WO2022259344A1 - Laser radar device - Google Patents
Laser radar device Download PDFInfo
- Publication number
- WO2022259344A1 WO2022259344A1 PCT/JP2021/021652 JP2021021652W WO2022259344A1 WO 2022259344 A1 WO2022259344 A1 WO 2022259344A1 JP 2021021652 W JP2021021652 W JP 2021021652W WO 2022259344 A1 WO2022259344 A1 WO 2022259344A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle
- head
- radar device
- laser radar
- road
- Prior art date
Links
- 238000004364 calculation method Methods 0.000 claims abstract description 51
- 238000006243 chemical reaction Methods 0.000 claims description 32
- 238000001514 detection method Methods 0.000 claims description 22
- 238000013500 data storage Methods 0.000 claims description 16
- 230000009466 transformation Effects 0.000 claims description 16
- 238000010586 diagram Methods 0.000 description 20
- 230000003287 optical effect Effects 0.000 description 19
- 230000006870 function Effects 0.000 description 15
- 230000015654 memory Effects 0.000 description 12
- 238000000034 method Methods 0.000 description 11
- 230000005540 biological transmission Effects 0.000 description 10
- 239000004065 semiconductor Substances 0.000 description 9
- 238000000691 measurement method Methods 0.000 description 6
- 238000009434 installation Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 2
- 101000911772 Homo sapiens Hsc70-interacting protein Proteins 0.000 description 1
- 101001139126 Homo sapiens Krueppel-like factor 6 Proteins 0.000 description 1
- 229910003327 LiNbO3 Inorganic materials 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/50—Systems of measurement based on relative movement of target
- G01S17/58—Velocity or trajectory determination systems; Sense-of-movement determination systems
Definitions
- the present disclosure relates to a laser radar device.
- a two-dimensional scanning laser radar device is used to measure the speed of vehicles traveling on roads.
- a two-dimensional scanning laser radar device measures the movement amount and movement time of a vehicle, and calculates the speed of the vehicle based on the measured movement amount and movement time.
- the vehicle speed is sequentially measured in real time while tracking the vehicle by a two-dimensional scanning laser radar device, and the vehicle length is measured by integrating the sequentially obtained vehicle speed with the time difference between the vehicle speed measurement times.
- a velocity measuring device is disclosed.
- the two-dimensional scanning laser radar device has a problem that the cost is higher than that of the one-dimensional scanning laser radar device. Therefore, a method of measuring the speed of a vehicle using a one-dimensional scanning laser radar device is conceivable, but in that case, there is a problem that at least two one-dimensional scanning laser radar devices are required.
- the present disclosure has been made to solve the problems described above, and provides a technology capable of measuring the speed of a vehicle using a single one-dimensional scanning laser radar device.
- a laser radar device is a laser radar device that measures the speed of a vehicle traveling on a road, and uses laser light so that the scanning direction on the road is oblique to the traveling direction of the vehicle. and the head of the vehicle is detected based on the received signal obtained by the one-dimensional scanning of the scanner, and the change in the position of the head of the vehicle in the direction of travel is calculated, or the tail of the vehicle is detected. and a position change calculation unit that calculates a position change of the tail of the vehicle in the traveling direction, and a vehicle speed calculation unit that measures the speed of the vehicle based on the position change calculated by the position change calculation unit.
- the speed of a vehicle can be measured with a single one-dimensional scanning laser radar device.
- FIG. 1 is a block diagram showing the configuration of a laser radar device according to Embodiment 1;
- FIG. 4 is a flowchart showing a vehicle speed measurement method using the laser radar device according to Embodiment 1; It is a figure which shows the one-dimensional scanning by the conventional laser radar apparatus.
- 4 is a diagram showing one-dimensional scanning by the laser radar device according to Embodiment 1;
- FIG. 4 is a diagram showing coordinate conversion on a road by the laser radar device according to Embodiment 1;
- FIG. FIG. 4 is a diagram showing a scanning width in the transverse direction of a road by the laser radar device according to Embodiment 1;
- 2 is a block diagram showing the configuration of a laser radar device according to Embodiment 2;
- FIG. 7 is a flowchart showing a vehicle speed measurement method using a laser radar device according to Embodiment 2;
- 9A is a block diagram showing a hardware configuration that implements the functions of the laser radar device according to Embodiment 1 or the laser radar device according to Embodiment 2.
- FIG. 9B is a block diagram showing a hardware configuration for executing software that realizes the functions of the laser radar device according to Embodiment 1 or the laser radar device according to Embodiment 2.
- FIG. 9A is a block diagram showing a hardware configuration that implements the functions of the laser radar device according to Embodiment 1 or the laser radar device according to Embodiment 2.
- FIG. 9B is a block diagram showing a hardware configuration for executing software that realizes the functions of the laser radar device according to Embodiment 1 or the laser radar device according to Embodiment 2.
- FIG. 1 is a block diagram showing the configuration of a laser radar device 100 according to Embodiment 1.
- the laser radar device 100 includes a signal generator 1, a laser light source 2, a transmission optical section 3, a mirror 4, a scanner 5, a reception optical section 6, a photodetector 7, a position change calculation section 20, a vehicle speed A calculation unit 12, a vehicle length calculation unit 13, and a data storage unit 14 are provided.
- the position change calculator 20 includes a distance calculator 8 , a three-dimensional coordinate converter 9 , a road coordinate converter 10 , and a head/tail detector 11 .
- the laser radar device 100 is fixed by the sensor fixing portion 15 to a gatepost straddling the road on which the vehicle travels or a pillar installed on the side of the road on which the vehicle travels.
- the signal generator 1 is a device that generates a reference trigger signal for synchronizing the laser light source 2 and the scanner 5 at regular intervals. More specifically, the signal generator 1 outputs a laser modulation signal to the laser light source 2 as a reference trigger signal, and synchronously outputs a scanner drive signal to the scanner 5 as a reference trigger signal. The signal generator 1 also outputs a reference signal to the distance calculator 8, which serves as a reference when measuring the distance. In Embodiment 1, the reference signal is a pulse signal or an intensity modulated signal.
- the laser light source 2 outputs laser light to the transmission optical section 3 . More specifically, the laser light source 2 modulates the laser light by modulating the current, which is the source of the laser light, based on the modulation signal output from the signal generator 1, and modulates the laser light. is output to the transmission optical unit 3 .
- an external modulator such as an LN (LiNbO3) intensity modulator is used to modulate the laser light.
- an LD (Laser Diode) or the like is used as the laser light source 2 .
- the transmission optical unit 3 shapes the laser light output from the laser light source 2 into a desired beam diameter and divergence angle, and emits the shaped laser light to the mirror 4 .
- a collimator lens, a condenser lens, or the like is used as the transmission optical unit 3 .
- the mirror 4 irradiates the scanner 5 with the laser light that has passed through the transmission optical unit 3 by reflecting the laser light.
- the scanner 5 uses laser light to perform one-dimensional scanning so that the scanning direction on the road is oblique to the traveling direction of the vehicle. That is, the scanner 5 uses laser light to perform one-dimensional scanning so that the angle formed by the scanning direction on the road and the traveling direction of the vehicle is an angle other than 0 degree and 90 degrees.
- the scanner 5 is driven based on the scanner drive signal generated by the signal generator 1, and directs the laser light reflected by the mirror 4 toward the road or a vehicle running on the road. to irradiate.
- the scanner 5 also reflects the laser beam reflected by the road or the vehicle traveling on the road toward the receiving optical unit 6 .
- the scanner 5 outputs angle information regarding the scanning angle when one-dimensional scanning is performed to the three-dimensional coordinate conversion section 9 of the position change calculation section 20 .
- a polygon scanner a galvanomirror, a MEMS (Micro Electro Mechanical Systems) scanner, or the like is used as the scanner 5.
- MEMS Micro Electro Mechanical Systems
- the receiving optical unit 6 collects the laser light reflected by the road or a vehicle traveling on the road and reflected by the scanner 5 and outputs it to the photodetector 7 .
- a collimating lens, a condensing lens, or the like is used as the receiving optical unit 6 .
- the photodetector 7 acquires a received signal by converting the laser light output by the receiving optical section 6 into an electrical signal.
- the photodetector 7 outputs the acquired received signal to the position change calculator 20 .
- the received signal is a pulse signal or an intensity modulated signal.
- a PD Photo Diode
- APD Avalanche Photo Diode
- a TIA Trans Impedance Amplifier
- the position change calculator 20 detects the head of the vehicle based on the received signal obtained by the one-dimensional scanning of the scanner 5, and calculates the position change of the head of the vehicle in the traveling direction of the vehicle. The tail is detected and the change in position of the tail of the vehicle in the direction of travel of the vehicle is calculated. More specifically, in Embodiment 1, the position change calculator 20 detects the head and tail of the vehicle based on the received signal obtained by the one-dimensional scanning of the scanner 5 . The position change calculator 20 outputs the calculated position changes to the vehicle speed calculator 12 and the vehicle length calculator 13, respectively.
- the distance calculator 8 of the position change calculator 20 calculates the distance to the vehicle based on the received signal obtained by the one-dimensional scanning of the scanner 5 .
- the distance is the distance from the laser radar device 100 to the vehicle.
- the distance calculator 8 outputs the calculated distance to the three-dimensional coordinate conversion section 9 .
- the distance calculator 8 calculates the distance to the vehicle from the time difference or phase difference between the received signal output by the photodetector 7 and the reference signal output by the signal generator 1. do. More specifically, in the first embodiment, distance calculator 8 calculates the distance to the vehicle from the time difference between the pulse signal output by photodetector 7 and the pulse signal generated by signal generator 1 . Alternatively, the distance calculator 8 calculates the distance to the vehicle from the phase difference between the intensity-modulated signal output by the photodetector 7 and the intensity-modulated signal generated by the signal generator 1 .
- the distance calculator 8 is composed of a semiconductor integrated circuit implementing a CPU (Central Processing Unit), a one-chip microcomputer, an FPGA (Field-Programmable Gate Array), or an ASIC (Application Specific Integrated Circuit).
- CPU Central Processing Unit
- FPGA Field-Programmable Gate Array
- ASIC Application Specific Integrated Circuit
- the three-dimensional coordinate conversion unit 9 converts the scanning angle of one-dimensional scanning by the scanner 5 and the distance calculated by the distance calculator 8 into three-dimensional coordinates, thereby generating point cloud data of three-dimensional coordinates.
- the position of the laser radar device 100 is the origin
- the first coordinate axis and the second coordinate axis are coordinate axes along the road
- the third coordinate axis is the coordinate axis along the vertical direction. be.
- the point cloud data indicates a plurality of points each representing a three-dimensional coordinate position.
- the three-dimensional coordinate transformation unit 9 outputs the generated point cloud data of three-dimensional coordinates to the on-road coordinate transformation unit 10 .
- the three-dimensional coordinate conversion unit 9 converts the scanning angle indicated by the angle information output by the scanner 5 and the distance output by the distance calculator 8 into three-dimensional coordinates. Generate point cloud data of 3D coordinates.
- the three-dimensional coordinate transformation unit 9 is configured by a semiconductor integrated circuit mounting a CPU, a one-chip microcomputer, an FPGA, an ASIC, or the like.
- the on-road coordinate conversion unit 10 converts the point cloud data of the three-dimensional coordinates generated by the three-dimensional coordinate conversion unit 9 into coordinates with the traveling direction of the vehicle as a first coordinate axis and the crossing direction of the road as a second coordinate axis. Convert to point cloud data.
- the road coordinate conversion unit 10 converts the coordinates on the road.
- the on-road coordinate transformation unit 10 converts the first coordinate axis of the three-dimensional coordinates generated by the three-dimensional coordinate transformation unit 9 into a coordinate axis along the traveling direction of the vehicle and converts the three-dimensional
- the three-dimensional coordinates generated by the three-dimensional coordinate transformation unit 9 are converted to the third coordinates along the vertical direction so that the second coordinate axis of the three-dimensional coordinates generated by the coordinate transformation unit 9 becomes the coordinate axis along the transverse direction of the road. is rotated with the coordinate axes of .
- the road coordinate transformation unit 10 outputs the transformed point cloud data to the head/tail detection unit 11 .
- the road coordinate conversion unit 10 is configured by a semiconductor integrated circuit mounting a CPU, a one-chip microcomputer, an FPGA, or an ASIC.
- the head/tail detection unit 11 detects the head of the vehicle based on the point cloud data converted by the on-road coordinate conversion unit 10, and calculates the position change of the head of the vehicle in the traveling direction of the vehicle. is detected, and the change in position of the tail of the vehicle in the traveling direction of the vehicle is calculated.
- the head/tail detector 11 outputs the calculated position change to the vehicle speed calculator 12 .
- the head/tail detector 11 detects the position of the head of the vehicle at the first time and the second position based on the point cloud data converted by the road coordinate converter 10 . and the position of the head of the vehicle at the time of . Further, the head/tail detection unit 11 detects the position of the head of the vehicle in the traveling direction of the vehicle based on the detected position of the head of the vehicle at the first time and the position of the head of the vehicle at the second time. Calculate change. The head/tail detector 11 outputs the time difference between the first time and the second time to the vehicle speed calculator 12 and the vehicle length calculator 13, respectively.
- the vehicle head/tail detection unit 11 detects the height on the road as a reference based on the point cloud data converted by the road coordinate conversion unit 10.
- the head/tail detection unit 11 detects an arbitrary number of objects whose height relative to the road is less than a predetermined height threshold based on the point cloud data converted by the road coordinate conversion unit 10.
- the head/tail detection unit 11 is composed of a semiconductor integrated circuit mounting a CPU, a one-chip microcomputer, an FPGA, an ASIC, or the like.
- the vehicle speed calculator 12 measures the speed of the vehicle based on the position change calculated by the position change calculator 20 . More specifically, in the first embodiment, the vehicle speed calculation unit 12 adjusts the speed of the vehicle based on the position change calculated by the head/tail detection unit 11 and the time difference between the first time and the second time. Measure speed.
- the vehicle speed calculation unit 12 is composed of a semiconductor integrated circuit mounting a CPU, a one-chip microcomputer, an FPGA, an ASIC, or the like.
- the vehicle length calculation unit 13 detects the head of the vehicle by the position change calculation unit 20, the time when the position change calculation unit 20 detects the tail of the vehicle, and the vehicle speed calculated by the vehicle speed calculation unit 12. to calculate the length of the vehicle. More specifically, in the first embodiment, the vehicle length calculator 13 calculates the time when the head/tail detector 11 detects the head of the vehicle and the time when the head/tail detector 11 detects the tail of the vehicle. The length of the vehicle is calculated based on the time and the vehicle speed calculated by the vehicle speed calculator 12 . That is, the vehicle length calculation unit 13 calculates the vehicle length from the difference between the vehicle speed calculated by the vehicle speed calculation unit 12 and the head passage time and the tail passage time. The vehicle length calculator 13 outputs the calculated vehicle length to the data storage unit 14 .
- the vehicle length calculation unit 13 is composed of a semiconductor integrated circuit mounting a CPU, a one-chip microcomputer, an FPGA, an ASIC, or the like.
- the data storage unit 14 stores the speed calculated by the vehicle speed calculation unit 12 for each vehicle traveling on the road. More specifically, in the first embodiment, the data storage unit 14 stores the speed data calculated by the vehicle speed calculation unit 12 and the speed data calculated by the vehicle length calculation unit 13 in the order in which the vehicle passes under the laser radar device 100 . Save the data of the car length.
- the data storage unit 14 is composed of a semiconductor integrated circuit mounting a CPU, a one-chip microcomputer, an FPGA, an ASIC, or the like.
- FIG. 2 is a flow chart showing a vehicle speed measurement method using the laser radar device 100 according to the first embodiment.
- the laser radar device 100 is fixed by the sensor fixing portion 15 to the gatepost that straddles the road on which the vehicle travels and the pillar installed on the side of the road on which the vehicle travels. More specifically, the laser radar device 100 is installed at the part of the gatepost or the part of the post that can perform one-dimensional scanning in which the scanning direction on the road is oblique to the traveling direction of the vehicle by the scanner 5. ing.
- the laser light source 2 generates modulated laser light based on the modulated signal output from the signal generator 1 and outputs the generated laser light to the transmission optical section 3 .
- the transmission optical unit 3 shapes the laser light output from the laser light source 2 into a desired beam diameter and divergence angle, and emits the shaped laser light to the mirror 4 .
- the mirror 4 irradiates the scanner 5 with the laser light that has passed through the transmission optical unit 3 by reflecting the laser light.
- the scanner 5 is driven based on the scanner drive signal generated by the signal generator 1, and outputs the angle information described above to the three-dimensional coordinate conversion section 9. At that time, the scanner 5 uses a laser beam to perform one-dimensional scanning so that the scanning direction on the road is oblique to the traveling direction of the vehicle.
- FIG. 3 is a diagram showing one-dimensional scanning by a conventional laser radar device.
- FIG. 4 is a diagram showing one-dimensional scanning by the laser radar device 100 according to the first embodiment. 3 and 4 are diagrams each showing one-dimensional scanning as seen from a running vehicle, and a plurality of dotted lines in FIGS. 3 and 4 each represent one scanning.
- the upper diagram is a diagram showing the one-dimensional scanning of the vehicle's head at the first time
- the lower diagram is the one-dimensional scanning of the vehicle's head at the second time. It is a figure which shows.
- the conventional laser radar device uses a laser beam to perform one-dimensional scanning on the road so that the scanning direction is perpendicular to the traveling direction of the vehicle.
- the laser radar device 100 according to Embodiment 1 performs one-dimensional scanning with the scanner 5 so that the scanning direction on the road is oblique to the traveling direction of the vehicle.
- the scanner 5 reflects the laser beam reflected by the road or the vehicle traveling on the road toward the receiving optics 6 .
- the receiving optical unit 6 collects the laser light reflected by the road or a vehicle traveling on the road and reflected by the scanner 5 and outputs the light to the photodetector 7 .
- the photodetector 7 acquires a received signal by converting the laser light output by the receiving optical section 6 into an electrical signal.
- the distance calculator 8 calculates the distance to the vehicle from the time difference between the received signal output by the photodetector 7 and the reference signal output by the signal generator 1 .
- the distance calculator 8 outputs the calculated distance to the three-dimensional coordinate conversion section 9 .
- the distance calculator 8 may calculate the distance from the phase difference between the received signal output by the photodetector 7 and the reference signal output by the signal generator 1. .
- the three-dimensional coordinate conversion unit 9 converts the scanning angle indicated by the angle information output by the scanner 5 and the distance output by the distance calculator 8 into three-dimensional coordinates, thereby generating point cloud data of three-dimensional coordinates (step ST1).
- the three-dimensional coordinate transformation unit 9 outputs the generated point cloud data of three-dimensional coordinates to the on-road coordinate transformation unit 10 .
- the on-road coordinate conversion unit 10 converts the point cloud data of the three-dimensional coordinates generated by the three-dimensional coordinate conversion unit 9 into coordinates with the traveling direction of the vehicle as a first coordinate axis and the crossing direction of the road as a second coordinate axis. Convert to point cloud data (step ST2). At that time, the on-road coordinate conversion unit 10 transforms the point cloud data of the three-dimensional coordinates generated by the three-dimensional coordinate conversion unit 9 into the traveling direction of the vehicle according to the following formulas (2) and (3) It is converted into point cloud data of coordinates with the coordinate axis and the crossing direction of the road as the second coordinate axis.
- x 1 L 0 ⁇ cos ⁇ s (2)
- y 1 L 0 ⁇ sin ⁇ s (3)
- ⁇ s [rad] in equations (2) and (3) is the angle formed by the scanning direction on the road and the traveling direction of the vehicle.
- L 0 in equations (2) and (3) is the distance from the corresponding position on the road of the laser radar device 100 to the position on the road of the point cloud data of the three-dimensional coordinates generated by the three-dimensional coordinate conversion unit 9.
- x1 in equation (2) is the x - coordinate on the road after transformation.
- y1 in equation (3) is the y - coordinate on the road after transformation.
- FIG. 5 is a diagram showing coordinate transformation on the road by the laser radar device 100 according to the first embodiment.
- FIG. 6 is a diagram showing the scanning width in the transverse direction of the road by the laser radar device 100 according to the first embodiment.
- the sensor installation position where the laser radar device 100 is installed is the origin
- the traveling direction of the vehicle is the x coordinate
- the crossing direction of the road is the y coordinate.
- the direction perpendicular to the road from the sensor installation position is the z-coordinate.
- ⁇ s [rad] in equations (2) and (3) corresponds to the angle formed by the traveling direction (x-axis) of the vehicle and the scanning direction (trajectory of the laser beam) shown in FIG.
- the vehicle head/tail detection unit 11 determines whether or not the vehicle head has been detected based on the point cloud data transformed by the road coordinate transformation unit 10 (step ST3). At that time, the vehicle head/tail detection unit 11 detects an object whose height relative to the road is equal to or higher than a predetermined height threshold based on the point cloud data converted by the road coordinate conversion unit 10. When the object is detected for several frames, it is determined that the vehicle has entered, and the foremost part of the object is determined to be the head of the vehicle.
- the laser radar device 100 proceeds to the process of step ST4.
- the laser radar device 100 returns to the process of step ST1.
- the head/tail detector 11 calculates the position change ⁇ L [m] of the head (step ST4).
- L 1 [m] is the position of the point cloud data of the vehicle head acquired by the vehicle head/tail detection unit 11 at the first time t 1 [s], and the point cloud of the vehicle head acquired at the second time t 2 [s]
- the position change ⁇ L [m] of the vehicle head can be expressed by the following equation (4).
- ⁇ L L 2 -L 1 (4)
- Equation (7) (1/F) x (n2/N) + t02 (7)
- the vehicle speed calculation unit 12 measures the speed of the vehicle based on the position change calculated by the head/tail detection unit 11 and the time difference between the first time and the second time (step ST6 ).
- the vehicle head/tail detection unit 11 determines whether or not the vehicle tail is detected based on the point cloud data converted by the road coordinate conversion unit 10 (step ST7). At this time, the vehicle head/tail detection unit 11 detects an object whose height relative to the road is less than a predetermined height threshold based on the point cloud data converted by the road coordinate conversion unit 10. When the object is detected for several frames, it is determined that the vehicle has passed, and the rear end of the object is determined as the tail.
- step ST7 the laser radar device 100 proceeds to the process of step ST8.
- step ST8 the laser radar device 100 acquires again the point cloud data transformed by the road coordinate transformation unit 10, and performs step ST7. process again.
- the vehicle length calculator 13 calculates the vehicle length based on the vehicle speed calculated by the vehicle speed calculator 12 and the vehicle passing time calculated by the head/tail detector 11 (step ST9).
- the vehicle length L c [m] is represented by the following equation (10) based on the above-described vehicle speed v c and the above-described vehicle passing time ⁇ t c [s].
- L c v c ⁇ t c (10)
- the data storage unit 14 stores the speed data calculated by the vehicle speed calculation unit 12 and the vehicle length data calculated by the vehicle length calculation unit 13 in the order in which the vehicle passes under the laser radar device 100 (step ST10). .
- the laser radar device 100 determines whether or not to end the acquisition of vehicle speed and vehicle length data (step ST11). When continuing data acquisition (NO in step ST11), the laser radar device 100 returns to the process of step ST1, and when ending data acquisition (YES in step ST11), ends the process (ST11).
- Embodiment 1 since one-dimensional scanning is performed so that the scanning direction on the road is oblique to the traveling direction of the vehicle, the point cloud data spreads in the traveling direction of the vehicle. . Accordingly, it is possible to measure the position change of the head or tail of the vehicle and the speed of the vehicle by one-dimensional scanning by the single laser radar device 100 . Further, the distance resolution in the traveling direction of the vehicle is determined by the observation point pitch, and by adjusting the installation angle of the laser radar device 100 according to the maximum detectable speed, measurement with even higher distance resolution becomes possible.
- the distance resolution in the traveling direction depends on the horizontal angular resolution and inclination angle of the laser radar device 100 .
- h [m] be the installation height of the laser radar device 100 with respect to the road
- ⁇ h [rad] be the horizontal angular resolution of the laser radar device 100
- the traveling direction of the vehicle and the scanning direction on the road form
- the angle is ⁇ s [rad]
- the resolution ⁇ x 2 in the traveling direction is expressed by the following equation (12).
- ⁇ x 2 h ⁇ tan ⁇ h ⁇ cos ⁇ s (12)
- the laser radar device 100 is a laser radar device 100 that measures the speed of a vehicle traveling on a road, and uses laser light to detect that the scanning direction of the vehicle on the road is
- a scanner 5 that performs one-dimensional scanning obliquely to the direction of travel, and the head of the vehicle is detected based on the received signal obtained by the one-dimensional scanning of the scanner 5, and the position of the head of the vehicle in the direction of travel is detected.
- a position change calculation unit 20 that calculates a change or detects the tail of the vehicle and calculates a position change of the tail of the vehicle in the direction of travel; and a vehicle speed calculation unit 12 that measures the speed of the vehicle.
- one-dimensional scanning is performed so that the scanning direction on the road is oblique to the traveling direction of the vehicle, so it is possible to measure the position change of the vehicle head or tail in the traveling direction.
- the speed of the vehicle can be measured. That is, the speed of the vehicle can be measured by one one-dimensional scanning laser radar device.
- FIG. 7 is a block diagram showing the configuration of laser radar device 101 according to the second embodiment.
- the laser radar device 101 further includes a sensor rotation determination section 16 and a sensor rotation section 17 in addition to the configuration of the laser radar device 100 according to the first embodiment.
- the configuration according to the second embodiment differs from the configuration according to the first embodiment in that the angle formed by the traveling direction of the vehicle and the scanning direction on the road can be changed by the sensor rotation determination unit 16 and the sensor rotation unit 17 .
- the sensor rotation determination unit 16 determines whether the speed stored in the data storage unit 14 is equal to or higher than a predetermined speed. More specifically, in the first embodiment, the sensor rotation determination unit 16 rotates the laser radar device 101 based on the speed of the vehicle stored in the data storage unit 14 to determine the distance resolution in the traveling direction of the vehicle. Decide whether to improve. When the sensor rotation determining unit 16 determines to rotate the laser radar device 101 , the sensor rotating unit 17 controls the laser radar device 101 to rotate.
- the sensor rotation determination unit 16 is configured by a semiconductor integrated circuit mounting a CPU, a one-chip microcomputer, an FPGA, an ASIC, or the like.
- the sensor rotation unit 17 performs a rotation operation to rotate the laser radar device 101 based on the determination result of the sensor rotation determination unit 16. More specifically, when the sensor rotation determination unit 16 determines that the speed stored in the data storage unit 14 is equal to or higher than a predetermined speed, the sensor rotation unit 17 determines the scanning direction of the scanner 5 on the road and the vehicle speed. The laser radar device 101 is rotated so that the angle formed with the traveling direction of the laser radar device 101 becomes large. The angle formed by the scanning direction on the road by the scanner 5 and the traveling direction of the vehicle is an acute angle both before and after the rotation of the laser radar device 101 . For example, a motor or the like is used as the sensor rotation unit 17 .
- FIG. 8 is a flow chart showing a vehicle speed measurement method using the laser radar device 101 according to the second embodiment.
- the vehicle speed measurement method by the laser radar device 101 according to the second embodiment is the same as the vehicle speed measurement method by the laser radar device 100 according to the first embodiment except steps ST12 and ST13. Therefore, detailed description of each step from step ST1 to step ST11 described in the first embodiment is omitted.
- step ST12 the sensor rotation determination unit 16 determines whether the speed of the vehicle stored in the data storage unit 14 is equal to or higher than a predetermined speed (step ST12).
- the sensor rotation determination unit 16 determines that the speed stored in the data storage unit 14 is equal to or higher than the predetermined speed (YES in step ST12)
- the sensor rotation determination unit 16 controls the sensor rotation unit 17 to rotate the laser radar device 101.
- a control signal is output to the sensor rotating section 17 (step ST13).
- the sensor rotation unit 17 rotates the laser beam so that the angle formed by the scanning direction on the road by the scanner 5 and the traveling direction of the vehicle increases based on the control signal output by the sensor rotation determination unit 16. Rotate the radar device 101 . Note that the user sets a plurality of rotation angles of rotation by the sensor rotation unit 17 in advance.
- the laser radar device 101 proceeds to the process of step ST11.
- the sensor rotation determining unit 16 may set the angle formed by the scanning direction on the road by the scanner 5 and the traveling direction of the vehicle according to the following equation (14) according to the width of the road.
- the scanning width w rv [m] in the traveling direction of the vehicle by the scanner 5 of the laser radar device 101 (the projection width of the scanning range on the road by the scanner 5 of the laser radar device 101 to the longitudinal section of the road) is obtained by the following equation: (15).
- w rv w r ⁇ cos ⁇ s (15)
- the setting of the angle between the scanning direction on the road by the scanner 5 and the traveling direction of the vehicle can be changed. It is possible to improve the distance resolution in the traveling direction.
- the distance calculator 8 of the position change calculator 20 is implemented by a processing circuit. That is, the laser radar device 100 or the laser radar device 101 has a processing circuit for executing the processing of each step shown in FIG. 2 or FIG. This processing circuit may be dedicated hardware, or may be a CPU (Central Processing Unit) that executes a program stored in memory.
- CPU Central Processing Unit
- FIG. 9A is a block diagram showing a hardware configuration that implements the functions of the laser radar device 100 or the laser radar device 101.
- FIG. 9B is a block diagram showing a hardware configuration for executing software realizing the functions of the laser radar device 100 or the laser radar device 101. As shown in FIG.
- the processing circuit 110 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an Application Specific Integrated Integrated Circuit Circuit), FPGA (Field-Programmable Gate Array), or a combination thereof.
- the distance calculator 8 of the position change calculator 20 the three-dimensional coordinate converter 9, the road coordinate converter 10, the head/tail detector 11, the vehicle speed calculator 12, the vehicle
- Each function of the length calculation unit 13 and the sensor rotation determination unit 16 may be realized by separate processing circuits, or these functions may be collectively realized by one processing circuit.
- processing circuit is the processor 111 shown in FIG.
- Each function of the head/tail detection unit 11, the vehicle speed calculation unit 12, the vehicle length calculation unit 13, and the sensor rotation determination unit 16 is realized by software, firmware, or a combination of software and firmware.
- Software or firmware is written as a program and stored in the memory 112 .
- the processor 111 reads out and executes a program stored in the memory 112 to perform the distance calculator 8, the three-dimensional coordinate conversion unit 9, and the road surface of the position change calculation unit 20 in the laser radar device 100 or the laser radar device 101.
- the functions of the coordinate conversion unit 10, the head/tail detection unit 11, the vehicle speed calculation unit 12, the vehicle length calculation unit 13, and the sensor rotation determination unit 16 are realized. That is, the laser radar device 100 or the laser radar device 101 stores a program that results in the processing of each step shown in FIG. 2 or 8 when these functions are executed by the processor 111.
- a memory 112 is provided for
- These programs are the distance calculator 8 of the position change calculator 20, the three-dimensional coordinate converter 9, the on-road coordinate converter 10, the vehicle head/tail detector 11, the vehicle speed A computer is caused to execute each procedure or method of the calculation unit 12 , the vehicle length calculation unit 13 , and the sensor rotation determination unit 16 .
- the memory 112 stores the computer in the laser radar device 100 or the laser radar device 101, the distance calculator 8 of the position change calculator 20, the three-dimensional coordinate converter 9, the on-road coordinate converter 10, and the vehicle head/tail detector 11. , the vehicle speed calculation unit 12, the vehicle length calculation unit 13, and the sensor rotation determination unit 16.
- the processor 111 corresponds to, for example, a CPU (Central Processing Unit), a processing device, an arithmetic device, a processor, a microprocessor, a microcomputer, or a DSP (Digital Signal Processor).
- a CPU Central Processing Unit
- a processing device for example, a CPU (Central Processing Unit), a processing device, an arithmetic device, a processor, a microprocessor, a microcomputer, or a DSP (Digital Signal Processor).
- DSP Digital Signal Processor
- the memory 112 includes, for example, non-volatile or volatile semiconductor memories such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically-EPROM), Magnetic discs such as hard disks and flexible discs, flexible discs, optical discs, compact discs, mini discs, DVDs (Digital Versatile Discs) and the like are applicable.
- RAM Random Access Memory
- ROM Read Only Memory
- flash memory EPROM (Erasable Programmable Read Only Memory)
- EEPROM Electrically-EPROM
- Magnetic discs such as hard disks and flexible discs, flexible discs, optical discs, compact discs, mini discs, DVDs (Digital Versatile Discs) and the like are applicable.
- the distance calculator 8 of the position change calculator 20 the three-dimensional coordinate converter 9, the road coordinate converter 10, the head/tail detector 11, the vehicle speed calculator 12, the vehicle A part of each function of the length calculation unit 13 and the sensor rotation determination unit 16 may be realized by dedicated hardware, and a part thereof may be realized by software or firmware.
- the functions of the distance calculator 8, the three-dimensional coordinate converter 9, the on-road coordinate converter 10, and the head/tail detector 11 of the position change calculator 20 are realized by a processing circuit as dedicated hardware. do.
- the functions of the vehicle speed calculation unit 12, the vehicle length calculation unit 13, and the sensor rotation determination unit 16 may be realized by the processor 111 reading and executing a program stored in the memory 112.
- FIG. 1 the processing circuitry may implement each of the above functions in hardware, software, firmware, or a combination thereof. It should be noted that it is possible to freely combine each embodiment, modify any component of each embodiment, or omit any component from each embodiment.
- the laser radar device can measure the speed of a vehicle with a single one-dimensional scanning laser radar device, it can be used as a technology for measuring the speed of a vehicle.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Optical Radar Systems And Details Thereof (AREA)
- Traffic Control Systems (AREA)
Abstract
This laser radar device (100) comprises: a scanner (5) that performs one dimensional scanning by using laser light such that the scanning direction on a road becomes oblique with respect to the advancing direction of a vehicle; a position change calculation unit (20) that detects the head of the vehicle and calculates a position change of the head of the vehicle in the advancing direction, on the basis of a reception signal acquired through the one dimensional scanning by the scanner (5); and a vehicle speed calculation unit (12) that measures the speed of the vehicle on the basis of the position change calculated by the position change calculation unit (20).
Description
本開示は、レーザレーダ装置に関する。
The present disclosure relates to a laser radar device.
従来、道路上を走行している車両の速度を計測するために、二次元走査型のレーザレーダ装置が用いられる。二次元走査型のレーザレーダ装置は、車両の移動量及び移動時間を計測し、計測した移動量及び移動時間に基づいて、当該車両の速度を算出する。
Conventionally, a two-dimensional scanning laser radar device is used to measure the speed of vehicles traveling on roads. A two-dimensional scanning laser radar device measures the movement amount and movement time of a vehicle, and calculates the speed of the vehicle based on the measured movement amount and movement time.
特許文献1には、二次元走査型のレーザレーダ装置により車両を追尾しながらリアルタイムに車速を順次計測し、順次得られた車速を、車速計測時刻間の時間差で積分することにより車長を計測する速度計測装置が開示されている。
In Patent Document 1, the vehicle speed is sequentially measured in real time while tracking the vehicle by a two-dimensional scanning laser radar device, and the vehicle length is measured by integrating the sequentially obtained vehicle speed with the time difference between the vehicle speed measurement times. A velocity measuring device is disclosed.
上述のように、従来の技術では、車両の移動量及び移動時間を計測し、車両の速度を算出するためには、二次元走査型のレーザレーダ装置を用いる必要がある。しかし、一般的に、二次元走査型のレーザレーダ装置は、一次元走査型のレーザレーダ装置よりもコストが高いという問題がある。そこで、一次元走査型のレーザレーダ装置を用いて車両の速度を計測する方法が考えられるが、その場合、一次元走査型のレーザレーダ装置が少なくとも2台必要であるという問題がある。
本開示は、上記のような問題点を解決するためになされたものであり、1台の一次元走査型のレーザレーダ装置により車両の速度を計測することができる技術を提供する。 As described above, in the conventional technology, it is necessary to use a two-dimensional scanning laser radar device in order to measure the movement amount and movement time of the vehicle and to calculate the speed of the vehicle. However, in general, the two-dimensional scanning laser radar device has a problem that the cost is higher than that of the one-dimensional scanning laser radar device. Therefore, a method of measuring the speed of a vehicle using a one-dimensional scanning laser radar device is conceivable, but in that case, there is a problem that at least two one-dimensional scanning laser radar devices are required.
The present disclosure has been made to solve the problems described above, and provides a technology capable of measuring the speed of a vehicle using a single one-dimensional scanning laser radar device.
本開示は、上記のような問題点を解決するためになされたものであり、1台の一次元走査型のレーザレーダ装置により車両の速度を計測することができる技術を提供する。 As described above, in the conventional technology, it is necessary to use a two-dimensional scanning laser radar device in order to measure the movement amount and movement time of the vehicle and to calculate the speed of the vehicle. However, in general, the two-dimensional scanning laser radar device has a problem that the cost is higher than that of the one-dimensional scanning laser radar device. Therefore, a method of measuring the speed of a vehicle using a one-dimensional scanning laser radar device is conceivable, but in that case, there is a problem that at least two one-dimensional scanning laser radar devices are required.
The present disclosure has been made to solve the problems described above, and provides a technology capable of measuring the speed of a vehicle using a single one-dimensional scanning laser radar device.
本開示に係るレーザレーダ装置は、道路上を走行する車両の速度を計測するレーザレーダ装置であって、レーザ光を用いて、道路上における走査方向が車両の進行方向に対して斜めになるように一次元走査を行うスキャナと、スキャナの一次元走査によって得られた受信信号に基づいて、車両の車頭を検出し、進行方向における車両の車頭の位置変化を算出するか、又は車両の車尾を検出し、進行方向における車両の車尾の位置変化を算出する位置変化算出部と、位置変化算出部が算出した位置変化に基づいて、車両の速度を計測する車速算出部と、を備えている。
A laser radar device according to the present disclosure is a laser radar device that measures the speed of a vehicle traveling on a road, and uses laser light so that the scanning direction on the road is oblique to the traveling direction of the vehicle. and the head of the vehicle is detected based on the received signal obtained by the one-dimensional scanning of the scanner, and the change in the position of the head of the vehicle in the direction of travel is calculated, or the tail of the vehicle is detected. and a position change calculation unit that calculates a position change of the tail of the vehicle in the traveling direction, and a vehicle speed calculation unit that measures the speed of the vehicle based on the position change calculated by the position change calculation unit. there is
本開示によれば、1台の一次元走査型のレーザレーダ装置により車両の速度を計測することができる。
According to the present disclosure, the speed of a vehicle can be measured with a single one-dimensional scanning laser radar device.
以下、本開示をより詳細に説明するため、本開示を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
図1は、実施の形態1に係るレーザレーダ装置100の構成を示すブロック図である。図1が示すように、レーザレーダ装置100は、信号発生器1、レーザ光源2、送信光学部3、ミラー4、スキャナ5、受信光学部6、光検出器7、位置変化算出部20、車速算出部12、車長算出部13、及びデータ保存部14を備えている。位置変化算出部20は、距離算出器8、三次元座標変換部9、道路上座標変換部10、車頭/車尾検出部11を備えている。なお、図示しないが、レーザレーダ装置100は、センサ固定部15により、車両が走行する道路を跨ぐ門柱、又は車両が走行する道路の脇に設置された柱に固定されているものとする。 Hereinafter, in order to describe the present disclosure in more detail, embodiments for carrying out the present disclosure will be described with reference to the accompanying drawings.
Embodiment 1.
FIG. 1 is a block diagram showing the configuration of alaser radar device 100 according to Embodiment 1. As shown in FIG. As shown in FIG. 1, the laser radar device 100 includes a signal generator 1, a laser light source 2, a transmission optical section 3, a mirror 4, a scanner 5, a reception optical section 6, a photodetector 7, a position change calculation section 20, a vehicle speed A calculation unit 12, a vehicle length calculation unit 13, and a data storage unit 14 are provided. The position change calculator 20 includes a distance calculator 8 , a three-dimensional coordinate converter 9 , a road coordinate converter 10 , and a head/tail detector 11 . Although not shown, the laser radar device 100 is fixed by the sensor fixing portion 15 to a gatepost straddling the road on which the vehicle travels or a pillar installed on the side of the road on which the vehicle travels.
実施の形態1.
図1は、実施の形態1に係るレーザレーダ装置100の構成を示すブロック図である。図1が示すように、レーザレーダ装置100は、信号発生器1、レーザ光源2、送信光学部3、ミラー4、スキャナ5、受信光学部6、光検出器7、位置変化算出部20、車速算出部12、車長算出部13、及びデータ保存部14を備えている。位置変化算出部20は、距離算出器8、三次元座標変換部9、道路上座標変換部10、車頭/車尾検出部11を備えている。なお、図示しないが、レーザレーダ装置100は、センサ固定部15により、車両が走行する道路を跨ぐ門柱、又は車両が走行する道路の脇に設置された柱に固定されているものとする。 Hereinafter, in order to describe the present disclosure in more detail, embodiments for carrying out the present disclosure will be described with reference to the accompanying drawings.
FIG. 1 is a block diagram showing the configuration of a
信号発生器1は、レーザ光源2とスキャナ5とを同期させる基準トリガ信号を一定の周期で生成する装置である。より具体的には、信号発生器1は、基準トリガ信号として、レーザ変調信号をレーザ光源2に出力し、それに同期して、基準トリガ信号として、スキャナ5にスキャナ駆動信号を出力する。また、信号発生器1は、距離を計測する際に基準となる基準信号を距離算出器8に出力する。実施の形態1では、当該基準信号は、パルス信号又は強度変調信号である。
The signal generator 1 is a device that generates a reference trigger signal for synchronizing the laser light source 2 and the scanner 5 at regular intervals. More specifically, the signal generator 1 outputs a laser modulation signal to the laser light source 2 as a reference trigger signal, and synchronously outputs a scanner drive signal to the scanner 5 as a reference trigger signal. The signal generator 1 also outputs a reference signal to the distance calculator 8, which serves as a reference when measuring the distance. In Embodiment 1, the reference signal is a pulse signal or an intensity modulated signal.
レーザ光源2は、送信光学部3にレーザ光を出力する。より具体的には、レーザ光源2は、信号発生器1から出力される変調信号に基づいて、レーザ光の元となる電流を変調することにより、レーザ光に変調をかけ、変調後のレーザ光を送信光学部3に出力する。なお、その際にLN(LiNbO3)強度変調器等の外部変調器を用いてレーザ光の変調を行う構成を採用してもよい。例えば、レーザ光源2として、LD(Laser Diode)等が用いられる。
The laser light source 2 outputs laser light to the transmission optical section 3 . More specifically, the laser light source 2 modulates the laser light by modulating the current, which is the source of the laser light, based on the modulation signal output from the signal generator 1, and modulates the laser light. is output to the transmission optical unit 3 . In this case, a configuration may be employed in which an external modulator such as an LN (LiNbO3) intensity modulator is used to modulate the laser light. For example, an LD (Laser Diode) or the like is used as the laser light source 2 .
送信光学部3は、レーザ光源2が出力したレーザ光を、所望のビーム径及び拡がり角に整形し、整形したレーザ光をミラー4に出射する。例えば、送信光学部3として、コリメートレンズ、又は集光レンズ等が用いられる。
ミラー4は、送信光学部3を通ったレーザ光を反射することにより、当該レーザ光をスキャナ5に照射する。 The transmission optical unit 3 shapes the laser light output from thelaser light source 2 into a desired beam diameter and divergence angle, and emits the shaped laser light to the mirror 4 . For example, a collimator lens, a condenser lens, or the like is used as the transmission optical unit 3 .
Themirror 4 irradiates the scanner 5 with the laser light that has passed through the transmission optical unit 3 by reflecting the laser light.
ミラー4は、送信光学部3を通ったレーザ光を反射することにより、当該レーザ光をスキャナ5に照射する。 The transmission optical unit 3 shapes the laser light output from the
The
スキャナ5は、レーザ光を用いて、道路上における走査方向が車両の進行方向に対して斜めになるように一次元走査を行う。つまり、スキャナ5は、レーザ光を用いて、道路上における走査方向と車両の進行方向とのなす角が0度及び90度以外の角度となるように一次元走査を行う。
The scanner 5 uses laser light to perform one-dimensional scanning so that the scanning direction on the road is oblique to the traveling direction of the vehicle. That is, the scanner 5 uses laser light to perform one-dimensional scanning so that the angle formed by the scanning direction on the road and the traveling direction of the vehicle is an angle other than 0 degree and 90 degrees.
より具体的には、実施の形態1では、スキャナ5は、信号発生器1が生成したスキャナ駆動信号に基づいて駆動し、ミラー4が反射したレーザ光を、道路又は道路を走行する車両に向かって照射する。また、スキャナ5は、道路又は道路を走行する車両によって反射されたレーザ光を、受信光学部6に向けて反射する。
More specifically, in Embodiment 1, the scanner 5 is driven based on the scanner drive signal generated by the signal generator 1, and directs the laser light reflected by the mirror 4 toward the road or a vehicle running on the road. to irradiate. The scanner 5 also reflects the laser beam reflected by the road or the vehicle traveling on the road toward the receiving optical unit 6 .
スキャナ5は、一次元走査を行った際の走査角に関する角度情報を、位置変化算出部20の三次元座標変換部9に出力する。例えば、スキャナ5として、ポリゴンスキャナ、ガルバノミラー、又はMEMS(Micro Electro Mechanical Systems)スキャナ等が用いられる。
The scanner 5 outputs angle information regarding the scanning angle when one-dimensional scanning is performed to the three-dimensional coordinate conversion section 9 of the position change calculation section 20 . For example, as the scanner 5, a polygon scanner, a galvanomirror, a MEMS (Micro Electro Mechanical Systems) scanner, or the like is used.
受信光学部6は、道路又は道路を走行する車両によって反射され、スキャナ5によって反射されたレーザ光を集光し、光検出器7に出力する。例えば、受信光学部6として、コリメートレンズ、又は集光レンズ等が用いられる。
The receiving optical unit 6 collects the laser light reflected by the road or a vehicle traveling on the road and reflected by the scanner 5 and outputs it to the photodetector 7 . For example, a collimating lens, a condensing lens, or the like is used as the receiving optical unit 6 .
光検出器7は、受信光学部6が出力したレーザ光を電気信号に変換することにより受信信号を取得する。光検出器7は、取得した受信信号を位置変化算出部20に出力する。実施の形態1では、当該受信信号は、パルス信号又は強度変調信号である。例えば、光検出器7として、PD(Photo Diode)、又はAPD(Avalanche Photo Diode)等が用いられる。例えば、PD又はAPDの出力電流を電圧に変換する場合は、TIA(Trans Impedance Amplifier)を用いる。
The photodetector 7 acquires a received signal by converting the laser light output by the receiving optical section 6 into an electrical signal. The photodetector 7 outputs the acquired received signal to the position change calculator 20 . In Embodiment 1, the received signal is a pulse signal or an intensity modulated signal. For example, as the photodetector 7, a PD (Photo Diode), APD (Avalanche Photo Diode), or the like is used. For example, when converting the output current of a PD or APD into a voltage, a TIA (Trans Impedance Amplifier) is used.
位置変化算出部20は、スキャナ5の一次元走査によって得られた受信信号に基づいて、車両の車頭を検出し、車両の進行方向における車両の車頭の位置変化を算出するか、又は車両の車尾を検出し、車両の進行方向における車両の車尾の位置変化を算出する。より詳細には、実施の形態1では、位置変化算出部20は、スキャナ5の一次元走査によって得られた受信信号に基づいて、車両の車頭及び車尾を検出する。位置変化算出部20は、算出した位置変化を車速算出部12及び車長算出部13にそれぞれ出力する。
The position change calculator 20 detects the head of the vehicle based on the received signal obtained by the one-dimensional scanning of the scanner 5, and calculates the position change of the head of the vehicle in the traveling direction of the vehicle. The tail is detected and the change in position of the tail of the vehicle in the direction of travel of the vehicle is calculated. More specifically, in Embodiment 1, the position change calculator 20 detects the head and tail of the vehicle based on the received signal obtained by the one-dimensional scanning of the scanner 5 . The position change calculator 20 outputs the calculated position changes to the vehicle speed calculator 12 and the vehicle length calculator 13, respectively.
より詳細には、実施の形態1では、位置変化算出部20の距離算出器8は、スキャナ5の一次元走査によって得られた受信信号に基づいて、車両までの距離を算出する。当該距離は、レーザレーダ装置100から車両までの距離である。距離算出器8は、算出した距離を三次元座標変換部9に出力する。
More specifically, in Embodiment 1, the distance calculator 8 of the position change calculator 20 calculates the distance to the vehicle based on the received signal obtained by the one-dimensional scanning of the scanner 5 . The distance is the distance from the laser radar device 100 to the vehicle. The distance calculator 8 outputs the calculated distance to the three-dimensional coordinate conversion section 9 .
さらに詳細には、実施の形態1では、距離算出器8は、光検出器7が出力した受信信号と信号発生器1が出力した基準信号との時間差又は位相差から、車両までの距離を算出する。さらに詳細には、実施の形態1では、距離算出器8は、光検出器7が出力したパルス信号と信号発生器1が生成したパルス信号との時間差から、車両までの距離を算出する。または、距離算出器8は、光検出器7が出力した強度変調信号と信号発生器1が生成した強度変調信号との位相差から、車両までの距離を算出する。
More specifically, in the first embodiment, the distance calculator 8 calculates the distance to the vehicle from the time difference or phase difference between the received signal output by the photodetector 7 and the reference signal output by the signal generator 1. do. More specifically, in the first embodiment, distance calculator 8 calculates the distance to the vehicle from the time difference between the pulse signal output by photodetector 7 and the pulse signal generated by signal generator 1 . Alternatively, the distance calculator 8 calculates the distance to the vehicle from the phase difference between the intensity-modulated signal output by the photodetector 7 and the intensity-modulated signal generated by the signal generator 1 .
例えば、距離算出器8は、CPU(Central Processing Unit)を実装している半導体集積回路、ワンチップマイコン、FPGA(Field-Programmable Gate Array)、又はASIC(Application Specific Integrated Circuit)等で構成される。
For example, the distance calculator 8 is composed of a semiconductor integrated circuit implementing a CPU (Central Processing Unit), a one-chip microcomputer, an FPGA (Field-Programmable Gate Array), or an ASIC (Application Specific Integrated Circuit).
三次元座標変換部9は、スキャナ5による一次元走査の走査角、及び距離算出器8が算出した距離を、三次元座標に変換することにより三次元座標の点群データを生成する。なお、当該三次元座標では、レーザレーダ装置100の位置を原点として、第1の座標軸及び第2の座標軸がそれぞれ道路上に沿った座標軸であり、第3の座標軸が鉛直方向に沿った座標軸である。当該点群データは、それぞれが三次元座標の位置を表す複数の点を示す。三次元座標変換部9は、生成した三次元座標の点群データを道路上座標変換部10に出力する。
The three-dimensional coordinate conversion unit 9 converts the scanning angle of one-dimensional scanning by the scanner 5 and the distance calculated by the distance calculator 8 into three-dimensional coordinates, thereby generating point cloud data of three-dimensional coordinates. In the three-dimensional coordinates, the position of the laser radar device 100 is the origin, the first coordinate axis and the second coordinate axis are coordinate axes along the road, and the third coordinate axis is the coordinate axis along the vertical direction. be. The point cloud data indicates a plurality of points each representing a three-dimensional coordinate position. The three-dimensional coordinate transformation unit 9 outputs the generated point cloud data of three-dimensional coordinates to the on-road coordinate transformation unit 10 .
より詳細には、実施の形態1では、三次元座標変換部9は、スキャナ5が出力した角度情報が示す走査角、及び距離算出器8が出力した距離を、三次元座標に変換することにより三次元座標の点群データを生成する。例えば、三次元座標変換部9は、CPUを実装している半導体集積回路、ワンチップマイコン、FPGA、又はASIC等で構成される。
More specifically, in the first embodiment, the three-dimensional coordinate conversion unit 9 converts the scanning angle indicated by the angle information output by the scanner 5 and the distance output by the distance calculator 8 into three-dimensional coordinates. Generate point cloud data of 3D coordinates. For example, the three-dimensional coordinate transformation unit 9 is configured by a semiconductor integrated circuit mounting a CPU, a one-chip microcomputer, an FPGA, an ASIC, or the like.
道路上座標変換部10は、三次元座標変換部9が生成した三次元座標の点群データを、車両の進行方向を第1の座標軸とし且つ道路の横断方向を第2の座標軸とした座標の点群データに変換する。つまり、道路上座標変換部10は、道路上の座標を変換する。より詳細には、実施の形態1では、道路上座標変換部10は、三次元座標変換部9が生成した三次元座標の第1の座標軸が車両の進行方向に沿った座標軸になり且つ三次元座標変換部9が生成した三次元座標の第2の座標軸が道路の横断方向に沿った座標軸になるように、三次元座標変換部9が生成した三次元座標を、鉛直方向に沿った第3の座標軸を回転軸として回転させる。道路上座標変換部10は、変換した点群データを車頭/車尾検出部11に出力する。例えば、道路上座標変換部10は、CPUを実装している半導体集積回路、ワンチップマイコン、FPGA、又はASIC等で構成される。
The on-road coordinate conversion unit 10 converts the point cloud data of the three-dimensional coordinates generated by the three-dimensional coordinate conversion unit 9 into coordinates with the traveling direction of the vehicle as a first coordinate axis and the crossing direction of the road as a second coordinate axis. Convert to point cloud data. In other words, the road coordinate conversion unit 10 converts the coordinates on the road. More specifically, in the first embodiment, the on-road coordinate transformation unit 10 converts the first coordinate axis of the three-dimensional coordinates generated by the three-dimensional coordinate transformation unit 9 into a coordinate axis along the traveling direction of the vehicle and converts the three-dimensional The three-dimensional coordinates generated by the three-dimensional coordinate transformation unit 9 are converted to the third coordinates along the vertical direction so that the second coordinate axis of the three-dimensional coordinates generated by the coordinate transformation unit 9 becomes the coordinate axis along the transverse direction of the road. is rotated with the coordinate axes of . The road coordinate transformation unit 10 outputs the transformed point cloud data to the head/tail detection unit 11 . For example, the road coordinate conversion unit 10 is configured by a semiconductor integrated circuit mounting a CPU, a one-chip microcomputer, an FPGA, or an ASIC.
車頭/車尾検出部11は、道路上座標変換部10が変換した点群データに基づいて、車両の車頭を検出し、車両の進行方向における車両の車頭の位置変化を算出するか、又は車両の車尾を検出し、車両の進行方向における車両の車尾の位置変化を算出する。車頭/車尾検出部11は、算出した位置変化を車速算出部12に出力する。
The head/tail detection unit 11 detects the head of the vehicle based on the point cloud data converted by the on-road coordinate conversion unit 10, and calculates the position change of the head of the vehicle in the traveling direction of the vehicle. is detected, and the change in position of the tail of the vehicle in the traveling direction of the vehicle is calculated. The head/tail detector 11 outputs the calculated position change to the vehicle speed calculator 12 .
より詳細には、実施の形態1では、車頭/車尾検出部11は、道路上座標変換部10が変換した点群データに基づいて、第1の時刻における車両の車頭の位置と、第2の時刻における当該車両の車頭の位置とを検出する。また、車頭/車尾検出部11は、検出した第1の時刻における車両の車頭の位置と第2の時刻における当該車両の車頭の位置とに基づいて、車両の進行方向における車両の車頭の位置変化を算出する。車頭/車尾検出部11は、当該第1の時刻及び当該第2の時刻の時間差を車速算出部12及び車長算出部13にそれぞれ出力する。
More specifically, in Embodiment 1, the head/tail detector 11 detects the position of the head of the vehicle at the first time and the second position based on the point cloud data converted by the road coordinate converter 10 . and the position of the head of the vehicle at the time of . Further, the head/tail detection unit 11 detects the position of the head of the vehicle in the traveling direction of the vehicle based on the detected position of the head of the vehicle at the first time and the position of the head of the vehicle at the second time. Calculate change. The head/tail detector 11 outputs the time difference between the first time and the second time to the vehicle speed calculator 12 and the vehicle length calculator 13, respectively.
さらに詳細には、実施の形態1では、車頭/車尾検出部11は、道路上座標変換部10が変換した点群データに基づいて、道路上を基準とした高さが所定の高さ閾値以上である物体を、任意の数フレーム分、検知した場合、当該車両が侵入してきたと判断し、当該物体の最先頭部を車頭と判断する。一方、車頭/車尾検出部11は、道路上座標変換部10が変換した点群データに基づいて、道路上を基準とした高さが所定の高さ閾値未満である物体を、任意の数フレーム分、検知した場合、車両が通過し終わったと判断し、当該物体の最後部を車尾と判断する。車頭/車尾検出部11は、CPUを実装している半導体集積回路、ワンチップマイコン、FPGA、又はASIC等で構成される。
More specifically, in Embodiment 1, the vehicle head/tail detection unit 11 detects the height on the road as a reference based on the point cloud data converted by the road coordinate conversion unit 10. When the object described above is detected for an arbitrary number of frames, it is determined that the vehicle has entered, and the foremost part of the object is determined to be the head of the vehicle. On the other hand, the head/tail detection unit 11 detects an arbitrary number of objects whose height relative to the road is less than a predetermined height threshold based on the point cloud data converted by the road coordinate conversion unit 10. When the object is detected for the frame, it is determined that the vehicle has finished passing, and the rear end of the object is determined to be the tail. The head/tail detection unit 11 is composed of a semiconductor integrated circuit mounting a CPU, a one-chip microcomputer, an FPGA, an ASIC, or the like.
車速算出部12は、位置変化算出部20が算出した位置変化に基づいて、車両の速度を計測する。より詳細には、実施の形態1では、車速算出部12は、車頭/車尾検出部11が算出した位置変化、並びに上述の第1の時刻及び第2の時刻の時間差に基づいて、車両の速度を計測する。例えば、車速算出部12は、CPUを実装している半導体集積回路、ワンチップマイコン、FPGA、又はASIC等で構成される。
The vehicle speed calculator 12 measures the speed of the vehicle based on the position change calculated by the position change calculator 20 . More specifically, in the first embodiment, the vehicle speed calculation unit 12 adjusts the speed of the vehicle based on the position change calculated by the head/tail detection unit 11 and the time difference between the first time and the second time. Measure speed. For example, the vehicle speed calculation unit 12 is composed of a semiconductor integrated circuit mounting a CPU, a one-chip microcomputer, an FPGA, an ASIC, or the like.
車長算出部13は、位置変化算出部20が車両の車頭を検出した時刻と、位置変化算出部20が車両の車尾を検出した時刻と、車速算出部12が算出した車速と、に基づいて、車両の車長を算出する。より詳細には、実施の形態1では、車長算出部13は、車頭/車尾検出部11が車両の車頭を検出した時刻と、車頭/車尾検出部11が車両の車尾を検出した時刻と、車速算出部12が算出した車速と、に基づいて、車両の車長を算出する。つまり、車長算出部13は、車速算出部12が算出した車速と、車頭通過時間及び車尾通過時間の差から車長を算出する。車長算出部13は、算出した車長をデータ保存部14に出力する。例えば、車長算出部13は、CPUを実装している半導体集積回路、ワンチップマイコン、FPGA、又はASIC等で構成される。
The vehicle length calculation unit 13 detects the head of the vehicle by the position change calculation unit 20, the time when the position change calculation unit 20 detects the tail of the vehicle, and the vehicle speed calculated by the vehicle speed calculation unit 12. to calculate the length of the vehicle. More specifically, in the first embodiment, the vehicle length calculator 13 calculates the time when the head/tail detector 11 detects the head of the vehicle and the time when the head/tail detector 11 detects the tail of the vehicle. The length of the vehicle is calculated based on the time and the vehicle speed calculated by the vehicle speed calculator 12 . That is, the vehicle length calculation unit 13 calculates the vehicle length from the difference between the vehicle speed calculated by the vehicle speed calculation unit 12 and the head passage time and the tail passage time. The vehicle length calculator 13 outputs the calculated vehicle length to the data storage unit 14 . For example, the vehicle length calculation unit 13 is composed of a semiconductor integrated circuit mounting a CPU, a one-chip microcomputer, an FPGA, an ASIC, or the like.
データ保存部14は、車速算出部12が算出した速度を、道路上を走行する車両毎に保存する。より具体的には、実施の形態1では、データ保存部14は、車両がレーザレーダ装置100の下を通過した順に、車速算出部12が算出した速度のデータ及び車長算出部13が算出した車長のデータを保存する。例えば、データ保存部14は、CPUを実装している半導体集積回路、ワンチップマイコン、FPGA、又はASIC等で構成される。
The data storage unit 14 stores the speed calculated by the vehicle speed calculation unit 12 for each vehicle traveling on the road. More specifically, in the first embodiment, the data storage unit 14 stores the speed data calculated by the vehicle speed calculation unit 12 and the speed data calculated by the vehicle length calculation unit 13 in the order in which the vehicle passes under the laser radar device 100 . Save the data of the car length. For example, the data storage unit 14 is composed of a semiconductor integrated circuit mounting a CPU, a one-chip microcomputer, an FPGA, an ASIC, or the like.
以下で、実施の形態1に係るレーザレーダ装置100の動作について図面を参照して説明する。図2は、実施の形態1に係るレーザレーダ装置100による車両速度計測方法を示すフローチャートである。
The operation of the laser radar device 100 according to Embodiment 1 will be described below with reference to the drawings. FIG. 2 is a flow chart showing a vehicle speed measurement method using the laser radar device 100 according to the first embodiment.
まず、レーザレーダ装置100が車両までの距離を算出するまでの過程について説明する。レーザレーダ装置100は、上述のように、センサ固定部15により、車両が走行する道路を跨ぐ門柱、車両が走行する道路の脇に設置された柱に固定されている。より詳細には、レーザレーダ装置100は、スキャナ5によって道路上における走査方向が車両の進行方向に対して斜めになる一次元走査を行うことができる当該門柱の部分又は当該柱の部分に設置されている。
First, the process until the laser radar device 100 calculates the distance to the vehicle will be described. As described above, the laser radar device 100 is fixed by the sensor fixing portion 15 to the gatepost that straddles the road on which the vehicle travels and the pillar installed on the side of the road on which the vehicle travels. More specifically, the laser radar device 100 is installed at the part of the gatepost or the part of the post that can perform one-dimensional scanning in which the scanning direction on the road is oblique to the traveling direction of the vehicle by the scanner 5. ing.
レーザ光源2は、信号発生器1から出力される変調信号に基づいて、変調されたレーザ光を生成し、生成したレーザ光を送信光学部3に出力する。
送信光学部3は、レーザ光源2が出力したレーザ光を、所望のビーム径及び拡がり角に整形し、整形したレーザ光をミラー4に出射する。
ミラー4は、送信光学部3を通ったレーザ光を反射することにより、当該レーザ光をスキャナ5に照射する。 Thelaser light source 2 generates modulated laser light based on the modulated signal output from the signal generator 1 and outputs the generated laser light to the transmission optical section 3 .
The transmission optical unit 3 shapes the laser light output from thelaser light source 2 into a desired beam diameter and divergence angle, and emits the shaped laser light to the mirror 4 .
Themirror 4 irradiates the scanner 5 with the laser light that has passed through the transmission optical unit 3 by reflecting the laser light.
送信光学部3は、レーザ光源2が出力したレーザ光を、所望のビーム径及び拡がり角に整形し、整形したレーザ光をミラー4に出射する。
ミラー4は、送信光学部3を通ったレーザ光を反射することにより、当該レーザ光をスキャナ5に照射する。 The
The transmission optical unit 3 shapes the laser light output from the
The
スキャナ5は、信号発生器1が生成したスキャナ駆動信号に基づいて駆動し、上述の角度情報を三次元座標変換部9に出力する。その際に、スキャナ5は、レーザ光を用いて、道路上における走査方向が車両の進行方向に対して斜めになるように一次元走査を行う。
The scanner 5 is driven based on the scanner drive signal generated by the signal generator 1, and outputs the angle information described above to the three-dimensional coordinate conversion section 9. At that time, the scanner 5 uses a laser beam to perform one-dimensional scanning so that the scanning direction on the road is oblique to the traveling direction of the vehicle.
図3は、従来のレーザレーダ装置による一次元走査を示す図である。図4は、実施の形態1に係るレーザレーダ装置100による一次元走査を示す図である。図3及び図4は、それぞれ、走行する車両から見た一次元走査を示す図であり、図3及び図4における複数の点線は、それぞれ、1回のスキャンを示す。図4において、上の図が、第1の時刻において車両の車頭を捉えた一次元走査を示す図であり、下の図が、その後の第2の時刻において車両の車頭を捉えた一次元走査を示す図である。図3が示すように、従来のレーザレーダ装置は、レーザ光を用いて、道路上における走査方向が車両の進行方向に対して垂直になるように一次元走査を行う。一方で、図4が示すように、実施の形態1に係るレーザレーダ装置100は、スキャナ5によって、道路上における走査方向が車両の進行方向に対して斜めになるように一次元走査を行う。
FIG. 3 is a diagram showing one-dimensional scanning by a conventional laser radar device. FIG. 4 is a diagram showing one-dimensional scanning by the laser radar device 100 according to the first embodiment. 3 and 4 are diagrams each showing one-dimensional scanning as seen from a running vehicle, and a plurality of dotted lines in FIGS. 3 and 4 each represent one scanning. In FIG. 4, the upper diagram is a diagram showing the one-dimensional scanning of the vehicle's head at the first time, and the lower diagram is the one-dimensional scanning of the vehicle's head at the second time. It is a figure which shows. As shown in FIG. 3, the conventional laser radar device uses a laser beam to perform one-dimensional scanning on the road so that the scanning direction is perpendicular to the traveling direction of the vehicle. On the other hand, as shown in FIG. 4, the laser radar device 100 according to Embodiment 1 performs one-dimensional scanning with the scanner 5 so that the scanning direction on the road is oblique to the traveling direction of the vehicle.
スキャナ5は、道路又は道路を走行する車両によって反射されたレーザ光を、受信光学部6に向けて反射する。
受信光学部6は、道路又は道路を走行する車両によって反射され、スキャナ5によって反射されたレーザ光を集光し、光検出器7に出力する。
光検出器7は、受信光学部6が出力したレーザ光を電気信号に変換することにより受信信号を取得する。 Thescanner 5 reflects the laser beam reflected by the road or the vehicle traveling on the road toward the receiving optics 6 .
The receivingoptical unit 6 collects the laser light reflected by the road or a vehicle traveling on the road and reflected by the scanner 5 and outputs the light to the photodetector 7 .
Thephotodetector 7 acquires a received signal by converting the laser light output by the receiving optical section 6 into an electrical signal.
受信光学部6は、道路又は道路を走行する車両によって反射され、スキャナ5によって反射されたレーザ光を集光し、光検出器7に出力する。
光検出器7は、受信光学部6が出力したレーザ光を電気信号に変換することにより受信信号を取得する。 The
The receiving
The
距離算出器8は、光検出器7が出力した受信信号と信号発生器1が出力した基準信号との時間差から、車両までの距離を算出する。距離算出器8は、算出した距離を三次元座標変換部9に出力する。
The distance calculator 8 calculates the distance to the vehicle from the time difference between the received signal output by the photodetector 7 and the reference signal output by the signal generator 1 . The distance calculator 8 outputs the calculated distance to the three-dimensional coordinate conversion section 9 .
信号発生器1がパルス信号を生成した場合は、光速をc[m/s]とし、時間差をΔtd[s]とすると、距離z[m]は、下記の式(1)で表される。
z=(c×Δtd)/2 (1)
信号発生器1は、強度変調信号を生成し、距離算出器8は、光検出器7が出力した受信信号と信号発生器1が出力した基準信号との位相差から距離を算出してもよい。 When thesignal generator 1 generates a pulse signal, the speed of light is c [m/s] and the time difference is Δt d [s], the distance z [m] is expressed by the following equation (1) .
z=(c×Δt d )/2 (1)
Thesignal generator 1 may generate an intensity-modulated signal, and the distance calculator 8 may calculate the distance from the phase difference between the received signal output by the photodetector 7 and the reference signal output by the signal generator 1. .
z=(c×Δtd)/2 (1)
信号発生器1は、強度変調信号を生成し、距離算出器8は、光検出器7が出力した受信信号と信号発生器1が出力した基準信号との位相差から距離を算出してもよい。 When the
z=(c×Δt d )/2 (1)
The
以下で、図2が示す各ステップについて説明する。三次元座標変換部9は、スキャナ5が出力した角度情報が示す走査角、及び距離算出器8が出力した距離を、三次元座標に変換することにより三次元座標の点群データを生成する(ステップST1)。三次元座標変換部9は、生成した三次元座標の点群データを道路上座標変換部10に出力する。
Each step shown in FIG. 2 will be described below. The three-dimensional coordinate conversion unit 9 converts the scanning angle indicated by the angle information output by the scanner 5 and the distance output by the distance calculator 8 into three-dimensional coordinates, thereby generating point cloud data of three-dimensional coordinates ( step ST1). The three-dimensional coordinate transformation unit 9 outputs the generated point cloud data of three-dimensional coordinates to the on-road coordinate transformation unit 10 .
道路上座標変換部10は、三次元座標変換部9が生成した三次元座標の点群データを、車両の進行方向を第1の座標軸とし且つ道路の横断方向を第2の座標軸とした座標の点群データに変換する(ステップST2)。その際、道路上座標変換部10は、以下の式(2)及び式(3)に従って、三次元座標変換部9が生成した三次元座標の点群データを、車両の進行方向を第1の座標軸とし且つ道路の横断方向を第2の座標軸とした座標の点群データに変換する。
x1=L0×cosθs (2)
y1=L0×sinθs (3)
式(2)及び式(3)におけるθs[rad]は、道路上における走査方向と車両の進行方向とのなす角である。式(2)及び式(3)におけるL0は、レーザレーダ装置100の道路上の対応する位置から、三次元座標変換部9が生成した三次元座標の点群データの道路上の位置までの距離を示す。式(2)におけるx1は、変換後の道路上のx座標である。式(3)におけるy1は、変換後の道路上のy座標である。 The on-road coordinateconversion unit 10 converts the point cloud data of the three-dimensional coordinates generated by the three-dimensional coordinate conversion unit 9 into coordinates with the traveling direction of the vehicle as a first coordinate axis and the crossing direction of the road as a second coordinate axis. Convert to point cloud data (step ST2). At that time, the on-road coordinate conversion unit 10 transforms the point cloud data of the three-dimensional coordinates generated by the three-dimensional coordinate conversion unit 9 into the traveling direction of the vehicle according to the following formulas (2) and (3) It is converted into point cloud data of coordinates with the coordinate axis and the crossing direction of the road as the second coordinate axis.
x 1 =L 0 ×cos θ s (2)
y 1 =L 0 ×sin θ s (3)
θ s [rad] in equations (2) and (3) is the angle formed by the scanning direction on the road and the traveling direction of the vehicle. L 0 in equations (2) and (3) is the distance from the corresponding position on the road of thelaser radar device 100 to the position on the road of the point cloud data of the three-dimensional coordinates generated by the three-dimensional coordinate conversion unit 9. Indicates distance. x1 in equation (2) is the x - coordinate on the road after transformation. y1 in equation (3) is the y - coordinate on the road after transformation.
x1=L0×cosθs (2)
y1=L0×sinθs (3)
式(2)及び式(3)におけるθs[rad]は、道路上における走査方向と車両の進行方向とのなす角である。式(2)及び式(3)におけるL0は、レーザレーダ装置100の道路上の対応する位置から、三次元座標変換部9が生成した三次元座標の点群データの道路上の位置までの距離を示す。式(2)におけるx1は、変換後の道路上のx座標である。式(3)におけるy1は、変換後の道路上のy座標である。 The on-road coordinate
x 1 =L 0 ×cos θ s (2)
y 1 =L 0 ×sin θ s (3)
θ s [rad] in equations (2) and (3) is the angle formed by the scanning direction on the road and the traveling direction of the vehicle. L 0 in equations (2) and (3) is the distance from the corresponding position on the road of the
図5は、実施の形態1に係るレーザレーダ装置100による道路上における座標変換を示す図である。図6は、実施の形態1に係るレーザレーダ装置100による道路の横断方向の走査幅を示す図である。図5が示すように、道路上座標変換部10によって変換された座標では、レーザレーダ装置100が設置されたセンサ設置位置を原点とし、車両の進行方向をx座標とし、道路の横断方向をy座標とし、センサ設置位置から道路に向かって垂直な方向をz座標とする。この場合、式(2)及び式(3)におけるθs[rad]は、図5が示す車両の進行方向(x軸)と走査方向(レーザ光の軌跡)のなす角に相当する。
FIG. 5 is a diagram showing coordinate transformation on the road by the laser radar device 100 according to the first embodiment. FIG. 6 is a diagram showing the scanning width in the transverse direction of the road by the laser radar device 100 according to the first embodiment. As shown in FIG. 5, in the coordinates converted by the road coordinate conversion unit 10, the sensor installation position where the laser radar device 100 is installed is the origin, the traveling direction of the vehicle is the x coordinate, and the crossing direction of the road is the y coordinate. The direction perpendicular to the road from the sensor installation position is the z-coordinate. In this case, θ s [rad] in equations (2) and (3) corresponds to the angle formed by the traveling direction (x-axis) of the vehicle and the scanning direction (trajectory of the laser beam) shown in FIG.
車頭/車尾検出部11は、道路上座標変換部10が変換した点群データに基づいて、車頭を検知したか否かを判定する(ステップST3)。その際、車頭/車尾検出部11は、道路上座標変換部10が変換した点群データに基づいて、道路上を基準とした高さが所定の高さ閾値以上である物体を、任意の数フレーム分、検知した場合、当該車両が侵入してきたと判断し、当該物体の最先頭部を車頭と判断する。
The vehicle head/tail detection unit 11 determines whether or not the vehicle head has been detected based on the point cloud data transformed by the road coordinate transformation unit 10 (step ST3). At that time, the vehicle head/tail detection unit 11 detects an object whose height relative to the road is equal to or higher than a predetermined height threshold based on the point cloud data converted by the road coordinate conversion unit 10. When the object is detected for several frames, it is determined that the vehicle has entered, and the foremost part of the object is determined to be the head of the vehicle.
車頭/車尾検出部11が車頭を検知したと判定した場合(ステップST3のYES)、レーザレーダ装置100は、ステップST4の処理に進む。車頭/車尾検出部11が車頭を検知しなかったと判定した場合(ステップST4のNO)、レーザレーダ装置100は、ステップST1の処理に戻る。
When it is determined that the head/tail detector 11 has detected the head of the vehicle (YES in step ST3), the laser radar device 100 proceeds to the process of step ST4. When it is determined that the head/tail detector 11 has not detected the head of the vehicle (NO in step ST4), the laser radar device 100 returns to the process of step ST1.
車頭/車尾検出部11は、車頭の位置変化ΔL[m]を算出する(ステップST4)。車頭/車尾検出部11が第1の時刻t1[s]に取得した車頭の点群データの位置をL1[m]、第2の時刻t2[s]に取得した車頭の点群データの位置をL2[m]とすると、車頭の位置変化ΔL[m]は、以下の式(4)で表せる。
ΔL=L2-L1 (4) The head/tail detector 11 calculates the position change ΔL [m] of the head (step ST4). L 1 [m] is the position of the point cloud data of the vehicle head acquired by the vehicle head/tail detection unit 11 at the first time t 1 [s], and the point cloud of the vehicle head acquired at the second time t 2 [s] Assuming that the position of the data is L 2 [m], the position change ΔL [m] of the vehicle head can be expressed by the following equation (4).
ΔL=L 2 -L 1 (4)
ΔL=L2-L1 (4) The head/
ΔL=L 2 -L 1 (4)
車頭/車尾検出部11は、以下の式(5)に従って、車頭の時間変化Δt[s]を算出する(ステップST5)。
Δt=t2-t1 (5) The head/tail detector 11 calculates the time change Δt [s] of the head in accordance with the following equation (5) (step ST5).
Δt=t 2 −t 1 (5)
Δt=t2-t1 (5) The head/
Δt=t 2 −t 1 (5)
レーザレーダ装置100のフレームレートをF[Hz]とし、1スキャンで取得する点群データの総数をNとし、Nのうちのn1番目の点群データが1回目に車頭を捉えたものとし(図4の上の図を参照)、スキャン開始からのオフセット時間をto1[s]とすると、式(5)における第1の時刻t1[s]は、以下の式(6)で表される。
t1=(1/F)×(n1/N)+to1 (6) Assume that the frame rate of thelaser radar device 100 is F [Hz], the total number of point cloud data acquired in one scan is N, and the n1th point cloud data out of N captures the head of the car for the first time ( 4), and if the offset time from the start of scanning is t o1 [s], the first time t 1 [s] in Equation (5) is expressed by Equation (6) below: be.
t1=( 1 /F)*(n1 / N)+ t01 (6)
t1=(1/F)×(n1/N)+to1 (6) Assume that the frame rate of the
t1=( 1 /F)*(n1 / N)+ t01 (6)
同様に、Nのうちのn2番目の点群データが2回目に車頭を捉えたものとし(図4の下の図を参照)、スキャン開始からのオフセット時間をto2[s]とすると、第2の時刻t2[s]は、以下の式(7)で表される。
t2=(1/F)×(n2/N)+to2 (7) Similarly, assuming that the n 2nd point cloud data out of N captures the head of the car for the second time (see the lower diagram in FIG. 4), and the offset time from the start of scanning is t o2 [s], The second time t 2 [s] is represented by Equation (7) below.
t2 = (1/F) x (n2/N) + t02 (7)
t2=(1/F)×(n2/N)+to2 (7) Similarly, assuming that the n 2nd point cloud data out of N captures the head of the car for the second time (see the lower diagram in FIG. 4), and the offset time from the start of scanning is t o2 [s], The second time t 2 [s] is represented by Equation (7) below.
t2 = (1/F) x (n2/N) + t02 (7)
車速算出部12は、車速算出部12は、車頭/車尾検出部11が算出した位置変化、並びに第1の時刻及び第2の時刻の時間差に基づいて、車両の速度を計測する(ステップST6)。車両の速度vc[km/h]は、車頭又は車尾の位置変化をΔL[m]、第1の時刻及び第2の時刻の時間差をΔt[s]とすると、以下の式(8)で表される。
vc=(ΔL/Δt)×3.6 (8) The vehiclespeed calculation unit 12 measures the speed of the vehicle based on the position change calculated by the head/tail detection unit 11 and the time difference between the first time and the second time (step ST6 ). The vehicle speed v c [km/h] is expressed by the following equation (8), where ΔL [m] is the change in the position of the head or tail of the vehicle, and Δt [s] is the time difference between the first time and the second time. is represented by
v c =(ΔL/Δt)×3.6 (8)
vc=(ΔL/Δt)×3.6 (8) The vehicle
v c =(ΔL/Δt)×3.6 (8)
車頭/車尾検出部11は、道路上座標変換部10が変換した点群データに基づいて、車尾を検知したか否かを判定する(ステップST7)。その際、車頭/車尾検出部11は、道路上座標変換部10が変換した点群データに基づいて、道路上を基準とした高さが所定の高さ閾値未満である物体を、任意の数フレーム分、検知した場合、当該車両が通過し終わったと判断し、当該物体の最後部を車尾と判断する。
The vehicle head/tail detection unit 11 determines whether or not the vehicle tail is detected based on the point cloud data converted by the road coordinate conversion unit 10 (step ST7). At this time, the vehicle head/tail detection unit 11 detects an object whose height relative to the road is less than a predetermined height threshold based on the point cloud data converted by the road coordinate conversion unit 10. When the object is detected for several frames, it is determined that the vehicle has passed, and the rear end of the object is determined as the tail.
車頭/車尾検出部11が車尾を検知したと判定した場合(ステップST7のYES)、レーザレーダ装置100は、ステップST8の処理に進む。車頭/車尾検出部11が車尾を検知しなかったと判定した場合(ステップST8のNO)、レーザレーダ装置100は、道路上座標変換部10が変換した点群データを再度取得し、ステップST7の処理を再度行う。
When it is determined that the vehicle head/tail detector 11 has detected the vehicle tail (YES in step ST7), the laser radar device 100 proceeds to the process of step ST8. When it is determined that the vehicle head/tail detection unit 11 did not detect the vehicle tail (NO in step ST8), the laser radar device 100 acquires again the point cloud data transformed by the road coordinate transformation unit 10, and performs step ST7. process again.
車頭/車尾検出部11は、車両の車頭を検出した時刻と車両の車尾を検出した時刻との時間差である車両の通過時間Δtcを算出する(ステップST8)。車頭検出時刻をts[s]、車尾検出時刻をte[s]とすると、車両の通過時間Δtc[s]は、以下の式(9)で表される。
Δtc=te-ts (9) The head/tail detector 11 calculates a vehicle passing time Δtc , which is the time difference between the time when the head of the vehicle is detected and the time when the tail of the vehicle is detected (step ST8). Assuming that the head detection time is t s [s] and the tail detection time is t e [s], the passing time Δt c [s] of the vehicle is expressed by the following equation (9).
Δt c =t e −t s (9)
Δtc=te-ts (9) The head/
Δt c =t e −t s (9)
車長算出部13は、車速算出部12が算出した車両の速度と、車頭/車尾検出部11が算出した車両の通過時間とに基づいて、車長を算出する(ステップST9)。車長Lc[m]は、上述の車両の速度vc及び上述の車両の通過時間Δtc[s]に基づいて、以下の式(10)によって表される。
Lc=vc×Δtc (10) Thevehicle length calculator 13 calculates the vehicle length based on the vehicle speed calculated by the vehicle speed calculator 12 and the vehicle passing time calculated by the head/tail detector 11 (step ST9). The vehicle length L c [m] is represented by the following equation (10) based on the above-described vehicle speed v c and the above-described vehicle passing time Δt c [s].
L c =v c ×Δt c (10)
Lc=vc×Δtc (10) The
L c =v c ×Δt c (10)
データ保存部14は、車両がレーザレーダ装置100の下を通過した順に、車速算出部12が算出した速度のデータ、及び車長算出部13が算出した車長のデータを保存する(ステップST10)。
The data storage unit 14 stores the speed data calculated by the vehicle speed calculation unit 12 and the vehicle length data calculated by the vehicle length calculation unit 13 in the order in which the vehicle passes under the laser radar device 100 (step ST10). .
レーザレーダ装置100は、車両の速度及び車長のデータ取得を終了するか否かを判定する(ステップST11)。レーザレーダ装置100は、データ取得を継続する場合(ステップST11のNO)、ステップST1の処理に戻り、データ取得を終了する場合(ステップST11のYES)、処理を終了する(ST11)。
The laser radar device 100 determines whether or not to end the acquisition of vehicle speed and vehicle length data (step ST11). When continuing data acquisition (NO in step ST11), the laser radar device 100 returns to the process of step ST1, and when ending data acquisition (YES in step ST11), ends the process (ST11).
以上で説明したように、実施の形態1によれば、道路上における走査方向が車両の進行方向に対して斜めになるように一次元走査を行うため、点群データが車両の進行方向に広がる。これにより、単一のレーザレーダ装置100による一次元走査によって、車頭又は車尾の位置変化を計測し、車両の速度を計測することが可能である。また、車両の進行方向の距離分解能は、観測点ピッチで決まり、最高検知速度に合わせてレーザレーダ装置100の設置角度を調整することにより、さらに高い距離分解能での計測が可能となる。
As described above, according to Embodiment 1, since one-dimensional scanning is performed so that the scanning direction on the road is oblique to the traveling direction of the vehicle, the point cloud data spreads in the traveling direction of the vehicle. . Accordingly, it is possible to measure the position change of the head or tail of the vehicle and the speed of the vehicle by one-dimensional scanning by the single laser radar device 100 . Further, the distance resolution in the traveling direction of the vehicle is determined by the observation point pitch, and by adjusting the installation angle of the laser radar device 100 according to the maximum detectable speed, measurement with even higher distance resolution becomes possible.
図3が示すように、車両の進行方向に対して道路上における走査方向が垂直の場合、進行方向の距離分解能は、レーザレーダ装置のフレームレート、及び車両の速度に依存する。進行方向の分解能Δx1は、レーザレーダ装置のフレームレートをF[Hz]とすると、以下の式(11)で表される。
Δx1=(vc/3.6)×(1/F) (11) As shown in FIG. 3, when the scanning direction on the road is perpendicular to the traveling direction of the vehicle, the distance resolution in the traveling direction depends on the frame rate of the laser radar device and the speed of the vehicle. Assuming that the frame rate of the laser radar device is F [Hz], the resolution Δx 1 in the traveling direction is expressed by the following equation (11).
Δx 1 =(v c /3.6)×(1/F) (11)
Δx1=(vc/3.6)×(1/F) (11) As shown in FIG. 3, when the scanning direction on the road is perpendicular to the traveling direction of the vehicle, the distance resolution in the traveling direction depends on the frame rate of the laser radar device and the speed of the vehicle. Assuming that the frame rate of the laser radar device is F [Hz], the resolution Δx 1 in the traveling direction is expressed by the following equation (11).
Δx 1 =(v c /3.6)×(1/F) (11)
一方、図4が示すように、車両の進行方向に対して道路上における走査方向が斜めになる場合、進行方向の距離分解能は、レーザレーダ装置100の水平角度分解能及び傾き角に依存する。道路上を基準としたレーザレーダ装置100の設置高さをh[m]とし、レーザレーダ装置100の水平角度分解能をΔθh[rad]とし、車両の進行方向と道路上における走査方向とのなす角をθs[rad]とすると、進行方向の分解能Δx2は、以下の式(12)で表される。
Δx2=h×tanΔθh×cosθs (12) On the other hand, as shown in FIG. 4, when the scanning direction on the road is oblique with respect to the traveling direction of the vehicle, the distance resolution in the traveling direction depends on the horizontal angular resolution and inclination angle of thelaser radar device 100 . Let h [m] be the installation height of the laser radar device 100 with respect to the road, let Δθ h [rad] be the horizontal angular resolution of the laser radar device 100, and let the traveling direction of the vehicle and the scanning direction on the road form Assuming that the angle is θ s [rad], the resolution Δx 2 in the traveling direction is expressed by the following equation (12).
Δx 2 =h×tan Δθ h ×cos θ s (12)
Δx2=h×tanΔθh×cosθs (12) On the other hand, as shown in FIG. 4, when the scanning direction on the road is oblique with respect to the traveling direction of the vehicle, the distance resolution in the traveling direction depends on the horizontal angular resolution and inclination angle of the
Δx 2 =h×tan Δθ h ×cos θ s (12)
以上のように、実施の形態1に係るレーザレーダ装置100は、道路上を走行する車両の速度を計測するレーザレーダ装置100であって、レーザ光を用いて、道路上における走査方向が車両の進行方向に対して斜めになるように一次元走査を行うスキャナ5と、スキャナ5の一次元走査によって得られた受信信号に基づいて、車両の車頭を検出し、進行方向における車両の車頭の位置変化を算出するか、又は車両の車尾を検出し、進行方向における車両の車尾の位置変化を算出する位置変化算出部20と、位置変化算出部20が算出した位置変化に基づいて、車両の速度を計測する車速算出部12と、を備えている。
As described above, the laser radar device 100 according to Embodiment 1 is a laser radar device 100 that measures the speed of a vehicle traveling on a road, and uses laser light to detect that the scanning direction of the vehicle on the road is A scanner 5 that performs one-dimensional scanning obliquely to the direction of travel, and the head of the vehicle is detected based on the received signal obtained by the one-dimensional scanning of the scanner 5, and the position of the head of the vehicle in the direction of travel is detected. A position change calculation unit 20 that calculates a change or detects the tail of the vehicle and calculates a position change of the tail of the vehicle in the direction of travel; and a vehicle speed calculation unit 12 that measures the speed of the vehicle.
上記の構成によれば、道路上における走査方向が車両の進行方向に対して斜めになるように一次元走査を行うため、進行方向における車両の車頭又は車尾の位置変化を計測することができ、車両の速度を計測することができる。つまり、1台の一次元走査型のレーザレーダ装置により車両の速度を計測することができる。
According to the above configuration, one-dimensional scanning is performed so that the scanning direction on the road is oblique to the traveling direction of the vehicle, so it is possible to measure the position change of the vehicle head or tail in the traveling direction. , the speed of the vehicle can be measured. That is, the speed of the vehicle can be measured by one one-dimensional scanning laser radar device.
実施の形態2.
実施の形態2では、道路上における走査方向を変更する構成について説明する。
以下で、実施の形態2について図面を参照して説明する。なお、実施の形態1で説明した構成と同様の機能を有する構成については同一の符号を付し、その説明を省略する。
図7は、実施の形態2に係るレーザレーダ装置101の構成を示すブロック図である。図7が示すように、レーザレーダ装置101は、実施の形態1に係るレーザレーダ装置100の構成に加えて、センサ回転判定部16、及びセンサ回転部17をさらに備えている。
実施の形態2に係る構成では、センサ回転判定部16及びセンサ回転部17により、車両の進行方向と道路上における走査方向とのなす角を変更できる点が実施の形態1に係る構成と異なる。Embodiment 2.
Embodiment 2 describes a configuration for changing the scanning direction on the road.
Embodiment 2 will be described below with reference to the drawings. In addition, the same reference numerals are given to the configurations having the same functions as the configurations described in the first embodiment, and the description thereof will be omitted.
FIG. 7 is a block diagram showing the configuration oflaser radar device 101 according to the second embodiment. As shown in FIG. 7, the laser radar device 101 further includes a sensor rotation determination section 16 and a sensor rotation section 17 in addition to the configuration of the laser radar device 100 according to the first embodiment.
The configuration according to the second embodiment differs from the configuration according to the first embodiment in that the angle formed by the traveling direction of the vehicle and the scanning direction on the road can be changed by the sensorrotation determination unit 16 and the sensor rotation unit 17 .
実施の形態2では、道路上における走査方向を変更する構成について説明する。
以下で、実施の形態2について図面を参照して説明する。なお、実施の形態1で説明した構成と同様の機能を有する構成については同一の符号を付し、その説明を省略する。
図7は、実施の形態2に係るレーザレーダ装置101の構成を示すブロック図である。図7が示すように、レーザレーダ装置101は、実施の形態1に係るレーザレーダ装置100の構成に加えて、センサ回転判定部16、及びセンサ回転部17をさらに備えている。
実施の形態2に係る構成では、センサ回転判定部16及びセンサ回転部17により、車両の進行方向と道路上における走査方向とのなす角を変更できる点が実施の形態1に係る構成と異なる。
FIG. 7 is a block diagram showing the configuration of
The configuration according to the second embodiment differs from the configuration according to the first embodiment in that the angle formed by the traveling direction of the vehicle and the scanning direction on the road can be changed by the sensor
センサ回転判定部16は、データ保存部14に保存された速度が所定の速度以上であるか否かを判定する。より詳細には、実施の形態1では、センサ回転判定部16は、データ保存部14に保存された車両の速度に基づいて、レーザレーダ装置101を回転させることにより車両の進行方向の距離分解能を向上させるか否かを判定する。センサ回転判定部16は、レーザレーダ装置101を回転させると判定した場合には、センサ回転部17がレーザレーダ装置101を回転させるように制御する。例えば、センサ回転判定部16は、CPUを実装している半導体集積回路、ワンチップマイコン、FPGA、又はASIC等で構成される。
The sensor rotation determination unit 16 determines whether the speed stored in the data storage unit 14 is equal to or higher than a predetermined speed. More specifically, in the first embodiment, the sensor rotation determination unit 16 rotates the laser radar device 101 based on the speed of the vehicle stored in the data storage unit 14 to determine the distance resolution in the traveling direction of the vehicle. Decide whether to improve. When the sensor rotation determining unit 16 determines to rotate the laser radar device 101 , the sensor rotating unit 17 controls the laser radar device 101 to rotate. For example, the sensor rotation determination unit 16 is configured by a semiconductor integrated circuit mounting a CPU, a one-chip microcomputer, an FPGA, an ASIC, or the like.
センサ回転部17は、センサ回転判定部16の判定結果に基づき、レーザレーダ装置101を回転させる回転動作を行う。より詳細には、センサ回転部17は、センサ回転判定部16によって、データ保存部14に保存された速度が所定の速度以上であると判定された場合、スキャナ5による道路上における走査方向と車両の進行方向とのなす角が大きくなるように、レーザレーダ装置101を回転させる。なお、ここにおけるスキャナ5による道路上における走査方向と車両の進行方向とのなす角は、レーザレーダ装置101の回転前も回転後も鋭角である。例えば、センサ回転部17として、モーター等が用いられる。
The sensor rotation unit 17 performs a rotation operation to rotate the laser radar device 101 based on the determination result of the sensor rotation determination unit 16. More specifically, when the sensor rotation determination unit 16 determines that the speed stored in the data storage unit 14 is equal to or higher than a predetermined speed, the sensor rotation unit 17 determines the scanning direction of the scanner 5 on the road and the vehicle speed. The laser radar device 101 is rotated so that the angle formed with the traveling direction of the laser radar device 101 becomes large. The angle formed by the scanning direction on the road by the scanner 5 and the traveling direction of the vehicle is an acute angle both before and after the rotation of the laser radar device 101 . For example, a motor or the like is used as the sensor rotation unit 17 .
以下で、実施の形態2に係るレーザレーダ装置101の動作について図面を参照して説明する。図8は、実施の形態2に係るレーザレーダ装置101による車両速度計測方法を示すフローチャートである。なお、実施の形態2に係るレーザレーダ装置101による車両速度計測方法は、ステップST12及びステップST13以外、実施の形態1に係るレーザレーダ装置100による車両速度計測方法と同様である。従って、実施の形態1で説明したステップST1からステップST11までの各ステップについては、その詳細な説明を省略する。
The operation of the laser radar device 101 according to Embodiment 2 will be described below with reference to the drawings. FIG. 8 is a flow chart showing a vehicle speed measurement method using the laser radar device 101 according to the second embodiment. The vehicle speed measurement method by the laser radar device 101 according to the second embodiment is the same as the vehicle speed measurement method by the laser radar device 100 according to the first embodiment except steps ST12 and ST13. Therefore, detailed description of each step from step ST1 to step ST11 described in the first embodiment is omitted.
図8が示すように、ステップST10の次のステップとして、センサ回転判定部16は、データ保存部14に保存された車両の速度が所定の速度以上であるか否か判定する(ステップST12)。
As shown in FIG. 8, as a next step after step ST10, the sensor rotation determination unit 16 determines whether the speed of the vehicle stored in the data storage unit 14 is equal to or higher than a predetermined speed (step ST12).
センサ回転判定部16は、データ保存部14に保存された速度が所定の速度以上であると判定した場合(ステップST12のYES)、センサ回転部17がレーザレーダ装置101を回転させるように制御する制御信号をセンサ回転部17に出力する(ステップST13)。また、ステップST13において、センサ回転部17は、センサ回転判定部16が出力した制御信号に基づいて、スキャナ5による道路上における走査方向と車両の進行方向とのなす角が大きくなるように、レーザレーダ装置101を回転させる。なお、予めユーザーがセンサ回転部17による回転の回転角を複数設定しておく。
When the sensor rotation determination unit 16 determines that the speed stored in the data storage unit 14 is equal to or higher than the predetermined speed (YES in step ST12), the sensor rotation determination unit 16 controls the sensor rotation unit 17 to rotate the laser radar device 101. A control signal is output to the sensor rotating section 17 (step ST13). In step ST13, the sensor rotation unit 17 rotates the laser beam so that the angle formed by the scanning direction on the road by the scanner 5 and the traveling direction of the vehicle increases based on the control signal output by the sensor rotation determination unit 16. Rotate the radar device 101 . Note that the user sets a plurality of rotation angles of rotation by the sensor rotation unit 17 in advance.
センサ回転判定部16が、データ保存部14に保存された速度が所定の速度未満であると判定した場合(ステップST12のNO)、レーザレーダ装置101は、ステップST11の処理に進む。
When the sensor rotation determination unit 16 determines that the speed stored in the data storage unit 14 is less than the predetermined speed (NO in step ST12), the laser radar device 101 proceeds to the process of step ST11.
上記の構成によれば、所定の速度以上で走行する車両が存在する場合は、スキャナ5による道路上における走査方向と車両の進行方向とのなす角を大きくすることによって、一度に取得できる車頭又は車尾に関する点群データの数を増やす。ただしその場合は、道路上における横断方向のスキャン幅が狭くなる。そこで、センサ回転判定部16は、以下で説明する式(14)に従い、道路の幅に応じて、スキャナ5による道路上における走査方向と車両の進行方向とのなす角を設定してもよい。
According to the above configuration, when there is a vehicle traveling at a speed equal to or higher than a predetermined speed, by increasing the angle formed by the scanning direction on the road by the scanner 5 and the traveling direction of the vehicle, the head of the vehicle or the Increase the number of point cloud data for the tail. However, in that case, the scanning width in the transverse direction on the road becomes narrow. Therefore, the sensor rotation determining unit 16 may set the angle formed by the scanning direction on the road by the scanner 5 and the traveling direction of the vehicle according to the following equation (14) according to the width of the road.
従来のレーザレーダ装置が、道路上における走査方向が車両の進行方向に対して垂直になるように一次元走査を行った場合、図6が示すように、レーザレーダ装置による道路上における横断方向のスキャン幅wr[m]は、レーザレーダ装置による横断方向の走査角全角をθh[rad]とすると、以下の式(13)で表される。
wr=2h×tan(θh/2) (13) When the conventional laser radar device performs one-dimensional scanning so that the scanning direction on the road is perpendicular to the traveling direction of the vehicle, as shown in FIG. The scan width w r [m] is represented by the following equation (13), where the full width of the scan angle in the transverse direction by the laser radar device is θ h [rad].
w r =2h×tan(θ h /2) (13)
wr=2h×tan(θh/2) (13) When the conventional laser radar device performs one-dimensional scanning so that the scanning direction on the road is perpendicular to the traveling direction of the vehicle, as shown in FIG. The scan width w r [m] is represented by the following equation (13), where the full width of the scan angle in the transverse direction by the laser radar device is θ h [rad].
w r =2h×tan(θ h /2) (13)
実施の形態2に係るレーザレーダ装置101のスキャナ5によって、道路上における走査方向が車両の進行方向に対して斜めになるように一次元走査を行った場合、図5が示すように、レーザレーダ装置101のスキャナ5による道路上における横断方向のスキャン幅wrh[m](レーザレーダ装置101のスキャナ5による道路上における走査範囲の、道路の横断面に対する射影の幅)は、以下の式(14)で表される。
wrh=wr×sinθs (14) When one-dimensional scanning is performed by thescanner 5 of the laser radar device 101 according to the second embodiment so that the scanning direction on the road is oblique to the traveling direction of the vehicle, as shown in FIG. The scanning width w rh [m] in the transverse direction on the road by the scanner 5 of the device 101 (the projection width of the scanning range on the road by the scanner 5 of the laser radar device 101 on the cross section of the road) is given by the following equation ( 14).
w rh =w r ×sin θ s (14)
wrh=wr×sinθs (14) When one-dimensional scanning is performed by the
w rh =w r ×sin θ s (14)
レーザレーダ装置101のスキャナ5による車両の進行方向のスキャン幅wrv[m](レーザレーダ装置101のスキャナ5による道路上における走査範囲の、道路の縦断面に対する射影の幅)は、以下の式(15)で表される。
wrv=wr×cosθs (15) The scanning width w rv [m] in the traveling direction of the vehicle by thescanner 5 of the laser radar device 101 (the projection width of the scanning range on the road by the scanner 5 of the laser radar device 101 to the longitudinal section of the road) is obtained by the following equation: (15).
w rv =w r ×cos θ s (15)
wrv=wr×cosθs (15) The scanning width w rv [m] in the traveling direction of the vehicle by the
w rv =w r ×cos θ s (15)
以上で説明したように、実施の形態2によれば、スキャナ5による道路上における走査方向と車両の進行方向とのなす角を設定変更でき、この角度を大きくすることによって、レーザレーダ装置101による進行方向の距離分解能を向上させることが可能となる。
As described above, according to Embodiment 2, the setting of the angle between the scanning direction on the road by the scanner 5 and the traveling direction of the vehicle can be changed. It is possible to improve the distance resolution in the traveling direction.
レーザレーダ装置100又はレーザレーダ装置101における、位置変化算出部20の距離算出器8、三次元座標変換部9、道路上座標変換部10及び車頭/車尾検出部11、車速算出部12、車長算出部13並びにセンサ回転判定部16の各機能は、処理回路により実現される。すなわち、レーザレーダ装置100又はレーザレーダ装置101は、図2又は図8に示した各ステップの処理を実行するための処理回路を備える。この処理回路は、専用のハードウェアであってもよいが、メモリに記憶されたプログラムを実行するCPU(Central Processing Unit)であってもよい。
In the laser radar device 100 or the laser radar device 101, the distance calculator 8 of the position change calculator 20, the three-dimensional coordinate converter 9, the road coordinate converter 10, the head/tail detector 11, the vehicle speed calculator 12, the vehicle Each function of the length calculation unit 13 and the sensor rotation determination unit 16 is implemented by a processing circuit. That is, the laser radar device 100 or the laser radar device 101 has a processing circuit for executing the processing of each step shown in FIG. 2 or FIG. This processing circuit may be dedicated hardware, or may be a CPU (Central Processing Unit) that executes a program stored in memory.
図9Aは、レーザレーダ装置100又はレーザレーダ装置101の機能を実現するハードウェア構成を示すブロック図である。図9Bは、レーザレーダ装置100又はレーザレーダ装置101の機能を実現するソフトウェアを実行するハードウェア構成を示すブロック図である。
FIG. 9A is a block diagram showing a hardware configuration that implements the functions of the laser radar device 100 or the laser radar device 101. FIG. FIG. 9B is a block diagram showing a hardware configuration for executing software realizing the functions of the laser radar device 100 or the laser radar device 101. As shown in FIG.
上記処理回路が図9Aに示す専用のハードウェアの処理回路110である場合、処理回路110は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)又はこれらを組み合わせたものが該当する。
If the processing circuit is the dedicated hardware processing circuit 110 shown in FIG. 9A, the processing circuit 110 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an Application Specific Integrated Integrated Circuit Circuit), FPGA (Field-Programmable Gate Array), or a combination thereof.
レーザレーダ装置100又はレーザレーダ装置101における、位置変化算出部20の距離算出器8、三次元座標変換部9、道路上座標変換部10及び車頭/車尾検出部11、車速算出部12、車長算出部13並びにセンサ回転判定部16の各機能を別々の処理回路で実現してもよいし、これらの機能をまとめて1つの処理回路で実現してもよい。
In the laser radar device 100 or the laser radar device 101, the distance calculator 8 of the position change calculator 20, the three-dimensional coordinate converter 9, the road coordinate converter 10, the head/tail detector 11, the vehicle speed calculator 12, the vehicle Each function of the length calculation unit 13 and the sensor rotation determination unit 16 may be realized by separate processing circuits, or these functions may be collectively realized by one processing circuit.
上記処理回路が図9Bに示すプロセッサ111である場合、レーザレーダ装置100又はレーザレーダ装置101における、位置変化算出部20の距離算出器8、三次元座標変換部9、道路上座標変換部10及び車頭/車尾検出部11、車速算出部12、車長算出部13並びにセンサ回転判定部16の各機能は、ソフトウェア、ファームウェア又はソフトウェアとファームウェアとの組み合わせによって実現される。
なお、ソフトウェア又はファームウェアは、プログラムとして記述されてメモリ112に記憶される。 If the processing circuit is theprocessor 111 shown in FIG. Each function of the head/tail detection unit 11, the vehicle speed calculation unit 12, the vehicle length calculation unit 13, and the sensor rotation determination unit 16 is realized by software, firmware, or a combination of software and firmware.
Software or firmware is written as a program and stored in thememory 112 .
なお、ソフトウェア又はファームウェアは、プログラムとして記述されてメモリ112に記憶される。 If the processing circuit is the
Software or firmware is written as a program and stored in the
プロセッサ111は、メモリ112に記憶されたプログラムを読み出して実行することにより、レーザレーダ装置100又はレーザレーダ装置101における、位置変化算出部20の距離算出器8、三次元座標変換部9、道路上座標変換部10及び車頭/車尾検出部11、車速算出部12、車長算出部13並びにセンサ回転判定部16の各機能を実現する。すなわち、レーザレーダ装置100又はレーザレーダ装置101は、これらの各機能がプロセッサ111によって実行されるときに、図2又は図8に示した各ステップの処理が結果的に実行されるプログラムを記憶するためのメモリ112を備える。
The processor 111 reads out and executes a program stored in the memory 112 to perform the distance calculator 8, the three-dimensional coordinate conversion unit 9, and the road surface of the position change calculation unit 20 in the laser radar device 100 or the laser radar device 101. The functions of the coordinate conversion unit 10, the head/tail detection unit 11, the vehicle speed calculation unit 12, the vehicle length calculation unit 13, and the sensor rotation determination unit 16 are realized. That is, the laser radar device 100 or the laser radar device 101 stores a program that results in the processing of each step shown in FIG. 2 or 8 when these functions are executed by the processor 111. A memory 112 is provided for
これらのプログラムは、レーザレーダ装置100又はレーザレーダ装置101における、位置変化算出部20の距離算出器8、三次元座標変換部9、道路上座標変換部10及び車頭/車尾検出部11、車速算出部12、車長算出部13並びにセンサ回転判定部16の各手順又は方法をコンピュータに実行させる。メモリ112は、コンピュータを、レーザレーダ装置100又はレーザレーダ装置101における、位置変化算出部20の距離算出器8、三次元座標変換部9、道路上座標変換部10及び車頭/車尾検出部11、車速算出部12、車長算出部13並びにセンサ回転判定部16として機能させるためのプログラムが記憶されたコンピュータ可読記憶媒体であってもよい。
These programs are the distance calculator 8 of the position change calculator 20, the three-dimensional coordinate converter 9, the on-road coordinate converter 10, the vehicle head/tail detector 11, the vehicle speed A computer is caused to execute each procedure or method of the calculation unit 12 , the vehicle length calculation unit 13 , and the sensor rotation determination unit 16 . The memory 112 stores the computer in the laser radar device 100 or the laser radar device 101, the distance calculator 8 of the position change calculator 20, the three-dimensional coordinate converter 9, the on-road coordinate converter 10, and the vehicle head/tail detector 11. , the vehicle speed calculation unit 12, the vehicle length calculation unit 13, and the sensor rotation determination unit 16.
プロセッサ111には、例えば、CPU(Central Processing Unit)、処理装置、演算装置、プロセッサ、マイクロプロセッサ、マイクロコンピュータ、またはDSP(Digital Signal Processor)などが該当する。
The processor 111 corresponds to, for example, a CPU (Central Processing Unit), a processing device, an arithmetic device, a processor, a microprocessor, a microcomputer, or a DSP (Digital Signal Processor).
メモリ112には、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically-EPROM)などの不揮発性又は揮発性の半導体メモリ、ハードディスク、フレキシブルディスク等の磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disc)などが該当する。
The memory 112 includes, for example, non-volatile or volatile semiconductor memories such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically-EPROM), Magnetic discs such as hard disks and flexible discs, flexible discs, optical discs, compact discs, mini discs, DVDs (Digital Versatile Discs) and the like are applicable.
レーザレーダ装置100又はレーザレーダ装置101における、位置変化算出部20の距離算出器8、三次元座標変換部9、道路上座標変換部10及び車頭/車尾検出部11、車速算出部12、車長算出部13並びにセンサ回転判定部16の各機能について一部を専用のハードウェアで実現し、一部をソフトウェア又はファームウェアで実現してもよい。
In the laser radar device 100 or the laser radar device 101, the distance calculator 8 of the position change calculator 20, the three-dimensional coordinate converter 9, the road coordinate converter 10, the head/tail detector 11, the vehicle speed calculator 12, the vehicle A part of each function of the length calculation unit 13 and the sensor rotation determination unit 16 may be realized by dedicated hardware, and a part thereof may be realized by software or firmware.
例えば、位置変化算出部20の距離算出器8、三次元座標変換部9、道路上座標変換部10及び車頭/車尾検出部11の機能は、専用のハードウェアとしての処理回路で機能を実現する。車速算出部12、車長算出部13並びにセンサ回転判定部16については、プロセッサ111がメモリ112に記憶されたプログラムを読み出して実行することにより機能を実現してもよい。
このように、処理回路は、ハードウェア、ソフトウェア、ファームウェア又はこれらの組み合わせにより上記機能のそれぞれを実現することができる。
なお、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 For example, the functions of the distance calculator 8, the three-dimensional coordinateconverter 9, the on-road coordinate converter 10, and the head/tail detector 11 of the position change calculator 20 are realized by a processing circuit as dedicated hardware. do. The functions of the vehicle speed calculation unit 12, the vehicle length calculation unit 13, and the sensor rotation determination unit 16 may be realized by the processor 111 reading and executing a program stored in the memory 112. FIG.
As such, the processing circuitry may implement each of the above functions in hardware, software, firmware, or a combination thereof.
It should be noted that it is possible to freely combine each embodiment, modify any component of each embodiment, or omit any component from each embodiment.
このように、処理回路は、ハードウェア、ソフトウェア、ファームウェア又はこれらの組み合わせにより上記機能のそれぞれを実現することができる。
なお、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 For example, the functions of the distance calculator 8, the three-dimensional coordinate
As such, the processing circuitry may implement each of the above functions in hardware, software, firmware, or a combination thereof.
It should be noted that it is possible to freely combine each embodiment, modify any component of each embodiment, or omit any component from each embodiment.
本開示に係るレーザレーダ装置は、1台の一次元走査型のレーザレーダ装置により車両の速度を計測することができるため、車両の速度を計測する技術に利用可能である。
Since the laser radar device according to the present disclosure can measure the speed of a vehicle with a single one-dimensional scanning laser radar device, it can be used as a technology for measuring the speed of a vehicle.
1 信号発生器、2 レーザ光源、3 送信光学部、4 ミラー、5 スキャナ、6 受信光学部、7 光検出器、8 距離算出器、9 三次元座標変換部、10 道路上座標変換部、11 車頭/車尾検出部、12 車速算出部、13 車長算出部、14 データ保存部、15 センサ固定部、16 センサ回転判定部、17 センサ回転部、20 位置変化算出部、100,101 レーザレーダ装置、110 処理回路、111 プロセッサ、112 メモリ。
1 signal generator, 2 laser light source, 3 transmission optical unit, 4 mirror, 5 scanner, 6 reception optical unit, 7 photodetector, 8 distance calculator, 9 three-dimensional coordinate conversion unit, 10 road coordinate conversion unit, 11 Vehicle head/tail detection unit 12 Vehicle speed calculation unit 13 Vehicle length calculation unit 14 Data storage unit 15 Sensor fixing unit 16 Sensor rotation determination unit 17 Sensor rotation unit 20 Position change calculation unit 100, 101 Laser radar Device, 110 processing circuit, 111 processor, 112 memory.
Claims (6)
- 道路上を走行する車両の速度を計測するレーザレーダ装置であって、
レーザ光を用いて、前記道路上における走査方向が前記車両の進行方向に対して斜めになるように一次元走査を行うスキャナと、
前記スキャナの前記一次元走査によって得られた受信信号に基づいて、前記車両の車頭を検出し、前記進行方向における前記車両の車頭の位置変化を算出するか、又は前記車両の車尾を検出し、前記進行方向における前記車両の車尾の位置変化を算出する位置変化算出部と、
前記位置変化算出部が算出した位置変化に基づいて、前記車両の速度を計測する車速算出部と、を備えていることを特徴とする、レーザレーダ装置。 A laser radar device for measuring the speed of a vehicle traveling on a road,
a scanner that performs one-dimensional scanning using a laser beam so that the scanning direction on the road is oblique to the traveling direction of the vehicle;
Based on the received signal obtained by the one-dimensional scanning of the scanner, the head of the vehicle is detected and the change in position of the head of the vehicle in the direction of travel is calculated, or the tail of the vehicle is detected. , a position change calculation unit that calculates a position change of the tail of the vehicle in the traveling direction;
and a vehicle speed calculator for measuring the speed of the vehicle based on the positional change calculated by the positional change calculator. - 前記位置変化算出部は、前記スキャナの前記一次元走査によって得られた受信信号に基づいて、前記車両の車頭及び車尾を検出し、
前記位置変化算出部が前記車両の車頭を検出した時刻と、前記位置変化算出部が前記車両の車尾を検出した時刻と、前記車速算出部が算出した車速と、に基づいて、前記車両の車長を算出する車長算出部をさらに備えていることを特徴とする、請求項1に記載のレーザレーダ装置。 The position change calculator detects the head and tail of the vehicle based on the received signal obtained by the one-dimensional scanning of the scanner,
Based on the time when the position change calculation unit detects the head of the vehicle, the time when the position change calculation unit detects the tail of the vehicle, and the vehicle speed calculated by the vehicle speed calculation unit, 2. The laser radar device according to claim 1, further comprising a vehicle length calculator for calculating the vehicle length. - 前記位置変化算出部は、
前記受信信号に基づいて、前記車両までの距離を算出する距離算出器と、
前記スキャナによる前記一次元走査の走査角、及び前記距離算出器が算出した距離を、三次元座標に変換することにより三次元座標の点群データを生成する三次元座標変換部と、
前記三次元座標変換部が生成した三次元座標の点群データを、前記車両の進行方向を第1の座標軸とし且つ前記道路の横断方向を第2の座標軸とした座標の点群データに変換する道路上座標変換部と、
前記道路上座標変換部が変換した点群データに基づいて、前記車両の車頭を検出し、前記進行方向における前記車両の車頭の位置変化を算出するか、又は前記車両の車尾を検出し、前記進行方向における前記車両の車尾の位置変化を算出する車頭車尾検出部と、を備えていることを特徴とする、請求項1に記載のレーザレーダ装置。 The position change calculation unit
a distance calculator that calculates the distance to the vehicle based on the received signal;
a three-dimensional coordinate conversion unit that converts the scanning angle of the one-dimensional scanning by the scanner and the distance calculated by the distance calculator into three-dimensional coordinates to generate point cloud data of three-dimensional coordinates;
The point cloud data of three-dimensional coordinates generated by the three-dimensional coordinate conversion unit is converted into point cloud data of coordinates with the traveling direction of the vehicle as a first coordinate axis and the crossing direction of the road as a second coordinate axis. a road coordinate transformation unit;
Detecting the head of the vehicle based on the point cloud data converted by the on-road coordinate conversion unit, calculating a position change of the head of the vehicle in the direction of travel, or detecting the tail of the vehicle, 2. The laser radar device according to claim 1, further comprising a front and rear detection section for calculating a position change of the rear of the vehicle in the traveling direction. - 前記車頭車尾検出部は、前記道路上座標変換部が変換した点群データに基づいて、第1の時刻における前記車両の車頭の位置と、第2の時刻における前記車両の車頭の位置とを検出し、検出した第1の時刻における前記車両の車頭の位置と第2の時刻における前記車両の車頭の位置とに基づいて、前記進行方向における前記車両の車頭の位置変化を算出し、
前記車速算出部は、前記車頭車尾検出部が算出した位置変化、並びに前記第1の時刻及び前記第2の時刻の時間差に基づいて、前記車両の速度を計測することを特徴とする、請求項3に記載のレーザレーダ装置。 The head and tail detection unit detects the position of the head of the vehicle at a first time and the position of the head of the vehicle at a second time based on the point cloud data converted by the road coordinate conversion unit. calculating a change in position of the head of the vehicle in the traveling direction based on the detected position of the head of the vehicle at a first time and the detected position of the head of the vehicle at a second time;
The vehicle speed calculation unit measures the speed of the vehicle based on the positional change calculated by the front and rear detection unit and the time difference between the first time and the second time. Item 4. The laser radar device according to item 3. - 前記車速算出部が算出した速度を、前記道路上を走行する車両毎に保存するデータ保存部をさらに備えていることを特徴とする、請求項1に記載のレーザレーダ装置。 The laser radar device according to claim 1, further comprising a data storage unit that stores the speed calculated by the vehicle speed calculation unit for each vehicle traveling on the road.
- 前記データ保存部に保存された速度が所定の速度以上であるか否かを判定するセンサ回転判定部と、
前記センサ回転判定部によって、前記データ保存部に保存された速度が所定の速度以上であると判定された場合、前記スキャナの前記走査方向と前記車両の進行方向とのなす角が大きくなるように、前記レーザレーダ装置を回転させるセンサ回転部と、をさらに備えていることを特徴とする、請求項5に記載のレーザレーダ装置。 a sensor rotation determination unit that determines whether the speed stored in the data storage unit is equal to or higher than a predetermined speed;
When the sensor rotation determination unit determines that the speed stored in the data storage unit is equal to or higher than a predetermined speed, the angle formed by the scanning direction of the scanner and the traveling direction of the vehicle is increased. 6. The laser radar device according to claim 5, further comprising: , and a sensor rotating section for rotating the laser radar device.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/021652 WO2022259344A1 (en) | 2021-06-08 | 2021-06-08 | Laser radar device |
JP2023527187A JP7345706B2 (en) | 2021-06-08 | 2021-06-08 | laser radar equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/021652 WO2022259344A1 (en) | 2021-06-08 | 2021-06-08 | Laser radar device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022259344A1 true WO2022259344A1 (en) | 2022-12-15 |
Family
ID=84424955
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/021652 WO2022259344A1 (en) | 2021-06-08 | 2021-06-08 | Laser radar device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7345706B2 (en) |
WO (1) | WO2022259344A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000193675A (en) * | 1998-12-25 | 2000-07-14 | Japan Radio Co Ltd | Speed measuring instrument and speeding violation vehicle regulatory system |
JP2001319290A (en) * | 2000-05-12 | 2001-11-16 | Hitachi Zosen Corp | Method and device for judging vehicle kind |
JP2012252626A (en) * | 2011-06-06 | 2012-12-20 | Hitachi Information & Communication Engineering Ltd | Traffic flow measurement system |
WO2013128427A1 (en) * | 2012-03-02 | 2013-09-06 | Leddartech Inc. | System and method for multipurpose traffic detection and characterization |
JP2015007572A (en) * | 2013-06-25 | 2015-01-15 | 東京航空計器株式会社 | Vehicle speed meter |
JP2016057859A (en) * | 2014-09-10 | 2016-04-21 | オムロン株式会社 | Vehicle detector |
JP2017096792A (en) * | 2015-11-25 | 2017-06-01 | 株式会社デンソーウェーブ | Traffic density measuring device |
-
2021
- 2021-06-08 JP JP2023527187A patent/JP7345706B2/en active Active
- 2021-06-08 WO PCT/JP2021/021652 patent/WO2022259344A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000193675A (en) * | 1998-12-25 | 2000-07-14 | Japan Radio Co Ltd | Speed measuring instrument and speeding violation vehicle regulatory system |
JP2001319290A (en) * | 2000-05-12 | 2001-11-16 | Hitachi Zosen Corp | Method and device for judging vehicle kind |
JP2012252626A (en) * | 2011-06-06 | 2012-12-20 | Hitachi Information & Communication Engineering Ltd | Traffic flow measurement system |
WO2013128427A1 (en) * | 2012-03-02 | 2013-09-06 | Leddartech Inc. | System and method for multipurpose traffic detection and characterization |
JP2015007572A (en) * | 2013-06-25 | 2015-01-15 | 東京航空計器株式会社 | Vehicle speed meter |
JP2016057859A (en) * | 2014-09-10 | 2016-04-21 | オムロン株式会社 | Vehicle detector |
JP2017096792A (en) * | 2015-11-25 | 2017-06-01 | 株式会社デンソーウェーブ | Traffic density measuring device |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022259344A1 (en) | 2022-12-15 |
JP7345706B2 (en) | 2023-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101964971B1 (en) | A lidar device | |
JP4793094B2 (en) | Driving environment recognition device | |
JP2022058483A5 (en) | ||
EP2291677B1 (en) | Improvements in lidars | |
US7161664B2 (en) | Apparatus and method for optical determination of intermediate distances | |
US7230640B2 (en) | Three-dimensional perception of environment | |
JP2023113910A5 (en) | ||
KR102020037B1 (en) | Hybrid LiDAR scanner | |
JP6195833B2 (en) | Improved laser distance sensor | |
JP2005222538A (en) | Method for recognizing mark on driveway | |
WO1998016801A1 (en) | Intelligent vehicle highway multi-lane sensor | |
JP2023145615A (en) | Full waveform multi-pulse optical rangefinder instrument | |
JP4960599B2 (en) | Collision prevention device and vehicle equipped with collision prevention device | |
WO2022259344A1 (en) | Laser radar device | |
EP2113790A1 (en) | Improvements in LIDARs | |
JP6723307B2 (en) | Laser distance measuring device | |
JP2008286767A (en) | Space measuring device for vehicle | |
JP2017161363A (en) | Division line recognition device | |
WO2014156436A1 (en) | Displacement measurement device and displacement measurement system | |
JP7313956B2 (en) | rangefinder | |
JP2007198951A (en) | Radar | |
WO2023074208A1 (en) | Control device, control method, and control program | |
JP7329970B2 (en) | Speed measuring device, merging support device, processing device, processing method, and program | |
US12013261B2 (en) | Magnetic sensing for a galvanometer scanner using a hall sensor for LiDAR system | |
US20210382149A1 (en) | Lidar scan profile parameterization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21945023 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2023527187 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21945023 Country of ref document: EP Kind code of ref document: A1 |