WO2022259541A1 - Monitoring system, video quality setting method, crowd behavior analysis server, and computer-readable non-transitory recording medium for storing crowd behavior analysis program - Google Patents

Monitoring system, video quality setting method, crowd behavior analysis server, and computer-readable non-transitory recording medium for storing crowd behavior analysis program Download PDF

Info

Publication number
WO2022259541A1
WO2022259541A1 PCT/JP2021/022370 JP2021022370W WO2022259541A1 WO 2022259541 A1 WO2022259541 A1 WO 2022259541A1 JP 2021022370 W JP2021022370 W JP 2021022370W WO 2022259541 A1 WO2022259541 A1 WO 2022259541A1
Authority
WO
WIPO (PCT)
Prior art keywords
people
individual monitoring
area
cameras
monitoring area
Prior art date
Application number
PCT/JP2021/022370
Other languages
French (fr)
Japanese (ja)
Inventor
妍 王
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2023526820A priority Critical patent/JPWO2022259541A5/en
Priority to PCT/JP2021/022370 priority patent/WO2022259541A1/en
Publication of WO2022259541A1 publication Critical patent/WO2022259541A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast

Definitions

  • the present invention relates to a monitoring system, a video quality setting method, a crowd behavior analysis server, and a crowd behavior analysis program, and more particularly to a monitoring system and video quality setting method for analyzing the flow of people in a management area set over a wide range using a plurality of cameras. , crowd behavior analysis server and crowd behavior analysis program.
  • Patent Literature 1 discloses a congestion estimation system in which a plurality of cameras are arranged in a management area in order to grasp the congestion situation.
  • One aspect of the surveillance system includes a plurality of cameras dispersedly arranged in a management area, and each individual surveillance area captured by each of the plurality of cameras based on the images acquired from the plurality of cameras.
  • a crowd behavior analysis server that analyzes the flow of people and calculates the number of people in each of the individual monitoring areas and a predicted number of people that predicts changes in the flow of people; and a video quality adjustment device for setting the quality to high.
  • One aspect of the video quality setting method for a surveillance system is a video quality setting method for a surveillance system that measures the flow of people in a management area using a plurality of cameras distributed and arranged in the management area. Then, based on the images acquired from the plurality of cameras, the number of people and the flow of people in each individual monitoring area captured by each of the plurality of cameras are analyzed, and a predicted number of people predicting changes in the flow of people in each of the individual monitoring areas is obtained. The video quality of the camera corresponding to the individual monitoring area is set higher as the predicted number of people is larger.
  • One aspect of the crowd behavior analysis server includes a video acquisition unit that acquires video of an individual monitoring area captured by each of a plurality of cameras dispersedly arranged in a management area; A people flow analysis unit that analyzes the flow of people that indicates the entry and exit and movement direction of people in each individual monitoring area, a crowd analysis unit that analyzes the number of people in each individual monitoring area based on the acquired video, and the flow of people in each individual monitoring area. a number prediction unit that calculates a number prediction value that is a value obtained by predicting a change and is used for switching the image quality of the camera, and the number prediction unit calculates the number of people in each individual monitoring area. Then, the predicted number of people is calculated by adding the number of people entering from the adjacent individual monitoring area and subtracting the number of people leaving the adjacent individual monitoring area.
  • One aspect of a computer-readable non-temporary recording medium in which a crowd behavior analysis program according to the present invention is stored is video of an individual monitoring area captured by each of a plurality of cameras dispersedly arranged in a management area.
  • a computer-readable non-temporary recording medium in which a crowd behavior analysis program is stored based on the image acquisition processing for acquiring the images from the plurality of cameras, and the people in each individual monitoring area based on the acquired images People flow analysis processing for analyzing the flow of people showing entry/exit and direction of movement, Crowd analysis processing for analyzing the number of people in each individual monitoring area based on the acquired video, and values obtained by predicting changes in the flow of people in each individual monitoring area.
  • a number-of-people prediction process for calculating a number-of-people prediction value used for switching the video quality of the camera, wherein the number-of-people prediction process calculates the number of people in each individual monitoring area, and calculates the number of people in the adjacent individual monitoring area.
  • the predicted number of people is calculated by adding the number of people entering from and subtracting the number of people leaving the adjacent individual monitoring area.
  • FIG. 1 is a schematic diagram of a monitoring system according to a first embodiment
  • FIG. 1 is a block diagram of a monitoring system according to a first embodiment
  • FIG. 4 is a flowchart for explaining the operation of the monitoring system according to the first embodiment
  • 6 is a flowchart for explaining initialization processing of the monitoring system according to the first embodiment
  • FIG. 3 is a diagram illustrating an outline of calculation of a predicted number of people in the monitoring system according to the first embodiment
  • FIG. 7 is a flowchart for explaining camera image quality adjustment processing of the surveillance system according to the first embodiment
  • It is a figure explaining the people flow analysis process of step S22 of the monitoring system concerning Embodiment 1.
  • FIG. 1 is a schematic diagram of a monitoring system according to a first embodiment
  • FIG. 1 is a block diagram of a monitoring system according to a first embodiment
  • FIG. 4 is a flowchart for explaining the operation of the monitoring system according to the first embodiment
  • 6 is a flowchart for explaining initialization processing of the
  • FIG. 10 is a diagram illustrating video quality adjustment processing in step S24 of the monitoring system according to the first embodiment; FIG. It is a figure explaining the number-of-persons prediction process of step S23 of the monitoring system concerning Embodiment 2. FIG. It is a figure explaining the video quality adjustment process of step S23 of the monitoring system concerning Embodiment 3.
  • FIG. 10 is a diagram illustrating video quality adjustment processing in step S24 of the monitoring system according to the first embodiment;
  • FIG. It is a figure explaining the number-of-persons prediction process of step S23 of the monitoring system concerning Embodiment 2.
  • FIG. It is a figure explaining the video quality adjustment process of step S23 of the monitoring system concerning Embodiment 3.
  • Non-transitory computer-readable media include various types of tangible storage media.
  • Examples of non-transitory computer-readable media include magnetic recording media (e.g., flexible discs, magnetic tapes, hard disk drives), magneto-optical recording media (e.g., magneto-optical discs), CD-ROMs (Read Only Memory), CD-Rs, CD-R/W, semiconductor memory (eg mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (Random Access Memory)).
  • the program may also be delivered to the computer by various types of transitory computer readable media. Examples of transitory computer-readable media include electrical signals, optical signals, and electromagnetic waves. Transitory computer-readable media can deliver the program to the computer via wired channels, such as wires and optical fibers, or wireless channels.
  • FIG. 1 shows a schematic diagram of the monitoring system according to the first embodiment.
  • FIG. 1 shows an example in which the monitoring system 1 is arranged in a predetermined management area.
  • the surveillance system 1 according to the first embodiment has cameras 11 to 13, 21, a public network 31, a crowd behavior analysis server 41, and a video quality adjustment device .
  • the monitoring system 1 improves the accuracy of the prediction of the number of people.
  • the number of cameras to be arranged in the monitoring system 1 may be appropriately set according to the size of the management area. For example, if there is a space where a crowd can gather in the management area, it is preferable to arrange the camera in the area where the crowd gathers.
  • the camera arrangement interval according to the moving speed of people.
  • the number of people can be predicted while reducing the number of installed cameras, that is, while reducing the number of images and the amount of data to be transmitted to the crowd behavior analysis server 41. Accuracy can be improved.
  • the crowd behavior analysis server 41 obtains a predicted number of people for each individual monitoring area monitored by each camera, and obtains a predicted number of people for each future individual monitoring area.
  • the monitoring system 1 including the crowd behavior analysis server 41 and the video quality adjustment device 42 will be described in detail below.
  • FIG. 2 shows a block diagram of the monitoring system according to the first embodiment.
  • FIG. 2 shows in detail the crowd behavior analysis server 41 among the components explained in FIG.
  • Cameras 11 to 13 are cameras installed at the entrance/exit of the management area.
  • the camera 21 is a camera provided at a branch point of the passage within the management area.
  • the cameras 11 to 13 and 21 respectively shoot moving images of individual monitoring areas set within the management area. This moving image is, for example, H.I. It is data compressed based on a predetermined standard such as H.264.
  • the video quality adjustment device 42 adjusts the quality of the image captured by the camera 21 based on the predicted number of people generated by the crowd behavior analysis server 41 . Assume that the higher the resolution of the captured moving image, the higher the quality.
  • the imaging quality of the cameras 11 to 13 arranged at the entrance/exit of the management area is fixed at the highest level. This is because the flow of people and the number of people at the entrance/exit are affected by the environment outside the management area, and this is to cope with unexpected environmental changes.
  • the crowd behavior analysis server 41 analyzes the flow of people in each individual monitoring area captured by each of the plurality of cameras (for example, cameras 11 to 13, 21) based on the images acquired from the cameras 11 to 13, 21, and Calculate the predicted number of people by predicting changes in the flow of people.
  • the crowd behavior analysis server 41 adds the number of people entering from an adjacent individual monitoring area to the number of people in each individual monitoring area, and A number prediction value is calculated by subtracting the number of people leaving. That is, the crowd behavior analysis server 41 predicts the number of people in each individual monitoring area in the near future (for example, the next video acquisition cycle) based on the number of people entering and exiting each individual monitoring area measured up to the present time. Then, the video quality adjustment device 42 sets the video quality of the camera corresponding to the individual monitoring area higher as the predicted number of people increases.
  • the crowd behavior analysis server 41 can be realized as dedicated hardware that performs image acquisition processing, crowd flow analysis processing, and number prediction processing, which will be described below. It can also be realized by The example shown in FIG. 2 shows the crowd behavior analysis server 41 that executes the crowd behavior analysis program for performing these processes on a computer.
  • the crowd behavior analysis server 41 has a calculation unit 51, a memory 52, and a communication interface 53.
  • the calculation unit 51 implements a video acquisition unit 61, a people flow analysis unit 62, a crowd analysis unit 63, and a number prediction unit 64 by executing a crowd behavior analysis program.
  • the memory 52 is, for example, a storage unit using a volatile memory and a nonvolatile memory, and a crowd behavior analysis program is stored in the nonvolatile memory portion.
  • a volatile memory portion of the memory 52 stores moving image data and calculation data used in calculations performed by the calculation unit 51 .
  • the communication interface 53 performs communication processing for the crowd behavior analysis server 41 to communicate with the cameras 11 to 13 and 21 and the image quality adjustment device 42 .
  • the video quality adjustment device 42 is a separate device from the crowd behavior analysis server 41, but the video quality adjustment device 42 may be included as a function of the crowd behavior analysis server 41.
  • the video acquisition unit 61 performs video acquisition processing. In this video acquisition process, video of the individual monitoring area captured by each of a plurality of cameras dispersedly arranged in the management area is acquired.
  • the people flow analysis unit 62 performs people flow analysis processing.
  • the people flow for each individual monitoring area is analyzed based on the acquired video. More specifically, in the people flow analysis process, the number of people who crossed the set boundary line surrounding the individual monitoring area and the number of people who entered the area were counted. Analyze which direction the person moved based on the position of
  • the crowd analysis unit 63 performs crowd analysis processing.
  • crowd analysis processing the number of people in each individual monitoring area is counted based on the acquired video. More specifically, in the crowd analysis process, the number of people in each individual monitoring area during the first predetermined period of the video is counted, and the count value is used as the number of people.
  • the number of people prediction unit 64 performs the number of people prediction process.
  • a number-of-people prediction value which is a value obtained by predicting a change in the number of people for each individual monitoring area and is used for switching the image quality of the camera.
  • the number of people entering from an adjacent individual monitoring area is added to the number of people in each individual monitoring area, and the number of people leaving the adjacent individual monitoring area is calculated. By subtracting, the predicted number of people is calculated.
  • the method of predicting the number of people by the people flow analysis unit 62 is not based on mere addition and subtraction, and prediction processing using artificial intelligence, for example, can also be used.
  • FIG. 3 shows a flowchart for explaining the operation of the monitoring system according to the first embodiment.
  • step S1 after performing initialization processing (step S1) for initializing camera settings, people flow monitoring processing including camera image quality adjustment processing (step S2) is performed. I do.
  • FIG. 3 shows only the camera image quality adjustment process in the crowd monitoring process.
  • the camera image quality adjustment process is repeatedly executed in each preset periodic cycle (for example, a cycle with a set periodic time of 1 minute).
  • FIG. 4 shows a flowchart for explaining initialization processing of the monitoring system 1 according to the first embodiment.
  • the image quality adjustment device 42 sets the image quality of the cameras (for example, cameras 11 to 13) installed at the entrance of the management area to the highest quality (step S11). Note that the camera for which the image quality is set in step S11 maintains the setting thereafter.
  • the image quality adjustment device 42 sets the image quality of the camera (for example, camera 21) installed outside the entrance/exit of the management area to the lowest quality (step S12). It is preferable to perform the initialization process, for example, when there is no human intrusion into the management area or when there is extremely little intrusion. This is because under such conditions, it is easy to lower the imaging quality of cameras installed outside the entrance/exit of the management area to the lowest level.
  • FIG. 5 is a diagram for explaining an outline of calculation of the predicted number of people in the monitoring system 1 according to the first embodiment.
  • each of the cameras 11 to 13, 21 shoots individual surveillance areas to generate moving images.
  • a solid line indicates a person who was in the individual monitoring area at the start of imaging in a certain imaging cycle
  • a broken line indicates a person who entered the individual monitoring area at the end of the imaging cycle. That is, the number of people indicated by the solid line is the number of people calculated by the crowd analysis process, and the people indicated by the broken line are the people and the direction of movement of the people analyzed by the people flow analysis process.
  • the number of people who left the individual monitoring area during the imaging cycle and the direction of movement are analyzed based on the number of people who were in the individual management area at the beginning of the imaging cycle. Then, based on this analysis result, a predicted value of the number of people predicted to exist in each individual monitoring area in the near future (for example, the next imaging cycle) is calculated as the predicted number of people.
  • the individual management area of the camera 21 is the target of the predicted number of people, the number of people in the current shooting cycle is 5, the number of people leaving the area is 4, and the number of people entering the area is 3, and the number of people is predicted. The value is 4 people.
  • FIG. 6 shows a flowchart for explaining camera image quality adjustment processing of the surveillance system according to the first embodiment.
  • the image acquisition unit 61 first receives captured images from each camera (step S21). Subsequently, the crowd analysis unit 62 analyzes the video received and calculates the number of people and the flow of people in each individual monitoring area, and the crowd analysis unit 63 analyzes the number of people in each individual monitoring area based on the video acquired. and a crowd analysis process are performed (step S22).
  • FIG. 7 shows a diagram for explaining the people flow analysis processing in step S22 of the monitoring system according to the first embodiment. In the example shown in FIG. 7, in the crowd analysis process in step S22, the initial number of people in the individual monitoring area photographed by the camera 11 is calculated to be 30 people.
  • the initial number of people in the individual monitoring area photographed by the camera 12 is calculated to be 14 people.
  • the initial number of people in the individual monitoring area photographed by the camera 13 is calculated to be nine.
  • the people flow analysis process it is calculated that after that, three people headed toward the individual monitoring area photographed by the camera 21, and five people moved out of the management area.
  • the initial number of people in the individual monitoring area photographed by the camera 21 is calculated to be 10 people.
  • the people flow analysis process after that, three people head toward the individual monitoring area captured by the camera 11, three people move toward the individual monitoring area set up by the camera 12, and four people move toward the individual monitoring area captured by the camera 13. It is calculated that it has moved in the direction of In this way, in the people flow analysis process of step S22, the initial number of people in each individual monitoring area, the number of people who moved after that, and the direction of movement are calculated.
  • FIG. 8 is a diagram for explaining the number-of-people prediction processing in step S23 of the monitoring system 1 according to the first embodiment.
  • the number prediction process the number of people entering each individual monitoring area is added and the number of people leaving is subtracted to calculate the number prediction value.
  • the monitoring system 1 according to the first embodiment does not calculate the predicted number of persons for the individual monitoring areas photographed by the cameras 11 to 13 at the entrances and exits of the management area.
  • the initial number of people is 29 when the number of people entering and exiting is applied.
  • FIG. 9 shows a diagram for explaining the video quality adjustment processing in step S24 of the monitoring system 1 according to the first embodiment.
  • a quality setting table that associates the predicted number of people with the video quality setting is referenced, and the predicted number of people calculated in step S23 is set to which quality setting table. Analyze whether it applies to the column. Then, the video quality setting value corresponding to the matched column is applied to the camera 21 .
  • the image quality of the camera 21 is changed from the lowest 640 ⁇ 360 to 1920 ⁇ 1080.
  • each individual monitoring area in the near future is calculated using the number of people and the flow of people in adjacent individual monitoring areas among the current individual monitoring areas acquired using a plurality of cameras.
  • a population prediction value is calculated by predicting the number of people in an area.
  • the surveillance system 1 according to the first embodiment by increasing the image quality of the camera as the predicted number of people increases, the image quality is improved in advance and high followability is realized with respect to changes in the flow of people. However, the amount of data communication caused by transmission of video data can be reduced.
  • the accuracy of the number of people calculation process in the crowd analysis process can be improved by preemptively improving the video quality based on the predicted number of people. Also, in the people flow analysis process, by improving the video quality, it is possible to improve the accuracy of grasping the number of people who have moved and the direction of movement. On the other hand, in the monitoring system 1 according to the first embodiment, even when the number of people and the flow of people decrease, the image quality can be lowered in advance, so the amount of communication can be reduced.
  • FIG. 10 shows a diagram for explaining the process of predicting the number of people in step S23 of the monitoring system according to the second embodiment.
  • the number-of-persons prediction process in consideration of people entering from outside the management area, individual Calculate the predicted number of people for the monitored area.
  • the number of people coming in from the outside is calculated based on past statistical data such as the day of the week and the time period.
  • a value predicted by artificial intelligence can also be used for the number of inflows from the outside.
  • FIG. 11 shows a diagram for explaining the video quality adjustment processing in step S23 of the monitoring system according to the third embodiment.
  • the quality setting table can be set so that not only the resolution of the captured image but also the frame rate increases as the number of people in the individual monitoring area increases.
  • the accuracy of people flow analysis can be improved by increasing the frame rate. Therefore, by lowering the frame rate according to the number of people and the flow of people, it is possible to balance the accuracy of analysis of the flow of people and the amount of data communication.
  • (Appendix 1) a plurality of cameras distributed in a management area; Analyze the number of people and the flow of people in each individual monitoring area captured by each of the plurality of cameras based on the images acquired from the plurality of cameras, and calculate a predicted number of people predicting changes in the flow of people in each of the individual monitoring areas.
  • a crowd behavior analysis server a video quality adjustment device that sets the video quality of the camera corresponding to the individual monitoring area higher as the predicted number of people increases; surveillance system.
  • the crowd behavior analysis server adds the number of people entering from the adjacent individual monitoring area to the number of people in each individual monitoring area, and calculates the number of people leaving the adjacent individual monitoring area.
  • the monitoring system according to appendix 1, wherein the predicted number of people is calculated by subtraction.
  • (Appendix 3) The monitoring system according to appendix 1 or 2, wherein the crowd behavior analysis server does not calculate the predicted number of people in an individual monitoring area located at an entrance of the management area among the plurality of individual monitoring areas.
  • the crowd behavior analysis server adds/subtracts a statistically calculated predicted entry/exit value to/from the number of people in the individual monitoring area for the individual monitoring area located at the entrance/exit of the management area among the plurality of individual monitoring areas. 3.
  • the surveillance system according to any one of appendices 1 to 4, wherein the video quality adjustment device sets a predetermined fixed image quality to a camera positioned at an entrance/exit of the management area among the plurality of cameras.
  • (Appendix 6) 5.
  • the monitoring system according to any one of supplementary notes 1 to 4, wherein the image quality adjustment device sets a camera positioned at an entrance of the management area among the plurality of cameras to the highest image quality that can be set.
  • the video quality adjustment device has a video quality table describing video quality corresponding to the predicted number of people, and refers to the video quality table to improve the video quality set in the camera as the predicted number of people increases. 7.
  • the monitoring system according to any one of appendices 1 to 6, wherein (Appendix 8) 8.
  • Appendix 9 9. The monitoring system according to any one of appendices 1 to 8, wherein the individual monitoring area is set at least at a branch point and an entrance/exit in the management area.
  • Appendix 10 10. The monitoring system according to any one of appendices 1 to 9, wherein the individual monitoring area is set to include an area in which people tend to stay in the management area.
  • (Appendix 11) Supplementary note 1 that the individual monitoring areas are set such that the distance between the adjacent individual monitoring areas increases as the moving speed of the person increases in the portion where the person moves within the management area within a certain speed range. 11.
  • a surveillance system according to any one of claims 1-10.
  • Appendix 12 A video quality setting method for a surveillance system for measuring the flow of people in a management area using a plurality of cameras dispersedly arranged in the management area, Analyze the flow of people in each individual monitoring area captured by each of the plurality of cameras based on the images acquired from the plurality of cameras, and calculate a predicted number of people that predicts changes in the number of people and the flow of people in each of the individual monitoring areas.
  • a video quality setting method for a monitoring system wherein the video quality of the camera corresponding to the individual monitoring area is set higher as the predicted number of people increases.
  • a video acquisition unit that acquires video of an individual monitoring area captured by each of a plurality of cameras dispersedly arranged in a management area; a people flow analysis unit that analyzes the flow of people showing the entry and exit and movement direction of people in each individual monitoring area based on the acquired video; a crowd analysis unit that analyzes the number of people in each individual monitoring area based on the acquired video; a number prediction unit that calculates a number prediction value that is a value obtained by predicting a change in the flow of people in each of the individual monitoring areas and is used for switching the image quality of the camera, The number prediction unit adds the number of people entering from the adjacent individual monitoring area to the number of people in each individual monitoring area and subtracts the number of people leaving the adjacent individual monitoring area.
  • a crowd behavior analysis server that calculates the predicted number of people by (Appendix 14)

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Image Analysis (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

This monitoring system (1) includes: a plurality of cameras (11-13, 21) arranged in a distributed manner within a management area; a crowd behavior analysis server (41) that analyzes, on the basis of video images acquired from the plurality of cameras (11-13, 21), the flow of people in each of individual monitoring areas respectively imaged by the plurality of cameras (11-13, 21) and that calculates a predicted people count value for predicting a change in the flow of people in each of the individual monitoring areas; and a video quality adjustment device (42) that sets the video image quality for a camera (21) corresponding to a relevant individual monitoring area such that the greater the predicted people count value, the higher the quality.

Description

監視システム、映像品質設定方法、群衆行動解析サーバ及び群衆行動解析プログラムが格納されるコンピュータ読み取り可能な非一時的記録媒体Computer-readable non-temporary recording medium storing monitoring system, video quality setting method, crowd behavior analysis server, and crowd behavior analysis program
 本発明は監視システム、映像品質設定方法、群衆行動解析サーバ及び群衆行動解析プログラムに関し、特に、複数のカメラを用いて広い範囲に設定される管理エリアの人流を解析する監視システム、映像品質設定方法、群衆行動解析サーバ及び群衆行動解析プログラムに関する。 The present invention relates to a monitoring system, a video quality setting method, a crowd behavior analysis server, and a crowd behavior analysis program, and more particularly to a monitoring system and video quality setting method for analyzing the flow of people in a management area set over a wide range using a plurality of cameras. , crowd behavior analysis server and crowd behavior analysis program.
 人が集まる場所、或いは、人流が激しい場所では、混乱を避けるために警備員や誘導員を配置して人流を整えることが行われる。しかしながら、混雑状況や人流変化を把握しなければ、動線や誘導員の配置を最適化することができない。このような混雑状況や人流の変化を監視するために人員を配置するのでは人員がさらに必要になるのみにあらず、的確な状況把握をすることが難しい問題がある。そこで、混雑状況を把握するために管理エリアに複数のカメラを配置した混雑推定システムが特許文献1に開示されている。 In places where people gather or where there is a strong flow of people, security guards and guides are placed to control the flow of people in order to avoid confusion. However, it is not possible to optimize the flow line and placement of guides without understanding the congestion situation and changes in the flow of people. Assigning personnel to monitor such changes in congestion and the flow of people not only requires more personnel, but also poses a problem in that it is difficult to accurately grasp the situation. Therefore, Patent Literature 1 discloses a congestion estimation system in which a plurality of cameras are arranged in a management area in order to grasp the congestion situation.
 特許文献1に記載の監視システムは、解析サーバが監視カメラから送信された低画質の監視映像を解析して異常を検知し、監視映像の画質を高画質に変更する画質変更リクエストを受信したときに、帯域管理装置に対して監視映像の伝送に利用できる帯域をより広帯域に変更するように帯域変更リクエストを送信するとともに、監視カメラに対して高画質の監視映像を送信するように画質変更リクエストを送信する。これにより、無駄な帯域を使用することなく、監視カメラが送信する監視映像の画質を必要に応じて柔軟に変更することができる。 In the surveillance system described in Patent Document 1, when an analysis server analyzes low-quality surveillance video transmitted from a surveillance camera to detect an abnormality, and receives an image quality change request to change the image quality of the surveillance video to high quality, In addition, a bandwidth change request is sent to the bandwidth management device to change the bandwidth that can be used for transmission of surveillance video to a wider bandwidth, and an image quality change request is sent to the surveillance camera to send high-quality surveillance video. to send. As a result, it is possible to flexibly change the image quality of the monitoring video transmitted by the monitoring camera as needed without using unnecessary bandwidth.
特許第6595287号公報Japanese Patent No. 6595287
 しかしながら、特許文献1に記載の監視システムでは、人流及び人数の急激な変動に映像品質の変更が追従できず、人流及び人数の変化が大きい管理エリアにおいて適切な監視が出来ない問題がある。 However, with the monitoring system described in Patent Document 1, changes in video quality cannot follow rapid changes in the flow of people and the number of people, and there is a problem that appropriate monitoring cannot be performed in a management area where there are large changes in the flow of people and the number of people.
 本発明にかかる監視システムの一態様は、管理エリア内に分散して配置される複数のカメラと、前記複数のカメラから取得した映像に基づき前記複数のカメラのそれぞれが撮影する個別監視エリア毎の人流を解析して、前記個別監視エリア毎の人数及び人流の変化を予測した人数予測値を算出する群衆行動解析サーバと、前記人数予測値が大きいほど前記個別監視エリアに対応する前記カメラの映像品質を高く設定する映像品質調整装置と、を有する。 One aspect of the surveillance system according to the present invention includes a plurality of cameras dispersedly arranged in a management area, and each individual surveillance area captured by each of the plurality of cameras based on the images acquired from the plurality of cameras. A crowd behavior analysis server that analyzes the flow of people and calculates the number of people in each of the individual monitoring areas and a predicted number of people that predicts changes in the flow of people; and a video quality adjustment device for setting the quality to high.
 本発明にかかる監視システムの映像品質設定方法の一態様は、管理エリア内に分散して配置される複数のカメラを用いて前記管理エリア内の人流を計測する監視システムの映像品質設定方法であって、前記複数のカメラから取得した映像に基づき前記複数のカメラのそれぞれが撮影する個別監視エリア毎の人数及び人流を解析して、前記個別監視エリア毎の人流の変化を予測した人数予測値を算出し、前記人数予測値が大きいほど前記個別監視エリアに対応する前記カメラの映像品質を高く設定する。 One aspect of the video quality setting method for a surveillance system according to the present invention is a video quality setting method for a surveillance system that measures the flow of people in a management area using a plurality of cameras distributed and arranged in the management area. Then, based on the images acquired from the plurality of cameras, the number of people and the flow of people in each individual monitoring area captured by each of the plurality of cameras are analyzed, and a predicted number of people predicting changes in the flow of people in each of the individual monitoring areas is obtained. The video quality of the camera corresponding to the individual monitoring area is set higher as the predicted number of people is larger.
 本発明にかかる群衆行動解析サーバの一態様は、管理エリア内に分散して配置される複数のカメラのそれぞれが撮影する個別監視エリアの映像を取得する映像取得部と、取得した前記映像に基づき個別監視エリア毎の人の出入り及び移動方向を示す人流を解析する人流解析部と、取得した前記映像に基づき個別監視エリア毎の人数を解析する群衆解析部と、前記個別監視エリア毎の人流の変化を予測した値であって、前記カメラの映像品質の切り替えに用いられる人数予測値を算出する人数予測部と、を有し、前記人数予測部は、前記個別監視エリア毎にエリア内の人数に、隣接する前記個別監視エリアから入ってくる人の人数を加算するとともに隣接する前記個別監視エリアに出て行く人の人数を減算することで前記人数予測値を算出する。 One aspect of the crowd behavior analysis server according to the present invention includes a video acquisition unit that acquires video of an individual monitoring area captured by each of a plurality of cameras dispersedly arranged in a management area; A people flow analysis unit that analyzes the flow of people that indicates the entry and exit and movement direction of people in each individual monitoring area, a crowd analysis unit that analyzes the number of people in each individual monitoring area based on the acquired video, and the flow of people in each individual monitoring area. a number prediction unit that calculates a number prediction value that is a value obtained by predicting a change and is used for switching the image quality of the camera, and the number prediction unit calculates the number of people in each individual monitoring area. Then, the predicted number of people is calculated by adding the number of people entering from the adjacent individual monitoring area and subtracting the number of people leaving the adjacent individual monitoring area.
 本発明にかかる群衆行動解析プログラムが格納されるコンピュータ読み取り可能な非一時的記録媒体の一態様は、管理エリア内に分散して配置される複数のカメラのそれぞれが撮影する個別監視エリアの映像に基づき群衆行動解析プログラムが格納されるコンピュータ読み取り可能な非一時的記録媒体であって、前記複数のカメラから前記映像を取得する映像取得処理と、取得した前記映像に基づき個別監視エリア毎の人の出入り及び移動方向を示す人流を解析する人流解析処理と、取得した前記映像に基づき個別監視エリア毎の人数を解析する群衆解析処理と、前記個別監視エリア毎の人流の変化を予測した値であって、前記カメラの映像品質の切り替えに用いられる人数予測値を算出する人数予測処理と、を行い、前記人数予測処理は、前記個別監視エリア毎にエリア内の人数に、隣接する前記個別監視エリアから入ってくる人の人数を加算するとともに隣接する前記個別監視エリアに出て行く人の人数を減算することで前記人数予測値を算出する。 One aspect of a computer-readable non-temporary recording medium in which a crowd behavior analysis program according to the present invention is stored is video of an individual monitoring area captured by each of a plurality of cameras dispersedly arranged in a management area. A computer-readable non-temporary recording medium in which a crowd behavior analysis program is stored based on the image acquisition processing for acquiring the images from the plurality of cameras, and the people in each individual monitoring area based on the acquired images People flow analysis processing for analyzing the flow of people showing entry/exit and direction of movement, Crowd analysis processing for analyzing the number of people in each individual monitoring area based on the acquired video, and values obtained by predicting changes in the flow of people in each individual monitoring area. a number-of-people prediction process for calculating a number-of-people prediction value used for switching the video quality of the camera, wherein the number-of-people prediction process calculates the number of people in each individual monitoring area, and calculates the number of people in the adjacent individual monitoring area. The predicted number of people is calculated by adding the number of people entering from and subtracting the number of people leaving the adjacent individual monitoring area.
 本発明にかかる監視システム、映像品質設定方法、群衆行動解析サーバ及び群衆行動解析プログラムによれば、人流監視に最適な映像品質を確保しながらカメラと群衆解析サーバの間の通信量を削減することができる。 According to the surveillance system, image quality setting method, crowd behavior analysis server, and crowd behavior analysis program according to the present invention, it is possible to reduce the amount of communication between the camera and the crowd analysis server while ensuring optimum image quality for people flow monitoring. can be done.
実施の形態1にかかる監視システムの概略図である。1 is a schematic diagram of a monitoring system according to a first embodiment; FIG. 実施の形態1にかかる監視システムのブロック図である。1 is a block diagram of a monitoring system according to a first embodiment; FIG. 実施の形態1にかかる監視システムの動作を説明するフローチャートである。4 is a flowchart for explaining the operation of the monitoring system according to the first embodiment; 実施の形態1にかかる監視システムの初期化処理を説明するフローチャートである。6 is a flowchart for explaining initialization processing of the monitoring system according to the first embodiment; 実施の形態1にかかる監視システムにおける人数予測値の計算の概略を説明する図である。FIG. 3 is a diagram illustrating an outline of calculation of a predicted number of people in the monitoring system according to the first embodiment; FIG. 実施の形態1にかかる監視システムのカメラ映像品質調整処理を説明するフローチャートである。7 is a flowchart for explaining camera image quality adjustment processing of the surveillance system according to the first embodiment; 実施の形態1にかかる監視システムのステップS22の人流解析処理を説明する図である。It is a figure explaining the people flow analysis process of step S22 of the monitoring system concerning Embodiment 1. FIG. 実施の形態1にかかる監視システムのステップS23の人数予測処理を説明する図である。It is a figure explaining the number-of-persons prediction process of step S23 of the monitoring system concerning Embodiment 1. FIG. 実施の形態1にかかる監視システムのステップS24の映像品質調整処理を説明する図である。FIG. 10 is a diagram illustrating video quality adjustment processing in step S24 of the monitoring system according to the first embodiment; FIG. 実施の形態2にかかる監視システムのステップS23の人数予測処理を説明する図である。It is a figure explaining the number-of-persons prediction process of step S23 of the monitoring system concerning Embodiment 2. FIG. 実施の形態3にかかる監視システムのステップS23の映像品質調整処理を説明する図である。It is a figure explaining the video quality adjustment process of step S23 of the monitoring system concerning Embodiment 3. FIG.
 説明の明確化のため、以下の記載及び図面は、適宜、省略、及び簡略化がなされている。また、様々な処理を行う機能ブロックとして図面に記載される各要素は、ハードウェア的には、CPU(Central Processing Unit)、メモリ、その他の回路で構成することができ、ソフトウェア的には、メモリにロードされたプログラムなどによって実現される。したがって、これらの機能ブロックがハードウェアのみ、ソフトウェアのみ、またはそれらの組合せによっていろいろな形で実現できることは当業者には理解されるところであり、いずれかに限定されるものではない。なお、各図面において、同一の要素には同一の符号が付されており、必要に応じて重複説明は省略されている。 For clarity of explanation, the following descriptions and drawings have been omitted and simplified as appropriate. In addition, each element described in the drawing as a functional block that performs various processes can be configured with a CPU (Central Processing Unit), memory, and other circuits in terms of hardware, and memory implemented by a program loaded in the Therefore, those skilled in the art will understand that these functional blocks can be realized in various forms by hardware only, software only, or a combination thereof, and are not limited to either one. In each drawing, the same elements are denoted by the same reference numerals, and redundant description is omitted as necessary.
 また、上述したプログラムは、様々なタイプの非一時的なコンピュータ可読媒体を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(Random Access Memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。 Also, the above-described program can be stored and supplied to the computer using various types of non-transitory computer-readable media. Non-transitory computer-readable media include various types of tangible storage media. Examples of non-transitory computer-readable media include magnetic recording media (e.g., flexible discs, magnetic tapes, hard disk drives), magneto-optical recording media (e.g., magneto-optical discs), CD-ROMs (Read Only Memory), CD-Rs, CD-R/W, semiconductor memory (eg mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (Random Access Memory)). The program may also be delivered to the computer by various types of transitory computer readable media. Examples of transitory computer-readable media include electrical signals, optical signals, and electromagnetic waves. Transitory computer-readable media can deliver the program to the computer via wired channels, such as wires and optical fibers, or wireless channels.
 実施の形態1
 図1に実施の形態1にかかる監視システムの概略図を示す。図1では、監視システム1を所定の管理エリアに配置した例である。図1に示すように、実施の形態1にかかる監視システム1は、カメラ11~13、21、公衆ネットワーク31、群衆行動解析サーバ41、映像品質調整装置42を有する。
Embodiment 1
FIG. 1 shows a schematic diagram of the monitoring system according to the first embodiment. FIG. 1 shows an example in which the monitoring system 1 is arranged in a predetermined management area. As shown in FIG. 1, the surveillance system 1 according to the first embodiment has cameras 11 to 13, 21, a public network 31, a crowd behavior analysis server 41, and a video quality adjustment device .
 そして、図1に示す例では、管理エリアの出入り口にカメラ11、12、13を配置した。また、図1に示す例では、管理エリア内の通路の分岐点にカメラ21を配置した。監視システム1では、管理エリアの出入り口と、管理エリア内の通路の分岐点には少なくともカメラを配置する。このようなカメラの配置とすることで、監視システム1では、人数予測の精度を高める。また、監視システム1において配置するカメラは、管理エリアの大きさにより個数を適宜設定すれば良い。例えば管理エリア内に人だまりができる空間があれば当該人溜まりのエリアにカメラを配置することが好ましい。また、管理エリア内の通路のうち人の移動速度が一定の範囲に収まるような直線部分では、人の移動速度に合わせてカメラの配置間隔を広くすることが好ましい。このように、カメラの配置を人の移動態様に合わせて配置することでカメラの設置台数を削減しながら、すなわち群衆行動解析サーバ41に送信する映像の個数及びデータ量を削減しながら、人数予測精度を高めることができる。 Then, in the example shown in FIG. 1, cameras 11, 12, and 13 are arranged at the entrance/exit of the management area. Also, in the example shown in FIG. 1, the camera 21 is arranged at the branch point of the passage in the management area. In the monitoring system 1, at least cameras are arranged at the entrance/exit of the management area and at the junction of passages in the management area. By arranging the cameras in this manner, the monitoring system 1 improves the accuracy of the prediction of the number of people. Also, the number of cameras to be arranged in the monitoring system 1 may be appropriately set according to the size of the management area. For example, if there is a space where a crowd can gather in the management area, it is preferable to arrange the camera in the area where the crowd gathers. Further, in a straight portion of the passage in the management area where the moving speed of people falls within a certain range, it is preferable to widen the camera arrangement interval according to the moving speed of people. In this way, by arranging the cameras in accordance with the movement of people, the number of people can be predicted while reducing the number of installed cameras, that is, while reducing the number of images and the amount of data to be transmitted to the crowd behavior analysis server 41. Accuracy can be improved.
 なお、監視システム1では、管理エリア内に設置したカメラにより動画を撮影し、撮影データを公衆ネットワーク31を介して群衆行動解析サーバ41に送信する。そのため、通信データ量を削減することが、通信の安定と運用コストの削減に繋がる。このとき、実施の形態1にかかる監視システム1では、群衆行動解析サーバ41により予測した各カメラが監視する個別監視エリア毎の将来の人数を予測した人数予測値を求め、将来の個別監視エリア毎の人数に応じて映像品質を高めることで、通信量の抑制と人流解析の精度を高める。そこで、以下では、群衆行動解析サーバ41、映像品質調整装置42を含む監視システム1を詳細に説明する。 In addition, in the monitoring system 1, a video is captured by a camera installed in the management area, and the captured data is transmitted to the crowd behavior analysis server 41 via the public network 31. Therefore, reducing the amount of communication data leads to stable communication and a reduction in operating costs. At this time, in the monitoring system 1 according to the first embodiment, the crowd behavior analysis server 41 obtains a predicted number of people for each individual monitoring area monitored by each camera, and obtains a predicted number of people for each future individual monitoring area. By increasing the video quality according to the number of people, it reduces the amount of communication and improves the accuracy of people flow analysis. Therefore, the monitoring system 1 including the crowd behavior analysis server 41 and the video quality adjustment device 42 will be described in detail below.
 図2に実施の形態1にかかる監視システムのブロック図を示す。図2では、図1で説明した構成要素のうち群衆行動解析サーバ41について詳細に示した。カメラ11~13は、管理エリアの出入り口に設置されるカメラである。また、カメラ21は、管理エリア内において通路の分岐点に設けられるカメラである。カメラ11~13、21は、それぞれ管理エリア内に設定される個別監視エリアの動画を撮影する。この動画は、例えばH.264等の所定の規格に基づいてデータ圧縮されたデータである。そして、監視システム1では、映像品質調整装置42が群衆行動解析サーバ41により生成された人数予測値に基づきカメラ21の撮影画像の品質を調整する。品質は、撮影された動画像の解像度が高いほど高くなるものとする。また、詳細は後述するが、監視システム1では、管理エリアの出入り口に配置されるカメラ11~13については撮影品質を最高レベルで固定する。これは、出入り口の人流及び人数が、管理エリア外の環境に影響されるため、予測しない環境変化が生じた場合に対応するためである。 FIG. 2 shows a block diagram of the monitoring system according to the first embodiment. FIG. 2 shows in detail the crowd behavior analysis server 41 among the components explained in FIG. Cameras 11 to 13 are cameras installed at the entrance/exit of the management area. Also, the camera 21 is a camera provided at a branch point of the passage within the management area. The cameras 11 to 13 and 21 respectively shoot moving images of individual monitoring areas set within the management area. This moving image is, for example, H.I. It is data compressed based on a predetermined standard such as H.264. In the monitoring system 1 , the video quality adjustment device 42 adjusts the quality of the image captured by the camera 21 based on the predicted number of people generated by the crowd behavior analysis server 41 . Assume that the higher the resolution of the captured moving image, the higher the quality. Further, although the details will be described later, in the monitoring system 1, the imaging quality of the cameras 11 to 13 arranged at the entrance/exit of the management area is fixed at the highest level. This is because the flow of people and the number of people at the entrance/exit are affected by the environment outside the management area, and this is to cope with unexpected environmental changes.
 群衆行動解析サーバ41は、複数のカメラ(例えば、カメラ11~13、21)から取得した映像に基づき複数のカメラのそれぞれが撮影する個別監視エリア毎の人流を解析して、個別監視エリア毎の人流の変化を予測した人数予測値を算出する。なお、詳細は以下で説明するが、群衆行動解析サーバ41は、個別監視エリア毎にエリア内の人数に、隣接する個別監視エリアから入ってくる人の人数を加算するとともに隣接する個別監視エリアに出て行く人の人数を減算することで人数予測値を算出する。つまり、群衆行動解析サーバ41は、現時点までに測定された個別監視エリア毎の出入りの人数に基づき近い将来(例えば、次の映像取得サイクル)における個別監視エリア毎の人数を予測する。そして、映像品質調整装置42は、人数予測値が大きいほど前記個別監視エリアに対応する前記カメラの映像品質を高く設定する。 The crowd behavior analysis server 41 analyzes the flow of people in each individual monitoring area captured by each of the plurality of cameras (for example, cameras 11 to 13, 21) based on the images acquired from the cameras 11 to 13, 21, and Calculate the predicted number of people by predicting changes in the flow of people. The crowd behavior analysis server 41 adds the number of people entering from an adjacent individual monitoring area to the number of people in each individual monitoring area, and A number prediction value is calculated by subtracting the number of people leaving. That is, the crowd behavior analysis server 41 predicts the number of people in each individual monitoring area in the near future (for example, the next video acquisition cycle) based on the number of people entering and exiting each individual monitoring area measured up to the present time. Then, the video quality adjustment device 42 sets the video quality of the camera corresponding to the individual monitoring area higher as the predicted number of people increases.
 ここで、群衆行動解析サーバ41は、以下で説明する映像取得処理、人流解析処理、及び、人数予測処理を行う専用ハードウェアとして実現出来るが、これらの処理を行うプログラムをコンピュータの演算部で実行することでも実現出来る。図2に示す例では、これらの処理を行う群衆行動解析プログラムをコンピュータで実行する群衆行動解析サーバ41について示した。 Here, the crowd behavior analysis server 41 can be realized as dedicated hardware that performs image acquisition processing, crowd flow analysis processing, and number prediction processing, which will be described below. It can also be realized by The example shown in FIG. 2 shows the crowd behavior analysis server 41 that executes the crowd behavior analysis program for performing these processes on a computer.
 図2に示すように、群衆行動解析サーバ41は、演算部51、メモリ52、通信インタフェース53を有する。演算部51は、群衆行動解析プログラムを実行することで、映像取得部61、人流解析部62、群衆解析部63、人数予測部64を実現する。メモリ52は、例えば、揮発性メモリ及び不揮発性メモリを用いた記憶部であり、不揮発性メモリ部分に群衆行動解析プログラムが格納される。また、メモリ52の揮発性メモリ部分は演算部51で行われる演算で利用する動画データ及び計算データが格納される。通信インタフェース53は、群衆行動解析サーバ41がカメラ11~13、21及び映像品質調整装置42と通信を行うための通信処理を行う。なお、図2に示す例では、映像品質調整装置42を群衆行動解析サーバ41とは別の装置としたが、群衆行動解析サーバ41ないの一機能として映像品質調整装置42を取り込んでもよい。 As shown in FIG. 2, the crowd behavior analysis server 41 has a calculation unit 51, a memory 52, and a communication interface 53. The calculation unit 51 implements a video acquisition unit 61, a people flow analysis unit 62, a crowd analysis unit 63, and a number prediction unit 64 by executing a crowd behavior analysis program. The memory 52 is, for example, a storage unit using a volatile memory and a nonvolatile memory, and a crowd behavior analysis program is stored in the nonvolatile memory portion. A volatile memory portion of the memory 52 stores moving image data and calculation data used in calculations performed by the calculation unit 51 . The communication interface 53 performs communication processing for the crowd behavior analysis server 41 to communicate with the cameras 11 to 13 and 21 and the image quality adjustment device 42 . In the example shown in FIG. 2, the video quality adjustment device 42 is a separate device from the crowd behavior analysis server 41, but the video quality adjustment device 42 may be included as a function of the crowd behavior analysis server 41.
 映像取得部61は、映像取得処理を行う。この映像取得処理では、管理エリア内に分散して配置される複数のカメラのそれぞれが撮影する個別監視エリアの映像を取得する。人流解析部62は、人流解析処理を行う。 The video acquisition unit 61 performs video acquisition processing. In this video acquisition process, video of the individual monitoring area captured by each of a plurality of cameras dispersedly arranged in the management area is acquired. The people flow analysis unit 62 performs people flow analysis processing.
 人流解析処理では、取得した映像に基づき個別監視エリア毎の人流を解析する。より具体的には、人流解析処理では、個別監視エリアを囲む設定された境界線をまたいでエリアから出た人の数とエリアに入った人の数をカウントするとともに、人がまたいだ境界線の位置に基づき人がいずれの方向に移動したかを解析する。 In the people flow analysis process, the people flow for each individual monitoring area is analyzed based on the acquired video. More specifically, in the people flow analysis process, the number of people who crossed the set boundary line surrounding the individual monitoring area and the number of people who entered the area were counted. Analyze which direction the person moved based on the position of
 群衆解析部63は、群衆解析処理を行う。群衆解析処理では、取得した映像に基づき個別監視エリア毎に当該エリア内にいる人の数をカウントする。より具体的には、群衆解析処理では、各個別監視エリアに映像の最初の所定の期間にいる人の数をカウントすして、当該カウント値を人数とする。 The crowd analysis unit 63 performs crowd analysis processing. In crowd analysis processing, the number of people in each individual monitoring area is counted based on the acquired video. More specifically, in the crowd analysis process, the number of people in each individual monitoring area during the first predetermined period of the video is counted, and the count value is used as the number of people.
 人数予測部64は、人数予測処理を行う。人数予測処理では、個別監視エリア毎の人数の変化を予測した値であって、カメラの映像品質の切り替えに用いられる人数予測値を算出する。具体的には、人数予測処理では、個別監視エリア毎にエリア内の人数に、隣接する個別監視エリアから入ってくる人の人数を加算するとともに隣接する個別監視エリアに出て行く人の人数を減算することで人数予測値を算出する。なお、人流解析部62による人数予測方法は、単なる加減算によるものではなく、例えば、人工知能を用いた予測処理を利用することもできる。 The number of people prediction unit 64 performs the number of people prediction process. In the number-of-persons prediction process, a number-of-people prediction value, which is a value obtained by predicting a change in the number of people for each individual monitoring area and is used for switching the image quality of the camera, is calculated. Specifically, in the population prediction process, the number of people entering from an adjacent individual monitoring area is added to the number of people in each individual monitoring area, and the number of people leaving the adjacent individual monitoring area is calculated. By subtracting, the predicted number of people is calculated. It should be noted that the method of predicting the number of people by the people flow analysis unit 62 is not based on mere addition and subtraction, and prediction processing using artificial intelligence, for example, can also be used.
 続いて、実施の形態1にかかる監視システム1の動作について説明する。そこで、図3に実施の形態1にかかる監視システムの動作を説明するフローチャートを示す。図3に示すように、実施の形態1にかかる監視システム1では、カメラ設定を初期化する初期化処理(ステップS1)を行った後に、カメラ映像品質調整処理(ステップS2)を含む人流監視処理を行う。なお、図3では、人流監視処理のうちカメラ映像品質調整処理のみを示した。また、図3に示すように、実施の形態1にかかる監視システム1では、予め設定した周期サイクル(例えば、設定周期時間を1分とするサイクル)毎にカメラ映像品質調整処理を繰り返し実行する。 Next, the operation of the monitoring system 1 according to the first embodiment will be explained. Therefore, FIG. 3 shows a flowchart for explaining the operation of the monitoring system according to the first embodiment. As shown in FIG. 3, in the monitoring system 1 according to the first embodiment, after performing initialization processing (step S1) for initializing camera settings, people flow monitoring processing including camera image quality adjustment processing (step S2) is performed. I do. Note that FIG. 3 shows only the camera image quality adjustment process in the crowd monitoring process. Further, as shown in FIG. 3, in the surveillance system 1 according to the first embodiment, the camera image quality adjustment process is repeatedly executed in each preset periodic cycle (for example, a cycle with a set periodic time of 1 minute).
 ここで、初期化処理について詳細に説明する。図4に実施の形態1にかかる監視システム1の初期化処理を説明するフローチャートを示す。図4に示すように、初期化処理では、まず映像品質調整装置42が管理エリアの出入り口に設置されたカメラ(例えば、カメラ11~13)の映像品質を最高品質に設定する(ステップS11)。なお、ステップS11で映像品質を設定したカメラはその後もその設定を維持する。 Here, the initialization process will be explained in detail. FIG. 4 shows a flowchart for explaining initialization processing of the monitoring system 1 according to the first embodiment. As shown in FIG. 4, in the initialization process, first, the image quality adjustment device 42 sets the image quality of the cameras (for example, cameras 11 to 13) installed at the entrance of the management area to the highest quality (step S11). Note that the camera for which the image quality is set in step S11 maintains the setting thereafter.
 続いて、映像品質調整装置42は、管理エリアの出入り口以外に設置されたカメラ(例えば、カメラ21)の映像品質を最低品質に設定する(ステップS12)。初期化処理は、例えば、管理エリアへの人の浸入がない、もしくは、極端に少ない時間に行うことが好ましい。このような条件では、管理エリアの出入り口以外に設置されたカメラの撮影品質を最低レベルに落とすことが容易だからである。 Next, the image quality adjustment device 42 sets the image quality of the camera (for example, camera 21) installed outside the entrance/exit of the management area to the lowest quality (step S12). It is preferable to perform the initialization process, for example, when there is no human intrusion into the management area or when there is extremely little intrusion. This is because under such conditions, it is easy to lower the imaging quality of cameras installed outside the entrance/exit of the management area to the lowest level.
 続いて、実施の形態1にかかる監視システム1におけるカメラ映像品質調整処理について詳細に説明する。このカメラ映像品質調整処理では、人数予測値を算出することを特徴の1つとする。そこで、図5に実施の形態1にかかる監視システム1における人数予測値の計算の概略を説明する図に示す。 Next, camera image quality adjustment processing in the surveillance system 1 according to the first embodiment will be described in detail. One of the features of this camera image quality adjustment process is to calculate the predicted number of people. Therefore, FIG. 5 is a diagram for explaining an outline of calculation of the predicted number of people in the monitoring system 1 according to the first embodiment.
 図5に示すように、実施の形態1にかかる監視システム1では、カメラ11~13、21のそれぞれが個別監視エリアを撮影して動画を生成する。また、図5では、ある撮影サイクルの撮影開始時に個別監視エリアにいた人を実線、撮影サイクルの最後の時点で個別監視エリアに入出した人を破線で示した。つまり、実線で示した人の数が群衆解析処理で算出される人数となり、破線で示した人が人流解析処理により解析される人及び人の移動方向となる。そして、実施の形態1にかかる監視システム1では、撮影サイクルの最初に個別管理エリアにいた人を基準にして、撮影サイクル中に個別監視エリアから出た人の数と移動方向を解析する。そして、この解析結果に基づき近い将来(例えば、次の撮影サイクル)における各個別監視エリアに存在すると予測される人数の予測値を人数予測値として算出する。 As shown in FIG. 5, in the surveillance system 1 according to the first embodiment, each of the cameras 11 to 13, 21 shoots individual surveillance areas to generate moving images. Also, in FIG. 5, a solid line indicates a person who was in the individual monitoring area at the start of imaging in a certain imaging cycle, and a broken line indicates a person who entered the individual monitoring area at the end of the imaging cycle. That is, the number of people indicated by the solid line is the number of people calculated by the crowd analysis process, and the people indicated by the broken line are the people and the direction of movement of the people analyzed by the people flow analysis process. Then, in the monitoring system 1 according to the first embodiment, the number of people who left the individual monitoring area during the imaging cycle and the direction of movement are analyzed based on the number of people who were in the individual management area at the beginning of the imaging cycle. Then, based on this analysis result, a predicted value of the number of people predicted to exist in each individual monitoring area in the near future (for example, the next imaging cycle) is calculated as the predicted number of people.
 図5に示す例では、カメラ21の個別管理エリアが人数予測値の対象となり、現撮影サイクルの人数が5人であり、エリア退出人数が4人、エリア入り人数が3人となり、その人数予測値は4人となる。 In the example shown in FIG. 5, the individual management area of the camera 21 is the target of the predicted number of people, the number of people in the current shooting cycle is 5, the number of people leaving the area is 4, and the number of people entering the area is 3, and the number of people is predicted. The value is 4 people.
 続いて、実施の形態1にかかる監視システム1におけるカメラ映像品質調整処理について詳細に説明する。図6に実施の形態1にかかる監視システムのカメラ映像品質調整処理を説明するフローチャートを示す。 Next, camera image quality adjustment processing in the surveillance system 1 according to the first embodiment will be described in detail. FIG. 6 shows a flowchart for explaining camera image quality adjustment processing of the surveillance system according to the first embodiment.
 図6に示すように、カメラ映像品質調整処理では、映像取得部61がまず各カメラから撮影映像を受信する(ステップS21)。続いて、人流解析部62が受信した映像を解析して個別監視エリア毎の人数及び人流を算出する人流解析処理と、群衆解析部63が取得した前記映像に基づき個別監視エリア毎の人数を解析する群衆解析処理と、を行う(ステップS22)。ここで、図7に実施の形態1にかかる監視システムのステップS22の人流解析処理を説明する図を示す。図7に示す例では、ステップS22の群衆解析処理では、カメラ11が撮影する個別監視エリアの初期人数は30人であると算出する。人流解析処理では、20人がカメラ21が撮影する個別監視エリアの方向に向かい、5人が管理エリア外の方向に移動したことを算出する。また、群衆解析処理では、カメラ12が撮影する個別監視エリアの初期人数は14人であると算出する。人流解析処理では、その後に6人がカメラ21が撮影する個別監視エリアの方向に向かい、5人が管理エリア外の方向に移動したことを算出する。また、群衆解析処理では、カメラ13が撮影する個別監視エリアの初期人数は9人であると算出する。人流解析処理では、その後に3人がカメラ21が撮影する個別監視エリアの方向に向かい、5人が管理エリア外の方向に移動したことを算出する。また、群衆解析処理では、カメラ21が撮影する個別監視エリアの初期人数は10人であると算出する。人流解析処理では、その後に3人がカメラ11が撮影する個別監視エリアの方向に向かい、3人がカメラ12が設営する個別監視エリアの方向に向かい、4人がカメラ13が撮影する個別監視エリアの方向に移動したことを算出する。このように、ステップS22の人流解析処理では、各個別監視エリアの初期の人数と、その後に移動した人数とその移動方向を算出する。 As shown in FIG. 6, in the camera image quality adjustment process, the image acquisition unit 61 first receives captured images from each camera (step S21). Subsequently, the crowd analysis unit 62 analyzes the video received and calculates the number of people and the flow of people in each individual monitoring area, and the crowd analysis unit 63 analyzes the number of people in each individual monitoring area based on the video acquired. and a crowd analysis process are performed (step S22). Here, FIG. 7 shows a diagram for explaining the people flow analysis processing in step S22 of the monitoring system according to the first embodiment. In the example shown in FIG. 7, in the crowd analysis process in step S22, the initial number of people in the individual monitoring area photographed by the camera 11 is calculated to be 30 people. In the people flow analysis process, it is calculated that 20 people have moved toward the individual monitoring area photographed by the camera 21 and 5 people have moved outside the management area. Also, in the crowd analysis process, the initial number of people in the individual monitoring area photographed by the camera 12 is calculated to be 14 people. In the people flow analysis process, it is calculated that after that, six people headed toward the individual monitoring area photographed by the camera 21, and five people moved out of the management area. Also, in the crowd analysis process, the initial number of people in the individual monitoring area photographed by the camera 13 is calculated to be nine. In the people flow analysis process, it is calculated that after that, three people headed toward the individual monitoring area photographed by the camera 21, and five people moved out of the management area. Also, in the crowd analysis process, the initial number of people in the individual monitoring area photographed by the camera 21 is calculated to be 10 people. In the people flow analysis process, after that, three people head toward the individual monitoring area captured by the camera 11, three people move toward the individual monitoring area set up by the camera 12, and four people move toward the individual monitoring area captured by the camera 13. It is calculated that it has moved in the direction of In this way, in the people flow analysis process of step S22, the initial number of people in each individual monitoring area, the number of people who moved after that, and the direction of movement are calculated.
 続いて、カメラ映像品質調整処理では、ステップS22の計算結果に基づき、次の撮影サイクルでの各個別監視エリアの人数を予測した人数予測値を算出する人数予測処理を行う(ステップS23)。ここで、図8に実施の形態1にかかる監視システム1のステップS23の人数予測処理を説明する図に示す。図8に示すように、人数予測処理では、各個別監視エリア毎に入ってくる人数を加算し、出て行く人数を減算して人数予測値を算出する。このとき、実施の形態1にかかる監視システム1では、管理エリアの出入り口にあるカメラ11~13が撮影する個別監視エリアについては人数予測値は算出しない。個別監視エリアについては、把握できない外部要因の影響が大きく計算誤差が大きくなることと、カメラ11~13の撮影品質が固定されることの2つの理由からである。一方、人数予測値の算出対象となるカメラ21については、初期人数に入出人数を適用すると29人となる。 Subsequently, in the camera image quality adjustment process, based on the calculation result of step S22, a people prediction process is performed to calculate a predicted number of people in each individual monitoring area in the next shooting cycle (step S23). Here, FIG. 8 is a diagram for explaining the number-of-people prediction processing in step S23 of the monitoring system 1 according to the first embodiment. As shown in FIG. 8, in the number prediction process, the number of people entering each individual monitoring area is added and the number of people leaving is subtracted to calculate the number prediction value. At this time, the monitoring system 1 according to the first embodiment does not calculate the predicted number of persons for the individual monitoring areas photographed by the cameras 11 to 13 at the entrances and exits of the management area. There are two reasons for the individual monitoring area: the influence of external factors that cannot be comprehended is large, resulting in large calculation errors, and the imaging quality of the cameras 11 to 13 is fixed. On the other hand, with respect to the camera 21 for which the predicted value of the number of people is to be calculated, the initial number of people is 29 when the number of people entering and exiting is applied.
 続いて、カメラ映像品質調整処理では、ステップS23の計算結果に基づき次の撮影サイクルでの管理エリアの出入り口以外に設定した個別監視エリアを撮影するカメラ21の映像品質の設定を調整する映像品質調整処理を行う(ステップS24)。ここで、図9に実施の形態1にかかる監視システム1のステップS24の映像品質調整処理を説明する図を示す。図9に示すように、映像品質調整処理では、人数予測値の人数と映像品質設定とを対応づけた品質設定テーブルを参照し、ステップS23で算出された人数予測値がどの品質設定テーブルのどの欄に当てはまるかを分析する。そして、当てはまった欄に対応する映像品質設定の値をカメラ21に適用する。図9に示す例では、カメラ21の映像品質は最低の640×360から1920×1080に品質を上げるように変更が加えられる。 Subsequently, in the camera image quality adjustment process, the image quality adjustment for adjusting the image quality setting of the camera 21 for capturing the individual monitoring area set other than the entrance/exit of the management area in the next image capturing cycle based on the calculation result of step S23. Processing is performed (step S24). Here, FIG. 9 shows a diagram for explaining the video quality adjustment processing in step S24 of the monitoring system 1 according to the first embodiment. As shown in FIG. 9, in the video quality adjustment process, a quality setting table that associates the predicted number of people with the video quality setting is referenced, and the predicted number of people calculated in step S23 is set to which quality setting table. Analyze whether it applies to the column. Then, the video quality setting value corresponding to the matched column is applied to the camera 21 . In the example shown in FIG. 9, the image quality of the camera 21 is changed from the lowest 640×360 to 1920×1080.
 上記説明より、実施の形態1にかかる監視システム1では、複数のカメラを用いて取得された現時点の個別監視エリアのうち互いに隣接する個別監視エリアの人数及び人流を用いて近い将来の各個別監視エリアの人数を予測した人数予測値を算出する。そして、実施の形態1にかかる監視システム1では、この人数予測値が多いほどカメラの映像品質を高くすることで、先取り的に映像品質を向上させて人流の変化に対して高い追従性を実現しながら、映像データの送信により生じるデータ通信量を削減することができる。 As described above, in the monitoring system 1 according to the first embodiment, each individual monitoring area in the near future is calculated using the number of people and the flow of people in adjacent individual monitoring areas among the current individual monitoring areas acquired using a plurality of cameras. A population prediction value is calculated by predicting the number of people in an area. In the surveillance system 1 according to the first embodiment, by increasing the image quality of the camera as the predicted number of people increases, the image quality is improved in advance and high followability is realized with respect to changes in the flow of people. However, the amount of data communication caused by transmission of video data can be reduced.
 より具体的には、実施の形態1にかかる監視システム1では、人数予測値に基づき先取り的に映像品質を高めることで、群衆解析処理における人数算出処理の精度を高めることができる。また、人流解析処理においても、映像品質が高まることで、移動した人数と移動方向の把握精度が高めることができる。一方、実施の形態1にかかる監視システム1では人数及び人流が減少する場合にも先取り的に映像品質を下げることができるため、通信量の削減を行うことができる。 More specifically, in the monitoring system 1 according to Embodiment 1, the accuracy of the number of people calculation process in the crowd analysis process can be improved by preemptively improving the video quality based on the predicted number of people. Also, in the people flow analysis process, by improving the video quality, it is possible to improve the accuracy of grasping the number of people who have moved and the direction of movement. On the other hand, in the monitoring system 1 according to the first embodiment, even when the number of people and the flow of people decrease, the image quality can be lowered in advance, so the amount of communication can be reduced.
 実施の形態2
 実施の形態2では、実施の形態1にかかる人数予測処理の別の形態について説明する。そこで、図10に実施の形態2にかかる監視システムのステップS23の人数予測処理を説明する図を示す。
Embodiment 2
In a second embodiment, another form of the number-of-persons prediction process according to the first embodiment will be described. Therefore, FIG. 10 shows a diagram for explaining the process of predicting the number of people in step S23 of the monitoring system according to the second embodiment.
 図10に示すように、実施の形態2にかかる人数予測処理では、管理エリアの外部から流入する人についても考慮して、実施の形態1では計算対象外だったカメラ11~13が撮影する個別監視エリアについての人数予測値を算出する。ここで、この外部からの流入人数は、例えば、曜日、時間帯等の今までの統計データに基づき算出されるものである。また、外部からの流入人数は、人工知能により予測された値を用いることもできる。 As shown in FIG. 10, in the number-of-persons prediction process according to the second embodiment, in consideration of people entering from outside the management area, individual Calculate the predicted number of people for the monitored area. Here, the number of people coming in from the outside is calculated based on past statistical data such as the day of the week and the time period. In addition, a value predicted by artificial intelligence can also be used for the number of inflows from the outside.
 このように、管理エリアの出入り口に設定される個別監視エリアについても人数予測値を算出することで、管理エリアの出入り口に設置するカメラの解像度を適宜低く設定してデータ通信量を削減することができる。 In this way, by calculating the estimated number of people in the individual monitoring area set at the entrance/exit of the management area, it is possible to set the resolution of the camera installed at the entrance/exit of the management area to an appropriate low level, thereby reducing the amount of data communication. can.
 実施の形態3
 実施の形態3では、映像品質の設定項目の別の形態について説明する。そこで、図11に実施の形態3にかかる監視システムのステップS23の映像品質調整処理を説明する図を示す。
Embodiment 3
In the third embodiment, another form of setting items for video quality will be described. Therefore, FIG. 11 shows a diagram for explaining the video quality adjustment processing in step S23 of the monitoring system according to the third embodiment.
 図11に示すように、監視システム1では、撮影する画像の解像度のみならずフレームレートを個別監視エリア内の人数が多くなるほど高くするように品質設定テーブルを設定することもできる。 As shown in FIG. 11, in the monitoring system 1, the quality setting table can be set so that not only the resolution of the captured image but also the frame rate increases as the number of people in the individual monitoring area increases.
 人数が増えるとフレームレートを高くした方が人流解析精度を向上できる一方、フレームレートを高くすると通信データ量が多くなる問題が生じる。そのため、人数及び人流に合わせてフレームレートを落とすことで、人流解析精度とデータ通信量のバランスを取ることができる。 If the number of people increases, the accuracy of people flow analysis can be improved by increasing the frame rate. Therefore, by lowering the frame rate according to the number of people and the flow of people, it is possible to balance the accuracy of analysis of the flow of people and the amount of data communication.
 なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。 It should be noted that the present invention is not limited to the above embodiments, and can be modified as appropriate without departing from the scope of the invention.
   (付記1)
 管理エリア内に分散して配置される複数のカメラと、
 前記複数のカメラから取得した映像に基づき前記複数のカメラのそれぞれが撮影する個別監視エリア毎の人数及び人流を解析して、前記個別監視エリア毎の人流の変化を予測した人数予測値を算出する群衆行動解析サーバと、
 前記人数予測値が大きいほど前記個別監視エリアに対応する前記カメラの映像品質を高く設定する映像品質調整装置と、
 を有する監視システム。
   (付記2)
 前記群衆行動解析サーバは、前記個別監視エリア毎にエリア内の人数に、隣接する前記個別監視エリアから入ってくる人の人数を加算するとともに隣接する前記個別監視エリアに出て行く人の人数を減算することで前記人数予測値を算出する付記1に記載の監視システム。
   (付記3)
 前記群衆行動解析サーバは、複数の前記個別監視エリアのうち、前記管理エリアの出入り口に位置する個別監視エリアについては、前記人数予測値を算出しない付記1又は2に記載の監視システム。
   (付記4)
 前記群衆行動解析サーバは、複数の前記個別監視エリアのうち、前記管理エリアの出入り口に位置する個別監視エリアについては、統計的に算出された入出予測値を前記個別監視エリアの人数に加減算することで前記人数予測値を算出する付記1又は2に記載の監視システム。
   (付記5)
 前記映像品質調整装置は、前記複数のカメラのうち、前記管理エリアの出入り口に位置するカメラについては予め設定された固定画質とする付記1乃至4のいずれか1項に記載の監視システム。
   (付記6)
 前記映像品質調整装置は、前記複数のカメラのうち、前記管理エリアの出入り口に位置するカメラについては設定可能な最高画質とする付記1乃至4のいずれか1項に記載の監視システム。
   (付記7)
 前記映像品質調整装置は、前記人数予測値に対応した映像品質を記した映像品質テーブルを有し、前記映像品質テーブルを参照して前記人数予測値が大きくなるほど前記カメラに設定する映像品質を向上させる付記1乃至6のいずれか1項に記載の監視システム。
   (付記8)
 前記映像品質調整装置は、前記映像品質として、映像の解像度とフレームレートの少なくとも一方を調整する付記1乃至7のいずれか1項に記載の監視システム。
   (付記9)
 前記個別監視エリアは、前記管理エリア内の分岐点及び出入り口に少なくとも設定される付記1乃至8のいずれか1項に記載の監視システム。
   (付記10)
 前記個別監視エリアは、前記管理エリア内において人が滞留する傾向が高いエリアを含むように設定される付記1乃至9のいずれか1項に記載の監視システム。
   (付記11)
 前記個別監視エリアは、前記管理エリア内において人が一定の速度範囲で移動する部分については、隣接する前記個別監視エリア間の距離が前記人の移動速度が早くなるほど離れるように設定される付記1乃至10のいずれか1項に記載の監視システム。
   (付記12)
 管理エリア内に分散して配置される複数のカメラを用いて前記管理エリア内の人流を計測する監視システムの映像品質設定方法であって、
 前記複数のカメラから取得した映像に基づき前記複数のカメラのそれぞれが撮影する個別監視エリア毎の人流を解析して、前記個別監視エリア毎の人数及び人流の変化を予測した人数予測値を算出し、
 前記人数予測値が大きいほど前記個別監視エリアに対応する前記カメラの映像品質を高く設定する監視システムの映像品質設定方法。
   (付記13)
 管理エリア内に分散して配置される複数のカメラのそれぞれが撮影する個別監視エリアの映像を取得する映像取得部と、
 取得した前記映像に基づき個別監視エリア毎の人の出入り及び移動方向を示す人流を解析する人流解析部と、
 取得した前記映像に基づき個別監視エリア毎の人数を解析する群衆解析部と、
 前記個別監視エリア毎の人流の変化を予測した値であって、前記カメラの映像品質の切り替えに用いられる人数予測値を算出する人数予測部と、を有し、
 前記人数予測部は、前記個別監視エリア毎にエリア内の人数に、隣接する前記個別監視エリアから入ってくる人の人数を加算するとともに隣接する前記個別監視エリアに出て行く人の人数を減算することで前記人数予測値を算出する群衆行動解析サーバ。
   (付記14)
 管理エリア内に分散して配置される複数のカメラのそれぞれが撮影する個別監視エリアの映像に基づき群衆行動解析プログラムが格納されるコンピュータ読み取り可能な非一時的記録媒体であって、
 前記複数のカメラから前記映像を取得する映像取得処理と、
 取得した前記映像に基づき個別監視エリア毎の人の出入り及び移動方向を示す人流を解析する人流解析処理と、
 取得した前記映像に基づき個別監視エリア毎の人数を解析する群衆解析処理と、
 前記個別監視エリア毎の人流の変化を予測した値であって、前記カメラの映像品質の切り替えに用いられる人数予測値を算出する人数予測処理と、を行い、
 前記人数予測処理は、前記個別監視エリア毎にエリア内の人数に、隣接する前記個別監視エリアから入ってくる人の人数を加算するとともに隣接する前記個別監視エリアに出て行く人の人数を減算することで前記人数予測値を算出する群衆行動解析プログラムが格納されるコンピュータ読み取り可能な非一時的記録媒体。
(Appendix 1)
a plurality of cameras distributed in a management area;
Analyze the number of people and the flow of people in each individual monitoring area captured by each of the plurality of cameras based on the images acquired from the plurality of cameras, and calculate a predicted number of people predicting changes in the flow of people in each of the individual monitoring areas. a crowd behavior analysis server;
a video quality adjustment device that sets the video quality of the camera corresponding to the individual monitoring area higher as the predicted number of people increases;
surveillance system.
(Appendix 2)
The crowd behavior analysis server adds the number of people entering from the adjacent individual monitoring area to the number of people in each individual monitoring area, and calculates the number of people leaving the adjacent individual monitoring area. The monitoring system according to appendix 1, wherein the predicted number of people is calculated by subtraction.
(Appendix 3)
3. The monitoring system according to appendix 1 or 2, wherein the crowd behavior analysis server does not calculate the predicted number of people in an individual monitoring area located at an entrance of the management area among the plurality of individual monitoring areas.
(Appendix 4)
The crowd behavior analysis server adds/subtracts a statistically calculated predicted entry/exit value to/from the number of people in the individual monitoring area for the individual monitoring area located at the entrance/exit of the management area among the plurality of individual monitoring areas. 3. The monitoring system according to appendix 1 or 2, wherein the predicted number of people is calculated by
(Appendix 5)
5. The surveillance system according to any one of appendices 1 to 4, wherein the video quality adjustment device sets a predetermined fixed image quality to a camera positioned at an entrance/exit of the management area among the plurality of cameras.
(Appendix 6)
5. The monitoring system according to any one of supplementary notes 1 to 4, wherein the image quality adjustment device sets a camera positioned at an entrance of the management area among the plurality of cameras to the highest image quality that can be set.
(Appendix 7)
The video quality adjustment device has a video quality table describing video quality corresponding to the predicted number of people, and refers to the video quality table to improve the video quality set in the camera as the predicted number of people increases. 7. The monitoring system according to any one of appendices 1 to 6, wherein
(Appendix 8)
8. The monitoring system according to any one of appendices 1 to 7, wherein the video quality adjustment device adjusts at least one of video resolution and frame rate as the video quality.
(Appendix 9)
9. The monitoring system according to any one of appendices 1 to 8, wherein the individual monitoring area is set at least at a branch point and an entrance/exit in the management area.
(Appendix 10)
10. The monitoring system according to any one of appendices 1 to 9, wherein the individual monitoring area is set to include an area in which people tend to stay in the management area.
(Appendix 11)
Supplementary note 1 that the individual monitoring areas are set such that the distance between the adjacent individual monitoring areas increases as the moving speed of the person increases in the portion where the person moves within the management area within a certain speed range. 11. A surveillance system according to any one of claims 1-10.
(Appendix 12)
A video quality setting method for a surveillance system for measuring the flow of people in a management area using a plurality of cameras dispersedly arranged in the management area,
Analyze the flow of people in each individual monitoring area captured by each of the plurality of cameras based on the images acquired from the plurality of cameras, and calculate a predicted number of people that predicts changes in the number of people and the flow of people in each of the individual monitoring areas. ,
A video quality setting method for a monitoring system, wherein the video quality of the camera corresponding to the individual monitoring area is set higher as the predicted number of people increases.
(Appendix 13)
a video acquisition unit that acquires video of an individual monitoring area captured by each of a plurality of cameras dispersedly arranged in a management area;
a people flow analysis unit that analyzes the flow of people showing the entry and exit and movement direction of people in each individual monitoring area based on the acquired video;
a crowd analysis unit that analyzes the number of people in each individual monitoring area based on the acquired video;
a number prediction unit that calculates a number prediction value that is a value obtained by predicting a change in the flow of people in each of the individual monitoring areas and is used for switching the image quality of the camera,
The number prediction unit adds the number of people entering from the adjacent individual monitoring area to the number of people in each individual monitoring area and subtracts the number of people leaving the adjacent individual monitoring area. A crowd behavior analysis server that calculates the predicted number of people by
(Appendix 14)
A computer-readable non-temporary recording medium in which a crowd behavior analysis program is stored based on images of an individual monitoring area captured by each of a plurality of cameras dispersedly arranged in a management area,
an image acquisition process for acquiring the images from the plurality of cameras;
People flow analysis processing for analyzing the flow of people showing the entry and exit and movement direction of people in each individual monitoring area based on the acquired video;
Crowd analysis processing for analyzing the number of people in each individual monitoring area based on the acquired video;
a number prediction process for calculating a number prediction value that is a value obtained by predicting a change in the flow of people for each of the individual monitoring areas and is used for switching the image quality of the camera,
The number of people prediction process adds the number of people entering from the adjacent individual monitoring area to the number of people in each individual monitoring area and subtracts the number of people leaving the adjacent individual monitoring area. A computer-readable non-temporary recording medium in which a crowd behavior analysis program for calculating the predicted number of people is stored.
 1 監視システム
 11 カメラ
 12 カメラ
 13 カメラ
 21 カメラ
 31 公衆ネットワーク
 41 群衆行動解析サーバ
 42 映像品質調整装置
 51 演算部
 52 メモリ
 53 通信インタフェース
 61 映像取得部
 62 人流解析部
 63 群衆解析部
 64 人数予測部
1 Surveillance System 11 Camera 12 Camera 13 Camera 21 Camera 31 Public Network 41 Crowd Behavior Analysis Server 42 Image Quality Adjustment Device 51 Calculation Unit 52 Memory 53 Communication Interface 61 Image Acquisition Unit 62 People Flow Analysis Unit 63 Crowd Analysis Unit 64 People Prediction Unit

Claims (14)

  1.  管理エリア内に分散して配置される複数のカメラと、
     前記複数のカメラから取得した映像に基づき前記複数のカメラのそれぞれが撮影する個別監視エリア毎の人数及び人流を解析して、前記個別監視エリア毎の人流の変化を予測した人数予測値を算出する群衆行動解析サーバと、
     前記人数予測値が大きいほど前記個別監視エリアに対応する前記カメラの映像品質を高く設定する映像品質調整装置と、
     を有する監視システム。
    a plurality of cameras distributed in a management area;
    Analyze the number of people and the flow of people in each individual monitoring area captured by each of the plurality of cameras based on the images acquired from the plurality of cameras, and calculate a predicted number of people predicting changes in the flow of people in each of the individual monitoring areas. a crowd behavior analysis server;
    a video quality adjustment device that sets the video quality of the camera corresponding to the individual monitoring area higher as the predicted number of people increases;
    surveillance system.
  2.  前記群衆行動解析サーバは、前記個別監視エリア毎にエリア内の人数に、隣接する前記個別監視エリアから入ってくる人の人数を加算するとともに隣接する前記個別監視エリアに出て行く人の人数を減算することで前記人数予測値を算出する請求項1に記載の監視システム。 The crowd behavior analysis server adds the number of people entering from the adjacent individual monitoring area to the number of people in each individual monitoring area, and calculates the number of people leaving the adjacent individual monitoring area. 2. The monitoring system according to claim 1, wherein the predicted number of people is calculated by subtraction.
  3.  前記群衆行動解析サーバは、複数の前記個別監視エリアのうち、前記管理エリアの出入り口に位置する個別監視エリアについては、前記人数予測値を算出しない請求項1又は2に記載の監視システム。  The monitoring system according to claim 1 or 2, wherein the crowd behavior analysis server does not calculate the predicted number of people in an individual monitoring area located at the entrance/exit of the management area among the plurality of individual monitoring areas.
  4.  前記群衆行動解析サーバは、複数の前記個別監視エリアのうち、前記管理エリアの出入り口に位置する個別監視エリアについては、統計的に算出された入出予測値を前記個別監視エリアの人数に加減算することで前記人数予測値を算出する請求項1又は2に記載の監視システム。 The crowd behavior analysis server adds/subtracts a statistically calculated predicted entry/exit value to/from the number of people in the individual monitoring area for the individual monitoring area located at the entrance/exit of the management area among the plurality of individual monitoring areas. 3. The monitoring system according to claim 1 or 2, wherein the predicted number of people is calculated by .
  5.  前記映像品質調整装置は、前記複数のカメラのうち、前記管理エリアの出入り口に位置するカメラについては予め設定された固定画質とする請求項1乃至4のいずれか1項に記載の監視システム。 The monitoring system according to any one of claims 1 to 4, wherein the image quality adjustment device sets a predetermined fixed image quality to a camera positioned at the entrance/exit of the management area among the plurality of cameras.
  6.  前記映像品質調整装置は、前記複数のカメラのうち、前記管理エリアの出入り口に位置するカメラについては設定可能な最高画質とする請求項1乃至4のいずれか1項に記載の監視システム。 The monitoring system according to any one of claims 1 to 4, wherein the image quality adjustment device sets a camera located at the entrance/exit of the management area among the plurality of cameras to the highest image quality that can be set.
  7.  前記映像品質調整装置は、前記人数予測値に対応した映像品質を記した映像品質テーブルを有し、前記映像品質テーブルを参照して前記人数予測値が大きくなるほど前記カメラに設定する映像品質を向上させる請求項1乃至6のいずれか1項に記載の監視システム。 The video quality adjustment device has a video quality table describing video quality corresponding to the predicted number of people, and refers to the video quality table to improve the video quality set in the camera as the predicted number of people increases. 7. The surveillance system according to any one of claims 1 to 6.
  8.  前記映像品質調整装置は、前記映像品質として、映像の解像度とフレームレートの少なくとも一方を調整する請求項1乃至7のいずれか1項に記載の監視システム。 The monitoring system according to any one of claims 1 to 7, wherein the video quality adjustment device adjusts at least one of video resolution and frame rate as the video quality.
  9.  前記個別監視エリアは、前記管理エリア内の分岐点及び出入り口に少なくとも設定される請求項1乃至8のいずれか1項に記載の監視システム。 The monitoring system according to any one of claims 1 to 8, wherein the individual monitoring areas are set at least at branch points and entrances/exits in the management area.
  10.  前記個別監視エリアは、前記管理エリア内において人が滞留する傾向が高いエリアを含むように設定される請求項1乃至9のいずれか1項に記載の監視システム。 The monitoring system according to any one of claims 1 to 9, wherein the individual monitoring areas are set to include areas in which people tend to stay in the management area.
  11.  前記個別監視エリアは、前記管理エリア内において人が一定の速度範囲で移動する部分については、隣接する前記個別監視エリア間の距離が前記人の移動速度が早くなるほど離れるように設定される請求項1乃至10のいずれか1項に記載の監視システム。 3. The individual monitoring areas are set such that the distance between adjacent individual monitoring areas increases as the moving speed of the person increases in a portion where a person moves within the management area within a certain speed range. 11. The surveillance system according to any one of 1 to 10.
  12.  管理エリア内に分散して配置される複数のカメラを用いて前記管理エリア内の人流を計測する監視システムの映像品質設定方法であって、
     前記複数のカメラから取得した映像に基づき前記複数のカメラのそれぞれが撮影する個別監視エリア毎の人流を解析して、前記個別監視エリア毎の人数及び人流の変化を予測した人数予測値を算出し、
     前記人数予測値が大きいほど前記個別監視エリアに対応する前記カメラの映像品質を高く設定する監視システムの映像品質設定方法。
    A video quality setting method for a surveillance system for measuring the flow of people in a management area using a plurality of cameras dispersedly arranged in the management area,
    Analyze the flow of people in each individual monitoring area captured by each of the plurality of cameras based on the images acquired from the plurality of cameras, and calculate a predicted number of people that predicts changes in the number of people and the flow of people in each of the individual monitoring areas. ,
    A video quality setting method for a monitoring system, wherein the video quality of the camera corresponding to the individual monitoring area is set higher as the predicted number of people increases.
  13.  管理エリア内に分散して配置される複数のカメラのそれぞれが撮影する個別監視エリアの映像を取得する映像取得部と、
     取得した前記映像に基づき個別監視エリア毎の人の出入り及び移動方向を示す人流を解析する人流解析部と、
     取得した前記映像に基づき個別監視エリア毎の人数を解析する群衆解析部と、
     前記個別監視エリア毎の人流の変化を予測した値であって、前記カメラの映像品質の切り替えに用いられる人数予測値を算出する人数予測部と、を有し、
     前記人数予測部は、前記個別監視エリア毎にエリア内の人数に、隣接する前記個別監視エリアから入ってくる人の人数を加算するとともに隣接する前記個別監視エリアに出て行く人の人数を減算することで前記人数予測値を算出する群衆行動解析サーバ。
    a video acquisition unit that acquires video of an individual monitoring area captured by each of a plurality of cameras dispersedly arranged in a management area;
    a people flow analysis unit that analyzes the flow of people showing the entry and exit and movement direction of people in each individual monitoring area based on the acquired video;
    a crowd analysis unit that analyzes the number of people in each individual monitoring area based on the acquired video;
    a number prediction unit that calculates a number prediction value that is a value obtained by predicting a change in the flow of people in each of the individual monitoring areas and is used for switching the image quality of the camera,
    The number prediction unit adds the number of people entering from the adjacent individual monitoring area to the number of people in each individual monitoring area and subtracts the number of people leaving the adjacent individual monitoring area. A crowd behavior analysis server that calculates the predicted number of people by
  14.  管理エリア内に分散して配置される複数のカメラのそれぞれが撮影する個別監視エリアの映像に基づき群衆行動解析プログラムが格納されるコンピュータ読み取り可能な非一時的記録媒体であって、
     前記複数のカメラから前記映像を取得する映像取得処理と、
     取得した前記映像に基づき個別監視エリア毎の人の出入り及び移動方向を示す人流を解析する人流解析処理と、
     取得した前記映像に基づき個別監視エリア毎の人数を解析する群衆解析処理と、
     前記個別監視エリア毎の人流の変化を予測した値であって、前記カメラの映像品質の切り替えに用いられる人数予測値を算出する人数予測処理と、を行い、
     前記人数予測処理は、前記個別監視エリア毎にエリア内の人数に、隣接する前記個別監視エリアから入ってくる人の人数を加算するとともに隣接する前記個別監視エリアに出て行く人の人数を減算することで前記人数予測値を算出する群衆行動解析プログラムが格納されるコンピュータ読み取り可能な非一時的記録媒体。
    A computer-readable non-temporary recording medium in which a crowd behavior analysis program is stored based on images of an individual monitoring area captured by each of a plurality of cameras dispersedly arranged in a management area,
    an image acquisition process for acquiring the images from the plurality of cameras;
    People flow analysis processing for analyzing the flow of people showing the entry and exit and movement direction of people in each individual monitoring area based on the acquired video;
    Crowd analysis processing for analyzing the number of people in each individual monitoring area based on the acquired video;
    a number prediction process for calculating a number prediction value that is a value obtained by predicting a change in the flow of people for each of the individual monitoring areas and is used for switching the image quality of the camera,
    The number of people prediction process adds the number of people entering from the adjacent individual monitoring area to the number of people in each individual monitoring area and subtracts the number of people leaving the adjacent individual monitoring area. A computer-readable non-temporary recording medium in which a crowd behavior analysis program for calculating the predicted number of people is stored.
PCT/JP2021/022370 2021-06-11 2021-06-11 Monitoring system, video quality setting method, crowd behavior analysis server, and computer-readable non-transitory recording medium for storing crowd behavior analysis program WO2022259541A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023526820A JPWO2022259541A5 (en) 2021-06-11 Surveillance system, video quality setting method, crowd behavior analysis server, and crowd behavior analysis program
PCT/JP2021/022370 WO2022259541A1 (en) 2021-06-11 2021-06-11 Monitoring system, video quality setting method, crowd behavior analysis server, and computer-readable non-transitory recording medium for storing crowd behavior analysis program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/022370 WO2022259541A1 (en) 2021-06-11 2021-06-11 Monitoring system, video quality setting method, crowd behavior analysis server, and computer-readable non-transitory recording medium for storing crowd behavior analysis program

Publications (1)

Publication Number Publication Date
WO2022259541A1 true WO2022259541A1 (en) 2022-12-15

Family

ID=84424538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022370 WO2022259541A1 (en) 2021-06-11 2021-06-11 Monitoring system, video quality setting method, crowd behavior analysis server, and computer-readable non-transitory recording medium for storing crowd behavior analysis program

Country Status (1)

Country Link
WO (1) WO2022259541A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117830949A (en) * 2024-01-06 2024-04-05 广州市图南软件科技有限公司 Smart city management system and method based on image processing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005130041A (en) * 2003-10-21 2005-05-19 Hitachi Kokusai Electric Inc Band control system of image accumulation/distribution system
JP2014175786A (en) * 2013-03-07 2014-09-22 Canon Inc Image pickup device
WO2017122258A1 (en) * 2016-01-12 2017-07-20 株式会社日立国際電気 Congestion-state-monitoring system
JP2018107587A (en) * 2016-12-26 2018-07-05 株式会社日立国際電気 Monitoring system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005130041A (en) * 2003-10-21 2005-05-19 Hitachi Kokusai Electric Inc Band control system of image accumulation/distribution system
JP2014175786A (en) * 2013-03-07 2014-09-22 Canon Inc Image pickup device
WO2017122258A1 (en) * 2016-01-12 2017-07-20 株式会社日立国際電気 Congestion-state-monitoring system
JP2018107587A (en) * 2016-12-26 2018-07-05 株式会社日立国際電気 Monitoring system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117830949A (en) * 2024-01-06 2024-04-05 广州市图南软件科技有限公司 Smart city management system and method based on image processing
CN117830949B (en) * 2024-01-06 2024-06-11 广州市图南软件科技有限公司 Smart city management system and method based on image processing

Also Published As

Publication number Publication date
JPWO2022259541A1 (en) 2022-12-15

Similar Documents

Publication Publication Date Title
US10796517B2 (en) Information processing apparatus, information processing method, and recording medium to calculate waiting time in queue using acquired number of objects
US20110234825A1 (en) Accelerometer / gyro-facilitated video stabilization
WO2022259541A1 (en) Monitoring system, video quality setting method, crowd behavior analysis server, and computer-readable non-transitory recording medium for storing crowd behavior analysis program
JP6595287B2 (en) Monitoring system, monitoring method, analysis apparatus and analysis program
JP7419152B2 (en) Method for controlling output bitrate of video encoder and bitrate controller
US11521413B2 (en) Information processing apparatus, method of controlling information processing apparatus, and non-transitory computer-readable storage medium
US11050924B2 (en) Method and system for auto-setting of cameras
KR101646952B1 (en) apparatus of setting PTZ preset by analyzing controlling and event and method thereof
US20220345590A1 (en) Video analysis method, video analysis system, and information processing device
KR102077632B1 (en) Hybrid intellgent monitoring system suing local image analysis and cloud service
JP7305749B2 (en) Control method and device for image acquisition device
EP2903271A1 (en) Image encoding device, captured image recording system, capture device, image encoding method, and image encoding program
US10755107B2 (en) Information processing apparatus, information processing method, and recording medium
WO2024082848A1 (en) Passenger flow prediction method, apparatus and system
JP6807042B2 (en) Information processing equipment, information processing methods and programs
GB2570448A (en) Method and system for improving auto-setting of cameras
JP7146416B2 (en) Information processing device, information processing system, information processing method, and program
TWI594211B (en) Monitor device and method for monitoring moving object
US7375744B2 (en) Camera system, camera control method and program
CN105554436B (en) monitoring device and dynamic object monitoring method
US11836147B2 (en) Information processing apparatus, analysis system, data aggregation method, and computer readable medium
KR102148749B1 (en) Video surveillance network system and video surveillance method thereof
JP7294405B2 (en) Information processing device, server allocation device, method, and program
JPWO2022259541A5 (en) Surveillance system, video quality setting method, crowd behavior analysis server, and crowd behavior analysis program
KR102137654B1 (en) Method and apparatus for extracting objects using closed-circuit television

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21945213

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023526820

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21945213

Country of ref document: EP

Kind code of ref document: A1