WO2022260554A1 - Способ наблюдения внутренней структуры прозрачных объектов с высоким показателем преломления - Google Patents

Способ наблюдения внутренней структуры прозрачных объектов с высоким показателем преломления Download PDF

Info

Publication number
WO2022260554A1
WO2022260554A1 PCT/RU2022/000162 RU2022000162W WO2022260554A1 WO 2022260554 A1 WO2022260554 A1 WO 2022260554A1 RU 2022000162 W RU2022000162 W RU 2022000162W WO 2022260554 A1 WO2022260554 A1 WO 2022260554A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent
plate
refractive index
transparent object
internal structure
Prior art date
Application number
PCT/RU2022/000162
Other languages
English (en)
French (fr)
Inventor
Роман Абрамович ХМЕЛЬНИЦКИЙ
Сергей Викторович Кузнецов
Сергей Иванович Кудряшов
Павел Александрович ДАНИЛОВ
Никита Александрович СМИРНОВ
Алексей Олегович ЛЕВЧЕНКО
Original Assignee
Общество С Ограниченной Ответственностью "Микролазер"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество С Ограниченной Ответственностью "Микролазер" filed Critical Общество С Ограниченной Ответственностью "Микролазер"
Publication of WO2022260554A1 publication Critical patent/WO2022260554A1/ru

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors

Definitions

  • the invention relates to methods for creating immersion systems for optical diagnostics of transparent objects with a high refractive index, including precious stones, as well as for visualizing the internal structure of such objects by microscopy and introducing optical radiation into such objects, including for their laser modification and for local optical excitation.
  • Immersion compositions are widely used in the study of various objects by optical methods - primarily in microscopy and spectroscopy [O.V. Egorova, Immersion method of microscopic observation. Review. Gosstandart, Moscow, Russia]. Dozens of different liquid immersion formulations are commercially available, but their refractive index barely exceeds 1.8
  • the disadvantage of this liquid is the fragility of maintaining its high optical properties, since after a few days complexes are formed in the liquid that change its optical properties.
  • a known method of deep plastic deformation of crystalline bodies to create optical elements of complex geometry [Basiev T.T., Doroshenko M.E., Kuznetsov S.V., Konyushkin V.A., Osiko V.V., Fedorov P.P. Ceramic laser microstructured material with a twin nanostructure and method for its manufacture. Patent for invention N RU 2358045].
  • the method of deep plastic deformation has been successfully used for the development of ceramic optical waveguides [Konyushkin V.A., Nakladov A.N., Konyushkin D.V., Doroshenko M.E., Osiko V.V., Karasik A.Ya.
  • the phenomenon of deep plastic deformation of crystals under the action of temperature makes it possible to manufacture optical elements with complex geometry, for example, spherical, from flat blanks by this method.
  • the technical problem of the claimed invention is to create a method for observing the internal structure of transparent objects with a refractive index n more than 2.1, including precious stones, as well as a method for introducing optical radiation without distortion into such objects for their laser modification or for local photoexcitation.
  • the technical result consists in solving the specified technical problem.
  • the specified technical result is implemented in a method for observing the internal structure of transparent objects with a high refractive index, which consists in the fact that using a press, at an elevated temperature in an inert gas atmosphere, or in a vacuum, the specified transparent object is placed on at least one plate of immersion powder in the composition of which includes a crystalline material having an absolute refractive index of more than 2.1 and press the specified transparent object into the said at least one plate on the smooth surface of at least one plate, at least one optical window is formed, the internal structure of the specified transparent object is observed by introducing optical radiation into the transparent object through the formed at least one optical window.
  • An optical window is created on a transparent plate after pressing by mechanical processing - grinding, polishing.
  • a cylindrical hole is preliminarily made according to the dimensions of the transparent object of observation.
  • the transparent plate consists of ZnS, GaP, FeO3, C112O, Ag3AsS3, ZnSe, TiO 2 , SrTiO 3 , GaN, Pb 5 [Y0 4 ]3C1.
  • the process is carried out in an atmosphere of high-purity argon flow.
  • the process is carried out in vacuum at a pressure of 10'1 - 10'3 mm Hg.
  • the process of applying the load on the press lasts for 5-300 seconds.
  • the process is carried out at temperatures of 300-1100 °C.
  • FIG. 1 shows a diagram of the refraction of rays at the boundary of an object.
  • FIG. 2 shows a diagram of the implementation of the claimed invention in the case of one plate.
  • the refractive index on both sides of the interface is the same, so the refraction of the rays does not occur (figure 1).
  • the rays are refracted at an inhomogeneous boundary of an object, for example, a natural gemstone, due to the difference in refractive indices.
  • a solid crystalline substance with a refractive index close to the refractive index of the object For example, if the object is diamond (refractive index 2.42), zinc sulfide ZnS or zinc selenide ZnSe (refractive index 2.6-2.4) is used.
  • GaP, Fe2C>3, ⁇ 112 ⁇ , Ag3AsS3, ZnSe, T1O2, SrTiCb, GaN, Pb 5 [V0 4 ] 3 Cl can also be used.
  • the immersion composition for example, ZnSe
  • the object 1 is pressed into the immersion composition 2 using a press 3 at an elevated temperature, for example 300-1100 ° C in an inert gas atmosphere, for example, high-purity argon, or in a vacuum.
  • an inert gas atmosphere for example, high-purity argon
  • a transparent object is placed between two plates of the immersion composition and pressed at an elevated temperature in an inert gas atmosphere or in a vacuum.
  • the object Due to the plasticity of the material of the immersion composition, the object is pressed into it with the formation of an optical contact at the boundary. At the same time, due to the smooth surface 4, at least one optical window 5 is formed. Optical contact is formed between the solid immersion composition and the object, and the transmitted rays 6 do not experience refraction. In the upper plate of crystalline material, a cylindrical hole is preliminarily made according to the dimensions of the transparent object of observation.
  • the internal structure of the object is observed using standard microscopy techniques through the formed optical window on the surface of a transparent plate, the solid immersion medium of which provides this possibility due to the absence of refraction of rays on the curvilinear surface of the transparent object.
  • the input of radiation into a transparent object is made through the formed optical window on the surface of a solid immersion medium (transparent plate) in the form of a converging, parallel, or converging beam, depending on the specific technical task. Due to the absence of refraction of rays on the curvilinear surface of a transparent object, there is no distortion of the beam type on it, and it continues to propagate inside the investigated transparent object practically unchanged. Since the immersion composition is in the solid phase, there is no strong adhesion to the surface of the transparent object. In addition, the immersion composition is usually less durable than the object, and therefore it is easily removed mechanically. Alternatively, it can be removed chemically with a solvent that dissolves the solid immersion medium but does not affect the transparent object under investigation.
  • an optical window 5 is created on the immersion composition after pressing by mechanical processing - grinding, polishing, for example, according to the method of RU 2338014 C2.
  • the object is placed between two transparent plates of a solid immersion composition and pressed at an elevated temperature.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Изобретение относится к способу наблюдения внутренней структуры прозрачных объектов с высоким показателем преломления, заключающемуся в том, что с помощью пресса при повышенной температуре в атмосфере инертного газа, либо в вакууме, указанный прозрачный объект размещают на по меньшей мере одной пластине из иммерсионного порошка, в состав которого входит кристаллический материал, имеющий абсолютный показатель преломления п более 2.1, и вдавливают указанный прозрачный объект в упомянутую по меньшей мере одну пластину, на гладкой поверхности по меньшей мере одной пластины формируют по меньшей мере одно оптическое окно, осуществляют наблюдение внутренней структуры указанного прозрачного объекта посредством ввода оптического излучения внутрь прозрачного объекта сквозь сформированное по меньшей мере одно оптическое окно.

Description

Способ наблюдения внутренней структуры прозрачных объектов с высоким показателем преломления
Изобретение относится к способам создания иммерсионных систем для оптической диагностики прозрачных объектов с высоким показателем преломления, в том числе, драгоценных камней, а также для визуализации внутренней структуры таких объектов методами микроскопии и ввода оптического излучения внутрь таких объектов, в том числе, для их лазерной модификации и для локального оптического возбуждения.
Иммерсионные составы широко используются при исследованиях различных объектов оптическими методами - прежде всего в микроскопии и спектроскопии [О.В. Егорова, Иммерсионный метод микроскопического наблюдения. Обзор. Госстандарт, Москва, Россия]. Коммерчески доступны десятки различных жидких иммерсионных составов, однако их показатель преломления практически не превышает 1,8
[htps://www.cargille.com/refractive-index-liquids/]. При этом за последние несколько десятков лет не появилось принципиально новых иммерсионных жидкостей со сколько-нибудь существенно отличающимися параметрами. Большинство применяемых на данный момент составов, в том числе и с высокими показателями преломления около 1,8 - 2, были известны уже в первой половине 20-го века.
Известны иммерсионные жидкости на основе белого фосфора, йодистого метилена, органических растворителей b-бромнафталина, бромоформа, декалина, тетралина, которые имеют высокий показатель преломления (более 1,5) (Справочник химика, т.4, М.-Л.: Химия, с.821). К недостаткам этих жидкостей относится их высокая токсичность, чрезвычайная ядовитость, взрывоопасность и дороговизна.
Известны высокопреломляющие жидкости Мейровитца (Геологический словарь. - М.: Недра. Под ред. К.Н. Паффенгольца и др., 1978, т.1, 486 с.) на основе селена Se, сульфида мышьяка AS2S3, бромида мышьяка АБВГЗ и йодистого метилена CH2I2, а также иммерсионные жидкости на основе йодистого метилена CH2I2, содержащие белый фосфор, бромид мышьяка АБВГЗ, сульфид мышьяка AS2S3, серу, йодид олова S11I4 и йодид сурьмы Sbl3. Существуют жидкости (например, ЗегВгг) с показателем преломления равным 2,1. Эти жидкости являются очень токсичными и быстро разлагаются под действием света.
Известны более дешевые и безопасные жидкости на основе йодидов металлов. Например, водный раствор йодидов калия и кадмия, и хлористого цинка с максимальным показателем преломления п=1.625 (Авторское свидетельство СССР N 948994, МПКЗ: С09К 3/00 и G01M 11/00, опубликованное 07.08.1982). Несмотря на достаточную стабильность этой жидкости, она не позволяет получить более высокие показатели преломления одновременно с большими значениями вязкости.
Известна менее стабильная жидкость в виде водного раствора йодида цинка с показателем преломления п=1.64 (Патент РФ N°2051940, МПК6: С09К 3/00, G02B 1/ 06 и G01M 1/00, опубликованный 10.01.1996). Недостатком этой жидкости является недолговечность сохранения ее высоких оптических свойств, так как через несколько дней в жидкости образуются комплексы, меняющие ее оптические свойства
На данный момент не известны жидкости с показателем преломленияп выше 2,1. Таким образом, невозможно их использование для прозрачных объектов с более высоким показателем преломления, например, для алмаза, (п = 2,40-2,46) в видимом диапазоне спектра [Васильев Л. А., Белых З.П. Алмазы, их свойства и применение - Москва: Недра, 1983].
Известен способ глубокой пластической деформации кристаллических тел для создания оптических элементов сложной геометрии [Басиев Т.Т., Дорошенко М.Е., Кузнецов С. В., Конюшкин В. А., Осико В. В., Федоров П.П. Керамический лазерный микроструктурированный материал с двойниковой наноструктурой и способ его изготовления. Патент на изобретение N RU 2358045]. Способ глубокой пластической деформации успешно использован для разработки керамических оптических волноводов [Конюшкин В.А., Накладов А.Н., Конюшкин Д.В., Дорошенко М.Е., Осико В. В., Карасик А.Я. Керамические планарные волноводные структуры для усилителей и лазеров // Квант, электроника. 2013. Т. 43. JSfa 1. С. 60-62.]. Явление глубокой пластической деформации кристаллов под действием температуры позволяет из плоских заготовок изготавливать таким методом оптические элементы со сложной геометрией, например сферической.
Техническая проблема заявленного изобретения заключается в создании способа для наблюдения внутренней структуры прозрачных объектов с показателем преломления п более 2.1, в том числе драгоценных камней, а также способа ввода оптического излучения без искажения в такие объекты для их лазерной модификации или для локального фотовозбуждения.
Технический результат заключается в решении указанной технической проблемы.
Указанный технический результат реализуется в способе наблюдения внутренней структуры прозрачных объектов с высоким показателем преломления заключающийся в том, что с помощью пресса, при повышенной температуре в атмосфере инертного газа, либо в вакууме, указанный прозрачный объект размещают на по меньшей мере одной пластине из иммерсионного порошка в состав которого входит кристаллический материал, имеющий абсолютный показатель преломления п более 2.1 и вдавливают указанный прозрачный объект в упомянутую по меньшей мере одну пластину на гладкой поверхности по меньшей мере одной пластины формируют по меньшей мере одно оптическое окно, осуществляют наблюдение внутренней структуры указанного прозрачного объекта посредством ввода оптического излучения внутрь прозрачного объекта сквозь сформированное по меньшей мере одно оптическое окно.
Оптическое окно создают на прозрачной пластинке после прессования путем механической обработки - шлифовки, полировки. В пластине из кристаллического материала предварительно изготавливают цилиндрическое отверстие согласно размерам прозрачного объекта наблюдения.
Прозрачная пластинка состоит из ZnS ,GaP, БегОз, С112О, Ag3AsS3, ZnSe, ТЮ2, SrTi03, GaN, РЬ5[У04]зС1.
Процесс проводится в атмосфере потока высокочистого аргона.
Процесс проводится в вакууме при давлении 10'1 - 10‘3 мм рт.ст.
Процесс приложения нагрузки на пресс длится в течении 5-300 сек.
Процесс проводится при температурах 300-1100 °С.
Заявленное изобретения поясняется с использованием поясняющих материалов, где:
На фиг. 1 показана схема преломления лучей на границе объекта.
На фиг. 2 показана схема реализации заявленного изобретения в случае одной пластинки.
При использовании иммерсионного состава показатель преломления по обе стороны границы раздела одинаков, поэтому преломления лучей не происходит (фиг.1).
Отсутствие преломления на границе позволяет визуализировать внутреннюю структуру объекта, а также вводить внутрь него лучи.
Без использования иммерсионного состава лучи преломляются на неоднородной границе объекта, например, природного драгоценного камня за счет разницы показателей преломления.
Кроме алмаза объектами наблюдения могут быть другие материалы с высоким показателем преломления, для которых затруднительно использование «классических» жидких иммерсионных составов: куприт (СигО, п=2.848), прустит (Ag3AsS3, п=2.792), фианит (ZrC>2, п=2.17), англезит (PbSC>4, п= 1.877 - 1.894) и др.
Для реализации способа наблюдения внутренней структуры прозрачных объектов с использованием твердой иммерсионной среды необходимо твердое кристаллическое вещество с показателем преломления, близким к показателю преломления объекта. Например, если объектом является алмаз (показатель преломления 2,42), используют сульфид цинка ZnS, либо селенид цинка ZnSe (показатель преломления 2, 6-2, 4).
В качестве твердого вещества в иммерсионном составе могут также использоваться, GaP, Fe2C>3, С112О, Ag3AsS3, ZnSe, T1O2, SrTiCb, GaN, Pb5[V04]3Cl.
Так, иммерсионный состав, например, ZnSe, берут в форме пластинки, а затем объект 1 вдавливают в иммерсионный состав 2 с помощью пресса 3 при повышенной температуре, например 300-1100 °С в атмосфере инертного газа, например высокочистого аргона, либо в вакууме. При давлении 101 - 10 3 мм рт.ст., либо прозрачный объект помещают между двумя пластинками иммерсионного состава и производят прессование при повышенной температуре в атмосфере инертного газа либо в вакууме.
За счет пластичности материала иммерсионного состава объект вдавливается в него с образованием на границе оптического контакта. При этом, благодаря гладкой поверхности 4, обеспечивается формирование как минимум одного оптического окна 5. Между твердым иммерсионным составом и объектом формируется оптический контакт и проходящие лучи 6 не испытывают преломления. В верхней пластине из кристаллического материала предварительно изготавливают цилиндрическое отверстие согласно размерам прозрачного объекта наблюдения.
Внутреннюю структуру объекта наблюдают с помощью стандартных методик микроскопии сквозь сформированное оптическое окно на поверхности прозрачной пластинки, твердая иммерсионная среда которой обеспечивает такую возможность, благодаря отсутствию преломления лучей на криволинейной поверхности прозрачного объекта.
Ввод излучения внутрь прозрачного объекта производится сквозь сформированное оптическое окно на поверхности твердой иммерсионной среды (прозрачной пластинки) в виде сходящегося, параллельного, либо сходящегося пучка в зависимости от конкретной технической задачи. Благодаря отсутствию преломления лучей на криволинейной поверхности прозрачного объекта, на ней не происходит искажения вида пучка, и он продолжает распространяться внутри исследуемого прозрачного объекта практически в неизменном виде. Так как иммерсионный состав находится в твердой фазе, не возникает сильной адгезии к поверхности прозрачного объекта. Кроме того, иммерсионный состав, как правило, менее прочен чем объект, и поэтому он легко удаляется механически. Альтернативно он может удаляться химически с помощью растворителя, который растворяет твердую иммерсионную среду, но не влияет на исследуемый прозрачный объект.
Альтернативно, оптическое окно 5 создают на иммерсионном составе после прессования путем механической обработки - шлифовки, полировки, например, по способу RU 2338014 С2.
Альтернативно объект помещают между двумя прозрачными пластинками твердого иммерсионного состава и производят прессование при повышенной температуре.

Claims

Формула изобретения
1. Способ наблюдения внутренней структуры прозрачных объектов с высоким показателем преломления, заключающийся в том, что с помощью пресса при повышенной температуре в атмосфере инертного газа, либо в вакууме, указанный прозрачный объект размещают на по меньшей мере одной пластине из иммерсионного порошка, в состав которого входит кристаллический материал, имеющий абсолютный показатель преломления п более 2.1, и вдавливают указанный прозрачный объект в упомянутую по меньшей мере одну пластину, на гладкой поверхности по меньшей мере одной пластины формируют по меньшей мере одно оптическое окно, осуществляют наблюдение внутренней структуры указанного прозрачного объекта посредством ввода оптического излучения внутрь прозрачного объекта сквозь сформированное по меньшей мере одно оптическое окно.
2. Способ по п. 1, отличающийся тем, что оптическое окно создают на прозрачной пластинке после прессования путем механической обработки - шлифовки, полировки.
3. Способ по п. 1, отличающийся тем, в пластине из кристаллического материала предварительно изготавливают цилиндрическое отверстие согласно размерам прозрачного объекта наблюдения.
4. Способ по п. 1, отличающийся тем, что прозрачная пластинка состоит из ZnS GaP, Fe203, Cu20, Ag3AsS3, ZnSe, ТЮ2, SrTi03, GaN, Pb5[V04]3Cl.
5. Способ no n. 1, отличающийся тем, что процесс проводится в атмосфере потока высокочистого аргона.
6. Способ по п. 1, отличающийся тем, что процесс проводится в вакууме при давлении 10-1 - 10-3 мм рт.ст.
7. Способ по п. 1, отличающийся тем, что процесс приложения нагрузки на пресс длится в течении 5-300 сек.
8. Способ по п. 1, отличающийся тем, что процесс проводится при температурах 300-1100 °С.
PCT/RU2022/000162 2021-06-07 2022-05-16 Способ наблюдения внутренней структуры прозрачных объектов с высоким показателем преломления WO2022260554A1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2021116412A RU2771025C1 (ru) 2021-06-07 2021-06-07 Способ наблюдения внутренней структуры прозрачных объектов с высоким показателем преломления
RU2021116412 2021-06-07

Publications (1)

Publication Number Publication Date
WO2022260554A1 true WO2022260554A1 (ru) 2022-12-15

Family

ID=81306206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2022/000162 WO2022260554A1 (ru) 2021-06-07 2022-05-16 Способ наблюдения внутренней структуры прозрачных объектов с высоким показателем преломления

Country Status (2)

Country Link
RU (1) RU2771025C1 (ru)
WO (1) WO2022260554A1 (ru)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6396579B1 (en) * 1997-03-10 2002-05-28 Shin-Etsu Chemical Co., Ltd. Method, apparatus, and system for inspecting transparent objects
RU2358045C2 (ru) * 2007-08-08 2009-06-10 Институт Общей Физики Им. А.М. Прохорова Российской Академии Наук Керамический лазерный микроструктурированный материал с двойниковой наноструктурой и способ его изготовления

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6396579B1 (en) * 1997-03-10 2002-05-28 Shin-Etsu Chemical Co., Ltd. Method, apparatus, and system for inspecting transparent objects
RU2358045C2 (ru) * 2007-08-08 2009-06-10 Институт Общей Физики Им. А.М. Прохорова Российской Академии Наук Керамический лазерный микроструктурированный материал с двойниковой наноструктурой и способ его изготовления

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LU HAO; LIU PENG; TAO XIAOHUA; WANG JUN; JIANG ZHONGSAI; ZHANG JIAN; XU XIAODONG; TANG DINGYUAN: "Optical properties of transparent ZnSe0.9S0.1 mixed crystal ceramics prepared by hot isostatic pressing", OPTICAL MATERIALS, ELSEVIER SCIENCE PUBLISHERS B.V. AMSTERDAM., NL, vol. 108, 27 July 2020 (2020-07-27), NL , XP086321096, ISSN: 0925-3467, DOI: 10.1016/j.optmat.2020.110214 *

Also Published As

Publication number Publication date
RU2771025C1 (ru) 2022-04-25

Similar Documents

Publication Publication Date Title
Zhao et al. Upconversion nanocrystal‐doped glass: a new paradigm for photonic materials
Fusco et al. Self-assembly of Au nano-islands with tuneable organized disorder for highly sensitive SERS
De Tommasi et al. UV-shielding and wavelength conversion by centric diatom nanopatterned frustules
Bolhuis et al. Vertically-oriented MoS 2 nanosheets for nonlinear optical devices
Saeseaw et al. Three-phase inclusions in emerald and their impact on origin determination
Popok et al. Gas-aggregated copper nanoparticles with long-term plasmon resonance stability
Yi et al. Nonlinear third harmonic generation at crystalline sapphires
Laskowska et al. Functionalized mesoporous silica thin films as a tunable nonlinear optical material
Szustakiewicz et al. Robust Synthesis of Gold Nanotriangles and their Self‐Assembly into Vertical Arrays
RU2771025C1 (ru) Способ наблюдения внутренней структуры прозрачных объектов с высоким показателем преломления
de Castro et al. Femtosecond laser micro-patterning of optical properties and functionalities in novel photosensitive silver-containing fluorophosphate glasses
Lai et al. Strain-dependent fluorescence spectroscopy of nanocrystals and nanoclusters in Cr: YAG crystalline-core fibers and its impact on lasing behavior
RU2759509C1 (ru) Способ создания твердой иммерсионной среды для наблюдения внутренней структуры прозрачных объектов с высоким показателем преломления
Kaur et al. Plasmonic structure of zinc (Zn) and zinc oxide (ZnO) on a tapered optical fiber
Holakooei et al. Make up in the grave: scientific analysis of contents of the so-called kohl pots at the archaeological site of Estark–Joshaqan, central Iranian plateau
Li et al. Laser-induced assembly of Au nano-polyhedron clusters as stable 3D superstructures with ultrabroadband plasmonic resonance for promoting multi-band SERS
Mahmoud Overgrowth of Silver Nanodisks on a Substrate into Vertically Aligned Nanopillars for Chromatic Light Polarization
Jiao et al. Synthesis of three-dimensional honeycomb-like Au nanoporous films by laser induced modification and its application for surface enhanced Raman spectroscopy
Huebner et al. Fabrication of regular patterned SERS arrays by electron beam lithography
Yelisseyev et al. Photoluminescence spectra of impact diamonds formed by solid-state graphite-to-diamond transition
Ashurov et al. ETPTA Inverse Photonic Crystals for the Detection of Alcohols
Wielgus et al. Solvent effects on the optical properties of PEG-SH and CTAB capped gold nanorods
Griffiths et al. Raman spectra of light-coupling prism and gemstone materials
Rickert et al. Hydrothermal crystal growth on non-native substrates: the case of UO2
Torun et al. Investigating femtosecond laser interaction with tellurite glass family

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22820648

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22820648

Country of ref document: EP

Kind code of ref document: A1