WO2022261905A1 - 功率信息的发送方法、接收方法、装置、设备及存储介质 - Google Patents

功率信息的发送方法、接收方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2022261905A1
WO2022261905A1 PCT/CN2021/100707 CN2021100707W WO2022261905A1 WO 2022261905 A1 WO2022261905 A1 WO 2022261905A1 CN 2021100707 W CN2021100707 W CN 2021100707W WO 2022261905 A1 WO2022261905 A1 WO 2022261905A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
panel
information
power
mpr
Prior art date
Application number
PCT/CN2021/100707
Other languages
English (en)
French (fr)
Inventor
李明菊
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202410245292.9A priority Critical patent/CN117896811A/zh
Priority to EP21945491.5A priority patent/EP4358603A1/en
Priority to BR112023026252A priority patent/BR112023026252A2/pt
Priority to KR1020247001928A priority patent/KR20240022636A/ko
Priority to CN202180001923.7A priority patent/CN113597791B/zh
Priority to PCT/CN2021/100707 priority patent/WO2022261905A1/zh
Publication of WO2022261905A1 publication Critical patent/WO2022261905A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/06956Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping using a selection of antenna panels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/241TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR, Eb/lo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/248TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where transmission power control commands are generated based on a path parameter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties

Definitions

  • the present application relates to the field of mobile communication, and in particular to a method for sending power information, a method for receiving it, a device, a device, and a storage medium.
  • each panel corresponds to multiple beam directions. Each panel or beam is directed in a different direction, such as toward or away from the body.
  • MPE Maximum Permissible Exposure
  • the uplink panel or uplink beam is affected differently. For example, the uplink panel facing the human body is greatly affected by the MPE, and its transmission power needs to be greatly reduced; another example, the uplink beam facing away from the human body is less affected by the MPE, and the transmission power can be reduced slightly.
  • the terminal is usually regarded as a whole, so that the network device cannot select the most suitable uplink panel or uplink beam, thereby affecting uplink transmission performance.
  • Embodiments of the present application provide a power information sending method, receiving method, device, device, and storage medium, which distinguish the uplink panel or uplink beam of the terminal, and the terminal sends the power information corresponding to the uplink panel or uplink beam of the terminal to the network device Power information, so that network devices can perform uplink scheduling. Described technical scheme is as follows:
  • a method for sending power information including:
  • the terminal sends power information to the network device
  • the power information corresponds to the uplink panel of the terminal, or the power information corresponds to the uplink beam of the terminal.
  • the power information includes at least one of the following information: panel identification information of the first uplink panel, and a power management maximum power backoff P-MPR measurement value and/or power headroom value corresponding to the first uplink panel, wherein, the P-MPR value of the first uplink panel is not less than the maximum allowable radiation MPE threshold; the beam identification information of the first uplink beam, and the P-MPR measurement value and/or power headroom value corresponding to the first uplink beam, wherein, The P-MPR value of the first uplink beam is not less than the MPE threshold; the panel identification information of the second uplink panel, and the P-MPR measurement value and/or power headroom value corresponding to the second uplink panel, wherein the second uplink panel The P-MPR value is less than the MPE threshold; the beam identification information of the second uplink beam, and the P-MPR measurement value and/or power headroom value corresponding to the second uplink beam, wherein the P-MPR value of the second uplink beam is less than the MPE threshold
  • the terminal sends power information to the network device, including: when the power management maximum power backoff P-MPR value corresponding to the uplink panel or uplink beam of the terminal is not less than the maximum allowable radiation MPE threshold, the terminal sends power to the network device information.
  • the power information includes at least one of the following information: n panel identifiers and n first bit indication information, where the i-th first bit indication information is used to indicate the power management corresponding to the i-th uplink panel of the terminal Whether the maximum power backoff P-MPR value is less than the maximum allowable radiation MPE threshold; m beam identifiers, and m second bit indication information, the jth second bit indication information is used to indicate the jth uplink beam corresponding to the terminal Whether the P-MPR value is less than the MPE threshold; where n and m are both positive integers, i is a positive integer not greater than n, and i is a positive integer not greater than m.
  • the power information further includes third bit indication information; where the third bit indication information is used to indicate The P-MPR measurement value corresponding to the first uplink panel or the first uplink beam.
  • the method further includes the terminal sending beam measurement information to the network device; wherein the beam measurement information corresponds to an uplink panel of the terminal, or the beam measurement information corresponds to an uplink beam of the terminal.
  • the beam measurement information includes at least one of the following information: panel identification information of the first uplink panel, and beam measurement results corresponding to the first uplink panel, where the power management maximum power backoff of the first uplink panel is P -The MPR value is less than the maximum allowable radiation MPE threshold; the beam identification information of the first uplink beam, and the beam measurement results corresponding to the first uplink beam, wherein the P-MPR value of the first uplink beam is less than the MPE threshold; the second uplink panel’s Panel identification information, and beam measurement results corresponding to the second uplink panel, wherein the P-MPR value of the second uplink panel is not less than the MPE threshold; beam identification information of the second uplink beam, and beam measurement results corresponding to the second uplink beam , wherein, the P-MPR value of the second uplink beam is not less than the MPE threshold; the panel identification information of the third uplink panel, and the beam measurement results corresponding to the third uplink panel, wherein, the third uplink panel is sorted among n uplink panel
  • the panel identification information includes at least one of the following identifications: panel identification; reference signal set identification; reference signal identification; transmission configuration indication TCI state identification; spatial relationship information identification.
  • the beam identifier information includes at least one of the following identifiers: a reference signal identifier; a transmission configuration indicator TCI status identifier; and a spatial relationship information identifier.
  • the reference signal includes at least one of the following: channel state information reference signal CSI-RS; synchronization signal block SSB; sounding reference signal SRS.
  • the beam measurement result includes at least one of the following information: a first signal quality parameter, the first signal quality parameter is obtained according to downlink reference signal measurement; a second signal quality parameter, the second signal quality parameter is obtained according to the first signal quality parameter
  • the parameter and the P-MPR value and/or power headroom value of the corresponding uplink panel or uplink beam are determined.
  • the first signal quality parameter and/or the second signal quality parameter include at least one of the following information: Layer 1 Reference Signal Received Power L1-RSRP; Layer 1 Signal-to-Interference-plus-Noise Ratio L1-SINR.
  • a method for receiving power information comprising:
  • the network device receives the power information sent by the terminal
  • the power information corresponds to the uplink panel of the terminal, or the power information corresponds to the uplink beam of the terminal.
  • the power information includes at least one of the following information: panel identification information of the first uplink panel, and a power management maximum power backoff P-MPR measurement value and/or power headroom value corresponding to the first uplink panel, wherein, the P-MPR value of the first uplink panel is not less than the maximum allowable radiation MPE threshold; the beam identification information of the first uplink beam, and the P-MPR measurement value and/or power headroom value corresponding to the first uplink beam, wherein, The P-MPR value of the first uplink beam is not less than the MPE threshold; the panel identification information of the second uplink panel, and the P-MPR measurement value and/or power headroom value corresponding to the second uplink panel, wherein the second uplink panel The P-MPR value is less than the MPE threshold; the beam identification information of the second uplink beam, and the P-MPR measurement value and/or power headroom value corresponding to the second uplink beam, wherein the P-MPR value of the second uplink beam is less than the MPE threshold
  • the network device receives the power information sent by the terminal, including: when the power management maximum power backoff P-MPR value corresponding to the uplink panel or uplink beam of the terminal is not less than the maximum allowable radiation MPE threshold, the network device receives the terminal Power information sent.
  • the power information includes at least one of the following information: n panel identifiers and n first bit indication information, where the i-th first bit indication information is used to indicate the power management corresponding to the i-th uplink panel of the terminal Whether the maximum power backoff P-MPR value is less than the maximum allowable radiation MPE threshold; m beam identifiers, and m second bit indication information, the jth second bit indication information is used to indicate the jth uplink beam corresponding to the terminal Whether the P-MPR value is less than the MPE threshold; where n and m are both positive integers, i is a positive integer not greater than n, and i is a positive integer not greater than m.
  • the power information further includes third bit indication information; where the third bit indication information is used to indicate The P-MPR measurement value corresponding to the first uplink panel or the first uplink beam.
  • the method further includes: the network device receiving beam measurement information sent by the terminal; wherein the beam measurement information corresponds to the uplink panel of the terminal, or the beam measurement information corresponds to the uplink beam of the terminal.
  • the beam measurement information includes at least one of the following information: panel identification information of the first uplink panel, and beam measurement results corresponding to the first uplink panel, where the power management maximum power backoff of the first uplink panel is P -The MPR value is less than the maximum allowable radiation MPE threshold; the beam identification information of the first uplink beam, and the beam measurement results corresponding to the first uplink beam, wherein the P-MPR value of the first uplink beam is less than the MPE threshold; the second uplink panel’s Panel identification information, and beam measurement results corresponding to the second uplink panel, wherein the P-MPR value of the second uplink panel is not less than the MPE threshold; beam identification information of the second uplink beam, and beam measurement results corresponding to the second uplink beam , wherein, the P-MPR value of the second uplink beam is not less than the MPE threshold; the panel identification information of the third uplink panel, and the beam measurement results corresponding to the third uplink panel, wherein, the third uplink panel is sorted among n uplink panel
  • the panel identification information includes at least one of the following identifications: panel identification; reference signal set identification; reference signal identification; transmission configuration indication TCI state identification; spatial relationship information identification.
  • the beam identifier information includes at least one of the following identifiers: a reference signal identifier; a transmission configuration indicator TCI status identifier; and a spatial relationship information identifier.
  • the reference signal includes at least one of the following: channel state information reference signal CSI-RS; synchronization signal block SSB; sounding reference signal SRS.
  • the beam measurement result includes at least one of the following information: a first signal quality parameter, the first signal quality parameter is obtained according to downlink reference signal measurement; a second signal quality parameter, the second signal quality parameter is obtained according to the first signal quality parameter
  • the parameter and the P-MPR value and/or power headroom value of the corresponding uplink panel or uplink beam are determined.
  • the first signal quality parameter and/or the second signal quality parameter include at least one of the following information: Layer 1 Reference Signal Received Power L1-RSRP; Layer 1 Signal-to-Interference-plus-Noise Ratio L1-SINR.
  • the method further includes: according to the power information, the network device performs uplink scheduling.
  • the method further includes: according to the beam measurement information, the network device performs uplink scheduling.
  • the method further includes: the network device determining a target beam, and the target beam is used for the terminal to send at least one of the uplink transmission configuration indication TCI state, space setting and space relationship information.
  • a device for sending power information includes:
  • the sending module is used for the terminal to send power information to the network device
  • the power information corresponds to the uplink panel of the terminal, or the power information corresponds to the uplink beam of the terminal.
  • a device for sending power information includes:
  • the receiving module is used for the network device to receive the power information sent by the terminal;
  • the power information corresponds to the uplink panel of the terminal, or the power information corresponds to the uplink beam of the terminal.
  • a terminal includes a processor and a memory, at least one program code is stored in the memory, and the program code is loaded and executed by the processor to realize the power information as described above sending method.
  • a network device includes a processor and a memory, at least one program code is stored in the memory, and the program code is loaded and executed by the processor to realize the power information as described above Receive method.
  • At least one program code stored in a computer-readable storage medium the program code is loaded and executed by a processor to implement the method for transmitting power information as described above, or, as described above How to receive power information.
  • a computer program product or computer program comprising computer instructions stored in a computer-readable storage medium readable by a processor of a computer device from a computer
  • the storage medium reads the computer instructions, and the processor executes the computer instructions, so that the computer device executes the above method for sending power information, or the above method for receiving power information.
  • a chip is provided, the chip includes a programmable logic circuit or a program, and the chip is used to implement the above-mentioned method for sending power information, or the above-mentioned method for receiving power information.
  • the network device can obtain the power information at the granularity of the uplink panel or uplink beam, and perform uplink scheduling based on this, select a suitable uplink panel or uplink beam, and improve uplink transmission performance.
  • FIG. 1 is a schematic diagram of a mobile communication system provided by an exemplary embodiment of the present application
  • FIG. 2 is a flowchart of a method for sending power information provided by an exemplary embodiment of the present application
  • FIG. 3 is a flowchart of a method for sending power information provided by an exemplary embodiment of the present application
  • FIG. 4 is a flowchart of a method for sending power information provided by an exemplary embodiment of the present application
  • Fig. 5 is a flowchart of a method for sending and receiving power information provided by an exemplary embodiment of the present application
  • FIG. 6 is a flowchart of a method for sending and receiving power information provided by an exemplary embodiment of the present application
  • FIG. 7 is a flowchart of a method for sending and receiving power information provided by an exemplary embodiment of the present application.
  • Fig. 8 is a schematic structural diagram of an apparatus for sending power information provided by an exemplary embodiment of the present application.
  • Fig. 9 is a schematic structural diagram of a power information receiving device provided by an exemplary embodiment of the present application.
  • Fig. 10 is a block diagram of a communication device shown in an exemplary embodiment of the present application.
  • FIG. 1 shows a schematic diagram of a mobile communication system provided by an exemplary embodiment of the present application, including a network device 01 and a terminal 02 .
  • the terminal 02 is provided with at least one uplink panel, and the terminal 02 communicates with the network device 01 through an uplink beam.
  • the uplink beam is transmitted through the uplink panel, and one uplink panel may correspond to one or more uplink beams, and each uplink beam has a different sending direction.
  • one uplink panel may correspond to one or more uplink beams, and each uplink beam has a different sending direction.
  • an uplink panel 1 an uplink panel 2 .
  • the uplink panel and the downlink panel used by the terminal 02 for transmission may be the same antenna panel or different antenna panels.
  • the terminal 02 reports information or data to the network device 01 through the uplink beam.
  • the network device 01 sends information to the terminal 02 through the downlink beam.
  • one uplink beam corresponds to one downlink beam.
  • Fig. 2 shows a flowchart of a method for sending power information provided by an exemplary embodiment of the present application. Taking the method for sending power information applied to terminal 02 in FIG. 1 as an example, the method includes:
  • Step 210 the terminal sends power information to the network device.
  • the power information corresponds to the uplink panel of the terminal, or the power information corresponds to the uplink beam of the terminal.
  • the power information refers to parameter information related to power management (Power Management) of the terminal.
  • the power information includes at least one of the following four types of information:
  • the first type of information the panel identification information of the first uplink panel, and the corresponding power management maximum power back-off (Power Management-Maximum Power Reduction, P-MPR) measurement value and/or power headroom (Power Headroom) of the first uplink panel Headroom), wherein the P-MPR value of the first upstream panel is not less than the maximum permissible radiation (Maximum Permissible Exposure, MPE) threshold (threshold).
  • P-MPR Power Management-Maximum Power Reduction
  • MPE Maximum Permissible Exposure
  • the panel identification information is identification information related to the panel.
  • the panel identification information includes at least one of the following identifications: panel identification; reference signal set identification; reference signal identification; transmission configuration indication (Transmission Configuration Indication, TCI) status identification; spatial relationship information (Spatialrelationinfo) identification.
  • TCI Transmission Configuration Indication
  • Spatialrelationinfo spatial relationship information
  • the panel identification refers to the device identification code corresponding to the panel, which is equivalent to the ID identification of the panel.
  • one uplink panel corresponds to at least one uplink beam.
  • each uplink beam has at least one of a reference signal identifier, a TCI status identifier and a spatial relationship information identifier.
  • the beam can be interchanged with at least one of the following: TCI state, spatial relationship information, spatial setting (SpatialSetting), quasi co-location (Quasi co-location, QCL) type Type D.
  • the reference signal includes at least one of the following: Channel State Information-Reference Signal (CSI-RS); Synchronization Signal Block (Synchronization Signal Block, SSB); Sounding Reference Signal (Sounding Reference Signal, SRS ).
  • CSI-RS Channel State Information-Reference Signal
  • Synchronization Signal Block Synchronization Signal Block
  • SSB Synchronization Signal Block
  • Sounding Reference Signal Sounding Reference Signal
  • the reference signal set identifier includes multiple reference signal identifiers.
  • the reference signal set identifier has a corresponding relationship with the uplink panel
  • the reference signal set identifier may be used to indicate the uplink panel
  • the reference signal identifier in the reference signal set may also be used to indicate the uplink panel.
  • the TCI status information includes a reference signal identifier, and the reference signal identifier also has a corresponding relationship with the uplink panel, so the TCI status identifier can also be used to indicate the uplink panel.
  • the TCI state is used to inform the terminal to receive the physical downlink control channel (Physical Downlink Control Channel, PDCCH) or the physical downlink shared channel (Physical Downlink Shared Channel, PDSCH) or the beam used by the downlink reference signal and the TCI state is used for indication
  • the receiving beam and/or the transmitting beam of the beam reference signal are the same; or, it is used to inform the terminal to send a physical uplink control channel (Physical Uplink Control Channel, PUCCH) or a physical uplink shared channel (Physical Uplink Shared Channel, PUSCH) or an uplink reference signal
  • the beam used is the same as the transmit beam and/or receive beam of the reference signal used to indicate the beam in the TCI state.
  • the P-MPR refers to a fallback value of the maximum transmit power of the terminal in order to meet the MPE requirement.
  • the power headroom value refers to the difference between the uplink transmission power of the terminal and the maximum transmission power of the terminal.
  • the Power Headroom Report (PHR) will provide network devices with information for power control and scheduling.
  • MPE is an index requirement for limiting the electromagnetic radiation of the terminal proposed from the perspective of human safety, and is used to specify the average maximum radiation power density of the terminal in a certain direction.
  • the second type of information the beam identification information of the first uplink beam, and the P-MPR measurement value and/or power headroom value corresponding to the first uplink beam, wherein the P-MPR value of the first uplink beam is not less than the MPE threshold .
  • the beam identification information is indication information related to the beam.
  • the beam identification information includes at least one of the following identifications: reference signal identification; TCI state identification; spatial relationship information identification.
  • the reference signal includes at least one of the following: CSI-RS; SSB; SRS.
  • the P-MPR refers to a fallback value of the maximum transmit power of the terminal in order to meet the MPE requirement.
  • the power headroom value refers to the difference between the uplink transmission power of the terminal and the maximum transmission power of the terminal.
  • MPE is proposed from the perspective of human body safety, and limits the electromagnetic radiation of the terminal. It is used to specify the average maximum radiation power density of the terminal in a certain direction.
  • the third type of information the panel identification information of the second uplink panel, and the corresponding P-MPR measurement value and/or power headroom value of the second uplink panel, wherein the P-MPR value of the second uplink panel is smaller than the MPE threshold.
  • the second uplink panel is a different uplink panel from the first uplink panel.
  • panel identification information P-MPR, power headroom value, and MPE, reference may be made to the foregoing content, and details are not repeated here.
  • the fourth type of information beam identification information of the second uplink beam, and the P-MPR measurement value and/or power headroom value corresponding to the second uplink beam, wherein the P-MPR value of the second uplink beam is smaller than the MPE threshold.
  • the second uplink beam is a different uplink beam from the first uplink beam.
  • P-MPR power headroom value
  • MPE MPE
  • the terminal sends power information to the network device, and the power information includes at least one of a panel identifier, a reference signal set identifier, a TCI status identifier, and a spatial relationship information identifier of the first uplink panel.
  • the reference signal set identifier includes multiple reference signal identifiers.
  • the power information also includes a P-MPR measurement value and/or a power headroom value corresponding to the first uplink panel.
  • the terminal sends power information to the network device, and the power information includes at least one of the reference signal identifier, the TCI status identifier, and the spatial relationship information identifier of the first uplink beam, and the first uplink beam corresponds to P-MPR measurements and/or power headroom values.
  • the terminal sends power information to the network device, and the power information includes at least one of the panel identifier and the reference signal identifier of the second uplink panel, and the P-MPR measurement value corresponding to the second uplink panel and/or power headroom values.
  • the terminal sends power information to the network device, and the power information includes a reference signal identifier of the second uplink beam, and a P-MPR measurement value and/or power headroom value corresponding to the second uplink beam.
  • the power information may include at least one of the following information:
  • n panel identifiers n first bit indication information, wherein the i first bit indication information is used to indicate whether the P-MPR value corresponding to the i th uplink panel of the terminal is less than the MPE threshold;
  • the jth second bit indication information is used to indicate whether the P-MPR value corresponding to the jth uplink beam of the terminal is less than the MPE threshold;
  • n is a positive integer
  • i is a positive integer not greater than n
  • j is a positive integer not greater than m.
  • one uplink panel corresponds to at least one uplink beam, so n and m may be the same or different, which is not limited in this application.
  • the power information includes two panel identifiers and the first bit indication information corresponding to the two panel identifiers respectively, and the first bit corresponding to the first panel identifier
  • the one-bit indication information indicates that the P-MPR value of the first uplink panel is less than the MPE threshold
  • the first bit indication information corresponding to the second panel identifier indicates that the P-MPR value of the second uplink panel is not less than the MPE threshold.
  • the power information further includes third bit indication information.
  • the third bit indication information is used to indicate the P-MPR measurement value corresponding to the first uplink panel or the first uplink beam.
  • the power information includes two beam identifiers and the second bit indication information corresponding to the two beam identifiers respectively, and the first beam identifier corresponds to the second bit indication information.
  • the two-bit indication information indicates that the P-MPR value of the first uplink beam is less than the MPE threshold, and the second bit indication information corresponding to the second beam identifier indicates that the P-MPR value of the second uplink beam is not less than the MPE threshold.
  • the power information also includes third bit indication information, and the third bit indication information indicates the P-MPR measurement value of the second uplink beam.
  • the terminal sends the power information corresponding to the uplink panel or the uplink beam
  • the network device can perform uplink scheduling based on the power information with the uplink panel or the uplink beam as the granularity, An appropriate uplink panel or uplink beam is selected, thereby improving uplink transmission performance.
  • the embodiment of the present application provides the information content contained in the power information and the information content contained in the corresponding identification.
  • the power information includes the first bit indication information or the second bit indication information, which is used to indicate whether the P-MPR value of the corresponding uplink panel or uplink beam is greater than the MPE threshold; the power information also includes the third bit The indication information is used to indicate the P-MPR measurement value of the corresponding uplink panel or uplink beam.
  • Fig. 3 shows a flowchart of a method for sending power information provided by an exemplary embodiment of the present application. Taking the method for sending power information applied to terminal 02 in FIG. 1 as an example, the method includes:
  • Step 310 When the P-MPR value corresponding to the uplink panel or uplink beam of the terminal is not less than the MPE threshold, the terminal sends power information to the network device.
  • the power information corresponds to the uplink panel of the terminal, or the power information corresponds to the uplink beam of the terminal.
  • the P-MPR refers to the fallback value of the maximum transmit power of the terminal in order to meet the MPE requirement.
  • MPE is proposed from the perspective of human body safety, and limits the electromagnetic radiation of the terminal. It is used to specify the average maximum radiation power density of the terminal in a certain direction.
  • the trigger condition for the terminal to send power information to the network device includes: the P-MPR value corresponding to the uplink panel or uplink beam of the terminal is not less than the MPE threshold. That is, the backoff value of the transmit power of the uplink panel or the uplink beam is greater than or equal to a preset index threshold.
  • the current maximum transmission power of the uplink beam is 23dB
  • the backoff value of the transmission power of the uplink beam is 2dB
  • the threshold of the MPE is 3dB. It is equivalent to reducing the transmit power of the uplink beam by 2dB so that the actual maximum transmit power of the uplink beam is reduced to 21dB, and since the backoff value of 2dB is less than the MPE threshold of 3dB, the power backoff value of this beam is not enough to trigger its P-MPR value reporting.
  • the power information refers to parameter information related to power management of the terminal.
  • the power information includes at least one of the following four types of information:
  • the first type of information the panel identification information of the first uplink panel, and the corresponding P-MPR measurement value and/or power headroom value of the first uplink panel, wherein the P-MPR value of the first uplink panel is not less than the MPE threshold .
  • the panel identification information is identification information related to the panel.
  • the panel identification information includes at least one of the following identifications: panel identification; reference signal set identification; reference signal identification; TCI state identification; spatial relationship information identification.
  • the reference signal set identifier includes multiple reference signal identifiers.
  • the reference signal includes at least one of the following: CSI-RS; SSB; SRS.
  • the second type of information the beam identification information of the first uplink beam, and the P-MPR measurement value and/or power headroom value corresponding to the first uplink beam, wherein the P-MPR value of the first uplink beam is not less than the MPE threshold .
  • the beam identification information is indication information related to the beam.
  • the beam identification information includes at least one of the following identifications: a reference signal identification; a TCI state identification; and a spatial relationship information identification.
  • the reference signal includes at least one of the following: CSI-RS; SSB; SRS.
  • the third type of information the panel identification information of the second uplink panel, and the corresponding P-MPR measurement value and/or power headroom value of the second uplink panel, wherein the P-MPR value of the second uplink panel is smaller than the MPE threshold.
  • the second uplink panel is a different uplink panel from the first uplink panel.
  • panel identification information P-MPR, power headroom value, and MPE, reference may be made to the foregoing content, and details are not repeated here.
  • the fourth type of information beam identification information of the second uplink beam, and the P-MPR measurement value and/or power headroom value corresponding to the second uplink beam, wherein the P-MPR value of the second uplink beam is smaller than the MPE threshold.
  • the second uplink beam is a different uplink beam from the first uplink beam.
  • P-MPR power headroom value
  • MPE MPE
  • the power information includes at least one of a panel identifier of the first uplink panel, a reference signal set identifier, a TCI state identifier, and a spatial relationship information identifier.
  • the reference signal set identifier includes multiple reference signal identifiers.
  • the power information also includes a P-MPR measurement value and/or a power headroom value corresponding to the first uplink panel.
  • the power information includes at least one of a reference signal identifier, a TCI status identifier, and a spatial relationship information identifier of the first uplink beam, and a P-MPR measurement value corresponding to the first uplink beam and/or or power headroom value.
  • the power information includes at least one of a panel identifier and a reference signal identifier of the second uplink panel, and a corresponding P-MPR measurement value and/or power headroom value of the second uplink panel.
  • the power information includes a reference signal identifier of the second uplink beam, and a P-MPR measurement value and/or power headroom value corresponding to the second uplink beam.
  • each uplink beam corresponds to a different P-MPR value
  • the first P-MPR value is greater than the MPE threshold
  • the second P-MPR value is equal to the MPE threshold
  • the third P-MPR value is smaller than the MPE threshold
  • the terminal sends power information to the network device, where the power information includes information about at least one uplink beam among the uplink beam 1, the uplink beam 2, and the uplink beam 3.
  • the power information includes at least one of the reference signal identifier of the uplink beam 1, the TCI status identifier, and the spatial relationship information identifier, and the P-MPR measurement value and/or power headroom value corresponding to the uplink beam 1; and/or
  • the power information includes the reference signal identifier of the uplink beam 2, and the P-MPR measurement value and/or power headroom value corresponding to the uplink beam 2; and/or the power information includes the reference signal identifier of the uplink beam 3, the TCI status identifier, At least one of the spatial relationship information identifiers, and the P-MPR measurement value and/or power headroom value corresponding to the uplink beam 3 .
  • the power information may include at least one of the following information: n panel identifiers, and n first bit indication information, wherein the i-th The first bit indication information is used to indicate whether the P-MPR value corresponding to the i-th uplink panel of the terminal is less than the MPE threshold; m beam identifiers, and m second bit indication information, where the j-th second bit indicates information It is used to indicate whether the P-MPR value corresponding to the jth uplink beam of the terminal is less than the MPE threshold; where n is a positive integer, i is a positive integer not greater than n, and j is a positive integer not greater than m.
  • the power information further includes third bit indication information.
  • the third bit indication information is used to indicate the P-MPR measurement value corresponding to the first uplink panel or the first uplink beam.
  • the power information may further include third bit indication information.
  • each uplink beam corresponds to a different P-MPR value
  • the first P-MPR value is greater than the MPE threshold
  • the second P-MPR value is equal to the MPE threshold
  • the third P-MPR value is smaller than the MPE threshold
  • the terminal sends power information to the network device, where the power information includes information about at least one uplink beam among the uplink beam 1, the uplink beam 2, and the uplink beam 3.
  • the power information also includes three second bits indicating information.
  • the second bit indication information corresponding to uplink beam 1 and uplink beam 2 is used to indicate that the first P-MPR value and the second P-MPR value are not less than the MPE threshold
  • the second bit indication information corresponding to uplink beam 3 is used to indicate The third P-MPR value is less than the MPE threshold.
  • the power information sent by the terminal to the network device also includes two third-bit indication information, which are used to indicate uplink beam 1 and uplink beam 2 corresponds to the P-MPR measurement.
  • the method for sending power information adds a trigger condition for the terminal to send power information. Specifically, when the P-MPR value corresponding to the uplink panel or uplink beam of the terminal is not less than the MPE threshold, the terminal sends power information to the network device.
  • Fig. 4 shows a flowchart of a method for sending power information provided by an exemplary embodiment of the present application. Taking the method for sending power information applied to terminal 02 in FIG. 1 as an example, the method includes:
  • Step 410 the terminal sends power information to the network device.
  • the power information corresponds to the uplink panel of the terminal, or the power information corresponds to the uplink beam of the terminal.
  • the power information refers to parameter information related to power management of the terminal.
  • the power information includes at least one of the following four types of information:
  • the first type of information the panel identification information of the first uplink panel, and the corresponding P-MPR measurement value and/or power headroom value of the first uplink panel, wherein the P-MPR value of the first uplink panel is not less than the MPE threshold .
  • the second type of information the beam identification information of the first uplink beam, and the P-MPR measurement value and/or power headroom value corresponding to the first uplink beam, wherein the P-MPR value of the first uplink beam is not less than the MPE threshold .
  • the third type of information the panel identification information of the second uplink panel, and the corresponding P-MPR measurement value and/or power headroom value of the second uplink panel, wherein the P-MPR value of the second uplink panel is smaller than the MPE threshold.
  • the fourth type of information beam identification information of the second uplink beam, and the P-MPR measurement value and/or power headroom value corresponding to the second uplink beam, wherein the P-MPR value of the second uplink beam is smaller than the MPE threshold.
  • the power information may include at least one of the following information: n panel identifiers, and n first bit indication information, the ith first bit indicates The information is used to indicate whether the P-MPR value corresponding to the i-th uplink panel of the terminal is less than the MPE threshold; m beam identifiers, and m second-bit indication information, and the j-th second-bit indication information is used to indicate the terminal's Whether the P-MPR value corresponding to the j uplink beams is less than the MPE threshold; wherein, n is a positive integer, i is a positive integer not greater than n, and j is a positive integer not greater than m.
  • the power information further includes third bit indication information.
  • the third bit indication information is used to indicate the P-MPR measurement value corresponding to the first uplink panel or the first uplink beam.
  • Step 410 is the same as step 210, which can be used as a reference and will not be repeated here.
  • Step 420 the terminal sends beam measurement information to the network device.
  • the beam measurement information corresponds to the uplink panel of the terminal, or the beam measurement information corresponds to the uplink beam of the terminal.
  • the power information includes at least one of the following information:
  • the first type of information panel identification information of the first uplink panel, and beam measurement results corresponding to the first uplink panel, where the P-MPR value of the first uplink panel is smaller than the MPE threshold.
  • the panel identification information is identification information related to the panel.
  • the panel identification information includes at least one of the following identifications: panel identification; reference signal set identification; reference signal identification; TCI state identification; spatial relationship information identification.
  • the reference signal set identifier includes multiple reference signal identifiers.
  • the reference signal includes at least one of the following: CSI-RS; SSB; SRS.
  • the beam measurement result includes at least one of the following information: a first signal quality parameter, the first signal quality parameter is obtained according to downlink reference signal measurement; a second signal quality parameter, the second signal quality parameter is obtained according to the first signal quality parameter
  • the parameter and the P-MPR value and/or power headroom value of the corresponding uplink panel or uplink beam are determined.
  • the first signal quality parameter is obtained by measuring the downlink reference signal of the corresponding uplink panel or uplink beam.
  • the first signal quality parameter is obtained by measuring the downlink reference signal corresponding to the first uplink beam.
  • the first signal quality parameter and/or the second signal quality parameter include at least one of the following information: L1 (layer one)-reference signal receiving power (Reference Signal Receiving Power, RSRP); L1-signal and interference plus noise Ratio (Signal to Interference plus Noise Ratio, SINR).
  • L1 layer one
  • RSRP Reference Signal Receiving Power
  • SINR Signal to Interference plus Noise Ratio
  • the P-MPR refers to a fallback value of the maximum transmit power of the terminal in order to meet the MPE requirement.
  • MPE is an index requirement for limiting the electromagnetic radiation of the terminal proposed from the perspective of human safety, and is used to specify the average maximum radiation power density of the terminal in a certain direction.
  • the second type of information beam identification information of the first uplink beam, and beam measurement results corresponding to the first uplink beam, where the P-MPR value of the first uplink beam is smaller than the MPE threshold.
  • the beam identification information is indication information related to the beam.
  • the beam identification information includes at least one of the following identifications: a reference signal identification; a TCI state identification; and a spatial relationship information identification.
  • the reference signal includes at least one of the following: CSI-RS; SSB; SRS.
  • the beam measurement result includes at least one of the following information: a first signal quality parameter, the first signal quality parameter is obtained according to downlink reference signal measurement; a second signal quality parameter, the second signal quality parameter is obtained according to the first signal quality parameter
  • the parameter and the P-MPR value and/or power headroom value of the corresponding uplink panel or uplink beam are determined.
  • the first signal quality parameter and/or the second signal quality parameter include at least one of the following information: L1-RSRP; L1-SINR.
  • the P-MPR refers to a fallback value of the maximum transmit power of the terminal in order to meet the MPE requirement.
  • MPE is an index requirement for limiting the electromagnetic radiation of the terminal proposed from the perspective of human safety, and is used to specify the average maximum radiation power density of the terminal in a certain direction.
  • the third type of information the panel identification information of the second uplink panel, and the beam measurement result corresponding to the second uplink panel, wherein the P-MPR value of the second uplink panel is not less than the MPE threshold.
  • the second uplink panel is a different uplink panel from the first uplink panel.
  • panel identification information beam measurement results, P-MPR and MPE, reference may be made to the foregoing content, and details are not repeated here.
  • the fourth type of information beam identification information of the second uplink beam, and beam measurement results corresponding to the second uplink beam, wherein the P-MPR value of the second uplink beam is not less than the MPE threshold.
  • the second uplink beam is a different uplink beam from the first uplink beam.
  • beam identification information beam measurement results, P-MPR, and MPE, reference may be made to the foregoing content, and details are not repeated here.
  • the fifth type of information the panel identification information of the third uplink panel, and the beam measurement results corresponding to the third uplink panel, where the third uplink panel is one of the n uplink panels sorted in the top i, n
  • the upper panel is sorted according to the size of the corresponding P-MPR value, n is a positive integer, and i is a positive integer not greater than n. Among them, the smaller the P-MPR value, the higher the ranking.
  • the third uplink panel is one or more uplink panels selected after sorting according to the P-MPR values corresponding to the multiple uplink panels, which is different from the classification method of the first uplink panel and the second uplink panel.
  • panel identification information beam measurement results, P-MPR and MPE, reference may be made to the foregoing content, and details are not repeated here.
  • the sixth type of information the beam identification information of the third uplink beam, and the beam measurement result corresponding to the third uplink beam, where the third uplink beam is one of the m uplink beams sorted in the first i, m
  • the uplink beams are obtained by sorting the corresponding P-MPR values, m is a positive integer, and i is a positive integer not greater than m. Among them, the smaller the P-MPR value, the higher the ranking.
  • the third uplink beam is one or more uplink beams selected after sorting according to the P-MPR values corresponding to the multiple uplink beams, and the classification method of the first uplink beam and the second uplink beam is different.
  • beam identification information beam measurement results, P-MPR, and MPE, reference may be made to the foregoing content, and details are not repeated here.
  • the determination of the third uplink panel or the third uplink beam can be performed in one of the following ways:
  • the terminal sorts the P-MPR values of the n uplink panels or m uplink beams in ascending order, and determines the one with the smallest P-MPR value as the third uplink panel or the third uplink beam;
  • the terminal sorts the P-MPR values of n uplink panels or m uplink beams in ascending order, and determines the first ones as the third uplink panel or the third uplink beam;
  • the terminal sorts the P-MPR values of the n uplink panels or m uplink beams in ascending order, and determines one or more with P-MPR values smaller than the preset value as the third uplink panel or the third uplink beam.
  • the terminal sorts the P-MPR values of the 10 uplink beams from small to large, and takes the one with the smallest P-MPR value as the third uplink beam; or, sorts the P-MPR values
  • the first 5 beams are used as the third uplink beam; or, the 3 beams whose P-MPR value is smaller than the preset value are used as the third uplink beam.
  • the terminal sends beam measurement information to the network device, where the beam measurement information includes at least one of a panel identifier, a reference signal set identifier, a TCI status identifier, and a spatial relationship information identifier of the first uplink panel.
  • the reference signal set identifier includes multiple reference signal identifiers.
  • the power information further includes a first signal quality parameter, and the first signal quality parameter includes the L1-RSRP and/or L1-SINR corresponding to the first uplink panel.
  • the terminal sends beam measurement information to the network device, and the beam measurement information includes at least one of the reference signal identifier, the TCI status identifier, and the spatial relationship information identifier of the first uplink beam, and the second signal
  • the quality parameter, the L1-RSRP included in the second signal quality parameter is determined according to the L1-RSRP and the P-MPR value and/or the power headroom value corresponding to the first uplink beam.
  • the terminal sends beam measurement information to the network device, where the beam measurement information includes at least one of the panel identifier and the reference signal identifier of the second uplink panel, and the second signal quality parameter, the second signal
  • the L1-SINR included in the quality parameter is determined according to the L1-SINR, P-MPR value and/or power headroom value corresponding to the second uplink panel.
  • the terminal sends beam measurement information to the network device, the beam measurement information includes the reference signal identifier of the second uplink beam, and the first signal quality parameter, and the first signal quality parameter includes the second uplink beam corresponding to L1-RSRP and/or L1-SINR.
  • step 410 and step 420 may be executed at the same time, or may not be executed at the same time; one of them may be executed, or both of them may be executed.
  • the information when the terminal sends various information corresponding to the same uplink panel to the network device, such as including the P-MPR value, power headroom value and beam measurement result of the uplink panel
  • the information can only include the panel identification information of the uplink panel once; when the terminal sends multiple information corresponding to the same uplink beam to the network device, such as including the P-MPR value of the uplink beam, power
  • the information may only contain the beam identification information of the uplink beam once.
  • the terminal sends the power information and beam measurement information corresponding to the uplink panel 1 to the network device.
  • the power information includes the panel identification information and the power headroom value of the uplink panel 1;
  • the beam measurement result includes the panel identification information of the uplink panel 1 and the first signal quality parameter corresponding to the uplink panel 1, and the first signal quality parameter includes the uplink panel 1
  • the corresponding L1-SINR please refer to the table below:
  • the terminal sends power information and beam measurement information corresponding to uplink beam 1 to the network device.
  • the power information includes the beam identification information of the uplink beam 1 and the P-MPR value
  • the beam measurement result includes the beam identification information of the uplink beam 1 and the second signal quality parameter corresponding to the uplink beam 1
  • the second signal quality parameter includes L1- RSRP is determined based on the L1-RSRP and P-MPR values corresponding to uplink beam 1.
  • the terminal can also send the beam measurement information corresponding to the uplink panel or the uplink beam to the network device, and the network device can perform uplink based on the power information and/or the beam measurement information. Scheduling, select the appropriate uplink panel or uplink beam, thereby improving the uplink transmission performance.
  • the embodiment of the present application provides the information content included in the beam measurement information and the information content included in the corresponding identifier.
  • Fig. 5 shows a flowchart of a method for sending and receiving power information provided by an exemplary embodiment of the present application. Taking the power information sending method applied to the terminal 02 in FIG. 1 and the power information receiving method applied to the network device 01 in FIG. 1 as an example, the method includes:
  • Step 510 the terminal sends power information to the network device.
  • the power information corresponds to the uplink panel of the terminal, or the power information corresponds to the uplink beam of the terminal.
  • Step 520 The network device receives the power information sent by the terminal.
  • the power information refers to parameter information related to power management of the terminal.
  • the power information includes at least one of the following four types of information:
  • the first type of information the panel identification information of the first uplink panel, and the corresponding P-MPR measurement value and/or power headroom value of the first uplink panel, wherein the P-MPR value of the first uplink panel is not less than the MPE threshold .
  • the panel identification information is identification information related to the panel.
  • the panel identification information includes at least one of the following identifications: panel identification; reference signal set identification; reference signal identification; TCI state identification; spatial relationship information identification.
  • the reference signal set identifier includes multiple reference signal identifiers.
  • the reference signal includes at least one of the following: CSI-RS; SSB; SRS.
  • the second type of information the beam identification information of the first uplink beam, and the P-MPR measurement value and/or power headroom value corresponding to the first uplink beam, wherein the P-MPR value of the first uplink beam is not less than the MPE threshold .
  • the beam identification information is indication information related to the beam.
  • the beam identification information includes at least one of the following identifications: a reference signal identification; a TCI state identification; and a spatial relationship information identification.
  • the reference signal includes at least one of the following: CSI-RS; SSB; SRS.
  • the third type of information the panel identification information of the second uplink panel, and the corresponding P-MPR measurement value and/or power headroom value of the second uplink panel, wherein the P-MPR value of the second uplink panel is smaller than the MPE threshold.
  • the second uplink panel is a different uplink panel from the first uplink panel.
  • panel identification information P-MPR, power headroom value, and MPE, reference may be made to the foregoing content, and details are not repeated here.
  • the fourth type of information beam identification information of the second uplink beam, and the P-MPR measurement value and/or power headroom value corresponding to the second uplink beam, wherein the P-MPR value of the second uplink beam is smaller than the MPE threshold.
  • the second uplink beam is a different uplink beam from the first uplink beam.
  • P-MPR power headroom value
  • MPE MPE
  • the network device receives the power information sent by the terminal, and the power information includes at least one of the panel identifier, the TCI status identifier, and the spatial relationship information identifier of the first uplink panel, and the first uplink panel corresponds to P-MPR measurements and/or power headroom values.
  • the network device receives the power information sent by the terminal, and the power information includes at least one of the TCI state identifier and the spatial relationship information identifier of the first uplink beam, and the corresponding P- MPR measurements and/or power headroom values.
  • the network device receives the power information sent by the terminal, and the power information includes the reference signal identifier of the second uplink panel, and the P-MPR measurement value and/or power headroom value corresponding to the second uplink panel .
  • the network device receives the power information sent by the terminal, and the power information includes the reference signal identifier of the second uplink beam, and the P-MPR measurement value and/or power headroom value corresponding to the second uplink beam .
  • the power information may include at least one of the following information: n panel identifiers, and n first bit indication information, wherein the i-th The first bit indication information is used to indicate whether the P-MPR value corresponding to the i-th uplink panel of the terminal is less than the MPE threshold; m beam identifiers, and m second bit indication information, where the j-th second bit indicates information It is used to indicate whether the P-MPR value corresponding to the jth uplink beam of the terminal is less than the MPE threshold; where n is a positive integer, i is a positive integer not greater than n, and j is a positive integer not greater than m.
  • the power information further includes third bit indication information.
  • the third bit indication information is used to indicate the P-MPR measurement value corresponding to the first uplink panel or the first uplink beam.
  • the network device by receiving the power information corresponding to the uplink panel or uplink beam sent by the terminal, the network device can perform uplink scheduling based on this, and select a suitable uplink panel or uplink beam. beam, thereby improving uplink transmission performance.
  • the embodiment of the present application provides the information content contained in the power information and the information content contained in the corresponding identification.
  • the power information includes the first bit indication information or the second bit indication information, which is used to indicate whether the P-MPR value of the corresponding uplink panel or uplink beam is greater than the MPE threshold; the power information also includes the third bit The indication information is used to indicate the P-MPR measurement value of the corresponding uplink panel or uplink beam.
  • Fig. 6 shows a flowchart of a method for sending and receiving power information provided by an exemplary embodiment of the present application. Taking the power information sending method applied to the terminal 02 in FIG. 1 and the power information receiving method applied to the network device 01 in FIG. 1 as an example, the method includes:
  • Step 610 When the P-MPR value corresponding to the uplink panel or uplink beam of the terminal is not less than the MPE threshold, the terminal sends power information to the network device.
  • the power information corresponds to the uplink panel of the terminal, or the power information corresponds to the uplink beam of the terminal.
  • the P-MPR refers to the fallback value of the maximum transmit power of the terminal in order to meet the MPE requirement.
  • MPE is proposed from the perspective of human body safety, and limits the electromagnetic radiation of the terminal. It is used to specify the average maximum radiation power density of the terminal in a certain direction.
  • the trigger condition for the terminal to send power information to the network device includes: the P-MPR value corresponding to the uplink panel or uplink beam of the terminal is not less than the MPE threshold. That is, the backoff value of the transmit power of the uplink panel or the uplink beam is greater than or equal to a preset index threshold.
  • Step 620 The network device receives the power information sent by the terminal.
  • the power information refers to parameter information related to power management of the terminal.
  • the power information includes at least one of the following four types of information:
  • the first type of information the panel identification information of the first uplink panel, and the corresponding P-MPR measurement value and/or power headroom value of the first uplink panel, wherein the P-MPR value of the first uplink panel is not less than the MPE threshold .
  • the panel identification information is identification information related to the panel.
  • the panel identification information includes at least one of the following identifications: panel identification; reference signal set identification; reference signal identification; TCI state identification; spatial relationship information identification.
  • the reference signal set identifier includes multiple reference signal identifiers.
  • the reference signal includes at least one of the following: CSI-RS; SSB; SRS.
  • the second type of information the beam identification information of the first uplink beam, and the P-MPR measurement value and/or power headroom value corresponding to the first uplink beam, wherein the P-MPR value of the first uplink beam is not less than the MPE threshold .
  • the beam identification information is indication information related to the beam.
  • the beam identification information includes at least one of the following identifications: reference signal identification; TCI state identification; spatial relationship information identification.
  • the reference signal includes at least one of the following: CSI-RS; SSB; SRS.
  • the third type of information the panel identification information of the second uplink panel, and the corresponding P-MPR measurement value and/or power headroom value of the second uplink panel, wherein the P-MPR value of the second uplink panel is smaller than the MPE threshold.
  • the second uplink panel is a different uplink panel from the first uplink panel.
  • panel identification information P-MPR, power headroom value, and MPE, reference may be made to the foregoing content, and details are not repeated here.
  • the fourth type of information beam identification information of the second uplink beam, and the P-MPR measurement value and/or power headroom value corresponding to the second uplink beam, wherein the P-MPR value of the second uplink beam is smaller than the MPE threshold.
  • the second uplink beam is a different uplink beam from the first uplink beam.
  • P-MPR power headroom value
  • MPE MPE
  • each uplink beam corresponds to a different P-MPR value
  • the first P-MPR value is greater than the MPE threshold
  • the second P-MPR value is equal to the MPE threshold
  • the third P-MPR value is smaller than the MPE threshold
  • the network device receives the power information sent by the terminal, where the power information includes information about at least one of the uplink beam 1, the uplink beam 2, and the uplink beam 3.
  • the power information includes at least one of the reference signal identifier of the uplink beam 1, the TCI status identifier, and the spatial relationship information identifier, and the P-MPR measurement value and/or power headroom value corresponding to the uplink beam 1; and/or
  • the power information includes the reference signal identifier of the uplink beam 2, and the P-MPR measurement value and/or power headroom value corresponding to the uplink beam 2; and/or the power information includes the reference signal identifier of the uplink beam 3, the TCI status identifier, At least one of the spatial relationship information identifiers, and the P-MPR measurement value and/or power headroom value corresponding to the uplink beam 3 .
  • the power information may include at least one of the following information: n panel identifiers, and n first bit indication information, wherein the i-th The first bit indication information is used to indicate whether the P-MPR value corresponding to the i-th uplink panel of the terminal is less than the MPE threshold; m beam identifiers, and m second bit indication information, where the j-th second bit indicates information It is used to indicate whether the P-MPR value corresponding to the jth uplink beam of the terminal is less than the MPE threshold; where n is a positive integer, i is a positive integer not greater than n, and j is a positive integer not greater than m.
  • the power information further includes third bit indication information.
  • the third bit indication information is used to indicate the P-MPR measurement value corresponding to the first uplink panel or the first uplink beam.
  • the power information may further include third bit indication information.
  • Step 630 According to the power information, the network device performs uplink scheduling.
  • the uplink scheduling refers to that the network device schedules the uplink panel or the uplink beam according to the received power information corresponding to the uplink panel or the uplink beam, and considers the maximum transmission power that the uplink panel or the uplink beam can achieve.
  • step 630 can be implemented as follows:
  • the network device determines a target beam, and the target beam is used for the terminal to send at least one of uplink TCI status, spatial setting (Spatial Setting) and spatial relationship information.
  • the target beam is used for the terminal to send at least one of uplink TCI status, spatial setting (Spatial Setting) and spatial relationship information.
  • the method for receiving power information provided by the embodiment of the present application adds a trigger condition for receiving power information. Specifically, when the P-MPR value corresponding to the uplink panel or uplink beam of the terminal is not less than the MPE threshold, the network device receives the power information sent by the terminal.
  • Fig. 7 shows a flowchart of a method for sending and receiving power information provided by an exemplary embodiment of the present application. Taking the power information sending method applied to the terminal 02 in FIG. 1 and the power information receiving method applied to the network device 01 in FIG. 1 as an example, the method includes:
  • Step 710 the terminal sends power information to the network device.
  • the power information corresponds to the uplink panel of the terminal, or the power information corresponds to the uplink beam of the terminal.
  • Step 720 The network device receives the power information sent by the terminal.
  • the power information refers to parameter information related to power management of the terminal.
  • the power information includes at least one of the following four types of information:
  • the first type of information the panel identification information of the first uplink panel, and the corresponding P-MPR measurement value and/or power headroom value of the first uplink panel, wherein the P-MPR value of the first uplink panel is not less than the MPE threshold .
  • the second type of information the beam identification information of the first uplink beam, and the P-MPR measurement value and/or power headroom value corresponding to the first uplink beam, wherein the P-MPR value of the first uplink beam is not less than the MPE threshold .
  • the third type of information the panel identification information of the second uplink panel, and the corresponding P-MPR measurement value and/or power headroom value of the second uplink panel, wherein the P-MPR value of the second uplink panel is smaller than the MPE threshold.
  • the fourth type of information the beam identification information of the second uplink beam, and the P-MPR measurement value and/or power headroom value corresponding to the second uplink beam, wherein the P-MPR value of the second uplink beam is smaller than the MPE threshold.
  • the power information may include at least one of the following information: n panel identifiers, and n first bit indication information, the ith first bit indicates The information is used to indicate whether the P-MPR value corresponding to the i-th uplink panel of the terminal is less than the MPE threshold; m beam identifiers, and m second-bit indication information, and the j-th second-bit indication information is used to indicate the terminal's Whether the P-MPR value corresponding to the j uplink beams is less than the MPE threshold; wherein, n is a positive integer, i is a positive integer not greater than n, and j is a positive integer not greater than m.
  • the power information further includes third bit indication information.
  • the third bit indication information is used to indicate the P-MPR measurement value corresponding to the first uplink panel or the first uplink beam.
  • Steps 710 and 720 are the same as steps 610 and 620, which can be used for reference and will not be repeated here.
  • Step 730 the terminal sends beam measurement information to the network device.
  • the beam measurement information corresponds to the uplink panel of the terminal, or the beam measurement information corresponds to the uplink beam of the terminal.
  • Step 740 The network device receives beam measurement information sent by the terminal.
  • the power information includes at least one of the following information:
  • the first type of information panel identification information of the first uplink panel, and beam measurement results corresponding to the first uplink panel, where the P-MPR value of the first uplink panel is smaller than the MPE threshold.
  • the panel identification information is identification information related to the panel.
  • the panel identification information includes at least one of the following identifications: panel identification; reference signal set identification; reference signal identification; TCI state identification; inter-relationship information identification.
  • the reference signal set identifier includes multiple reference signal identifiers.
  • the reference signal includes at least one of the following: CSI-RS; SSB; SRS.
  • the beam measurement result includes at least one of the following information: a first signal quality parameter, the first signal quality parameter is obtained according to downlink reference signal measurement; a second signal quality parameter, the second signal quality parameter is obtained according to the first signal quality parameter
  • the parameter and the P-MPR value and/or power headroom of the corresponding uplink panel or uplink beam are determined.
  • the first signal quality parameter and/or the second signal quality parameter include at least one of the following information: L1-RSRP; L1-SINR.
  • the P-MPR refers to a fallback value of the maximum transmit power of the terminal in order to meet the MPE requirement.
  • MPE is an index requirement for limiting the electromagnetic radiation of the terminal proposed from the perspective of human safety, and is used to specify the average maximum radiation power density of the terminal in a certain direction.
  • the second type of information beam identification information of the first uplink beam, and beam measurement results corresponding to the first uplink beam, where the P-MPR value of the first uplink beam is smaller than the MPE threshold.
  • the beam identification information is indication information related to the beam.
  • the beam identification information includes at least one of the following identifications: reference signal identification; TCI state identification; spatial relationship information identification.
  • the reference signal includes at least one of the following: CSI-RS; SSB; SRS.
  • the beam measurement result includes at least one of the following information: a first signal quality parameter, the first signal quality parameter is obtained according to downlink reference signal measurement; a second signal quality parameter, the second signal quality parameter is obtained according to the first signal quality parameter
  • the parameter and the P-MPR value and/or power headroom value of the corresponding uplink panel or uplink beam are determined.
  • the first signal quality parameter and/or the second signal quality parameter include at least one of the following information: L1-RSRP; L1-SINR.
  • the P-MPR refers to a fallback value of the maximum transmit power of the terminal in order to meet the MPE requirement.
  • MPE is an index requirement for limiting the electromagnetic radiation of the terminal proposed from the perspective of human safety, and is used to specify the average maximum radiation power density of the terminal in a certain direction.
  • the third type of information the panel identification information of the second uplink panel, and the beam measurement result corresponding to the second uplink panel, wherein the P-MPR value of the second uplink panel is not less than the MPE threshold.
  • the second uplink panel is a different uplink panel from the first uplink panel.
  • panel identification information beam measurement results, P-MPR and MPE, reference may be made to the foregoing content, and details are not repeated here.
  • the fourth type of information beam identification information of the second uplink beam, and beam measurement results corresponding to the second uplink beam, wherein the P-MPR value of the second uplink beam is not less than the MPE threshold.
  • the second uplink beam is a different uplink beam from the first uplink beam.
  • beam identification information beam measurement results, P-MPR, and MPE, reference may be made to the foregoing content, and details are not repeated here.
  • the fifth type of information the panel identification information of the third uplink panel, and the beam measurement results corresponding to the third uplink panel, where the third uplink panel is one of the n uplink panels sorted in the top i, n
  • the upper panel is sorted according to the size of the corresponding P-MPR value, n is a positive integer, and i is a positive integer not greater than n. Among them, the smaller the P-MPR value, the higher the ranking.
  • the third uplink panel is one or more uplink panels selected after sorting according to the P-MPR values corresponding to the multiple uplink panels, which is different from the classification method of the first uplink panel and the second uplink panel.
  • panel identification information beam measurement results, P-MPR and MPE, reference may be made to the foregoing content, and details are not repeated here.
  • the sixth type of information the beam identification information of the third uplink beam, and the beam measurement result corresponding to the third uplink beam, where the third uplink beam is one of the m uplink beams sorted in the first i, m
  • the uplink beams are obtained by sorting the corresponding P-MPR values, m is a positive integer, and i is a positive integer not greater than m. Among them, the smaller the P-MPR value, the higher the ranking.
  • the third uplink beam is one or more uplink beams selected after sorting according to the P-MPR values corresponding to the multiple uplink beams, and the classification method of the first uplink beam and the second uplink beam is different.
  • beam identification information beam measurement results, P-MPR, and MPE, reference may be made to the foregoing content, and details are not repeated here.
  • the determination of the third uplink panel or the third uplink beam can be performed in one of the following ways:
  • the terminal sorts the P-MPR values of the n uplink panels or m uplink beams in ascending order, and determines the one with the smallest P-MPR value as the third uplink panel or the third uplink beam;
  • the terminal sorts the P-MPR values of the n uplink panels or m uplink beams in ascending order, and the first ones are determined to be the third uplink panel or the third uplink beam;
  • the terminal sorts the P-MPR values of the n uplink panels or m uplink beams in ascending order, and determines one or more with P-MPR values smaller than the preset value as the third uplink panel or the third uplink beam.
  • the terminal sends beam measurement information to the network device, where the beam measurement information includes at least one of the TCI status identifier and the spatial relationship information identifier of the first uplink panel, and the first signal quality parameter, the first A signal quality parameter includes L1-RSRP and L1-SINR corresponding to the first uplink panel.
  • the terminal sends beam measurement information to the network device, where the beam measurement information includes at least one of the reference signal identifier and the spatial relationship information identifier of the first uplink beam, and the second signal quality parameter, the first The L1-RSRP included in the two signal quality parameters is determined according to the L1-RSRP and the P-MPR value and/or the power headroom value corresponding to the first uplink beam.
  • the terminal sends beam measurement information to the network device.
  • the beam measurement information includes the reference signal identifier of the second uplink panel and the second signal quality parameter.
  • the L1-SINR included in the second signal quality parameter is Determined according to the L1-SINR, P-MPR value and/or power headroom value corresponding to the second uplink panel.
  • the terminal sends beam measurement information to the network device, the beam measurement information includes the reference signal identifier of the second uplink beam, and the first signal quality parameter, and the first signal quality parameter includes the second uplink beam corresponding to The L1-RSRP and L1-SINR.
  • step 710 and step 730 may be executed at the same time, or may not be executed at the same time; one of them may be executed, or both of them may be executed.
  • step 720 and step 740 may be executed at the same time, or may not be executed at the same time; one of them may be executed, or both of them may be executed.
  • Step 750 According to the beam measurement information, the network device performs uplink scheduling.
  • the uplink scheduling refers to that the network device schedules the uplink panel or the uplink beam according to the received beam measurement information corresponding to the uplink panel or the uplink beam, and considers the maximum transmit power that the uplink panel or the uplink beam can achieve.
  • step 750 can be implemented as follows:
  • the network device determines a target beam, and the target beam is used for the terminal to send at least one of uplink TCI status, spatial setting (Spatial Setting) and spatial relationship information.
  • the target beam is used for the terminal to send at least one of uplink TCI status, spatial setting (Spatial Setting) and spatial relationship information.
  • the power information receiving method by receiving the beam measurement information corresponding to the uplink panel or the uplink beam sent by the terminal, the network device can perform uplink scheduling based on the power information and/or the beam measurement information, An appropriate uplink panel or uplink beam is selected, thereby improving uplink transmission performance.
  • the embodiment of the present application provides the information content included in the beam measurement information and the information content included in the corresponding identifier.
  • Fig. 8 shows a structural block diagram of an apparatus for sending power information provided by an exemplary embodiment of the present application, and the apparatus may be implemented as a terminal, or may be implemented as a part of the terminal.
  • the unit includes:
  • a sending module 820 configured for the terminal to send power information to the network device
  • the power information corresponds to the uplink panel of the terminal, or the power information corresponds to the uplink beam of the terminal.
  • the power information includes at least one of the following information: panel identification information of the first uplink panel, and P-MPR measurement value and/or power headroom value corresponding to the first uplink panel , wherein the P-MPR value of the first uplink panel is not less than the MPE threshold; the beam identification information of the first uplink beam, and the P-MPR measurement value and/or power headroom value corresponding to the first uplink beam, wherein, the first The P-MPR value of the uplink beam is not less than the MPE threshold; the panel identification information of the second uplink panel, and the P-MPR measurement value and/or power headroom value corresponding to the second uplink panel, wherein the P-MPR value of the second uplink panel
  • the MPR value is less than the MPE threshold; the beam identification information of the second uplink beam, and the P-MPR measurement value and/or power headroom value corresponding to the second uplink beam, where the P-MPR value of the second uplink beam is less than the MPE threshold.
  • the sending module 820 is configured to send power information from the terminal to the network device when the P-MPR value corresponding to the uplink panel or uplink beam of the terminal is not less than the MPE threshold.
  • the power information includes at least one of the following information: n panel identifiers, and n first bit indication information, where the ith first bit indication information is used to indicate the terminal's first Whether the P-MPR value corresponding to the i uplink panel is less than the MPE threshold; m beam identifiers, and the mth bit indication information, the jth second bit indication information is used to indicate the P corresponding to the jth uplink beam of the terminal -whether the MPR value is less than the MPE threshold; wherein, n and m are both positive integers, i is a positive integer not greater than n, and j is a positive integer not greater than m.
  • the power information when the P-MPR value corresponding to the first uplink panel or the first uplink beam of the terminal is not less than the MPE threshold, the power information further includes third bit indication information; wherein, the first The three-bit indication information is used to indicate the P-MPR measurement value corresponding to the first uplink panel or the first uplink beam.
  • the sending module 820 is also used for the terminal to send beam measurement information to the network device; wherein, the beam measurement information corresponds to the uplink panel of the terminal, or the beam measurement information corresponds to the uplink beam of the terminal correspond.
  • the beam measurement information includes at least one of the following information: panel identification information of the first uplink panel, and beam measurement results corresponding to the first uplink panel, wherein the first uplink panel's The P-MPR value is less than the MPE threshold; the beam identification information of the first uplink beam, and the beam measurement results corresponding to the first uplink beam, wherein the P-MPR value of the first uplink beam is less than the MPE threshold; the panel identification of the second uplink panel information, and the beam measurement results corresponding to the second uplink panel, wherein the P-MPR value of the second uplink panel is not less than the MPE threshold; the beam identification information of the second uplink beam, and the beam measurement results corresponding to the second uplink beam, wherein , the P-MPR value of the second uplink beam is not less than the MPE threshold; the panel identification information of the third uplink panel, and the beam measurement results corresponding to the third uplink panel, where the third uplink panel is the first in the n uplink panels
  • the panel identification information includes at least one of the following identifications: panel identification; reference signal set identification; reference signal identification; transmission configuration indication TCI state identification; spatial relationship information identification.
  • the beam identification information includes at least one of the following identifications: a reference signal identification; a TCI state identification; and a spatial relationship information identification.
  • the reference signal includes at least one of the following: CSI-RS; SSB; SRS.
  • the beam measurement result includes at least one of the following information: the first signal quality parameter, which is obtained by measuring the downlink reference signal; the second signal quality parameter, the second signal quality parameter The quality parameter is determined according to the first signal quality parameter and the corresponding P-MPR value and/or power headroom value of the uplink panel or uplink beam.
  • the first signal quality parameter and/or the second signal quality parameter include at least one of the following information: L1-RSRP; L1-SINR.
  • Fig. 9 shows a structural block diagram of an apparatus for receiving power information provided by an exemplary embodiment of the present application, and the apparatus may be implemented as a network device, or may be implemented as a part of the network device.
  • the unit includes:
  • the receiving module 920 is used for the network device to receive the power information sent by the terminal;
  • the power information corresponds to the uplink panel of the terminal, or the power information corresponds to the uplink beam of the terminal.
  • the power information includes at least one of the following information: panel identification information of the first uplink panel, and P-MPR measurement value and/or power headroom value corresponding to the first uplink panel , wherein the P-MPR value of the first uplink panel is not less than the MPE threshold; the beam identification information of the first uplink beam, and the P-MPR measurement value and/or power headroom value corresponding to the first uplink beam, wherein, the first The P-MPR value of the uplink beam is not less than the MPE threshold; the panel identification information of the second uplink panel, and the P-MPR measurement value and/or power headroom value corresponding to the second uplink panel, wherein the P-MPR value of the second uplink panel
  • the MPR value is less than the MPE threshold; the beam identification information of the second uplink beam, and the P-MPR measurement value and/or power headroom value corresponding to the second uplink beam, where the P-MPR value of the second uplink beam is less than the MPE threshold.
  • the receiving module 920 is configured to, when the P-MPR value corresponding to the uplink panel or uplink beam of the terminal is not less than the MPE threshold, the network device receives the power information sent by the terminal.
  • the power information includes at least one of the following information: n panel identifiers, and n first bit indication information, where the ith first bit indication information is used to indicate the terminal's first Whether the P-MPR value corresponding to the i uplink panel is less than the MPE threshold; m beam identifiers, and m second bit indication information, the jth second bit indication information is used to indicate the P corresponding to the jth uplink beam of the terminal -whether the MPR value is less than the MPE threshold; wherein, n and m are both positive integers, i is a positive integer not greater than n, and j is a positive integer not greater than m.
  • the power information when the P-MPR value corresponding to the first uplink panel or the first uplink beam of the terminal is not less than the MPE threshold, the power information further includes third bit indication information; wherein, the first The three-bit indication information is used to indicate the P-MPR measurement value corresponding to the first uplink panel or the first uplink beam.
  • the receiving module 920 is also used for the network device to receive beam measurement information sent by the terminal; wherein, the beam measurement information corresponds to the uplink panel of the terminal, or the beam measurement information corresponds to the uplink panel of the terminal beam correspondence.
  • the beam measurement information includes at least one of the following information: panel identification information of the first uplink panel, and beam measurement results corresponding to the first uplink panel, wherein the first uplink panel's The P-MPR value is less than the MPE threshold; the beam identification information of the first uplink beam, and the beam measurement results corresponding to the first uplink beam, wherein the P-MPR value of the first uplink beam is less than the MPE threshold; the panel identification of the second uplink panel information, and the beam measurement results corresponding to the second uplink panel, wherein the P-MPR value of the second uplink panel is not less than the MPE threshold; the beam identification information of the second uplink beam, and the beam measurement results corresponding to the second uplink beam, wherein , the P-MPR value of the second uplink beam is not less than the MPE threshold; the panel identification information of the third uplink panel, and the beam measurement results corresponding to the third uplink panel, where the third uplink panel is the first in the n uplink panels
  • the panel identification information includes at least one of the following identifications: panel identification; reference signal set identification; reference signal identification; TCI status identification; spatial relationship information identification.
  • the beam identification information includes at least one of the following identifications: a reference signal identification; a TCI state identification; and a spatial relationship information identification.
  • the reference signal includes at least one of the following: CSI-RS; SSB; SRS.
  • the beam measurement result includes at least one of the following information: the first signal quality parameter, which is obtained by measuring the downlink reference signal; the second signal quality parameter, the second signal quality parameter The quality parameter is determined according to the first signal quality parameter and the corresponding P-MPR value and/or power headroom value of the uplink panel or uplink beam.
  • the first signal quality parameter and/or the second signal quality parameter include at least one of the following information: L1-RSRP; L1-SINR.
  • the device further includes a scheduling module 940, configured to perform uplink scheduling on the network equipment according to the power information.
  • the scheduling module 940 is configured to perform uplink scheduling on network devices according to beam measurement information.
  • the scheduling module 940 is used for the network device to determine a target beam, and the target beam is used for the terminal to send at least one of TCI status, space setting and space relationship information.
  • FIG. 10 shows a schematic structural diagram of a communication device (terminal or network device) provided by an exemplary embodiment of the present application.
  • the communication device includes: a processor 1001 , a receiver 1002 , a transmitter 1003 , a memory 1004 and a bus 1005 .
  • the processor 1001 includes one or more processing cores, and the processor 1001 executes various functional applications and information processing by running software programs and modules.
  • the receiver 1002 and the transmitter 1003 can be realized as a communication component, and the communication component can be a communication chip.
  • the memory 1004 is connected to the processor 1001 through a bus 1005 .
  • the memory 1004 may be used to store at least one instruction, and the processor 1001 is used to execute the at least one instruction, so as to implement each step in the method for sending power information as described above, or each step in the method for receiving power information as described above step.
  • volatile or non-volatile storage devices include but not limited to: magnetic disk or optical disk, electrically erasable and programmable Electrically-Erasable Programmable Read Only Memory (EEPROM), Erasable Programmable Read Only Memory (EPROM), Static Random Access Memory (SRAM), Read-Only Memory (Read-Only Memory, ROM), magnetic memory, flash memory, programmable read-only memory (Programmable Read-Only Memory, PROM).
  • EEPROM Electrically-Erasable Programmable Read Only Memory
  • EPROM Erasable Programmable Read Only Memory
  • SRAM Static Random Access Memory
  • Read-Only Memory Read-Only Memory
  • PROM Programmable Read-Only Memory
  • the present application provides a terminal, the terminal includes a processor 1001 and a memory 1004, at least one program code is stored in the memory 1004, and the program code is loaded and executed by the processor 1001 to implement the above The transmission method of the power information described above.
  • the present application provides a network device, the network device includes a processor 1001 and a memory 1004, at least one program code is stored in the memory 1004, and the program code is loaded and executed by the processor 1001 to implement The reception method of the power information is as described above.
  • a computer-readable storage medium is also provided, and at least one program code is stored in the readable storage medium, and the program code is loaded and executed by the processor 1001 to implement the power information sending method as described above , or, the method for receiving power information as described above.
  • a computer program product or computer program comprising computer instructions stored in a computer-readable storage
  • the computer instruction is read by reading the storage medium, and the processor executes the computer instruction, so that the computer device executes the method for sending power information as described above, or the method for receiving power information as described above.
  • a chip is provided, the chip includes a programmable logic circuit or a program, and the chip is used to implement the above-mentioned method for sending power information, or the above-mentioned method for receiving power information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Optical Communication System (AREA)

Abstract

本申请公开了一种功率信息的发送方法、接收方法、装置、设备及存储介质,涉及移动通信领域。所述发送方法包括:终端向网络设备发送功率信息;其中,功率信息与终端的上行面板对应,或者功率信息述终端的上行波束对应。通过接收终端发送的与终端的上行面板或上行波束对应的功率信息,网络设备进行上行调度,选择出合适的上行面板或上行波束,提高了上行传输性能。

Description

功率信息的发送方法、接收方法、装置、设备及存储介质 技术领域
本申请涉及移动通信领域,特别涉及一种功率信息的发送方法、接收方法、装置、设备及存储介质。
背景技术
新空口(New Radio,NR)系统中,由于高频信道的衰减速度较快,为保证覆盖范围,通常需要使用基于波束(Beam)的发送和接收。
在终端存在多个天线面板,简称面板(Panel)时,每个面板均对应有多个波束方向。每个面板或波束的方向不同,比如朝向人体或背向人体。在终端进行上行发送时,由于最大允许辐射(Maximum Permissible Exposure,MPE)的限制,上行面板或上行波束受到的影响不同。比如,朝向人体的上行面板受MPE的影响较大,需要大大降低其发射功率;又如,背向人体的上行波束受MPE的影响较小,稍微降低发射功率即可。
相关技术中通常将终端视为一个整体,导致网络设备无法选择最合适的上行面板或上行波束,从而影响上行传输性能。
发明内容
本申请实施例提供了一种功率信息的发送方法、接收方法、装置、设备及存储介质,对终端的上行面板或上行波束进行区分,终端向网络设备发送与终端的上行面板或上行波束对应的功率信息,以便于网络设备进行上行调度。所述技术方案如下:
根据本申请的一个方面,提供了一种功率信息的发送方法,所述方法包括:
终端向网络设备发送功率信息;
其中,功率信息与终端的上行面板对应,或者功率信息终端的上行波束对应。
可选的,功率信息包括如下信息中的至少一种:第一上行面板的面板标识信息,以及第一上行面板对应的功率管理最大功率回退P-MPR测量值和/或功率余量值,其中,第一上行面板的P-MPR值不小于最大允许辐射MPE阈值;第一上行波束的波束标识信息,以及第一上行波束对应的P-MPR测量值和/或功率余量值,其中,第一上行波束的P-MPR值不小于MPE阈值;第二上行面板的面板标识信息,以及第二上行面板对应的P-MPR测量值和/或功率余量值,其中,第二上行面板的P-MPR值小于MPE阈值;第二上行波束的波束标识信息,以 及第二上行波束对应的P-MPR测量值和/或功率余量值,其中,第二上行波束的P-MPR值小于MPE阈值。
可选的,终端向网络设备功率信息,包括:在终端的上行面板或上行波束对应的功率管理最大功率回退P-MPR值不小于最大允许辐射MPE阈值的情况下,终端向网络设备发送功率信息。
可选的,功率信息包括如下信息中的至少一种:n个面板标识以及n个第一比特指示信息,第i个第一比特指示信息用于指示终端的第i个上行面板对应的功率管理最大功率回退P-MPR值是否小于最大允许辐射MPE阈值;m个波束标识,以及m个第二比特指示信息,第j个第二比特指示信息用于指示终端的第j个上行波束对应的P-MPR值是否小于MPE阈值;其中,n、m均为正整数,i为不大于n的正整数,i为不大于m的正整数。
可选的,在终端的第一上行面板或第一上行波束对应的P-MPR值不小于MPE阈值的情况下,功率信息还包括第三比特指示信息;其中,第三比特指示信息用于指示第一上行面板或第一上行波束对应的P-MPR测量值。
可选的,该方法还包括终端向网络设备发送波束测量信息;其中,波束测量信息与终端的上行面板对应,或者波束测量信息与终端的上行波束对应。
可选的,波束测量信息包括如下信息中的至少一种:第一上行面板的面板标识信息,以及第一上行面板对应的波束测量结果,其中,第一上行面板的功率管理最大功率回退P-MPR值小于最大允许辐射MPE阈值;第一上行波束的波束标识信息,以及第一上行波束对应的波束测量结果,其中,第一上行波束的P-MPR值小于MPE阈值;第二上行面板的面板标识信息,以及第二上行面板对应的波束测量结果,其中,第二上行面板的P-MPR值不小于MPE阈值;第二上行波束的波束标识信息,以及第二上行波束对应的波束测量结果,其中,第二上行波束的P-MPR值不小于MPE阈值;第三上行面板的面板标识信息,以及第三上行面板对应的波束测量结果,其中,第三上行面板是n个上行面板中排序在前i个中的其中一个,n个上行面板根据对应的P-MPR值的大小进行排序得到,n为正整数,i为不大于n的正整数;第三上行波束的波束标识信息,以及第三上行波束对应的波束测量结果,其中,第三上行波束是m个上行波束中排序在前i个中的其中一个,m个上行波束根据对应的P-MPR值的大小进行排序得到,m为正整数,i为不大于m的正整数。
可选的,面板标识信息包括如下标识中的至少一种:面板标识;参考信号集合标识;参考信号标识;传输配置指示TCI状态标识;空间关系信息标识。
可选的,波束标识信息包括如下标识中的至少一种:参考信号标识;传输配置指示TCI状态标识;空间关系信息标识。
可选的,参考信号包括如下中的至少一种:信道状态信息参考信号CSI-RS; 同步信号块SSB;探测参考信号SRS。
可选的,波束测量结果包括如下信息中的至少一种:第一信号质量参数,第一信号质量参数根据下行参考信号测量得到;第二信号质量参数,第二信号质量参数根据第一信号质量参数和对应的上行面板或上行波束的P-MPR值和/或功率余量值确定。
可选的,第一信号质量参数和/或第二信号质量参数包括如下信息中的至少一种:层一参考信号接收功率L1-RSRP;层一信号与干扰加噪声比L1-SINR。
根据本申请的一个方面,提供了一种功率信息的接收方法,所述方法包括:
网络设备接收终端发送的功率信息;
其中,功率信息与终端的上行面板对应,或者功率信息与终端的上行波束对应。
可选的,功率信息包括如下信息中的至少一种:第一上行面板的面板标识信息,以及第一上行面板对应的功率管理最大功率回退P-MPR测量值和/或功率余量值,其中,第一上行面板的P-MPR值不小于最大允许辐射MPE阈值;第一上行波束的波束标识信息,以及第一上行波束对应的P-MPR测量值和/或功率余量值,其中,第一上行波束的P-MPR值不小于MPE阈值;第二上行面板的面板标识信息,以及第二上行面板对应的P-MPR测量值和/或功率余量值,其中,第二上行面板的P-MPR值小于MPE阈值;第二上行波束的波束标识信息,以及第二上行波束对应的P-MPR测量值和/或功率余量值,其中,第二上行波束的P-MPR值小于MPE阈值。
可选的,网络设备接收终端发送的功率信息,包括:在终端的上行面板或上行波束对应的功率管理最大功率回退P-MPR值不小于最大允许辐射MPE阈值的情况下,网络设备接收终端发送的功率信息。
可选的,功率信息包括如下信息中的至少一种:n个面板标识以及n个第一比特指示信息,第i个第一比特指示信息用于指示终端的第i个上行面板对应的功率管理最大功率回退P-MPR值是否小于最大允许辐射MPE阈值;m个波束标识,以及m个第二比特指示信息,第j个第二比特指示信息用于指示终端的第j个上行波束对应的P-MPR值是否小于MPE阈值;其中,n、m均为正整数,i为不大于n的正整数,i为不大于m的正整数。
可选的,在终端的第一上行面板或第一上行波束对应的P-MPR值不小于MPE阈值的情况下,功率信息还包括第三比特指示信息;其中,第三比特指示信息用于指示第一上行面板或第一上行波束对应的P-MPR测量值。
可选的,该方法还包括:网络设备接收终端发送的波束测量信息;其中,波束测量信息与终端的上行面板对应,或者波束测量信息与终端的上行波束对应。
可选的,波束测量信息包括如下信息中的至少一种:第一上行面板的面板标识信息,以及第一上行面板对应的波束测量结果,其中,第一上行面板的功率管理最大功率回退P-MPR值小于最大允许辐射MPE阈值;第一上行波束的波束标识信息,以及第一上行波束对应的波束测量结果,其中,第一上行波束的P-MPR值小于MPE阈值;第二上行面板的面板标识信息,以及第二上行面板对应的波束测量结果,其中,第二上行面板的P-MPR值不小于MPE阈值;第二上行波束的波束标识信息,以及第二上行波束对应的波束测量结果,其中,第二上行波束的P-MPR值不小于MPE阈值;第三上行面板的面板标识信息,以及第三上行面板对应的波束测量结果,其中,第三上行面板是n个上行面板中排序在前i个中的其中一个,n个上行面板根据对应的P-MPR值的大小进行排序得到,n为正整数,i为不大于n的正整数;第三上行波束的波束标识信息,以及第三上行波束对应的波束测量结果,其中,第三上行波束是m个上行波束中排序在前i个中的其中一个,m个上行波束根据对应的P-MPR值的大小进行排序得到,m为正整数,i为不大于m的正整数。
可选的,面板标识信息包括如下标识中的至少一种:面板标识;参考信号集合标识;参考信号标识;传输配置指示TCI状态标识;空间关系信息标识。
可选的,波束标识信息包括如下标识中的至少一种:参考信号标识;传输配置指示TCI状态标识;空间关系信息标识。
可选的,参考信号包括如下中的至少一种:信道状态信息参考信号CSI-RS;同步信号块SSB;探测参考信号SRS。
可选的,波束测量结果包括如下信息中的至少一种:第一信号质量参数,第一信号质量参数根据下行参考信号测量得到;第二信号质量参数,第二信号质量参数根据第一信号质量参数和对应的上行面板或上行波束的P-MPR值和/或功率余量值确定。
可选的,第一信号质量参数和/或第二信号质量参数包括如下信息中的至少一种:层一参考信号接收功率L1-RSRP;层一信号与干扰加噪声比L1-SINR。
可选的,该方法还包括:根据功率信息,网络设备进行上行调度。
可选的,该方法还包括:根据波束测量信息,网络设备进行上行调度。
可选的,该方法还包括:网络设备确定目标波束,目标波束用于终端发送上行传输配置指示TCI状态、空间设置和空间关系信息中的至少一个。
根据本申请的一个方面,提供了一种功率信息的发送装置,所述装置包括:
发送模块,用于终端向网络设备发送功率信息;
其中,功率信息与终端的上行面板对应,或者功率信息述终端的上行波束对应。
根据本申请的一个方面,提供了一种功率信息的发送装置,所述装置包括:
接收模块,用于网络设备接收终端发送的功率信息;
其中,功率信息与终端的上行面板对应,或者功率信息与终端的上行波束对应。
根据本申请的一个方面,提供了一种终端,所述终端包括处理器和存储器,存储器中存储有至少一条程序代码,程序代码由处理器加载并执行以实现如权上所述的功率信息的发送方法。
根据本申请的一个方面,提供了一种网络设备,所述网络设备包括处理器和存储器,存储器中存储有至少一条程序代码,程序代码由处理器加载并执行以实现如上所述的功率信息的接收方法。
根据本申请的一个方面,提供了一种计算机可读存储介质中存储有至少一条程序代码,程序代码由处理器加载并执行以实现如上所述的功率信息的发送方法,或者,如上所述的功率信息的接收方法。
根据本申请的一个方面,提供了一种计算机程序产品或计算机程序,该计算机程序产品或计算机程序包括计算机指令,该计算机指令存储在计算机可读存储介质中,计算机设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行如上所述的功率信息的发送方法,或者,如上所述的功率信息的接收方法。
根据本申请的一个方面,提供了一种芯片,该芯片包括可编程逻辑电路或程序,该芯片用于实现如上所述的功率信息的发送方法,或者,如上所述的功率信息的接收方法。
本申请实施例提供的技术方案至少包括如下有益效果:
通过发送与终端的上行面板或上行波束对应的功率信息,网络设备可以获取到以上行面板或上行波束为粒度的功率信息,并基于此进行上行调度,选择出合适的上行面板或上行波束,提高了上行传输性能。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个示例性实施例提供的移动通信系统的示意图;
图2是本申请一个示例性实施例提供的功率信息的发送方法的流程图;
图3是本申请一个示例性实施例提供的功率信息的发送方法的流程图;
图4是本申请一个示例性实施例提供的功率信息的发送方法的流程图;
图5是本申请一个示例性实施例提供的功率信息的发送和接收方法的流程 图;
图6是本申请一个示例性实施例提供的功率信息的发送和接收方法的流程图;
图7是本申请一个示例性实施例提供的功率信息的发送和接收方法的流程图;
图8是本申请一个示例性实施例提供的功率信息的发送装置的结构示意图;
图9是本申请一个示例性实施例提供的功率信息的接收装置的结构示意图;
图10是本申请一个示例性实施例示出的通信设备的框图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
图1示出了本申请一个示例性实施例提供的移动通信系统的示意图,包括网络设备01和终端02。
其中,终端02上设置有至少一个上行面板,终端02通过上行波束与网络设备01进行通信。
具体的,上行波束通过上行面板发射,一个上行面板可以对应一个或多个上行波束,且每个上行波束的发送方向不同。比如,终端02上设置有上行面板1、上行面板2…上行面板n,上行波束1和上行波束2通过上行面板1发射。
具体的,终端02用于传输的上行面板和下行面板可以为同一个天线面板或不同的天线面板。
相当于,终端02通过上行波束向网络设备01上报信息或数据。
相应的,网络设备01通过下行波束向终端02下发信息。示意性的,一个上行波束对应一个下行波束。
图2示出了本申请一个示例性实施例提供的功率信息的发送方法的流程图。以功率信息的发送方法应用于图1的终端02中为例,该方法包括:
步骤210:终端向网络设备发送功率信息。
示意性的,功率信息与终端的上行面板对应,或者功率信息与终端的上行波束对应。
功率信息是指与终端的功率管理(Power Management)相关的参数信息。在一些实施例中,功率信息包括如下四种信息中的至少一种:
·第一种信息:第一上行面板的面板标识信息,以及第一上行面板对应的功率管理最大功率回退(Power Management-Maximum Power Reduction,P-MPR) 测量值和/或功率余量(Power Headroom)值,其中,第一上行面板的P-MPR值不小于最大允许辐射(Maximum Permissible Exposure,MPE)阈值(threshold)。
示意性的,面板标识信息是与面板相关的标识信息。面板标识信息包括如下标识中的至少一种:面板标识;参考信号集合标识;参考信号标识;传输配置指示(Transmission Configuration Indication,TCI)状态标识;空间关系信息(Spatialrelationinfo)标识。
其中,面板标识是指面板对应的设备识别码,相当于面板的ID标识。
根据前述内容,一个上行面板对应有至少一个上行波束。示意性的,每个上行波束均具有参考信号标识、TCI状态标识和空间关系信息标识中的至少一种。在本申请中,波束可以与以下至少一项互换:TCI状态,空间关系信息,空间设置(SpatialSetting),准共址(Quasi co-location,QCL)类型Type D。
其中,参考信号包括如下中的至少一种:信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS);同步信号块(Synchronization Signal Block,SSB);探测参考信号(Sounding Reference Signal,SRS)。
示意性的,参考信号集合标识中包括有多个参考信号标识。其中,参考信号集合标识与上行面板具有对应关系,参考信号集合标识可以用于指示上行面板,参考信号集合中的参考信号标识也可以用于指示上行面板。而TCI状态信息中包括参考信号标识,参考信号标识与上行面板也有对应关系,所以TCI状态标识也可用于指示上行面板。
具体的,TCI状态用于告知终端接收物理下行控制信道(Physical Downlink Control Channel,PDCCH)或物理下行共享信道(Physical Downlink Shared Channel,PDSCH)或下行参考信号所使用的波束与TCI状态中用于指示波束的参考信号的接收波束和/或发送波束一样;或者,用于告知终端发送物理上行控制信道(Physical Uplink Control Channel,PUCCH)或物理上行共享信道(Physical Uplink Shared Channel,PUSCH)或上行参考信号所使用的波束与TCI状态中用于指示波束的参考信号的发送波束和/或接收波束一样。
另外,P-MPR,是指为了满足MPE需求时,终端的最大发射功率的回退值。功率余量值,是指终端的上行传输功率和终端的最大发射功率之差。功率余量上报(Power Headroom Report,PHR)将为网络设备提供进行功率控制和调度的信息。MPE是从人体安全角度提出的、对终端的电磁辐射进行限定的指标要求,用于规定终端在某个方向上的平均最大辐射功率密度。
·第二种信息:第一上行波束的波束标识信息,以及第一上行波束对应的P-MPR测量值和/或功率余量值,其中,第一上行波束的P-MPR值不小于MPE阈值。
示意性的,波束标识信息是与波束相关的指示信息。波束标识信息包括如 下标识中的至少一种:参考信号标识;TCI状态标识;空间关系信息标识。
其中,参考信号包括如下中的至少一种:CSI-RS;SSB;SRS。
另外,P-MPR,是指为了满足MPE需求时,终端的最大发射功率的回退值。功率余量值,是指终端的上行传输功率和终端的最大发射功率之差。MPE是从人体安全角度提出的,对终端的电磁辐射进行限定的指标要求,用于规定终端在某个方向上的平均最大辐射功率密度。
·第三种信息:第二上行面板的面板标识信息,以及第二上行面板对应的P-MPR测量值和/或功率余量值,其中,第二上行面板的P-MPR值小于MPE阈值。
示意性的,第二上行面板与第一上行面板是不同的上行面板。关于面板标识信息、P-MPR、功率余量值和MPE的阐述可参考前述内容,不再赘述。
·第四种信息:第二上行波束的波束标识信息,以及第二上行波束对应的P-MPR测量值和/或功率余量值,其中,第二上行波束的P-MPR值小于MPE阈值。
示意性的,第二上行波束与第一上行波束是不同的上行波束。关于波束标识信息、P-MPR、功率余量值和MPE的阐述可参考前述内容,不再赘述。
在一个示例性的实施例中,终端向网络设备发送功率信息,功率信息中包括第一上行面板的面板标识、参考信号集合标识、TCI状态标识和空间关系信息标识中的至少一种。其中,参考信号集合标识包括多个参考信号标识。除此之外,功率信息中还包括第一上行面板对应的P-MPR测量值和/或功率余量值。
在一个示例性的实施例中,终端向网络设备发送功率信息,功率信息中包括第一上行波束的参考信号标识、TCI状态标识和空间关系信息标识中的至少一种,以及第一上行波束对应的P-MPR测量值和/或功率余量值。
在一个示例性的实施例中,终端向网络设备发送功率信息,功率信息中包括第二上行面板的面板标识和参考信号标识中的至少一种,以及第二上行面板对应的P-MPR测量值和/或功率余量值。
在一个示例性的实施例中,终端向网络设备发送功率信息,功率信息中包括第二上行波束的参考信号标识,以及第二上行波束对应的P-MPR测量值和/或功率余量值。
示意性的,上述实施例可任意组合,不再赘述。
在一些实施例中,为使得网络设备获取到更准确的功率信息,功率信息中可以包括如下信息中的至少一种:
·n个面板标识,以及n个第一比特指示信息,其中,第i个第一比特指示信息用于指示终端的第i个上行面板对应的P-MPR值是否小于MPE阈值;
·m个波束标识,以及m个第二比特指示信息,其中,第j个第二比特指示信息用于指示终端的第j个上行波束对应的P-MPR值是否小于MPE阈值;
其中,n为正整数,i为不大于n的正整数,j为不大于m的正整数。
根据前述内容,一个上行面板对应有至少一个上行波束,故n和m可以是相同的,也可以是不同的,本申请在此不做限定。
在一个示例性的实施例中,以终端中包括两个上行面板为例,功率信息中包括两个面板标识以及两个面板标识分别对应的第一比特指示信息,第一个面板标识对应的第一比特指示信息指示第一个上行面板的P-MPR值小于MPE阈值,第二个面板标识对应的第一比特指示信息指示第二个上行面板的P-MPR值不小于MPE阈值。
可选的,在终端的第一上行面板或第一上行波束对应的P-MPR值不小于MPE阈值的情况下,功率信息还包括第三比特指示信息。其中,第三比特指示信息用于指示第一上行面板或第一上行波束对应的P-MPR测量值。
在一个示例性的实施例中,以终端中包括两个上行波束为例,功率信息中包括两个波束标识以及两个波束标识分别对应的第二比特指示信息,第一个波束标识对应的第二比特指示信息指示第一个上行波束的P-MPR值小于MPE阈值,第二个波束标识对应的第二比特指示信息指示第二个上行波束的P-MPR值不小于MPE阈值。
其中,由于第二个波束标识对应的P-MPR值不小于MPE阈值,功率信息中还包括第三比特指示信息,第三比特指示信息指示第二个上行波束的P-MPR测量值。
综上所述,本申请实施例提供的功率信息的发送方法,通过终端发送与上行面板或上行波束对应的功率信息,网络设备可以基于以上行面板或上行波束为粒度的功率信息进行上行调度,选择出合适的上行面板或上行波束,从而提高了上行传输性能。
同时,本申请实施例给出了功率信息所包含的信息内容以及相应标识所包含的信息内容。
另外,本申请实施例中,功率信息包括第一比特指示信息或第二比特指示信息,用于指示对应的上行面板或上行波束的P-MPR值是否大于MPE阈值;功率信息还包括第三比特指示信息,用于指示对应的上行面板或上行波束的P-MPR测量值。
图3示出了本申请一个示例性实施例提供的功率信息的发送方法的流程图。以功率信息的发送方法应用于图1的终端02中为例,该方法包括:
步骤310:在终端的上行面板或上行波束对应的P-MPR值不小于MPE阈值 的情况下,终端向网络设备发送功率信息。
示意性的,功率信息与终端的上行面板对应,或者功率信息与终端的上行波束对应。
根据前文所述,P-MPR,是指为了满足MPE需求时,终端的最大发射功率的回退值。MPE是从人体安全角度提出的,对终端的电磁辐射进行限定的指标要求,用于规定终端在某个方向上的平均最大辐射功率密度。
步骤310中,终端向网络设备发送功率信息的触发条件包括:终端的上行面板或上行波束对应的P-MPR值不小于MPE阈值。也即,上行面板或上行波束的发射功率的回退值大于或等于预设的指标的阈值。
比如,上行波束的最大发射功率当前值是23dB,为了满足MPE需求,上行波束的发射功率的回退值是2dB,MPE的阈值为3dB。相当于,上行波束的发射功率降低2dB以使得上行波束的实际最大发射功率降低至21dB,而由于回退值2dB是小于MPE阈值3dB,所以该波束的功率回退值不足以触发其P-MPR值的上报。
另外,根据前文所述,功率信息是指与终端的功率管理相关的参数信息。在一些实施例中,功率信息包括如下四种信息中的至少一种:
·第一种信息:第一上行面板的面板标识信息,以及第一上行面板对应的P-MPR测量值和/或功率余量值,其中,第一上行面板的P-MPR值不小于MPE阈值。
示意性的,面板标识信息是与面板相关的标识信息。面板标识信息包括如下标识中的至少一种:面板标识;参考信号集合标识;参考信号标识;TCI状态标识;空间关系信息标识。示意性的,参考信号集合标识中包括有多个参考信号标识。
其中,参考信号包括如下中的至少一种:CSI-RS;SSB;SRS。
·第二种信息:第一上行波束的波束标识信息,以及第一上行波束对应的P-MPR测量值和/或功率余量值,其中,第一上行波束的P-MPR值不小于MPE阈值。
示意性的,波束标识信息是与波束相关的指示信息。波束标识信息包括如下标识中的至少一种:参考信号标识;TCI状态标识;空间关系信息标识。
其中,参考信号包括如下中的至少一种:CSI-RS;SSB;SRS。
·第三种信息:第二上行面板的面板标识信息,以及第二上行面板对应的P-MPR测量值和/或功率余量值,其中,第二上行面板的P-MPR值小于MPE阈值。
示意性的,第二上行面板与第一上行面板是不同的上行面板。关于面板标识信息、P-MPR、功率余量值和MPE的阐述可参考前述内容,不再赘述。
·第四种信息:第二上行波束的波束标识信息,以及第二上行波束对应的P-MPR测量值和/或功率余量值,其中,第二上行波束的P-MPR值小于MPE阈值。
示意性的,第二上行波束与第一上行波束是不同的上行波束。关于波束标识信息、P-MPR、功率余量值和MPE的阐述可参考前述内容,不再赘述。
在一个示例性的实施例中,功率信息中包括第一上行面板的面板标识、参考信号集合标识、TCI状态标识和空间关系信息标识中的至少一种。其中,参考信号集合标识包括多个参考信号标识。除此之外,功率信息中还包括第一上行面板对应的P-MPR测量值和/或功率余量值。
在一个示例性的实施例中,功率信息中包括第一上行波束的参考信号标识、TCI状态标识、空间关系信息标识中的至少一种,以及第一上行波束对应的P-MPR测量值和/或功率余量值。
在一个示例性的实施例中,功率信息中包括第二上行面板的面板标识和参考信号标识中的至少一种,以及第二上行面板对应的P-MPR测量值和/或功率余量值。
在一个示例性的实施例中,功率信息中包括第二上行波束的参考信号标识,以及第二上行波束对应的P-MPR测量值和/或功率余量值。
示意性的,上述实施例可任意组合,不再赘述。
在一个示例性的实施例中,以终端包括三个上行波束为例,每个上行波束对应有不同的P-MPR值,具体可参考下表:
上行波束1 第一P-MPR值
上行波束2 第二P-MPR值
上行波束3 第三P-MPR值
其中,第一P-MPR值大于MPE阈值,第二P-MPR值等于MPE阈值,第三P-MPR值小于MPE阈值。
基于此,终端向网络设备发送功率信息,功率信息中包括上行波束1、上行波束2和上行波束3中的至少一个上行波束的相关信息。比如,功率信息中包括上行波束1的参考信号标识、TCI状态标识、空间关系信息标识中的至少一种,以及上行波束1对应的P-MPR测量值和/或功率余量值;和/或功率信息中包括上行波束2的参考信号标识,以及上行波束2对应的P-MPR测量值和/或功率余量值;和/或功率信息中包括上行波束3的参考信号标识、TCI状态标识、空间关系信息标识中的至少一种,以及上行波束3对应的P-MPR测量值和/或功率余量值。
在一些实施例中,为使得网络设备获取到更准确的功率信息,功率信息中可以包括如下信息中的至少一种:n个面板标识,以及n个第一比特指示信息,其中,第i个第一比特指示信息用于指示终端的第i个上行面板对应的P-MPR值是否小于MPE阈值;m个波束标识,以及m个第二比特指示信息,其中,第j个第二比特指示信息用于指示终端的第j个上行波束对应的P-MPR值是否小于MPE阈值;其中,n为正整数,i为不大于n的正整数,j为不大于m的正整数。
可选的,在终端的第一上行面板或第一上行波束对应的P-MPR值不小于MPE阈值的情况下,功率信息还包括第三比特指示信息。其中,第三比特指示信息用于指示第一上行面板或第一上行波束对应的P-MPR测量值。
步骤310中,由于终端的上行面板或上行波束对应的P-MPR值不小于MPE阈值,功率信息中还可以包括第三比特指示信息。
在一个示例性的实施例中,以终端包括三个上行波束为例,每个上行波束对应有不同的P-MPR值,具体可参考下表:
上行波束1 第一P-MPR值
上行波束2 第二P-MPR值
上行波束3 第三P-MPR值
其中,第一P-MPR值大于MPE阈值,第二P-MPR值等于MPE阈值,第三P-MPR值小于MPE阈值。
基于此,终端向网络设备发送功率信息,功率信息中包括上行波束1、上行波束2和上行波束3中的至少一个上行波束的相关信息。
同时,功率信息中还包括三个第二比特指示信息。其中,上行波束1和上行波束2对应的第二比特指示信息用于指示第一P-MPR值和第二P-MPR值不小于MPE阈值,上行波束3对应的第二比特指示信息用于指示第三P-MPR值小于MPE阈值。
由于上行波束1和上行波束2对应的P-MPR值不小于MPE阈值的情况下,终端向网络设备发送的功率信息中还包括两个第三比特指示信息,用于指示上行波束1和上行波束2对应的P-MPR测量值。
综上所述,本申请实施例提供的功率信息的发送方法,增加了终端发送功率信息的触发条件。具体的,在终端的上行面板或上行波束对应的P-MPR值不小于MPE阈值的情况下,终端向网络设备发送功率信息。
图4示出了本申请一个示例性实施例提供的功率信息的发送方法的流程图。以功率信息的发送方法应用于图1的终端02中为例,该方法包括:
步骤410:终端向网络设备发送功率信息。
示意性的,功率信息与终端的上行面板对应,或者功率信息与终端的上行 波束对应。
根据前文所述,功率信息是指与终端的功率管理相关的参数信息。在一些实施例中,功率信息包括如下四种信息中的至少一种:
·第一种信息:第一上行面板的面板标识信息,以及第一上行面板对应的P-MPR测量值和/或功率余量值,其中,第一上行面板的P-MPR值不小于MPE阈值。
·第二种信息:第一上行波束的波束标识信息,以及第一上行波束对应的P-MPR测量值和/或功率余量值,其中,第一上行波束的P-MPR值不小于MPE阈值。
·第三种信息:第二上行面板的面板标识信息,以及第二上行面板对应的P-MPR测量值和/或功率余量值,其中,第二上行面板的P-MPR值小于MPE阈值。
·第四种信息:第二上行波束的波束标识信息,以及第二上行波束对应的P-MPR测量值和/或功率余量值,其中,第二上行波束的P-MPR值小于MPE阈值。
示意性的,为使得网络设备获取到更准确的功率信息,功率信息中可以包括如下信息中的至少一种:n个面板标识,以及n个第一比特指示信息,第i个第一比特指示信息用于指示终端的第i个上行面板对应的P-MPR值是否小于MPE阈值;m个波束标识,以及m个第二比特指示信息,第j个第二比特指示信息用于指示终端的第j个上行波束对应的P-MPR值是否小于MPE阈值;其中,n为正整数,i为不大于n的正整数,j为不大于m的正整数。
可选的,在终端的第一上行面板或第一上行波束对应的P-MPR值不小于MPE阈值的情况下,功率信息还包括第三比特指示信息。其中,第三比特指示信息用于指示第一上行面板或第一上行波束对应的P-MPR测量值。
步骤410与步骤210相同,可作参考,不再赘述。
步骤420:终端向网络设备发送波束测量信息。
示意性的,波束测量信息与终端的上行面板对应,或者波束测量信息与终端的上行波束对应。
其中,功率信息包括如下信息中的至少一种:
·第一种信息:第一上行面板的面板标识信息,以及第一上行面板对应的波束测量结果,其中,第一上行面板的P-MPR值小于MPE阈值。
示意性的,面板标识信息是与面板相关的标识信息。面板标识信息包括如下标识中的至少一种:面板标识;参考信号集合标识;参考信号标识;TCI状态标识;空间关系信息标识。示意性的,参考信号集合标识中包括有多个参考信号标识。
其中,参考信号包括如下中的至少一种:CSI-RS;SSB;SRS。
示意性的,波束测量结果包括如下信息中的至少一种:第一信号质量参数,第一信号质量参数根据下行参考信号测量得到;第二信号质量参数,第二信号质量参数根据第一信号质量参数和对应的上行面板或上行波束的P-MPR值和/或功率余量值确定。具体的,第一信号质量参数根据对应的上行面板或上行波束的下行参考信号测量得到。比如,第一信号质量参数根据第一上行波束对应的下行参考信号测量得到。
其中,第一信号质量参数和/或第二信号质量参数包括如下信息中的至少一种:L1(层一)-参考信号接收功率(Reference Signal Receiving Power,RSRP);L1-信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR)。
另外,P-MPR,是指为了满足MPE需求时,终端的最大发射功率的回退值。MPE是从人体安全角度提出的、对终端的电磁辐射进行限定的指标要求,用于规定终端在某个方向上的平均最大辐射功率密度。
·第二种信息:第一上行波束的波束标识信息,以及第一上行波束对应的波束测量结果,其中,第一上行波束的P-MPR值小于MPE阈值。
示意性的,波束标识信息是与波束相关的指示信息。波束标识信息包括如下标识中的至少一种:参考信号标识;TCI状态标识;空间关系信息标识。
其中,参考信号包括如下中的至少一种:CSI-RS;SSB;SRS。
示意性的,波束测量结果包括如下信息中的至少一种:第一信号质量参数,第一信号质量参数根据下行参考信号测量得到;第二信号质量参数,第二信号质量参数根据第一信号质量参数和对应的上行面板或上行波束的P-MPR值和/或功率余量值确定。
其中,第一信号质量参数和/或第二信号质量参数包括如下信息中的至少一种:L1-RSRP;L1-SINR。
另外,P-MPR,是指为了满足MPE需求时,终端的最大发射功率的回退值。MPE是从人体安全角度提出的、对终端的电磁辐射进行限定的指标要求,用于规定终端在某个方向上的平均最大辐射功率密度。
·第三种信息:第二上行面板的面板标识信息,以及第二上行面板对应的波束测量结果,其中,第二上行面板的P-MPR值不小于MPE阈值。
示意性的,第二上行面板与第一上行面板是不同的上行面板。关于面板标识信息、波束测量结果、P-MPR和MPE的阐述可参考前述内容,不再赘述。
·第四种信息:第二上行波束的波束标识信息,以及第二上行波束对应的波束测量结果,其中,第二上行波束的P-MPR值不小于MPE阈值。
示意性的,第二上行波束与第一上行波束是不同的上行波束。关于波束标识信息、波束测量结果、P-MPR和MPE的阐述可参考前述内容,不再赘述。
·第五种信息:第三上行面板的面板标识信息,以及第三上行面板对应的波束测量结果,其中,第三上行面板是n个上行面板中排序在前i个中的其中一个,n个上行面板根据对应的P-MPR值的大小进行排序得到,n为正整数,i为不大于n的正整数。其中,P-MPR值越小,排序越靠前。
示意性的,第三上行面板是根据多个上行面板对应的P-MPR值进行排序后选择出的一个或多个上行面板,与第一上行面板、第二上行面板的分类方式不同。关于面板标识信息、波束测量结果、P-MPR和MPE的阐述可参考前述内容,不再赘述。
·第六种信息:第三上行波束的波束标识信息,以及第三上行波束对应的波束测量结果,其中,第三上行波束是m个上行波束中排序在前i个中的其中一个,m个上行波束根据对应的P-MPR值的大小进行排序得到,m为正整数,i为不大于m的正整数。其中,P-MPR值越小,排序越靠前。
示意性的,第三上行波束是根据多个上行波束对应的P-MPR值进行排序后选择出的一个或多个上行波束,与第一上行波束、第二上行波束的分类方式不同。关于波束标识信息、波束测量结果、P-MPR和MPE的阐述可参考前述内容,不再赘述。
其中,第三上行面板或第三上行波束的确定可通过如下方式中的一种进行:
终端对n个上行面板或m个上行波束的P-MPR值从小到大依次进行排序,将P-MPR值最小的一个确定为第三上行面板或第三上行波束;
终端对n个上行面板或m个上行波束的P-MPR值从小到大依次进行排序,将排序在前的多个均确定为第三上行面板或第三上行波束;
终端对n个上行面板或m个上行波束的P-MPR值从小到大依次进行排序,将P-MPR值小于预设值的一个或多个均确定为第三上行面板或第三上行波束。
比如,终端中存在10个上行波束,终端对10个上行波束的P-MPR值从小到大依次进行排序,取P-MPR值最小的一个作为第三上行波束;或者,取P-MPR值排序在前的5个作为第三上行波束;或者,取P-MPR值小于预设值的3个作为第三上行波束。
在一个示例性的实施例中,终端向网络设备发送波束测量信息,波束测量信息中包括第一上行面板的面板标识、参考信号集合标识、TCI状态标识和空间关系信息标识中的至少一种。其中,参考信号集合标识包括多个参考信号标识。除此之外,功率信息中还包括第一信号质量参数,第一信号质量参数包括第一上行面板对应的L1-RSRP和/或L1-SINR。
在一个示例性的实施例中,终端向网络设备发送波束测量信息,波束测量信息中包括第一上行波束的参考信号标识、TCI状态标识、空间关系信息标识中的至少一种,以及第二信号质量参数,第二信号质量参数包括的L1-RSRP是根 据第一上行波束对应的L1-RSRP以及P-MPR值和/或功率余量值确定的。
在一个示例性的实施例中,终端向网络设备发送波束测量信息,波束测量信息中包括第二上行面板的面板标识和参考信号标识中的至少一种,以及第二信号质量参数,第二信号质量参数包括的L1-SINR是根据第二上行面板对应的L1-SINR以及P-MPR值和/或功率余量值确定的。
在一个示例性的实施例中,终端向网络设备发送波束测量信息,波束测量信息中包括第二上行波束的参考信号标识,以及第一信号质量参数,第一信号质量参数包括第二上行波束对应的L1-RSRP和/或L1-SINR。
示意性的,上述实施例可任意组合,不再赘述。
示意性的,步骤410和步骤420可同时执行,也可不同时执行;可执行其一,也可全部执行。
可以理解的是,在本申请的任一实施例中,当终端向网络设备发送同一个上行面板对应的多种信息时,比如包含上行面板的P-MPR值、功率余量值和波束测量结果的两种或两种以上时,信息中可以只包含一次上行面板的面板标识信息;当终端向网络设备发送同一个上行波束对应的多种信息时,比如包含上行波束的P-MPR值、功率余量值和波束测量结果的两种或两种以上时,信息中可以只包含一次上行波束的波束标识信息。
在一个示例性的实施例中,终端向网络设备发送上行面板1对应的功率信息和波束测量信息。其中,功率信息包括上行面板1的面板标识信息和功率余量值;波束测量结果包括上行面板1的面板标识信息和上行面板1对应的第一信号质量参数,第一信号质量参数包括上行面板1对应的L1-SINR,具体可参考下表:
Figure PCTCN2021100707-appb-000001
在一个示例性的实施例中,终端向网络设备发送上行波束1对应的功率信息和波束测量信息。其中,功率信息包括上行波束1的波束标识信息和P-MPR值;波束测量结果包括上行波束1的波束标识信息和上行波束1对应的第二信号质量参数,第二信号质量参数包括的L1-RSRP是根据上行波束1对应的L1-RSRP以及P-MPR值确定的,具体可参考下表:
Figure PCTCN2021100707-appb-000002
Figure PCTCN2021100707-appb-000003
综上所述,本申请实施例提供的功率信息的发送方法,终端还可以向网络设备发送与上行面板或上行波束对应的波束测量信息,网络设备可以基于功率信息和/或波束测量信息进行上行调度,选择出合适的上行面板或上行波束,从而提高了上行传输性能。同时,本申请实施例给出了波束测量信息所包含的信息内容以及相应标识所包含的信息内容。
图5示出了本申请一个示例性实施例提供的功率信息的发送和接收方法的流程图。以功率信息的发送方法应用于图1的终端02中、功率信息的接收方法应用于图1的网络设备01中为例,该方法包括:
步骤510:终端向网络设备发送功率信息。
示意性的,功率信息与终端的上行面板对应,或者功率信息与终端的上行波束对应。
步骤520:网络设备接收终端发送的功率信息。
根据前文所述,功率信息是指与终端的功率管理相关的参数信息。在一些实施例中,功率信息包括如下四种信息中的至少一种:
·第一种信息:第一上行面板的面板标识信息,以及第一上行面板对应的P-MPR测量值和/或功率余量值,其中,第一上行面板的P-MPR值不小于MPE阈值。
示意性的,面板标识信息是与面板相关的标识信息。面板标识信息包括如下标识中的至少一种:面板标识;参考信号集合标识;参考信号标识;TCI状态标识;空间关系信息标识。示意性的,参考信号集合标识中包括有多个参考信号标识。
其中,参考信号包括如下中的至少一种:CSI-RS;SSB;SRS。
·第二种信息:第一上行波束的波束标识信息,以及第一上行波束对应的P-MPR测量值和/或功率余量值,其中,第一上行波束的P-MPR值不小于MPE阈值。
示意性的,波束标识信息是与波束相关的指示信息。波束标识信息包括如下标识中的至少一种:参考信号标识;TCI状态标识;空间关系信息标识。
其中,参考信号包括如下中的至少一种:CSI-RS;SSB;SRS。
·第三种信息:第二上行面板的面板标识信息,以及第二上行面板对应的 P-MPR测量值和/或功率余量值,其中,第二上行面板的P-MPR值小于MPE阈值。
示意性的,第二上行面板与第一上行面板是不同的上行面板。关于面板标识信息、P-MPR、功率余量值和MPE的阐述可参考前述内容,不再赘述。
·第四种信息:第二上行波束的波束标识信息,以及第二上行波束对应的P-MPR测量值和/或功率余量值,其中,第二上行波束的P-MPR值小于MPE阈值。
示意性的,第二上行波束与第一上行波束是不同的上行波束。关于波束标识信息、P-MPR、功率余量值和MPE的阐述可参考前述内容,不再赘述。
在一个示例性的实施例中,网络设备接收终端发送的功率信息,功率信息中包括第一上行面板的面板标识、TCI状态标识和空间关系信息标识中的至少一种,以及第一上行面板对应的P-MPR测量值和/或功率余量值。
在一个示例性的实施例中,网络设备接收终端发送的功率信息,功率信息中包括第一上行波束的TCI状态标识和空间关系信息标识中的至少一种,以及第一上行波束对应的P-MPR测量值和/或功率余量值。
在一个示例性的实施例中,网络设备接收终端发送的功率信息,功率信息中包括第二上行面板的参考信号标识,以及第二上行面板对应的P-MPR测量值和/或功率余量值。
在一个示例性的实施例中,网络设备接收终端发送的功率信息,功率信息中包括第二上行波束的参考信号标识,以及第二上行波束对应的P-MPR测量值和/或功率余量值。
示意性的,上述实施例可任意组合,不再赘述。
在一些实施例中,为使得网络设备获取到更准确的功率信息,功率信息中可以包括如下信息中的至少一种:n个面板标识,以及n个第一比特指示信息,其中,第i个第一比特指示信息用于指示终端的第i个上行面板对应的P-MPR值是否小于MPE阈值;m个波束标识,以及m个第二比特指示信息,其中,第j个第二比特指示信息用于指示终端的第j个上行波束对应的P-MPR值是否小于MPE阈值;其中,n为正整数,i为不大于n的正整数,j为不大于m的正整数。
可选的,在终端的第一上行面板或第一上行波束对应的P-MPR值不小于MPE阈值的情况下,功率信息还包括第三比特指示信息。其中,第三比特指示信息用于指示第一上行面板或第一上行波束对应的P-MPR测量值。
综上所述,本申请实施例提供的功率信息的接收方法,通过接收终端发送的与上行面板或上行波束对应的功率信息,网络设备可以基于此进行上行调度,选择出合适的上行面板或上行波束,从而提高了上行传输性能。
同时,本申请实施例给出了功率信息所包含的信息内容以及相应标识所包含的信息内容。
另外,本申请实施例中,功率信息包括第一比特指示信息或第二比特指示信息,用于指示对应的上行面板或上行波束的P-MPR值是否大于MPE阈值;功率信息还包括第三比特指示信息,用于指示对应的上行面板或上行波束的P-MPR测量值。
图6示出了本申请一个示例性实施例提供的功率信息的发送和接收方法的流程图。以功率信息的发送方法应用于图1的终端02中、功率信息的接收方法应用于图1的网络设备01中为例,该方法包括:
步骤610:在终端的上行面板或上行波束对应的P-MPR值不小于MPE阈值的情况下,终端向网络设备发送功率信息。
示意性的,功率信息与终端的上行面板对应,或者功率信息与终端的上行波束对应。
根据前文所述,P-MPR,是指为了满足MPE需求时,终端的最大发射功率的回退值。MPE是从人体安全角度提出的,对终端的电磁辐射进行限定的指标要求,用于规定终端在某个方向上的平均最大辐射功率密度。
步骤610中,终端向网络设备发送功率信息的触发条件包括:终端的上行面板或上行波束对应的P-MPR值不小于MPE阈值。也即,上行面板或上行波束的发射功率的回退值大于或等于预设的指标的阈值。
步骤620:网络设备接收终端发送的功率信息。
根据前文所述,功率信息是指与终端的功率管理相关的参数信息。在一些实施例中,功率信息包括如下四种信息中的至少一种:
·第一种信息:第一上行面板的面板标识信息,以及第一上行面板对应的P-MPR测量值和/或功率余量值,其中,第一上行面板的P-MPR值不小于MPE阈值。
示意性的,面板标识信息是与面板相关的标识信息。面板标识信息包括如下标识中的至少一种:面板标识;参考信号集合标识;参考信号标识;TCI状态标识;空间关系信息标识。示意性的,参考信号集合标识中包括有多个参考信号标识。
其中,参考信号包括如下中的至少一种:CSI-RS;SSB;SRS。
·第二种信息:第一上行波束的波束标识信息,以及第一上行波束对应的P-MPR测量值和/或功率余量值,其中,第一上行波束的P-MPR值不小于MPE阈值。
示意性的,波束标识信息是与波束相关的指示信息。波束标识信息包括如 下标识中的至少一种:参考信号标识;TCI状态标识;空间关系信息标识。
其中,参考信号包括如下中的至少一种:CSI-RS;SSB;SRS。
·第三种信息:第二上行面板的面板标识信息,以及第二上行面板对应的P-MPR测量值和/或功率余量值,其中,第二上行面板的P-MPR值小于MPE阈值。
示意性的,第二上行面板与第一上行面板是不同的上行面板。关于面板标识信息、P-MPR、功率余量值和MPE的阐述可参考前述内容,不再赘述。
·第四种信息:第二上行波束的波束标识信息,以及第二上行波束对应的P-MPR测量值和/或功率余量值,其中,第二上行波束的P-MPR值小于MPE阈值。
示意性的,第二上行波束与第一上行波束是不同的上行波束。关于波束标识信息、P-MPR、功率余量值和MPE的阐述可参考前述内容,不再赘述。
在一个示例性的实施例中,以终端包括三个上行波束为例,每个上行波束对应有不同的P-MPR值,具体可参考下表:
上行波束1 第一P-MPR值
上行波束2 第二P-MPR值
上行波束3 第三P-MPR值
其中,第一P-MPR值大于MPE阈值,第二P-MPR值等于MPE阈值,第三P-MPR值小于MPE阈值。
基于此,网络设备接收终端发送的功率信息,功率信息中包括上行波束1、上行波束2和上行波束3中的至少一个上行波束的相关信息。比如,功率信息中包括上行波束1的参考信号标识、TCI状态标识、空间关系信息标识中的至少一种,以及上行波束1对应的P-MPR测量值和/或功率余量值;和/或功率信息中包括上行波束2的参考信号标识,以及上行波束2对应的P-MPR测量值和/或功率余量值;和/或功率信息中包括上行波束3的参考信号标识、TCI状态标识、空间关系信息标识中的至少一种,以及上行波束3对应的P-MPR测量值和/或功率余量值。
在一些实施例中,为使得网络设备获取到更准确的功率信息,功率信息中可以包括如下信息中的至少一种:n个面板标识,以及n个第一比特指示信息,其中,第i个第一比特指示信息用于指示终端的第i个上行面板对应的P-MPR值是否小于MPE阈值;m个波束标识,以及m个第二比特指示信息,其中,第j个第二比特指示信息用于指示终端的第j个上行波束对应的P-MPR值是否小于MPE阈值;其中,n为正整数,i为不大于n的正整数,j为不大于m的正整数。
可选的,在终端的第一上行面板或第一上行波束对应的P-MPR值不小于 MPE阈值的情况下,功率信息还包括第三比特指示信息。其中,第三比特指示信息用于指示第一上行面板或第一上行波束对应的P-MPR测量值。
步骤610中,由于终端的上行面板或上行波束对应的P-MPR值不小于MPE阈值,功率信息中还可以包括第三比特指示信息。
步骤630:根据功率信息,网络设备进行上行调度。
其中,上行调度是指,网络设备根据接收到的上行面板或上行波束对应的功率信息,考虑上行面板或上行波束能够达到的最大发送功率进行上行面板或上行波束的调度。
示意性的,步骤630可实现为如下:
根据功率信息,网络设备确定目标波束,目标波束用于终端发送上行TCI状态、空间设置(Spatial Setting)和空间关系信息中的至少一个。
综上所述,本申请实施例提供的功率信息的接收方法,增加了接收功率信息的触发条件。具体的,在终端的上行面板或上行波束对应的P-MPR值不小于MPE阈值的情况下,网络设备接收终端发送的功率信息。
图7示出了本申请一个示例性实施例提供的功率信息的发送和接收方法的流程图。以功率信息的发送方法应用于图1的终端02中、功率信息的接收方法应用于图1的网络设备01中为例,该方法包括:
步骤710:终端向网络设备发送功率信息。
示意性的,功率信息与终端的上行面板对应,或者功率信息与终端的上行波束对应。
步骤720:网络设备接收终端发送的功率信息。
根据前文所述,功率信息是指与终端的功率管理相关的参数信息。在一些实施例中,功率信息包括如下四种信息中的至少一种:
·第一种信息:第一上行面板的面板标识信息,以及第一上行面板对应的P-MPR测量值和/或功率余量值,其中,第一上行面板的P-MPR值不小于MPE阈值。
·第二种信息:第一上行波束的波束标识信息,以及第一上行波束对应的P-MPR测量值和/或功率余量值,其中,第一上行波束的P-MPR值不小于MPE阈值。
·第三种信息:第二上行面板的面板标识信息,以及第二上行面板对应的P-MPR测量值和/或功率余量值,其中,第二上行面板的P-MPR值小于MPE阈值。
·第四种信息:第二上行波束的波束标识信息,以及第二上行波束对应的P-MPR测量值和/或功率余量值,其中,第二上行波束的P-MPR值小于MPE阈 值。
示意性的,为使得网络设备获取到更准确的功率信息,功率信息中可以包括如下信息中的至少一种:n个面板标识,以及n个第一比特指示信息,第i个第一比特指示信息用于指示终端的第i个上行面板对应的P-MPR值是否小于MPE阈值;m个波束标识,以及m个第二比特指示信息,第j个第二比特指示信息用于指示终端的第j个上行波束对应的P-MPR值是否小于MPE阈值;其中,n为正整数,i为不大于n的正整数,j为不大于m的正整数。
可选的,在终端的第一上行面板或第一上行波束对应的P-MPR值不小于MPE阈值的情况下,功率信息还包括第三比特指示信息。其中,第三比特指示信息用于指示第一上行面板或第一上行波束对应的P-MPR测量值。
步骤710、720与步骤610、620相同,可作参考,不再赘述。
步骤730:终端向网络设备发送波束测量信息。
示意性的,波束测量信息与终端的上行面板对应,或者波束测量信息与终端的上行波束对应。
步骤740:网络设备接收终端发送的波束测量信息。
根据前述内容,功率信息包括如下信息中的至少一种:
·第一种信息:第一上行面板的面板标识信息,以及第一上行面板对应的波束测量结果,其中,第一上行面板的P-MPR值小于MPE阈值。
示意性的,面板标识信息是与面板相关的标识信息。面板标识信息包括如下标识中的至少一种:面板标识;参考信号集合标识;参考信号标识;TCI状态标识;间关系信息标识。示意性的,参考信号集合标识中包括有多个参考信号标识。
其中,参考信号包括如下中的至少一种:CSI-RS;SSB;SRS。
示意性的,波束测量结果包括如下信息中的至少一种:第一信号质量参数,第一信号质量参数根据下行参考信号测量得到;第二信号质量参数,第二信号质量参数根据第一信号质量参数和对应的上行面板或上行波束的P-MPR值值和/或功率余量确定。
其中,第一信号质量参数和/或第二信号质量参数包括如下信息中的至少一种:L1-RSRP;L1-SINR。
另外,P-MPR,是指为了满足MPE需求时,终端的最大发射功率的回退值。MPE是从人体安全角度提出的、对终端的电磁辐射进行限定的指标要求,用于规定终端在某个方向上的平均最大辐射功率密度。
·第二种信息:第一上行波束的波束标识信息,以及第一上行波束对应的波束测量结果,其中,第一上行波束的P-MPR值小于MPE阈值。
示意性的,波束标识信息是与波束相关的指示信息。波束标识信息包括如 下标识中的至少一种:参考信号标识;TCI状态标识;空间关系信息标识。
其中,参考信号包括如下中的至少一种:CSI-RS;SSB;SRS。
示意性的,波束测量结果包括如下信息中的至少一种:第一信号质量参数,第一信号质量参数根据下行参考信号测量得到;第二信号质量参数,第二信号质量参数根据第一信号质量参数和对应的上行面板或上行波束的P-MPR值和/或功率余量值确定。
其中,第一信号质量参数和/或第二信号质量参数包括如下信息中的至少一种:L1-RSRP;L1-SINR。
另外,P-MPR,是指为了满足MPE需求时,终端的最大发射功率的回退值。MPE是从人体安全角度提出的、对终端的电磁辐射进行限定的指标要求,用于规定终端在某个方向上的平均最大辐射功率密度。
·第三种信息:第二上行面板的面板标识信息,以及第二上行面板对应的波束测量结果,其中,第二上行面板的P-MPR值不小于MPE阈值。
示意性的,第二上行面板与第一上行面板是不同的上行面板。关于面板标识信息、波束测量结果、P-MPR和MPE的阐述可参考前述内容,不再赘述。
·第四种信息:第二上行波束的波束标识信息,以及第二上行波束对应的波束测量结果,其中,第二上行波束的P-MPR值不小于MPE阈值。
示意性的,第二上行波束与第一上行波束是不同的上行波束。关于波束标识信息、波束测量结果、P-MPR和MPE的阐述可参考前述内容,不再赘述。
·第五种信息:第三上行面板的面板标识信息,以及第三上行面板对应的波束测量结果,其中,第三上行面板是n个上行面板中排序在前i个中的其中一个,n个上行面板根据对应的P-MPR值的大小进行排序得到,n为正整数,i为不大于n的正整数。其中,P-MPR值越小,排序越靠前。
示意性的,第三上行面板是根据多个上行面板对应的P-MPR值进行排序后选择出的一个或多个上行面板,与第一上行面板、第二上行面板的分类方式不同。关于面板标识信息、波束测量结果、P-MPR和MPE的阐述可参考前述内容,不再赘述。
·第六种信息:第三上行波束的波束标识信息,以及第三上行波束对应的波束测量结果,其中,第三上行波束是m个上行波束中排序在前i个中的其中一个,m个上行波束根据对应的P-MPR值的大小进行排序得到,m为正整数,i为不大于m的正整数。其中,P-MPR值越小,排序越靠前。
示意性的,第三上行波束是根据多个上行波束对应的P-MPR值进行排序后选择出的一个或多个上行波束,与第一上行波束、第二上行波束的分类方式不同。关于波束标识信息、波束测量结果、P-MPR和MPE的阐述可参考前述内容,不再赘述。
其中,第三上行面板或第三上行波束的确定可通过如下方式中的一种进行:
终端对n个上行面板或m个上行波束的P-MPR值从小到大依次进行排序,将P-MPR值最小的一个确定为第三上行面板或第三上行波束;
终端对n个上行面板或m个上行波束的P-MPR值从小到大依次进行排序,排序在前的的多个均确定为第三上行面板或第三上行波束;
终端对n个上行面板或m个上行波束的P-MPR值从小到大依次进行排序,将P-MPR值小于预设值的一个或多个均确定为第三上行面板或第三上行波束。
在一个示例性的实施例中,终端向网络设备发送波束测量信息,波束测量信息中包括第一上行面板的TCI状态标识和空间关系信息标识中的至少一种,以及第一信号质量参数,第一信号质量参数包括第一上行面板对应的L1-RSRP和L1-SINR。
在一个示例性的实施例中,终端向网络设备发送波束测量信息,波束测量信息中包括第一上行波束的参考信号标识和空间关系信息标识中的至少一种,以及第二信号质量参数,第二信号质量参数包括的L1-RSRP是根据第一上行波束对应的L1-RSRP以及P-MPR值和/或功率余量值确定的。
在一个示例性的实施例中,终端向网络设备发送波束测量信息,波束测量信息中包括第二上行面板的参考信号标识,以及第二信号质量参数,第二信号质量参数包括的L1-SINR是根据第二上行面板对应的L1-SINR以及P-MPR值和/或功率余量值确定的。
在一个示例性的实施例中,终端向网络设备发送波束测量信息,波束测量信息中包括第二上行波束的参考信号标识,以及第一信号质量参数,第一信号质量参数包括第二上行波束对应的L1-RSRP和L1-SINR。
示意性的,上述实施例可任意组合,不再赘述。
示意性的,步骤710和步骤730可同时执行,也可不同时执行;可执行其一,也可全部执行。示意性的,步骤720和步骤740可同时执行,也可不同时执行;可执行其一,也可全部执行。
步骤750:根据波束测量信息,网络设备进行上行调度。
其中,上行调度是指,网络设备根据接收到的上行面板或上行波束对应的波束测量信息,考虑上行面板或上行波束能够达到的最大发送功率进行上行面板或上行波束的调度。
示意性的,步骤750可实现为如下:
根据波束测量信息,网络设备确定目标波束,目标波束用于终端发送上行TCI状态、空间设置(Spatial Setting)和空间关系信息中的至少一个。
综上所述,本申请实施例提供的功率信息的接收方法,通过接收终端发送的与上行面板或上行波束对应的波束测量信息,网络设备可以基于功率信息和/ 或波束测量信息进行上行调度,选择出合适的上行面板或上行波束,从而提高了上行传输性能。同时,本申请实施例给出了波束测量信息所包含的信息内容以及相应标识所包含的信息内容。
图8示出了本申请一个示例性实施例提供的功率信息的发送装置的结构框图,该装置可以实现成为终端,或者,实现成为终端中的一部分。该装置包括:
发送模块820,用于终端向网络设备发送功率信息;
其中,功率信息与终端的上行面板对应,或者功率信息与终端的上行波束对应。
在本申请的一个可选的设计中,功率信息包括如下信息中的至少一种:第一上行面板的面板标识信息,以及第一上行面板对应的P-MPR测量值和/或功率余量值,其中,第一上行面板的P-MPR值不小于MPE阈值;第一上行波束的波束标识信息,以及第一上行波束对应的P-MPR测量值和/或功率余量值,其中,第一上行波束的P-MPR值不小于MPE阈值;第二上行面板的面板标识信息,以及第二上行面板对应的P-MPR测量值和/或功率余量值,其中,第二上行面板的P-MPR值小于MPE阈值;第二上行波束的波束标识信息,以及第二上行波束对应的P-MPR测量值和/或功率余量值,其中,第二上行波束的P-MPR值小于MPE阈值。
在本申请的一个可选的设计中,所述发送模块820,用于在终端的上行面板或上行波束对应的P-MPR值不小于MPE阈值的情况下,终端向网络设备发送功率信息。
在本申请的一个可选的设计中,功率信息包括如下信息中的至少一种:n个面板标识,以及n个第一比特指示信息,第i个第一比特指示信息用于指示终端的第i个上行面板对应的P-MPR值是否小于MPE阈值;m个波束标识,以及m个第人比特指示信息,第j个第二比特指示信息用于指示终端的第j个上行波束对应的P-MPR值是否小于MPE阈值;其中,n、m均为正整数,i为不大于n的正整数,j为不大于m的正整数。
在本申请的一个可选的设计中,在终端的第一上行面板或第一上行波束对应的P-MPR值不小于MPE阈值的情况下,功率信息还包括第三比特指示信息;其中,第三比特指示信息用于指示第一上行面板或第一上行波束对应的P-MPR测量值。
在本申请的一个可选的设计中,所述发送模块820,还用于终端向网络设备发送波束测量信息;其中,波束测量信息与终端的上行面板对应,或者波束测量信息与终端的上行波束对应。
在本申请的一个可选的设计中,波束测量信息包括如下信息中的至少一种: 第一上行面板的面板标识信息,以及第一上行面板对应的波束测量结果,其中,第一上行面板的P-MPR值小于MPE阈值;第一上行波束的波束标识信息,以及第一上行波束对应的波束测量结果,其中,第一上行波束的P-MPR值小于MPE阈值;第二上行面板的面板标识信息,以及第二上行面板对应的波束测量结果,其中,第二上行面板的P-MPR值不小于MPE阈值;第二上行波束的波束标识信息,以及第二上行波束对应的波束测量结果,其中,第二上行波束的P-MPR值不小于MPE阈值;第三上行面板的面板标识信息,以及第三上行面板对应的波束测量结果,其中,第三上行面板是n个上行面板中排序在前i个中的其中一个,n个上行面板根据对应的P-MPR值的大小进行排序得到,n为正整数,i为不大于n的正整数;第三上行波束的波束标识信息,以及第三上行波束对应的波束测量结果,其中,第三上行波束是m个上行波束中排序在前i个中的其中一个,m个上行波束根据对应的P-MPR值的大小进行排序得到,m为正整数,i为不大于m的正整数。
在本申请的一个可选的设计中,面板标识信息包括如下标识中的至少一种:面板标识;参考信号集合标识;参考信号标识;传输配置指示TCI状态标识;空间关系信息标识。
在本申请的一个可选的设计中,波束标识信息包括如下标识中的至少一种:参考信号标识;TCI状态标识;空间关系信息标识。
在本申请的一个可选的设计中,参考信号包括如下中的至少一种:CSI-RS;SSB;SRS。
在本申请的一个可选的设计中,波束测量结果包括如下信息中的至少一种:第一信号质量参数,第一信号质量参数根据下行参考信号测量得到;第二信号质量参数,第二信号质量参数根据第一信号质量参数和对应的上行面板或上行波束的P-MPR值和/或功率余量值确定。
在本申请的一个可选的设计中,第一信号质量参数和/或第二信号质量参数包括如下信息中的至少一种:L1-RSRP;L1-SINR。
图9示出了本申请一个示例性实施例提供的功率信息的接收装置的结构框图,该装置可以实现成为网络设备,或者,实现成为网络设备中的一部分。该装置包括:
接收模块920,用于网络设备接收终端发送的功率信息;
其中,功率信息与终端的上行面板对应,或者功率信息与终端的上行波束对应。
在本申请的一个可选的设计中,功率信息包括如下信息中的至少一种:第一上行面板的面板标识信息,以及第一上行面板对应的P-MPR测量值和/或功率 余量值,其中,第一上行面板的P-MPR值不小于MPE阈值;第一上行波束的波束标识信息,以及第一上行波束对应的P-MPR测量值和/或功率余量值,其中,第一上行波束的P-MPR值不小于MPE阈值;第二上行面板的面板标识信息,以及第二上行面板对应的P-MPR测量值和/或功率余量值,其中,第二上行面板的P-MPR值小于MPE阈值;第二上行波束的波束标识信息,以及第二上行波束对应的P-MPR测量值和/或功率余量值,其中,第二上行波束的P-MPR值小于MPE阈值。
在本申请的一个可选的设计中,所述接收模块920,用于在终端的上行面板或上行波束对应的P-MPR值不小于MPE阈值的情况下,网络设备接收终端发送的功率信息。
在本申请的一个可选的设计中,功率信息包括如下信息中的至少一种:n个面板标识,以及n个第一比特指示信息,第i个第一比特指示信息用于指示终端的第i个上行面板对应的P-MPR值是否小于MPE阈值;m个波束标识,以及m个第二比特指示信息,第j个第二比特指示信息用于指示终端的第j个上行波束对应的P-MPR值是否小于MPE阈值;其中,n、m均为正整数,i为不大于n的正整数,j为不大于m的正整数。
在本申请的一个可选的设计中,在终端的第一上行面板或第一上行波束对应的P-MPR值不小于MPE阈值的情况下,功率信息还包括第三比特指示信息;其中,第三比特指示信息用于指示第一上行面板或第一上行波束对应的P-MPR测量值。
在本申请的一个可选的设计中,所述接收模块920,还用于网络设备接收终端发送的波束测量信息;其中,波束测量信息与终端的上行面板对应,或者波束测量信息与终端的上行波束对应。
在本申请的一个可选的设计中,波束测量信息包括如下信息中的至少一种:第一上行面板的面板标识信息,以及第一上行面板对应的波束测量结果,其中,第一上行面板的P-MPR值小于MPE阈值;第一上行波束的波束标识信息,以及第一上行波束对应的波束测量结果,其中,第一上行波束的P-MPR值小于MPE阈值;第二上行面板的面板标识信息,以及第二上行面板对应的波束测量结果,其中,第二上行面板的P-MPR值不小于MPE阈值;第二上行波束的波束标识信息,以及第二上行波束对应的波束测量结果,其中,第二上行波束的P-MPR值不小于MPE阈值;第三上行面板的面板标识信息,以及第三上行面板对应的波束测量结果,其中,第三上行面板是n个上行面板中排序在前i个中的其中一个,n个上行面板根据对应的P-MPR值的大小进行排序得到,n为正整数,i为不大于n的正整数;第三上行波束的波束标识信息,以及第三上行波束对应的波束测量结果,其中,第三上行波束是m个上行波束中排序在前i个中 的其中一个,m个上行波束根据对应的P-MPR值的大小进行排序得到,m为正整数,i为不大于m的正整数。
在本申请的一个可选的设计中,面板标识信息包括如下标识中的至少一种:面板标识;参考信号集合标识;参考信号标识;TCI状态标识;空间关系信息标识。
在本申请的一个可选的设计中,波束标识信息包括如下标识中的至少一种:参考信号标识;TCI状态标识;空间关系信息标识。
在本申请的一个可选的设计中,参考信号包括如下中的至少一种:CSI-RS;SSB;SRS。
在本申请的一个可选的设计中,波束测量结果包括如下信息中的至少一种:第一信号质量参数,第一信号质量参数根据下行参考信号测量得到;第二信号质量参数,第二信号质量参数根据第一信号质量参数和对应的上行面板或上行波束的P-MPR值和/或功率余量值确定。
在本申请的一个可选的设计中,第一信号质量参数和/或第二信号质量参数包括如下信息中的至少一种:L1-RSRP;L1-SINR。
在本申请的一个可选的设计中,所述装置还包括调度模块940,用于根据功率信息,网络设备进行上行调度。
在本申请的一个可选的设计中,所述调度模块940,用于根据波束测量信息,网络设备进行上行调度。
在本申请的一个可选的设计中,所述调度模块940,用于网络设备确定目标波束,目标波束用于终端发送TCI状态、空间设置和空间关系信息中的至少一个。
图10示出了本申请一个示例性实施例提供的通信设备(终端或网络设备)的结构示意图,该通信设备包括:处理器1001、接收器1002、发射器1003、存储器1004和总线1005。
处理器1001包括一个或者一个以上处理核心,处理器1001通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器1002和发射器1003可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器1004通过总线1005与处理器1001相连。
存储器1004可用于存储至少一个指令,处理器1001用于执行该至少一个指令,以实现如上所述的功率信息的发送方法中的各个步骤,或,如上所述的功率信息的接收方法中的各个步骤。
此外,存储器1004可以由任何类型的易失性或非易失性存储设备或者它们 的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(Electrically-Erasable Programmable Read Only Memory,EEPROM),可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM),静态随时存取存储器(Static Random Access Memory,SRAM),只读存储器(Read-Only Memory,ROM),磁存储器,快闪存储器,可编程只读存储器(Programmable Read-Only Memory,PROM)。
示意性的如图10所示,本申请提供了一种终端,该终端包括处理器1001和存储器1004,存储器1004中存储有至少一条程序代码,程序代码由处理器1001加载并执行以实现如上所述的功率信息的发送方法。
示意性的如图10所示,本申请提供了一种网络设备,该网络设备包括处理器1001和存储器1004,存储器1004中存储有至少一条程序代码,程序代码由处理器1001加载并执行以实现如上所述的功率信息的接收方法。
在示例性实施例中,还提供了一种计算机可读存储介质,可读存储介质中存储有至少一条程序代码,程序代码由处理器1001加载并执行以实现如上所述的功率信息的发送方法,或,如上所述的功率信息的接收方法。
在示例性实施例中,还提供了一种计算机程序产品或计算机程序,该计算机程序产品或计算机程序包括计算机指令,该计算机指令存储在计算机可读存储介质中,计算机设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行如上所述的功率信息的发送方法,或,如上所述的功率信息的接收方法。
根据本申请的一个方面,提供了一种芯片,该芯片包括可编程逻辑电路或程序,该芯片用于实现如上所述的功率信息的发送方法,或,如上所述的功率信息的接收方法。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (32)

  1. 一种功率信息的发送方法,其特征在于,所述方法包括:
    终端向网络设备发送功率信息;
    其中,所述功率信息与所述终端的上行面板对应,或者所述功率信息与所述终端的上行波束对应。
  2. 根据权利要求1所述的方法,其特征在于,所述功率信息包括如下信息中的至少一种:
    第一上行面板的面板标识信息,以及所述第一上行面板对应的功率管理最大功率回退P-MPR测量值和/或功率余量值,其中,所述第一上行面板的P-MPR值不小于最大允许辐射MPE阈值;
    第一上行波束的波束标识信息,以及所述第一上行波束对应的P-MPR测量值和/或功率余量值,其中,所述第一上行波束的P-MPR值不小于所述MPE阈值;
    第二上行面板的面板标识信息,以及所述第二上行面板对应的P-MPR测量值和/或功率余量值,其中,所述第二上行面板的P-MPR值小于所述MPE阈值;
    第二上行波束的波束标识信息,以及所述第二上行波束对应的P-MPR测量值和/或功率余量值,其中,所述第二上行波束的P-MPR值小于所述MPE阈值。
  3. 根据权利要求1所述的方法,其特征在于,所述终端向网络设备功率信息,包括:
    在所述终端的上行面板或上行波束对应的功率管理最大功率回退P-MPR值不小于最大允许辐射MPE阈值的情况下,所述终端向所述网络设备发送所述功率信息。
  4. 根据权利要求1所述的方法,其特征在于,所述功率信息包括如下信息中的至少一种:
    n个面板标识以及n个第一比特指示信息,第i个第一比特指示信息用于指示所述终端的第i个上行面板对应的功率管理最大功率回退P-MPR值是否小于最大允许辐射MPE阈值;
    m个波束标识,以及m个第二比特指示信息,第j个第二比特指示信息用于指示所述终端的第j个上行波束对应的P-MPR值是否小于所述MPE阈值;
    其中,n、m均为正整数,i为不大于n的正整数,j为不大于m的正整数。
  5. 根据权利要求4所述的方法,其特征在于,
    在所述终端的第一上行面板或第一上行波束对应的P-MPR值不小于所述MPE阈值的情况下,所述功率信息还包括第三比特指示信息;
    其中,所述第三比特指示信息用于指示所述第一上行面板或所述第一上行波束对应的P-MPR测量值。
  6. 根据权利要求1至5任一所述的方法,其特征在于,所述方法还包括:
    所述终端向所述网络设备发送波束测量信息;
    其中,所述波束测量信息与所述终端的上行面板对应,或者所述波束测量信息与所述终端的上行波束对应。
  7. 根据权利要求6所述的方法,其特征在于,所述波束测量信息包括如下信息中的至少一种:
    第一上行面板的面板标识信息,以及所述第一上行面板对应的波束测量结果,其中,所述第一上行面板的功率管理最大功率回退P-MPR值小于最大允许辐射MPE阈值;
    第一上行波束的波束标识信息,以及所述第一上行波束对应的波束测量结果,其中,所述第一上行波束的P-MPR值小于所述MPE阈值;
    第二上行面板的面板标识信息,以及所述第二上行面板对应的波束测量结果,其中,所述第二上行面板的P-MPR值不小于所述MPE阈值;
    第二上行波束的波束标识信息,以及所述第二上行波束对应的波束测量结果,其中,所述第二上行波束的P-MPR值不小于所述MPE阈值;
    第三上行面板的面板标识信息,以及所述第三上行面板对应的波束测量结果,其中,所述第三上行面板是n个上行面板中排序在前i个中的其中一个,所述n个上行面板根据对应的P-MPR值的大小进行排序得到,n为正整数,i为不大于n的正整数;
    第三上行波束的波束标识信息,以及所述第三上行波束对应的波束测量结果,其中,所述第三上行波束是m个上行波束中排序在前j个中的其中一个,所述m个上行波束根据对应的P-MPR值的大小进行排序得到,m为正整数,j为不大于m的正整数。
  8. 根据权利要求2或7所述的方法,其特征在于,所述面板标识信息包括如下标识中的至少一种:
    面板标识;
    参考信号集合标识;
    参考信号标识;
    传输配置指示TCI状态标识;
    空间关系信息标识。
  9. 根据权利要求2或7所述的方法,其特征在于,所述波束标识信息包括如下标识中的至少一种:
    参考信号标识;
    传输配置指示TCI状态标识;
    空间关系信息标识。
  10. 根据权利要求8或9所述的方法,其特征在于,所述参考信号包括如下中的至少一种:
    信道状态信息参考信号CSI-RS;
    同步信号块SSB;
    探测参考信号SRS。
  11. 根据权利要求7所述的方法,其特征在于,所述波束测量结果包括如下信息中的至少一种:
    第一信号质量参数,所述第一信号质量参数根据下行参考信号测量得到;
    第二信号质量参数,所述第二信号质量参数根据所述第一信号质量参数和所述对应的上行面板或上行波束的P-MPR值和/或功率余量值确定。
  12. 根据权利要求11所述的方法,其特征在于,所述第一信号质量参数和/或所述第二信号质量参数包括如下信息中的至少一种:
    层一参考信号接收功率L1-RSRP;
    层一信号与干扰加噪声比L1-SINR。
  13. 一种功率信息的接收方法,其特征在于,所述方法包括:
    网络设备接收终端发送的功率信息;
    其中,所述功率信息与所述终端的上行面板对应,或者所述功率信息与所述终端的上行波束对应。
  14. 根据权利要求13所述的方法,其特征在于,所述功率信息包括如下信息中的至少一种:
    第一上行面板的面板标识信息,以及所述第一上行面板对应的功率管理最大功率回退P-MPR测量值和/或功率余量值,其中,所述第一上行面板的P-MPR值不小于最大允许辐射MPE阈值;
    第一上行波束的波束标识信息,以及所述第一上行波束对应的P-MPR测量值和/或功率余量值,其中,所述第一上行波束的P-MPR值不小于所述MPE阈值;
    第二上行面板的面板标识信息,以及所述第二上行面板对应的P-MPR测量值和/或功率余量值,其中,所述第二上行面板的P-MPR值小于所述MPE阈值;
    第二上行波束的波束标识信息,以及所述第二上行波束对应的P-MPR测量值和/或功率余量值,其中,所述第二上行波束的P-MPR值小于所述MPE阈值。
  15. 根据权利要求13所述的方法,其特征在于,所述网络设备接收所述终端发送的功率信息,包括:
    在所述终端的上行面板或上行波束对应的功率管理最大功率回退P-MPR值 不小于最大允许辐射MPE阈值的情况下,所述网络设备接收所述终端发送的所述功率信息。
  16. 根据权利要求13所述的方法,其特征在于,所述功率信息包括如下信息中的至少一种:
    n个面板标识,以及n个第一比特指示信息,第i个第一比特指示信息用于指示所述终端的第i个上行面板对应的功率管理最大功率回退P-MPR值是否小于最大允许辐射MPE阈值;
    m个波束标识,以及m个第一比特指示信息,第j个第二比特指示信息用于指示所述终端的第j个上行波束对应的P-MPR值是否小于所述MPE阈值;
    其中,n、m均为正整数,i为不大于n的正整数,j为不大于m的正整数。
  17. 根据权利要求16所述的方法,其特征在于,
    在所述终端的第一上行面板或第一上行波束对应的P-MPR值不小于所述MPE阈值的情况下,所述功率信息还包括第三比特指示信息;
    其中,所述第三比特指示信息用于指示所述第一上行面板或所述第一上行波束对应的P-MPR测量值。
  18. 根据权利要求13至17任一所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收所述终端发送的波束测量信息;
    其中,所述波束测量信息与所述终端的上行面板对应,或者所述波束测量信息与所述终端的上行波束对应。
  19. 根据权利要求18所述的方法,其特征在于,所述波束测量信息包括如下信息中的至少一种:
    第一上行面板的面板标识信息,以及所述第一上行面板对应的波束测量结果,其中,所述第一上行面板的功率管理最大功率回退P-MPR值小于最大允许辐射MPE阈值;
    第一上行波束的波束标识信息,以及所述第一上行波束对应的波束测量结果,其中,所述第一上行波束的P-MPR值小于所述MPE阈值;
    第二上行面板的面板标识信息,以及所述第二上行面板对应的波束测量结果,其中,所述第二上行面板的P-MPR值不小于所述MPE阈值;
    第二上行波束的波束标识信息,以及所述第二上行波束对应的波束测量结果,其中,所述第二上行波束的P-MPR值不小于所述MPE阈值;
    第三上行面板的面板标识信息,以及所述第三上行面板对应的波束测量结果,其中,所述第三上行面板是n个上行面板中排序在前i个中的其中一个,所述n个上行面板根据对应的P-MPR值的大小进行排序得到,n为正整数,i为不大于n的正整数;
    第三上行波束的波束标识信息,以及所述第三上行波束对应的波束测量结 果,其中,所述第三上行波束是m个上行波束中排序在前i个中的其中一个,所述m个上行波束根据对应的P-MPR值的大小进行排序得到,m为正整数,i为不大于m的正整数。
  20. 根据权利要求14或19所述的方法,其特征在于,所述面板标识信息包括如下标识中的至少一种:
    面板标识;
    参考信号集合标识;
    参考信号标识
    传输配置指示TCI状态标识;
    空间关系信息标识。
  21. 根据权利要求14或19所述的方法,其特征在于,所述波束标识信息包括如下标识中的至少一种:
    参考信号标识;
    传输配置指示TCI状态标识;
    空间关系信息标识。
  22. 根据权利要求19或20所述的方法,其特征在于,所述参考信号包括如下中的至少一种:
    信道状态信息参考信号CSI-RS;
    同步信号块SSB;
    探测参考信号SRS。
  23. 根据权利要求19所述的方法,其特征在于,所述波束测量结果包括如下信息中的至少一种:
    第一信号质量参数,所述第一信号质量参数根据下行参考信号测量得到;
    第二信号质量参数,所述第二信号质量参数根据所述第一信号质量参数和所述对应的上行面板或上行波束的P-MPR值和/或功率余量值确定。
  24. 根据权利要求23所述的方法,其特征在于,所述第一信号质量参数和/或所述第二信号质量参数包括如下信息中的至少一种:
    层一参考信号接收功率L1-RSRP;
    层一信号与干扰加噪声比L1-SINR。
  25. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    根据所述功率信息,所述网络设备进行上行调度。
  26. 根据权利要求18所述的方法,其特征在于,所述方法还包括:
    根据所述波束测量信息,所述网络设备进行上行调度。
  27. 根据权利要求25或26所述的方法,其特征在于,所述网络设备进行上行调度,包括:
    所述网络设备确定目标波束,所述目标波束用于所述终端发送上行传输配置指示TCI状态、空间设置和空间关系信息中的至少一个。
  28. 一种功率信息的发送装置,其特征在于,所述装置包括:
    发送模块,用于终端向网络设备发送功率信息;
    其中,所述功率信息与所述终端的上行面板对应,或者所述功率信息与所述终端的上行波束对应。
  29. 一种功率信息的接收装置,其特征在于,所述装置包括:
    接收模块,用于网络设备接收终端发送的功率信息;
    其中,所述功率信息与所述终端的上行面板对应,或者所述功率信息与所述终端的上行波束对应。
  30. 一种终端,其特征在于,所述终端包括处理器和存储器,所述存储器中存储有至少一条程序代码,所述程序代码由所述处理器加载并执行以实现如权利要求1至12任一所述的功率信息的发送方法。
  31. 一种网络设备,其特征在于,所述网络设备包括处理器和存储器,所述存储器中存储有至少一条程序代码,所述程序代码由所述处理器加载并执行以实现如权利要求13至27中任一项所述的功率信息的接收方法。
  32. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有至少一条程序代码,所述程序代码由处理器加载并执行以实现如权利要求1至12任一所述的功率信息的发送方法,或者,如权利要求13至27中任一项所述的功率信息的接收方法。
PCT/CN2021/100707 2021-06-17 2021-06-17 功率信息的发送方法、接收方法、装置、设备及存储介质 WO2022261905A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202410245292.9A CN117896811A (zh) 2021-06-17 2021-06-17 功率信息的发送方法、接收方法、装置、设备及存储介质
EP21945491.5A EP4358603A1 (en) 2021-06-17 2021-06-17 Power information sending method and apparatus, power information receiving method and apparatus, and device and storage medium
BR112023026252A BR112023026252A2 (pt) 2021-06-17 2021-06-17 Métodos para transmitir e para receber informação de potência, e, dispositivo eletrônico
KR1020247001928A KR20240022636A (ko) 2021-06-17 2021-06-17 전력 정보의 송신 방법, 수신 방법, 장치, 기기 및 저장 매체(power information sending method and apparatus, power information receiving method and apparatus, and device and storage medium)
CN202180001923.7A CN113597791B (zh) 2021-06-17 2021-06-17 功率信息的发送方法、接收方法、装置、设备及存储介质
PCT/CN2021/100707 WO2022261905A1 (zh) 2021-06-17 2021-06-17 功率信息的发送方法、接收方法、装置、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/100707 WO2022261905A1 (zh) 2021-06-17 2021-06-17 功率信息的发送方法、接收方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2022261905A1 true WO2022261905A1 (zh) 2022-12-22

Family

ID=78242847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100707 WO2022261905A1 (zh) 2021-06-17 2021-06-17 功率信息的发送方法、接收方法、装置、设备及存储介质

Country Status (5)

Country Link
EP (1) EP4358603A1 (zh)
KR (1) KR20240022636A (zh)
CN (2) CN113597791B (zh)
BR (1) BR112023026252A2 (zh)
WO (1) WO2022261905A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023077423A1 (en) * 2021-11-05 2023-05-11 Apple Inc. Event based beam report
CN116723570A (zh) * 2022-02-26 2023-09-08 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109155659A (zh) * 2016-05-11 2019-01-04 Idac控股公司 用于波束成形的上行链路传输的系统和方法
US20200186304A1 (en) * 2018-12-07 2020-06-11 Qualcomm Incorporated Uplink reporting techniques for multi transmission-reception point transmissions
CN111726135A (zh) * 2019-03-22 2020-09-29 成都华为技术有限公司 通信方法和通信设备
WO2020218900A1 (ko) * 2019-04-25 2020-10-29 엘지전자 주식회사 무선 통신 시스템에서 전력 정보를 보고하는 방법 및 이를 위한 장치
CN113973363A (zh) * 2020-07-22 2022-01-25 维沃移动通信有限公司 P-mpr报告的发送、接收方法、装置及电子设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111818660B (zh) * 2019-08-05 2023-04-04 维沃移动通信有限公司 波束信息更新的方法、终端设备和网络设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109155659A (zh) * 2016-05-11 2019-01-04 Idac控股公司 用于波束成形的上行链路传输的系统和方法
US20200186304A1 (en) * 2018-12-07 2020-06-11 Qualcomm Incorporated Uplink reporting techniques for multi transmission-reception point transmissions
CN111726135A (zh) * 2019-03-22 2020-09-29 成都华为技术有限公司 通信方法和通信设备
WO2020218900A1 (ko) * 2019-04-25 2020-10-29 엘지전자 주식회사 무선 통신 시스템에서 전력 정보를 보고하는 방법 및 이를 위한 장치
CN113973363A (zh) * 2020-07-22 2022-01-25 维沃移动通信有限公司 P-mpr报告的发送、接收方法、装置及电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE: "Enhancements on multi-beam operation", 3GPP DRAFT; R1-1908192 ENHANCEMENTS ON MULTI-BEAM OPERATION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Prague, CZ; 20190826 - 20190830, 17 August 2019 (2019-08-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 26, XP051764811 *

Also Published As

Publication number Publication date
KR20240022636A (ko) 2024-02-20
EP4358603A1 (en) 2024-04-24
BR112023026252A2 (pt) 2024-03-05
CN113597791A (zh) 2021-11-02
CN117896811A (zh) 2024-04-16
CN113597791B (zh) 2024-03-26

Similar Documents

Publication Publication Date Title
US11985608B2 (en) Power control method and apparatus, and electronic apparatus
US11012948B2 (en) Uplink measurement reference signal power control method, network device, and terminal device
CN108023631B (zh) 传输信息的方法和设备
WO2022261905A1 (zh) 功率信息的发送方法、接收方法、装置、设备及存储介质
EP3787359B1 (en) Beam training method, apparatus, and system
US11601835B2 (en) Beam detection method and apparatus
US11856532B2 (en) Data processing method, terminal, and base station
US20220167274A1 (en) Antenna panel determination method, user terminal and computer readable storage medium
WO2022036685A1 (zh) 发送功率的指示和确定方法、装置、终端、设备和介质
US20200396046A1 (en) Channel Measurement for Uplink Transmission
US20230308153A1 (en) Channel state information feedback method and apparatus, device, and storage medium
CN101502163A (zh) 无线电通信站和无线电通信装置及操作它们的方法
EP4017145A1 (en) Beam scheduling method and apparatus, device and storage medium
US10879980B2 (en) Base station and terminal in wireless communication system, and control method therefor
CN115804187A (zh) 传输信息的确定系统和方法
WO2021109716A1 (zh) 初始mcs值确定方法、电子设备及存储介质
CN110769456A (zh) 通信方法及装置
CN109548131B (zh) 功率调整方法及装置
EP3554151A1 (en) Power control method and device
WO2020156412A1 (zh) 一种上行信号发送方法、接收方法、装置及系统
US20160374030A1 (en) Method and Apparatus for Uplink and/or Downlink Power Control in a Radio Communication Network
CN112399598A (zh) 通信方法、及执行通信方法的用户设备和网络设备
JP2024520776A (ja) 電力情報の送信方法、受信方法、装置、デバイス及び記憶媒体
CN110650522B (zh) 闭环功率控制方法、网络侧设备和终端
US20230328657A1 (en) Apparatus, methods, and computer programs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21945491

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023575570

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18568567

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023026252

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20247001928

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021945491

Country of ref document: EP

Ref document number: 2023136244

Country of ref document: RU

Ref document number: 1020247001928

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021945491

Country of ref document: EP

Effective date: 20240117

ENP Entry into the national phase

Ref document number: 112023026252

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20231213