WO2022260380A1 - Lymph node metastasis prediction method using endoscopic resection sample image of early colon cancer, and analysis device - Google Patents

Lymph node metastasis prediction method using endoscopic resection sample image of early colon cancer, and analysis device Download PDF

Info

Publication number
WO2022260380A1
WO2022260380A1 PCT/KR2022/007967 KR2022007967W WO2022260380A1 WO 2022260380 A1 WO2022260380 A1 WO 2022260380A1 KR 2022007967 W KR2022007967 W KR 2022007967W WO 2022260380 A1 WO2022260380 A1 WO 2022260380A1
Authority
WO
WIPO (PCT)
Prior art keywords
lymph node
colorectal cancer
sample image
node metastasis
deep learning
Prior art date
Application number
PCT/KR2022/007967
Other languages
French (fr)
Korean (ko)
Inventor
김은란
송주혜
김석형
홍일우
손인석
Original Assignee
사회복지법인 삼성생명공익재단
주식회사 아론티어
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 사회복지법인 삼성생명공익재단, 주식회사 아론티어 filed Critical 사회복지법인 삼성생명공익재단
Publication of WO2022260380A1 publication Critical patent/WO2022260380A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/42Detecting, measuring or recording for evaluating the gastrointestinal, the endocrine or the exocrine systems
    • A61B5/4222Evaluating particular parts, e.g. particular organs
    • A61B5/4255Intestines, colon or appendix
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/20ICT specially adapted for the handling or processing of medical images for handling medical images, e.g. DICOM, HL7 or PACS
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10068Endoscopic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30028Colon; Small intestine

Definitions

  • the technique described below is a technique for predicting whether or not metastases to the lymph nodes in colorectal cancer patients who have undergone endoscopic resection.
  • Early colon cancer refers to colorectal cancer in which cancer cells have invaded the mucosa or submucosa. Early colorectal cancer confined to the mucosal layer can be cured by complete resection of only the primary tumor because cancer cells remain only in the primary site without distant metastasis, including lymph nodes. On the other hand, about 10% of early colorectal cancers infiltrating the submucosa show lymph node metastasis.
  • the current universal guideline is to perform endoscopic resection first for early colorectal cancer with indications for endoscopic resection, and if mucosal invasion of the tumor exceeds a certain standard after endoscopic resection, the risk of lymph node metastasis is high, and additional resection surgery is recommended. have. However, even when additional surgery is performed according to the guidelines, 75 to 98% of the surgical specimen test results are not confirmed as actual lymph node metastasis.
  • the technique described below is intended to provide a technique for predicting whether or not lymph node metastasis of colorectal cancer is based on an endoscopic resection specimen.
  • the technique to be described below is intended to provide a technique for predicting whether colorectal cancer has metastasized to a lymph node using only a staining image of a specimen.
  • a method for predicting lymph node metastasis using endoscopically resected specimen images of early colorectal cancer includes the step of receiving a stained specimen image of the colon of a colorectal cancer patient as an input to an analysis device, the specimen image to a deep learning model trained in advance by the analysis device and predicting whether or not lymph node metastasis to the colorectal cancer patient is present based on a value output by the deep learning model having received the specimen image by the analysis device.
  • the deep learning model receives patch images in which the entire sample image is divided into a plurality of regions, and determines whether the patient has metastasis to the lymph nodes based on the characteristics of the entire sample image to which weights are assigned to the patch images. output the predicted value for
  • An analysis device for predicting lymph node metastasis of early colorectal cancer includes an input device that receives a stained sample image of the large intestine of a colorectal cancer patient, a storage device that stores a deep learning model, and the deep learning model that receives the sample image. and an arithmetic unit for predicting whether the colorectal cancer patient has metastasis to a lymph node based on an output value.
  • the deep learning model receives patch images in which the entire sample image is divided into a plurality of regions, and determines whether the patient has metastasis to the lymph nodes based on the characteristics of the entire sample image to which weights are assigned to the patch images. output the predicted value for
  • the technology described below accurately predicts lymph node metastasis for patients who have undergone endoscopic resection using an artificial intelligence model.
  • the technology described below predicts the need for additional surgery quickly and with high accuracy using only the staining image of the specimen.
  • 1 is an example of a system for predicting lymph node metastasis for a patient with early colorectal cancer.
  • 2 is an example of a deep learning model predicting lymph node metastasis of early colorectal cancer.
  • 3 is an example of a learning process of a deep learning model.
  • 5 is an AUC result of a deep learning model.
  • first, second, A, B, etc. may be used to describe various elements, but the elements are not limited by the above terms, and are merely used to distinguish one element from another. used only as For example, without departing from the scope of the technology described below, a first element may be referred to as a second element, and similarly, the second element may be referred to as a first element.
  • the terms and/or include any combination of a plurality of related recited items or any of a plurality of related recited items.
  • each component in the present specification is merely a classification for each main function in charge of each component. That is, two or more components described below may be combined into one component, or one component may be divided into two or more for each more subdivided function.
  • each component to be described below may additionally perform some or all of the functions of other components in addition to its main function, and some of the main functions of each component may be performed by other components. Of course, it may be dedicated and performed by .
  • each process constituting the method may occur in a different order from the specified order unless a specific order is clearly described in context. That is, each process may occur in the same order as specified, may be performed substantially simultaneously, or may be performed in the reverse order.
  • the technique described below is a technique for predicting lymph node metastasis by analyzing a specimen of a colorectal cancer or early colorectal cancer patient.
  • Specimens from early colorectal cancer patients can be obtained in a variety of ways. For example, a patient's specimen may be obtained during an endoscopic resection procedure.
  • H&E hematoxylin and eosin
  • the technique described below uses stained specimen images to predict lymph node metastasis.
  • the H&E image will be described as a standard. Since the sample is stained in slide units, it is also called WSI (whole slide image). Therefore, the image used for analysis can be named H&E WSI.
  • the technology to be described below analyzes H&E images using a learning model to predict metastasis to the lymph nodes.
  • the learning model means a machine learning model.
  • a learning model is meant to include various types of models.
  • a learning model includes a decision tree, a random forest, a K-nearest neighbor (KNN), a Naive Bayes, a support vector machine (SVM), an artificial neural network, and the like.
  • An artificial neural network is a statistical learning algorithm that mimics a biological neural network.
  • Various neural network models are being studied. Recently, deep learning networks (DNNs) are attracting attention.
  • DNN is an artificial neural network model consisting of several hidden layers between an input layer and an output layer.
  • DNNs like general artificial neural networks, can model complex non-linear relationships.
  • Various types of DNN models have been studied. For example, there are a Convolutional Neural Network (CNN), a Recurrent Neural Network (RNN), a Restricted Boltzmann Machine (RBM), a Deep Belief Network (DBN), a Generative Adversarial Network (GAN), and Relation Networks (RL).
  • CNN Convolutional Neural Network
  • RNN Recurrent Neural Network
  • RBM Restricted Boltzmann Machine
  • DBN Deep Belief Network
  • GAN Generative Adversarial Network
  • RL Relation Networks
  • the technology described below predicts lymph node metastasis using a deep learning model.
  • the structure of a specific deep learning model will be described later.
  • the analysis device is a device capable of processing data and may be in the form of a PC, a smart device, or a server.
  • 1 is an example of a system 100 for predicting lymph node metastasis for a patient with early colorectal cancer. 1 illustrates an example in which the analysis device is a computer terminal 150 and a server 250 .
  • the dyed image generating device 110 is a device for generating a dyed image (H&E WSI) by staining a tissue slide and scanning the stained result.
  • the dyed image generation device 110 is a device that generates H&E WSI for a slide stained by a researcher.
  • the dyed image generating device 110 transmits the H&E WSI to the computer terminal 150 through a wired or wireless network.
  • the computer terminal 150 predicts whether the sample has metastasis to the lymph nodes based on the H&E WSI.
  • the computer terminal 150 predicts metastasis to the lymph nodes using a pre-learned deep learning model.
  • the deep learning model receives the H&E WSI and outputs a predicted probability value for lymph node metastasis for the sample. The deep learning model will be described later.
  • the computer terminal 150 provides the analysis result to the user R.
  • the dyed image generating device 110 and the computer terminal 150 may be physically implemented as one device or a connected device.
  • 1(B) is a system 200 in which a user accesses an analysis server 250 through a user terminal 270 and predicts lymph node metastasis.
  • the dyed image generation device 210 is a device for generating a dyed image (H&E WSI) by staining a tissue slide and scanning the stained result.
  • the dyed image generation device 210 is a device that generates H&E WSI for a slide stained by a researcher.
  • the dyed image generating device 210 transmits the H&E WSI to the analysis server 250 through a wired or wireless network.
  • the analysis server 250 predicts whether the sample has metastasis to the lymph nodes based on the H&E WSI.
  • the analysis server 250 predicts whether lymph node metastasis is present using a pre-learned deep learning model.
  • the deep learning model receives the H&E WSI and outputs a predicted probability value for lymph node metastasis for the sample. The deep learning model will be described later.
  • the analysis server 250 may transmit the analysis result to the user terminal 270 .
  • the analysis server 250 may transmit the analysis result to the EMR system 260 of the hospital.
  • the deep learning model 300 may include a feature extraction layer 310, an attention layer 320, and a classification layer 330. That is, the deep learning model 330 may be referred to as an attention-based CNN model.
  • the analysis device divides the tissue region of the H&E WSI to extract patch images.
  • one divided (classified) image is called an H&E WSI patch.
  • the analysis device inputs each H&E WSI patch to the deep learning model 300, and the deep learning model 300 outputs a classification result for each H&E WSI patch.
  • the deep learning model 300 extracts features of the input data and outputs a value of lymph node metastasis positive or lymph node metastasis negative based on the extracted features.
  • the feature extraction layer 310 may be implemented in various forms.
  • the feature extraction layer 310 may include a plurality of convolution layers and pooling layers.
  • the feature extraction layer 310 may include various activation functions.
  • the feature extraction layer 310 outputs a feature vector for one H&E WSI patch.
  • the attention layer 320 may receive the feature vector and assign an attention score to the corresponding H&E WSI patch.
  • the attention layer 320 adds a relative importance contributing to the prediction of lymph node metastasis to each H&E WSI patch. The higher the value of the attention score, the more it affects the determination of lymph node metastasis.
  • the analysis device may calculate a feature vector for one H&E WSI by performing a weighted average on the feature vectors of all H&E WSI patches based on the attention score. Then, the analysis device may input feature vectors for the entire H&E WSI to the classification layer 330.
  • K may be a different value for each H&E WSI.
  • the H&E WSI feature value h wsi can be expressed as in Equation 1 below.
  • is a weight given to the feature of the H&E WSI patch in the attention layer 320. ⁇ corresponds to the aforementioned attention score. ⁇ has a value between 0 and 1. The sum of the weights for all H&E WSI patches is 1.
  • W ⁇ R L ⁇ 1 and V ⁇ R L ⁇ M are parameters of the attention layer 320 .
  • M is the dimensional length of the feature vector of each H&E WSI patch, and L may be set to half of M.
  • tanh (hyperbolic tangent) is the activation function. tanh provides non-linear information about the feature vector, and tanh scales the feature vector to a value between -1 and 1 in order to detect similarities and dissimilarity between patches in H&E WSI.
  • the attention layer 320 may be composed of two fully connected layers (FNs). The first FN may have a tanh activation function, and the second FN may have a softmax function. Finally, the attention layer 320 performs attention-based pooling on all input patch feature vectors h k as shown in Equation 1, and outputs an average WSI feature h wsi for one WSI.
  • the classification layer 330 may be implemented in various forms.
  • the classification layer 330 may include a fully connected network (FN) widely used in general CNNs.
  • the classification layer 330 may include various activation functions.
  • the classification layer 330 may include a classification function (eg, softmax) for final classification.
  • the classification layer 330 may receive a feature vector for the entire H&E WSI and output a predicted probability value for lymph node metastasis for a corresponding sample.
  • 3 is an example of a learning process 400 of a deep learning model.
  • a researcher or developer learns a deep learning model using a computer device such as a PC or server. Therefore, it will be described below that the computer device performs the learning process of the deep learning model.
  • the deep learning model 300 of FIG. 2 was prepared through a two-step learning process.
  • the computer device prepares the feature extraction layer 310 of the deep learning model 300.
  • the computer device prepares the entire deep learning model 300 including the feature extraction layer 310 prepared in the first learning process.
  • the first learning process (A) is a process of learning a CNN-based first model that extracts and classifies features of a patch-level input image.
  • the CNN-based first model can be divided into a feature extraction layer (a) for extracting features and a classification layer (b) for classifying based on the extracted features.
  • the feature extraction layer (a) may be implemented in various forms.
  • the feature extraction layer (a) may include a plurality of convolution layers and pooling layers.
  • the feature extraction layer (a) may include various activation functions.
  • the classification layer (b) may also be implemented in various forms.
  • the classification layer (b) may include FNs widely used in general CNNs.
  • the classification layer (b) may also include various activation functions.
  • the classification layer (b) may include a classification function (eg, softmax) for final classification.
  • the positive group refers to patients who underwent endoscopic resection and were confirmed to have lymph node metastasis as a result of the sample test.
  • the researcher prepared H&E WSI (negative WSI) for the negative group (420).
  • the negative group refers to patients who underwent endoscopic resection but no lymph node metastasis was confirmed.
  • Specimen data are data of 691 patients who underwent additional surgery within 3 months after endoscopic mucosal resection (EMR) or endoscopic submucosal dissection (ESD) at Samsung Seoul Hospital between 2010 and 2018. was used. The researcher excluded patients whose interpretation of H&E images was not clear, patients who had not undergone lymph node dissection, or patients with synchronous invasive carcinoma from the sample data. Through this process, the researcher finally extracted the data of 400 patients.
  • H&E WSI is used, and 430 H&E WSI were prepared for 400 people. Of the 430 H&E WSIs, 82 were positive for lymph node metastasis and 348 were negative for lymph node metastasis. 430 H&E WSIs were randomly selected and training data and verification data were prepared at a 4:1 ratio, respectively.
  • the researcher used only the patient's H&E image, and did not use additional clinical information (age, gender, family history, smoking status, tumor type, tumor location, etc.) of the patient as learning data.
  • H&E WSI was acquired using a VENTANA iScan HT scanner (using 20x magnification). The researcher selected only images that convey pathologically clear information among the acquired H&E WSI as learning data.
  • the computer device generates an input data group by dividing the positive group H&E WSI and the negative group H&E WSI into patch units, respectively (430).
  • the computer device may pre-process the size, direction, and color of the H&E WSI patch for learning to be advantageous for learning.
  • Each learning data may be composed of patch unit images and information on the clinical results (whether or not metastases to the lymph nodes) of the patient of the corresponding images. Lymph node metastasis was labeled as 1 if metastasis positive, and as 0 if metastasis negative.
  • the computer device classifies the input H&E WSI by inputting the patch unit H&E WSI to the CNN-based first model.
  • the first model extracts features of the input data and outputs a value of positive lymph node metastasis or a value of negative lymph node metastasis based on the extracted features.
  • the first model outputs a value between 0 and 1 corresponding to the prediction result of lymph node metastasis.
  • the computer device compares the label value of the currently input H&E WSI patch with the value currently output by the first model, and adjusts the parameter of the first model if the output value is incorrect.
  • the computer device optimizes the parameters of the model while repeating this process for a plurality of training data (440). The researcher performed learning to minimize cross entropy loss with a learning rate of 0.0001 using the RAdam optimizer.
  • the learning process (B) is a process of learning the second model based on attention.
  • the second model corresponds to the deep learning model 300 described above.
  • the second model includes a feature extraction layer 310, an attention layer 320, and a classification layer 330.
  • the feature extraction layer 310 imports and uses the feature extraction layer (a) that has been learned in the learning process (A).
  • the computer device inputs the H&E WSI patch for training to the second model. Meanwhile, the researcher used a feature extraction layer 310 that outputs a 512-dimensional feature vector for each H&E WSI patch. Based on this, it is explained.
  • the feature vector output from the feature extraction layer 310 is input to the attention layer 320.
  • the attention layer 320 may output WSI features h wsi ⁇ R 512 and concatenated 11-dimensional clinical features.
  • the classification layer 330 may output the final binary classification result by receiving WSI features and clinical features output from the attention layer 320 through 512 channels and 256 channels, respectively.
  • the computer device repeats the process of optimizing the parameters of the model based on the output result of inputting the training H&E WSI patches to the second model (450).
  • the researcher trained the second attention-based model in the direction of minimizing the cross-entropy loss with a learning rate of 0.0001 using the RAdam optimizer.
  • the computer device may set only the remaining attention layer 320 and the classification layer 330 as learning targets, excluding the feature extraction layer 310 learned in the learning process (A) among the second models. have.
  • the computer device may optimize parameters by taking all layers including the feature extraction layer 310 as learning targets.
  • the analysis device 500 corresponds to the above-described analysis devices ( 150 and 250 in FIG. 1 ).
  • the analysis device 500 may be physically implemented in various forms.
  • the analysis device 500 may have a form of a computer device such as a PC, a network server, and a data processing dedicated chipset.
  • the analysis device 500 may include a storage device 510, a memory 520, an arithmetic device 530, an interface device 540, a communication device 550, and an output device 560.
  • the storage device 510 may store a deep learning model for predicting lymph node metastasis based on the H&E WSI of a colorectal cancer patient.
  • the storage device 510 may store the input H&E WSI.
  • the storage device 510 may store images obtained by processing input H&E WSI in patch units.
  • the storage device 510 may store other programs or codes for image processing.
  • the storage device 510 may store instructions or program codes for a process of predicting metastasis to a lymph node through the process described above.
  • the storage device 510 may store analysis results.
  • the memory 520 may store data and information generated in the course of the analysis device 500 predicting metastasis to a lymph node.
  • the interface device 540 is a device that receives certain commands and data from the outside.
  • the interface device 540 may receive the H&E WSI of the analysis target from a physically connected input device or an external storage device.
  • the communication device 550 refers to a component that receives and transmits certain information through a wired or wireless network.
  • the communication device 550 may receive the H&E WSI of the analysis target from the external object.
  • the communication device 550 may transmit the analysis result to an external object such as a user terminal.
  • the interface device 540 and the communication device 550 are configured to receive certain information and images from a user or other physical object, they can also be collectively referred to as input devices.
  • the input device may mean an interface of a path that transfers the H&E WSI or request received from the communication device 550 to the inside of the analysis device 500.
  • the output device 560 is a device that outputs certain information.
  • the output device 560 may output interfaces and analysis results necessary for data processing.
  • the arithmetic device 530 may predict metastasis to the lymph node for the analysis target using instructions or program codes stored in the storage device 510 .
  • the arithmetic device 530 may predict metastasis to a lymph node using a deep learning model stored in the storage device 510 .
  • the computing device 530 may predict whether metastases to the lymph nodes based on output values of the deep learning model to which the H&E WSI patches are input.
  • the computing device 530 may divide the H&E WSI into a plurality of H&E WSI patches.
  • the arithmetic device 530 may perform certain image processing on the plurality of H&E WSI patches classified (divided).
  • the computing device 530 may calculate features for the entire H&E WSI by collecting features weighted for each of the H&E WSI patches by the attention layer of the deep learning model.
  • the computing device 530 may transfer the characteristics of the entire H&E WSI to the classification layer to obtain a final prediction value for metastasis to the lymph nodes.
  • the arithmetic device 530 may be a device such as a processor, an AP, or a chip in which a program is embedded that processes data and performs certain arithmetic operations.
  • Table 1 below is information on all specimens (patients) described in the learning process together with FIG. 4 .
  • 430 H&E WSIs were prepared. Of the 430 H&E WSIs, 82 were positive for lymph node metastasis and 348 were negative for lymph node metastasis.
  • 430 H&E WSIs were randomly selected and training data and verification data were prepared at a 4:1 ratio, respectively.
  • the verification data consisted of data from 14 patients with lymph node metastasis and data from 66 patients without lymph node metastasis.
  • the case of using only clinical information of patients without using H&E WSI has AUC of 0.561.
  • the AUC is 0.705.
  • the attention-based deep learning model (Step 2 with Clinical Feature) using the patient's clinical information and H&E WSI has an AUC of 0.742.
  • the attention-based deep learning model (Step 2 without Clinical Feature) using only the H&E WSI without the patient's clinical information has an AUC of 0.747.
  • FIG. 5 shows the AUC results of the deep learning model. 5 is the performance of an attention-based deep learning model using only H&E WSI. Referring to FIG. 5 , the average AUC was 0.747 as a result of 5-fold cross verification on the verification data. In addition, as a result of ensembling the models created in each fold and experimenting on the verification data, AUC was 0.764. In addition, since false negatives cannot be tolerated in actual clinical applications, when 100% sensitivity is guaranteed, the specificity for the training data is 28.1% and the specificity for the validation data is 45.1%. was
  • the above-described method for analyzing medical images and predicting lymph node metastasis of colorectal cancer may be implemented as a program (or application) including an executable algorithm that can be executed on a computer.
  • the program may be stored and provided in a temporary or non-transitory computer readable medium.
  • a non-transitory readable medium is not a medium that stores data for a short moment, such as a register, cache, or memory, but a medium that stores data semi-permanently and can be read by a device.
  • the various applications or programs described above are CD, DVD, hard disk, Blu-ray disk, USB, memory card, ROM (read-only memory), PROM (programmable read only memory), EPROM (Erasable PROM, EPROM)
  • ROM read-only memory
  • PROM programmable read only memory
  • EPROM Erasable PROM, EPROM
  • it may be stored and provided in a non-transitory readable medium such as EEPROM (Electrically EPROM) or flash memory.
  • Temporary readable media include static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM), and enhanced SDRAM (Enhanced SDRAM). SDRAM, ESDRAM), Synchronous DRAM (Synclink DRAM, SLDRAM) and Direct Rambus RAM (DRRAM).
  • SRAM static RAM
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDR SDRAM double data rate SDRAM
  • Enhanced SDRAM Enhanced SDRAM
  • SDRAM ESDRAM
  • Synchronous DRAM Synchronous DRAM
  • SLDRAM Direct Rambus RAM
  • DRRAM Direct Rambus RAM

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physiology (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Artificial Intelligence (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)
  • Endocrinology (AREA)
  • Image Analysis (AREA)

Abstract

A lymph node metastasis prediction method using an endoscopic resection sample image of early colon cancer, comprises steps in which: an analysis device receives a stained sample image of the colon area of a patient with colon cancer; the analysis device inputs the sample image into a deep learning model trained in advance; and the analysis device predicts, on the basis of a value output by the deep learning model having received the sample image, whether lymph node metastasis has occurred in the patient with colon cancer. The deep learning model receives patch images in which the whole sample image is divided into a plurality of areas, and outputs, on the basis of the feature about the whole sample image to which weights for the patch images are provided, a prediction value about whether lymph node metastasis has occurred in the patient.

Description

조기 대장암의 내시경 절제 검체 이미지를 이용한 림프절 전이 예측 방법 및 분석 장치Method and analysis device for predicting lymph node metastasis using endoscopic resection specimen images of early colorectal cancer
이하 설명하는 기술은 내시경 절제술을 시행한 대장암 환자에 대한 림프절 전이 여부를 예측하는 기법이다.The technique described below is a technique for predicting whether or not metastases to the lymph nodes in colorectal cancer patients who have undergone endoscopic resection.
조기 대장암(early colon cancer)은 암세포가 점막 또는 점막하층까지 침윤한 대장암을 의미한다. 점막층에 국한된 조기 대장암은 림프절(lymph node)을 포함하여 원격전이 없이 원발 병소에만 암세포가 머물러 있으므로 원발 종양만 완전 절제하면 완치될 수 있다. 한편, 점막하층을 침윤한 조기 대장암은 10% 내외에서 림프절 전이를 보인다. Early colon cancer refers to colorectal cancer in which cancer cells have invaded the mucosa or submucosa. Early colorectal cancer confined to the mucosal layer can be cured by complete resection of only the primary tumor because cancer cells remain only in the primary site without distant metastasis, including lymph nodes. On the other hand, about 10% of early colorectal cancers infiltrating the submucosa show lymph node metastasis.
현재 보편적인 지침은 내시경적 절제술의 적응증이 있는 조기 대장암 경우 내시경적 절제술을 먼저 시행하고, 내시경적 절제술 시행 후 종양의 점막 침윤이 일정 기준 이상일 경우 림프절 전이 위험도가 높다고 보고 추가적인 절제 수술을 권장하고 있다. 다만, 지침에 따라 추가적인 수술을 하는 경우에도 수술 검체 검사 결과는 실제 림프절 전이과 확인되지 않는 경우가 75~98%에 이른다.The current universal guideline is to perform endoscopic resection first for early colorectal cancer with indications for endoscopic resection, and if mucosal invasion of the tumor exceeds a certain standard after endoscopic resection, the risk of lymph node metastasis is high, and additional resection surgery is recommended. have. However, even when additional surgery is performed according to the guidelines, 75 to 98% of the surgical specimen test results are not confirmed as actual lymph node metastasis.
내시경적 절제 검체에 대한 임상적 판단은 검체의 염색 이미지를 활용한다. 그러나, 내시경적 절제 검체의 염색 이미지만을 기준으로 대장암의 림프절 전이 여부를 예측하기 매우 어렵다. Clinical judgment on endoscopically resected specimens utilizes staining images of the specimen. However, it is very difficult to predict whether colorectal cancer has metastasized to the lymph nodes based only on the staining image of the endoscopically resected specimen.
이하 설명하는 기술은 내시경적 절제 검체를 기준으로 대장암의 림프절 전이 여부를 예측하는 기법을 제공하고자 한다. 이하 설명하는 기술은 검체의 염색 이미지만을 이용하여 대장암의 림프절 전이 여부를 예측하는 기법을 제공하고자 한다.The technique described below is intended to provide a technique for predicting whether or not lymph node metastasis of colorectal cancer is based on an endoscopic resection specimen. The technique to be described below is intended to provide a technique for predicting whether colorectal cancer has metastasized to a lymph node using only a staining image of a specimen.
조기 대장암의 내시경 절제 검체 이미지를 이용한 림프절 전이 예측 방법은 분석장치가 대장암 환자의 대장 부위에 대한 염색된 검체 이미지를 입력받는 단계, 상기 분석장치가 사전에 학습된 딥러닝 모델에 상기 검체 이미지를 입력하는 단계 및 상기 분석장치가 상기 검체 이미지를 입력받은 상기 딥러닝 모델이 출력하는 값을 기준으로 상기 대장암 환자에 대한 림프절 전이 여부를 예측하는 단계를 포함한다. 상기 딥러닝 모델은 상기 검체 이미지 전체를 복수의 영역으로 구분한 패치 이미지들을 입력받고, 상기 패치 이미지들에 대한 가중치가 부여된 상기 검체 이미지 전체에 대한 특징을 기준으로 상기 환자에 대한 림프절 전이 여부에 대한 예측값을 출력한다.A method for predicting lymph node metastasis using endoscopically resected specimen images of early colorectal cancer includes the step of receiving a stained specimen image of the colon of a colorectal cancer patient as an input to an analysis device, the specimen image to a deep learning model trained in advance by the analysis device and predicting whether or not lymph node metastasis to the colorectal cancer patient is present based on a value output by the deep learning model having received the specimen image by the analysis device. The deep learning model receives patch images in which the entire sample image is divided into a plurality of regions, and determines whether the patient has metastasis to the lymph nodes based on the characteristics of the entire sample image to which weights are assigned to the patch images. output the predicted value for
조기 대장암의 림프절 전이를 예측하는 분석 장치는 대장암 환자의 대장 부위에 대한 염색된 검체 이미지를 입력받는 입력장치, 딥러닝 모델을 저장하는 저장장치 및 상기 검체 이미지를 입력받은 상기 딥러닝 모델이 출력하는 값을 기준으로 상기 대장암 환자에 대한 림프절 전이 여부를 예측하는 연산장치를 포함한다. 상기 딥러닝 모델은 상기 검체 이미지 전체를 복수의 영역으로 구분한 패치 이미지들을 입력받고, 상기 패치 이미지들에 대한 가중치가 부여된 상기 검체 이미지 전체에 대한 특징을 기준으로 상기 환자에 대한 림프절 전이 여부에 대한 예측값을 출력한다.An analysis device for predicting lymph node metastasis of early colorectal cancer includes an input device that receives a stained sample image of the large intestine of a colorectal cancer patient, a storage device that stores a deep learning model, and the deep learning model that receives the sample image. and an arithmetic unit for predicting whether the colorectal cancer patient has metastasis to a lymph node based on an output value. The deep learning model receives patch images in which the entire sample image is divided into a plurality of regions, and determines whether the patient has metastasis to the lymph nodes based on the characteristics of the entire sample image to which weights are assigned to the patch images. output the predicted value for
이하 설명하는 기술은 인공지능 모델을 이용하여 내시경적 절제술을 시행한 환자에 대한 림프절 전이 여부를 정확하게 예측한다. 이하 설명하는 기술은 검체의 염색 이미지만을 이용하여 빠르고 높은 정확도로 추가 수술 필요성을 예측한다.The technology described below accurately predicts lymph node metastasis for patients who have undergone endoscopic resection using an artificial intelligence model. The technology described below predicts the need for additional surgery quickly and with high accuracy using only the staining image of the specimen.
도 1은 조기 대장암에 환자에 대한 림프절 전이를 예측하는 시스템에 대한 예이다.1 is an example of a system for predicting lymph node metastasis for a patient with early colorectal cancer.
도 2는 조기 대장암의 림프절 전이를 예측하는 딥러닝 모델에 대한 예이다.2 is an example of a deep learning model predicting lymph node metastasis of early colorectal cancer.
도 3은 딥러닝 모델의 학습 과정에 대한 예이다.3 is an example of a learning process of a deep learning model.
도 4는 분석장치에 대한 예이다.4 is an example of an analysis device.
도 5는 딥러닝 모델의 AUC 결과이다.5 is an AUC result of a deep learning model.
이하 설명하는 기술은 다양한 변경을 가할 수 있고 여러 가지 실시례를 가질 수 있는 바, 특정 실시례들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나, 이는 이하 설명하는 기술을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 이하 설명하는 기술의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Since the technology to be described below can have various changes and various embodiments, specific embodiments will be illustrated in the drawings and described in detail. However, this is not intended to limit the technology described below to specific embodiments, and it should be understood to include all modifications, equivalents, or substitutes included in the spirit and scope of the technology described below.
제1, 제2, A, B 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 해당 구성요소들은 상기 용어들에 의해 한정되지는 않으며, 단지 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 이하 설명하는 기술의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.Terms such as first, second, A, B, etc. may be used to describe various elements, but the elements are not limited by the above terms, and are merely used to distinguish one element from another. used only as For example, without departing from the scope of the technology described below, a first element may be referred to as a second element, and similarly, the second element may be referred to as a first element. The terms and/or include any combination of a plurality of related recited items or any of a plurality of related recited items.
본 명세서에서 사용되는 용어에서 단수의 표현은 문맥상 명백하게 다르게 해석되지 않는 한 복수의 표현을 포함하는 것으로 이해되어야 하고, "포함한다" 등의 용어는 설명된 특징, 개수, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 의미하는 것이지, 하나 또는 그 이상의 다른 특징들이나 개수, 단계 동작 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 배제하지 않는 것으로 이해되어야 한다.In terms used in this specification, singular expressions should be understood to include plural expressions unless clearly interpreted differently in context, and terms such as “comprising” refer to the described features, numbers, steps, operations, and components. , parts or combinations thereof, but it should be understood that it does not exclude the possibility of the presence or addition of one or more other features or numbers, step-action components, parts or combinations thereof.
도면에 대한 상세한 설명을 하기에 앞서, 본 명세서에서의 구성부들에 대한 구분은 각 구성부가 담당하는 주기능 별로 구분한 것에 불과함을 명확히 하고자 한다. 즉, 이하에서 설명할 2개 이상의 구성부가 하나의 구성부로 합쳐지거나 또는 하나의 구성부가 보다 세분화된 기능별로 2개 이상으로 분화되어 구비될 수도 있다. 그리고 이하에서 설명할 구성부 각각은 자신이 담당하는 주기능 이외에도 다른 구성부가 담당하는 기능 중 일부 또는 전부의 기능을 추가적으로 수행할 수도 있으며, 구성부 각각이 담당하는 주기능 중 일부 기능이 다른 구성부에 의해 전담되어 수행될 수도 있음은 물론이다.Prior to a detailed description of the drawings, it is to be clarified that the classification of components in the present specification is merely a classification for each main function in charge of each component. That is, two or more components described below may be combined into one component, or one component may be divided into two or more for each more subdivided function. In addition, each component to be described below may additionally perform some or all of the functions of other components in addition to its main function, and some of the main functions of each component may be performed by other components. Of course, it may be dedicated and performed by .
또, 방법 또는 동작 방법을 수행함에 있어서, 상기 방법을 이루는 각 과정들은 문맥상 명백하게 특정 순서를 기재하지 않은 이상 명기된 순서와 다르게 일어날 수 있다. 즉, 각 과정들은 명기된 순서와 동일하게 일어날 수도 있고 실질적으로 동시에 수행될 수도 있으며 반대의 순서대로 수행될 수도 있다.In addition, in performing a method or method of operation, each process constituting the method may occur in a different order from the specified order unless a specific order is clearly described in context. That is, each process may occur in the same order as specified, may be performed substantially simultaneously, or may be performed in the reverse order.
이하 설명하는 기술은 대장암 또는 조기 대장암 환자의 검체를 분석하여 림프절 전이를 예측하는 기법이다. 조기 대장암 환자의 검체는 다양한 방법으로 획득할 수 있다. 예컨대, 환자의 검체는 내시경적 절제술 과정에서 획득될 수 있다.The technique described below is a technique for predicting lymph node metastasis by analyzing a specimen of a colorectal cancer or early colorectal cancer patient. Specimens from early colorectal cancer patients can be obtained in a variety of ways. For example, a patient's specimen may be obtained during an endoscopic resection procedure.
조직에 대한 임상적 검사는 일반적으로 염색된 검체를 이용한다. 염색은 다양한 시약을 사용할 수 있다. 검체 염색은 대표적으로 헤마톡실린과 에오신(Haematoxylin and eosin, 이하 H&E라 함)을 이용할 수 있다. 이하 설명하는 기술은 염색된 검체 이미지를 이용하며 림프절 전이를 예측한다. 이하 설명의 편의를 위하여 H&E 이미지를 기준으로 설명한다. 검체는 슬라이드 단위로 염색을 하므로 WSI(whole slide image)라고도 한다. 따라서, 분석에 활용하는 이미지는 H&E WSI라고 명명할 수 있다.Clinical examination of tissues generally uses stained specimens. Staining can use a variety of reagents. Representatively, hematoxylin and eosin (hereinafter referred to as H&E) can be used for specimen staining. The technique described below uses stained specimen images to predict lymph node metastasis. Hereinafter, for convenience of description, the H&E image will be described as a standard. Since the sample is stained in slide units, it is also called WSI (whole slide image). Therefore, the image used for analysis can be named H&E WSI.
이하 설명하는 기술은 학습모델을 이용하여 H&E 이미지를 분석하여 림프절 전이 여부를 예측한다. 학습모델은 기계 학습(machine learning) 모델을 의미한다. 학습 모델은 다양한 유형의 모델들을 포함하는 의미이다. 예컨대, 학습 모델은 결정 트리, 랜덤 포레스트(random forest), KNN(K-nearest neighbor), 나이브 베이즈(Naive Bayes), SVM(support vector machine), 인공신경망(artificial neural network) 등이 있다. The technology to be described below analyzes H&E images using a learning model to predict metastasis to the lymph nodes. The learning model means a machine learning model. A learning model is meant to include various types of models. For example, a learning model includes a decision tree, a random forest, a K-nearest neighbor (KNN), a Naive Bayes, a support vector machine (SVM), an artificial neural network, and the like.
인공신경망은 생물의 신경망을 모방한 통계학적 학습 알고리즘이다. 다양한 신경망 모델이 연구되고 있다. 최근 딥러닝 신경망(deep learning network, DNN)이 주목받고 있다. DNN은 입력층(input layer)과 출력층(output layer) 사이에 여러 개의 은닉층(hidden layer)들로 이뤄진 인공신경망 모델이다. DNN은 일반적인 인공신경망과 마찬가지로 복잡한 비선형 관계(non-linear relationship)들을 모델링할 수 있다. DNN은 다양한 유형의 모델이 연구되었다. 예컨대, CNN(Convolutional Neural Network), RNN(Recurrent Neural Network), RBM(Restricted Boltzmann Machine), DBN(Deep Belief Network), GAN(Generative Adversarial Network), RL(Relation Networks) 등이 있다. An artificial neural network is a statistical learning algorithm that mimics a biological neural network. Various neural network models are being studied. Recently, deep learning networks (DNNs) are attracting attention. DNN is an artificial neural network model consisting of several hidden layers between an input layer and an output layer. DNNs, like general artificial neural networks, can model complex non-linear relationships. Various types of DNN models have been studied. For example, there are a Convolutional Neural Network (CNN), a Recurrent Neural Network (RNN), a Restricted Boltzmann Machine (RBM), a Deep Belief Network (DBN), a Generative Adversarial Network (GAN), and Relation Networks (RL).
이하 설명하는 기술은 딥러닝 모델을 이용하여 림프절 전이 여부를 예측한다. 구체적인 딥러닝 모델의 구조에 대해서는 후술한다.The technology described below predicts lymph node metastasis using a deep learning model. The structure of a specific deep learning model will be described later.
한편, 검체의 H&E 이미지를 이용하여 림프절 전이 여부를 분석하는 장치를 분석장치라고 명명한다. 분석장치는 데이터 처리가 가능한 장치로서, PC, 스마트기기, 서버 등의 형태일 수 있다.On the other hand, a device that analyzes whether or not metastases to the lymph node using the H&E image of the specimen is called an analysis device. The analysis device is a device capable of processing data and may be in the form of a PC, a smart device, or a server.
도 1은 조기 대장암에 환자에 대한 림프절 전이를 예측하는 시스템(100)에 대한 예이다. 도 1에서 분석장치는 컴퓨터 단말(150) 및 서버(250)인 예를 도시하였다.1 is an example of a system 100 for predicting lymph node metastasis for a patient with early colorectal cancer. 1 illustrates an example in which the analysis device is a computer terminal 150 and a server 250 .
도 1(A)는 사용자(R)가 컴퓨터 단말(150)을 이용하여 림프절 전이를 예측하는 시스템(100)이다. 염색 이미지 생성 장치(110)는 조직 슬라이드에 대한 염색을 하고, 염색된 결과를 스캔하여 염색 이미지(H&E WSI)를 생성하는 장치이다. 또는 염색 이미지 생성 장치(110)는 연구자가 염색한 슬라이드에 대한 H&E WSI를 생성하는 장치이다. 1(A) is a system 100 in which a user R predicts lymph node metastasis using a computer terminal 150. The dyed image generating device 110 is a device for generating a dyed image (H&E WSI) by staining a tissue slide and scanning the stained result. Alternatively, the dyed image generation device 110 is a device that generates H&E WSI for a slide stained by a researcher.
염색 이미지 생성 장치(110)는 유선 또는 무선 네트워크를 통해 컴퓨터 단말(150)에 H&E WSI를 전달한다. 컴퓨터 단말(150)은 H&E WSI를 기준으로 해당 샘플에 대한 림프절 전이 여부를 예측한다. 컴퓨터 단말(150)은 사전에 학습된 딥러닝 모델을 이용하여 림프절 전이 여부를 예측한다. 딥러닝 모델은 H&E WSI를 입력받아 해당 샘플에 대한 림프절 전이 여부에 대한 예측 확률값을 출력하다. 딥러닝 모델에 대해서는 후술한다. 컴퓨터 단말(150)은 분석 결과를 사용자(R)에게 제공한다.The dyed image generating device 110 transmits the H&E WSI to the computer terminal 150 through a wired or wireless network. The computer terminal 150 predicts whether the sample has metastasis to the lymph nodes based on the H&E WSI. The computer terminal 150 predicts metastasis to the lymph nodes using a pre-learned deep learning model. The deep learning model receives the H&E WSI and outputs a predicted probability value for lymph node metastasis for the sample. The deep learning model will be described later. The computer terminal 150 provides the analysis result to the user R.
도 1은 염색 이미지 생성 장치(110)와 컴퓨터 단말(150)을 별개의 객체로 도시하였다. 다만, 염색 이미지 생성 장치(110)와 컴퓨터 단말(150)은 물리적으로 하나의 장치 또는 연결된 장치로 구현될 수도 있다.1 shows the dyed image generating device 110 and the computer terminal 150 as separate objects. However, the dyed image generating device 110 and the computer terminal 150 may be physically implemented as one device or a connected device.
도 1(B)는 사용자가 사용자 단말(270)로 분석 서버(250)에 접속하여 림프절 전이를 예측하는 시스템(200)이다. 1(B) is a system 200 in which a user accesses an analysis server 250 through a user terminal 270 and predicts lymph node metastasis.
염색 이미지 생성 장치(210)는 조직 슬라이드에 대한 염색을 하고, 염색된 결과를 스캔하여 염색 이미지(H&E WSI)를 생성하는 장치이다. 또는 염색 이미지 생성 장치(210)는 연구자가 염색한 슬라이드에 대한 H&E WSI를 생성하는 장치이다. 염색 이미지 생성 장치(210)는 유선 또는 무선 네트워크를 통해 분석 서버(250)에 H&E WSI를 전달한다.The dyed image generation device 210 is a device for generating a dyed image (H&E WSI) by staining a tissue slide and scanning the stained result. Alternatively, the dyed image generation device 210 is a device that generates H&E WSI for a slide stained by a researcher. The dyed image generating device 210 transmits the H&E WSI to the analysis server 250 through a wired or wireless network.
분석 서버(250)는 H&E WSI를 기준으로 해당 샘플에 대한 림프절 전이 여부를 예측한다. 분석 서버(250)는 사전에 학습된 딥러닝 모델을 이용하여 림프절 전이 여부를 예측한다. 딥러닝 모델은 H&E WSI를 입력받아 해당 샘플에 대한 림프절 전이 여부에 대한 예측 확률값을 출력한다. 딥러닝 모델에 대해서는 후술한다.The analysis server 250 predicts whether the sample has metastasis to the lymph nodes based on the H&E WSI. The analysis server 250 predicts whether lymph node metastasis is present using a pre-learned deep learning model. The deep learning model receives the H&E WSI and outputs a predicted probability value for lymph node metastasis for the sample. The deep learning model will be described later.
분석 서버(250)는 분석 결과를 사용자 단말(270)에 전송할 수 있다. 또한, 분석 서버(250)는 분석 결과를 병원의 EMR 시스템(260)에 전송할 수도 있다.The analysis server 250 may transmit the analysis result to the user terminal 270 . In addition, the analysis server 250 may transmit the analysis result to the EMR system 260 of the hospital.
도 2는 조기 대장암의 림프절 전이를 예측하는 딥러닝 모델(300)에 대한 예이다. 딥러닝 모델(300)은 특징 추출 계층(310), 어텐션 계층(attention layer, 320) 및 분류 계층(330)을 포함할 수 있다. 즉, 딥러닝 모델(330)은 어텐션 기반의 CNN 모델이라고 할 수 있다. 2 is an example of a deep learning model 300 for predicting lymph node metastasis of early colorectal cancer. The deep learning model 300 may include a feature extraction layer 310, an attention layer 320, and a classification layer 330. That is, the deep learning model 330 may be referred to as an attention-based CNN model.
분석장치는 특정 환자의 H&E WSI가 입력되면, 해당 H&E WSI의 조직 영역을 분할하여 패치 이미지들을 추출한다. 이하 분할(구분)한 하나의 이미지를 H&E WSI 패치라고 명명한다.When the H&E WSI of a specific patient is input, the analysis device divides the tissue region of the H&E WSI to extract patch images. Hereinafter, one divided (classified) image is called an H&E WSI patch.
분석장치는 H&E WSI 패치들을 각각 딥러닝 모델(300)에 입력하고, 딥러닝 모델(300)은 각 H&E WSI 패치에 대한 분류 결과를 출력한다. 딥러닝 모델(300)은 입력 데이터의 특징을 추출하고, 추출한 특징을 기준으로 림프절 전이 양성(positive) 또는 림프절 전이 음성(negative)이라는 값을 출력한다.The analysis device inputs each H&E WSI patch to the deep learning model 300, and the deep learning model 300 outputs a classification result for each H&E WSI patch. The deep learning model 300 extracts features of the input data and outputs a value of lymph node metastasis positive or lymph node metastasis negative based on the extracted features.
특징 추출 계층(310)은 다양한 형태로 구현될 수 있다. 예컨대, 특징 추출 계층(310)은 다수의 컨볼루션 계층(convolution layer) 및 풀링 계층(pooling layer)을 포함할 수 있다. 특징 추출 계층(310)은 다양한 활성화 함수를 포함할 수 있다. The feature extraction layer 310 may be implemented in various forms. For example, the feature extraction layer 310 may include a plurality of convolution layers and pooling layers. The feature extraction layer 310 may include various activation functions.
특징 추출 계층(310)은 하나의 H&E WSI 패치에 대한 특징 벡터를 출력한다.The feature extraction layer 310 outputs a feature vector for one H&E WSI patch.
어텐션 계층(320)은 특징 벡터를 입력받아 해당 H&E WSI 패치에 대한 어텐션 점수를 부여할 수 있다. 어텐션 계층(320)은 각 H&E WSI 패치에 대하여 림프절 전이 예측에 기여하는 상대적 중요도를 부가한다. 어텐션 점수는 값이 높을수록 림프절 전이 판정에 영향을 많이 준다. The attention layer 320 may receive the feature vector and assign an attention score to the corresponding H&E WSI patch. The attention layer 320 adds a relative importance contributing to the prediction of lymph node metastasis to each H&E WSI patch. The higher the value of the attention score, the more it affects the determination of lymph node metastasis.
분석장치는 전체 H&E WSI 패치들에 대한 특징 벡터들에 대하여 어텐션 점수를 기준으로 가중 평균하여 하나의 H&E WSI에 대한 특징 벡터를 산출할 수 있다. 이후 분석장치는 전체 H&E WSI에 대한 특징 벡터를 분류 계층(330)에 입력할 수 있다.The analysis device may calculate a feature vector for one H&E WSI by performing a weighted average on the feature vectors of all H&E WSI patches based on the attention score. Then, the analysis device may input feature vectors for the entire H&E WSI to the classification layer 330.
H&E WSI의 K개 패치에 대한 특징 벡터를 H = {h1,...,hk)라고 정의한다. K는 각 H&E WSI마다 다른 값일 수 있다. H&E WSI 특징값 hwsi는 아래 수학식 1과 같이 표현될 수 있다.A feature vector for K patches of H&E WSI is defined as H = {h 1 ,...,h k ). K may be a different value for each H&E WSI. The H&E WSI feature value h wsi can be expressed as in Equation 1 below.
Figure PCTKR2022007967-appb-img-000001
Figure PCTKR2022007967-appb-img-000001
Figure PCTKR2022007967-appb-img-000002
Figure PCTKR2022007967-appb-img-000002
α는 어텐션 계층(320)에서 H&E WSI 패치의 특징에 부여하는 가중치이다. α가 전술한 어텐션 점수에 해당한다. α는 0 ~ 1 사이의 값을 갖는다. 모든 H&E WSI 패치들에 대한 가중치들의 합은 1이다. α is a weight given to the feature of the H&E WSI patch in the attention layer 320. α corresponds to the aforementioned attention score. α has a value between 0 and 1. The sum of the weights for all H&E WSI patches is 1.
W ∈ RL×1 및 V ∈ RL×M는 어텐션 계층(320)의 파라미터들이다. M은 각 H&E WSI 패치의 특징 벡터의 차원 길이이고, L는 M의 절반으로 설정될 수 있다. tanh(hyperbolic tangent)는 활성화 함수이다. tanh는 특징 벡터에 대한 비선형적 정보를 제공하며, tanh는 H&E WSI에서 패치들 간의 유사도 및 비유사도를 검출하기 위하여 특징 벡터를 -1 ~ 1 사이의 값으로 스케일한다. W ∈ R L×1 and V ∈ R L×M are parameters of the attention layer 320 . M is the dimensional length of the feature vector of each H&E WSI patch, and L may be set to half of M. tanh (hyperbolic tangent) is the activation function. tanh provides non-linear information about the feature vector, and tanh scales the feature vector to a value between -1 and 1 in order to detect similarities and dissimilarity between patches in H&E WSI.
어텐션 계층(320)은 두 개의 FN(전연결 계층)으로 구성될 수 있다. 첫 번째 FN은 tanh 활성화 함수를 갖고, 두 번째 FN은 softmax 함수를 가질 수 있다. 최종적으로 어텐션 계층(320)은 수학식 1과 같이 입력되는 모든 패치 특징 벡터 hk에 대한 어텐션 기반 풀링을 수행하여 하나의 WSI에 대한 평균 WSI 특징 hwsi를 출력한다.The attention layer 320 may be composed of two fully connected layers (FNs). The first FN may have a tanh activation function, and the second FN may have a softmax function. Finally, the attention layer 320 performs attention-based pooling on all input patch feature vectors h k as shown in Equation 1, and outputs an average WSI feature h wsi for one WSI.
분류 계층(330)은 다양한 형태로 구현될 수 있다. 예컨대, 분류 계층(330)은 일반적인 CNN에서 많이 사용하는 FN(Fully connected network)을 포함할 수 있다. 분류 계층(330)은 다양한 활성화 함수를 포함할 수 있다. 또한, 분류 계층(330)은 최종적인 분류를 위한 분류함수(예컨대, softmax)를 포함할 수 있다. 분류 계층(330)은 전체 H&E WSI에 대한 특징 벡터를 입력받아 해당 샘플에 대한 림프절 전이 여부에 대한 예측 확률값을 출력할 수 있다.The classification layer 330 may be implemented in various forms. For example, the classification layer 330 may include a fully connected network (FN) widely used in general CNNs. The classification layer 330 may include various activation functions. Also, the classification layer 330 may include a classification function (eg, softmax) for final classification. The classification layer 330 may receive a feature vector for the entire H&E WSI and output a predicted probability value for lymph node metastasis for a corresponding sample.
이하 딥러닝 모델(300)을 학습하는 과정을 설명한다. 연구자가 딥러닝 모델을 구축한 과정을 중심으로 설명한다. Hereinafter, a process of learning the deep learning model 300 will be described. The researcher explains the process of building a deep learning model.
도 3은 딥러닝 모델의 학습 과정(400)에 대한 예이다. 딥러닝 모델의 학습은 연구자 또는 개발자는 PC, 서버 등과 같은 컴퓨터 장치를 이용하여 딥러닝 모델을 학습한다. 따라서, 이하 컴퓨터 장치가 딥러닝 모델의 학습 과정을 수행한다고 설명한다.3 is an example of a learning process 400 of a deep learning model. For deep learning model learning, a researcher or developer learns a deep learning model using a computer device such as a PC or server. Therefore, it will be described below that the computer device performs the learning process of the deep learning model.
도 2의 딥러닝 모델(300)은 두 단계의 학습 과정을 통해 마련되었다. 첫 번째 학습 과정 (A)에서 컴퓨터 장치는 딥러닝 모델(300) 중 특징 추출 계층(310)을 마련하였다. 이후 두 번째 학습 과정 (B)에서 컴퓨터 장치는 첫 번째 학습 과정에서 마련한 특징 추출 계층(310)을 포함하는 전체 딥러닝 모델(300)을 마련하였다.The deep learning model 300 of FIG. 2 was prepared through a two-step learning process. In the first learning process (A), the computer device prepares the feature extraction layer 310 of the deep learning model 300. Then, in the second learning process (B), the computer device prepares the entire deep learning model 300 including the feature extraction layer 310 prepared in the first learning process.
첫 번째 학습 과정 (A)은 패치(patch) 레벨의 입력 영상에 대한 특징을 추출하여 분류하는 CNN 기반의 제1 모델을 학습하는 과정이다. CNN 기반 제1 모델은 특징을 추출하는 특징 추출 계층(a)과 추출된 특징을 기준으로 분류하는 분류 계층(b)로 구분될 수 있다. 특징 추출 계층(a)는 다양한 형태로 구현될 수 있다. 예컨대, 특징 추출 계층(a)은 다수의 컨볼루션 계층 및 풀링 계층을 포함할 수 있다. 특징 추출 계층(a)은 다양한 활성화 함수를 포함할 수 있다. 분류 계층(b)도 다양한 형태로 구현될 수 있다. 예컨대, 분류 계층(b)은 일반적인 CNN에서 많이 사용하는 FN을 포함할 수 있다. 분류 계층(b)도 다양한 활성화 함수를 포함할 수 있다. 또한, 분류 계층(b)은 최종적인 분류를 위한 분류함수(예컨대, softmax)를 포함할 수 있다.The first learning process (A) is a process of learning a CNN-based first model that extracts and classifies features of a patch-level input image. The CNN-based first model can be divided into a feature extraction layer (a) for extracting features and a classification layer (b) for classifying based on the extracted features. The feature extraction layer (a) may be implemented in various forms. For example, the feature extraction layer (a) may include a plurality of convolution layers and pooling layers. The feature extraction layer (a) may include various activation functions. The classification layer (b) may also be implemented in various forms. For example, the classification layer (b) may include FNs widely used in general CNNs. The classification layer (b) may also include various activation functions. Also, the classification layer (b) may include a classification function (eg, softmax) for final classification.
연구자는 ResNet 18 구조를 갖는 제1 모델을 선택하였다. 패치들은 모든 H&E WSI들에서 5배 확대된 256×152 크기(2㎛/pixel)의 조직 영역에서 중복되지 않게 추출하였다. 조직 영역은 그레이 스케일 컬러 공간에서 70% 이상의 픽셀값들이 200 미만의 값을 갖는 경우로 정의하였다.The researcher chose the first model with the ResNet 18 structure. Patches were extracted from non-overlapping tissue regions with a size of 256 × 152 (2 μm/pixel) magnified 5 times in all H&E WSIs. A tissue region was defined as a case where more than 70% of pixel values had values less than 200 in the gray scale color space.
연구자는 사전에 양성군에 대한 H&E WSI(positive WSI)들을 마련하였다(410). 양성군은 내시경적 절제술을 받고 검체 검사 결과 림프절 전이로 확인된 환자군을 의미한다. The researcher prepared H&E WSI (positive WSI) for the positive group in advance (410). The positive group refers to patients who underwent endoscopic resection and were confirmed to have lymph node metastasis as a result of the sample test.
또한, 연구자는 음성군에 대한 H&E WSI(negatiive WSI)들을 마련하였다(420). 음성군은 내시경적 절제술을 받았지만 림프절 전이가 확인되지 않은 환자군을 의미한다.In addition, the researcher prepared H&E WSI (negative WSI) for the negative group (420). The negative group refers to patients who underwent endoscopic resection but no lymph node metastasis was confirmed.
한편, 연구자는 학습 데이터(검체에 대한 H&E WSI들)는 다음과 같은 과정으로 마련하였다.On the other hand, the researcher prepared learning data (H&E WSIs for the specimen) in the following process.
검체 데이터는 2010년 ~ 2018년 동안 삼성 서울 병원에서 내시경 점막 절제술(endoscopic mucosal resection, EMR) 또는 내시경 점막 박리술(endoscopic submucosal dissection, ESD)을 받은 후 3개월 내에 추가적인 외과 수술을 받은 691명의 환자들의 데이터를 이용하였다. 연구자는 H&E 이미지의 해석이 명확하지 않은 환자들, 림프절 절개를 하지 않은 환자들 또는 동시성 침윤(synchronous invasive carcinoma)을 보이는 환자들은 검체 데이터에서 배제하였다. 이 과정을 통해 연구자는 최종적으로 400명의 환자 데이터를 추출하였다. 실제 학습 데이터는 H&E WSI가 사용되는데 400명에 대하여 430개의 H&E WSI를 마련하였다. 430개의 H&E WSI 중 림프절 전이 양성은 82개였고, 림프절 전이 음성은 348개였다. 430개의 H&E WSI를 임의로 선택하여 4:1 비율로 각각 훈련 데이터 및 검증 데이터를 마련하였다.Specimen data are data of 691 patients who underwent additional surgery within 3 months after endoscopic mucosal resection (EMR) or endoscopic submucosal dissection (ESD) at Samsung Seoul Hospital between 2010 and 2018. was used. The researcher excluded patients whose interpretation of H&E images was not clear, patients who had not undergone lymph node dissection, or patients with synchronous invasive carcinoma from the sample data. Through this process, the researcher finally extracted the data of 400 patients. For actual learning data, H&E WSI is used, and 430 H&E WSI were prepared for 400 people. Of the 430 H&E WSIs, 82 were positive for lymph node metastasis and 348 were negative for lymph node metastasis. 430 H&E WSIs were randomly selected and training data and verification data were prepared at a 4:1 ratio, respectively.
연구자는 환자의 H&E 이미지만을 이용하였고, 해당 환자에 대한 추가적인 임상 정보(연령, 성별, 가족력, 흡연 여부, 종양의 형태, 종양 위치 등)는 학습데이터로 사용하지 않았다. The researcher used only the patient's H&E image, and did not use additional clinical information (age, gender, family history, smoking status, tumor type, tumor location, etc.) of the patient as learning data.
내시경적 절제술로 취득한 검체는 포름 알데히드에 고정하고, 파라핀 블록을 만들었다. 슬라이드를 H&E 염색한 후 H&E WSI는 VENTANA iScan HT 스캐너(20배율 사용)를 사용하여 획득하였다. 연구자는 획득한 H&E WSI 중 병리학적으로 명확한 정보를 전달하는 이미지만을 학습 데이터로 선별하였다.Specimens obtained by endoscopic resection were fixed in formaldehyde and paraffin blocks were made. After H&E staining of the slides, H&E WSI was acquired using a VENTANA iScan HT scanner (using 20x magnification). The researcher selected only images that convey pathologically clear information among the acquired H&E WSI as learning data.
컴퓨터 장치는 양성군 H&E WSI 및 음성군 H&E WSI에 대하여 각각 패치 단위로 구분하여 입력 데이터 그룹을 생성하였다(430). 컴퓨터 장치는 학습에 유리하도록 학습용 H&E WSI 패치의 크기, 방향, 색상을 일정하게 전처리할 수 있다.The computer device generates an input data group by dividing the positive group H&E WSI and the negative group H&E WSI into patch units, respectively (430). The computer device may pre-process the size, direction, and color of the H&E WSI patch for learning to be advantageous for learning.
각 학습 데이터는 패치 단위 영상 및 해당 영상의 환자에 대한 임상적 결과(림프절 전이 여부)에 대한 정보로 구성될 수 있다. 림프절 전이 여부는 전이 양성 경우 1로 라벨링하고, 전이 음성인 경우 0으로 라벨링하였다.Each learning data may be composed of patch unit images and information on the clinical results (whether or not metastases to the lymph nodes) of the patient of the corresponding images. Lymph node metastasis was labeled as 1 if metastasis positive, and as 0 if metastasis negative.
컴퓨터 장치는 패치 단위 H&E WSI를 CNN 기반 제1 모델에 입력하여 입력된 H&E WSI을 분류한다. 제1 모델은 입력 데이터의 특징을 추출하고, 추출한 특징을 기준으로 림프절 전이 양성(positive)이라는 값 또는 림프절 전이 음성(negative)이라는 값을 출력한다. 제1 모델은 림프절 전이 예측 결과에 해당하는 0 ~ 1 사이의 값을 출력한다. The computer device classifies the input H&E WSI by inputting the patch unit H&E WSI to the CNN-based first model. The first model extracts features of the input data and outputs a value of positive lymph node metastasis or a value of negative lymph node metastasis based on the extracted features. The first model outputs a value between 0 and 1 corresponding to the prediction result of lymph node metastasis.
컴퓨터 장치는 현재 입력된 H&E WSI 패치에 대한 라벨값과 현재 제1 모델이 출력한 값을 비교하여 출력값이 잘못된 경우 제1 모델의 파라미터를 조절한다. 컴퓨터 장치는 다수의 학습 데이터에 대하여 이와 같은 과정을 반복하면서 모델의 파라미터를 최적화한다(440). 연구자는 RAdam 최적기(optimizer)를 사용하여 학습율 0.0001로 크로스 엔트로피 손실을 최소화하는 학습을 수행하였다. The computer device compares the label value of the currently input H&E WSI patch with the value currently output by the first model, and adjusts the parameter of the first model if the output value is incorrect. The computer device optimizes the parameters of the model while repeating this process for a plurality of training data (440). The researcher performed learning to minimize cross entropy loss with a learning rate of 0.0001 using the RAdam optimizer.
학습 과정 (B)는 어텐션 기반 제2 모델을 학습하는 과정이다. 제2 모델은 전술한 딥러닝 모델(300)에 대응된다. 제2 모델은 특징 추출 계층(310), 어텐션 계층(320) 및 분류 계층(330)을 포함한다. 학습 과정 (B)에서 특징 추출 계층(310)은 학습 단계 (A)에서 학습이 완료된 특징 추출 계층 (a)을 가져와 사용한다. The learning process (B) is a process of learning the second model based on attention. The second model corresponds to the deep learning model 300 described above. The second model includes a feature extraction layer 310, an attention layer 320, and a classification layer 330. In the learning process (B), the feature extraction layer 310 imports and uses the feature extraction layer (a) that has been learned in the learning process (A).
즉, 컴퓨터 장치는 학습 과정 (A)에서 학습된 ResNet 18에서 분류 계층(FN)을 제거하고 남은 학습된 특징 추출 계층(a = 310)과 새로운 어텐션 계층(320) 및 분류 계층(330)을 연결하여 제2 모델을 구성한다. That is, the computer device removes the classification layer (FN) from the ResNet 18 learned in the learning process (A) and connects the remaining learned feature extraction layer (a = 310) with the new attention layer 320 and classification layer 330 to construct the second model.
컴퓨터 장치는 학습용 H&E WSI 패치를 제2 모델에 입력한다. 한편, 연구자는 각 H&E WSI 패치에 대하여 512 차원의 특징 벡터를 출력하는 특징 추출 계층(310)을 이용하였다. 이를 기준으로 설명한다. 특징 추출 계층(310)이 출력하는 특징 벡터는 어텐션 계층(320)에 입력된다. 어텐션 계층(320)은 WSI 특징 hwsi ∈ R512 및 연결된(concatenated) 11 차원의 임상 특징을 출력할 수 있다. 분류 계층(330)은 각각 512 채널들 및 256 채널들로 어텐션 계층(320)이 출력하는 WSI 특징 및 임상 특징을 입력받아 최종 이진 분류 결과를 출력할 수 있다. 컴퓨터 장치는 학습용 H&E WSI 패치 들을 제2 모델에 입력하여 출력되는 결과를 기준으로 모델의 파라미터를 최적화하는 과정을 반복한다(450). The computer device inputs the H&E WSI patch for training to the second model. Meanwhile, the researcher used a feature extraction layer 310 that outputs a 512-dimensional feature vector for each H&E WSI patch. Based on this, it is explained. The feature vector output from the feature extraction layer 310 is input to the attention layer 320. The attention layer 320 may output WSI features h wsi ∈ R 512 and concatenated 11-dimensional clinical features. The classification layer 330 may output the final binary classification result by receiving WSI features and clinical features output from the attention layer 320 through 512 channels and 256 channels, respectively. The computer device repeats the process of optimizing the parameters of the model based on the output result of inputting the training H&E WSI patches to the second model (450).
연구자는 RAdam 최적기를 사용하여 학습율 0.0001로 크로스 엔트로피 손실을 최소화하는 방향으로 어텐션 기반 제2 모델을 학습하였다. The researcher trained the second attention-based model in the direction of minimizing the cross-entropy loss with a learning rate of 0.0001 using the RAdam optimizer.
학습 과정 (B)에서 컴퓨터 장치는 제2 모델 중 학습 과정 (A)에서 학습된 특징 추출 계층(310)을 제외하고, 나머지 어텐션 계층(320) 및 분류 계층(330)만을 학습 대상으로 삼을 수 있다. 또는 학습 과정 (B)에서 컴퓨터 장치는 특징 추출 계층(310)을 포함하는 전체 계층들을 학습 대상으로 삼아 파라미터를 최적화할 수도 있다.In the learning process (B), the computer device may set only the remaining attention layer 320 and the classification layer 330 as learning targets, excluding the feature extraction layer 310 learned in the learning process (A) among the second models. have. Alternatively, in the learning process (B), the computer device may optimize parameters by taking all layers including the feature extraction layer 310 as learning targets.
도 4는 분석장치(500)에 대한 예이다. 분석장치(500)는 전술한 분석장치(도 1의 150 및 250)에 해당한다. 분석장치(500)는 물리적으로 다양한 형태로 구현될 수 있다. 예컨대, 분석장치(500)는 PC와 같은 컴퓨터 장치, 네트워크의 서버, 데이터 처리 전용 칩셋 등의 형태를 가질 수 있다.4 is an example of the analysis device 500. The analysis device 500 corresponds to the above-described analysis devices ( 150 and 250 in FIG. 1 ). The analysis device 500 may be physically implemented in various forms. For example, the analysis device 500 may have a form of a computer device such as a PC, a network server, and a data processing dedicated chipset.
분석장치(500)는 저장장치(510), 메모리(520), 연산장치(530), 인터페이스 장치(540), 통신장치(550) 및 출력장치(560)를 포함할 수 있다.The analysis device 500 may include a storage device 510, a memory 520, an arithmetic device 530, an interface device 540, a communication device 550, and an output device 560.
저장장치(510)는 대장암 환자의 H&E WSI를 기준으로 림프절 전이 여부를 예측하는 딥러닝 모델을 저장할 수 있다. The storage device 510 may store a deep learning model for predicting lymph node metastasis based on the H&E WSI of a colorectal cancer patient.
저장장치(510)는 입력되는 H&E WSI를 저장할 수 있다.The storage device 510 may store the input H&E WSI.
저장장치(510)는 입력되는 H&E WSI를 패치 단위로 처리한 이미지들을 저장할 수 있다.The storage device 510 may store images obtained by processing input H&E WSI in patch units.
저장장치(510)는 이미지 처리를 위한 다른 프로그램 내지 코드를 저장할 수 있다. The storage device 510 may store other programs or codes for image processing.
또한, 저장장치(510)는 전술한 바와 같은 과정으로 림프절 전이 여부를 예측하는 과정에 대한 명령어 내지 프로그램 코드를 저장할 수 있다. In addition, the storage device 510 may store instructions or program codes for a process of predicting metastasis to a lymph node through the process described above.
저장장치(510)는 분석 결과를 저장할 수 있다.The storage device 510 may store analysis results.
메모리(520)는 분석장치(500)가 림프절 전이 여부를 예측하는 과정에서 생성되는 데이터 및 정보 등을 저장할 수 있다.The memory 520 may store data and information generated in the course of the analysis device 500 predicting metastasis to a lymph node.
인터페이스 장치(540)는 외부로부터 일정한 명령 및 데이터를 입력받는 장치이다. 인터페이스 장치(540)는 물리적으로 연결된 입력 장치 또는 외부 저장장치로부터 분석 대상의 H&E WSI를 입력받을 수 있다. The interface device 540 is a device that receives certain commands and data from the outside. The interface device 540 may receive the H&E WSI of the analysis target from a physically connected input device or an external storage device.
통신장치(550)는 유선 또는 무선 네트워크를 통해 일정한 정보를 수신하고 전송하는 구성을 의미한다. 통신장치(550)는 외부 객체로부터 분석 대상의 H&E WSI를 수신할 수 있다. 또는 통신장치(550)는 분석 결과를 사용자 단말과 같은 외부 객체에 송신할 수도 있다.The communication device 550 refers to a component that receives and transmits certain information through a wired or wireless network. The communication device 550 may receive the H&E WSI of the analysis target from the external object. Alternatively, the communication device 550 may transmit the analysis result to an external object such as a user terminal.
인터페이스 장치(540) 및 통신장치(550)는 사용자 또는 다른 물리적 객체로부터 일정한 정보 및 이미지를 입력받는 구성이므로, 포괄적으로 입력장치라고도 명명할 수 있다. 또는 입력 장치는 통신 장치(550)에서 수신되는 H&E WSI나 요청을 분석장치(500) 내부에 전달하는 경로의 인터페이스를 의미할 수도 있다. Since the interface device 540 and the communication device 550 are configured to receive certain information and images from a user or other physical object, they can also be collectively referred to as input devices. Alternatively, the input device may mean an interface of a path that transfers the H&E WSI or request received from the communication device 550 to the inside of the analysis device 500.
출력장치(560)는 일정한 정보를 출력하는 장치이다. 출력장치(560)는 데이터 처리 과정에 필요한 인터페이스, 분석 결과 등을 출력할 수 있다. The output device 560 is a device that outputs certain information. The output device 560 may output interfaces and analysis results necessary for data processing.
연산 장치(530)는 저장장치(510)에 저장된 명령어 내지 프로그램 코드를 이용하여 분석 대상에 대한 림프절 전이 여부를 예측할 수 있다.The arithmetic device 530 may predict metastasis to the lymph node for the analysis target using instructions or program codes stored in the storage device 510 .
연산 장치(530)는 저장장치(510)에 저장된 딥러닝 모델을 이용하여 림프절 전이 여부를 예측할 수 있다.The arithmetic device 530 may predict metastasis to a lymph node using a deep learning model stored in the storage device 510 .
연산 장치(530)는 H&E WSI 패치들이 입력되는 딥러닝 모델의 출력값을 기준으로 림프절 전이 여부를 예측할 수 있다.The computing device 530 may predict whether metastases to the lymph nodes based on output values of the deep learning model to which the H&E WSI patches are input.
연산 장치(530)는 H&E WSI를 복수의 H&E WSI 패치들로 구분할 수 있다.The computing device 530 may divide the H&E WSI into a plurality of H&E WSI patches.
연산 장치(530)는 구분(분할)한 복수의 H&E WSI 패치들에 대하여 일정한 영상 처리를 수행할 수 있다.The arithmetic device 530 may perform certain image processing on the plurality of H&E WSI patches classified (divided).
연산 장치(530)는 딥러닝 모델의 어텐션 계층이 H&E WSI 패치들 각각에 대하여 가중치를 부여한 특징들을 취합하여 전체 H&E WSI에 대한 특징을 산출할 수 있다.The computing device 530 may calculate features for the entire H&E WSI by collecting features weighted for each of the H&E WSI patches by the attention layer of the deep learning model.
연산 장치(530)는 전체 H&E WSI에 대한 특징을 분류 계층에 전달하여 최종적인 림프절 전이 여부에 대한 예측값을 얻을 수 있다.The computing device 530 may transfer the characteristics of the entire H&E WSI to the classification layer to obtain a final prediction value for metastasis to the lymph nodes.
연산 장치(530)는 데이터를 처리하고, 일정한 연산을 처리하는 프로세서, AP, 프로그램이 임베디드된 칩과 같은 장치일 수 있다.The arithmetic device 530 may be a device such as a processor, an AP, or a chip in which a program is embedded that processes data and performs certain arithmetic operations.
이하 전술한 딥러닝 모델을 이용한 조기 대장암에 환자에 대한 림프절 전이 예측 효과에 대하여 설명한다. 연구자는 학습 데이터를 마련하는 과정에서 검증용 데이터를 마련하였고, 검증 데이터를 이용하여 학습된 모델의 효과를 실험하였다.Hereinafter, the effect of predicting lymph node metastasis in patients with early colorectal cancer using the aforementioned deep learning model will be described. The researcher prepared data for verification in the process of preparing learning data, and tested the effect of the learned model using the verification data.
아래 표 1은 도 4와 함께 학습 과정에 설명한 전체 검체(환자)에 대한 정보이다.Table 1 below is information on all specimens (patients) described in the learning process together with FIG. 4 .
TotalTotal
(n=400)(n=400)
Negative LN metastasisNegative LN metastasis
(n=329)(n=329)
Positive LN metastasis Positive LN metastasis
(N=71)(N=71)
p valuep value
Age at diagnosisAge at diagnosis Year (IQR)Year (IQR) 59.0 (52.0-65.0)59.0 (52.0-65.0) 59.0 (52.0-65.0)59.0 (52.0-65.0) 60.0 (52.0-68.0)60.0 (52.0-68.0) 0.3370.337
GenderGender Male (%)
Female (%)
Male (%)
Female (%)
239
161
239
161
193 (58.7)
136 (41.3)
193 (58.7)
136 (41.3)
46 (64.8)
25 (35.2)
46 (64.8)
25 (35.2)
0.3540.354
Body mass indexBody mass index Kg/m2 (IQR)Kg/m 2 (IQR) 24.1 (22.2-26.3)24.1 (22.2-26.3) 23.9 (22.0-26.1)23.9 (22.0-26.1) 24.8 (23.3-27.4)24.8 (23.3-27.4) 0.0060.006
Presence Presence
of comorbidityof comorbidity
No (%)
Yes (%)
No (%)
Yes (%)
253
147
253
147
217 (66.0)
112 (34.0)
217 (66.0)
112 (34.0)
36 (50.7)
35 (49.3)
36 (50.7)
35 (49.3)
0.0210.021
Family history Family history
of CRCof CRC
No (%)
yes (%)
No (%)
yes (%)
345
55
345
55
294 (86.3)
45 (13.7)
294 (86.3)
45 (13.7)
61 (85.9)
10 (14.1)
61 (85.9)
10 (14.1)
1.0001.000
Smoking statusSmoking status No (%)
Ex-smoker (%)
Yes (%)
No (%)
Ex-smoker (%)
Yes (%)
257
69
74
257
69
74
214 (65.0)
59 (17.9)
56 (17.0)
214 (65.0)
59 (17.9)
56 (17.0)
43 (60.6)
10 (14.1)
18 (25.4)
43 (60.6)
10 (14.1)
18 (25.4)
0.2380.238
Alcohol consumptionAlcohol consumption No (%)
Ex-drinker (%)
Yes (%)
No (%)
Ex-drinker (%)
Yes (%)
223
141
36
223
141
36
192 (58.4)
110 (33.4)
27 (8.2)
192 (58.4)
110 (33.4)
27 (8.2)
31 (43.7)
31 (43.7)
9 (12.7)
31 (43.7)
31 (43.7)
9 (12.7)
0.0710.071
Endoscopic morphology Endoscopic morphology
of tumorof tumor
Sessile (%)
Semi-pedunculated(%)

Pedunculated (%)
Sessile (%)
Semi-pedunculated (%)

Pedunculated (%)
48
316


36
48
316


36
38 (11.6)
264 (80.2)


27 (8.2)
38 (11.6)
264 (80.2)


27 (8.2)
10 (14.1)
52 (73.2)


9 (12.7)
10 (14.1)
52 (73.2)


9 (12.7)
0.3730.373
Tumor locationTumor location Left side (%)
Right side (%)
Left side (%)
Right side (%)
291
109
291
109
241 (73.3)
88 (26.7)
241 (73.3)
88 (26.7)
50 (70.4)
21 (29.6)
50 (70.4)
21 (29.6)
0.6600.660
연구자는 전체 691명의 조기 대장암 환자 중 291명을 제외한 400명의 데이터를 기준으로 모델 구축을 위한 데이터를 마련하였다. 400명의 환자에 대하여 430개의 H&E WSI를 마련하였다. 430개의 H&E WSI 중 림프절 전이 양성은 82개였고, 림프절 전이 음성은 348개였다. 430개의 H&E WSI를 임의로 선택하여 4:1 비율로 각각 훈련 데이터 및 검증 데이터를 마련하였다. 학습 데이터는 림프절 전이를 갖는 57명의 데이터 및 림프절 전이 없는 263명의 데이터로 구성되었다. 검증 데이터는 림프절 전이를 갖는 14명의 데이터 및 림프절 전이 없는 66명의 데이터로 구성되었다.연구자는 다양한 경우의 모델을 구성하여 검증을 수행하였다. 검증 결과는 아래 표 2와 같다. 표 2의 값은 AUC(area under the ROC)이다.The researcher prepared data for model construction based on the data of 400 patients, excluding 291 patients out of a total of 691 patients with early colorectal cancer. For 400 patients, 430 H&E WSIs were prepared. Of the 430 H&E WSIs, 82 were positive for lymph node metastasis and 348 were negative for lymph node metastasis. 430 H&E WSIs were randomly selected and training data and verification data were prepared at a 4:1 ratio, respectively. The training data consisted of data from 57 patients with lymph node metastasis and data from 263 patients without lymph node metastasis. The verification data consisted of data from 14 patients with lymph node metastasis and data from 66 patients without lymph node metastasis. The researcher constructed models for various cases and performed verification. The verification results are shown in Table 2 below. The values in Table 2 are AUC (area under the ROC).
Cross-validationCross-validation
on train Seton train Set
Only Clinical FeaturesOnly Clinical Features Only Step-1 AloneOnly Step-1 Alone Step-2 with Clinical FeaturesStep-2 with Clinical Features Step-2 without Clinical FeaturesStep-2 without Clinical Features
1One 0.6120.612 0.7830.783 0.7580.758 0.7720.772
22 0.4550.455 0.7450.745 0.7860.786 0.7810.781
33 0.6850.685 0.6760.676 0.6850.685 0.6830.683
44 0.4410.441 0.6940.694 0.7640.764 0.7800.780
55 0.6110.611 0.6630.663 0.7190.719 0.7240.724
Average of five-foldsAverage of five-folds 0.5610.561 0.7120.712 0.7420.742 0.7470.747
Test setTest set 0.3670.367 0.7050.705 0.7550.755 0.7640.764
5번의 평균을 기준으로 살펴보면, H&E WSI를 이용하지 않고 환자의 임상 정보만을 이용한 경우(only clinical features)는 AUC가 0.561이다. H&E WSI를 기준으로 어텐션 없는 딥러닝 모델을 이용하는 경우(only step 1 alone)는 AUC가 0.705이다. 환자의 임상 정보와 H&E WSI를 이용하는 어텐션 기반 딥러닝 모델(Step 2 with Clinical Feature)은 AUC가 0.742이다. 환자의 임상 정보 없이 H&E WSI만을 이용하는 어텐션 기반 딥러닝 모델(Step 2 without Clinical Feature)은 AUC가 0.747이다. 결국, 도 3에서 설명한 어텐션 기반 딥러닝 모델에 H&E WSI만을 이용하는 경우 가장 성능이 우수하다고 할 수 있다. 따라서, 전술한 딥러닝 모델은 환자의 임상 정보 없이 H&E WSI만을 이용하여도 충분히 조기 대장암 환자의 림프절 전이를 예측한다고 할 수 있다.도 5는 딥러닝 모델의 AUC 결과이다. 도 5는 H&E WSI만을 이용하는 어텐션 기반 딥러닝 모델의 성능이다. 도 5를 살펴보면 검증 데이터에 대하여 5 폴드(fold) 크로스 검증한 결과 평균 AUC가 0.747이 나왔다. 또한, 각 폴드에서 만들어진 모델들을 앙상블 시켜 검증 데이터에 실험한 결과 AUC 0.764가 나왔다. 또한, 실제 임상적용에서는 위음성(false negative)을 용납할 수 없으므로, 100% 민감도(sensitivity)를 보장하는 경우 훈련 데이터에 대한 특이도(specificity)는 28.1%이고, 검증 데이터에 대한 특이도는 45.1%이 었다.Based on the average of 5 trials, the case of using only clinical information of patients without using H&E WSI (only clinical features) has AUC of 0.561. In the case of using the deep learning model without attention based on the H&E WSI (only step 1 alone), the AUC is 0.705. The attention-based deep learning model (Step 2 with Clinical Feature) using the patient's clinical information and H&E WSI has an AUC of 0.742. The attention-based deep learning model (Step 2 without Clinical Feature) using only the H&E WSI without the patient's clinical information has an AUC of 0.747. As a result, it can be said that the performance is the best when only the H&E WSI is used for the attention-based deep learning model described in FIG. 3 . Therefore, the above-described deep learning model can be said to sufficiently predict lymph node metastasis in early colorectal cancer patients using only the H&E WSI without clinical information of the patient. FIG. 5 shows the AUC results of the deep learning model. 5 is the performance of an attention-based deep learning model using only H&E WSI. Referring to FIG. 5 , the average AUC was 0.747 as a result of 5-fold cross verification on the verification data. In addition, as a result of ensembling the models created in each fold and experimenting on the verification data, AUC was 0.764. In addition, since false negatives cannot be tolerated in actual clinical applications, when 100% sensitivity is guaranteed, the specificity for the training data is 28.1% and the specificity for the validation data is 45.1%. was
또한, 상술한 바와 같은 의료 영상 분석 방법, 대장암의 림프절 전이 예측 방법은 컴퓨터에서 실행될 수 있는 실행가능한 알고리즘을 포함하는 프로그램(또는 어플리케이션)으로 구현될 수 있다. 상기 프로그램은 일시적 또는 비일시적 판독 가능 매체(non-transitory computer readable medium)에 저장되어 제공될 수 있다.In addition, the above-described method for analyzing medical images and predicting lymph node metastasis of colorectal cancer may be implemented as a program (or application) including an executable algorithm that can be executed on a computer. The program may be stored and provided in a temporary or non-transitory computer readable medium.
비일시적 판독 가능 매체란 레지스터, 캐쉬, 메모리 등과 같이 짧은 순간 동안 데이터를 저장하는 매체가 아니라 반영구적으로 데이터를 저장하며, 기기에 의해 판독(reading)이 가능한 매체를 의미한다. 구체적으로는, 상술한 다양한 어플리케이션 또는 프로그램들은 CD, DVD, 하드 디스크, 블루레이 디스크, USB, 메모리카드, ROM (read-only memory), PROM (programmable read only memory), EPROM(Erasable PROM, EPROM) 또는 EEPROM(Electrically EPROM) 또는 플래시 메모리 등과 같은 비일시적 판독 가능 매체에 저장되어 제공될 수 있다.A non-transitory readable medium is not a medium that stores data for a short moment, such as a register, cache, or memory, but a medium that stores data semi-permanently and can be read by a device. Specifically, the various applications or programs described above are CD, DVD, hard disk, Blu-ray disk, USB, memory card, ROM (read-only memory), PROM (programmable read only memory), EPROM (Erasable PROM, EPROM) Alternatively, it may be stored and provided in a non-transitory readable medium such as EEPROM (Electrically EPROM) or flash memory.
일시적 판독 가능 매체는 스태틱 램(Static RAM,SRAM), 다이내믹 램(Dynamic RAM,DRAM), 싱크로너스 디램 (Synchronous DRAM,SDRAM), 2배속 SDRAM(Double Data Rate SDRAM,DDR SDRAM), 증강형 SDRAM(Enhanced SDRAM,ESDRAM), 동기화 DRAM(Synclink DRAM,SLDRAM) 및 직접 램버스 램(Direct Rambus RAM,DRRAM) 과 같은 다양한 RAM을 의미한다.Temporary readable media include static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM), and enhanced SDRAM (Enhanced SDRAM). SDRAM, ESDRAM), Synchronous DRAM (Synclink DRAM, SLDRAM) and Direct Rambus RAM (DRRAM).
본 실시례 및 본 명세서에 첨부된 도면은 전술한 기술에 포함되는 기술적 사상의 일부를 명확하게 나타내고 있는 것에 불과하며, 전술한 기술의 명세서 및 도면에 포함된 기술적 사상의 범위 내에서 당업자가 용이하게 유추할 수 있는 변형 예와 구체적인 실시례는 모두 전술한 기술의 권리범위에 포함되는 것이 자명하다고 할 것이다.This embodiment and the drawings accompanying this specification clearly represent only a part of the technical idea included in the foregoing technology, and those skilled in the art can easily understand it within the scope of the technical idea included in the specification and drawings of the above technology. It will be obvious that all variations and specific examples that can be inferred are included in the scope of the above-described technology.

Claims (10)

  1. 분석장치가 대장암 환자의 대장 부위에 대한 염색된 검체 이미지를 입력받는 단계;receiving a stained sample image of a colon of a colon cancer patient by an analysis device;
    상기 분석장치가 사전에 학습된 딥러닝 모델에 상기 검체 이미지를 입력하는 단계; 및inputting the sample image to a deep learning model learned in advance by the analysis device; and
    상기 분석장치가 상기 검체 이미지를 입력받은 상기 딥러닝 모델이 출력하는 값을 기준으로 상기 대장암 환자에 대한 림프절 전이 여부를 예측하는 단계를 포함하되,Predicting whether the analysis device has metastasized to the lymph nodes of the colorectal cancer patient based on a value output by the deep learning model receiving the sample image,
    상기 딥러닝 모델은 상기 검체 이미지 전체를 복수의 영역으로 구분한 패치 이미지들을 입력받고, 상기 패치 이미지들에 대한 가중치가 부여된 상기 검체 이미지 전체에 대한 특징을 기준으로 상기 환자에 대한 림프절 전이 여부에 대한 예측값을 출력하는 조기 대장암의 내시경 절제 검체 이미지를 이용한 림프절 전이 예측 방법.The deep learning model receives patch images in which the entire sample image is divided into a plurality of regions, and determines whether the patient has metastasis to the lymph nodes based on the characteristics of the entire sample image to which weights are assigned to the patch images. A method for predicting lymph node metastasis using early colorectal cancer endoscopic resection specimen images that output predictive values for
  2. 제1항에 있어서,According to claim 1,
    상기 검체 이미지는 내시경적 절제술로 검출한 검체에 대한 H&E(Haematoxylin and eosin) 염색 이미지인 조기 대장암의 내시경 절제 검체 이미지를 이용한 림프절 전이 예측 방법.The sample image is a method for predicting lymph node metastasis using an endoscopic resection sample image of early colorectal cancer, which is an H&E (Haematoxylin and eosin) staining image for a sample detected by endoscopic resection.
  3. 제1항에 있어서,According to claim 1,
    상기 딥러닝 모델은The deep learning model is
    상기 패치 이미지들 각각에 대한 특징을 추출하는 특징 추출 계층;a feature extraction layer extracting features for each of the patch images;
    상기 패치 이미지들 각각에 대하여 상기 특징 추출 계층이 출력하는 특징에 각 패치 이미지가 림프절 전이 예측에 기여하는 정도를 가중하고, 상기 패치 이미지들 각각에 대하여 기여 정도가 가중된 특징을 평균하여 상기 검체 이미지 전체에 대한 특징을 산출하는 어텐션 계층; 및For each of the patch images, the feature output by the feature extraction layer is weighted by the degree of contribution of each patch image to the prediction of lymph node metastasis, and the features in which the degree of contribution is weighted for each of the patch images are averaged to obtain the specimen image an attention layer that calculates features for the whole; and
    상기 어텐션 계층이 출력하는 상기 검체 이미지 전체에 대한 특징을 입력받아 상기 예측값을 출력하는 분류 계층을 포함하는 조기 대장암의 내시경 절제 검체 이미지를 이용한 림프절 전이 예측 방법.A method for predicting lymph node metastasis using an endoscopic resection specimen image of early colorectal cancer, comprising a classification layer receiving characteristics of all of the specimen images output from the attention layer and outputting the prediction value.
  4. 제1항에 있어서,According to claim 1,
    상기 딥러닝 모델은 상기 패치 이미지들 각각에 대한 특징을 추출하는 특징 추출 계층을 포함하되,The deep learning model includes a feature extraction layer for extracting features for each of the patch images,
    상기 특징 추출 계층은 별도의 학습 데이터를 이용하여 학습되는 별도의 CNN(Convolutional Neural Network) 모델에서 분류 계층을 제거하여 산출되고,The feature extraction layer is calculated by removing a classification layer from a separate convolutional neural network (CNN) model learned using separate training data,
    상기 학습 데이터는 별도의 대장암 환자들에 대한 염색된 검체 이미지 및 상기 별도의 대장암 환자들의 림프절 전이 여부에 대한 라벨값을 포함하는 조기 대장암의 내시경 절제 검체 이미지를 이용한 림프절 전이 예측 방법. The learning data is a method for predicting lymph node metastasis using endoscopic resection specimen images of early colorectal cancer, including stained specimen images of separate colorectal cancer patients and label values for whether or not lymph node metastasis of the separate colorectal cancer patients.
  5. 제4항에 있어서,According to claim 4,
    상기 딥러닝 모델은The deep learning model is
    상기 특징 추출 계층, 상기 패치 이미지들 각각에 대한 가중치를 부여하여 상기 검체 이미지 전체에 대한 특징을 출력하는 어텐션 계층 및 상기 어텐션 계층이 출력하는 특징을 기준으로 상기 림프절 전에 여부에 대한 예측값을 출력하는 분류 계층을 포함하고,The feature extraction layer, an attention layer that outputs features of the entire sample image by assigning weights to each of the patch images, and classification that outputs a prediction value for whether or not the lymph nodes are located based on features output by the attention layer. contains layers,
    상기 어텐션 계층 및 상기 분류 계층은 다시 별도의 학습 데이터를 이용하여 학습되고, The attention layer and the classification layer are learned again using separate learning data,
    상기 학습 데이터는 별도의 대장암 환자들에 대한 염색된 검체 이미지 및 상기 별도의 대장암 환자들의 림프절 전이 여부에 대한 라벨값을 포함하는 조기 대장암의 내시경 절제 검체 이미지를 이용한 림프절 전이 예측 방법.The learning data is a method for predicting lymph node metastasis using endoscopic resection specimen images of early colorectal cancer, including stained specimen images of separate colorectal cancer patients and label values for whether or not lymph node metastasis of the separate colorectal cancer patients.
  6. 대장암 환자의 대장 부위에 대한 염색된 검체 이미지를 입력받는 입력장치;an input device that receives a stained sample image of a colon of a colon cancer patient;
    딥러닝 모델을 저장하는 저장장치; 및a storage device for storing a deep learning model; and
    상기 검체 이미지를 입력받은 상기 딥러닝 모델이 출력하는 값을 기준으로 상기 대장암 환자에 대한 림프절 전이 여부를 예측하는 연산장치를 포함하되,Including an arithmetic device for predicting whether or not metastasis to a lymph node for the colorectal cancer patient based on a value output by the deep learning model receiving the sample image,
    상기 딥러닝 모델은 상기 검체 이미지 전체를 복수의 영역으로 구분한 패치 이미지들을 입력받고, 상기 패치 이미지들에 대한 가중치가 부여된 상기 검체 이미지 전체에 대한 특징을 기준으로 상기 환자에 대한 림프절 전이 여부에 대한 예측값을 출력하는 조기 대장암의 림프절 전이를 예측하는 분석 장치.The deep learning model receives patch images in which the entire sample image is divided into a plurality of regions, and determines whether the patient has metastasis to the lymph nodes based on the characteristics of the entire sample image to which weights are assigned to the patch images. An analysis device that predicts lymph node metastasis of early colorectal cancer that outputs a predictive value for
  7. 제6항에 있어서,According to claim 6,
    상기 검체 이미지는 내시경적 절제술로 검출한 검체에 대한 H&E(Haematoxylin and eosin) 염색 이미지인 조기 대장암의 림프절 전이를 예측하는 분석 장치.The sample image is an analysis device for predicting lymph node metastasis of early colorectal cancer, which is an H&E (Haematoxylin and eosin) staining image for a sample detected by endoscopic resection.
  8. 제6항에 있어서,According to claim 6,
    상기 딥러닝 모델은The deep learning model is
    상기 패치 이미지들 각각에 대한 특징을 추출하는 특징 추출 계층;a feature extraction layer extracting features for each of the patch images;
    상기 패치 이미지들 각각에 대하여 상기 특징 추출 계층이 출력하는 특징에 각 패치 이미지가 림프절 전이 예측에 기여하는 정도를 가중하고, 상기 패치 이미지들 각각에 대하여 기여 정도가 가중된 특징을 평균하여 상기 검체 이미지 전체에 대한 특징을 산출하는 어텐션 계층; 및For each of the patch images, the feature output by the feature extraction layer is weighted by the degree of contribution of each patch image to the prediction of lymph node metastasis, and the features in which the degree of contribution is weighted for each of the patch images are averaged to obtain the specimen image an attention layer that calculates features for the whole; and
    상기 어텐션 계층이 출력하는 상기 검체 이미지 전체에 대한 특징을 입력받아 상기 예측값을 출력하는 분류 계층을 포함하는 조기 대장암의 림프절 전이를 예측하는 분석 장치.An analysis device for predicting lymph node metastasis of early colorectal cancer, including a classification layer receiving characteristics of the entire sample image output from the attention layer and outputting the prediction value.
  9. 제6항에 있어서,According to claim 6,
    상기 딥러닝 모델은 상기 패치 이미지들 각각에 대한 특징을 추출하는 특징 추출 계층을 포함하되,The deep learning model includes a feature extraction layer for extracting features for each of the patch images,
    상기 특징 추출 계층은 별도의 학습 데이터를 이용하여 학습되는 별도의 CNN(Convolutional Neural Network) 모델에서 분류 계층을 제거하여 산출되고,The feature extraction layer is calculated by removing a classification layer from a separate convolutional neural network (CNN) model learned using separate training data,
    상기 학습 데이터는 별도의 대장암 환자들에 대한 염색된 검체 이미지 및 상기 별도의 대장암 환자들의 림프절 전이 여부에 대한 라벨값을 포함하는 조기 대장암의 림프절 전이를 예측하는 분석 장치. The learning data is an analysis device for predicting lymph node metastasis of early colorectal cancer, including a stained sample image for separate colorectal cancer patients and a label value for whether or not the separate colorectal cancer patients have metastasized lymph nodes.
  10. 제9항에 있어서,According to claim 9,
    상기 딥러닝 모델은The deep learning model is
    상기 특징 추출 계층, 상기 패치 이미지들 각각에 대한 가중치를 부여하여 상기 검체 이미지 전체에 대한 특징을 출력하는 어텐션 계층 및 상기 어텐션 계층이 출력하는 특징을 기준으로 상기 림프절 전이 여부에 대한 예측값을 출력하는 분류 계층을 포함하고,The feature extraction layer, an attention layer that outputs features of the entire sample image by assigning weights to each of the patch images, and a classification that outputs a prediction value for whether or not metastases to the lymph nodes based on features output by the attention layer. contains layers,
    상기 어텐션 계층 및 상기 분류 계층은 다시 별도의 학습 데이터를 이용하여 학습되고, The attention layer and the classification layer are learned again using separate learning data,
    상기 학습 데이터는 별도의 대장암 환자들에 대한 염색된 검체 이미지 및 상기 별도의 대장암 환자들의 림프절 전이 여부에 대한 라벨값을 포함하는 조기 대장암의 림프절 전이를 예측하는 분석 장치.The learning data is an analysis device for predicting lymph node metastasis of early colorectal cancer, including a stained sample image for separate colorectal cancer patients and a label value for whether or not the separate colorectal cancer patients have metastasized lymph nodes.
PCT/KR2022/007967 2021-06-09 2022-06-07 Lymph node metastasis prediction method using endoscopic resection sample image of early colon cancer, and analysis device WO2022260380A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210075031A KR102605248B1 (en) 2021-06-09 2021-06-09 Metastasis of lymph node predicting method using image of endoscopically resected specimens in early colorectal cancer and analysis apparatus
KR10-2021-0075031 2021-06-09

Publications (1)

Publication Number Publication Date
WO2022260380A1 true WO2022260380A1 (en) 2022-12-15

Family

ID=84426215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/007967 WO2022260380A1 (en) 2021-06-09 2022-06-07 Lymph node metastasis prediction method using endoscopic resection sample image of early colon cancer, and analysis device

Country Status (2)

Country Link
KR (1) KR102605248B1 (en)
WO (1) WO2022260380A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007037421A (en) * 2005-08-01 2007-02-15 Osaka Univ Gene set for predicting the presence or absence of colon cancer lymph node metastasis
KR101919866B1 (en) * 2018-02-22 2018-11-19 주식회사 뷰노 Method for aiding determination of presence of bone metastasis from bone scan image and apparatus using the same
US20190156476A1 (en) * 2017-11-17 2019-05-23 National Cancer Center Image analysis method, image analysis apparatus, program, learned deep layer learning algorithm manufacturing method and learned deep layer learning algorithm
US20190206055A1 (en) * 2018-01-04 2019-07-04 Ohio State Innovation Foundation Automated identification of tumor buds
KR20200087427A (en) * 2019-01-11 2020-07-21 경북대학교 산학협력단 The diagnostic method of lymph node metastasis in thyroid cancer using deep learning

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007037421A (en) * 2005-08-01 2007-02-15 Osaka Univ Gene set for predicting the presence or absence of colon cancer lymph node metastasis
US20190156476A1 (en) * 2017-11-17 2019-05-23 National Cancer Center Image analysis method, image analysis apparatus, program, learned deep layer learning algorithm manufacturing method and learned deep layer learning algorithm
US20190206055A1 (en) * 2018-01-04 2019-07-04 Ohio State Innovation Foundation Automated identification of tumor buds
KR101919866B1 (en) * 2018-02-22 2018-11-19 주식회사 뷰노 Method for aiding determination of presence of bone metastasis from bone scan image and apparatus using the same
KR20200087427A (en) * 2019-01-11 2020-07-21 경북대학교 산학협력단 The diagnostic method of lymph node metastasis in thyroid cancer using deep learning

Also Published As

Publication number Publication date
KR20220166116A (en) 2022-12-16
KR102605248B1 (en) 2023-11-23

Similar Documents

Publication Publication Date Title
Demir DeepCoroNet: A deep LSTM approach for automated detection of COVID-19 cases from chest X-ray images
Tynecki et al. PhageAI-bacteriophage life cycle recognition with machine learning and natural language processing
Chang et al. Artificial intelligence in pathology
Wang et al. RetCCL: Clustering-guided contrastive learning for whole-slide image retrieval
Haritha et al. COVID detection from chest X-rays with DeepLearning: CheXNet
Khan et al. A blockchain based framework for stomach abnormalities recognition
Bhattacharjee et al. Multiple instance learning with genetic pooling for medical data analysis
Gao et al. Multi-path xD recurrent neural networks for collaborative image classification
WO2022197044A1 (en) Bladder lesion diagnosis method using neural network, and system thereof
Bazgir et al. Skin cancer classification using Inception Network
Javed et al. Knowledge distillation in histology landscape by multi-layer features supervision
Pham et al. Classification of IHC images of NATs with ResNet-FRP-LSTM for predicting survival rates of rectal cancer patients
Rahman et al. IDMIL: an alignment-free Interpretable Deep Multiple Instance Learning (MIL) for predicting disease from whole-metagenomic data
WO2022260380A1 (en) Lymph node metastasis prediction method using endoscopic resection sample image of early colon cancer, and analysis device
Xie et al. Survival prediction for gastric cancer via multimodal learning of whole slide images and gene expression
Wang Predicting Colorectal Cancer Using Residual Deep Learning with Nursing Care
Rajput et al. Automated detection of colon cancer using deep learning
Khoshghalbvash et al. Integrative feature ranking by applying deep learning on multi source genomic data
WO2021137471A1 (en) Disease prediction method, apparatus, and computer program
Gedeon et al. Using convolutional neural networks to predict colon cancer patients survival
Nuhić et al. Lung cancer typology classification based on biochemical markers using machine learning techniques
Malviya et al. Deep Learning Based Gastro Intestinal Disease Analysis Using Wireless Capsule Endoscopy Images
Salama et al. An efficient quantification of COVID‐19 in chest CT images with improved semantic segmentation using U‐Net deep structure
US20230334662A1 (en) Methods and apparatus for analyzing pathology patterns of whole-slide images based on graph deep learning
Sumalatha et al. Augmentation of Predictive Competence of Non-Small Cell Lung Cancer Datasets through Feature Pre-Processing Techniques

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22820508

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE