 and/or the lower connection 113 .
  • effective flushing can be carried out between the sample 106 and the cylindrical body 150 of the sample cover and between the cylindrical body 150 and the inner wall of the reaction vessel 105, so as to avoid fluid stagnation between the sample 106 and the cylindrical body 150 and Between the cylindrical body 150 and the inner wall of the reaction vessel 105 .
  • the above two structures of the cylindrical body 150 are more conducive to obtaining a more accurate discharge of oil and gas, so that the experimental results have more practical significance.
  • the reaction system 10 further includes a pressure applicator 22 provided corresponding to each reaction vessel 11 .
  • the pressure applicator 22 is arranged on the top of the corresponding high-temperature and high-pressure reactor 11 for applying pressure to the sample 13 in the high-temperature and high-pressure reactor 11 to realize its fixation.
  • Figures 3 and 4 also show another embodiment of the pressure applicator, which will be described in detail below.
  • the experimental device 100 for hydrocarbon generation and expulsion kinetics further includes a control system 20 .
  • the control system 20 includes a plurality of furnaces 21 and a controller 23 .
  • the controller 23 is respectively connected to the heating furnace 21 and the pressure applicator 22 through signal lines (dotted line connecting lines in FIG. 1 ), and is used to control the operation of the heating furnace 21 and the pressure applicator 22 .
  • the high-pressure reaction system 10 is arranged inside a corresponding heating furnace 21 , and the heating furnace 21 is used for heating the high-pressure reaction system 10 to raise its temperature.
  • the controller 23 controls the heating furnace 21 and the pressure applicator 22 to heat and pressurize the high-temperature and high-pressure reactor 11, so that the behavior of the source rock under different geological constraints such as temperature, pressure and time can be simulated. lab environment.
  • the pressure applicator 22 can simultaneously provide the hydrostatic pressure on the sample 13 during the experiment and the sealing pressure of the high temperature and high pressure reaction system 10 .
  • sample 13 is subjected to a rock-static pressure of about 0-250 MPa
  • the sealing pressure of the high-temperature and high-pressure reaction system 10 is about 0-250 MPa
  • the maximum formation fluid pressure that can be tolerated is not less than about 150 MPa.
  • the maximum heating temperature of the heating furnace 21 is not lower than about 600°C.
  • the temperature rise rate of the heating furnace 21 is set to be adjustable, the temperature uniformity is good during the heating process, and the accuracy can be guaranteed within the range of plus or minus 1°C.
  • the controller 23 can be programmed to control the temperature and pressure of the high-temperature and high-pressure reactors 11 in different high-temperature and high-pressure reaction systems 10 during the experiment, thereby simulating the process of continuous burial of source rocks in geological history.
  • the heating furnace 21 can be a high-temperature box-type spot heating furnace with hot air circulation.
  • the experimental device 100 for hydrocarbon generation and expulsion kinetics further includes a formation fluid injection system 30 .
  • the formation fluid injection system 30 includes a formation fluid tank 31, and a piston is arranged inside the formation fluid tank 31 to separate the first chamber and the second chamber.
  • Formation fluid used for experiments is contained in the first cavity, and liquid is filled in the second cavity, and the liquid may be distilled water or tap water.
  • the first cavity communicates with the high-temperature and high-pressure reactor 11 through a pipeline (the solid line connecting line in FIG. 1 ), and the second cavity is connected with a first high-pressure pump 32 .
  • the first high-pressure pump 32 can pump distilled water or tap water into the second cavity to increase the liquid pressure in the second cavity, thereby pushing the piston to move toward the first cavity, thereby injecting the formation fluid in the first cavity into high temperature and high pressure Reactor 11.
  • a stop valve 311 is provided at the outlet of the formation fluid tank 31
  • a stop valve 15 is provided at the inlet of the high-temperature and high-pressure reactor 11 .
  • the experiment is controlled by opening or closing the stop valve 311 and the stop valve 15 .
  • the highest working pressure of the first high-pressure pump 32 is not lower than 100MPa
  • the shut-off valve 311, the shut-off valve 15 and the connecting pipeline can bear the pressure not lower than 100MPa.
  • the experimental device 100 for hydrocarbon generation and expulsion kinetics further includes a hydrocarbon expulsion system 40 .
  • the hydrocarbon expulsion system 40 is connected to the outlet of the corresponding reaction system 10 through a pipeline.
  • the hydrocarbon expulsion system 40 includes a hydrocarbon expulsion device 41 and a high-pressure electric valve 42, and the high-pressure electric valve 42 is connected to the pipeline between the reaction system 10 and the hydrocarbon expulsion device 41 through a shut-off valve 411.
  • the high-pressure electric valve 42 has a pressure resistance of not less than 100MPa and has good corrosion resistance.
  • the hydrocarbon ejector 41 includes a piston cavity with an upper cavity and a lower cavity, the upper cavity is used to collect the product discharged from the high temperature and high pressure reaction system 10, and the lower cavity is filled with liquid, which can be distilled water or tap water.
  • the upper chamber communicates with the high-temperature and high-pressure reactor 11 through pipelines, and the lower chamber is connected with a second high-pressure pump 43 that can advance and retreat automatically, so that the hydrocarbon ejector 41 can collect products and discharge the products collected in the upper chamber into the gas liquid separation tank (see below).
  • the highest working pressure of the second high-pressure pump 43 is not lower than 100Mpa.
  • the hydrocarbon generation and expulsion kinetics experiment device 100 also includes a product separation and quantification system, which is used for the separation, collection and quantification of source rock products.
  • the product separation and quantification system includes a solvent displacement device 61 arranged at the inlet end of the reaction system 10 .
  • the solvent displacer 61 includes a piston chamber with a first chamber and a second chamber.
  • An organic solvent is contained in the first cavity, preferably, the organic solvent is a mixture of dichloromethane or n-hexane and propanol, and the concentration ratio of dichloromethane or n-hexane and propanol is about 85:15.
  • Liquid is filled in the second cavity, and the liquid can be distilled water or tap water.
  • the first cavity communicates with the reaction kettle 11 through a pipeline.
  • the second chamber is connected with a third high-pressure pump 611 .
  • the organic solvent in the first chamber can be injected into the high-temperature and high-pressure reactor 11 through the third high-pressure pump 611 .
  • the solvent displacer 61 is connected in parallel with the formation fluid injection system 30 at the inlet end of the reaction system 10 .
  • a stop valve 612 is provided at the outlet end of the solvent displacer 61 .
  • the shut-off valve 612 is used as an on-off valve, and whether the solvent displacer 61 injects the organic solvent for displacement into the reaction system 10 is controlled by opening or closing the shut-off valve 612 .
  • the product separation and quantitative system further includes a gas-liquid separation tank 62, and a gas metering collector 63 and a liquid light hydrocarbon collection tank 64 respectively communicated with the gas-liquid separation tank 62.
  • the gas-liquid separation tank 62 is connected to the outlet of the hydrocarbon removal system 40 .
  • the gas metering collector 63 and the liquid light hydrocarbon collecting tank 64 are respectively connected to the outlet end of the gas-liquid separation tank 62 through pipelines.
  • a stop valve 631 is provided on the pipeline connecting the gas metering collector 63 and the gas-liquid separation tank 62
  • a stop valve 641 is provided on the pipeline connecting the liquid light hydrocarbon collection tank 64 and the gas-liquid separation tank 62 .
  • the volume of the gas-liquid separation tank 62 is about 250ml
  • the volume of the liquid light hydrocarbon collection tank 64 is about 50ml.
  • a light hydrocarbon purifier 65 is provided between the liquid light hydrocarbon collection tank 64 and the gas-liquid separation tank 62 .
  • the gas-liquid separation tank 62 is set in the electronic cold and hot trap 67
  • the light hydrocarbon collection tank 64 is set in the cold trap 66 .
  • the gas-liquid separation tank 62 is provided with an observation window, through which the color of the fluid in the gas-liquid separation tank 62 can be observed.
  • the cooling mode of the electronic cold and heat trap 67 is started until the temperature of the gas-liquid separation tank 62 is lower than about 0° C., preferably lower than About -5°C.
  • the liquid hydrocarbons (including liquid light hydrocarbons and heavy hydrocarbons) and formation fluid discharged from the reaction system 10 are frozen in the gas-liquid separation tank 62, and the discharged gas enters the gas metering collector 62 for collection and quantification.
  • the temperature of the hot and cold trap is raised to about 40° C., so that the liquid light hydrocarbons can be vaporized and separated, and the desiccant in the light hydrocarbon purifier 65 can be used to remove moisture.
  • the purified light hydrocarbons that are temporarily in the gaseous state enter into the liquid light hydrocarbon collection tank 64 .
  • the temperature of the temporarily gaseous liquid light hydrocarbons in the liquid light hydrocarbon collection tank 64 can be lowered and liquefied by the cold trap 66 .
  • liquid light hydrocarbons can be efficiently collected in the liquid light hydrocarbon collection tank 64 .
  • "light liquid hydrocarbons” refer to light hydrocarbons that are liquid at normal temperature, mainly C 6 -C 14 hydrocarbon components.
  • the solvent displacer 61 can displace the remaining products in the reactor 11, the hydrocarbon expulsion device 41 and the pipeline, so that it can be effectively discharged from the reactor 11 and the corresponding products are separated and collected, until the gas-liquid separation tank 62 When the observation window sees the color of the fluid is colorless. At this time, the residual products in the reaction kettle 11 , the hydrocarbon expulsion device 41 and the pipeline can be fully collected into the gas-liquid separation tank 62 . Then, by starting the heating mode of the electronic cold and hot trap 67 until the temperature of the gas-liquid separation tank 62 reaches 40° C., the liquid light hydrocarbons continue to enter the liquid light hydrocarbon collection tank 64 .
  • the gas-liquid separation tank 62 and the light hydrocarbon collection tank 64 are unloaded in sequence, thereby completing the collection and quantification of products.
  • the above setting is beneficial to the subsequent accurate measurement of the amount of discharged oil and gas, especially the separate measurement of the amounts of various components, light hydrocarbons and heavy hydrocarbons in the gas.
  • the experimental device 100 for hydrocarbon generation and expulsion kinetics further includes a vacuum system.
  • the vacuum system is arranged between the hydrocarbon removal system 40 and the gas-liquid separation tank 62 .
  • the vacuum system is used to vacuumize the reaction system 10 and the hydrocarbon removal system 40 before the experiment, and vacuumize the product collection and quantitative system after the experiment.
  • the vacuum pumping system comprises a vacuum pump 50.
  • the vacuum pump 50 is arranged on the pipeline connecting the hydrocarbon expulsion system 40 and the gas-liquid separation tank 62.
  • a shut-off valve 51 is connected through a sub-pipeline.
  • the highest negative pressure of the vacuum pump 50 is not less than -0.1MPa.
  • the pressure resistance of the stop valve 51, the stop valve 52 and the connecting pipeline is not lower than 100MPa.
  • the vacuum system can effectively improve the purity of the products collected by the hydrocarbon generation and expulsion kinetics experiment device 100, which is beneficial to enhance the accuracy of the hydrocarbon generation and expulsion kinetics experiment.
  • the experimental device 100 for kinetics of hydrocarbon generation and expulsion includes three high-temperature and high-pressure reaction systems 10 and three hydrocarbon expulsion systems 40 arranged in parallel.
  • the experimental device 100 for kinetics of hydrocarbon generation and expulsion includes three high-temperature and high-pressure reaction systems 10 and three hydrocarbon expulsion systems 40 arranged in parallel.
  • three sets of high-temperature and high-pressure reaction systems 10 and hydrocarbon expulsion systems 40 connected in parallel are formed.
  • the outlet ports of each hydrocarbon expulsion system 40 are communicated with the vacuum pumping system 50 after being communicated with pipelines.
  • the high temperature and high pressure reaction system 10 and the hydrocarbon expulsion system 40 in each group are the same, and will not be repeated here. It should be understood that more or less sets of reaction systems 10 and hydrocarbon expulsion systems 40 may also be provided as required.
  • FIG. 3 schematically shows another embodiment of the high temperature and high pressure reaction system 10 .
  • the reaction system 10 includes a reaction vessel 105 and a fixed frame 108 .
  • the cylindrical reaction vessel 105 is generally positioned in the middle of the fixed frame 108 .
  • the pressure applicator 22 is disposed below the reaction kettle 105 and includes a piston cylinder 101 (such as a hydraulic cylinder), an inner piston rod 102 and an outer piston rod 103 .
  • the piston cylinder 101 is arranged under the fixed frame 108 .
  • the inner piston rod 102 is sleeved in the outer piston rod 103, and one end of them extends into the piston cylinder 101, and is sealed and slidably matched with the piston cylinder 101, and the other end extends upwards to the outside of the piston cylinder 101 and extends to At the lower end of the above-mentioned reaction kettle 105.
  • the reaction system 10 further includes a positioning jack 110 extending downward from the upper end of the fixing frame 108 .
  • a stationary fixing clamp 112 may be provided at the lower end of the positioning jack 110 .
  • the fixing clamp 112 can seal the upper end of the reaction vessel 105 in a sealed manner.
  • the fixed clip 112 may be configured in the form of a sealing cover.
  • the outer piston rod 103 can cooperate with the piston cylinder 101 to move upward to be inserted into the reaction kettle 105 to seal the lower end of the reaction kettle 105 .
  • the inner piston rod 102 can cooperate with the piston cylinder 101 to move upwards to be inserted into the reactor 105 , and move to hold the sample 106 along the longitudinal direction with the fixed clamping member 112 and apply a desired pressure to the sample 106 .
  • the above-mentioned high temperature and high pressure reaction system 10 can realize the sealing of both ends of the reaction vessel 105 and pressurization of both ends of the sample 106 through the cooperation of the lower pressure applicator 22 and the upper fixed clamp 112 . On the one hand, this greatly reduces the height of the high temperature and high pressure reaction system 10 , which is beneficial to the wide application of the high temperature and high pressure reaction system 10 . On the other hand, this is beneficial to simplify the operation of the reaction system 10, so that the user can use the reaction system 10 through a more simplified operation process.
  • the sealing of the reaction vessel 105 can be effectively realized, and on the other hand, the sample 106 can be effectively clamped with an appropriate force. This can avoid the situation where a piston rod is already sealed but cannot be effectively clamped or the sample is crushed due to excessive clamping force, and the situation that the sample has been effectively clamped but has not been effectively sealed.
  • the heating furnace 104 sleeved outside the reactor 105 may be, for example, a box-type electric furnace, located between the reactor 105 and the fixed frame 108 .
  • the temperature controller 107 is configured to detect the temperature in the reactor 105, and control the working state of the heating furnace 104 according to the detected temperature, so that the temperature in the reactor 105 can be maintained as the temperature required for the hydrocarbon raising process.
  • reaction system 10 further includes a pressure sensor 109 connected to the reaction vessel 105 .
  • the pressure in the reaction vessel 105 can be detected by the pressure sensor 109 .
  • the user can adjust the pressure in the reactor 105 to the pressure required by the hydrocarbon generation process according to the detected pressure.
  • the reaction system 10 is configured with a plurality of fluid connections, including, for example, an upper connection 111 and a lower connection 113 .
  • the upper joint 111 is formed on the fixed clamping member 112 and communicates with the sample chamber of the reaction kettle 105 .
  • the upper joint 111 is mainly used to discharge the fluid in the sample chamber of the reaction kettle 105 .
  • the lower joint 113 is formed at the lower part of the side wall of the reaction kettle 105 and communicates with the sample chamber of the reaction kettle 105 .
  • the lower joint 113 can be used to pour fluid into the sample chamber of the reaction kettle 105 on the one hand, and can also be used to discharge the fluid in the sample chamber of the reaction kettle 105 on the other hand.
  • FIG. 4 shows a partially enlarged view of the reaction system 10 in FIG. 3 .
  • the fixed clamping part 112 of the reaction system 10 includes a cylindrical center top column 114, which is fixedly connected with the upper positioning top column 110, and its lower end extends downward to the reaction kettle 105. in the sample chamber.
  • An annular upper press sleeve 116 is sheathed on the outer side of the center push post 114 , and the upper end of the upper press sleeve 116 abuts against the positioning push post 110 .
  • Below the upper pressing sleeve 116 is provided an upper pressing ring 117 sheathed outside the central prop 114 .
  • a first sealing assembly 130 is disposed at the lower end of the upper pressure ring 117 , and the first sealing assembly 130 is located between the part of the central prop 114 inserted into the reaction kettle 105 and the reaction kettle 105 .
  • a longitudinally extending communication channel 115 communicating with the sample chamber of the reaction kettle 105 is formed inside the central top column 114 , and the communication channel 115 communicates with the upper joint 111 inserted into the central top column 114 .
  • the inner piston rod 103 of the reaction system 10 includes an inner main rod 123 cooperating with the piston cylinder 101 .
  • An inner push rod 119 is fixedly arranged on the upper end of the inner main rod 123, and the upper end of the inner push rod 119 can extend into the sample chamber of the reaction kettle 105 to clamp the sample 106 together with the above-mentioned center push rod 114, and put pressure on it.
  • the outer piston rod 102 includes an outer main rod 122 cooperating with the piston cylinder 101 .
  • a lower pressure ring 121 sleeved on the outer side of the inner push rod 119 is arranged on the outer main rod 122 .
  • a second sealing assembly 140 is disposed on the lower pressure ring 121 . The second sealing assembly 140 is located between the part where the inner ejector rod 119 is inserted into the reaction kettle 105 and the reaction kettle 105 .
  • a fixing ring 120 may also be provided between the lower pressure ring 121 and the reaction kettle 105, and the fixing ring is detachably connected to the reaction kettle, such as threaded connection.
  • the inner plunger 119 may include a cylindrical inner plunger body 119A, and a radially outwardly extending flange 119B disposed at an upper end of the inner plunger body 119A.
  • the lower pressure ring 121 includes a cylindrical lower pressure ring main body 121A, and a radially outwardly extending flange 121B provided at an upper end of the lower pressure ring main body 121A.
  • the upper end surface of the lower pressing ring 121 at least partially overlaps the lower end surface of the flange 119B.
  • the fixing ring 120 is sleeved outside the lower pressure ring 121 , the upper end surface of the fixing ring 120 at least partially overlaps the lower end surface of the flange 121B.
  • a sample cover surrounding a sample 106 is provided in the sample chamber of the reaction vessel 105 .
  • the sample sleeve includes a cylindrical body 150 located between the first sealing assembly 130 and the second sealing assembly 140 , and the cylindrical body 150 is sleeved between the reaction vessel 105 and the rock sample 106 .
  • the sample set may also include a corresponding top cover as described in the previous examples.
  • the above-mentioned first sealing assembly 130, cylindrical body 150 and second sealing assembly 140 have substantially uniform inner diameters.
  • the fixing clamp 112 can be disassembled from the positioning jack 110 .
  • the upper end of the reaction kettle 105 is opened, and the inner push rod 119 in the inner piston rod 103 can push the sample 106 and the central top post 114 with a relatively small force to easily remove the rock sample 106 from the reaction kettle 105. Push out.
  • a complete fixed residual sample can be obtained conveniently.
  • FIG. 5 shows the structure of the first sealing assembly 130 in more detail.
  • the first sealing assembly 130 includes a third sealing ring 133 , a graphite sealing ring 132 and a first sealing ring 131 arranged in sequence from top to bottom.
  • a first notch 131A facing downward is configured at the lower end of the first sealing ring 131 .
  • an upwardly extending first wedging portion 154 is provided at an upper end of the cylindrical body 150, and the first wedging portion 154 has a substantially triangular cross-sectional shape. When the outer piston rod 102 moves upwards, the first wedging portion 154 can be inserted into the first notch 131A and spread the first notch 131A.
  • first sealing ring 131 can be radially expanded to achieve sealing.
  • a third opening 133A facing upward is configured at the upper end of the third sealing ring 133 .
  • a corresponding wedging portion extending downward is provided at the lower end of the upper pressure ring 117 .
  • FIG. 6 shows the structure of the second seal assembly 140 in more detail.
  • the second sealing assembly 140 includes a second sealing ring 141 , a graphite sealing ring 142 and a fourth sealing ring 143 arranged in sequence from top to bottom.
  • the upper end of the second sealing ring is configured with a second notch 141A facing upward.
  • a second wedging portion 155 extending downward is provided at the lower end of the cylindrical body 150 .
  • a fourth opening 143A facing downward is configured at a lower end of the fourth sealing ring 143 .
  • the upper end of the lower pressure ring 121 is provided with a corresponding wedging portion extending upward.
  • a temperature measuring joint 118 extending into the side wall along the radial direction is also provided on the side wall of the reaction kettle 105 .
  • the temperature measuring joint 118 is used to enable the temperature controller 107 to detect the temperature in the reaction kettle 105 .
  • an experimental method for kinetics of hydrocarbon generation and expulsion is also proposed.
  • the experimental method for kinetics of hydrocarbon generation and expulsion uses the experimental device 100 for kinetics of hydrocarbon generation and expulsion according to the present invention.
  • the experimental method of hydrocarbon generation and expulsion kinetics using the experimental device 100 for hydrocarbon generation and expulsion kinetics will be described below.
  • an experimental device 100 for hydrocarbon generation and expulsion kinetics according to the present invention is provided.
  • source rock samples and formation fluids are provided.
  • Formation fluid is obtained by collecting or preparing formation fluid in the region where the source rock sample is located, and filling the formation fluid into the formation fluid tank 31 of the formation fluid injection system 30 .
  • the experimental parameters of hydrocarbon generation and expulsion kinetics were set according to the formation conditions in the area where the source rock samples were located.
  • the experimental parameters of hydrocarbon generation and expulsion kinetics include heating temperature, static rock pressure, formation fluid pressure, hydrostatic pressure, heating rate, time, and the pressure difference between the reaction system and the hydrocarbon expulsion system.
  • source rock samples are installed.
  • the source rock samples are first cut to form a plurality of cylindrical samples.
  • a multi-jointed brittle shale coring machine is used to cut the source rock sample.
  • the diameter of the cylindrical sample is smaller than the inner diameter of the cylindrical body 14A of the sample holder 14, and the length is smaller than the length of the cylindrical body 14A.
  • the cylindrical samples are respectively installed in the cylindrical body 14A of the corresponding sample cover 14, and sealed by the top cover 14B, so that the sample is hermetically installed in the sample cover 14. and set them into the reactor 11.
  • the high-temperature and high-pressure reaction kettles 11 equipped with the samples were put into corresponding heating furnaces 21 in sequence.
  • the pressure applicators 22 are respectively installed on the tops of the corresponding high-temperature and high-pressure reactors 11 .
  • the installation of the source rock samples is completed.
  • the sample 106 with the sample cover installed is placed in the reaction vessel 105 .
  • the outer piston rod 102 is moved upwards to seal the reaction kettle 105 through the piston cylinder 101 .
  • the inner piston rod 103 moves upward together with the outer piston rod 102 , but does not move to such an extent that it clamps the sample 106 together with the fixed clamp 112 .
  • the airtightness of the high temperature and high pressure reaction system 10 is checked.
  • the startup controller 23 controls each pressure applicator 22 to apply a sealing pressure of 100 MPa to the corresponding high-temperature autoclave 11 .
  • the pressure applicator 22 is controlled by the controller 23 to increase the temperature and pressure of the high-temperature and high-pressure reactor 11, so as to perform a kinetic experiment of hydrocarbon generation and expulsion.
  • the controller 23 controls the program set according to the set heating rate, heating temperature and time, so as to carry out the kinetic experiment of hydrocarbon generation and expulsion.
  • the high pressure electric valve 42 in the hydrocarbon expulsion system 40 is automatically opened, so that the pressure drop of the high temperature and high pressure reaction system 10 To the hydrostatic pressure value, the pressure of the high-temperature and high-pressure reaction system 10 drops to the hydrostatic pressure value and the high-pressure electric valve 42 is closed, and then repeats this step until the experiment is carried out according to the set heating rate and reaches the set temperature, and the experiment ends.
  • the products generated by each high temperature and high pressure reaction system 10 were collected and quantified sequentially.
  • the product separation and quantification system is used to collect and quantify the products generated in the high-temperature and high-pressure reactor 11 to obtain experimental data, and the experimental data are obtained through calculation of the source rock hydrocarbon generation and expulsion kinetic equation and parameters.
  • the quantitative process of collecting at first, open the cut-off valve 52 of the outlet port of vacuum pump 50 (i.e. gas-liquid separation tank 62 inlet port), the cut-off valve 631,641 of the inlet port of gas metering collector 63 and liquid light hydrocarbon collection tank 64, And start the vacuum pump 50 to evacuate the product collection system.
  • the temperature of the cold and hot trap 67 is raised to about 40° C., whereby the liquid light hydrocarbons in the gas-liquid separation tank 62 can be vaporized and separated, and passed through the desiccant in the light hydrocarbon purifier 65 (for example, polymer water-absorbing resin) to remove moisture.
  • the purified light hydrocarbons that are temporarily in the gaseous state enter into the liquid light hydrocarbon collection tank 64 .
  • the temperature of the temporarily gaseous liquid light hydrocarbons in the liquid light hydrocarbon collection tank 64 can be lowered and liquefied by the cold trap 66 .
  • liquid light hydrocarbons can be efficiently collected in the liquid light hydrocarbon collection tank 64 .
  • the collected light hydrocarbons are measured according to "SY/T0542-2008 Stable Light Hydrocarbon Component Analysis Gas Chromatography", and the collected gases are measured according to "GB/T13610-2014 Natural Gas Composition Analysis Gas Chromatography", and the gas-liquid separation
  • the liquid hydrocarbons in the tank were quantified according to the natural constant weight method, and the source rock samples taken out of the high-temperature and high-pressure reactor 11 were measured according to "SY/T5118-2005 Determination of Chloroform Bitumen in Rocks”.
  • the experimental data are obtained, and the experimental data are calculated through the kinetic equation and parameters of the source rock hydrocarbon generation and expulsion.
  • the hydrocarbon generation and expulsion dynamics experimental device 100 can simultaneously realize multiple groups of organic matter in the limited pore space of source rocks, under the joint action of overlying rock static pressure, formation fluid pressure and formation fluid, hydrocarbon generation-expulsion Experiments under the linkage control of hydrocarbon processes can greatly improve the efficiency of experiments under the constraints of formation conditions.
  • the hydrocarbon generation and expulsion kinetics experimental device 100 can collect and quantify all components in the product through the product separation and quantification system, which effectively enhances the experimental accuracy and improves the analysis efficiency, and can obtain more reasonable hydrocarbon generation and expulsion kinetic parameters. It is very beneficial to carry out research on hydrocarbon generation mechanism, oil and gas migration, basin oil and gas generation, and oil and gas resource prediction.
  • the product separation and quantification system can displace residual hydrocarbons in the porous media liner 14, hydrocarbon expulsion device 41 and pipelines in the high-temperature and high-pressure reactor 10 through the solvent displacer 61 during the product collection and quantification process, thereby effectively avoiding the loss of light hydrocarbons.
  • the hydrocarbon generation and expulsion kinetics experimental device 100 realizes the collection and quantification of light hydrocarbons, and the experimental data is more scientific.
  • the experimental method of hydrocarbon generation and expulsion kinetics according to the present invention uses the experimental device 100, which has high control precision and strong controllability, can greatly improve the experimental efficiency, can effectively ensure the accuracy of experimental data, and significantly enhance the reliability of experimental results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pure & Applied Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Paleontology (AREA)
  • Algebra (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Remote Sensing (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

本发明提供了一种仿真地质过程的生排烃动力学实验装置及方法。该实验装置包括反应系统,反应系统包括反应釜。在所述反应釜中形成样品室,所述样品室构造为用于放置样品,在所述样品室内设置有用于容纳样品的样品套,所述样品套包括在周向上包围所述样品的圆柱形本体,所述圆柱形本体的外侧壁与所述反应釜的内侧壁相接合,所述圆柱形本体构造为带孔结构,以在所述样品的外侧壁与所述反应釜的内侧壁之间形成供产物流通的通道。

Description

仿真地质过程的生排烃动力学实验装置及方法 技术领域
本发明属于油气地球化学和石油地质勘探技术领域,具体涉及一种温压共控生排烃动力学实验装置。本发明还涉及一种温压共控生排烃动力学实验方法。
背景技术
在地质条件下,烃源岩会发生生烃和排烃的复杂物理化学反应,其为有机物在烃源岩的有限孔隙空间内受上覆岩层静岩压力、地层流体压力及地层流体的共同作用。
为了对烃源岩的生烃和排烃进行研究,可进行相应的生排烃模拟实验,以获取烃源岩的生排烃特征。
传统的生烃排烃实验主要关注烃源岩的生烃量。一种传统的实验方法将模拟温度转化为等效的镜质体反射率(Ro),并建立其与生烃量的关系。这对于后续的资源评价非常重要。然而,许多古老时代烃源岩并没有镜质体这一组分,且对于腐泥型的烃源岩来说,Ro鉴定十分困难。因此,这种常规的实验往往导致研究仅停留在模拟实验层面,无法应用到地质实际。
此外,本领域还提出了一种生排烃动力学生排烃模拟实验。这种实验方法基于地质过程和化学动力学理论模型,开展不同升温速率下的几组生排烃实验,求取生排烃反应的活化能和反应频率因子。然后,再经过特定的数据处理,把实验所获得烃源岩生排烃动力学参数外推到地质过程,无需再测定Ro。这种实验方法既可以预测不同阶段的油气产量,又可以对油气组成作出更精细的推断,已成为油气研究及油气勘探的重要手段。
在生排烃模拟实验中,最为重要的就是实验过程与地质过程的相似度。目前,最为常用的实验装置主要包括开放体系和封闭体系装置两大类。
开放体系实验装置例如有Rock-Eval热解仪、PY-GC热解-气相色谱仪等。开放体系模拟实验装置存在的缺点是无法考虑压力对生烃过程的影响。另外,在实际的地质条件下,源岩生烃并不完全开放。因此,这种开放体系的模拟实验装 置的实验条件与实际的地质条件存在一定差异。
封闭体系实验装置例如有小体积密封模拟装置MSSV、黄金管-高压釜限定体系等。封闭体系实验装置不会及时地进行排烃过程。因此,装置中生成的液态组分无法及时排出并进行分析测定,且在高温条件下液态烃与重烃气体组分都会发生裂解,从而在一定程度上会夸大天然气的生成量,而低估了生油潜力。
上述两种反应实验条件(体系的性质)均与地质条件缺乏可比性,导致热解组分与实际生烃过程不能有效匹配,因而数学计算中的许多参数存在不确定性。在将通过这些方法获得的活化能和频率因子推算到地质条件下时,结果往往与实际差异较大。另外,随着常规和非常规油气一体化的勘探开发,在资源评价时更多地开始关注油气的排出量和滞留量(即,滞留在烃源岩内部的油气量)。然而,上述方法只能提供生烃量,无法准确提供目前较为关注的排出油气量和滞留油气量。
目前,在本领域中也提出了一些可用于测定排出油气量的实验装置和方法。然而,它们都难以将烃源岩的岩石样品在实验过程中所产生的产物有效排出反应釜,并进行相应的分离和定量收集。因此,所得到的排出油气量的准确性和有效性仍存在不足。
例如,CN108961967A记载了一种热压生烃模拟釜。在进行实验时,岩石样品产生的产物可通过其上方的多孔烧结板和第一排液口排出。采用这种热压生烃模拟釜进行实验可以将大部分的产物排出反应釜。然而,仍有一部分产物会残留在岩石样品与反应釜的内壁之间,难以排出。这对于产物的定量收集和分析来说是非常不利的。
另外,CN106153434A记载了一种反应釜。在该反应釜与岩石样品之间套设有套设组件,用于适应尺寸较小的岩石样品。在使用该反应釜进行实验时,岩石样品的产物通过其上方的第一过滤件、空间调节件、中心盲孔和第一过流孔排出,或者通过其下方的第二过滤件和第二过流孔排出。这类似地容易在套设组件的内壁与岩石样品之间发生产物残留。
此外,这两篇文献中的反应釜也还存在密封和适当夹持岩石样品等其他方面的问题。例如,现有施压结构不能实现超深层(即,超过万米埋深,静岩压力超过约250MPa、流体压力超过约150MPa)模拟时高温高压条件下的动态密封。每次只能进行一个温度、压力、时间的模拟实验(耗时4-5天),开展生排烃动力 学方式(至少3组不同升温速率)实验耗时长。产物分离收集系统仅通过冷阱进行简单的气、液分离,液态烃定量采用恒重法,且定量过程中造成大量轻烃损失,从而影响动力学模型数据的准确性。
对于实验来说,重要的是尽可能准确地再现烃源岩的生排烃的地质作用过程,选择适合的温压条件而使其更接近实际的地质状况,尽可能收集实验系统内的所有产物,以及采用恰当的方法来进行产物的分离和定量收集。这对于进一步了解烃源岩生排烃机制、认识烃源岩的产气过程以及进一步研究油气运聚机理与成藏模式具有重要的理论价值,同时对油气的实际勘探具有重要的现实意义。
发明内容
针对如上所述的技术问题,本发明旨在提出一种仿真地质过程的生排烃动力学实验装置及方法,能够解决或至少削弱以上问题中的至少一项。
根据本发明的第一方面,提供了一种生排烃动力学实验装置,包括反应釜,在所述反应釜中形成样品室,所述样品室构造为用于放置样品,在所述样品室内设置有用于容纳样品的样品套,所述样品套包括在周向上包围所述样品的圆柱形本体,所述圆柱形本体的外侧壁与所述反应釜的内侧壁相接合,所述圆柱形本体构造为带孔结构,以在所述样品的外侧壁与所述反应釜的内侧壁之间形成供产物流通的通道。
在上述装置中,通过样品套的带孔结构而在样品的外侧壁与反应釜的内侧壁之间形成了流通通道。这能够避免因样品与反应釜的内侧壁之间的流体粘度高、流体流速小而导致的流体产物难以排放出去的问题。因此,该装置能够有效地将样品产生的流体排放出去,避免在样品的侧壁和反应釜的侧壁之间发生产物残留。这对于排出油气量的准确测定来说,非常有意义。
在一个实施例中,所述圆柱形主体包括:多个外径较小的缩颈部分,在各个缩颈部分上构造有至少一个在径向方向上贯穿所述缩颈部分的流通孔,在所述样品套设置于所述反应釜内时,所述缩颈部分与所述反应釜的内壁间隔开而形成间隙,所述间隙与所述流通孔相连通,在所述样品设置在所述样品套内时,所述流通孔与所述样品的外侧壁相交叠;以及多个外径较大的封闭部分,多个封闭部分与多个缩颈部分在纵向上交替布置,在所述圆柱形主体设置于所述反应釜内时,所述封闭部分与所述反应釜的内壁相贴合;其中,所述圆柱形主体构造有沿纵向 方向贯穿所述圆柱形主体的流通槽,所述流通槽与各个缩颈部分和所述反应釜的内壁之间的间隙相连通,通过所述流通孔、间隙和流通槽形成在所述样品的外侧壁与所述反应釜的内侧壁之间的供产物流通的通道。
在一个实施例中,所述圆柱形主体由多孔介质衬层形成,通过所述多孔介质衬层中的孔形成在所述样品的外侧壁与所述反应釜的内侧壁之间的供产物流通的通道。
在一个实施例中,所述多孔介质衬层的孔隙度在15%-30%的范围内。
在一个实施例中,所述多孔介质衬层的渗透率在0.1-1μm 2的范围内。
在一个实施例中,所述样品套还包括能够与所述圆柱形本体密封连接的顶盖,所述顶盖与所述圆柱形本体一起包围所述样品,所述顶盖构造为带孔结构,以允许所述样品与所述样品室能通过所述顶盖实现连通。
在一个实施例中,所述顶盖构造有沿轴向方向贯穿所述顶盖的连通孔。
在一个实施例中,所述顶盖由多孔介质衬层形成。
在一个实施例中,所述生排烃动力学实验装置包括:所述反应釜,所述反应釜构造为筒状的,所述反应釜的相反两端处构造有与所述样品室连通的开口;固定夹持件,所述固定夹持件构造为能从所述反应釜的一端插入到所述样品室中;以及施压器。所述施压器包括:设置在所述反应釜的另一端处的活塞缸,内活塞杆,所述内活塞杆的一端插入到所述活塞缸内并与所述活塞缸密封式滑动配合,所述内活塞杆的另一端延伸到所述活塞缸之外并能插入到所述反应釜的样品室中,以与所述固定夹持件一起夹持所述样品室内的样品,以及环状的外活塞杆,所述外活塞杆套设在所述内活塞杆之外,所述外活塞杆的一端插入到所述活塞缸内,并能相对于所述活塞缸密封式滑动,所述外活塞杆的另一端延伸到所述活塞缸之外并能插入到所述反应釜的样品室中;其中,所述固定夹持件与所述施压器夹持在所述样品套的两端,并与所述样品套一起实现所述反应釜内的密封。
在一个实施例中,在所述固定夹持件的插入到所述样品室中的部分与所述样品套之间设置有第一密封组件,在所述外活塞杆的另一端与所述样品套之间设置有第二密封组件,在所述外活塞杆朝向所述反应釜移动时,所述第一密封组件受到挤压而径向膨胀,以在所述固定夹持件与所述反应釜的内侧壁之间形成密封,所述第二密封组件受到挤压而径向膨胀,以在所述内活塞杆和反应釜的内侧壁之间形成密封。
在一个实施例中,在所述圆柱形本体的一端处构造有沿纵向方向延伸的第一楔入部,所述第一密封组件包括与所述第一楔入部相配合的第一密封环,所述第一密封环构造有朝向所述第一楔入部的第一槽口,在所述第一楔入部插入到所述第一槽口内时,所述第一密封环径向膨胀以进行密封;在所述圆柱形本体的另一端处构造有沿纵向方向延伸的第二楔入部,所述第二密封组件包括与所述第二楔入部相配合的第二密封环,所述第二密封环构造有朝向所述第二楔入部的第二槽口,在所述第二楔入部插入到所述第二槽口内时,所述第二密封环径向膨胀以形成密封。
在一个实施例中,所述内活塞杆包括插入到所述反应釜的样品室中的内顶杆,所述内顶杆包括圆柱状的内顶杆主体以及从所述内顶杆主体的端部径向向外延伸的内顶杆凸缘,所述外活塞杆包括插入到所述反应釜的样品室中的下压环,所述下压环套设在所述反应釜和所述内顶杆之间,所述下压环的上端面至少部分地与所述内顶杆凸缘的下端面重叠,所述下压环包括圆柱状的下压环主体以及从所述下压环主体的端部径向向外延伸的下压环凸缘。
在一个实施例中,所述反应系统还包括固定环,所述固定环套设在所述反应釜与所述下压环之间,并与所述反应釜可拆卸式连接在一起,所述固定环的上端面至少部分地与所述下压环凸缘的下端面重叠。
在一个实施例中,所述实验装置包括:多个并联连接的所述反应系统;用于控制各个反应系统的温度、压力和时间参数的控制系统;地层流体注入系统,用于向各个反应系统中注入地层流体;对应连接在各个反应系统的出口端的排烃系统,所述排烃系统用于在生排烃动力学模拟实验过程中从所述反应系统内排出产物;用于对所述产物进行分离、收集和定量的产物分离定量系统,所述产物分离定量系统包括连接在各个反应系统的入口端的溶剂驱替器和连接在所述排烃系统的出口端的气液分离罐;以及设置在所述排烃系统和所述气液分离罐之间的抽真空系统,所述抽真空系统用于对所述反应系统、所述排烃系统和所述产物分离定量系统进行抽真空。
在一个实施例中,所述产物分离定量系统还包括与所述气液分离罐连通的气体计量收集器和液态轻烃收集罐,所述气体计量收集器和所述液态轻烃收集罐分别用于收集在所述气液分离罐中分离的气体和液态轻烃。
在一个实施例中,在所述液态轻烃收集罐和所述气液分离罐之间设有用于除 水的轻烃净化器,所述液态轻烃收集罐设置在冷阱中,所述气液分离罐设置在电子冷热阱中。
根据本发明的第二方面,提出了使用上述实验装置来进行的生排烃动力学模拟实验方法,包括以下步骤:将样品安装到样品套内,再一起放入反应釜中;以及进行模拟生排烃动力学实验。
在一个实施例中,在将样品放入所述反应釜内时,使所述外活塞杆向上移动,以使得所述外活塞杆与所述固定夹持件一起支撑在样品套两端,并形成所述反应釜内的密封;再使所述内活塞杆向上移动,以与所述固定夹持件一起夹持所述样品。
在一个实施例中,在进行模拟生排烃动力学实验之后,将固定夹持件拆卸下来,以在所述反应釜的一端形成与样品室连通的开口,通过所述反应釜的另一端的内活塞杆推动所述样品室内的样品,至所述样品通过所述开口离开所述反应釜。
在一个实施例中,在进行模拟生排烃动力学实验之后,对所述反应釜内的产物进行收集,其中对液态轻烃和气体分别进行收集。
与现有技术相比,本申请的优点之处在于:根据本发明的实验装置能够通过多个并联的反应系统来同时实现多个样品的生排烃实验过程,并能够大幅提高实验效率。另外,实验装置能通过产物分离定量系统对产物中的不同组分(重烃、液态轻烃、水和气体)进行分别收集、定量和分析。通过带孔结构的样品套来避免产物残留在反应釜内,并且可以配合溶剂驱替器的驱替作用,能有效避免产物(尤其是液态轻烃)的损失。
附图说明
下面将参照附图对本发明进行说明。
图1是根据本发明的生排烃动力学实验装置结构示意图。
图2显示了图1所示生排烃动力学实验装置中的高温高压反应系统的结构示意图。
图3显示了根据本发明的生排烃动力学实验装置中的高温高压反应系统的一个实施例的结构示意图。
图4显示了图3中的高温高压反应系统的局部放大图;
图5和图6分别显示图4中的高温高压反应系统的一部分的局部放大图;
图7显示了图5中的高温高压反应系统的样品套的一个实施例结构示意图;
图8显示了图7中的样品套的端部视图;
图9显示了图4中的高温高压反应系统的另一部分的局部放大图。
在附图中,相同的部件使用相同的附图标记。在本申请中,所有附图均为示意性的附图,仅用于说明本发明的原理,并且未按实际比例绘制。
具体实施方式
下面通过附图来对本发明进行介绍。
图1是根据本发明的生排烃动力学实验装置100结构示意图。如图1所示,生排烃动力学实验装置100包括多个以并联方式连接的高温高压反应系统10。反应系统10用于模拟烃源岩在不同地质约束条件下(如不同温度、压力、时间等)的生烃和排烃。反应系统10包括高温高压反应釜11,在反应釜11中形成样品室12,其中可用于放置样品13。高温高压反应釜11例如可由KA4145高温高强度合金材料制成,其在600℃时的许用应力为350MPa,在高温高压环境下不会产生蠕变,且具有良好的耐腐蚀性,从而能够有效模拟深层或超深层烃源岩的生排烃动力学实验所需的高温高压环境。
根据本发明,高温高压反应系统10还包括布置在样品室12的内部的样品套14。如图2所示,样品套14构造成包括圆柱形本体14A和与圆柱形本体14A适配安装的顶盖14B。样品13用于布置在圆柱形本体14A的内部。顶盖14B与圆柱形本体14A采用螺纹连接方式固定安装,并进行密封。样品13例如可以为采集的烃源岩样品,在实验中,烃源岩样品需要进行切割从而形成能够装入样品套14中的样品13。例如,样品13可以切割为圆柱体形,且直径小于圆柱形本体14A的内径,长度小于圆柱形本体14A的长度。
在图2所示的实施例中,样品套14采用孔隙度和渗透率高的材料制成,以使圆柱形本体14A和顶盖14B形成为多孔介质层。该多孔介质衬层的孔隙度为处于15%-30%的范围内,多孔介质衬层14的渗透率为处于0.1-1μm 2的范围内。优选地,多孔介质衬层可以采用不锈钢烧结材料制成。多孔介质衬层能够形成较好的孔渗条件,从而有效避免烃源岩生成的油滞留在样品里和样品表面,而能够直接排入多孔介质衬层,有利于清洗和收集。尤其是,样品13中的油液能通过侧部的圆柱形本体14A而沿轴向传导出去。这能够避免在样品13和反应釜11的内 侧壁之间形成油液的滞留。多孔介质衬层能够模拟地下烃源岩附近的储集岩(储层),从而使生排烃动力学实验装置100的模拟实验环境更接近地质条件。
图7显示了圆柱形主体150的另一个优选的实施方案。圆柱形主体150包括沿径向方向贯穿该圆柱形主体150的流通孔153。流体(例如,惰性气体和水体等)可通过设置在反应釜105的侧壁下部处的下接头113而注入到圆柱形主体150和反应釜105之间,然后再通过流通孔153进入到圆柱形主体150内侧,并注入到样品106的空隙空间中。流通孔153的设置能使流体更容易、更快地注入到样品106的空隙空间中。这对于实验的顺利进行来说非常重要。
优选地,如图7所示,圆柱形主体150包括外径较小的缩径部分152,以及外径较大的封闭部分151。多个缩径部分152和多个封闭部分151,这些缩径部分152和封闭部分151在纵向方向上交替设置。图8显示了图7中的圆柱形主体150的俯视图。如图8所示,在圆柱形主体150的外侧设置有沿纵向方向贯穿圆柱形主体150的流通槽156。在圆柱形主体150装入到反应釜105内时,封闭部分151与反应釜105的内壁相贴合,缩径部分152与反应釜105的内壁间隔开而形成间隙。流通槽156能将各个缩径部分152与反应釜105之间的间隙连通在一起,使得这些间隙均与下接头113相连通。由此,在流体通过下接头113而进入到反应釜105的样品室中时,流体能通过流通槽156而进入到各个间隙中,并通过各个缩径部分152上的流通孔153而注入到样品106的间隙空间中。这种设置非常有利于将流体均匀而快速地注入到岩石样品106的间隙空间中。
此外,在通过上接头111和/或下接头113进行流体排放时,样品106的孔隙中的流体可通过流通孔153和流通槽156而流向上接头111和/或下接头113。由此,可以对样品106与样品套的圆柱形主体150之间以及圆柱形主体150与反应釜105的内侧壁之间进行有效冲洗,以避免流体滞留在样品106与圆柱形主体150之间以及圆柱形主体150与反应釜105的内侧壁之间。
上述两种圆柱形主体150的结构均更有利于得到更加准确的排放油气量,从而使实验结果更具有实际意义。
另外,如图1所示,反应系统10还包括对应于各个反应釜11设置的施压器22。在图1所示的实施例中,施压器22设置在相应的高温高压反应釜11的顶部,用于对高温高压反应釜11内的样品13施加压力,实现其固定。图3和图4还显示了施压器的另一实施例,在下文中会对其进行详细说明。
根据本发明,生排烃动力学实验装置100还包括控制系统20。如图1所示,控制系统20包括多个加热炉21和控制器23。控制器23通过信号线(图1中的虚线连接线)分别与加热炉21和施压器22连接,用于控制加热炉21和施压器22工作。高压反应系统10设置在相应的加热炉21的内部,加热炉21用于对高压反应系统10进行加热升温。在实验过程中,通过控制器23控制加热炉21和施压器22对高温高压反应釜11进行加温加压,从而能模拟出烃源岩在不同温度、压力和时间等地质约束条件下的实验环境。
在本实施例中,施压器22能够同时提供实验过程中的样品13受到的静岩压力和高温高压反应系统10的密封压力。其中,样品13受到的静岩压力约为0-250MPa,高温高压反应系统10的密封压力约为0-250MPa,可承受的最大地层流体压力不小于约150MPa。加热炉21的最高加热温度不低于约600℃。并且,加热炉21的升温速度设置成能够调节,在加热过程中温度均匀性好,精度能够保证在正负1℃的范围内。控制器23能够能通过程序设置,从而控制实验过程中不同高温高压反应系统10中的高温高压反应釜11的温度和压力,由此来模拟地质历史过程中烃源岩层不断持续埋深的过程。在一个实施例中,加热炉21可以采用热风循环高温箱式点加热炉。
如图1所示,生排烃动力学实验装置100还包括地层流体注入系统30。地层流体注入系统30包括地层流体罐31,在地层流体罐31的内部设有活塞从而分出第一腔体和第二腔体。在第一腔体内盛放实验用的地层流体,在第二腔体内填充有液体,液体可以为蒸馏水或自来水。第一腔体设通过管线(图1中的实线连接线)与高温高压反应釜11连通,第二腔体连接有第一高压泵32。通过第一高压泵32能够向第二腔体内泵入蒸馏水或自来水,以增加第二腔体内液体压力,从而推动活塞向第一腔体方向运动,从而将第一腔体内的地层流体注入高温高压反应釜11中。
在本实施例中,在地层流体罐31的出口端设有一个截止阀311,在高温高压反应釜11的入口端设有一个截止阀15。在实验过程中,通过开启或关闭截止阀311、截止阀15来控制实验进行。第一高压泵32的最高工作压力不低于100MPa,且截止阀311、截止阀15和连接管线能承受不低于100MPa的压力。
根据本发明,生排烃动力学实验装置100还包括排烃系统40。如图1所示,排烃系统40通过管线连接在相应的反应系统10的出口端。排烃系统40包括排 烃器41和高压电动阀42,高压电动阀42通过截止阀411连接在反应系统10和排烃器41之间的管线上。高压电动阀42耐压不低于100MPa,且具有良好的抗腐蚀性能。
在本实施例中,排烃器41包括设有上腔体和下腔体的活塞腔,上腔体用于收集高温高压反应系统10排出的产物,在下腔体内填充有液体,液体可以为蒸馏水或自来水。上腔体通过管线与高温高压反应釜11连通,下腔体连接有能够自动进退的第二高压泵43,从而使排烃器41能够收集产物,并能够将上腔体内收集的产物排入气液分离罐(见下文)中。第二高压泵43的最高工作压力不低于100Mpa。
根据本发明,生排烃动力学实验装置100还包括产物分离定量系统,产物分离定量系统用于烃源岩产物的分离、收集和定量。如图1所示,产物分离定量系统包括设置在反应系统10的入口端的溶剂驱替器61。溶剂驱替器61包括设有第一容腔和第二容腔的活塞腔。在第一容腔内盛放有机溶剂,优选地,有机溶剂为二氯甲烷或正己烷与丙醇混合液,且二氯甲烷或正己烷与丙醇的浓度比约为85∶15。在第二容腔内填充有液体,液体可以为蒸馏水或自来水。第一容腔通过管线与反应釜11连通。第二容腔连接有第三高压泵611,同样地,通过第三高压泵611能够将第一容腔内的有机溶剂注入高温高压反应釜11中。
在本实施例中,溶剂驱替器61与地层流体注入系统30并联连接在反应系统10的入口端。在溶剂驱替器61的出口端设有一个截止阀612。截止阀612作为开关阀,通过开启或关闭截止阀612来控制溶剂驱替器61是否向反应系统10注入用于驱替的有机溶剂。
根据本发明,产物分离定量系统还包括气液分离罐62,以及分别与气液分离罐62连通的气体计量收集器63和液态轻烃收集罐64。气液分离罐62连接在排烃系统40的出口端。气体计量收集器63和液态轻烃收集罐64分别通过管线连接在气液分离罐62的出口端。在气体计量收集器63与气液分离罐62连通的管线上设有截止阀631,在液态轻烃收集罐64与气液分离罐62连通的管线上设有截止阀641。在一个实施例中,气液分离罐62的体积约为250ml,液态轻烃收集罐64的体积约为50ml。
如图1所示,在液态轻烃收集罐64和气液分离罐62之间设有轻烃净化器65。气液分离罐62设置在电子冷热阱67中,轻烃收集罐64设置在冷阱66中。气液 分离罐62设有观察窗,通过观察窗能够观察气液分离罐62内流体的颜色。
在实际模拟实验过程,当启动产物分离定量系统收集反应系统10中的产物时,通过启动电子冷热阱67的制冷模式直至使气液分离罐62的温度低于约0℃,优选地低于约-5℃。由此,反应系统10排出的液态烃(包括液态轻烃和重烃)和地层流体被冷冻在气液分离罐62中,排出的气体进入气体计量收集器62进行收集和定量。然后,将冷热阱温度升至约40℃,由此能使液态轻烃汽化分离,并通过轻烃净化器65中的干燥剂去除水分。净化后的暂时处于气态的液态轻烃进入液态轻烃收集罐64中。通过冷阱66可降低液态轻烃收集罐64中的暂时处于气态的液态轻烃的温度,使其液化。由此,可有效将液态轻烃收集到液态轻烃收集罐64中。在这里“液态轻烃”指的是在常温状态下处于液态的轻烃,主要为C 6-C 14的烃类组分。
另外,通过溶剂驱替器61能够驱替反应釜11、排烃器41以及管线中残留的产物,使其有效排出反应釜11并进行相应的产物分离和收集,直至从气液分离罐62的观察窗看到流体颜色呈无色时为止。此时,反应釜11、排烃器41以及管线中残留的产物能充分收集到气液分离罐62中。然后,通过启动电子冷热阱67的加热模式直至气液分离罐62的温度达到40℃,液态轻烃继续进入液态轻烃收集罐64中。最后,依次卸载气液分离罐62和轻烃收集罐64,从而完成产物的收集定量。上述设置有利于后续对排出油气量进行准确测量,尤其是对气体中各种组分、轻烃和重烃的量进行分别测量。
根据本发明,生排烃动力学实验装置100还包括抽真空系统。如图1所示,抽真空系统设置在排烃系统40和气液分离罐62之间。抽真空系统用于在实验前对反应系统10和排烃系统40抽真空,以及在实验结束后对产物收集定量系统抽真空。抽真空系统包括真空泵50,真空泵50设置在连接排烃系统40与气液分离罐62的管线上,在真空泵50的入口端的管线上通过子管线连接有截止阀51,在真空泵50的出口端设有截止阀52。真空泵50的最高负压不小于-0.1MPa。截止阀51、截止阀52和连接管线耐压不低于100MPa。抽真空系统能够有效提高生排烃动力学实验装置100收集的产物的纯度,有利于增强生排烃动力学实验的精度。
根据本发明,多个反应系统10以并联方式连接在地层流体系统30与抽真空系统50之间,且排烃系统40对应设置在各反应系统10的出口端。在图1所示实施例中,生排烃动力学实验装置100包括3个并联设置的高温高压反应系统10 和3个排烃系统40。由此,形成3组并联连接的高温高压反应系统10和排烃系统40。各排烃系统40的出口端通过管线连通后与抽真空系统50连通。其中,各组中的高温高压反应系统10及排烃系统40相同,这里不再赘述。应当理解的是,根据需要,也可以设置更多或更少组的反应系统10和排烃系统40。
图3示意性地显示了高温高压反应系统10的另一实施例。如图3所示,该反应系统10包括反应釜105以及固定框架108。筒状的反应釜105大体上定位在固定框架108的中部。施压器22设置在反应釜105的下方,并包括活塞缸101(例如为液压油缸),内活塞杆102和外活塞杆103。活塞缸101设置在固定框架108之下。内活塞杆102套设在外活塞杆103内,它们均有一端伸入到活塞缸101内,并与活塞缸101密封式滑动配合,并且均有另一端向上延伸到活塞缸101之外并延伸到上述反应釜105的下端处。另外,反应系统10还包括从固定框架108的上端向下延伸的定位顶柱110。在该定位顶柱110的下端处可设置静止不动的固定夹持件112。固定夹持件112可密封式封闭反应釜105的上端。例如,固定夹持件112可构造为密封盖的形式。
在反应釜105的样品室中装入有样品106的情况下,外活塞杆103可与活塞缸101配合而向上移动至插入反应釜105内,以对反应釜105的下端进行密封。内活塞杆102可与活塞缸101配合而向上移动至插入反应釜105内,并移动至能与固定夹持件112一起沿纵向方向夹持该样品106,并给样品106施加预期的压力。
上述高温高压反应系统10通过下方的施压器22与上方的固定夹持件112的配合即可实现反应釜105两端的密封,并实现对样品106的两端的加压。一方面,这大幅降低了高温高压反应系统10的高度,有利于高温高压反应系统10的广泛应用。另一方面,这有利于简化对反应系统10的操作,使得使用者可以通过更为简化的操作过程来使用反应系统10。另外,通过分别设置外活塞杆103和内活塞杆102,一方面能有效实现反应釜105的密封,另一方面还能以适当的力有效夹持样品106。这能避免一个活塞杆容易出现的已经密封但未能有效夹持或加持力过大而压坏样品的情况,以及虽已有效夹持样品但未实现有效密封的情况。
在图3所示的实施例中,套设在反应釜105外的加热炉104例如可以是箱式电热炉,位于反应釜105与固定框架108之间。温度控制器107构造为能检测反应釜105内的温度,并根据所检测到的温度来控制加热炉104的工作状态,以使 反应釜105内的温度能够保持为升烃过程所需的温度。
另外,反应系统10还包括连通到反应釜105内的压力传感器109。通过该压力传感器109能够检测反应釜105内的压力。使用者可根据所检测到的压力来将反应釜105内的压力调整为生烃过程所需的压力。
还如图3所示,反应系统10构造有多个流体接头,例如包括上接头111和下接头113。上接头111形成于固定夹持件112上,并连通到反应釜105的样品室中。上接头111主要用于排出反应釜105的样品室中的流体。下接头113形成于反应釜105的侧壁下部,并连通到反应釜105的样品室中。下接头113一方面可用于向反应釜105的样品室中灌注流体,另一方面也可用于排出反应釜105的样品室中的流体。
图4显示了图3中的反应系统10的局部放大图。如图4所示,反应系统10的固定夹持件112包括圆柱形的中心顶柱114,该中心顶柱114与上方的定位顶柱110固定连接在一起,其下端向下延伸到反应釜105的样品室中。在中心顶柱114的外侧套设有环形的上压套116,该上压套116的上端与定位顶柱110相抵。在上压套116的下方设置有套设在中心顶柱114之外的上压环117。在该上压环117的下端设置有第一密封组件130,该第一密封组件130位于中心顶柱114插入到反应釜105内的部分与反应釜105之间。在中心顶柱114的内部形成与反应釜105的样品室相连通的纵向延伸的连通通道115,该连通通道115与插入到中心顶柱114中的上接头111相连通。
反应系统10的内活塞杆103包括与活塞缸101配合的内主杆123。在该内主杆123的上端固定设置有内顶杆119,该内顶杆119的上端可延伸到反应釜105的样品室中,以与上文中的中心顶柱114一起夹持样品106,并对其施压。
外活塞杆102包括与活塞缸101配合的外主杆122。在该外主杆122之上设置有套设在内顶杆119外侧的下压环121。在该下压环121之上设置有第二密封组件140。该第二密封组件140位于内顶杆119插入到反应釜105内的部分与反应釜105之间。
另外,还可在下压环121与反应釜105之间设置固定环120,该固定环与反应釜可拆卸式连接,例如为螺纹连接。如图9所示,内顶杆119可包括圆柱形的内顶杆主体119A,以及设置在该内顶杆主体119A的上端处的径向向外延伸的凸缘119B。下压环121包括圆柱形的下压环主体121A,以及设置在该下压环主体 121A的上端处的径向向外延伸的凸缘121B。在下压环121套设在内顶杆119A之外时,下压环121的上端面至少部分地与凸缘119B的下端面相重叠。在固定环120套设在下压环121之外时,固定环120的上端面至少部分地与凸缘121B的下端面相重叠。通过这种结构,有利于封堵反应釜105的样品室的下端,以将样品106保持在其中。在装配时,可先将样品106插入到反应釜105的样品室中。然后,依次插入内顶杆119和下压环121。最后,将固定环120插入到反应釜105与下压环121之间,并将固定环120与反应釜105固定在一起。
在反应釜105的样品室中设置有包围样品106的样品套。该样品套包括位于上述第一密封组件130和第二密封组件140之间的圆柱形本体150,该圆柱形本体150套设在反应釜105与岩石样品106之间。该样品套还可如上文中的实施例所述得那样包括相应的顶盖。
在外活塞杆102向上移动时,外主杆122和下压环121一起向上移动。由此,下压环121和上压环117一起夹持它们之间的第一密封组件130、圆柱形本体150和第二密封组件140,并给它们施加纵向方向上的压力。此时,第一密封组件130径向膨胀而与反应釜105和中心顶柱114紧密配合,第二密封组件140径向膨胀而与反应釜105和内顶杆119紧密配合。由此,可实现反应釜105的有效密封。也就是说,可通过外活塞杆102的移动而实现反应釜105的上下两端的密封。
优选地,上述第一密封组件130、圆柱形主体150和第二密封组件140具有大体上一致的内径。在实验结束之后,可将固定夹持件112从定位顶柱110上拆卸下来。在这种情况下,反应釜105的上端打开,可通过内活塞杆103中的内顶杆119以较小的力来推动样品106和中心顶柱114而方便地将岩石样品106从反应釜105中推出来。由此,能够方便地得到完整的固定残样。
图5更加详细地显示出了第一密封组件130的结构。第一密封组件130包括由上到下依次设置的第三密封环133、石墨密封环132和第一密封环131。第一密封环131的下端处构造有朝向下方的第一槽口131A。相应地,在圆柱形主体150的上端处设置有向上延伸的第一楔入部154,该第一楔入部154具有大体上呈三角形的截面形状。在外活塞杆102向上移动时,第一楔入部154能插入到第一槽口131A内,并将第一槽口131A撑开。由此,可使第一密封环131径向膨胀,以实现密封。类似地,第三密封环133的上端处构造有朝向上方的第三开口133A。相应地,在上压环117的下端处设置有向下延伸的相应的楔入部。
图6更加详细地显示出了第二密封组件140的结构。第二密封组件140包括由上到下依次设置的第二密封环141、石墨密封环142和第四密封环143。第二密封环的上端处构造有朝向上方的第二槽口141A。相应地,在圆柱形主体150的下端处设置有向下延伸的第二楔入部155。第四密封环143的下端处构造有朝向下方的第四开口143A。相应地,下压环121的上端处设置有向上延伸的相应的楔入部。
此外,在反应釜105的侧壁上还设置有沿径向方向延伸到该侧壁内的测温接头118。该测温接头118用于使温度控制器107能检测到反应釜105内的温度。
根据本发明,还提出一种生排烃动力学实验方法,该生排烃动力学实验方法使用根据本发明的生排烃动力学实验装置100。下面介绍使用生排烃动力学实验装置100的生排烃动力学实验方法。
首先,提供根据本发明的生排烃动力学实验装置100。
之后,提供烃源岩样品和地层流体。地层流体通过采集或配置烃源岩样品所在地区的地层流体而得到,并将地层流体盛装到地层流体注入系统30的地层流体罐31中。同时,根据烃源岩样品所在地区的地层情况设定生排烃动力学实验参数。生排烃动力学实验参数包括加热温度、静岩压力、地层流体压力、静水压力、加热速率、时间,以及反应系统与排烃系统之间的压力差。
之后,安装烃源岩样品。在安装烃源岩样品的过程中,首先将烃源岩样品切割形成多个圆柱体形样品。优选地,采用多节理脆性页岩取心机切割烃源岩样品。圆柱体形样品的直径小于样品套中14的圆柱形本体14A的内径,长度小于圆柱形本体14A的长度。然后,对于图2所示的实施例来说,将圆柱体形样品分别对应安装到相应的样品套14的圆柱形本体14A中,并通过顶盖14B进行密封,从而将样品密封安装到样品套14的内部,并将它们设置到反应釜11内。之后,将安装有样品的高温高压反应釜11分别依次放入到相应的加热炉21中。同时,将施压器22分别安装到相应的高温高压反应釜11的顶部。由此,完成烃源岩样品的安装。
对于图3所示的实施例来说,首先,将安装有样品套的样品106放置到反应釜105中。通过活塞缸101而使得外活塞杆102向上移动至对反应釜105进行密封。在此过程中,内活塞杆103随外活塞杆102一起向上移动,但不会运动至与固定夹持件112一起夹持样品106的程度。
之后,检查高温高压反应系统10的气密性。首先,关闭地层流体罐31和溶剂驱替器61的出口端的截止阀311、612、真空泵50的入口端连接的截止阀51和真空泵50的出口端的截止阀52,而保持其他截止阀均处于开启状态,并开启各排烃系统40中的第二高压泵43,以将各排烃器41内的活塞顶升至上腔体的顶部。之后,启动控制器23控制各个施压器22对相应的高温高压釜11施加100MPa的密封压力。之后,启动真空泵50对高温高压反应系统10和排烃系统40进行抽真空。抽真空时间保持3至5min,直至真空泵50显示的真空度小于-0.1MPa。之后,关闭真空泵50,打开地层流体罐31的出口端的截止阀311,启动第一高压泵32,从而使地层流体罐31的第一腔体中的地层流体注入到各个高温高压反应釜10中,使得各个高温高压反应釜10中的地层流体的压力不低于50MPa,并保持10min。然后观察各个高温高压反应釜10中的地层流体的压力是否下降,若下降,则重复上述检查步骤,若没有下降,则关闭地层流体罐31的出口端的截止阀311,并打开真空泵50的入口端连接的截止阀51,以将各个高温高压反应釜10中的地层流体的压力降低至2MPa。由此,完成高温高压反应系统10的气密性检查。高温高压反应釜10中的地层流体的压力变化可以通过压力计(未示出)进行观察,压力计例如可以设置在高温高压反应釜11与高压电动阀42之间的管线上。
之后,通过控制器23控制施压器22对高温高压反应釜11进行升温加压,从而进行生排烃动力学实验。首先,关闭各高温高压反应系统10的入口端对应的截止阀15、各排烃器41的出口端对应的截止阀412,并通过控制器23控制施压器22对高温高压反应釜11内的样品施加设定的静岩压力。然后,通过控制器23控制按设定的加热速率、加热温度和时间设置的程序,从而进行生排烃动力学实验。在实验过程中,在高温高压反应系统10与排烃系统40的压力差达到设定压力差值时,排烃系统40中的高压电动阀42自动开启,以使得高温高压反应系统10的压力降至静水压力值,高温高压反应系统10的压力降至静水压力值高压电动阀42关闭,然后重复该步骤,直至按照设定的升温速率进行实验而达到设定的温度时,实验结束。
实验结束后,依次对各个高温高压反应系统10生成的产物进行收集定量。具体为,通过产物分离定量系统对高温高压反应釜11中生成的产物进行收集定量,从而得到实验数据,并通过烃源岩生排烃动力学方程和参数计算得到的实验 数据。在收集定量过程中,首先,打开真空泵50的出口端(即气液分离罐62入口端)的截止阀52、气体计量收集器63和液态轻烃收集罐64的入口端的截止阀631、641,并启动真空泵50,以对产物收集系统抽真空。抽真空之间保持3至5min,直至真空泵50显示的真空度小于-0.1MPa后关闭真空泵50。之后,打开各个排烃器41的入口端的截止阀411和相应的高压电动阀42,以释放各个高温高压反应系统10中的产物。同时,启动电子冷热阱67的制冷模式,使气液分离罐62的温度低于0℃(优选地低于-5℃),从而使反应系统10排出的液态烃和地层流体被冷冻在气液分离罐62中,排出的气体进入气体计量收集器62进行收集和定量。然后,将冷热阱67的温度升至约40℃,由此能使气液分离罐62中的液态轻烃汽化分离,并通过轻烃净化器65中的干燥剂(例如,高分子吸水性树脂)去除水分。净化后的暂时处于气态的液态轻烃进入液态轻烃收集罐64中。通过冷阱66可降低液态轻烃收集罐64中的暂时处于气态的液态轻烃的温度,使其液化。由此,可有效将液态轻烃收集到液态轻烃收集罐64中。之后,关闭气体计量收集器63的入口端的截止阀631,打开各个高温高压反应系统10的入口端对应的截止阀15和溶剂驱替器61的出口端的截止阀612。启动第三高压泵611以将溶剂驱替器61的第一容腔内的有机溶剂注入高温高压反应系统10中,以驱替高温高压反应釜10、排烃器41及管线中残留的烃类,直至从气液分离罐62的观察窗观察到流体颜色呈无色时为止。之后,关闭各个排烃器41的出口端对应的截止阀412和气液分离罐62的入口端的截止阀52,并启动电子冷热阱67的加热模式,使气液分离罐62的温度达到40℃,气液分离罐62中的液态轻烃继续通过轻烃净化器65净化后进入液态轻烃收集罐64中。最后,依次卸载气液分离罐62和轻烃收集罐64,从而完成产物的收集定量。由此,完成在地质条件约束下的生排烃动力学实验。
根据本发明,收集的轻烃按照《SY/T0542-2008稳定轻烃组分分析气相色谱法》测定,收集的气体按照《GB/T13610-2014天然气的组成分析气相色谱法》测定,气液分离罐中液态烃按照自然恒重法定量,高温高压反应釜11中取出的烃源岩样品后按照《SY/T5118-2005岩石中氯仿沥青的测定》测定。由此,得到实验数据,并通过烃源岩生排烃动力学方程和参数计算实验数据。
根据本发明的生排烃动力学实验装置100能够同时实现多组有机物在烃源岩有限的孔隙空间内,受上覆岩层静岩压力、地层流体压力及地层流体共同作用下、 生烃-排烃过程联动控制作用下的实验,并能够大大提高地层条件约束下的实验效率。生排烃动力学实验装置100通过产物分离定量系统能够对产物中的全组分进行收集定量,有效增强了实验精度和提高了分析效率,并能够得出更合理的生排烃动力学参数,非常有利于开展成烃机制、油气运移、盆地油气生成量和油气资源预测方面的研究。产物分离定量系统能够在产物收集定量过程通过溶剂驱替器61驱替高温高压反应釜10中的多孔介质衬层14、排烃器41及管线中残留的烃类,从而有效避免轻烃损失。生排烃动力学实验装置100实现了产物的轻烃收集和定量,实验数据更为科学。根据本发明的生排烃动力学实验方法使用实验装置100,其控制精度高,可控性强,能够大大提高实验效率,并且能够有效保证实验数据精度,显著增强实验结果的可靠性。
最后应说明的是,以上所述仅为本发明的优选实施方案而已,并不构成对本发明的任何限制。尽管参照前述实施方案对本发明进行了详细的说明,但是对于本领域的技术人员来说,依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (20)

  1. 一种生排烃动力学实验装置,包括反应釜(11),在所述反应釜中形成样品室(12),所述样品室构造为用于放置样品(13),在所述样品室内设置有用于容纳样品的样品套(14),所述样品套包括在周向上包围所述样品的圆柱形本体(14A),所述圆柱形本体的外侧壁与所述反应釜的内侧壁相接合,所述圆柱形本体构造为带孔结构,以在所述样品的外侧壁与所述反应釜的内侧壁之间形成供产物流通的通道。
  2. 根据权利要求1所述的生排烃动力学实验装置,其特征在于,所述圆柱形主体包括:
    多个外径较小的缩颈部分,在各个缩颈部分上构造有至少一个在径向方向上贯穿所述缩颈部分的流通孔,在所述样品套设置于所述反应釜内时,所述缩颈部分与所述反应釜的内壁间隔开而形成间隙,所述间隙与所述流通孔相连通,在所述样品设置在所述样品套内时,所述流通孔与所述样品的外侧壁相交叠;以及
    多个外径较大的封闭部分,多个封闭部分与多个缩颈部分在纵向上交替布置,在所述圆柱形主体设置于所述反应釜内时,所述封闭部分与所述反应釜的内壁相贴合;
    其中,所述圆柱形主体构造有沿纵向方向贯穿所述圆柱形主体的流通槽,所述流通槽与各个缩颈部分和所述反应釜的内壁之间的间隙相连通,通过所述流通孔、间隙和流通槽形成在所述样品的外侧壁与所述反应釜的内侧壁之间的供产物流通的通道。
  3. 根据权利要求1所述的生排烃动力学实验装置,其特征在于,所述圆柱形主体由多孔介质衬层形成,通过所述多孔介质衬层中的孔形成在所述样品的外侧壁与所述反应釜的内侧壁之间的供产物流通的通道。
  4. 根据权利要求4所述的生排烃动力学实验装置,其特征在于,所述多孔介质衬层的孔隙度在15%-30%的范围内。
  5. 根据权利要求4所述的生排烃动力学实验装置,其特征在于,所述多孔介质衬层的渗透率在0.1-1μm 2的范围内。
  6. 根据权利要求1所述的生排烃动力学实验装置,其特征在于,所述样品套还包括能够与所述圆柱形本体密封连接的顶盖(14B),所述顶盖与所述圆柱形 本体一起包围所述样品,所述顶盖构造为带孔结构,以允许所述样品与所述样品室能通过所述顶盖实现连通。
  7. 根据权利要求6所述的生排烃动力学实验装置,其特征在于,所述顶盖构造有沿轴向方向贯穿所述顶盖的连通孔。
  8. 根据权利要求6所述的生排烃动力学实验装置,其特征在于,所述顶盖由多孔介质衬层形成。
  9. 根据权利要求1到8中任一项所述的生排烃动力学实验装置,其特征在于,所述生排烃动力学实验装置包括:
    所述反应釜,所述反应釜构造为筒状的,所述反应釜的相反两端处构造有与所述样品室连通的开口;
    固定夹持件,所述固定夹持件构造为能从所述反应釜的一端插入到所述样品室中;以及
    施压器,所述施压器包括:
    设置在所述反应釜的另一端处的活塞缸,
    内活塞杆,所述内活塞杆的一端插入到所述活塞缸内并与所述活塞缸密封式滑动配合,所述内活塞杆的另一端延伸到所述活塞缸之外并能插入到所述反应釜的样品室中,以与所述固定夹持件一起夹持所述样品室内的样品,以及
    环状的外活塞杆,所述外活塞杆套设在所述内活塞杆之外,所述外活塞杆的一端插入到所述活塞缸内,并能相对于所述活塞缸密封式滑动,所述外活塞杆的另一端延伸到所述活塞缸之外并能插入到所述反应釜的样品室中;
    其中,所述固定夹持件与所述施压器夹持在所述样品套的两端,并与所述样品套一起实现所述反应釜内的密封。
  10. 根据权利要求9所述的生排烃动力学实验装置,其特征在于,在所述固定夹持件的插入到所述样品室中的部分与所述样品套之间设置有第一密封组件,
    在所述外活塞杆的另一端与所述样品套之间设置有第二密封组件,
    在所述外活塞杆朝向所述反应釜移动时,所述第一密封组件受到挤压而径向膨胀,以在所述固定夹持件与所述反应釜的内侧壁之间形成密封,所述第二密封组件受到挤压而径向膨胀,以在所述内活塞杆和反应釜的内侧壁之间形成密封。
  11. 根据权利要求10所述的生排烃动力学实验装置,其特征在于,在所述圆柱形本体的一端处构造有沿纵向方向延伸的第一楔入部,所述第一密封组件包括 与所述第一楔入部相配合的第一密封环,所述第一密封环构造有朝向所述第一楔入部的第一槽口,在所述第一楔入部插入到所述第一槽口内时,所述第一密封环径向膨胀以进行密封;
    在所述圆柱形本体的另一端处构造有沿纵向方向延伸的第二楔入部,所述第二密封组件包括与所述第二楔入部相配合的第二密封环,所述第二密封环构造有朝向所述第二楔入部的第二槽口,在所述第二楔入部插入到所述第二槽口内时,所述第二密封环径向膨胀以形成密封。
  12. 根据权利要求9所述的生排烃动力学实验装置,其特征在于,所述内活塞杆包括插入到所述反应釜的样品室中的内顶杆,所述内顶杆包括圆柱状的内顶杆主体以及从所述内顶杆主体的端部径向向外延伸的内顶杆凸缘,
    所述外活塞杆包括插入到所述反应釜的样品室中的下压环,所述下压环套设在所述反应釜和所述内顶杆之间,所述下压环的上端面至少部分地与所述内顶杆凸缘的下端面重叠,所述下压环包括圆柱状的下压环主体以及从所述下压环主体的端部径向向外延伸的下压环凸缘。
  13. 根据权利要求12所述的生排烃动力学实验装置,其特征在于,所述反应系统还包括固定环,所述固定环套设在所述反应釜与所述下压环之间,并与所述反应釜可拆卸式连接在一起,所述固定环的上端面至少部分地与所述下压环凸缘的下端面重叠。
  14. 根据权利要求9所述的生排烃动力学实验装置,其特征在于,包括:
    多个并联连接的所述反应系统;
    用于控制各个反应系统的温度、压力和时间参数的控制系统(20);
    地层流体注入系统(30),用于向各个反应系统中注入地层流体;
    对应连接在各个反应系统的出口端的排烃系统(40),所述排烃系统用于在生排烃动力学实验过程中从所述反应系统内排出产物;
    用于对所述产物进行分离、收集和定量的产物分离定量系统,所述产物分离定量系统包括连接在各个反应系统的入口端的溶剂驱替器(61)和连接在所述排烃系统的出口端的气液分离罐(62);以及
    设置在所述排烃系统和所述气液分离罐之间的抽真空系统,所述抽真空系统用于对所述反应系统、所述排烃系统和所述产物分离定量系统进行抽真空。
  15. 根据权利要求14所述的生排烃动力学实验装置,其特征在于,所述产物 分离定量系统还包括与所述气液分离罐连通的气体计量收集器(63)和液态轻烃收集罐(64),所述气体计量收集器和所述液态轻烃收集罐分别用于收集在所述气液分离罐中分离的气体和液态轻烃。
  16. 根据权利要求15所述的实验装置,其特征在于,在所述液态轻烃收集罐和所述气液分离罐之间设有用于除水的轻烃净化器(65),所述液态轻烃收集罐设置在冷阱(66)中,所述气液分离罐设置在电子冷热阱(67)中。
  17. 一种使用根据权利要求1到16中任一项所述的生排烃动力学实验装置来进行的生排烃动力学实验方法,包括以下步骤:
    将样品安装到样品套内,再一起放入反应釜中;以及
    进行生排烃动力学实验。
  18. 根据权利要求17所述的生排烃动力学实验方法,其特征在于,在将样品放入所述反应釜内时,使所述外活塞杆向上移动,以使得所述外活塞杆与所述固定夹持件一起支撑在样品套两端,并形成所述反应釜内的密封;
    再使所述内活塞杆向上移动,以与所述固定夹持件一起夹持所述样品。
  19. 根据权利要求17所述的生排烃动力学实验方法,其特征在于,在进行生排烃动力学实验之后,将固定夹持件拆卸下来,以在所述反应釜的一端形成与样品室连通的开口,通过所述反应釜的另一端的内活塞杆推动所述样品室内的样品,至所述样品通过所述开口离开所述反应釜。
  20. 根据权利要求17所述的生排烃动力学实验方法,其特征在于,在进行生排烃动力学实验之后,对所述反应釜内的产物进行收集,其中对液态轻烃和气体分别进行收集。
PCT/CN2021/121828 2021-06-16 2021-09-29 仿真地质过程的生排烃动力学实验装置及方法 WO2022262146A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/571,401 US20240290225A1 (en) 2021-06-16 2021-09-29 Apparatus and method for simulating dynamics of hydrocarbon generation and expulsion in geological process
EP21945726.4A EP4357014A1 (en) 2021-06-16 2021-09-29 Experimental apparatus and method for simulating dynamics of hydrocarbon generation and expulsion in geological process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110665359.0 2021-06-16
CN202110665359.0A CN115475573B (zh) 2021-06-16 2021-06-16 仿真地质过程的生排烃动力学实验装置及方法

Publications (1)

Publication Number Publication Date
WO2022262146A1 true WO2022262146A1 (zh) 2022-12-22

Family

ID=84418846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121828 WO2022262146A1 (zh) 2021-06-16 2021-09-29 仿真地质过程的生排烃动力学实验装置及方法

Country Status (4)

Country Link
US (1) US20240290225A1 (zh)
EP (1) EP4357014A1 (zh)
CN (1) CN115475573B (zh)
WO (1) WO2022262146A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113936537A (zh) * 2020-06-29 2022-01-14 中国石油化工股份有限公司 一种生烃动力学模拟实验装置及方法
CN118311231A (zh) * 2024-04-11 2024-07-09 中国科学院广州地球化学研究所 一种分段式热压生排烃模拟实验装置及方法
CN118566475A (zh) * 2024-08-05 2024-08-30 中国科学院广州地球化学研究所 一种可控压力体系下油气生成和运移的模拟装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3933434A (en) * 1972-07-13 1976-01-20 Edwin Matovich High temperature chemical reactor
US5082787A (en) * 1989-12-22 1992-01-21 Texaco Inc. Method of performing hydrous pyrolysis for studying the kinetic parameters of hydrocarbons generated from source material
CN101520962A (zh) * 2008-02-28 2009-09-02 中国石油化工股份有限公司 烃源岩地层孔隙热压生烃模拟仪及其使用方法
CN104941518A (zh) * 2014-03-24 2015-09-30 中国石油化工股份有限公司 溶解釜
CN106153434A (zh) 2015-03-31 2016-11-23 中国石油化工股份有限公司 一种反应釜
CN108961967A (zh) 2017-05-23 2018-12-07 中国石油化工股份有限公司 热压生烃模拟釜
CN109211746A (zh) * 2017-07-04 2019-01-15 中国石油化工股份有限公司 一种模拟地质条件下油气运移过程的装置和实验方法
CN111056725A (zh) * 2018-10-17 2020-04-24 张晓春 一种用于污泥脱水的动态密封全方位出水方法及其装置
CN113908773A (zh) * 2020-07-08 2022-01-11 中国石油化工股份有限公司 一种生油气装置和烃源岩生油气热解设备
CN113936537A (zh) * 2020-06-29 2022-01-14 中国石油化工股份有限公司 一种生烃动力学模拟实验装置及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10845291B2 (en) * 2017-05-16 2020-11-24 King Fahd University Of Petroleum And Minerals Radial core flooding apparatus and method for analysis of static and/or dynamic properties of reservoir rock
CN110749526A (zh) * 2018-07-24 2020-02-04 中国石油化工股份有限公司 一种烃源岩有效性动态评价模拟装置及应用
CN109613213B (zh) * 2019-01-14 2021-04-06 中南大学 一种多功能成烃成岩高温高压模拟实验装置及其使用方法
CN109785724B (zh) * 2019-03-19 2021-02-12 中国石油天然气股份有限公司 一种基于囊式反应釜的热压模拟系统及方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3933434A (en) * 1972-07-13 1976-01-20 Edwin Matovich High temperature chemical reactor
US5082787A (en) * 1989-12-22 1992-01-21 Texaco Inc. Method of performing hydrous pyrolysis for studying the kinetic parameters of hydrocarbons generated from source material
CN101520962A (zh) * 2008-02-28 2009-09-02 中国石油化工股份有限公司 烃源岩地层孔隙热压生烃模拟仪及其使用方法
CN104941518A (zh) * 2014-03-24 2015-09-30 中国石油化工股份有限公司 溶解釜
CN106153434A (zh) 2015-03-31 2016-11-23 中国石油化工股份有限公司 一种反应釜
CN108961967A (zh) 2017-05-23 2018-12-07 中国石油化工股份有限公司 热压生烃模拟釜
CN109211746A (zh) * 2017-07-04 2019-01-15 中国石油化工股份有限公司 一种模拟地质条件下油气运移过程的装置和实验方法
CN111056725A (zh) * 2018-10-17 2020-04-24 张晓春 一种用于污泥脱水的动态密封全方位出水方法及其装置
CN113936537A (zh) * 2020-06-29 2022-01-14 中国石油化工股份有限公司 一种生烃动力学模拟实验装置及方法
CN113908773A (zh) * 2020-07-08 2022-01-11 中国石油化工股份有限公司 一种生油气装置和烃源岩生油气热解设备

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113936537A (zh) * 2020-06-29 2022-01-14 中国石油化工股份有限公司 一种生烃动力学模拟实验装置及方法
CN113936537B (zh) * 2020-06-29 2024-03-01 中国石油化工股份有限公司 一种生烃动力学模拟实验装置及方法
CN118311231A (zh) * 2024-04-11 2024-07-09 中国科学院广州地球化学研究所 一种分段式热压生排烃模拟实验装置及方法
CN118566475A (zh) * 2024-08-05 2024-08-30 中国科学院广州地球化学研究所 一种可控压力体系下油气生成和运移的模拟装置

Also Published As

Publication number Publication date
CN115475573A (zh) 2022-12-16
US20240290225A1 (en) 2024-08-29
EP4357014A1 (en) 2024-04-24
CN115475573B (zh) 2024-04-12

Similar Documents

Publication Publication Date Title
WO2022262146A1 (zh) 仿真地质过程的生排烃动力学实验装置及方法
CN110907334B (zh) 一种砾岩全直径岩心径向流油水相对渗透率测量装置及方法
CA2676673C (en) Method and apparatus for obtaining heavy oil samples from a reservoir sample
US4430889A (en) Dynamic fluid testing apparatus and method
CN106482924B (zh) 岩石生烃流动模拟装置
CN113936537B (zh) 一种生烃动力学模拟实验装置及方法
CN106442264A (zh) 一种高温高压渗透率测试装置
CN109211746B (zh) 一种模拟地质条件下油气运移过程的装置和实验方法
CN205138977U (zh) 一种用于径向流实验的大尺寸岩心夹持器
CN107725046A (zh) 一种评价油藏注水过程中毛管力的设备和方法
CN112198093B (zh) 测试气体在饱和活油岩心中扩散系数的装置与方法
CN109785724B (zh) 一种基于囊式反应釜的热压模拟系统及方法
CN110749526A (zh) 一种烃源岩有效性动态评价模拟装置及应用
CN110646567A (zh) 一种适用于超高压高温粘度联测的pvt测试装置及方法
CN102733801A (zh) 成岩生烃排烃全过程热压模拟实验装置
CN112858018B (zh) 含水合物沉积物旁压蠕变试验装置及方法
CN103758512A (zh) 一种油藏内反应与渗流特性一体化测试方法与装置
CN110823767A (zh) 一种多孔介质中凝析气-干气扩散系数测定装置
US4233840A (en) Method for evaluation of the response of different cores to a recovery process and apparatus therefor
CN115791565B (zh) 测量致密气藏岩心渗透率的实验方法
CN113908773B (zh) 一种生油气装置和烃源岩生油气热解设备
CN109142137B (zh) 一种超高压高温生排烃釜体及其应用
CN110527547B (zh) 模拟原油裂解的实验方法
CN115128243A (zh) 有机物原位加热转化油气产出实验装置
CN101402026A (zh) 温度压力作用下石油生成与运移研究装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21945726

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18571401

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2021945726

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021945726

Country of ref document: EP

Effective date: 20240116