WO2022261847A1 - Mise en correspondance de distribution pour mise en forme de constellation probabiliste dans des communications sans fil - Google Patents

Mise en correspondance de distribution pour mise en forme de constellation probabiliste dans des communications sans fil Download PDF

Info

Publication number
WO2022261847A1
WO2022261847A1 PCT/CN2021/100268 CN2021100268W WO2022261847A1 WO 2022261847 A1 WO2022261847 A1 WO 2022261847A1 CN 2021100268 W CN2021100268 W CN 2021100268W WO 2022261847 A1 WO2022261847 A1 WO 2022261847A1
Authority
WO
WIPO (PCT)
Prior art keywords
bits
symbols
subset
bit
distribution
Prior art date
Application number
PCT/CN2021/100268
Other languages
English (en)
Inventor
Liangming WU
Kexin XIAO
Changlong Xu
Wei Liu
Hao Xu
Thomas Joseph Richardson
Ori Shental
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2021/100268 priority Critical patent/WO2022261847A1/fr
Publication of WO2022261847A1 publication Critical patent/WO2022261847A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • H04L1/0058Block-coded modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • H04L1/0042Encoding specially adapted to other signal generation operation, e.g. in order to reduce transmit distortions, jitter, or to improve signal shape
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes

Definitions

  • the following relates to wireless communications, including distribution matching for probabilistic constellation shaping (PCS) in wireless communications.
  • PCS probabilistic constellation shaping
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • a wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • UE user equipment
  • the described techniques relate to improved methods, systems, devices, and apparatuses that support distribution matching for probabilistic constellation shaping (PCS) in wireless communications.
  • PCS probabilistic constellation shaping
  • the described techniques support a transmitting device applying PCS to a set of bits for communication to a receiving device, such as the bits of a transport block (TB) .
  • the transmitting device may divide the set of bits into two subsets.
  • a first subset of the TB bits may be subjected to distribution matching and may be used to determine the amplitudes of modulation symbols (e.g., quadrature amplitude modulation (QAM) symbols) , where the modulation symbols are used to transmit the TB over the air (e.g., over-the-air signaling representative of the bits of the TB are modulated in accordance with the modulation symbols) .
  • a second subset of the TB bits may not be subjected to distribution matching, and the second subset of bits may be used to determine the signs of the modulation symbols.
  • bits subjected to distribution matching may be referred to as shaped bits, and bits not subjected to distribution matching may be referred to as unshaped bits.
  • the transmitting device may obtain a bit sequence based on a non-uniform probability distribution (e.g., the transmitting device may obtain a sequence of interim symbols based on the first subset of bits and the non-uniform probability distribution, and then the transmitting device may obtain the bit sequence based on the sequence of interim symbols) , where the bit sequence may be a sequence of shaped bits.
  • a non-uniform probability distribution e.g., the transmitting device may obtain a sequence of interim symbols based on the first subset of bits and the non-uniform probability distribution, and then the transmitting device may obtain the bit sequence based on the sequence of interim symbols
  • the bit sequence may be a sequence of shaped bits.
  • the transmitting device may perform constellation mapping to map the bit sequence and the second subset of bits to modulation symbols, where the modulation symbols are associated with a symbol constellation (e.g., pool of possible modulation symbols) , and where the amplitudes of the modulation symbols may be based on the bit sequence (and hence the non-uniform probability distribution) and the signs of the modulation symbols may be based on the second subset of bits.
  • a symbol constellation e.g., pool of possible modulation symbols
  • some modulation symbols may be more likely to be selected-and thus more such modulation symbols may be selected-over time-relative to other modulation symbols (e.g., those with relatively higher amplitudes) , and thus PCS may be achieved, with the modulation symbols shaped based on the non-uniform probability distribution associated with the distribution matching.
  • the transmitting device may transmit the modulation symbols, and therefore the TB, to the receiving device.
  • a method for wireless communications at a transmitting device may include identifying a set of bits corresponding to a TB for communication to a receiving device, performing distribution matching on a first subset of bits within the set of bits to obtain a bit sequence that is based on the first subset of bits and a non-uniform probability distribution, mapping the bit sequence and a second subset of bits within the set of bits to symbols based on a symbol constellation, where the symbol constellation is based on amplitude and sign, and where the symbols have amplitudes based on the bit sequence and signs based on the second subset of bits, and transmitting the symbols to the receiving device, the symbols being representative of the TB.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to identify a set of bits corresponding to a TB for communication to a receiving device, perform distribution matching on a first subset of bits within the set of bits to obtain a bit sequence that is based on the first subset of bits and a non-uniform probability distribution, map the bit sequence and a second subset of bits within the set of bits to symbols based on a symbol constellation, where the symbol constellation is based on amplitude and sign, and where the symbols have amplitudes based on the bit sequence and signs based on the second subset of bits, and transmit the symbols to the receiving device, the symbols being representative of the TB.
  • the apparatus may include means for identifying a set of bits corresponding to a TB for communication to a receiving device, means for performing distribution matching on a first subset of bits within the set of bits to obtain a bit sequence that is based on the first subset of bits and a non-uniform probability distribution, means for mapping the bit sequence and a second subset of bits within the set of bits to symbols based on a symbol constellation, where the symbol constellation is based on amplitude and sign, and where the symbols have amplitudes based on the bit sequence and signs based on the second subset of bits, and means for transmitting the symbols to the receiving device, the symbols being representative of the TB.
  • a non-transitory computer-readable medium storing code for wireless communications at a transmitting device is described.
  • the code may include instructions executable by a processor to identify a set of bits corresponding to a TB for communication to a receiving device, perform distribution matching on a first subset of bits within the set of bits to obtain a bit sequence that is based on the first subset of bits and a non-uniform probability distribution, map the bit sequence and a second subset of bits within the set of bits to symbols based on a symbol constellation, where the symbol constellation is based on amplitude and sign, and where the symbols have amplitudes based on the bit sequence and signs based on the second subset of bits, and transmit the symbols to the receiving device, the symbols being representative of the TB.
  • performing the distribution matching may include operations, features, means, or instructions for generating a sequence of interim symbols based on the first subset of bits and the non-uniform probability distribution and generating the bit sequence based on the sequence of interim symbols.
  • each interim symbol of the sequence of interim symbols may be one of a pool of candidate interim symbols and a first candidate interim symbol of the pool of candidate interim symbols may have a different probability of being included in the sequence of interim symbols than a second candidate interim symbol of the pool of candidate interim symbols, the different probability based on the non-uniform probability distribution.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for dividing the set of bits into the first subset of bits and the second subset of bits based on a bit order for the set of bits.
  • each bit of the first subset of bits may be earlier within the bit order than each bit of the second subset of bits.
  • each bit of the first subset of bits may be later within the bit order than each bit of the second subset of bits.
  • At least one bit of the first subset of bits may be between at least two other bits of the second subset of bits within the bit order.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for generating an error detection code for the TB before performing the distribution matching, where the error detection code may be based on a portion of the set of bits, and where the error detection code may be included in the set of bits.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for generating an error detection code for the TB after performing the distribution matching, where the error detection code may be based on the bit sequence and the second subset of bits.
  • the symbols may have signs based on one or more bits included in the error detection code for the TB.
  • performing the distribution matching on the first subset of bits may include operations, features, means, or instructions for dividing the first subset of bits into a set of multiple bit groups, performing distribution matching separately on each of the set of multiple bit groups to obtain a set of multiple bit subsequences each based on a respective bit group of the set of multiple bit groups and the non-uniform probability distribution, and combining the set of multiple bit subsequences to obtain the bit sequence.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for dividing the bit sequence into a set of multiple code block (CB) portions, where each of the set of multiple CB portions corresponds to a respective CB of a set of CBs for the TB, and where a quantity of CBs in the set of CBs may be equal to a quantity of bit subsequences in the set of multiple bit subsequences.
  • CB code block
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for dividing the bit sequence into a set of multiple CB portions, where each of the set of multiple CB portions corresponds to a respective CB of a set of CBs for the TB, and where a quantity of CBs in the set of CBs may be greater than a quantity of bit subsequences in the set of multiple bit subsequences.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for dividing the bit sequence into a set of multiple CB portions, where each of the set of multiple CB portions corresponds to a respective CB of a set of CBs for the TB, and where a quantity of CBs in the set of CBs may be less than a quantity of bit subsequences in the set of multiple bit subsequences.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying a maximum quantity of bits per bit group, where each bit group of the set of multiple bit groups includes a respective quantity of bits less than or equal to the maximum quantity of bits per bit group.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for performing the distribution matching includes generating a set of multiple subsequences of interim symbols, each subsequence of interim symbols corresponding to a respective bit group of the set of multiple bit groups and a respective bit subsequence of the set of multiple bit subsequences and the method further includes identifying a maximum quantity of interim symbols per subsequence of interim symbols, each subsequence of interim symbols including a respective quantity of interim symbols less than or equal to the maximum quantity of interim symbols per subsequence of interim symbols.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for dividing the bit sequence into a set of multiple first CB portions, dividing the second subset of bits into a set of multiple second CB portions, where a quantity of first CB portions in the set of multiple first CB portions may be equal to a quantity of second CB portions in the set of multiple second CB portions, and generating a set of CBs for the TB, where each CB of the set of CBs includes a respective first CB portion and a respective second CB portion.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for performing forward error correction encoding on each CB of the set of CBs to obtain a set of encoded CBs, where, each encoded CB of the set of encoded CBs includes a respective first set of systematic bits corresponding to the respective first CB portion of a corresponding CB, a respective second set of systematic bits corresponding to the respective second CB portion of the corresponding CB, a respective third set of systematic bits corresponding to an error detection code for the corresponding CB, and one or more respective parity bits, mapping the bit sequence and the second subset of bits to the symbols includes mapping each encoded CB of the set of encoded CBs to a respective subset of the symbols, symbols within the respective subset of the symbols having, amplitudes based on the respective first set of systematic bits for the corresponding encoded CB, and signs based on the respective second set of systematic bits for the corresponding encoded
  • a quantity of bits in the set of bits may be based on a quantity of resource elements used to transmit the symbols, a quantity of transmission layers used to transmit the symbols, a modulation order for the symbols, a forward error correction coding rate, a coding rate associated with the distribution matching, the non-uniform probability distribution, or any combination thereof.
  • a quantity of bits in the first subset of bits may be based on the quantity of resource elements used to transmit the symbols, the quantity of transmission layers used to transmit the symbols, the modulation order for the symbols, the coding rate associated with the distribution matching, the non-uniform probability distribution, or any combination thereof and a quantity of bits in the second subset of bits may be based on the quantity of resource elements used to transmit the symbols, the quantity of transmission layers used to transmit the symbols, the modulation order for the symbols, the forward error correction coding rate, or any combination thereof.
  • a method for wireless communications at a receiving device may include receiving symbols corresponding to a TB, the TB corresponding to a set of bits, mapping, based on a symbol constellation, the symbols to a bit sequence and a second subset of bits, where the symbol constellation is based on amplitude and sign, and where the symbols have amplitudes based on the bit sequence and signs based on the second subset of bits, performing distribution dematching on the bit sequence to obtain a first subset of bits, where the distribution dematching is based on a non-uniform probability distribution, and combining the first subset of bits and the second subset of bits to obtain the set of bits corresponding to the TB.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to receive symbols corresponding to a TB, the TB corresponding to a set of bits, mapping, base at least in part on a symbol constellation, the symbols to a bit sequence and a second subset of bits, where the symbol constellation is based on amplitude and sign, and where the symbols have amplitudes based on the bit sequence and signs based on the second subset of bits, perform distribution dematching on the bit sequence to obtain a first subset of bits, where the distribution dematching is based on a non-uniform probability distribution, and combine the first subset of bits and the second subset of bits to obtain the set of bits corresponding to the TB.
  • the apparatus may include means for receiving symbols corresponding to a TB, the TB corresponding to a set of bits, means for mapping, based on a symbol constellation, the symbols to a bit sequence and a second subset of bits, where the symbol constellation is based on amplitude and sign, and where the symbols have amplitudes based on the bit sequence and signs based on the second subset of bits, means for performing distribution dematching on the bit sequence to obtain a first subset of bits, where the distribution dematching is based on a non-uniform probability distribution, and means for combining the first subset of bits and the second subset of bits to obtain the set of bits corresponding to the TB.
  • a non-transitory computer-readable medium storing code for wireless communications at a receiving device is described.
  • the code may include instructions executable by a processor to receive symbols corresponding to a TB, the TB corresponding to a set of bits, mapping, base at least in part on a symbol constellation, the symbols to a bit sequence and a second subset of bits, where the symbol constellation is based on amplitude and sign, and where the symbols have amplitudes based on the bit sequence and signs based on the second subset of bits, perform distribution dematching on the bit sequence to obtain a first subset of bits, where the distribution dematching is based on a non-uniform probability distribution, and combine the first subset of bits and the second subset of bits to obtain the set of bits corresponding to the TB.
  • performing the distribution dematching may include operations, features, means, or instructions for generating a sequence of interim symbols based on the bit sequence and generating the first subset of bits based on the sequence of interim symbols and the non-uniform probability distribution.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for checking an error detection code for the TB after performing the distribution dematching, where the error detection code may be included in the set of bits.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for checking an error detection code for the TB before performing the distribution dematching, where the symbols may have signs based on the error detection code for the TB.
  • performing the distribution dematching may include operations, features, means, or instructions for dividing the bit sequence into a set of multiple bit subsequences, performing the distribution dematching separately on each bit subsequence of the set of multiple bit subsequences to obtain a set of multiple bit groups each based on a respective bit subsequence of the set of multiple bit subsequences and the non-uniform probability distribution, and combining the set of multiple bit groups to obtain the first subset of bits.
  • mapping the symbols to the bit sequence and the second subset of bits may include operations, features, means, or instructions for dividing the symbols into subsets of symbols each corresponding to a respective CB of a set of CBs for the TB and mapping, based on the symbol constellation, each of the subsets of symbols to bits corresponding to a respective CB of the set of CBs, where each CB of the set of CBs includes a respective portion of the bit sequence and a respective portion of the second subset of bits.
  • FIGs. 1 and 2 illustrate examples of wireless communications systems that support distribution matching for probabilistic constellation shaping (PCS) in wireless communications in accordance with aspects of the present disclosure.
  • PCS probabilistic constellation shaping
  • FIGs. 3 and 4 illustrate examples of encoding processes that support distribution matching for PCS in wireless communications in accordance with aspects of the present disclosure.
  • FIG. 5 illustrates an example of an encoding process that supports distribution matching for PCS in wireless communications in accordance with aspects of the present disclosure.
  • FIGs. 6 through 8 illustrate examples of processing flows that support distribution matching for PCS in wireless communications in accordance with aspects of the present disclosure.
  • FIG. 9 illustrates an example of an encoding process that supports distribution matching for PCS in wireless communications in accordance with aspects of the present disclosure.
  • FIG. 10 illustrates an example of a processing flow that supports distribution matching for PCS in wireless communications in accordance with aspects of the present disclosure.
  • FIGs. 11 and 12 show block diagrams of devices that support distribution matching for PCS in wireless communications in accordance with aspects of the present disclosure.
  • FIG. 13 shows a block diagram of a communications manager that supports distribution matching for PCS in wireless communications in accordance with aspects of the present disclosure.
  • FIG. 14 shows a diagram of a system including a device that supports distribution matching for PCS in wireless communications in accordance with aspects of the present disclosure.
  • FIGs. 15 and 16 show block diagrams of devices that support distribution matching for PCS in wireless communications in accordance with aspects of the present disclosure.
  • FIG. 17 shows a block diagram of a communications manager that supports distribution matching for PCS in wireless communications in accordance with aspects of the present disclosure.
  • FIG. 18 shows a diagram of a system including a device that supports distribution matching for PCS in wireless communications in accordance with aspects of the present disclosure.
  • FIGs. 19 through 24 show flowcharts illustrating methods that support distribution matching for PCS in wireless communications in accordance with aspects of the present disclosure.
  • a transmitting device may perform probabilistic constellation shaping (PCS) .
  • PCS may involve mapping bits to modulation symbols (e.g., quadrature amplitude modulation (QAM) symbols) such that some modulation symbols of a symbol constellation may be more likely to be mapped to, and thus transmitted over the air, than others.
  • modulation symbols associated with lower amplitudes may be selected with greater likelihood (and thus more often over time or in connection with a given set of bits) than modulation symbols associated with lower amplitudes, which may provide power savings, improved spectral efficiency, or other benefits.
  • the transmitting device may perform distribution matching on a set of bits for which constellation mapping (e.g., the selection of corresponding modulation symbols from a symbol constellation) is to be performed. It may be assumed that, prior to distribution matching, the set of bits are uniformly (e.g., randomly) distributed, such that each individual bit may have an equal likelihood of being a 0 or a 1. Distribution matching may include converting the set of bits (e.g., k input bits) into a corresponding sequence of symbols (e.g., n symbols) , where different symbols within a pool of possible symbols have different likelihoods of being included in the corresponding sequence of symbols-that is, the different possible symbols may have different associated probabilities of selection in accordance with a non-uniform probability distribution.
  • constellation mapping e.g., the selection of corresponding modulation symbols from a symbol constellation
  • some amplitudes may be more likely to be included in the sequence than others based on the non-uniform probability distribution.
  • a corresponding sequence of n symbols obtained via distribution matching may be non-uniformly distributed, with some symbols more likely be to be included in the sequence of n symbols (e.g., appearing more often with the sequence) than others.
  • a non-uniform sequence of symbols obtained via distribution matching may be converted to a corresponding bit sequence, and the corresponding bit sequence may be used for constellation mapping (e.g., mapping to the modulation symbols, such as QAM symbols, to achieve PCS) .
  • Symbols obtained via distribution matching may in some cases be referred to herein as interim symbols (e.g., as opposed to modulation symbols, which may be transmitted over the air) .
  • interim symbols e.g., as opposed to modulation symbols, which may be transmitted over the air
  • symbols subjected to distribution dematching which may be an inverse process with respect to distribution matching
  • interim symbols may in some cases be referred to herein as interim symbols.
  • Tradeoffs may exist regarding the quantity of input bits and output symbols associated with a single distribution matching procedure. For example, compared to performing distribution matching on smaller quantities of input bits to output shorter corresponding symbol sequences (e.g., smaller k and n values) , performing distribution matching on larger quantities of input bits to output longer corresponding symbol sequences (e.g., larger k and n values) may improve spectral efficiency and rate loss performance but may introduce additional latency and complexity. Solutions described herein may support incorporating PCS into wireless communications systems, including in a manner that accounts for such tradeoffs related to the sizing of distribution matching procedures, in a manner that supports transport block (TB) sizing and channel coding operations when PCS is used, or any combination thereof.
  • TB transport block
  • a transmitting device may divide bits of a TB into two subsets.
  • a first subset of the TB bits may be subjected to distribution matching and may be used to determine the amplitudes of modulation symbols, where the modulation symbols are used to transmit the TB over the air.
  • a second subset of the TB bits may not be subjected to distribution matching and may be used to determine the signs of the modulation symbols.
  • the first subset of TB bits may be referred to as amplitude bits
  • the second subset of TB bits may be referred to as sign bits.
  • the sign of a modulation symbol may refer to a polarity (e.g., positive or negative) of the modulation symbol, the phase of the modulation symbol, or any combination thereof.
  • the amplitude bits may be further divided into different bit groups (e.g., groups of amplitude bits) , and the different bit groups may be distribution matched separately (e.g., to further reduce the quantity of input bits for any one distribution matching procedure) .
  • a TB may correspond to (e.g., be split into, be formed by) a set of code blocks (CBs) .
  • Each CB may correspond to a portion of the amplitude bits for the TB and a portion of the sign bits for the TB.
  • Forward error correction (FEC) encoding and constellation mapping may be performed separately for each CB.
  • the amplitude bits associated with a single distribution matching procedure may correspond to a single CB (e.g., each bit group for distribution matching purposes may corresponds to a single CB) .
  • the amplitude bits associated with a single distribution matching procedure within a single CB may correspond to the amplitude bits associated with multiple distribution matching procedures (e.g., may correspond to multiple bit groups for distribution matching purposes) , or the amplitude bits within a single CB may correspond to a portion of the amplitude bits associated with a single distribution matching procedures (e.g., may correspond to a portion of a bit group for distribution matching purposes) . That is, there may be a same number of distribution matching procedures as CBs for the TB, or there may be more or fewer distribution matching procedures than CBs for the TB.
  • a cyclic redundancy check (CRC) for a TB may be computed before or after distribution matching is performed for the TB. If the TB CRC is computed before the distributing matching, the bits of the TB CRC may all be treated as amplitude bits, may all be treated as sign bits, or some bits of the TB CRC may be treated as amplitude bits while other bits of the TB CRC are treated as sign bits. In some cases, however, if the TB CRC is computed after the distributing matching, the bits of the TB CRC may all be treated as sign bits.
  • aspects of the disclosure including techniques for both transmitting devices and receiving devices, are initially described in the context of wireless communications systems. Aspects of the disclosure are further described in the context of encoding diagrams, resource diagrams, and process flows. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to distribution matching for PCS in wireless communications.
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports distribution matching for PCS in wireless communications in accordance with aspects of the present disclosure.
  • the wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-A Pro LTE-A Pro
  • NR New Radio
  • the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
  • ultra-reliable e.g., mission critical
  • the base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities.
  • the base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125.
  • Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125.
  • the coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
  • the UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times.
  • the UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1.
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
  • network equipment e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment
  • the base stations 105 may communicate with the core network 130, or with one another, or both.
  • the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) .
  • the base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both.
  • the backhaul links 120 may be or include one or more wireless links.
  • One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
  • a base transceiver station a radio base station
  • an access point a radio transceiver
  • a NodeB an eNodeB (eNB)
  • eNB eNodeB
  • a next-generation NodeB or a giga-NodeB either of which may be referred to as a gNB
  • gNB giga-NodeB
  • a UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples.
  • a UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC machine type communications
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • devices such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • the UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers.
  • the term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125.
  • a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) .
  • BWP bandwidth part
  • Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling.
  • the wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
  • a carrier may be associated with a frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) and may be positioned according to a channel raster for discovery by the UEs 115.
  • E-UTRA evolved universal mobile telecommunication system terrestrial radio access
  • a carrier may be operated in a standalone mode where initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode where a connection is anchored using a different carrier (e.g., of the same or a different radio access technology) .
  • the communication links 125 shown in the wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115.
  • Carriers may carry downlink or uplink communications (e.g., in an FDD mode) or may be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
  • a carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100.
  • the carrier bandwidth may be one of a number of determined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) .
  • Devices of the wireless communications system 100 e.g., the base stations 105, the UEs 115, or both
  • the wireless communications system 100 may include base stations 105 or UEs 115 that support simultaneous communications via carriers associated with multiple carrier bandwidths.
  • each served UE 115 may be configured for operating over portions (e.g., a sub-band, a BWP) or all of a carrier bandwidth.
  • Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) .
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
  • One or more numerologies for a carrier may be supported, where a numerology may include a subcarrier spacing ( ⁇ f) and a cyclic prefix.
  • a carrier may be divided into one or more BWPs having the same or different numerologies.
  • a UE 115 may be configured with multiple BWPs.
  • a single BWP for a carrier may be active at a given time and communications for the UE 115 may be restricted to one or more active BWPs.
  • Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) .
  • Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
  • SFN system frame number
  • Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration.
  • a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots.
  • each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing.
  • Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f ) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
  • a subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) .
  • TTI duration e.g., the number of symbol periods in a TTI
  • the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • a control region e.g., a control resource set (CORESET)
  • CORESET control resource set
  • a control region for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier.
  • One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115.
  • one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner.
  • An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size.
  • Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
  • Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof.
  • the term “cell” may refer to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) .
  • a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (e.g., a sector) over which the logical communication entity operates.
  • Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105.
  • a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell.
  • a small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed) frequency bands as macro cells.
  • Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) .
  • a base station 105 may support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
  • a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
  • protocol types e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB)
  • NB-IoT narrowband IoT
  • eMBB enhanced mobile broadband
  • a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105.
  • the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105.
  • the wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
  • the wireless communications system 100 may support synchronous or asynchronous operation.
  • the base stations 105 may have similar frame timings, and transmissions from different base stations 105 may be approximately aligned in time.
  • the base stations 105 may have different frame timings, and transmissions from different base stations 105 may, in some examples, not be aligned in time.
  • the techniques described herein may be used for either synchronous or asynchronous operations.
  • Some UEs 115 may be low cost or low complexity devices and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) .
  • M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention.
  • M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay such information to a central server or application program that makes use of the information or presents the information to humans interacting with the application program.
  • Some UEs 115 may be designed to collect information or enable automated behavior of machines or other devices. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
  • Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) .
  • half-duplex communications may be performed at a reduced peak rate.
  • Other power conservation techniques for the UEs 115 include entering a power saving deep sleep mode when not engaging in active communications, operating over a limited bandwidth (e.g., according to narrowband communications) , or a combination of these techniques.
  • some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
  • a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
  • the wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof.
  • the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications.
  • the UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) .
  • Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) .
  • MCPTT mission critical push-to-talk
  • MCVideo mission critical video
  • MCData mission critical data
  • Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications.
  • the terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
  • a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) .
  • D2D device-to-device
  • P2P peer-to-peer
  • One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105.
  • groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
  • the D2D communication link 135 may be an example of a communication channel, such as a sidelink communication channel, between vehicles (e.g., UEs 115) .
  • vehicles may communicate using vehicle-to-everything (V2X) communications, vehicle-to-vehicle (V2V) communications, or some combination of these.
  • V2X vehicle-to-everything
  • V2V vehicle-to-vehicle
  • a vehicle may signal information related to traffic conditions, signal scheduling, weather, safety, emergencies, or any other information relevant to a V2X system.
  • vehicles in a V2X system may communicate with roadside infrastructure, such as roadside units, or with the network via one or more network nodes (e.g., base stations 105) using vehicle-to-network (V2N) communications, or with both.
  • V2N vehicle-to-network
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) .
  • EPC evolved packet core
  • 5GC 5G core
  • MME mobility management entity
  • AMF access and mobility management function
  • S-GW serving gateway
  • PDN Packet Data Network gateway
  • UPF user plane function
  • the control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130.
  • NAS non-access stratum
  • User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions.
  • the user plane entity may be connected to IP services 150 for one or more network operators.
  • the IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
  • Some of the network devices may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) .
  • Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) .
  • Each access network transmission entity 145 may include one or more antenna panels.
  • various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
  • the wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors.
  • the transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • the wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band, or in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band.
  • SHF super high frequency
  • EHF extremely high frequency
  • the wireless communications system 100 may support millimeter wave (mmW) communications between the UEs 115 and the base stations 105, and EHF antennas of the respective devices may be smaller and more closely spaced than UHF antennas. In some examples, this may facilitate use of antenna arrays within a device.
  • mmW millimeter wave
  • the propagation of EHF transmissions may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions.
  • the techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
  • the wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance.
  • operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
  • a base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • the antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
  • the base stations 105 or the UEs 115 may use MIMO communications to exploit multipath signal propagation and increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers. Such techniques may be referred to as spatial multiplexing.
  • the multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas.
  • Each of the multiple signals may be referred to as a separate spatial stream and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams (e.g., different codewords) .
  • Different spatial layers may be associated with different antenna ports used for channel measurement and reporting.
  • MIMO techniques include single-user MIMO (SU-MIMO) , where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) , where multiple spatial layers are transmitted to multiple devices.
  • SU-MIMO single-user MIMO
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • a base station 105 or a UE 115 may use beam sweeping techniques as part of beam forming operations.
  • a base station 105 may use multiple antennas or antenna arrays (e.g., antenna panels) to conduct beamforming operations for directional communications with a UE 115.
  • Some signals e.g., synchronization signals, reference signals, beam selection signals, or other control signals
  • the base station 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission.
  • Transmissions in different beam directions may be used to identify (e.g., by a transmitting device, such as a base station 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the base station 105.
  • a transmitting device such as a base station 105
  • a receiving device such as a UE 115
  • Some signals may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) .
  • the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted in one or more beam directions.
  • a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions and may report to the base station 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
  • transmissions by a device may be performed using multiple beam directions, and the device may use a combination of digital precoding or radio frequency beamforming to generate a combined beam for transmission (e.g., from a base station 105 to a UE 115) .
  • the UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback may correspond to a configured number of beams across a system bandwidth or one or more sub-bands.
  • the base station 105 may transmit a reference signal (e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS) ) , which may be precoded or unprecoded.
  • a reference signal e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS)
  • CRS cell-specific reference signal
  • CSI-RS channel state information reference signal
  • the UE 115 may provide feedback for beam selection, which may be a precoding matrix indicator (PMI) or codebook-based feedback (e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) .
  • PMI precoding matrix indicator
  • codebook-based feedback e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook
  • a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
  • a receiving device may try multiple receive configurations (e.g., directional listening) when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals.
  • receive configurations e.g., directional listening
  • a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (e.g., different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions.
  • receive beamforming weight sets e.g., different directional listening weight sets
  • a receiving device may use a single receive configuration to receive along a single beam direction (e.g., when receiving a data signal) .
  • the single receive configuration may be aligned in a beam direction determined based on listening according to different receive configuration directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
  • SNR signal-to-noise ratio
  • the wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack.
  • communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based.
  • a Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels.
  • RLC Radio Link Control
  • a Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels.
  • the MAC layer may also use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency.
  • the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or a core network 130 supporting radio bearers for user plane data.
  • RRC Radio Resource Control
  • transport channels may be mapped to physical channels.
  • the UEs 115 and the base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully.
  • Hybrid automatic repeat request (HARQ) feedback is one technique for increasing the likelihood that data is received correctly over a communication link 125.
  • HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) .
  • FEC forward error correction
  • ARQ automatic repeat request
  • HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., low signal-to-noise conditions) .
  • a device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
  • transmitting and receiving devices may exchange information in the form of TBs, where a TB may refer to a payload passed from a MAC layer to a physical layer at a transmitting device or from a physical layer to a MAC layer at a receiving device.
  • a transmitting device may encode a set of bits corresponding to (e.g. included in, assigned to) a TB using one or more distribution matchers prior to transmitting the TB (e.g., a set of modulation symbols representing the TB) to a receiving device using PCS.
  • the receiving device may decode and otherwise process the TB using corresponding techniques (e.g., distribution dematching) .
  • a transmitting device may divide a set of bits of a TB into two subsets.
  • a first subset of the TB bits may be subjected to distribution matching and may be used to determine the amplitudes of over-the-air modulation symbols.
  • a second subset of the TB bits may not be subjected to distribution matching and may be used to determine the signs (e.g., phases) of the modulation symbols.
  • the transmitting device may perform distribution matching on the first subset of bits to obtain a shaped bit sequence based on a non-uniform probability distribution.
  • the transmitting device may map the shaped bit sequence and the unshaped second subset of bits to modulation symbols based on a symbol constellation, where the non-uniform probability distribution associated with the distribution matching may influence which modulation symbols are mapped to (e.g., selected) .
  • the transmitting device may transmit signaling based on the selected modulation symbols, and therefore representative of the TB, to the receiving device.
  • FIG. 2 illustrates an example of a wireless communications system 200 that supports distribution matching for PCS in wireless communications in accordance with aspects of the present disclosure.
  • the wireless communications system 200 may implement aspects of wireless communications system 100.
  • the wireless communications system 200 may include a transmitting device 250, which may be an example of a base station 105, UE 115, or any other device capable of transmitting wireless signals (e.g., as described with reference to FIG. 1) .
  • the wireless communications system 200 may also include a receiving device 255, which may be an example of a base station 105, UE 115, or any other device capable of receiving wireless signals (e.g., as described with reference to FIG. 1) .
  • a transmitting device 250 may communicate information to a receiving device, such as UE 115-a, via a communication link 205, which may be an example of a communication link 125 as described with reference to FIG. 1.
  • the transmitting device 250 may process bits of a TB 210 to obtain a corresponding set of modulation symbols, and transmitting device 250 may transmit, via the communication link 205, signaling that is based on (e.g., includes or is otherwise modulated based on) the set of modulation symbols, in order to communicate the TB 210 to the receiving device 255.
  • a transmitting device 250 may perform an encoding operation 215 on a TB 210.
  • the transmitting device 250 may encode the set of bits corresponding to a TB 210 in order to obtain a set of modulation symbols (e.g., QAM symbols) representative of the TB 210, and the transmitting device 250 may transmit the TB 210 to a receiving device 255 by transmitting the corresponding set of modulation symbols.
  • a set of modulation symbols e.g., QAM symbols
  • the encoding operation 215 may include several stages, such as attaching one or more CRC bits to the set of bits, encoding (e.g., low-density parity-check code (LDPC) encoding, forward error correction or other channel coding, or any combination thereof) as described in more detail with reference to FIG. 3 and FIG. 4, and constellation mapping (e.g., mapping bits or groups of bits to corresponding modulation symbols) , among other possible stages.
  • encoding e.g., low-density parity-check code (LDPC) encoding, forward error correction or other channel coding, or any combination thereof
  • constellation mapping e.g., mapping bits or groups of bits to corresponding modulation symbols
  • a transmitting device 250 may modulate a transmission according to a modulation format to represent the information conveyed by the transmission.
  • OFDM modulation may be based on modulating various subcarriers (e.g., using QAM modulation) and transmitting the modulated subcarriers in parallel (e.g., concurrent) using FDM techniques.
  • modulation symbols corresponding to a TB 210 may be obtained and transmitted by the transmitting device 250 to convey the information represented by the bits of the TB 210.
  • modulation symbols may refer to symbols based on any type of modulation, such as QAM symbols, binary phase shift keying (BPSK) symbols, quadrature phase shift keying (QPSK) symbols, amplitude and phase shift keying (APSK) symbols, or the like.
  • QAM symbols binary phase shift keying (BPSK) symbols
  • QPSK quadrature phase shift keying
  • APSK amplitude and phase shift keying
  • the transmitting device 250 may implement PCS, which may provide advantages when compared with other unshaped modulation types. For example, when unshaped modulation is used, each modulation symbol of a corresponding symbol constellation may be equally likely to be used and hence, over time, may be used equally often. Unshaped modulation may be described as based on a uniform probability distribution, as the probability of use is uniform across the different symbols of the symbol constellation. When PCS is used, however, different modulation symbols of a corresponding symbol constellation may have different probabilities of use-hence, the probability of use may be non-uniform across the different symbols of the symbol constellation.
  • PCS may improve spectral efficiency and allow communications to more closely approach the Shannon capacity (e.g., a theoretical maximum amount of information or data capacity that can be sent over a channel or medium) . Additionally or alternatively, PCS may improve power consumption-for example, modulation symbols with smaller amplitudes may be used more frequently than modulation symbols with larger amplitudes.
  • the transmitting device 250 may identify a set of source information bits, which may be a set of bits corresponding to (e.g., included in or otherwise represented by) the TB 210.
  • the transmitting device 250 may divide the set of source information into a first subset of bits, upon which distribution matching may be performed, and a second subset of bits, upon which distribution matching may not be performed.
  • the first subset of bits may be processed by the transmitting device 250 to obtain a corresponding set of shaped (e.g., distribution matched) bits, and the transmitting device 250 may perform constellation mapping such that the amplitudes of modulation symbols sent via communication link 205 for the TB 210 are based on the shaped bits, and the signs of the modulation symbols sent via communication link 205 for the TB 210 are based on the unshaped second subset of bits.
  • shaped bits e.g., distribution matched
  • the transmitting device 250 may implement a distribution matcher 225 to perform distribution matching (e.g., as part of the encoding operation 215) .
  • the distribution matcher 225 may perform any quantity of distribution matching procedures, each of which may accept as an input a uniformly distributed bit sequence with length n and output a symbol sequence of length k with a non-uniform probability distribution, as described in further detail with respect to FIG. 3, for example.
  • the non-uniform probability distribution may be, for example, a probability mass function (PMF) .
  • the rate loss of a message sent via communication link 205 may vary as a function of k/n. Thus, for a given probability distribution, the rate loss may decrease with an increase of n.
  • a transmitting device 250 may divide a set of bits for distribution matching (e.g., the first subset of the TB 210 bits) into multiple bit groups and perform separate distribution matching procedures on the different bit groups (e.g., the distribution matcher 225 may perform multiple distribution matching procedures as part of processing a single TB 210) , which may be advantageous in view of such tradeoffs.
  • a set of bits for distribution matching e.g., the first subset of the TB 210 bits
  • the distribution matcher 225 may perform multiple distribution matching procedures as part of processing a single TB 210) , which may be advantageous in view of such tradeoffs.
  • the transmitting device 250 may generate a CRC for the TB 210 (which may be referred to as a TB CRC) , and there may be multiple options for the processing stage at which the transmitting device generates and attaches the TB CRC (e.g., as part of the encoding operation 215) .
  • the transmitting device 250 may generate and attach the TB CRC prior to distribution matching or after distribution matching. If the transmitting device 250 generates and attaches the TB CRC prior to distribution matching, then the receiving device 255 may perform distribution matching prior to checking the TB CRC. And if the transmitting device 250 generates and attaches the TB CRC prior to distribution matching, then the receiving device 255 may perform distribution matching prior to checking the TB CRC.
  • the transmitting device 250 may transmit the TB 210 by transmitting a corresponding set of CBs 220, each which may correspond to a portion of the TB 210.
  • a first portion of each CB 220 may be based on a corresponding portion of the shaped bits of the TB 210
  • a second portion of each CB 220 may be based on a corresponding portion of the unshaped bits of the TB 210.
  • the quantity of CBs 220 may be equal to the quantity of bit groups into which the first subset of bits is divided for distribution matching purposes (e.g., the quantity of CBs 220 for the TB 210 may be equal to the quantity of distribution matching procedures performed for the TB 210) .
  • the quantity of CBs 220 may be greater than or less than the quantity of bit groups into which the first subset of bits is divided for distribution matching purposes (e.g., the quantity of CBs 220 for the TB 210 may be greater than or less than the quantity of distribution matching procedures performed for the TB 210) .
  • a distribution matcher 225 may perform a fixed-to-fixed (f2f) distribution matching procedure, in which the values of k and n are both fixed (e.g., each input set of bits includes a same quantity of bits, and each output set of interim symbols includes a same quantity of output symbols) .
  • a distribution matcher 225 may perform a variable-to-fixed (v2f) distribution matching procedure, in which the value of n is fixed, but the value of k is variable (e.g., each output set of interim symbols includes a same quantity of output symbols, but the quantity of input bits upon which an output set of interim symbols is based may be variable) .
  • the quantity of bits that a v2f distribution matching procedure handles may vary from one instance of the v2f distribution matching procedure to another-e.g., the value of k may depend on which particular interim symbols are included in an output sequence of n interim symbols.
  • a distribution matcher 225 may perform one or more f2f distribution matching procedures, one or more v2f distribution matching procedures, or any combination thereof.
  • the transmitting device 250 may transmit the modulation symbols corresponding to the TB 210 over communication link 205, and the receiving device 255 may thereby receive the modulation symbols corresponding to the TB 210.
  • the receiving device 255 perform a decoding operation 235 to process the TB 210 (e.g., to obtain the bits of the TB 210 based on the corresponding modulation symbols) .
  • the decoding operation 235 performed by the receiving device 255 may be an inverse of the encoding operation 215 performed by the transmitting device 250.
  • the decoding operation 235 may include one or more distribution dematching procedures.
  • a distribution dematching procedure may accept an input sequence of interim symbols (e.g., n interim symbols) and output a corresponding set of bits (e.g., k bits) .
  • the receiving device 255 may include any quantity of distribution dematchers 240, which may be f2f, v2f, or any combination thereof.
  • An f2f distribution dematcher 240 may accept a fixed quantity of interim symbols as an input sequence (e.g., n may be fixed) and may output a corresponding set of bits, where the quantity of bits in the corresponding set of bits is also fixed (e.g., k may be fixed) .
  • a v2f distribution dematcher 240 may accept a fixed quantity of interim symbols as an input sequence (e.g., n may be fixed) and may output a corresponding set of bits, where the quantity of bits in the corresponding set of bits is variable (e.g., k may be variable) , with the quantity of bits in the corresponding set of bits depending on the particular interim symbols included in the input sequence of interim symbols.
  • the transmitting device 250 may determine a size of the TB 210 (e.g., a quantity of bits included in the TB 210) based on one or more factors. For example, the transmitting device 250 may determine a size of the TB 210 based on a quantity of resource elements to which the TB 210 may be mapped, a quantity of transmission layers (e.g., MIMO layers) via which the TB 210 may be transmitted, a modulation and coding scheme for transmitting the TB 210 (e.g., a modulation order of the modulation symbols for transmitting the TB 210, a coding rate-such as a forward error correcting (FEC) or other channel coding rate for transmitting the TB 210) , a rate associated with the distribution matching for the TB 210 (e.g., a ratio of k: n for each of the one or more distribution matching procedures performed by the distribution matcher 225) , or any combination thereof. In examples in which one or more v2f distribution matching procedures are
  • a transmitting device 250 may determine the total quantity of shaped bits for a TB 210 (e.g., quantity of bits in the first subset of TB bits that are identified upon which distribution matching is performed) and additionally or alternatively a total quantity of interim symbols for the TB 210 based on the quantity of resource elements to which the TB 210 may be mapped, the quantity of transmission layers via which the TB 210 may be transmitted, the modulation order of the modulation symbols for transmitting the TB 210, or any combination thereof.
  • the total quantity of shaped bits for a TB 210 e.g., quantity of bits in the first subset of TB bits that are identified upon which distribution matching is performed
  • a total quantity of interim symbols for the TB 210 based on the quantity of resource elements to which the TB 210 may be mapped, the quantity of transmission layers via which the TB 210 may be transmitted, the modulation order of the modulation symbols for transmitting the TB 210, or any combination thereof.
  • a transmitting device 250 may determine the total quantity of unshaped bits for a TB 210 (e.g., quantity of bits in the second subset of TB bits upon which distribution matching is not performed) based on the quantity of resource elements to which the TB 210 may be mapped, the quantity of transmission layers via which the TB 210 may be transmitted, the modulation order of the modulation symbols for transmitting the TB 210, the coding rate (e.g., an FEC or other channel coding rate) for transmitting the TB 210, or any combination thereof.
  • the coding rate e.g., an FEC or other channel coding rate
  • the receiving device 255 may determine (e.g., calculate) the size of the TB 210, the total quantity of shaped bits, total quantity of interim symbols, and total quantity of unshaped bits for the TB 210 in the same manner as the transmitting device 250-e.g., based on the same factors, which may be separately communicated to the receiving device 255 (e.g., via higher-layer signaling) or otherwise known to the receiving device 255 (e.g., based on being specified in one or more communication standards or otherwise preconfigured) .
  • a maximum quantity of input or output bits per distribution matching or dematching procedure e.g., a maximum value of k
  • a maximum quantity of interim symbols per distribution matching or dematching procedure e.g., a maximum value of n
  • D MAX The maximum quantity of input or output bits per distribution matching or dematching procedure
  • N MAX The maximum quantity of interim symbols per distribution matching or dematching procedure
  • D MAX , N MAX , or both may be configured by a base station 105 and communicated to a UE 115 (e.g., via RRC or other higher-layer signaling) .
  • Equation 2 the quantity of distribution matching or dematching procedures performed for a TB 210 may be calculated according to Equation 2:
  • D is the quantity of distribution matching or dematching procedures performed for the TB 210
  • N AMP is the total quantity of amplitude bits for the TB 210 (e.g., a quantity of bits in the first subset of the TB bits upon which distribution matching is to be performed) .
  • Equation 3 the quantity of distribution matching or dematching procedures performed for a TB 210 may be calculated according to Equation 3:
  • Multiplying by 2 or some other factor may relate to a translation between the modulation symbols (e.g., as mapped to resource elements) and interim symbols, such as a translation between respective quantities of dimensions associated with the two types of symbols (e.g., translating between wo-dimensional QAM symbols, which may have both an in-phase and quadrature component and hence be considered two-dimensional, and ASK symbols, which may be considered one-dimensional) .
  • the total quantity of modulation symbols for a TB 210 may be equal to 2N RE ⁇ v, where v is the quantity of spatial layers used to transmit the TB 210, and hence in some cases the numerator of Equation 3 above may further include a multiplication by v.
  • FIG. 3 illustrates an example of an encoding process 300 that supports distribution matching for PCS in wireless communications in accordance with aspects of the present disclosure.
  • encoding process 300 may be implemented by aspects of wireless communications system 100 and wireless communications system 200.
  • a transmitting device e.g., a transmitting device 250
  • may encode a message for transmission to a receiving device e.g., a receiving device 260
  • the receiving device may perform a decoding operation comprising inverse operations corresponding to the operations of encoding process 300.
  • Encoding process 300 may include aspects of an encoding operation 215.
  • a transmitting device may encode a set of bits (e.g., a TB or a CB) , then transmit corresponding modulation symbols to a receiving device.
  • the quantity of bits included in the set of bits may be represented as k + ⁇ n, where k may represent the quantity of bits within a first subset of the bits and ⁇ n may represent the quantity of bits within a second subset of the bits.
  • the k bits in the first subset may be subjected to distribution matching (e.g., may be referred to as shaped bits, or alternatively referred to as amplitude bits)
  • the ⁇ n bits in the second subset may not be subjected to distribution matching (e.g., may be referred to as unshaped bits, or alternatively referred to as sign bits) .
  • the transmitting device may input the k bits of the first subset to a distribution matcher 310, which may be an example of a distribution matcher 225 as described with reference to FIG. 2.
  • the distribution matcher 310 may be a constant-composition distribution matcher (CCDM) , a multiset-partition distribution matcher (MPDM) , or may use sphere shaping, among other possible distribution matching techniques.
  • the distribution matcher 310 may transform k input bits into n intermediate or interim symbols. For example, sequences within the k input bits may each be mapped to one or more corresponding interim symbols within the n-length sequence of interim symbols. Thus, in some cases, each interim symbol may represent multiple input bits.
  • the interim symbols may not be equally likely to be included in the n-length sequence of interim symbols-that is, some interim symbols may be more likely to be included than others.
  • the interim symbols may be ASK symbols.
  • the transmitting device may input the n interim symbols into a symbol-to-bit converter 315.
  • the symbol-to-bit converter 315 may convert the interim symbols into bits.
  • the bits output by the symbol-to-bit converter 315 may not be the same as the bits input to the distribution matcher 310.
  • the symbol-to-bit converter 315 may output a bit sequence that includes quantity (m-1) n of bits, where m is a modulation order of the interim symbols (e.g., the quantity of different interim symbols within the pool of possible interim symbols may be equal to 2 m ) .
  • the transmitting device may input the (m-1) n-length bit sequence output by the symbol-to-bit converter 315 and the ⁇ n unshaped bits to an FEC encoder 320.
  • the FEC encoder 320 may support error correction for the subsequent transmission based on encoding redundancy into the transmission. Based on the bits input to the FEC encoder 320, the FEC encoder 320 may generate systematic bits 330 and parity bits 325. For example, for every (m-1+ ⁇ ) input bits, the FEC encoder 320 may generate m bits, where the extra bits may be parity bits 325.
  • the rate of encoding at the FEC encoder 320 may be calculated based on Equation 1:
  • the transmitting device may determine ⁇ based on the Rate FEC .
  • the transmitting device may input the bits output from the FEC encoder 320 to a constellation mapper 335, which may perform constellation mapping (e.g., map the bits input to the constellation mapper 335 to corresponding modulation symbols, based on a symbol constellation associated with the modulation symbols) .
  • constellation mapping e.g., map the bits input to the constellation mapper 335 to corresponding modulation symbols, based on a symbol constellation associated with the modulation symbols
  • a subset of the bits input to the constellation mapper 335 may be used to determine the amplitudes of the mapped-to modulation symbols, and these bits may be referred to as amplitude bits 340.
  • Another subset of the bits input to the constellation mapper 335 may be used to determine the signs (e.g., polarities, phases, or both) of the mapped-to modulation symbols, and these bits may be referred to as sign bits 345.
  • the amplitude bits 340 may include a first set of systematic bits 330-a, which may correspond to the shaped bits (bit sequence) output by the symbol-to-bit converter 315 and thus the k bits subjected to distribution matching.
  • the sign bits 345 may include a second set of systematic bits 330-b, which may correspond to the unshaped ⁇ n bits, along with the parity bits 325.
  • the ⁇ n bits and the parity bits 325 may be unshaped and thus uniformly distributed (e.g., each such bit may be equally likely to be a 1 or a 0) .
  • the amplitude bits 340 are based on the k bits subjected to distribution matching by the distribution matcher 310, the likelihood of a modulation symbol being mapped to may depend on the amplitude of the modulation symbol (e.g., lower amplitude modulation symbols, which may be nearer to a center of the symbol constellation, may be more likely to be mapped to than higher amplitude modulation symbols, which may be further from the center of the symbols constellation) .
  • the transmitting device may multiply the amplitude bits 340 with the sign bits 345 and map the resulting products to the modulation symbols.
  • FIG. 4 illustrates an example of an encoding process 400 that supports distribution matching for PCS in wireless communications in accordance with aspects of the present disclosure.
  • encoding process 400 may be implemented by aspects of wireless communications system 100 or wireless communications system 200.
  • a transmitting device e.g., a transmitting device 250
  • may encode a message for transmission to a receiving device e.g., a receiving device 260
  • the receiving device may perform a decoding operation comprising inverse operations corresponding to the operations of encoding process 400.
  • Encoding process 400 may include aspects of an encoding operation 215, an encoding process 300, or both.
  • a transmitting device may transmit a TB as a set of CBs, where each TB may correspond to a portion of the bits of the TB.
  • the transmitting device may process each CB individually according to encoding process 400.
  • a transmitting device may divide a set of bits for a TB into a first subset of bits (e.g., k bits) for distribution matching and a second subset of bits (e.g., ⁇ n bits) that are not to be distribution matched. Based on the first subset of bits, the transmitting device may obtain a corresponding set of shaped bits (e.g., a corresponding sequence of (m-1) n shaped bits) , which may alternatively be referred to as amplitude bits. In some cases, the transmitting device may divide the amplitude bits into a set of amplitude bit segments 410.
  • a first subset of bits e.g., k bits
  • ⁇ n bits e.g., ⁇ n bits
  • the transmitting device may also divide the second set of bits (e.g., the unshaped bits, which may also be referred to as sign bits) , into a set of sign bit segments 415.
  • the transmitting device may allocate one amplitude bit segment 410 and one sign bit segment 415 to each CB for the TB.
  • each CB may include at least some amplitude bits and at least some sign bits.
  • the amplitude bit segment 410 and sign bit segment 415 for a CB may collectively be referred to as a CB segment 405.
  • the transmitting device may input a CB segment into a CB CRC generator 430, which may generate a CRC for the CB (e.g., based on the bits of the CB segment 405) , which may be referred to as a CB CRC 435.
  • the transmitting device may input the amplitude bit segment 410, sign bit segment 415, and CB CRC 435 for the CB into an FEC encoder 440, which may be an example of an FEC encoder 320 as described with reference to FIG. 3.
  • the FEC encoder 440 may generate (e.g., calculate or otherwise obtain) a first set of systematic bits 445-a corresponding to the amplitude bit segment 410, a second set of systematic bits 445-b corresponding to the sign bit segment 415, a third set of systematic bits 445-c corresponding to the CB CRC 435, and one or more parity bits 450.
  • the transmitting device may also input the first set of systematic bits 445-a, second set of systematic bits 445-b, third set of systematic bits 445-c, and one or more parity bits 450 into constellation mapper 455, which may be an example of a constellation mapper 335 as described with reference to FIG. 3.
  • the constellation mapper 335 may treat the first set of systematic bits 445-a as amplitude bits 420 and may treat the second set of systematic bits 445-b, third set of systematic bits 445-c, and one or more parity bits 450 each as sign bits 460.
  • the constellation mapper 455 may select (e.g., map to) modulation symbols for the CB with amplitudes based on the corresponding amplitude bit segment 410 and signs based on the corresponding sign bit segment 415.
  • the transmitting device may determine the size of the TB based on a number of resource elements, a layer number or quantity of transmission layers used to transmit the symbols, the modulation and coding scheme (MCS) , the FEC encoding rate, the distribution matching rate, the probability distribution, spectral efficiency, or a combination thereof. Additionally or alternatively, the transmitting device may determine the total number of amplitude bits input to the TB segmentation (e.g., output from a fixed-to-fixed distribution matcher or a variable-to-fixed distribution matcher) based on the number of resource elements, the layer number, or the MCS.
  • MCS modulation and coding scheme
  • the transmitting device may determine the total number of sign bits input to the TB segmentation based on the number of resource elements, the modulation order, the rate of FEC encoding, or a combination thereof. In some cases, the transmitting device may calculate a number of CBs (e.g., according to one or more CB segmentation rules) . Additionally or alternatively, the transmitting device may calculate a number of bits input to the FEC encoder.
  • FIG. 5 illustrates an example of an encoding process 500 that supports distribution matching for PCS in wireless communications in accordance with aspects of the present disclosure.
  • encoding process 500 may be implemented by aspects of wireless communications system 100 or wireless communications system 200.
  • a transmitting device e.g., a transmitting device 250
  • may encode a message for transmission to a receiving device e.g., a receiving device 260
  • the receiving device may perform a decoding operation comprising inverse operations corresponding to the operations of encoding process 500.
  • Encoding process 500 may include aspects of an encoding operation 215, an encoding process 300, an encoding process 400, or any combination thereof.
  • the encoding process 500 may be an example of an encoding process in which a transmitting device generates and adds TB CRC bits prior to performing distribution matching for the TB.
  • the transmitting device may identify a set of bits of a TB (a set of TB bits) for communication to the receiving device.
  • a physical layer of a transmitting device may perform aspects of the encoding process 500.
  • the physical layer of the transmitting device may receive a set of TB bits from a MAC layer of the transmitting device.
  • a corresponding medium access control-control element (MAC-CE) may be included in the TB as received at the physical layer. If present, the corresponding MAC-CE may be considered part of the TB for the sake of determining a TB size as described herein.
  • the transmitting device may generate (e.g., calculate or otherwise obtain) a CRC based on the set of TB bits, which may be referred to as TB CRC.
  • the transmitting device may subsequently treat the bits of the TB CRC as part of the TB (e.g., the set of TB bits may be expanded at 505 to include the TB CRC) .
  • Generating the TB CRC and including it in the TB may in some cases be referred to as TB CRC attachment.
  • a size of the TB may be based on a quantity of resource elements to be used to transmit modulation symbols representative of the TB, a quantity of transmission layers to be used to transmit the modulation symbols, a modulation order for the modulation symbols, an FEC coding rate, a coding rate for the distribution matching, or any combination thereof.
  • the transmitting device may divide the bits in the TB into two subsets.
  • the first subset may include amplitude bits 515, which may be bits upon which distribution matching is subsequently performed, while the second subset may include sign bits 520, upon which distribution matching may not be subsequently performed.
  • the quantity of amplitude bits 515 may be based on the quantity of resource elements to be used to transmit modulation symbols representative of the TB, the quantity of transmission layers to be used to transmit the modulation symbols, the modulation order for the modulation symbols, or any combination thereof.
  • the quantity of sign bits 520 may be based on the quantity of resource elements to be used to transmit modulation symbols representative of the TB, the quantity of transmission layers to be used to transmit the modulation symbols, the modulation order for the modulation symbols, the FEC coding rate, or any combination thereof.
  • the bits included in the set of TB bits may be associated with a bit order, where each bit has an assigned location within the bit order (e.g., first bit, last bit, or some location in between) .
  • the bit order may correspond to an order in which the TB bits are processed (e.g., an order in which the TB bits received at the physical layer of the transmitting device) .
  • the first subset of bits may in some cases be earlier within the bit order than the second subset of bits (e.g., bits received earlier at the physical layer may be processed as amplitude bits 515) .
  • the first subset of bits may be later within the bit order than the second subset of bits (e.g., bits received later at the physical layer may be processed as amplitude bits 515) .
  • the transmitting device may allocate each TB bits as an amplitude bit 515 or a sign bit 520 according to some interleaved pattern (e.g., TB bits allocated as amplitude bits 515 may be interleaved with TB bits allocated as sign bits 520) .
  • the TB CRC bits may be treated as amplitude bits 515, as sign bits 520, or as some combination (e.g., some TB CRC bits treated as amplitude bits 515, other TB CRC bits as sign bits 520) .
  • the transmitting device may perform distribution matching segmentation at 525, which may include dividing the amplitude bits 515 into multiple bit groups, and distribution matching may subsequently be performed separately on each bit group (e.g., a separate, independent distribution matching procedure for each bit group) at 530.
  • performance tradeoffs may exist regarding the quantities of input bits and interim symbols (e.g., the values of k and n) associated with a single distribution matching procedure, and performing multiple distribution matching procedures, each on a portion of the amplitude bits 515, may help optimize performance in light of such tradeoffs.
  • each distribution matching procedure performed at 530 may be associated with a same non-uniform probability distribution. Additionally or alternatively, each distribution matching procedure performed at 530 may be an f2f distribution matching procedure.
  • the transmitting device may determine a quantity of separate distribution matching procedures (and hence a quantity of bit groups into which to divide the amplitude bits 515) based on a value of D MAX , N MAX , or both, as described herein. For example, the transmitting device may divide the amplitude bits into a sufficient quantity of bit groups at 525 to ensure that a quantity of input bits for any one distribution matching procedure is less than D MAX , that a quantity of interim symbols obtained via any one distribution matching procedure is less than N MAX , or both.
  • the transmitting device may obtain a corresponding sequence of n interim symbols based on a corresponding bit group of k amplitude bits 515, as described, for example, with reference to FIG. 3. And for each sequence of n interim symbols obtained by the transmitting device, the transmitting device may obtain a corresponding sequence of (m-1) n bits, which may be shaped bits.
  • a sequence of n interim symbols associated with (e.g., obtained via) a single distribution matching procedure may be referred to as a subsequence of interim symbols, and a corresponding sequence of (m-1) n bits may be referred to as a bit subsequence.
  • the transmitting device may concatenate each length (m-1) n bit subsequence to obtain a resulting bit sequence (of shaped bits) corresponding to all of the amplitude bits 515.
  • the transmitting device may also concatenate the bit sequence with the sign bits 520. Operations at 535 may collectively be referred to as bit integration.
  • the transmitting device may divide the bit sequence obtained at 535 (e.g., the bit sequence comprising each bit subsequence obtained at 530) into a quantity of first CB portions, each of the first CB portions thus comprising shaped bits derived from a portion of the amplitude bits 515.
  • the quantity of first CB portions may be equal to the quantity of CBs for the TB.
  • a first CB portion may be an example of a amplitude bit segment 410 as described with reference to FIG. 4.
  • the transmitting device may divide the sign bits 520 into a quantity of second CB portions, each of the second CB portions thus comprising unshaped bits.
  • the quantity of second CB portions may be equal to the quantity of CBs for the TB, and thus also equal to the quantity of first CB portions.
  • a second CB portion may be an example of a sign bit segment 415 as described with reference to FIG. 4.
  • the transmitting device may construct a quantity of CBs for the TB.
  • Each CB for the TB may include a respective first CB portion (comprising shaped bits) and a respective second CB portion (comprising unshaped bits) .
  • the quantity of CBs may be equal to the quantity of distribution matching procedures performed at 530-that is, each first CB portion may correspond to a single distribution matching procedure performed at 530, as described in more detail with reference to FIG. 6, for example. In other cases, the quantity of CBs may be less than or greater than the quantity of distribution matching procedures performed at 530.
  • the quantity of CBs may be a multiple of the quantity of distribution matching procedures performed at 530 (e.g., each distribution matching procedure performed at 530 may correspond to some quantity of first CB portions) , as described in more detail with reference to FIG. 7, for example.
  • the quantity of distribution matching procedures performed at 530 may be a multiple of the quantity of CBs (e.g., each first CB portion may correspond to some quantity of distribution matching procedures performed at 530) , as described in more detail with reference to FIG. 8, for example.
  • neither the quantity of distribution matching procedures performed at 530 nor the quantity of CBs may not be evenly divisible by the other.
  • the transmitting device may generate (e.g., calculate or otherwise obtain) a CRC for each CB, which may be referred to as a CB CRC.
  • the transmitting device may attach the generated CB CRC to the CB, and the attached CB CRC may thereafter be considered part of the CB for purposes of further processing the CB.
  • the transmitting device may perform LDPC base graph selection on the CBs.
  • the transmitting device may perform LDPC base graph selection on the integrated bits (e.g., the bit sequence and the sign bits 520) obtained at 535.
  • the LDPC base graph selection may be an example of selecting or construction an FEC code.
  • the selected or constructed FEC code may be applied or otherwise used as part of the channel coding (e.g., FEC encoding) at 555.
  • the transmitting device may separately perform channel coding and constellation mapping on each CB constructed at 550.
  • each CB constructed at 550 may be separately processed as described with reference to FIG. 4.
  • the transmitting device may input each CB into an FEC encoder 440 and perform associated FEC encoding as described with reference to FIG. 4.
  • the transmitting device may obtain a corresponding encoded CB, which may include a first set of systematic bits 445-a, second set of systematic bits 445-b, third set of systematic bits 445-c, and one or more parity bits 450 as described with reference to FIG. 4.
  • the transmitting device may obtain a corresponding set of encoded CBs.
  • the transmitting device may also at 555 separately input each encoded CB into a constellation mapper 455 and perform associated constellation mapping as described with reference to FIG. 4.
  • Each CB may thus correspond to a respective subset of the set of modulation symbols used to transmit the TB.
  • the modulation symbols may have amplitudes based on the first CB portion therein (e.g., the first set of systematic bits 445-a) , along with signs based on the second CB portion therein (e.g., the second set of systematic bits 445-b) , the corresponding CB CRC (e.g., the third set of systematic bits 445-c) , and the one or more corresponding parity bits 450.
  • the receiving device may receive the module symbols for the TB over a wireless communications link.
  • the receiving device may perform a decoding process including one or more operations to undo the encoding process performed by the transmitting device (e.g., for each operation of encoding process 500, the receiving device may perform a corresponding inverse process) , which may be an example of a decoding operation 235 as described with reference to FIG. 2.
  • the receiving device may perform distribution dematching (e.g., distribution matcher decoding) before checking the TB CRC.
  • the receiving device may map the received modulation symbols to a set of bits based on a symbol constellation.
  • the receiving device may identify a bit sequence (e.g., of amplitude bits) and a set of sign bits.
  • the symbol constellation may be based on amplitude and sign, where they symbols may have amplitudes based on the bit sequence and signs based on the sign bits.
  • the mapping may include dividing the symbols into subsets for respective CBs for the TB, or the respective subsets of symbols for the CBs may be received separately.
  • the receiving device may map each subset of symbols to bits for respective CBs based on the symbol constellation, wherein each CB includes a respective portion of the bit sequence and a respective portion of the sign bits.
  • the receiving device may perform channel decoding on each (e.g., FEC decoding) and then may perform a CRC check based on the corresponding CB CRC.
  • the receiving device Based on the amplitude bits associated with each CB, the receiving device obtain a bit sequence for the TB.
  • the receiving device may perform distribution dematching on the bit sequence based on a non-uniform probability distribution to obtain the amplitude bits that were subjected to distribution dematching by the transmitting device.
  • the distribution dematching may include dividing the bit sequence into multiple bit subsequences.
  • the receiving device may perform the distribution dematching separately on each bit subsequence to obtain bit groups based on the multiple bit subsequences and the non-uniform probability distribution.
  • the receiving device may determine a corresponding subsequence of interim symbols, and the receiving device may perform distribution dematching on each subsequence of interim symbols to obtain the corresponding bit groups.
  • the receiving device may combine the bit groups to obtain the amplitude bits as previously identified by the transmitting device at 510.
  • the receiving device may combine the amplitude bits and sign bits to obtain the bits of the TB, including the TB CRC, and the receiving device may then check the TB CRC.
  • FIG. 6 illustrates an example of a processing flow 600 that supports distribution matching for PCS in wireless communications in accordance with aspects of the present disclosure.
  • processing flow 600 may be implemented by aspects of wireless communications system 100, wireless communications system 200.
  • a transmitting device e.g., a transmitting device 250
  • may encode a message for transmission to a receiving device e.g., a receiving device 260
  • the receiving device may perform a decoding operation comprising inverse operations corresponding to the operations of processing flow 600.
  • Processing flow 600 may include aspects of an encoding operation 215, an encoding process 300, an encoding process 400, an encoding process 500, or any combination thereof.
  • Processing flow 600 may be an example of a processing flow in which each distribution matching procedure may correspond to a single CB.
  • a transmitting device may generate a TB CRC, which may include some quantity of CRC bits 610, based on the bits of a TB 605, which may be an example of a TB 210 as described with reference to FIG. 2.
  • the transmitting device may attach the TB CRC to the TB 605 and treat the CRC bits 610 of the TB CRC as part of the TB 605 for purposes of the subsequent operations of the processing flow 600.
  • the transmitting device may perform bit separation as described with reference to 510 of FIG. 5.
  • the transmitting device may thereby split the set of bits comprising TB 605 and the TB CRC into a first subset (including amplitude information bits 620) and a second subset (including sign information bits 625) .
  • information bits may refer to an unshaped bits-e.g., amplitude information bits 620 may not yet be shaped, and sign information bits 625 may also be unshaped.
  • the amplitude information bits 620 may be an example of the amplitude bits described with reference to 515 of FIG. 5.
  • the sign information bits 625 may be an example of the sign bits described with reference to 520 of FIG. 5.
  • the transmitting device may perform distribution matching segmentation on the amplitude information bits 620 included in the first subset of bits obtained at 615, as described with reference to 525 of FIG. 5.
  • the transmitting device may thereby divide the amplitude information bits 620 into one or more bit groups.
  • the transmitting device may perform distribution matching separately on each bit group, as described with reference to 530 of FIG. 5.
  • the transmitting device may thereby obtain a respective set of amplitude bits 640 (which may be shaped) for each bit group.
  • the transmitting device may perform bit integration on the sets of amplitude bits 640 and the sign information bits 625, as described with reference to 535 of FIG. 5.
  • the transmitting device may perform CB segmentation for the amplitude bits, and sign bits, respectively, as described with reference to 540 and 545 of FIG. 5.
  • the transmitting device may thereby obtain first CB portions that each include a portion of the amplitude bits 640 , along with an equal quantity of second CB portions that each include a portion of the sign information bits 625.
  • the quantity of CBs for the TB 605 may be equal to the quantity of distribution matching procedures performed for the TB 605 (e.g., the quantity of CBs for the TB 605 may be equal to the quantity of bit groups obtained at 630 and hence equal to the quantity of respective sets of amplitude bits 640 obtained at 635) .
  • the transmitting device may perform CB construction and CRC attachment, as described with reference to 550 of FIG. 5.
  • the transmitting device may thereby obtain a set of CBs each including a first CB portion of amplitude bits 640, second CB portion of sign information bits 625, and a CB CRC comprising one or more CRC bits 610.
  • Each CB may then be separately subjected to FEC encoding and constellation mapping, as describe with reference to FIG. 4, for example.
  • FIG. 7 illustrates an example of a processing flow 700 that supports distribution matching for PCS in wireless communications in accordance with aspects of the present disclosure.
  • processing flow 700 may be implemented by aspects of wireless communications system 100, wireless communications system 200.
  • a transmitting device e.g., a transmitting device 250
  • may encode a message for transmission to a receiving device e.g., a receiving device 260
  • the receiving device may perform a decoding operation comprising inverse operations corresponding to the operations of processing flow 700.
  • Processing flow 700 may include aspects of an encoding operation 215, an encoding process 300, an encoding process 400, an encoding process 500, a processing flow 600, or any combination thereof.
  • Processing flow 700 may be an example of a processing flow in which each distribution matching procedure may correspond to multiple CBs.
  • a transmitting device may generate a TB CRC, which may include some quantity of CRC bits 710, based on the bits of a TB 705, which may be an example of a TB 210 as described with reference to FIG. 2.
  • the transmitting device may attach the TB CRC to the TB 705 and treat the CRC bits 710 of the TB CRC as part of the TB 705 for purposes of the subsequent operations of the processing flow 700.
  • the transmitting device may perform bit separation as described with reference to 510 of FIG. 5.
  • the transmitting device may thereby split the set of bits comprising TB 705 and the TB CRC into a first subset (including amplitude information bits 720) and a second subset (including sign information bits 725) .
  • information bits may refer to an unshaped bits-e.g., amplitude information bits 720 may not yet be shaped, and sign information bits 725 may also be unshaped.
  • the amplitude information bits 720 may be an example of the amplitude bits described with reference to 515 of FIG. 5.
  • the sign information bits 725 may be an example of the sign bits described with reference to 520 of FIG. 5.
  • the transmitting device may perform distribution matching segmentation on the amplitude information bits 720 included in the first subset of bits obtained at 715, as described with reference to 525 of FIG. 5.
  • the transmitting device may thereby divide the amplitude information bits 720 into one or more bit groups.
  • the transmitting device may perform distribution matching separately on each bit group, as described with reference to 530 of FIG. 5.
  • the transmitting device may thereby obtain a respective set of amplitude bits 740 (which may be shaped) for each bit group.
  • the transmitting device may perform bit integration on the sets of amplitude bits 740 and the sign information bits 725, as described with reference to 535 of FIG. 5.
  • the transmitting device may perform CB segmentation for the amplitude bits and sign bits, respectively, as described with reference to 540 and 545 of FIG. 5.
  • the transmitting device may thereby obtain first CB portions that each include a portion of the amplitude bits 740, along with an equal quantity of second CB portions that each include a portion of the sign information bits 725.
  • the quantity of CBs for the TB 705 may be greater than the quantity of distribution matching procedures performed for the TB 705 (e.g., the quantity of CBs for the TB 705 may be greater than the quantity of bit groups obtained at 730 and hence greater than the quantity of respective sets of amplitude bits 740 obtained at 735) .
  • each respective set of amplitude bits 740 obtained at 735 may be divided into multiple first CB portions (e.g., two first CB portions as shown in the example of processing flow 700) .
  • the transmitting device may perform CB construction and CRC attachment, as described with reference to 550 of FIG. 5.
  • the transmitting device may thereby obtain a set of CBs each including a first CB portion of amplitude bits 740, second CB portion of sign information bits 725, and a CB CRC comprising one or more CRC bits 710.
  • Each CB may then be separately subjected to FEC encoding and constellation mapping, as describe with reference to FIG. 4, for example.
  • FIG. 8 illustrates an example of a processing flow 800 that supports distribution matching for PCS in wireless communications in accordance with aspects of the present disclosure.
  • processing flow 800 may be implemented by aspects of wireless communications system 100, wireless communications system 200.
  • a transmitting device e.g., a transmitting device 250
  • may encode a message for transmission to a receiving device e.g., a receiving device 260
  • the receiving device may perform a decoding operation comprising inverse operations corresponding to the operations of processing flow 800.
  • Processing flow 800 may include aspects of an encoding operation 215, an encoding process 300, an encoding process 400, an encoding process 500, a processing flow 600, a processing flow 700, or any combination thereof.
  • Processing flow 800 may be an example of a processing flow in which multiple distribution matching procedures may correspond to a single CB.
  • a transmitting device may generate a TB CRC, which may include some quantity of CRC bits 810, based on the bits of a TB 805, which may be an example of a TB 210 as described with reference to FIG. 2.
  • the transmitting device may attach the TB CRC to the TB 805 and treat the CRC bits 810 of the TB CRC as part of the TB 805 for purposes of the subsequent operations of the processing flow 800.
  • the transmitting device may perform bit separation as described with reference to 510 of FIG. 5.
  • the transmitting device may thereby split the set of bits comprising TB 805 and the TB CRC into a first subset (including amplitude information bits 820) and a second subset (including sign information bits 825) .
  • information bits may refer to an unshaped bits-e.g., amplitude information bits 820 may not yet be shaped, and sign information bits 825 may also be unshaped.
  • the amplitude information bits 820 may be an example of the amplitude bits described with reference to 515 of FIG. 5.
  • the sign information bits 825 may be an example of the sign bits described with reference to 520 of FIG. 5.
  • the transmitting device may perform distribution matching segmentation on the amplitude information bits 820 included in the first subset of bits obtained at 815, as described with reference to 525 of FIG. 5.
  • the transmitting device may thereby divide the amplitude information bits 820 into one or more bit groups.
  • the transmitting device may perform distribution matching separately on each bit group, as described with reference to 530 of FIG. 5.
  • the transmitting device may thereby obtain a respective set of amplitude bits 840 (which may be shaped) for each bit group.
  • the transmitting device may perform bit integration on the sets of amplitude bits 840 and the sign information bits 825, as described with reference to 535 of FIG. 5.
  • the transmitting device may perform CB segmentation for the amplitude bits and sign bits, respectively, as described with reference to 540 and 545 of FIG. 5.
  • the transmitting device may thereby obtain first CB portions that each include a portion of the amplitude bits 840, along with an equal quantity of second CB portions that each include a portion of the sign information bits 825.
  • the quantity of CBs for the TB 805 may be less than the quantity of distribution matching procedures performed for the TB 805 (e.g., the quantity of CBs for the TB 805 may be less than the quantity of bit groups obtained at 830 and hence less than the quantity of respective sets of amplitude bits 840 obtained at 835) .
  • multiple respective sets of amplitude bits 840 obtained at 835 may be combined to form each first CB portions (e.g., two respective sets of amplitude bits 840 may be combined to form each first CB portion as shown in the example of processing flow 800) .
  • the transmitting device may perform CB construction and CRC attachment, as described with reference to 550 of FIG. 5.
  • the transmitting device may thereby obtain a set of CBs each including a first CB portion of amplitude bits 840, second CB portion of sign information bits 825, and a CB CRC comprising one or more CRC bits 810.
  • Each CB may then be separately subjected to FEC encoding and constellation mapping, as describe with reference to FIG. 4, for example.
  • FIG. 9 illustrates an example of an encoding process 900 that supports distribution matching for PCS in wireless communications in accordance with aspects of the present disclosure.
  • encoding process 900 may be implemented by aspects of wireless communications system 100 or wireless communications system 200.
  • a transmitting device e.g., a transmitting device 250
  • may encode a message for transmission to a receiving device e.g., a receiving device 260
  • the receiving device may perform a decoding operation comprising inverse operations corresponding to the operations of encoding process 900.
  • Encoding process 900 may include aspects of an encoding operation 215, an encoding process 300, an encoding process 400, an encoding process 500, a processing flow 600, a processing flow 700, a processing flow 800, or any combination thereof.
  • the encoding process 900 may be an example of an encoding process in which a transmitting device generates and adds TB CRC bits after performing distribution matching for the TB.
  • the transmitting device may identify a set of bits of a TB (a set of TB bits) for communication to the receiving device.
  • a physical layer of a transmitting device may perform aspects of the encoding process 900.
  • the physical layer of the transmitting device may receive a set of TB bits from a MAC layer of the transmitting device.
  • a corresponding medium access control-control element (MAC-CE) may be included in the TB as received at the physical layer. If present, the corresponding MAC-CE may be considered part of the TB for the sake of determining a TB size as described herein.
  • a size of the TB may be based on a quantity of resource elements to be used to transmit modulation symbols representative of the TB, a quantity of transmission layers to be used to transmit the modulation symbols, a modulation order for the modulation symbols, an FEC coding rate, a coding rate for the distribution matching, or any combination thereof.
  • the transmitting device may divide the bits in the TB into two subsets.
  • the first subset may include amplitude bits 915, which may be bits upon which distribution matching is subsequently performed, while the second subset may include sign bits 920, upon which distribution matching may not be subsequently performed.
  • the quantity of amplitude bits 915 may be based on the quantity of resource elements to be used to transmit modulation symbols representative of the TB, the quantity of transmission layers to be used to transmit the modulation symbols, the modulation order for the modulation symbols, or any combination thereof.
  • the quantity of sign bits 920 may be based on the quantity of resource elements to be used to transmit modulation symbols representative of the TB, the quantity of transmission layers to be used to transmit the modulation symbols, the modulation order for the modulation symbols, the FEC coding rate, or any combination thereof.
  • the bits included in the set of TB bits may be associated with a bit order, where each bit has an assigned location within the bit order (e.g., first bit, last bit, or some location in between) .
  • the bit order may correspond to an order in which the TB bits are processed (e.g., an order in which the TB bits received at the physical layer of the transmitting device) .
  • the first subset of bits may in some cases be earlier within the bit order than the second subset of bits (e.g., bits received earlier at the physical layer may be processed as amplitude bits 915) .
  • the first subset of bits may be later within the bit order than the second subset of bits (e.g., bits received later at the physical layer may be processed as amplitude bits 915) .
  • the transmitting device may allocate each TB bits as an amplitude bit 915 or a sign bit 920 according to some interleaved pattern (e.g., TB bits allocated as amplitude bits 915 may be interleaved with TB bits allocated as sign bits 920) .
  • the transmitting device may perform distribution matching segmentation at 925, which may include dividing the amplitude bits 915 into multiple bit groups, and distribution matching may subsequently be performed separately on each bit group (e.g., a separate, independent distribution matching procedure for each bit group) at 930.
  • performance tradeoffs may exist regarding the quantities of input bits and interim symbols (e.g., the values of k and n) associated with a single distribution matching procedure, and performing multiple distribution matching procedures, each on a portion of the amplitude bits 915, may help optimize performance in light of such tradeoffs.
  • each distribution matching procedure performed at 930 may be associated with a same non-uniform probability distribution. Additionally or alternatively, each distribution matching procedure performed at 930 may be an f2f distribution matching procedure.
  • the transmitting device may determine a quantity of separate distribution matching procedures (and hence a quantity of bit groups into which to divide the amplitude bits 915) based on a value of D MAX , N MAX , or both, as described herein. For example, the transmitting device may divide the amplitude bits into a sufficient quantity of bit groups at 925 to ensure that a quantity of input bits for any one distribution matching procedure is less than D MAX , that a quantity of interim symbols obtained via any one distribution matching procedure is less than N MAX , or both.
  • the transmitting device may obtain a corresponding sequence of n interim symbols based on a corresponding bit group of k amplitude bits 915, as described, for example, with reference to FIG. 3. And for each sequence of n interim symbols obtained by the transmitting device, the transmitting device may obtain a corresponding sequence of (m-1) n bits, which may be shaped bits.
  • a sequence of n interim symbols associated with (e.g., obtained via) a single distribution matching procedure may be referred to as a subsequence of interim symbols, and a corresponding sequence of (m-1) n bits may be referred to as a bit subsequence.
  • the transmitting device may concatenate each length (m-1) n bit subsequence to obtain a resulting bit sequence (of shaped bits) corresponding to all of the amplitude bits 915.
  • the transmitting device may also concatenate the bit sequence with the sign bits 920. Operations at 935 may collectively be referred to as bit integration.
  • the transmitting device may generate (e.g., calculate or otherwise obtain) a CRC based on the integrated set of bits obtained at 935, which may be referred to as TB CRC.
  • the transmitting device may generate a CRC for the TB after performing distribution matching at 930.
  • the transmitting device may subsequently treat the bits of the TB CRC as part of the sign bits 920.
  • Generating the TB CRC and including it in the TB (e.g., in the set of bits obtained at 935) may in some cases be referred to as TB CRC attachment.
  • the transmitting device may divide the bit sequence obtained at 935 (e.g., the bit sequence comprising each bit subsequence obtained at 930) into a quantity of first CB portions, each of the first CB portions thus comprising shaped bits derived from a portion of the amplitude bits 915.
  • the quantity of first CB portions may be equal to the quantity of CBs for the TB.
  • a first CB portion may be an example of a amplitude bit segment 410 as described with reference to FIG. 4.
  • the transmitting device may divide the sign bits 920, including the TB CRC bits generated at 935, into a quantity of second CB portions, each of the second CB portions thus comprising unshaped bits.
  • the quantity of second CB portions may be equal to the quantity of CBs for the TB, and thus also equal to the quantity of first CB portions.
  • a second CB portion may be an example of a sign bit segment 415 as described with reference to FIG. 4.
  • the transmitting device may construct a quantity of CBs for the TB.
  • Each CB for the TB may include a respective first CB portion (comprising shaped bits) and a respective second CB portion (comprising unshaped bits) .
  • the quantity of CBs may be equal to the quantity of distribution matching procedures performed at 930-that is, each first CB portion may correspond to a single distribution matching procedure performed at 930, as described in more detail with reference to FIG. 6, for example. In other cases, the quantity of CBs may be less than or greater than the quantity of distribution matching procedures performed at 930.
  • the quantity of CBs may be a multiple of the quantity of distribution matching procedures performed at 930 (e.g., each distribution matching procedure performed at 930 may correspond to some quantity of first CB portions) , as described in more detail with reference to FIGs. 7 and 10, for example.
  • the quantity of distribution matching procedures performed at 930 may be a multiple of the quantity of CBs (e.g., each first CB portion may correspond to some quantity of distribution matching procedures performed at 930) , as described in more detail with reference to FIG. 8, for example.
  • neither the quantity of distribution matching procedures performed at 930 nor the quantity of CBs may not be evenly divisible by the other.
  • the transmitting device may generate (e.g., calculate or otherwise obtain) a CRC for each CB, which may be referred to as a CB CRC.
  • the transmitting device may attach the generated CB CRC to the CB, and the attached CB CRC may thereafter be considered part of the CB for purposes of further processing the CB.
  • the transmitting device may perform LDPC base graph selection on the CBs.
  • the transmitting device may perform LDPC base graph selection on the integrated bits obtained at 935 (e.g., the bit sequence and the sign bits 920, with the TB CRC included in the sign bits 920) .
  • the LDPC base graph selection may be an example of selecting or construction an FEC code.
  • the selected or constructed FEC code may be applied or otherwise used as part of the channel coding (e.g., FEC encoding) at 955.
  • the transmitting device may separately perform channel coding and constellation mapping on each CB constructed at 950.
  • each CB constructed at 950 may be separately processed as described with reference to FIG. 4.
  • the transmitting device may input each CB into an FEC encoder 440 and perform associated FEC encoding as described with reference to FIG. 4.
  • the transmitting device may obtain a corresponding encoded CB, which may include a first set of systematic bits 445-a, second set of systematic bits 445-b, third set of systematic bits 445-c, and one or more parity bits 450 as described with reference to FIG. 4.
  • the transmitting device may obtain a corresponding set of encoded CBs.
  • the transmitting device may also at 955 separately input each encoded CB into a constellation mapper 455 and perform associated constellation mapping as described with reference to FIG. 4.
  • Each CB may thus correspond to a respective subset of the set of modulation symbols used to transmit the TB.
  • the modulation symbols may have amplitudes based on the first CB portion therein (e.g., the first set of systematic bits 445-a) , along with signs based on the second CB portion therein (e.g., the second set of systematic bits 445-b) , the corresponding CB CRC (e.g., the third set of systematic bits 445-c) , and the one or more corresponding parity bits 450.
  • the receiving device may receive the module symbols for the TB over a wireless communications link.
  • the receiving device may perform a decoding process including one or more operations to undo the encoding process performed by the transmitting device (e.g., for each operation of encoding process 900, the receiving device may perform a corresponding inverse process) , which may be an example of a decoding operation 235 as described with reference to FIG. 2.
  • the receiving device may check the TB CRC before performing distribution dematching (e.g., distribution matcher decoding) for the TB.
  • the receiving device may map the received modulation symbols to a set of bits based on a symbol constellation.
  • the receiving device may identify a bit sequence (e.g., of amplitude bits) and a set of sign bits.
  • the symbol constellation may be based on amplitude and sign, where they symbols may have amplitudes based on the bit sequence and signs based on the sign bits.
  • the mapping may include dividing the symbols into subsets for respective CBs for the TB, or the respective subsets of symbols for the CBs may be received separately.
  • the receiving device may map each subset of symbols to bits for respective CBs based on the symbol constellation, wherein each CB includes a respective portion of the bit sequence and a respective portion of the sign bits.
  • the receiving device may perform channel decoding on each (e.g., FEC decoding) and then may perform a CRC check based on the corresponding CB CRC.
  • the receiving device may combine the bits of each CB to obtain the bits of the TB.
  • the receiving device may also identify the TB CRC among the sign bits corresponding to the TB, and the receiving device may then check the TB CRC.
  • the receiving device Based on the amplitude bits associated with each CB, the receiving device obtain a bit sequence for the TB. If the TB CRC check passes (the TB is identified as error-free) , the receiving device may, after the TB CRC check, perform distribution dematching on the bit sequence based on a non-uniform probability distribution to obtain the amplitude bits that were subjected to distribution dematching by the transmitting device.
  • the distribution dematching may include dividing the bit sequence into multiple bit subsequences.
  • the receiving device may perform the distribution dematching separately on each bit subsequence to obtain bit groups based on the multiple bit subsequences and the non-uniform probability distribution.
  • the receiving device may determine a corresponding subsequence of interim symbols, and the receiving device may perform distribution dematching on each subsequence of interim symbols to obtain the corresponding bit groups.
  • the receiving device may combine the bit groups to obtain the amplitude bits as previously identified by the transmitting device at 910.
  • the receiving device may combine the amplitude bits and sign bits to obtain the bits of the TB.
  • FIG. 10 illustrates an example of a processing flow 1000 that supports distribution matching for PCS in wireless communications in accordance with aspects of the present disclosure.
  • processing flow 1000 may be implemented by aspects of wireless communications system 100, wireless communications system 200.
  • a transmitting device e.g., a transmitting device 250
  • may encode a message for transmission to a receiving device e.g., a receiving device 260
  • the receiving device may perform a decoding operation comprising inverse operations corresponding to the operations of processing flow 1000.
  • Processing flow 1000 may include aspects of an encoding operation 215, an encoding process 300, an encoding process 400, an encoding process 500, a processing flow 600, a processing flow 700, processing flow 800, an encoding process 900, or any combination thereof.
  • Processing flow 1000 may be an example of a processing flow in which each distribution matching procedure may correspond to multiple CBs.
  • a transmitting device may identify a TB CRC, which may be an example of a TB 210 as described with reference to FIG. 2.
  • the transmitting device may perform bit separation as described with reference to 910 of FIG. 9.
  • the transmitting device may thereby split the bits of the TB 1005 into a first subset (including amplitude information bits 1020) and a second subset (including sign information bits 1025) .
  • information bits may refer to an unshaped bits-e.g., amplitude information bits 1020 may not yet be shaped, and sign information bits 1025 may also be unshaped.
  • the amplitude information bits 1020 may be an example of the amplitude bits described with reference to 915 of FIG. 9.
  • the sign information bits 1025 may be an example of the sign bits described with reference to 920 of FIG. 9.
  • the transmitting device may perform distribution matching segmentation on the amplitude information bits 1020 included in the first subset of bits obtained at 1015, as described with reference to 925 of FIG. 9.
  • the transmitting device may thereby divide the amplitude information bits 1020 into one or more bit groups.
  • the transmitting device may perform distribution matching separately on each bit group, as described with reference to 930 of FIG. 9.
  • the transmitting device may thereby obtain a respective set of amplitude bits 1040 (which may be shaped) for each bit group.
  • the transmitting device may perform bit integration on the sets of amplitude bits 1040 and the sign information bits 1025, as described with reference to 935 of FIG. 9.
  • a transmitting device may generate a TB CRC, which may include some quantity of CRC bits 1010, based on the integrated bits obtained at 1045.
  • the transmitting device may attach the TB CRC to the sign information bits 1025 and treat the CRC bits 1010 as sign information bits 1025 for purposes of the subsequent operations of the processing flow 1000.
  • the transmitting device may perform CB segmentation for the amplitude bits and sign bits, respectively, as described with reference to 940 and 945 of FIG. 9.
  • the transmitting device may thereby obtain first CB portions that each include a portion of the amplitude bits 1040, along with an equal quantity of second CB portions that each include a portion of the sign information bits 1025.
  • the quantity of CBs for the TB 1005 may be greater than the quantity of distribution matching procedures performed for the TB 1005 (e.g., the quantity of CBs for the TB 1005 may be greater than the quantity of bit groups obtained at 1030 and hence greater than the quantity of respective sets of amplitude bits 1040 obtained at 1035) .
  • each respective set of amplitude bits 1040 obtained at 1035 may be divided into multiple first CB portions (e.g., two first CB portions as shown in the example of processing flow 1000) .
  • the quantity of CBs may be equal to the quantity of distribution matching procedures (e.g., as described with reference to aspects of FIG. 6) , or the quantity of CBs may be less than the quantity of distribution matching procedures (e.g., as described with reference to aspects of FIG. 8) .
  • the transmitting device may perform CB construction and CRC attachment, as described with reference to 950 of FIG. 9.
  • the transmitting device may thereby obtain a set of CBs each including a first CB portion of amplitude bits 1040, second CB portion of sign information bits 1025, and a CB CRC comprising one or more CRC bits 1010.
  • Each CB may then be separately subjected to FEC encoding and constellation mapping, as describe with reference to FIG. 4, for example.
  • FIG. 11 shows a block diagram 1100 of a device 1105 that supports distribution matching for PCS in wireless communications in accordance with aspects of the present disclosure.
  • the device 1105 may be an example of aspects of a transmitting device as described herein.
  • the device 1105 may include a receiver 1110, a transmitter 1115, and a communications manager 1120.
  • the device 1105 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 1110 may provide a means for receiving information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to distribution matching for PCS in wireless communications) . Information may be passed on to other components of the device 1105.
  • the receiver 1110 may utilize a single antenna or a set of multiple antennas.
  • the transmitter 1115 may provide a means for transmitting signals generated by other components of the device 1105.
  • the transmitter 1115 may transmit information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to distribution matching for PCS in wireless communications) .
  • the transmitter 1115 may be co-located with a receiver 1110 in a transceiver module.
  • the transmitter 1115 may utilize a single antenna or a set of multiple antennas.
  • the communications manager 1120, the receiver 1110, the transmitter 1115, or various combinations thereof or various components thereof may be examples of means for performing various aspects of distribution matching for PCS in wireless communications as described herein.
  • the communications manager 1120, the receiver 1110, the transmitter 1115, or various combinations or components thereof may support a method for performing one or more of the functions described herein.
  • the communications manager 1120, the receiver 1110, the transmitter 1115, or various combinations or components thereof may be implemented in hardware (e.g., in communications management circuitry) .
  • the hardware may include a processor, a digital signaling processor (DSP) , an application-specific integrated circuit (ASIC) , a field-programmable gate-array (FPGA) or other programmable logic device, a discrete gate or transistor logic, discrete hardware components, or any combination thereof configured as or otherwise supporting a means for performing the functions described in the present disclosure.
  • DSP digital signaling processor
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate-array
  • a processor and memory coupled with the processor may be configured to perform one or more of the functions described herein (e.g., by executing, by the processor, instructions stored in the memory) .
  • the communications manager 1120, the receiver 1110, the transmitter 1115, or various combinations or components thereof may be implemented in code (e.g., as communications management software or firmware) executed by a processor. If implemented in code executed by a processor, the functions of the communications manager 1120, the receiver 1110, the transmitter 1115, or various combinations or components thereof may be performed by a general-purpose processor, a DSP, a central processing unit (CPU) , an ASIC, an FPGA, or any combination of these or other programmable logic devices (e.g., configured as or otherwise supporting a means for performing the functions described in the present disclosure) .
  • code e.g., as communications management software or firmware
  • the functions of the communications manager 1120, the receiver 1110, the transmitter 1115, or various combinations or components thereof may be performed by a general-purpose processor, a DSP, a central processing unit (CPU) , an ASIC, an FPGA, or any combination of these or other programmable logic devices (e.g., configured as or otherwise supporting
  • the communications manager 1120 may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the receiver 1110, the transmitter 1115, or both.
  • the communications manager 1120 may receive information from the receiver 1110, send information to the transmitter 1115, or be integrated in combination with the receiver 1110, the transmitter 1115, or both to receive information, transmit information, or perform various other operations as described herein.
  • the communications manager 1120 may support wireless communications at a transmitting device in accordance with examples as disclosed herein.
  • the communications manager 1120 may be configured as or otherwise support a means for identifying a set of bits corresponding to a TB for communication to a receiving device.
  • the communications manager 1120 may be configured as or otherwise support a means for performing distribution matching on a first subset of bits within the set of bits to obtain a bit sequence that is based on the first subset of bits and a non-uniform probability distribution.
  • the communications manager 1120 may be configured as or otherwise support a means for mapping the bit sequence and a second subset of bits within the set of bits to symbols based on a symbol constellation, where the symbol constellation is based on amplitude and sign, and where the symbols have amplitudes based on the bit sequence and signs based on the second subset of bits.
  • the communications manager 1120 may be configured as or otherwise support a means for transmitting the symbols to the receiving device, the symbols being representative of the TB.
  • the device 1105 may support techniques for a transmitting device, such as a base station 105 or a UE 115, to perform distribution matching on bits in a TB to obtain a bit sequence with a non-uniform probability distribution prior to constellation mapping, which may cause reduced processing, reduced power consumption, more efficient utilization of communication resources, and the like.
  • a transmitting device such as a base station 105 or a UE 115
  • FIG. 12 shows a block diagram 1200 of a device 1205 that supports distribution matching for PCS in wireless communications in accordance with aspects of the present disclosure.
  • the device 1205 may be an example of aspects of a device 1105 or a transmitting device, such as a UE 115 or base station 105 as described herein.
  • the device 1205 may include a receiver 1210, a transmitter 1215, and a communications manager 1220.
  • the device 1205 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 1210 may provide a means for receiving information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to distribution matching for PCS in wireless communications) . Information may be passed on to other components of the device 1205.
  • the receiver 1210 may utilize a single antenna or a set of multiple antennas.
  • the transmitter 1215 may provide a means for transmitting signals generated by other components of the device 1205.
  • the transmitter 1215 may transmit information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to distribution matching for PCS in wireless communications) .
  • the transmitter 1215 may be co-located with a receiver 1210 in a transceiver module.
  • the transmitter 1215 may utilize a single antenna or a set of multiple antennas.
  • the device 1205, or various components thereof may be an example of means for performing various aspects of distribution matching for PCS in wireless communications as described herein.
  • the communications manager 1220 may include a TB component 1225, a distribution matching component 1230, a constellation mapping component 1235, or any combination thereof.
  • the communications manager 1220 may be an example of aspects of a communications manager 1120 as described herein.
  • the communications manager 1220, or various components thereof may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the receiver 1210, the transmitter 1215, or both.
  • the communications manager 1220 may receive information from the receiver 1210, send information to the transmitter 1215, or be integrated in combination with the receiver 1210, the transmitter 1215, or both to receive information, transmit information, or perform various other operations as described herein.
  • the communications manager 1220 may support wireless communications at a transmitting device in accordance with examples as disclosed herein.
  • the TB component 1225 may be configured as or otherwise support a means for identifying a set of bits corresponding to a TB for communication to a receiving device.
  • the distribution matching component 1230 may be configured as or otherwise support a means for performing distribution matching on a first subset of bits within the set of bits to obtain a bit sequence that is based on the first subset of bits and a non-uniform probability distribution.
  • the constellation mapping component 1235 may be configured as or otherwise support a means for mapping the bit sequence and a second subset of bits within the set of bits to symbols based on a symbol constellation, where the symbol constellation is based on amplitude and sign, and where the symbols have amplitudes based on the bit sequence and signs based on the second subset of bits.
  • the TB component 1225 may be configured as or otherwise support a means for transmitting the symbols to the receiving device, the symbols being representative of the TB.
  • FIG. 13 shows a block diagram 1300 of a communications manager 1320 that supports distribution matching for PCS in wireless communications in accordance with aspects of the present disclosure.
  • the communications manager 1320 may be an example of aspects of a communications manager 1120, a communications manager 1220, or both, as described herein.
  • the communications manager 1320, or various components thereof may be an example of means for performing various aspects of distribution matching for PCS in wireless communications as described herein.
  • the communications manager 1320 may include a TB component 1325, a distribution matching component 1330, a constellation mapping component 1335, an error detection code component 1340, a channel coding component 1345, a CB component 1350, or any combination thereof.
  • Each of these components may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the communications manager 1320 may support wireless communications at a transmitting device in accordance with examples as disclosed herein.
  • the TB component 1325 may be configured as or otherwise support a means for identifying a set of bits corresponding to a TB for communication to a receiving device.
  • the distribution matching component 1330 may be configured as or otherwise support a means for performing distribution matching on a first subset of bits within the set of bits to obtain a bit sequence that is based on the first subset of bits and a non-uniform probability distribution.
  • the constellation mapping component 1335 may be configured as or otherwise support a means for mapping the bit sequence and a second subset of bits within the set of bits to symbols based on a symbol constellation, where the symbol constellation is based on amplitude and sign, and where the symbols have amplitudes based on the bit sequence and signs based on the second subset of bits.
  • the TB component 1325 may be configured as or otherwise support a means for transmitting the symbols to the receiving device, the symbols being representative of the TB.
  • the distribution matching component 1330 may be configured as or otherwise support a means for generating a sequence of interim symbols based on the first subset of bits and the non-uniform probability distribution. In some examples, to support performing the distribution matching, the distribution matching component 1330 may be configured as or otherwise support a means for generating the bit sequence based on the sequence of interim symbols.
  • each interim symbol of the sequence of interim symbols is one of a pool of candidate interim symbols.
  • a first candidate interim symbol of the pool of candidate interim symbols has a different probability of being included in the sequence of interim symbols than a second candidate interim symbol of the pool of candidate interim symbols, the different probability based on the non-uniform probability distribution.
  • the TB component 1325 may be configured as or otherwise support a means for dividing the set of bits into the first subset of bits and the second subset of bits based on a bit order for the set of bits.
  • each bit of the first subset of bits is earlier within the bit order than each bit of the second subset of bits.
  • each bit of the first subset of bits is later within the bit order than each bit of the second subset of bits.
  • At least one bit of the first subset of bits is between at least two other bits of the second subset of bits within the bit order.
  • the error detection code component 1340 may be configured as or otherwise support a means for generating an error detection code for the TB before performing the distribution matching, where the error detection code is based on a portion of the set of bits, and where the error detection code is included in the set of bits.
  • the error detection code component 1340 may be configured as or otherwise support a means for generating an error detection code for the TB after performing the distribution matching, where the error detection code is based on the bit sequence and the second subset of bits.
  • the symbols have signs based on one or more bits included in the error detection code for the TB.
  • the distribution matching component 1330 may be configured as or otherwise support a means for dividing the first subset of bits into a set of multiple bit groups. In some examples, to support performing the distribution matching on the first subset of bits, the distribution matching component 1330 may be configured as or otherwise support a means for performing distribution matching separately on each of the set of multiple bit groups to obtain a set of multiple bit subsequences each based on a respective bit group of the set of multiple bit groups and the non-uniform probability distribution. In some examples, to support performing the distribution matching on the first subset of bits, the distribution matching component 1330 may be configured as or otherwise support a means for combining the set of multiple bit subsequences to obtain the bit sequence.
  • the CB component 1350 may be configured as or otherwise support a means for dividing the bit sequence into a set of multiple CB portions, where each of the set of multiple CB portions corresponds to a respective CB of a set of CBs for the TB, and where a quantity of CBs in the set of CBs is equal to a quantity of bit subsequences in the set of multiple bit subsequences.
  • the CB component 1350 may be configured as or otherwise support a means for dividing the bit sequence into a set of multiple CB portions, where each of the set of multiple CB portions corresponds to a respective CB of a set of CBs for the TB, and where a quantity of CBs in the set of CBs is greater than a quantity of bit subsequences in the set of multiple bit subsequences.
  • the CB component 1350 may be configured as or otherwise support a means for dividing the bit sequence into a set of multiple CB portions, where each of the set of multiple CB portions corresponds to a respective CB of a set of CBs for the TB, and where a quantity of CBs in the set of CBs is less than a quantity of bit subsequences in the set of multiple bit subsequences.
  • the distribution matching component 1330 may be configured as or otherwise support a means for identifying a maximum quantity of bits per bit group, where each bit group of the set of multiple bit groups includes a respective quantity of bits less than or equal to the maximum quantity of bits per bit group.
  • performing the distribution matching includes generating a set of multiple subsequences of interim symbols, each subsequence of interim symbols corresponding to a respective bit group of the set of multiple bit groups and a respective bit subsequence of the set of multiple bit subsequences.
  • distribution matching component 1330 may be configured as or otherwise support a means for identifying a maximum quantity of interim symbols per subsequence of interim symbols, each subsequence of interim symbols including a respective quantity of interim symbols less than or equal to the maximum quantity of interim symbols per subsequence of interim symbols.
  • the CB component 1350 may be configured as or otherwise support a means for dividing the bit sequence into a set of multiple first CB portions. In some examples, the CB component 1350 may be configured as or otherwise support a means for dividing the second subset of bits into a set of multiple second CB portions, where a quantity of first CB portions in the set of multiple first CB portions is equal to a quantity of second CB portions in the set of multiple second CB portions. In some examples, the CB component 1350 may be configured as or otherwise support a means for generating a set of CBs for the TB, where each CB of the set of CBs includes a respective first CB portion and a respective second CB portion.
  • each encoded CB of the set of encoded CBs includes a respective first set of systematic bits corresponding to the respective first CB portion of a corresponding CB, a respective second set of systematic bits corresponding to the respective second CB portion of the corresponding CB, a respective third set of systematic bits corresponding to an error detection code for the corresponding CB, and one or more respective parity bits.
  • the constellation mapping component 1335 may be configured as or otherwise support a means for mapping the bit sequence and the second subset of bits to the symbols, which may include mapping each encoded CB of the set of encoded CBs to a respective subset of the symbols, symbols within the respective subset of the symbols having amplitudes based on the respective first set of systematic bits for the corresponding encoded CB and signs based on the respective second set of systematic bits for the corresponding encoded CB, the respective third set of systematic bits for the corresponding encoded CB, the one or more respective parity bits for the corresponding encoded CB, or any combination thereof.
  • a quantity of bits in the set of bits is based on a quantity of resource elements used to transmit the symbols, a quantity of transmission layers used to transmit the symbols, a modulation order for the symbols, a forward error correction coding rate, a coding rate associated with the distribution matching, the non-uniform probability distribution, or any combination thereof.
  • a quantity of bits in the first subset of bits is based on the quantity of resource elements used to transmit the symbols, the quantity of transmission layers used to transmit the symbols, the modulation order for the symbols, the coding rate associated with the distribution matching, the non-uniform probability distribution, or any combination thereof.
  • a quantity of bits in the second subset of bits is based on the quantity of resource elements used to transmit the symbols, the quantity of transmission layers used to transmit the symbols, the modulation order for the symbols, the forward error correction coding rate, or any combination thereof.
  • FIG. 14 shows a diagram of a system 1400 including a device 1405 that supports distribution matching for PCS in wireless communications in accordance with aspects of the present disclosure.
  • the device 1405 may be an example of or include the components of a device 1105, a device 1205, or a transmitting device as described herein.
  • the device 1405 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, such as a communications manager 1420, a network communications manager 1410, a transceiver 1415, an antenna 1425, a memory 1430, code 1435, a processor 1440, and an inter-station communications manager 1445.
  • These components may be in electronic communication or otherwise coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more buses (e.g., a bus 1450) .
  • the network communications manager 1410 may manage communications with a core network 130 (e.g., via one or more wired backhaul links) .
  • the network communications manager 1410 may manage the transfer of data communications for client devices, such as one or more UEs 115.
  • the device 1405 may include a single antenna 1425. However, in some other cases the device 1405 may have more than one antenna 1425, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the transceiver 1415 may communicate bi-directionally, via the one or more antennas 1425, wired, or wireless links as described herein.
  • the transceiver 1415 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 1415 may also include a modem to modulate the packets, to provide the modulated packets to one or more antennas 1425 for transmission, and to demodulate packets received from the one or more antennas 1425.
  • the transceiver 1415 may be an example of a transmitter 1115, a transmitter 1215, a receiver 1110, a receiver 1210, or any combination thereof or component thereof, as described herein.
  • the memory 1430 may include random-access memory (RAM) and read-only memory (ROM) .
  • the memory 1430 may store computer-readable, computer-executable code 1435 including instructions that, when executed by the processor 1440, cause the device 1405 to perform various functions described herein.
  • the code 1435 may be stored in a non-transitory computer-readable medium such as system memory or another type of memory.
  • the code 1435 may not be directly executable by the processor 1440 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • the memory 1430 may contain, among other things, a basic I/O system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • BIOS basic I/O system
  • the processor 1440 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 1440 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 1440.
  • the processor 1440 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1430) to cause the device 1405 to perform various functions (e.g., functions or tasks supporting distribution matching for PCS in wireless communications) .
  • the device 1405 or a component of the device 1405 may include a processor 1440 and memory 1430 coupled to the processor 1440, the processor 1440 and memory 1430 configured to perform various functions described herein.
  • the inter-station communications manager 1445 may manage communications with other base stations 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1445 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1445 may provide an X2 interface within an LTE/LTE-A wireless communications network technology to provide communication between base stations 105.
  • the communications manager 1420 may support wireless communications at a transmitting device in accordance with examples as disclosed herein.
  • the communications manager 1420 may be configured as or otherwise support a means for identifying a set of bits corresponding to a TB for communication to a receiving device.
  • the communications manager 1420 may be configured as or otherwise support a means for performing distribution matching on a first subset of bits within the set of bits to obtain a bit sequence that is based on the first subset of bits and a non-uniform probability distribution.
  • the communications manager 1420 may be configured as or otherwise support a means for mapping the bit sequence and a second subset of bits within the set of bits to symbols based on a symbol constellation, where the symbol constellation is based on amplitude and sign, and where the symbols have amplitudes based on the bit sequence and signs based on the second subset of bits.
  • the communications manager 1420 may be configured as or otherwise support a means for transmitting the symbols to the receiving device, the symbols being representative of the TB.
  • the device 1405 may support techniques for a transmitting device, such as a base station 105 or a UE 115, to perform distribution matching on bits in a TB to obtain a bit sequence with a non-uniform probability distribution prior to constellation mapping, which may cause improved communication reliability, reduced latency, improved user experience related to reduced processing, reduced power consumption, more efficient utilization of communication resources, improved coordination between devices, longer battery life, improved utilization of processing capability, and the like.
  • a transmitting device such as a base station 105 or a UE 115
  • the communications manager 1420 may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the transceiver 1415, the one or more antennas 1425, or any combination thereof (e.g., the communications manager 1420 may be configured to transmit or receive signals or messages described herein via the transceiver 1415) .
  • the communications manager 1420 is illustrated as a separate component, in some examples, one or more functions described with reference to the communications manager 1420 may be supported by or performed by the processor 1440, the memory 1430, the code 1435, or any combination thereof.
  • the code 1435 may include instructions executable by the processor 1440 to cause the device 1405 to perform various aspects of distribution matching for PCS in wireless communications as described herein, or the processor 1440 and the memory 1430 may be otherwise configured to perform or support such operations.
  • FIG. 15 shows a block diagram 1500 of a device 1505 that supports distribution matching for PCS in wireless communications in accordance with aspects of the present disclosure.
  • the device 1505 may be an example of aspects of a receiving device as described herein.
  • the device 1505 may include a receiver 1510, a transmitter 1515, and a communications manager 1520.
  • the device 1505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 1510 may provide a means for receiving information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to distribution matching for PCS in wireless communications) . Information may be passed on to other components of the device 1505.
  • the receiver 1510 may utilize a single antenna or a set of multiple antennas.
  • the transmitter 1515 may provide a means for transmitting signals generated by other components of the device 1505.
  • the transmitter 1515 may transmit information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to distribution matching for PCS in wireless communications) .
  • the transmitter 1515 may be co-located with a receiver 1510 in a transceiver module.
  • the transmitter 1515 may utilize a single antenna or a set of multiple antennas.
  • the communications manager 1520, the receiver 1510, the transmitter 1515, or various combinations thereof or various components thereof may be examples of means for performing various aspects of distribution matching for PCS in wireless communications as described herein.
  • the communications manager 1520, the receiver 1510, the transmitter 1515, or various combinations or components thereof may support a method for performing one or more of the functions described herein.
  • the communications manager 1520, the receiver 1510, the transmitter 1515, or various combinations or components thereof may be implemented in hardware (e.g., in communications management circuitry) .
  • the hardware may include a processor, a DSP, an ASIC, an FPGA or other programmable logic device, a discrete gate or transistor logic, discrete hardware components, or any combination thereof configured as or otherwise supporting a means for performing the functions described in the present disclosure.
  • a processor and memory coupled with the processor may be configured to perform one or more of the functions described herein (e.g., by executing, by the processor, instructions stored in the memory) .
  • the communications manager 1520, the receiver 1510, the transmitter 1515, or various combinations or components thereof may be implemented in code (e.g., as communications management software or firmware) executed by a processor. If implemented in code executed by a processor, the functions of the communications manager 1520, the receiver 1510, the transmitter 1515, or various combinations or components thereof may be performed by a general-purpose processor, a DSP, a CPU, an ASIC, an FPGA, or any combination of these or other programmable logic devices (e.g., configured as or otherwise supporting a means for performing the functions described in the present disclosure) .
  • code e.g., as communications management software or firmware
  • the functions of the communications manager 1520, the receiver 1510, the transmitter 1515, or various combinations or components thereof may be performed by a general-purpose processor, a DSP, a CPU, an ASIC, an FPGA, or any combination of these or other programmable logic devices (e.g., configured as or otherwise supporting a means for performing the functions described in the present disclosure)
  • the communications manager 1520 may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the receiver 1510, the transmitter 1515, or both.
  • the communications manager 1520 may receive information from the receiver 1510, send information to the transmitter 1515, or be integrated in combination with the receiver 1510, the transmitter 1515, or both to receive information, transmit information, or perform various other operations as described herein.
  • the communications manager 1520 may support wireless communications at a receiving device in accordance with examples as disclosed herein.
  • the communications manager 1520 may be configured as or otherwise support a means for receiving symbols corresponding to a TB, the TB corresponding to a set of bits.
  • the communications manager 1520 may be configured as or otherwise support a means for mapping, basing at least in part on a symbol constellation, the symbols to a bit sequence and a second subset of bits, where the symbol constellation is based on amplitude and sign, and where the symbols have amplitudes based on the bit sequence and signs based on the second subset of bits.
  • the communications manager 1520 may be configured as or otherwise support a means for performing distribution dematching on the bit sequence to obtain a first subset of bits, where the distribution dematching is based on a non-uniform probability distribution.
  • the communications manager 1520 may be configured as or otherwise support a means for combining the first subset of bits and the second subset of bits to obtain the set of bits corresponding to the TB.
  • the device 1505 may support techniques for a transmitting device, such as a base station 105 or a UE 115, to perform distribution matching on bits in a TB to obtain a bit sequence with a non-uniform probability distribution prior to constellation mapping, which may cause reduced processing, reduced power consumption, more efficient utilization of communication resources, and the like.
  • a transmitting device such as a base station 105 or a UE 115
  • FIG. 16 shows a block diagram 1600 of a device 1605 that supports distribution matching for PCS in wireless communications in accordance with aspects of the present disclosure.
  • the device 1605 may be an example of aspects of a device 1505 or a receiving device, such as a UE 115 or a base station as described herein.
  • the device 1605 may include a receiver 1610, a transmitter 1615, and a communications manager 1620.
  • the device 1605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 1610 may provide a means for receiving information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to distribution matching for PCS in wireless communications) . Information may be passed on to other components of the device 1605.
  • the receiver 1610 may utilize a single antenna or a set of multiple antennas.
  • the transmitter 1615 may provide a means for transmitting signals generated by other components of the device 1605.
  • the transmitter 1615 may transmit information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to distribution matching for PCS in wireless communications) .
  • the transmitter 1615 may be co-located with a receiver 1610 in a transceiver module.
  • the transmitter 1615 may utilize a single antenna or a set of multiple antennas.
  • the device 1605 may be an example of means for performing various aspects of distribution matching for PCS in wireless communications as described herein.
  • the communications manager 1620 may include a TB component 1625, a constellation mapping component 1630, a distribution dematching component 1635, or any combination thereof.
  • the communications manager 1620 may be an example of aspects of a communications manager 1520 as described herein.
  • the communications manager 1620, or various components thereof may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the receiver 1610, the transmitter 1615, or both.
  • the communications manager 1620 may receive information from the receiver 1610, send information to the transmitter 1615, or be integrated in combination with the receiver 1610, the transmitter 1615, or both to receive information, transmit information, or perform various other operations as described herein.
  • the communications manager 1620 may support wireless communications at a receiving device in accordance with examples as disclosed herein.
  • the TB component 1625 may be configured as or otherwise support a means for receiving symbols corresponding to a TB, the TB corresponding to a set of bits.
  • the constellation mapping component 1630 may be configured as or otherwise support a means for mapping, based on a symbol constellation, the symbols to a bit sequence and a second subset of bits, where the symbol constellation is based on amplitude and sign, and where the symbols have amplitudes based on the bit sequence and signs based on the second subset of bits.
  • the distribution dematching component 1635 may be configured as or otherwise support a means for performing distribution dematching on the bit sequence to obtain a first subset of bits, where the distribution dematching is based on a non-uniform probability distribution.
  • the TB component 1625 may be configured as or otherwise support a means for combining the first subset of bits and the second subset of bits to obtain the set of bits corresponding to the TB.
  • FIG. 17 shows a block diagram 1700 of a communications manager 1720 that supports distribution matching for PCS in wireless communications in accordance with aspects of the present disclosure.
  • the communications manager 1720 may be an example of aspects of a communications manager 1520, a communications manager 1620, or both, as described herein.
  • the communications manager 1720, or various components thereof, may be an example of means for performing various aspects of distribution matching for PCS in wireless communications as described herein.
  • the communications manager 1720 may include a TB component 1725, a constellation mapping component 1730, a distribution dematching component 1735, a CB component 1740, an error detection code component 1745, or any combination thereof. Each of these components may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the communications manager 1720 may support wireless communications at a receiving device in accordance with examples as disclosed herein.
  • the TB component 1725 may be configured as or otherwise support a means for receiving symbols corresponding to a TB, the TB corresponding to a set of bits.
  • the constellation mapping component 1730 may be configured as or otherwise support a means for mapping, based on a symbol constellation, the symbols to a bit sequence and a second subset of bits, where the symbol constellation is based on amplitude and sign, and where the symbols have amplitudes based on the bit sequence and signs based on the second subset of bits.
  • the distribution dematching component 1735 may be configured as or otherwise support a means for performing distribution dematching on the bit sequence to obtain a first subset of bits, where the distribution dematching is based on a non-uniform probability distribution.
  • the TB component 1725 may be configured as or otherwise support a means for combining the first subset of bits and the second subset of bits to obtain the set of bits corresponding to the TB.
  • the distribution dematching component 1735 may be configured as or otherwise support a means for generating a sequence of interim symbols based on the bit sequence.
  • the distribution dematching component 1740 may be configured as or otherwise support a means for generating the first subset of bits based on the sequence of interim symbols and the non-uniform probability distribution.
  • the error detection code component 1745 may be configured as or otherwise support a means for checking an error detection code for the TB after performing the distribution dematching, where the error detection code is included in the set of bits.
  • the error detection code component 1745 may be configured as or otherwise support a means for checking an error detection code for the TB before performing the distribution dematching, where the symbols have signs based on the error detection code for the TB.
  • the bit distribution dematching component 1735 may be configured as or otherwise support a means for dividing the bit sequence into a set of multiple bit subsequences. In some examples, to support performing the distribution dematching, the distribution dematching component 1735 may be configured as or otherwise support a means for performing the distribution dematching separately on each bit subsequence of the set of multiple bit subsequences to obtain a set of multiple bit groups each based on a respective bit subsequence of the set of multiple bit subsequences and the non-uniform probability distribution. In some examples, to support performing the distribution dematching, the distribution dematching component 1735 may be configured as or otherwise support a means for combining the set of multiple bit groups to obtain the first subset of bits.
  • the CB component 1740 may be configured as or otherwise support a means for dividing the symbols into subsets of symbols each corresponding to a respective CB of a set of CBs for the TB.
  • the constellation mapping component 1730 may be configured as or otherwise support a means for mapping, based on the symbol constellation, each of the subsets of symbols to bits corresponding to a respective CB of the set of CBs, where each CB of the set of CBs includes a respective portion of the bit sequence and a respective portion of the second subset of bits.
  • FIG. 18 shows a diagram of a system 1800 including a device 1805 that supports distribution matching for PCS in wireless communications in accordance with aspects of the present disclosure.
  • the device 1805 may be an example of or include the components of a device 1505, a device 1605, or a receiving device as described herein.
  • the device 1805 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, such as a communications manager 1820, an I/O controller 1810, a transceiver 1815, an antenna 1825, a memory 1830, code 1835, and a processor 1840.
  • These components may be in electronic communication or otherwise coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more buses (e.g., a bus 1845) .
  • the I/O controller 1810 may manage input and output signals for the device 1805.
  • the I/O controller 1810 may also manage peripherals not integrated into the device 1805.
  • the I/O controller 1810 may represent a physical connection or port to an external peripheral.
  • the I/O controller 1810 may utilize an operating system such as or another known operating system.
  • the I/O controller 1810 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device.
  • the I/O controller 1810 may be implemented as part of a processor, such as the processor 1840.
  • a user may interact with the device 1805 via the I/O controller 1810 or via hardware components controlled by the I/O controller 1810.
  • the device 1805 may include a single antenna 1825. However, in some other cases, the device 1805 may have more than one antenna 1825, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the transceiver 1815 may communicate bi-directionally, via the one or more antennas 1825, wired, or wireless links as described herein.
  • the transceiver 1815 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 1815 may also include a modem to modulate the packets, to provide the modulated packets to one or more antennas 1825 for transmission, and to demodulate packets received from the one or more antennas 1825.
  • the transceiver 1815 may be an example of a transmitter 1515, a transmitter 1615, a receiver 1510, a receiver 1610, or any combination thereof or component thereof, as described herein.
  • the memory 1830 may include RAM and ROM.
  • the memory 1830 may store computer-readable, computer-executable code 1835 including instructions that, when executed by the processor 1840, cause the device 1805 to perform various functions described herein.
  • the code 1835 may be stored in a non-transitory computer-readable medium such as system memory or another type of memory.
  • the code 1835 may not be directly executable by the processor 1840 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • the memory 1830 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 1840 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 1840 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 1840.
  • the processor 1840 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1830) to cause the device 1805 to perform various functions (e.g., functions or tasks supporting distribution matching for PCS in wireless communications) .
  • the device 1805 or a component of the device 1805 may include a processor 1840 and memory 1830 coupled to the processor 1840, the processor 1840 and memory 1830 configured to perform various functions described herein.
  • the communications manager 1820 may support wireless communications at a receiving device in accordance with examples as disclosed herein.
  • the communications manager 1820 may be configured as or otherwise support a means for receiving symbols corresponding to a TB, the TB corresponding to a set of bits.
  • the communications manager 1820 may be configured as or otherwise support a means for mapping, basing at least in part on a symbol constellation, the symbols to a bit sequence and a second subset of bits, where the symbol constellation is based on amplitude and sign, and where the symbols have amplitudes based on the bit sequence and signs based on the second subset of bits.
  • the communications manager 1820 may be configured as or otherwise support a means for performing distribution dematching on the bit sequence to obtain a first subset of bits, where the distribution dematching is based on a non-uniform probability distribution.
  • the communications manager 1820 may be configured as or otherwise support a means for combining the first subset of bits and the second subset of bits to obtain the set of bits corresponding to the TB.
  • the device 1805 may support techniques for a transmitting device, such as a base station 105 or a UE 115, to perform distribution matching on bits in a TB to obtain a bit sequence with a non-uniform probability distribution prior to constellation mapping, which may cause improved communication reliability, reduced latency, improved user experience related to reduced processing, reduced power consumption, more efficient utilization of communication resources, improved coordination between devices, longer battery life, improved utilization of processing capability, and the like.
  • a transmitting device such as a base station 105 or a UE 115
  • the communications manager 1820 may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the transceiver 1815, the one or more antennas 1825, or any combination thereof (e.g., the communications manager 1820 may be configured to transmit or receive signals or messages described herein via the transceiver 1815) .
  • the communications manager 1820 is illustrated as a separate component, in some examples, one or more functions described with reference to the communications manager 1820 may be supported by or performed by the processor 1840, the memory 1830, the code 1835, or any combination thereof.
  • the code 1835 may include instructions executable by the processor 1840 to cause the device 1805 to perform various aspects of distribution matching for PCS in wireless communications as described herein, or the processor 1840 and the memory 1830 may be otherwise configured to perform or support such operations.
  • FIG. 19 shows a flowchart illustrating a method 1900 that supports distribution matching for PCS in wireless communications in accordance with aspects of the present disclosure.
  • the operations of the method 1900 may be implemented by a transmitting device or its components as described herein.
  • the operations of the method 1900 may be performed by a transmitting device as described with reference to FIGs. 1 through 14.
  • a transmitting device may execute a set of instructions to control the functional elements of the transmitting device to perform the described functions. Additionally or alternatively, the transmitting device may perform aspects of the described functions using special-purpose hardware.
  • the method may include identifying a set of bits corresponding to a TB for communication to a receiving device.
  • the operations of 1905 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1905 may be performed by a TB component 1325 as described with reference to FIG. 13. Additionally or alternatively, means for performing 1905 may, but not necessarily, include, for example, antenna 1425, transceiver 1415, communications manager 1420, memory 1430 (including code 1435) , processor 1440, bus 1450, or a combination thereof.
  • the method may include performing distribution matching on a first subset of bits within the set of bits to obtain a bit sequence that is based on the first subset of bits and a non-uniform probability distribution.
  • the operations of 1910 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1910 may be performed by a distribution matching component 1330 as described with reference to FIG. 13. Additionally or alternatively, means for performing 1910 may, but not necessarily, include, for example, antenna 1425, transceiver 1415, communications manager 1420, memory 1430 (including code 1435) , processor 1440, bus 1450, or a combination thereof.
  • the method may include mapping the bit sequence and a second subset of bits within the set of bits to symbols based on a symbol constellation, where the symbol constellation is based on amplitude and sign, and where the symbols have amplitudes based on the bit sequence and signs based on the second subset of bits.
  • the operations of 1915 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1915 may be performed by a constellation mapping component 1335 as described with reference to FIG. 13. Additionally or alternatively, means for performing 1915may, but not necessarily, include, for example, antenna 1425, transceiver 1415, communications manager 1420, memory 1430 (including code 1435) , processor 1440, bus 1450, or a combination thereof.
  • the method may include transmitting the symbols to the receiving device, the symbols being representative of the TB.
  • the operations of 1920 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1920 may be performed by a TB component 1325 as described with reference to FIG. 13. Additionally or alternatively, means for performing 1920may, but not necessarily, include, for example, antenna 1425, transceiver 1415, communications manager 1420, memory 1430 (including code 1435) , processor 1440, bus 1450, or a combination thereof.
  • FIG. 20 shows a flowchart illustrating a method 2000 that supports distribution matching for PCS in wireless communications in accordance with aspects of the present disclosure.
  • the operations of the method 2000 may be implemented by a transmitting device or its components as described herein.
  • the operations of the method 2000 may be performed by a transmitting device as described with reference to FIGs. 1 through 14.
  • a transmitting device may execute a set of instructions to control the functional elements of the transmitting device to perform the described functions. Additionally or alternatively, the transmitting device may perform aspects of the described functions using special-purpose hardware.
  • the method may include identifying a set of bits corresponding to a TB for communication to a receiving device.
  • the operations of 2005 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2005 may be performed by a TB component 1325 as described with reference to FIG. 13. Additionally or alternatively, means for performing 2005may, but not necessarily, include, for example, antenna 1425, transceiver 1415, communications manager 1420, memory 1430 (including code 1435) , processor 1440, bus 1450, or a combination thereof.
  • the method may include performing distribution matching on a first subset of bits within the set of bits to obtain a bit sequence that is based on the first subset of bits and a non-uniform probability distribution.
  • the operations of 2010 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2010 may be performed by a distribution matching component 1330 as described with reference to FIG. 13. Additionally or alternatively, means for performing 2010may, but not necessarily, include, for example, antenna 1425, transceiver 1415, communications manager 1420, memory 1430 (including code 1435) , processor 1440, bus 1450, or a combination thereof.
  • the distribution matching at 2010 may include generating a sequence of interim symbols based on the first subset of bits and the non-uniform probability distribution.
  • the operations of 2015 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2015 may be performed by a distribution matching component 1330 as described with reference to FIG. 13. Additionally or alternatively, means for performing 2015may, but not necessarily, include, for example, antenna 1425, transceiver 1415, communications manager 1420, memory 1430 (including code 1435) , processor 1440, bus 1450, or a combination thereof.
  • the distribution matching at 2010 may further include generating the bit sequence based on the sequence of interim symbols.
  • the operations of 2020 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2020 may be performed by a distribution matching component 1330 as described with reference to FIG. 13. Additionally or alternatively, means for performing 2120may, but not necessarily, include, for example, antenna 1425, transceiver 1415, communications manager 1420, memory 1430 (including code 1435) , processor 1440, bus 1450, or a combination thereof.
  • the method may include mapping the bit sequence and a second subset of bits within the set of bits to symbols based on a symbol constellation, where the symbol constellation is based on amplitude and sign, and where the symbols have amplitudes based on the bit sequence and signs based on the second subset of bits.
  • the operations of 2025 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2025 may be performed by a constellation mapping component 1335 as described with reference to FIG. 13. Additionally or alternatively, means for performing 2030may, but not necessarily, include, for example, antenna 1425, transceiver 1415, communications manager 1420, memory 1430 (including code 1435) , processor 1440, bus 1450, or a combination thereof.
  • the method may include transmitting the symbols to the receiving device, the symbols being representative of the TB.
  • the operations of 2030 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2030 may be performed by a TB component 1325 as described with reference to FIG. 13. Additionally or alternatively, means for performing 2030.
  • FIG. 21 shows a flowchart illustrating a method 2100 that supports distribution matching for PCS in wireless communications in accordance with aspects of the present disclosure.
  • the operations of the method 2100 may be implemented by a transmitting device or its components as described herein.
  • the operations of the method 2100 may be performed by a transmitting device as described with reference to FIGs. 1 through 14.
  • a transmitting device may execute a set of instructions to control the functional elements of the transmitting device to perform the described functions. Additionally or alternatively, the transmitting device may perform aspects of the described functions using special-purpose hardware.
  • the method may include identifying a set of bits corresponding to a TB for communication to a receiving device.
  • the operations of 2105 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2105 may be performed by a TB component 1325 as described with reference to FIG. 13. Additionally or alternatively, means for performing 2105may, but not necessarily, include, for example, antenna 1425, transceiver 1415, communications manager 1420, memory 1430 (including code 1435) , processor 1440, bus 1450, or a combination thereof.
  • the method may include dividing the set of bits into the first subset of bits and the second subset of bits based on a bit order for the set of bits.
  • the operations of 2110 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2110 may be performed by a TB component 1325 as described with reference to FIG. 13. Additionally or alternatively, means for performing 2110may, but not necessarily, include, for example, antenna 1425, transceiver 1415, communications manager 1420, memory 1430 (including code 1435) , processor 1440, bus 1450, or a combination thereof.
  • the method may include performing distribution matching on a first subset of bits within the set of bits to obtain a bit sequence that is based on the first subset of bits and a non-uniform probability distribution.
  • the operations of 2115 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2115 may be performed by a distribution matching component 1330 as described with reference to FIG. 13. Additionally or alternatively, means for performing 2115may, but not necessarily, include, for example, antenna 1425, transceiver 1415, communications manager 1420, memory 1430 (including code 1435) , processor 1440, bus 1450, or a combination thereof.
  • the method may include mapping the bit sequence and a second subset of bits within the set of bits to symbols based on a symbol constellation, where the symbol constellation is based on amplitude and sign, and where the symbols have amplitudes based on the bit sequence and signs based on the second subset of bits.
  • the operations of 2120 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2120 may be performed by a constellation mapping component 1335 as described with reference to FIG. 13. Additionally or alternatively, means for performing 2120may, but not necessarily, include, for example, antenna 1425, transceiver 1415, communications manager 1420, memory 1430 (including code 1435) , processor 1440, bus 1450, or a combination thereof.
  • the method may include transmitting the symbols to the receiving device, the symbols being representative of the TB.
  • the operations of 2125 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2125 may be performed by a TB component 1325 as described with reference to FIG. 13. Additionally or alternatively, means for performing 2125may, but not necessarily, include, for example, antenna 1425, transceiver 1415, communications manager 1420, memory 1430 (including code 1435) , processor 1440, bus 1450, or a combination thereof.
  • FIG. 22 shows a flowchart illustrating a method 2200 that supports distribution matching for PCS in wireless communications in accordance with aspects of the present disclosure.
  • the operations of the method 2200 may be implemented by a receiving device or its components as described herein.
  • the operations of the method 2200 may be performed by a receiving device as described with reference to FIGs. 1 through 10 and 15 through 18.
  • a receiving device may execute a set of instructions to control the functional elements of the receiving device to perform the described functions. Additionally or alternatively, the receiving device may perform aspects of the described functions using special-purpose hardware.
  • the method may include receiving symbols corresponding to a TB, the TB corresponding to a set of bits.
  • the operations of 2205 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2205 may be performed by a TB component 1725 as described with reference to FIG. 17. Additionally or alternatively, means for performing 2205 may, but not necessarily, include, for example, antenna 1825, transceiver 1815, communications manager 1820, memory 1830 (including code 1835) , processor 1840, bus 1850, or a combination thereof.
  • the method may include mapping, based on a symbol constellation, the symbols to a bit sequence and a second subset of bits, where the symbol constellation is based on amplitude and sign, and where the symbols have amplitudes based on the bit sequence and signs based on the second subset of bits.
  • the operations of 2210 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2210 may be performed by a constellation mapping component 1730 as described with reference to FIG. 17. Additionally or alternatively, means for performing 2210may, but not necessarily, include, for example, antenna 1825, transceiver 1815, communications manager 1820, memory 1830 (including code 1835) , processor 1840, bus 1850, or a combination thereof.
  • the method may include performing distribution dematching on the bit sequence to obtain a first subset of bits, where the distribution dematching is based on a non-uniform probability distribution.
  • the operations of 2215 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2215 may be performed by a distribution dematching component 1735 as described with reference to FIG. 17. Additionally or alternatively, means for performing 2215may, but not necessarily, include, for example, antenna 1825, transceiver 1815, communications manager 1820, memory 1830 (including code 1835) , processor 1840, bus 1850, or a combination thereof.
  • the method may include combining the first subset of bits and the second subset of bits to obtain the set of bits corresponding to the TB.
  • the operations of 2220 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2220 may be performed by a TB component 1725 as described with reference to FIG. 17. Additionally or alternatively, means for performing 2220may, but not necessarily, include, for example, antenna 1825, transceiver 1815, communications manager 1820, memory 1830 (including code 1835) , processor 1840, bus 1850, or a combination thereof.
  • FIG. 23 shows a flowchart illustrating a method 2300 that supports distribution matching for PCS in wireless communications in accordance with aspects of the present disclosure.
  • the operations of the method 2300 may be implemented by a receiving device or its components as described herein.
  • the operations of the method 2300 may be performed by a receiving device as described with reference to FIGs. 1 through 10 and 15 through 18.
  • a receiving device may execute a set of instructions to control the functional elements of the receiving device to perform the described functions. Additionally or alternatively, the receiving device may perform aspects of the described functions using special-purpose hardware.
  • the method may include receiving symbols corresponding to a TB, the TB corresponding to a set of bits.
  • the operations of 2305 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2305 may be performed by a TB component 1725 as described with reference to FIG. 17. Additionally or alternatively, means for performing 2305may, but not necessarily, include, for example, antenna 1825, transceiver 1815, communications manager 1820, memory 1830 (including code 1835) , processor 1840, bus 1850, or a combination thereof.
  • the method may include mapping, based on a symbol constellation, the symbols to a bit sequence and a second subset of bits, where the symbol constellation is based on amplitude and sign, and where the symbols have amplitudes based on the bit sequence and signs based on the second subset of bits.
  • the operations of 2310 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2310 may be performed by a constellation mapping component 1730 as described with reference to FIG. 17. Additionally or alternatively, means for performing 2310may, but not necessarily, include, for example, antenna 1825, transceiver 1815, communications manager 1820, memory 1830 (including code 1835) , processor 1840, bus 1850, or a combination thereof.
  • the method may include performing distribution dematching on the bit sequence to obtain a first subset of bits, where the distribution dematching is based on a non-uniform probability distribution.
  • the operations of 2315 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2315 may be performed by a distribution dematching component 1735 as described with reference to FIG. 17. Additionally or alternatively, means for performing 2315may, but not necessarily, include, for example, antenna 1825, transceiver 1815, communications manager 1820, memory 1830 (including code 1835) , processor 1840, bus 1850, or a combination thereof.
  • the method may include checking an error detection code for the TB after performing the distribution dematching, where the error detection code is included in the set of bits.
  • the operations of 2320 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2320 may be performed by an error detection code component 1745 as described with reference to FIG. 17. Additionally or alternatively, means for performing 2320may, but not necessarily, include, for example, antenna 1825, transceiver 1815, communications manager 1820, memory 1830 (including code 1835) , processor 1840, bus 1850, or a combination thereof.
  • the method may include combining the first subset of bits and the second subset of bits to obtain the set of bits corresponding to the TB.
  • the operations of 2325 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2325 may be performed by a TB component 1725 as described with reference to FIG. 17. Additionally or alternatively, means for performing 2325may, but not necessarily, include, for example, antenna 1825, transceiver 1815, communications manager 1820, memory 1830 (including code 1835) , processor 1840, bus 1850, or a combination thereof.
  • FIG. 24 shows a flowchart illustrating a method 2400 that supports distribution matching for PCS in wireless communications in accordance with aspects of the present disclosure.
  • the operations of the method 2400 may be implemented by a receiving device or its components as described herein.
  • the operations of the method 2400 may be performed by a receiving device as described with reference to FIGs. 1 through 10 and 15 through 18.
  • a receiving device may execute a set of instructions to control the functional elements of the receiving device to perform the described functions. Additionally or alternatively, the receiving device may perform aspects of the described functions using special-purpose hardware.
  • the method may include receiving symbols corresponding to a TB, the TB corresponding to a set of bits.
  • the operations of 2405 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2405 may be performed by a TB component 1725 as described with reference to FIG. 17. Additionally or alternatively, means for performing 2405may, but not necessarily, include, for example, antenna 1825, transceiver 1815, communications manager 1820, memory 1830 (including code 1835) , processor 1840, bus 1850, or a combination thereof.
  • the method may include mapping, based on a symbol constellation, the symbols to a bit sequence and a second subset of bits, where the symbol constellation is based on amplitude and sign, and where the symbols have amplitudes based on the bit sequence and signs based on the second subset of bits.
  • the operations of 2410 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2410 may be performed by a constellation mapping component 1730 as described with reference to FIG. 17. Additionally or alternatively, means for performing 2410may, but not necessarily, include, for example, antenna 1825, transceiver 1815, communications manager 1820, memory 1830 (including code 1835) , processor 1840, bus 1850, or a combination thereof.
  • the method may include checking an error detection code for the TB, where the symbols have signs based on the error detection code for the TB.
  • the operations of 2415 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2415 may be performed by an error detection code component 1745 as described with reference to FIG. 17. Additionally or alternatively, means for performing 2415may, but not necessarily, include, for example, antenna 1825, transceiver 1815, communications manager 1820, memory 1830 (including code 1835) , processor 1840, bus 1850, or a combination thereof.
  • the method may include performing distribution dematching on the bit sequence to obtain a first subset of bits, where the distribution dematching is based on a non-uniform probability distribution.
  • the operations of 2420 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2420 may be performed by a distribution dematching component 1735 as described with reference to FIG. 17. Additionally or alternatively, means for performing 2420may, but not necessarily, include, for example, antenna 1825, transceiver 1815, communications manager 1820, memory 1830 (including code 1835) , processor 1840, bus 1850, or a combination thereof.
  • the method may include combining the first subset of bits and the second subset of bits to obtain the set of bits corresponding to the TB.
  • the operations of 2425 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 2425 may be performed by a TB component 1725 as described with reference to FIG. 17. Additionally or alternatively, means for performing 2425may, but not necessarily, include, for example, antenna 1825, transceiver 1815, communications manager 1820, memory 1830 (including code 1835) , processor 1840, bus 1850, or a combination thereof.
  • a method for wireless communications at a transmitting device comprising: identifying a set of bits corresponding to a transport block for communication to a receiving device; performing distribution matching on a first subset of bits within the set of bits to obtain a bit sequence that is based at least in part on the first subset of bits and a non-uniform probability distribution; mapping the bit sequence and a second subset of bits within the set of bits to symbols based at least in part on a symbol constellation, wherein the symbol constellation is based at least in part on amplitude and sign, and wherein the symbols have amplitudes based at least in part on the bit sequence and signs based at least in part on the second subset of bits; and transmitting the symbols to the receiving device, the symbols being representative of the transport block.
  • Aspect 2 The method of aspect 1, wherein performing the distribution matching comprises: generating a sequence of interim symbols based at least in part on the first subset of bits and the non-uniform probability distribution; and generating the bit sequence based at least in part on the sequence of interim symbols.
  • Aspect 3 The method of aspect 2, wherein each interim symbol of the sequence of interim symbols is one of a pool of candidate interim symbols; and a first candidate interim symbol of the pool of candidate interim symbols has a different probability of being included in the sequence of interim symbols than a second candidate interim symbol of the pool of candidate interim symbols, the different probability based at least in part on the non-uniform probability distribution.
  • Aspect 4 The method of any of aspects 1 through 3, further comprising: dividing the set of bits into the first subset of bits and the second subset of bits based at least in part on a bit order for the set of bits.
  • Aspect 5 The method of aspect 4, wherein each bit of the first subset of bits is earlier within the bit order than each bit of the second subset of bits.
  • Aspect 6 The method of aspect 4, wherein each bit of the first subset of bits is later within the bit order than each bit of the second subset of bits.
  • Aspect 7 The method of aspect 4, wherein at least one bit of the first subset of bits is between at least two other bits of the second subset of bits within the bit order.
  • Aspect 8 The method of any of aspects 1 through 7, further comprising: generating an error detection code for the transport block before performing the distribution matching, wherein the error detection code is based at least in part on a portion of the set of bits, and wherein the error detection code is included in the set of bits.
  • Aspect 9 The method of any of aspects 1 through 7, further comprising: generating an error detection code for the transport block after performing the distribution matching, wherein the error detection code is based at least in part on the bit sequence and the second subset of bits.
  • Aspect 10 The method of aspect 9, wherein the symbols have signs based at least in part on one or more bits included in the error detection code for the transport block.
  • Aspect 11 The method of any of aspects 1 through 10, wherein performing the distribution matching on the first subset of bits comprises: dividing the first subset of bits into a plurality of bit groups; performing distribution matching separately on each of the plurality of bit groups to obtain a plurality of bit subsequences each based at least in part on a respective bit group of the plurality of bit groups and the non-uniform probability distribution; and combining the plurality of bit subsequences to obtain the bit sequence.
  • Aspect 12 The method of aspect 11, further comprising: dividing the bit sequence into a plurality of code block portions, wherein each of the plurality of code block portions corresponds to a respective code block of a set of code blocks for the transport block, and wherein a quantity of code blocks in the set of code blocks is equal to a quantity of bit subsequences in the plurality of bit subsequences.
  • Aspect 13 The method of aspect 11, further comprising: dividing the bit sequence into a plurality of code block portions, wherein each of the plurality of code block portions corresponds to a respective code block of a set of code blocks for the transport block, and wherein a quantity of code blocks in the set of code blocks is greater than a quantity of bit subsequences in the plurality of bit subsequences.
  • Aspect 14 The method of aspect 11, further comprising: dividing the bit sequence into a plurality of code block portions, wherein each of the plurality of code block portions corresponds to a respective code block of a set of code blocks for the transport block, and wherein a quantity of code blocks in the set of code blocks is less than a quantity of bit subsequences in the plurality of bit subsequences.
  • Aspect 15 The method of any of aspects 11 through 14, further comprising: identifying a maximum quantity of bits per bit group, wherein each bit group of the plurality of bit groups comprises a respective quantity of bits less than or equal to the maximum quantity of bits per bit group.
  • Aspect 16 The method of any of aspects 11 through 15, wherein performing the distribution matching comprises generating a plurality of subsequences of interim symbols, each subsequence of interim symbols corresponding to a respective bit group of the plurality of bit groups and a respective bit subsequence of the plurality of bit subsequences; and the method further comprises identifying a maximum quantity of interim symbols per subsequence of interim symbols, each subsequence of interim symbols comprising a respective quantity of interim symbols less than or equal to the maximum quantity of interim symbols per subsequence of interim symbols.
  • Aspect 17 The method of any of aspects 1 through 16, further comprising: dividing the bit sequence into a plurality of first code block portions; dividing the second subset of bits into a plurality of second code block portions, wherein a quantity of first code block portions in the plurality of first code block portions is equal to a quantity of second code block portions in the plurality of second code block portions; and generating a set of code blocks for the transport block, wherein each code block of the set of code blocks comprises a respective first code block portion and a respective second code block portion.
  • Aspect 18 The method of aspect 17, further comprising: performing forward error correction encoding on each code block of the set of code blocks to obtain a set of encoded code blocks, wherein: each encoded code block of the set of encoded code blocks comprises a respective first set of systematic bits corresponding to the respective first code block portion of a corresponding code block, a respective second set of systematic bits corresponding to the respective second code block portion of the corresponding code block, a respective third set of systematic bits corresponding to an error detection code for the corresponding code block, and one or more respective parity bits; and mapping the bit sequence and the second subset of bits to the symbols comprises mapping each encoded code block of the set of encoded code blocks to a respective subset of the symbols, symbols within the respective subset of the symbols having: amplitudes based at least in part on the respective first set of systematic bits for the corresponding encoded code block; and signs based at least in part on the respective second set of systematic bits for the corresponding encoded code block, the respective third set of systematic bits for the corresponding encoded code
  • Aspect 19 The method of any of aspects 1 through 18, wherein a quantity of bits in the set of bits is based at least in part on a quantity of resource elements used to transmit the symbols, a quantity of transmission layers used to transmit the symbols, a modulation order for the symbols, a forward error correction coding rate, a coding rate associated with the distribution matching, the non-uniform probability distribution, or any combination thereof.
  • Aspect 20 The method of aspect 19, wherein a quantity of bits in the first subset of bits is based at least in part on the quantity of resource elements used to transmit the symbols, the quantity of transmission layers used to transmit the symbols, the modulation order for the symbols, the coding rate associated with the distribution matching, the non-uniform probability distribution, or any combination thereof; and a quantity of bits in the second subset of bits is based at least in part on the quantity of resource elements used to transmit the symbols, the quantity of transmission layers used to transmit the symbols, the modulation order for the symbols, the forward error correction coding rate, or any combination thereof.
  • a method for wireless communications at a receiving device comprising: receiving symbols corresponding to a transport block, the transport block corresponding to a set of bits; mapping, based at least in part on a symbol constellation, the symbols to a bit sequence and a second subset of bits, wherein the symbol constellation is based at least in part on amplitude and sign, and wherein the symbols have amplitudes based at least in part on the bit sequence and signs based at least in part on the second subset of bits; and performing distribution dematching on the bit sequence to obtain a first subset of bits, wherein the distribution dematching is based at least in part on a non-uniform probability distribution; and combining the first subset of bits and the second subset of bits to obtain the set of bits corresponding to the transport block.
  • Aspect 22 The method of aspect 21, wherein performing the distribution dematching comprises: generating a sequence of interim symbols based at least in part on the bit sequence; and generating the first subset of bits based at least in part on the sequence of interim symbols and the non-uniform probability distribution.
  • Aspect 23 The method of any of aspects 21 through 22, further comprising: checking an error detection code for the transport block after performing the distribution dematching, wherein the error detection code is included in the set of bits.
  • Aspect 24 The method of any of aspects 21 through 22, further comprising: checking an error detection code for the transport block before performing the distribution dematching, wherein the symbols have signs based at least in part on the error detection code for the transport block.
  • Aspect 25 The method of any of aspects 21 through 24, wherein performing the distribution dematching comprises: dividing the bit sequence into a plurality of bit subsequences; performing the distribution dematching separately on each bit subsequence of the plurality of bit subsequences to obtain a plurality of bit groups each based at least in part on a respective bit subsequence of the plurality of bit subsequences and the non-uniform probability distribution; and combining the plurality of bit groups to obtain the first subset of bits.
  • mapping the symbols to the bit sequence and the second subset of bits comprises: dividing the symbols into subsets of symbols each corresponding to a respective code block of a set of code blocks for the transport block; mapping, based at least in part on the symbol constellation, each of the subsets of symbols to bits corresponding to a respective code block of the set of code blocks, wherein each code block of the set of code blocks comprises a respective portion of the bit sequence and a respective portion of the second subset of bits.
  • Aspect 27 An apparatus for wireless communications at a transmitting device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform a method of any of aspects 1 through 20.
  • Aspect 28 An apparatus for wireless communications at a transmitting device, comprising at least one means for performing a method of any of aspects 1 through 20.
  • Aspect 29 A non-transitory computer-readable medium storing code for wireless communications at a transmitting device, the code comprising instructions executable by a processor to perform a method of any of aspects 1 through 20.
  • Aspect 30 An apparatus for wireless communications at a receiving device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform a method of any of aspects 21 through 26.
  • Aspect 31 An apparatus for wireless communications at a receiving device, comprising at least one means for performing a method of any of aspects 21 through 26.
  • Aspect 32 A non-transitory computer-readable medium storing code for wireless communications at a receiving device, the code comprising instructions executable by a processor to perform a method of any of aspects 21 through 26.
  • LTE, LTE-A, LTE-A Pro, or NR may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks.
  • the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
  • UMB Ultra Mobile Broadband
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special-purpose computer.
  • non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium.
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
  • determining encompasses a wide variety of actions and, therefore, “determining” can include calculating, computing, processing, deriving, investigating, looking up (such as via looking up in a table, a database or another data structure) , ascertaining and the like. Also, “determining” can include receiving (such as receiving information) , accessing (such as accessing data in a memory) and the like. Also, “determining” can include resolving, selecting, choosing, establishing and other such similar actions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

L'invention concerne des procédés, des systèmes et des dispositifs destinés aux communications sans fil. Un dispositif de transmission peut identifier un ensemble de bits d'un bloc de transport et diviser l'ensemble de bits en deux sous-ensembles. Un premier sous-ensemble des bits TB peut être soumis à une mise en correspondance de distribution, et un deuxième sous-ensemble des bits TB peut ne pas être soumis à une mise en correspondance de distribution. Le dispositif de transmission peut effectuer une mise en correspondance de distribution sur le premier sous-ensemble de bits pour obtenir une séquence de bits en fonction d'une distribution de probabilité non uniforme. Le dispositif de transmission peut mapper la séquence de bits et le deuxième sous-ensemble de bits à un ensemble de symboles en fonction d'une constellation de symboles. Les amplitudes des symboles peuvent reposées sur la séquence de bits (et par conséquent le premier sous-ensemble de bits), et les signes des symboles peuvent reposés sur le deuxième sous-ensemble de bits.
PCT/CN2021/100268 2021-06-16 2021-06-16 Mise en correspondance de distribution pour mise en forme de constellation probabiliste dans des communications sans fil WO2022261847A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/100268 WO2022261847A1 (fr) 2021-06-16 2021-06-16 Mise en correspondance de distribution pour mise en forme de constellation probabiliste dans des communications sans fil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/100268 WO2022261847A1 (fr) 2021-06-16 2021-06-16 Mise en correspondance de distribution pour mise en forme de constellation probabiliste dans des communications sans fil

Publications (1)

Publication Number Publication Date
WO2022261847A1 true WO2022261847A1 (fr) 2022-12-22

Family

ID=77050730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100268 WO2022261847A1 (fr) 2021-06-16 2021-06-16 Mise en correspondance de distribution pour mise en forme de constellation probabiliste dans des communications sans fil

Country Status (1)

Country Link
WO (1) WO2022261847A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10516503B1 (en) * 2019-02-20 2019-12-24 Mitsubishi Electric Research Laboratories, Inc. Distribution matcher
US10742472B1 (en) * 2019-09-06 2020-08-11 Qualcomm Incorporated Probabilistic amplitude shaping
US11012187B1 (en) * 2020-03-04 2021-05-18 Fujitsu Limited Error correction in optical networks with probabilistic shaping and symbol rate optimization

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10516503B1 (en) * 2019-02-20 2019-12-24 Mitsubishi Electric Research Laboratories, Inc. Distribution matcher
US10742472B1 (en) * 2019-09-06 2020-08-11 Qualcomm Incorporated Probabilistic amplitude shaping
US11012187B1 (en) * 2020-03-04 2021-05-18 Fujitsu Limited Error correction in optical networks with probabilistic shaping and symbol rate optimization

Similar Documents

Publication Publication Date Title
US20210211219A1 (en) Transport block size determination for sidelink communications
WO2021155505A1 (fr) Ressources d'un signal de référence de sondage sur la base d'un code de couverture de domaine temporel et de répétitions et permettant une commutation d'antenne
WO2022155873A1 (fr) Ressources de canal de liaison montante évolutives dans le domaine temporel à plusieurs niveaux
WO2023070239A1 (fr) Priorisation de transmissions de signal de synchronisation de liaison latérale
US11502790B2 (en) Orthogonal sequence generation for multi-bit payloads
WO2022104588A1 (fr) Mise en forme de constellation de niveau de sous-bande
US11728918B2 (en) Multi-bit payload transmission with orthogonal sequences
US11689314B2 (en) Flexible implicit modulation and coding scheme indication
WO2022041187A1 (fr) Schémas de sélection de degré pour codes rapid tornado (raptor) dans des services de multidiffusion et de diffusion et dans des services de diffusion individuelle
WO2021221771A1 (fr) Modulation non cohérente amplifiée
CN115399008A (zh) 侧链路控制信息中的无线设备传送和接收能力
WO2022261847A1 (fr) Mise en correspondance de distribution pour mise en forme de constellation probabiliste dans des communications sans fil
WO2022261845A1 (fr) Mise en correspondance de distribution variable à fixe pour mise en forme de constellation probabiliste dans des communications sans fil
WO2023097562A1 (fr) Brouillage pour des schémas de constellations probabilistes dans des communications sans fil
US11368875B1 (en) Dynamic group common physical control channel assignment techniques
US20230361913A1 (en) Constellation shaping configuration and feedback
US11728852B2 (en) Block matrix generation for sequence based transmissions
US11722265B2 (en) Feedback design for network coding termination in broadcasting
US11844102B2 (en) Adaptive network coding for sidelink communications
WO2022006850A1 (fr) Transmission d'un identifiant de symbole de codage de codes raptor à l'aide d'un codage de canal de commande
WO2022056807A1 (fr) Codage sans débit sur une couche de protocole de convergence de données par paquets
US20230316062A1 (en) Layer-by-layer training for federated learning
WO2021155509A1 (fr) Répétition conjointe de canaux de commande et de canaux de données
US20230139023A1 (en) Adaptive rateless coding for sidelink communications
WO2022067837A1 (fr) Signalisation de commande pour codes sans débit avec rétroaction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21745889

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE