WO2022262097A1 - 一种中间段结构等离子体发生器 - Google Patents

一种中间段结构等离子体发生器 Download PDF

Info

Publication number
WO2022262097A1
WO2022262097A1 PCT/CN2021/112227 CN2021112227W WO2022262097A1 WO 2022262097 A1 WO2022262097 A1 WO 2022262097A1 CN 2021112227 W CN2021112227 W CN 2021112227W WO 2022262097 A1 WO2022262097 A1 WO 2022262097A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
middle section
cooling
front electrode
rear electrode
Prior art date
Application number
PCT/CN2021/112227
Other languages
English (en)
French (fr)
Inventor
严圣军
陈乐文
李要建
钟雷
Original Assignee
江苏天楹等离子体科技有限公司
中国天楹股份有限公司
江苏天楹环保能源成套设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏天楹等离子体科技有限公司, 中国天楹股份有限公司, 江苏天楹环保能源成套设备有限公司 filed Critical 江苏天楹等离子体科技有限公司
Publication of WO2022262097A1 publication Critical patent/WO2022262097A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/48Generating plasma using an arc
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2242/00Auxiliary systems
    • H05H2242/10Cooling arrangements

Definitions

  • the invention relates to a plasma generator, in particular to a plasma generator with an intermediate section structure, and belongs to the field of plasma.
  • Traditional high-power plasma generators adopt a multi-stage middle section structure design, such as US4543470SKF plasma generators above 2 MW adopt a multi-stage middle section structure design, the middle section and the middle section are electrically insulated from the main electrode, and the length of a single middle section can be Up to 200-400mm, the highest arc voltage can reach above 3600V.
  • the CN201520622783.7 plasma generator developed by Shanghai Gangsong Plasma Technology Co., Ltd. adopts a multi-stage middle section structure to increase the arc voltage.
  • a single middle section electrode is about 30mm, and the middle sections and the middle section are electrically insulated from the main electrode.
  • the patent CN201810723106.2 uses insulating parts as part of the middle section structure.
  • the structure of the middle insertion section of the existing plasma generator is mostly a multi-stage insertion section, and the insulation design is used between the insertion sections and between the insertion section and the cathode and anode.
  • the current arc switching device realizes jumping between arc electrodes.
  • the further downstream the arc channel is, the structure of the arc channel flow field changes, and the turbulence increases.
  • the arc length is unstable when the air flow is increased, and an external magnetic field is often required to stabilize the arc. This not only increases the process complexity, but also increases the arc length. the difficulty of engineering application.
  • the technical problem to be solved by the present invention is to provide a plasma generator with an intermediate structure, which has a simple structure and can stably output high voltage and high power without adding a large current arc jumping device.
  • a plasma generator with a middle section structure characterized in that: it includes a front electrode, a middle section, a rear electrode, a main air cyclone ring and an auxiliary air cyclone ring, one end of the front electrode is connected to one end of the auxiliary air cyclone ring, The other end of the auxiliary inlet cyclone ring is connected to one end of the middle section, the other end of the middle section is connected to one end of the main inlet cyclone ring, and the other end of the main inlet cyclone ring is connected to one end of the rear electrode.
  • the outer side of the front electrode is provided with a front electrode cooling mechanism
  • the front electrode cooling mechanism includes a front electrode water-cooled spacer
  • the front electrode water-cooled spacer is sleeved on the outer side of the front electrode, and there is a gap between the front electrode water-cooled spacer and the front electrode
  • the closed gap at both ends constitutes the front electrode water-cooling flow channel
  • the two ends of the front electrode water-cooling flow channel are provided with a front electrode water inlet and a front electrode return water port.
  • the outer side of the front electrode water cooling spacer is provided with a front electrode water cooling coil
  • the outer surface of the front electrode water cooling spacer is provided with a groove matching the front electrode water cooling coil
  • the front electrode water cooling coil is sleeved on the front electrode water cooling coil. In the groove on the outside of the spacer.
  • the water-air conduit of the front electrode is sleeved on the outside of the water-air conduit of the middle section and the water-cooling spacer of the middle section, and the water-air conduit of the front electrode and the water-air conduit of the middle section There is a gap between the water-cooling spacer and one end of the middle section to form the middle section of the diversion channel, and the middle section of the water-air conduit is provided with a return hole connecting the rear electrode water-cooling channel and the middle section of the diversion channel, and the side of the middle section of the water-cooling spacer There is a water inlet hole connecting the diversion channel of the middle section and the water cooling flow channel of the middle section, and the other end side of the water cooling spacer of the middle section is provided with a return water pipe of the middle section passing through the water and air conduit of the front electrode.
  • a rear electrode water cooling coil is provided outside the rear electrode water inlet conduit, and the rear electrode water cooling coil is sleeved on the outside of the rear electrode water inlet conduit.
  • a ring-shaped air intake groove is arranged corresponding to the air inlet position of the main air-intake cyclone ring, and there are a number of holes arranged axially along the water-air conduit of the middle section.
  • Axial air intake holes and several axial air intake holes are evenly distributed along the circumference of the water-air duct in the middle section.
  • the other end communicates with the annular air intake groove, and the axial air intake holes and the return water holes are arranged in a staggered manner.
  • auxiliary air intake channel there is a gap between the water-air duct of the front electrode, the water-air duct of the middle section and the auxiliary air intake cyclone ring to form an auxiliary air intake channel, and the side of the water-air duct of the front electrode is provided with an auxiliary air intake hole and an auxiliary intake air channel One end is connected, and the other end of the auxiliary air intake channel extends to the outside of the auxiliary air intake swirl ring.
  • the rear electrode adopts a well-shaped structure.
  • the cyclone inlet holes on the main inlet cyclone ring and the auxiliary inlet cyclone ring are arranged along the tangential direction of the circular inner wall of the cyclone ring, and several cyclone inlet holes are arranged along the circular inner wall of the cyclone ring. Distributed at equal intervals in the circumferential direction, the distribution direction of the cyclone inlet holes of the main air cyclone ring and the auxiliary cyclone ring is the same.
  • the present invention has the following advantages and effects:
  • the present invention adopts the design of the same water inlet channel for the rear electrode and the middle section, and the separate water cooling design for the front electrode, that is, the design of double-inlet and double-outlet or double-inlet and single-outlet water-cooling mechanism, and the clever use of the cross design of the water channel and the inlet channel, which is significantly
  • the heat exchange efficiency of the plasma generator electrode is improved, the space utilization rate of the plasma generator body is improved, and the weight of the plasma generator is greatly reduced;
  • the main air intake swirl ring is arranged between the rear electrode and the middle section, while providing the process gas of the plasma generator, the high-speed rotating air flow drives the arc root of the rear electrode to move quickly , and drive the arc root to jump from the middle section to the front electrode, suppressing the occurrence of double arc phenomenon; assisting in providing cold air film to increase the breakdown voltage of the middle section, preventing re-breakdown between the arc and the middle section; high-speed rotating cold air film also acts It acts on the inner wall of the cooling electrode to improve the thermal efficiency of the generator; at the same time, it interacts with the electromagnetic field to drive the arc root movement of the front electrode, further reducing the ablation rate of the front electrode and improving the life of the electrode.
  • Fig. 2 is a schematic diagram of the water-air conduit in the middle section of the present invention.
  • a kind of middle section structure plasma generator of the present invention comprises front electrode 1, middle section 8, back electrode 12, main gas inlet cyclone ring 9 and auxiliary gas inlet cyclone ring 5, front electrode 1
  • One end is connected with one end of the auxiliary air intake cyclone ring 5
  • the other end of the auxiliary air intake cyclone ring 5 is connected with one end of the middle section 8
  • the other end of the middle section 8 is connected with one end of the main air intake cyclone ring 9
  • the main air intake cyclone ring 9 is connected to one end of the back electrode 12 .
  • the front electrode 1, the rear electrode 12, and the middle section 8 are made of copper or copper alloy.
  • the rear electrode 12 , the middle section 8 and the front electrode 1 are arranged coaxially.
  • the inner diameter of the rear electrode 12 is designed to be greater than the inner diameter of the front electrode 1 and greater than the inner diameter of the middle section 8 .
  • the main air cyclone ring 9 is set between the middle section of the rear electrode, and the auxiliary air cyclone ring 5 is set between the middle section and the front electrode.
  • the design of multiple cyclone rings improves the long-arc operation stability of the plasma generator and improves the plasma quality. Increase the thermal efficiency of the generator, increase the arc breakdown voltage in the middle section, suppress the occurrence of double arcs, and improve the overall operating life of the plasma generator.
  • the outer side of the front electrode 1 is provided with a front electrode cooling mechanism.
  • the front electrode cooling mechanism includes a front electrode water-cooling spacer 2.
  • the front electrode water-cooling spacer 2 is set on the outside of the front electrode 1. There is a gap closed at both ends to form the front electrode water cooling flow channel 25, and the two ends of the front electrode water cooling flow channel 25 are opened with a front electrode water inlet 24 and a front electrode return water port 26, wherein the front electrode water inlet 24 also runs through the front electrode water vapor Catheter 4.
  • the cooling water enters the front electrode water-cooling channel 25 through the water inlet hole 24 on the front electrode water-air conduit 4. After the front electrode is fully cooled, the cooling water enters the main return water pipe through the front electrode water return port 26 on the front electrode water-cooling spacer 2 .
  • the outer side of the front electrode water-cooling spacer 2 is provided with a front electrode water-cooling coil 3, and the outer surface of the front electrode water-cooling spacer 2 is provided with a groove matching the front electrode water-cooling coil 3, and the front electrode water-cooling coil 3 is set on the front electrode water-cooling coil.
  • the front electrode water-cooled coil 3 is individually water-cooled and wound clockwise or counterclockwise.
  • the front electrode water-cooled coil 3 is powered by a separate DC power supply, and the magnetic field generated by the front electrode water-cooled coil 3 drives the arc root of the front electrode to rotate at a high speed. Combined with process parameter control, the operating life of the front electrode is improved.
  • the outer side of the rear electrode 12 and the middle section 8 is provided with a cooling mechanism for the middle section of the rear electrode.
  • the cooling mechanism for the middle section of the rear electrode includes a water inlet pipe 14 for the rear electrode, a water inlet conduit 13 for the rear electrode, a water-air conduit 10 for the middle section, and a water-air conduit for the front electrode. 4.
  • the water-cooling spacer 7 in the middle section, one end of the rear electrode water inlet pipe 14 is fixedly connected with the other end of the rear electrode 12 through threads, the rear electrode water inlet conduit 13 is sleeved on the outside of the rear electrode 12 and the rear electrode water inlet conduit There is a gap between 13 and the rear electrode 12 to form the rear electrode water cooling channel 16.
  • rear electrode water inlet holes 15 connecting the inner cavity of the rear electrode water inlet pipe 14 and the rear electrode water cooling channel 16 on the side of the rear electrode water inlet pipe 14.
  • the rear electrode water inlet holes 15 have a certain axial inclination, and are distributed at equal intervals along the circumferential direction.
  • the water-air conduit 10 in the middle section is sleeved on one end of the rear electrode 12 and the outside of the main air intake cyclone ring 9, and there is a gap between the water-air conduit 10 in the middle section and the water inlet conduit 13 of the rear electrode and is connected to the other end of the water-cooling channel 16 of the rear electrode.
  • the middle section water-cooling spacer 7 is set on the outside of the middle section 8, and there is a closed gap between the middle section water-cooling spacer 7 and the middle section 8 to form the middle section water-cooling flow channel 20, and the front electrode water-air conduit 4 sets It is arranged on the outer side of the water-air conduit 10 of the middle section and the water-cooling spacer 7 of the middle section, and there is a gap between the water-air conduit 4 of the front electrode, the water-air conduit 10 of the middle section and one end of the water-cooling spacer 7 of the middle section to form a guide channel of the middle section 27.
  • the water-air conduit 10 in the middle section is provided with a water return hole 18 connecting the rear electrode water-cooling channel 16 and the diversion channel 27 in the middle section.
  • the water holes 18 are distributed at equal intervals along the circumference of the water-air conduit 10 in the middle section.
  • One side of the middle section water-cooling spacer 7 is provided with a water inlet hole 19 connecting the middle section guide channel 27 and the middle section water-cooling flow channel 20, and the other end side of the middle section water-cooling spacer 7 is provided with a hole that passes through the front electrode water-air conduit 4.
  • a rear electrode water-cooling coil 11 is provided outside the rear electrode water inlet conduit 13 , and the rear electrode water cooling coil 11 is sheathed outside the rear electrode water inlet conduit 13 .
  • the rear electrode water-cooled coil 11 is cooled by separate water, the rear electrode water-cooled coil 11 is wound clockwise or counterclockwise, and the rear electrode water-cooled coil is powered by a separate DC power supply.
  • the rear electrode arc root is driven to rotate at a high speed by the magnetic field generated by the water cooling coil 11 of the rear electrode, combined with the control of process parameters, the operating life of the rear electrode is improved.
  • the air inlet position corresponding to the main air intake cyclone ring 9 on the inner wall of the water-air conduit 10 in the middle section is provided with a ring-shaped air intake groove, and there are several grooves along the middle section in the water-air conduit 10 in the middle section.
  • the axial air inlet 17 arranged axially in the air and water conduit and several axial air inlets 17 are evenly distributed along the circumference of the water and air conduit 10 in the middle section.
  • the other end of the axial air inlet hole 17 communicates with the annular air inlet groove on the left end face of the shaft, and the axial air inlet hole 17 and the water return hole 18 are mutually staggered.
  • a group of two or more axial air inlet holes 17 is arranged between two adjacent return water holes 18 .
  • the rear electrode 12 adopts a well-shaped structure, and its tail is connected with the rear electrode water inlet pipe 14 by threads to ensure that the current can be transmitted to the rear electrode 12 through the rear electrode water inlet pipe 14, or the current can be transmitted to the rear electrode water inlet pipe 14 through the rear electrode. 12 tail cone design.
  • the cyclone inlet holes on the main air inlet cyclone ring 9 and the auxiliary inlet cyclone ring 5 are arranged along the tangential direction of the circular inner wall of the cyclone ring and several cyclone inlet holes are arranged along the circumferential direction of the cyclone ring, etc. Spacing distribution, the distribution direction of the cyclone inlet holes of the main air cyclone ring and the auxiliary cyclone ring is the same.
  • the main gas cyclone ring 9 provides process carrier gas for the plasma generator through several cyclone gas inlet holes, and the working gas nitrogen and air enter the back electrode 12 and the middle section 8 chamber through the gas inlet holes of the cyclone ring 9, providing At the same time as the process gas of the plasma generator drives the movement of the arc root, it acts as an insulator between the rear electrode and the middle section.
  • the auxiliary gas cyclone ring 5 provides process carrier gas for the plasma generator through several cyclone gas inlet holes, and the working gas nitrogen and air enter the middle section 8 and the front electrode 1 chamber through the gas inlet holes of the auxiliary gas cyclone ring 5 , while providing the process gas of the plasma generator, a cold gas film is provided for the middle section 8 to increase the breakdown voltage of the middle section.
  • the cold air film also plays the role of cooling the inner wall of the electrode and improving the thermal efficiency of the generator.
  • the high-speed rotating airflow of the auxiliary air intake drives the arc root movement of the front electrode at the same time, which further reduces the ablation rate of the front electrode and improves the life of the electrode.
  • the auxiliary air cyclone ring 5 is used as a conductor to connect the middle section 8 and the front electrode 1 .
  • the invention adopts a unique structural design of the middle section, no insulation design is required between the middle section and the front electrode, through the delicate design of the middle section structure, aerodynamic organization, main air intake and auxiliary air flow distribution technology, the arc root middle section to the front electrode is realized Jump, compared with the multi-stage middle section, the structure is simple, and it can stably output high voltage and high power without adding a high-current arc jump device;
  • the invention adopts the same water inlet channel design for the rear electrode and the middle section, and the front electrode is individually water-cooled Design, that is, the design of double-inlet and double-outlet or double-inlet and single-outlet water-cooling mechanism, the clever use of the cross design of the water flow channel and the inlet flow channel, significantly improves the heat exchange efficiency of the plasma generator electrode, and improves the space utilization of the plasma generator body efficiency, which greatly reduces the weight of the plasma generator; the design of the main air intake and auxiliary air swirl rings of the present invention, the main air intake swirl ring is set between

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)

Abstract

一种中间段结构等离子体发生器,包含前电极(1)、中间段(8)、后电极(12)、主进气旋气环(9)和辅助进气旋气环(5),前电极(1)的一端与辅助进气旋气环(5)的一端连接,辅助进气旋气环(5)的另一端与中间段(8)的一端连接,中间段(8)的另一端与主进气旋气环(9)的一端连接,主进气旋气环(9)的另一端与后电极(12)的一端连接。采用独特的中间段(8)结构设计,中间段(8)与前电极(1)无需绝缘设计,通过中间段(8)结构的精巧设计,气动组织、主进气与辅助进气气流分配工艺,实现电弧弧根中间段(8)至前电极(1)跳转,与多级中间段(8)相比结构简单,无需增加大电流电弧跳转装置即可稳定输出大电压、大功率。

Description

一种中间段结构等离子体发生器 技术领域
本发明涉及一种等离子体发生器,特别是一种中间段结构等离子体发生器,属于等离子体领域。
背景技术
热等离子体作为危险废物处理可选技术路线越来越得到重视,其高温高能量密度的特点优势突出。但国内尚未出现兆瓦级及以上大功率等离子体发生器的开发报道以及应用。主要开发难点有:大功率等离子体发生器弧电流往往达到600A甚至1000A以上,电极烧蚀集聚增加;兆瓦级等离子体发生器弧电压超过1500V以上,电弧稳定性与弧根运动控制难度增加。
传统大功率等离子体发生器采用多级中间段结构设计,如US4543470SKF2兆瓦以上等离子体发生器采用多级中间段结构设计,中间段以及中间段与主电极之间电绝缘,单个中间段长度可达200-400mm,最高弧电压可达3600V以上。上海冈松等离子体科技有限公司开发的CN201520622783.7等离子体发生器采用多级中间段结构来提升弧电压,单个中间段电极约为30mm左右,中间段之间以及中间段与主电极电绝缘。专利CN201810723106.2采用绝缘件作为部分中间段结构。其共同特点是通过多个中间段结构来提升弧电压,且中间段之间以及中间段与主电极之间互相绝缘,等离体发生器引弧成功后均需要大电流电弧切换装置来实现电极间电弧跳转。电极间绝缘设计以及大电流电弧切换装置不仅增加等离子体发生器设计难度,也限制了其应用。
由现有技术的内容可知,一般直流等离子体发生器电极烧蚀主要为热烧蚀与氧化,主要是因为电极所承受局部超高电流密度,电极材料大量蒸发。为了减小电极烧蚀,目前大功率等离体发生器普遍采用小电流大电压工艺设计,通过提高弧电压的方式来增大等离子体发生器运行功率。目前主要通过增加弧长来提高等离子体发生器弧电压:阴阳极之间增加中间插入段增加电弧弧长,或者通过大气量来增加弧长。已有的等离子体发生器中间插入段结构大部分为多级插入段,插入段之间以及插入段与阴阳极之间均为绝缘设计,结构复杂很难使用炉内高温环境应用,且需要大电流电弧切换装置来实现电弧电极间跳转。而电弧通道越往下游,电弧通道流场结构发生变化,湍流度增大,通过大气流量提高弧长存在电弧不稳定现象,往往需要外加强磁场来稳弧,这不仅增加工艺复杂度,也增加了工程应用难度。
发明内容
本发明所要解决的技术问题是提供一种中间段结构等离子体发生器,结构简单且无需增 加大电流电弧跳转装置即可稳定输出大电压、大功率。
为解决上述技术问题,本发明所采用的技术方案是:
一种中间段结构等离子体发生器,其特征在于:包含前电极、中间段、后电极、主进气旋气环和辅助进气旋气环,前电极的一端与辅助进气旋气环的一端连接,辅助进气旋气环的另一端与中间段的一端连接,中间段的另一端与主进气旋气环的一端连接,主进气旋气环的另一端与后电极的一端连接。
进一步地,所述前电极的外侧设置有前电极冷却机构,前电极冷却机构包含前电极水冷隔套,前电极水冷隔套套设在前电极的外侧,前电极水冷隔套与前电极之间具有两端封闭的间隙构成前电极水冷流道,前电极水冷流道的两端开有前电极进水口和前电极回水口。
进一步地,所述前电极水冷隔套的外侧设置有前电极水冷线圈,前电极水冷隔套的外侧面上设置有与前电极水冷线圈匹配的凹槽,前电极水冷线圈套设在前电极水冷隔套外侧的凹槽内。
进一步地,所述后电极和中间段的外侧设置有后电极中间段冷却机构,后电极中间段冷却机构包含后电极进水管、后电极进水导管、中间段水气导管、前电极水气导管、中间段水冷隔套,后电极进水管的一端与后电极的另一端端部固定连接,后电极进水导管套设在后电极的外侧并且后电极进水导管与后电极之间留有间隙构成后电极水冷通道,后电极进水管一端侧面开有若干个连通后电极进水管内腔与后电极水冷通道一端的后电极进水孔,中间段水气导管套设在后电极一端和主进气旋气环的外侧,中间段水气导管与后电极进水导管之间留有间隙并且与后电极水冷通道另一端连通,中间段水冷隔套套设在中间段外侧并且中间段水冷隔套与中间段之间留有两端封闭的间隙构成中间段水冷流道,前电极水气导管套设在中间段水气导管和中间段水冷隔套的外侧并且前电极水气导管与中间段水气导管和中间段水冷隔套一端之间留有间隙构成中间段导流通道,中间段水气导管上开有连通后电极水冷通道与中间段导流通道的回水孔,中间段水冷隔套一端侧面开有连通中间段导流通道与中间段水冷流道的进水孔,中间段水冷隔套另一端侧面设置有穿出前电极水气导管的中间段回水管。
进一步地,所述后电极进水导管的外侧设置有后电极水冷线圈,后电极水冷线圈套设在后电极进水导管的外侧。
进一步地,所述中间段水气导管内壁上对应主进气旋气环的进气口位置设置有一圈环形进气槽,中间段水气导管内开有若干沿中间段水气导管轴向设置的轴向进气孔并且若干个轴向进气孔沿中间段水气导管的周向均匀分布,轴向进气孔的一端位于中间段水气导管的左侧端面上,轴向进气孔的另一端与环形进气槽连通,轴向进气孔与回水孔相互错开设置。
进一步地,所述前电极水气导管与中间段水气导管和辅助进气旋气环之间留有间隙构成辅助进气流道,前电极水气导管侧面开有辅助进气孔与辅助进气流道一端连通,辅助进气流道的另一端延伸至辅助进气旋气环外侧。
进一步地,所述后电极采用井型结构。
进一步地,所述主进气旋气环和辅助进气旋气环上的旋气进气孔沿着旋气环的圆形内壁的切线方向设置并且若干个旋气进气孔沿着旋气环的周向等间距分布,主进气旋气环和辅助旋气环的旋气进气孔的分布方向相同。
本发明与现有技术相比,具有以下优点和效果:
1、本发明采用独特的中间段结构设计,中间段与前电极无需绝缘设计,通过中间段结构的精巧设计,气动组织、主进气与辅助进气气流分配工艺,实现电弧弧根中间段至前电极跳转,与多级中间段相比结构简单,无需增加大电流电弧跳转装置即可稳定输出大电压、大功率;
2、本发明采用后电极与中间段同一股进水流道设计,前电极单独水冷设计,即采用双进双出或双进单出水冷机构设计,巧妙利用水流道与进气流道交叉设计,显著提高了等离子体发生器电极换热效率,且提高了等离子体发生器本体空间利用率,大大减轻了等离子体发生器重量;
3、本发明主进气与辅助进气旋气环设计,主进气旋气环设置在后电极与中间段之间,提供等离子体发生器工艺气的同时,高速旋转气流驱动后电极弧根快速运动,以及驱动电弧弧根从中间段跳转至前电极,抑制双弧现象发生;辅助提供冷气膜提高中间段击穿电压,防止电弧与中间段之间发生再击穿;高速旋转冷气膜也起到冷却电极内壁作用,提高发生器热效率;同时与电磁场相互作用驱动前电极弧根运动,进一步减小前电极烧蚀速率,提高电极寿命。
附图说明
图1是本发明的一种中间段结构等离子体发生器的示意图。
图2是本发明的中间段水气导管的示意图。
图3是本发明的中间段水气导管的侧视图。
具体实施方式
为了详细阐述本发明为达到预定技术目的而所采取的技术方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清晰、完整地描述,显然,所描述的实施例 仅仅是本发明的部分实施例,而不是全部的实施例,并且,在不付出创造性劳动的前提下,本发明的实施例中的技术手段或技术特征可以替换,下面将参考附图并结合实施例来详细说明本发明。
如图1所示,本发明的一种中间段结构等离子体发生器,包含前电极1、中间段8、后电极12、主进气旋气环9和辅助进气旋气环5,前电极1的一端与辅助进气旋气环5的一端连接,辅助进气旋气环5的另一端与中间段8的一端连接,中间段8的另一端与主进气旋气环9的一端连接,主进气旋气环9的另一端与后电极12的一端连接。前电极1、后电极12、中间段8采用铜或者铜合金。分别通过去离子水冷却,并且后电极12、中间段8与前电极1同轴设置。后电极12内径设计大于前电极1内径大于中间段8内径。后电极中间段之间设置主进气旋气环9,中间段与前电极之间设置辅助进气旋气环5,多个旋气环设计,提高等离子体发生器长弧运行稳定性,提高等离子体发生器热效率,增大中间段电弧击穿电压,抑制双弧发生,提高等离子体发生器整体运行寿命。
前电极1的外侧设置有前电极冷却机构,前电极冷却机构包含前电极水冷隔套2,前电极水冷隔套2套设在前电极1的外侧,前电极水冷隔套2与前电极1之间具有两端封闭的间隙构成前电极水冷流道25,前电极水冷流道25的两端开有前电极进水口24和前电极回水口26,其中前电极进水口24还贯穿前电极水气导管4。冷却水通过前电极水气导管4上的进水孔24进入前电极水冷流道25,前电极充分冷却后,冷却水通过前电极水冷隔套2上的前电极回水口26进入总回水管内。
前电极水冷隔套2的外侧设置有前电极水冷线圈3,前电极水冷隔套2的外侧面上设置有与前电极水冷线圈3匹配的凹槽,前电极水冷线圈3套设在前电极水冷隔套2外侧的凹槽内。前电极水冷线圈3采用单独水冷,并采用顺时针或逆时针绕制。前电极水冷线圈3采用单独直流电源供电,通过前电极水冷线圈3产生磁场驱动前电极弧根高速旋转,结合工艺参数控制,提高前电极运行寿命。
后电极12和中间段8的外侧设置有后电极中间段冷却机构,后电极中间段冷却机构包含后电极进水管14、后电极进水导管13、中间段水气导管10、前电极水气导管4、中间段水冷隔套7,后电极进水管14的一端与后电极12的另一端端部通过螺纹固定连接,后电极进水导管13套设在后电极12的外侧并且后电极进水导管13与后电极12之间留有间隙构成后电极水冷通道16,后电极进水管14一端侧面开有若干个连通后电极进水管14内腔与后电极水冷通道16一端的后电极进水孔15,后电极进水孔15具有一定轴向倾角,且沿周向等间距分布。中间段水气导管10套设在后电极12一端和主进气旋气环9的外侧,中间段水气导管10 与后电极进水导管13之间留有间隙并且与后电极水冷通道16另一端连通,中间段水冷隔套7套设在中间段8外侧并且中间段水冷隔套7与中间段8之间留有两端封闭的间隙构成中间段水冷流道20,前电极水气导管4套设在中间段水气导管10和中间段水冷隔套7的外侧并且前电极水气导管4与中间段水气导管10和中间段水冷隔套7一端之间留有间隙构成中间段导流通道27,中间段水气导管10上开有连通后电极水冷通道16与中间段导流通道27的回水孔18,回水孔18沿着中间段水气导管10的径向开设,多个回水孔18沿着中间段水气导管10的周向等间距分布。中间段水冷隔套7一端侧面开有连通中间段导流通道27与中间段水冷流道20的进水孔19,中间段水冷隔套7另一端侧面设置有穿出前电极水气导管4的中间段回水管6。
冷却水通过后电极进水管14,经过后电极进水孔15进入后电极水冷通道16中,水冷通道16为环形流道,通道宽度为毫米量级,冷却水高速通过后电极水冷通道16。后电极12得到充分冷却后,冷却水绕过后电极进水导管13内壁进入后电极进水导管外壁。冷却水通过中间段水气导管10的回水孔18进入中间段导通流道27内。冷却水通过中间段水冷隔套7上的进水孔19进入中间段水冷流道20。中间段8得到充分冷却后,冷却水经过中间段水冷隔套7上的回水孔进入中间段回水管6。中间段回水管6与中间段水隔套7以及前电极水气导管密封设计。前电极1采用单独进水冷却方式,后电极12与中间段8采用一股进水方式。前电极1回水与后电极12回水分别经过前电极水隔套2回水孔与中间段回水管6后汇合成一股回水,回到水冷机内,或后电极回水与前电极回水分别单独回至水冷机内。
后电极进水导管13的外侧设置有后电极水冷线圈11,后电极水冷线圈11套设在后电极进水导管13的外侧。后电极水冷线圈11通过单独水冷,后电极水冷线圈11采用顺时针或者逆时针绕制,后电极水冷线圈采用单独直流电源供电。通过后电极水冷线圈11产生磁场驱动后电极弧根高速旋转,结合工艺参数控制,提高后电极运行寿命。
如图2和图3所示,中间段水气导管10内壁上对应主进气旋气环9的进气口位置设置有一圈环形进气槽,中间段水气导管10内开有若干沿中间段水气导管轴向设置的轴向进气孔17并且若干个轴向进气孔17沿中间段水气导管10的周向均匀分布,轴向进气孔17的一端位于中间段水气导管10的左侧端面上,轴向进气孔17的另一端与环形进气槽连通,轴向进气孔17与回水孔18相互错开设置。相邻的两个回水孔18之间设置一组2个或2个以上的轴向进气孔17。
前电极水气导管4与中间段水气导管10和辅助进气旋气环5之间留有间隙构成辅助进气流道22,前电极水气导管4侧面开有辅助进气孔21与辅助进气流道22一端连通,辅助进气 流道22的另一端延伸至辅助进气旋气环5外侧。
后电极12采用井型结构,其尾部与后电极进水管14通过螺纹连接,确保电流能通过后电极进水管14传递至后电极12,或者电流通过后电极传递至后电极进水管14,后电极12尾部锥面设计。
主进气旋气环9和辅助进气旋气环5上的旋气进气孔沿着旋气环的圆形内壁的切线方向设置并且若干个旋气进气孔沿着旋气环的周向等间距分布,主进气旋气环和辅助旋气环的旋气进气孔的分布方向相同。主进气旋气环9通过若干个旋气进气孔为等离子体发生器提供工艺载气,工作气体氮气与空气通过旋气环9的进气孔进入后电极12与中间段8腔室内,提供等离子体发生器工艺气的同时,驱动电弧弧根运动,并作为后电极与中间段的绝缘件。辅助进气旋气环5通过若干个旋气进气孔为等离子体发生器提供工艺载气,工作气体氮气与空气通过辅助进气旋气环5的进气孔进入中间段8与前电极1腔室内,提供等离子体发生器工艺气的同时,为中间段8提供冷气膜提高中间段击穿电压。冷气膜也起到冷却电极内壁作用,提高发生器热效率。辅助进气高速旋转气流同时驱动前电极弧根运动作用,进一步减小前电极烧蚀速率,提高电极寿命。并且辅助进气旋气环5作为导体连接中间段8与前电极1。
本发明采用独特的中间段结构设计,中间段与前电极无需绝缘设计,通过中间段结构的精巧设计,气动组织、主进气与辅助进气气流分配工艺,实现电弧弧根中间段至前电极跳转,与多级中间段相比结构简单,无需增加大电流电弧跳转装置即可稳定输出大电压、大功率;本发明采用后电极与中间段同一股进水流道设计,前电极单独水冷设计,即采用双进双出或双进单出水冷机构设计,巧妙利用水流道与进气流道交叉设计,显著提高了等离子体发生器电极换热效率,且提高了等离子体发生器本体空间利用率,大大减轻了等离子体发生器重量;本发明主进气与辅助进气旋气环设计,主进气旋气环设置在后电极与中间段之间,提供等离子体发生器工艺气的同时,高速旋转气流驱动后电极弧根快速运动,以及驱动电弧弧根从中间段跳转至前电极,抑制双弧现象发生;辅助提供冷气膜提高中间段击穿电压,防止电弧与中间段之间发生再击穿;高速旋转冷气膜也起到冷却电极内壁作用,提高发生器热效率;同时与电磁场相互作用驱动前电极弧根运动,进一步减小前电极烧蚀速率,提高电极寿命。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案内容,依据本发明的技术实质,在本发明的精神和原则之内,对以上实施例所作的任何简单的修改、等同替换与改进等,均仍属于本发 明技术方案的保护范围之内。

Claims (9)

  1. 一种中间段结构等离子体发生器,其特征在于:包含前电极、中间段、后电极、主进气旋气环和辅助进气旋气环,前电极的一端与辅助进气旋气环的一端连接,辅助进气旋气环的另一端与中间段的一端连接,中间段的另一端与主进气旋气环的一端连接,主进气旋气环的另一端与后电极的一端连接。
  2. 根据权利要求1所述的一种中间段结构等离子体发生器,其特征在于:所述前电极的外侧设置有前电极冷却机构,前电极冷却机构包含前电极水冷隔套,前电极水冷隔套套设在前电极的外侧,前电极水冷隔套与前电极之间具有两端封闭的间隙构成前电极水冷流道,前电极水冷流道的两端开有前电极进水口和前电极回水口。
  3. 根据权利要求2所述的一种中间段结构等离子体发生器,其特征在于:所述前电极水冷隔套的外侧设置有前电极水冷线圈,前电极水冷隔套的外侧面上设置有与前电极水冷线圈匹配的凹槽,前电极水冷线圈套设在前电极水冷隔套外侧的凹槽内。
  4. 根据权利要求1所述的一种中间段结构等离子体发生器,其特征在于:所述后电极和中间段的外侧设置有后电极中间段冷却机构,后电极中间段冷却机构包含后电极进水管、后电极进水导管、中间段水气导管、前电极水气导管、中间段水冷隔套,后电极进水管的一端与后电极的另一端端部固定连接,后电极进水导管套设在后电极的外侧并且后电极进水导管与后电极之间留有间隙构成后电极水冷通道,后电极进水管一端侧面开有若干个连通后电极进水管内腔与后电极水冷通道一端的后电极进水孔,中间段水气导管套设在后电极一端和主进气旋气环的外侧,中间段水气导管与后电极进水导管之间留有间隙并且与后电极水冷通道另一端连通,中间段水冷隔套套设在中间段外侧并且中间段水冷隔套与中间段之间留有两端封闭的间隙构成中间段水冷流道,前电极水气导管套设在中间段水气导管和中间段水冷隔套的外侧并且前电极水气导管与中间段水气导管和中间段水冷隔套一端之间留有间隙构成中间段导流通道,中间段水气导管上开有连通后电极水冷通道与中间段导流通道的回水孔,中间段水冷隔套一端侧面开有连通中间段导流通道与中间段水冷流道的进水孔,中间段水冷隔套另一端侧面设置有穿出前电极水气导管的中间段回水管。
  5. 根据权利要求4所述的一种中间段结构等离子体发生器,其特征在于:所述后电极进水导管的外侧设置有后电极水冷线圈,后电极水冷线圈套设在后电极进水导管的外侧。
  6. 根据权利要求4所述的一种中间段结构等离子体发生器,其特征在于:所述中间段水气导管内壁上对应主进气旋气环的进气口位置设置有一圈环形进气槽,中间段水气导管内开有若干沿中间段水气导管轴向设置的轴向进气孔并且若干个轴向进气孔沿中间段水气导管的周向均匀分布,轴向进气孔的一端位于中间段水气导管的左侧端面上,轴向进气孔的另一端 与环形进气槽连通,轴向进气孔与回水孔相互错开设置。
  7. 根据权利要求4所述的一种中间段结构等离子体发生器,其特征在于:所述前电极水气导管与中间段水气导管和辅助进气旋气环之间留有间隙构成辅助进气流道,前电极水气导管侧面开有辅助进气孔与辅助进气流道一端连通,辅助进气流道的另一端延伸至辅助进气旋气环外侧。
  8. 根据权利要求1所述的一种中间段结构等离子体发生器,其特征在于:所述后电极采用井型结构。
  9. 根据权利要求1所述的一种中间段结构等离子体发生器,其特征在于:所述主进气旋气环和辅助进气旋气环上的旋气进气孔沿着旋气环的圆形内壁的切线方向设置并且若干个旋气进气孔沿着旋气环的周向等间距分布,主进气旋气环和辅助旋气环的旋气进气孔的分布方向相同。
PCT/CN2021/112227 2021-06-18 2021-08-12 一种中间段结构等离子体发生器 WO2022262097A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110675426.7A CN113301703A (zh) 2021-06-18 2021-06-18 一种中间段结构等离子体发生器
CN202110675426.7 2021-06-18

Publications (1)

Publication Number Publication Date
WO2022262097A1 true WO2022262097A1 (zh) 2022-12-22

Family

ID=77328712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112227 WO2022262097A1 (zh) 2021-06-18 2021-08-12 一种中间段结构等离子体发生器

Country Status (2)

Country Link
CN (1) CN113301703A (zh)
WO (1) WO2022262097A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0087523A1 (fr) * 1982-02-22 1983-09-07 ATELIERS DE CONSTRUCTIONS ELECTRIQUES DE CHARLEROI (ACEC) Société Anonyme Dispositif de chauffage de fluides gazeux au moyen d'un arc électrique
US20030068012A1 (en) * 2001-10-10 2003-04-10 Xtreme Technologies Gmbh; Arrangement for generating extreme ultraviolet (EUV) radiation based on a gas discharge
KR101041887B1 (ko) * 2010-05-14 2011-06-15 국방과학연구소 수축형 전극부를 갖는 비이송식 플라즈마토치
CN102933017A (zh) * 2012-11-05 2013-02-13 航天环境工程有限公司 内置火花塞式交流等离子体发生器
CN105282952A (zh) * 2015-12-01 2016-01-27 成都金创立科技有限责任公司 500kw磁稳非转移弧等离子发生器
CN205142646U (zh) * 2015-08-12 2016-04-06 上海冈松等离子体科技开发有限公司 多间隔节分布式旋转进气的非转移长弧大功率等离子体炬
CN108601195A (zh) * 2018-06-26 2018-09-28 加拿大艾浦莱斯有限公司 紧凑型高焓大功率dc非转弧等离子体炬
CN108990249A (zh) * 2018-07-04 2018-12-11 加拿大艾浦莱斯有限公司 一种等离子炬装置及延长电极寿命的方法
CN112351570A (zh) * 2020-10-19 2021-02-09 江苏天楹等离子体科技有限公司 一种新型直流等离子体发生器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2566580Y (zh) * 2002-08-21 2003-08-13 王忠义 一种大功率空气等离子体发生器
CN1281102C (zh) * 2004-07-23 2006-10-18 大连海事大学 双阳极热等离子发生器
CN101784154B (zh) * 2009-01-19 2012-10-03 烟台龙源电力技术股份有限公司 电弧等离子体发生器的阳极以及电弧等离子体发生器
CN101790276B (zh) * 2009-07-16 2011-12-28 武汉天和技术股份有限公司 一种等离子体发生装置及方法
CN201467557U (zh) * 2009-08-10 2010-05-12 北京光耀电力设备股份有限公司 一种新型的等离子枪
CN104936372A (zh) * 2015-06-29 2015-09-23 武汉天和技术股份有限公司 一种等离子体发生装置
KR20180062446A (ko) * 2018-05-25 2018-06-08 한국수력원자력 주식회사 다중전극 플라즈마 토치
CN109936904A (zh) * 2019-04-23 2019-06-25 武汉天和技术股份有限公司 一种分段式等离子体火炬阳极
CN110418487A (zh) * 2019-08-14 2019-11-05 成都金创立科技有限责任公司 长寿命空气等离子发生器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0087523A1 (fr) * 1982-02-22 1983-09-07 ATELIERS DE CONSTRUCTIONS ELECTRIQUES DE CHARLEROI (ACEC) Société Anonyme Dispositif de chauffage de fluides gazeux au moyen d'un arc électrique
US20030068012A1 (en) * 2001-10-10 2003-04-10 Xtreme Technologies Gmbh; Arrangement for generating extreme ultraviolet (EUV) radiation based on a gas discharge
KR101041887B1 (ko) * 2010-05-14 2011-06-15 국방과학연구소 수축형 전극부를 갖는 비이송식 플라즈마토치
CN102933017A (zh) * 2012-11-05 2013-02-13 航天环境工程有限公司 内置火花塞式交流等离子体发生器
CN205142646U (zh) * 2015-08-12 2016-04-06 上海冈松等离子体科技开发有限公司 多间隔节分布式旋转进气的非转移长弧大功率等离子体炬
CN105282952A (zh) * 2015-12-01 2016-01-27 成都金创立科技有限责任公司 500kw磁稳非转移弧等离子发生器
CN108601195A (zh) * 2018-06-26 2018-09-28 加拿大艾浦莱斯有限公司 紧凑型高焓大功率dc非转弧等离子体炬
CN108990249A (zh) * 2018-07-04 2018-12-11 加拿大艾浦莱斯有限公司 一种等离子炬装置及延长电极寿命的方法
CN112351570A (zh) * 2020-10-19 2021-02-09 江苏天楹等离子体科技有限公司 一种新型直流等离子体发生器

Also Published As

Publication number Publication date
CN113301703A (zh) 2021-08-24

Similar Documents

Publication Publication Date Title
CN211240241U (zh) 一种基于双电极结构的大功率等离子体炬装置
WO2010081436A1 (zh) 电弧等离子体发生器的阳极以及电弧等离子体发生器
WO2022082887A1 (zh) 一种新型直流等离子体发生器
CN203504871U (zh) 管式阴极电弧等离子体炬
CN103354695B (zh) 一种电弧通道直径异形的电弧等离子体炬
CN108601195B (zh) 紧凑型高焓大功率dc非转弧等离子体炬
CN201142781Y (zh) 高热效率直流电弧等离子体发生器
CN203352934U (zh) 一种电弧通道直径异形的电弧等离子体炬
CN110067712A (zh) 一种感生轴向磁场的磁等离子体推力器
CN104684234B (zh) 一种大功率空冷等离子发生器
CN103841742B (zh) 磁旋弧等离子发生器
CN203645904U (zh) 一种等离子炬旋转炬头装置
CN105430863A (zh) 一种基于滑动电弧放电原理的等离子发生器
WO2022262097A1 (zh) 一种中间段结构等离子体发生器
CN110856329A (zh) 一种耐烧蚀的高热效率等离子体炬及其使用方法
CN104936372A (zh) 一种等离子体发生装置
CN205834467U (zh) 一种气体等离子割炬
CN105764225A (zh) 一种紧凑型大功率空心阴极放电装置
CN208724246U (zh) 紧凑型高焓大功率dc非转弧等离子体炬
CN1589088A (zh) 双阳极热等离子发生器
CN107124815B (zh) 等离子发生器
CN110881239A (zh) 一种引入外加磁场的多弧等离子体反应器及运行方法
CN204362408U (zh) 一种大功率空冷等离子发生器
CN204887664U (zh) 输入功率可调的双阳极电弧加热等离子体喷枪
CN210274655U (zh) 一种高功率热等离子体炬的多级扩张段电极喷管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21945678

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE