WO2022259308A1 - Antenna device and wireless terminal - Google Patents

Antenna device and wireless terminal Download PDF

Info

Publication number
WO2022259308A1
WO2022259308A1 PCT/JP2021/021560 JP2021021560W WO2022259308A1 WO 2022259308 A1 WO2022259308 A1 WO 2022259308A1 JP 2021021560 W JP2021021560 W JP 2021021560W WO 2022259308 A1 WO2022259308 A1 WO 2022259308A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
conductor plate
antenna device
frequency
contact
Prior art date
Application number
PCT/JP2021/021560
Other languages
French (fr)
Japanese (ja)
Inventor
洋平 古賀
学 吉川
旅人 殿岡
実 櫻井
聡史 ▲崎▼田
貴裕 篠島
Original Assignee
Fcnt株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fcnt株式会社 filed Critical Fcnt株式会社
Priority to PCT/JP2021/021560 priority Critical patent/WO2022259308A1/en
Priority to JP2023527152A priority patent/JPWO2022259308A1/ja
Publication of WO2022259308A1 publication Critical patent/WO2022259308A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • H01Q5/371Branching current paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines

Definitions

  • the present invention relates to an antenna device and a wireless terminal.
  • a conductor provided inside the terminal is used as an antenna ground (see Patent Documents 1 and 2).
  • a ground as large as possible is established by electrically connecting a first ground formed on a substrate having a feeding point and a second ground formed by a conductor on the rear surface of the display. was secured to the antenna. If such a configuration is adopted, the current flowing through the first ground and the second ground cannot be controlled, so there is a limit to improving the radiation efficiency of the antenna.
  • One aspect of the disclosed technique aims to provide an antenna device with higher radiation efficiency and a wireless terminal including the antenna device.
  • the present antenna device includes an antenna operating at a first frequency and a second frequency higher than the first frequency, a feeding point for feeding power to the antenna, a first conductor plate formed in a plate shape, a second conductor plate formed in the second conductor plate, a connecting portion electrically connecting the first conductor plate and the second conductor plate, and the first conductor plate and the second conductor plate and a circuit element disposed therebetween.
  • a first distance from a nearby portion of the first conductor plate closest to the antenna to a first spaced portion of the first conductor plate furthest from the antenna is a distance from the vicinity portion to the second distance.
  • the conductor plate is set shorter than a second distance from the antenna to a second spaced portion of the conductor plate, and the circuit element is positioned between the first conductor plate and the second distance at the first frequency.
  • the conductor plate is electrically connected, and the first conductor plate and the second conductor plate are electrically disconnected at the second frequency.
  • FIG. 1 is a diagram showing an example of an antenna device 1 according to an embodiment.
  • FIG. 2 is a diagram illustrating the configuration adopted in the simulation.
  • FIG. 3 is a first diagram showing the results of the first simulation.
  • FIG. 4 is a second diagram showing the results of the first simulation.
  • FIG. 5 is a third diagram showing the results of the first simulation.
  • FIG. 6 is a first diagram illustrating the results of the second simulation.
  • FIG. 7 is a second diagram illustrating the results of the second simulation.
  • FIG. 8 is a diagram illustrating the results of the third simulation.
  • FIG. 9 is a diagram illustrating results of the fourth simulation.
  • FIG. 10 is a diagram illustrating a circuit employed as contact P2.
  • FIG. 11 is a diagram illustrating the results of the fifth simulation;
  • FIG. 10 is a diagram illustrating a circuit employed as contact P2.
  • FIG. 11 is a diagram illustrating the results of the fifth simulation;
  • FIG. 11 is a diagram illustrating the results of the
  • FIG. 12 is a diagram explaining the configuration of the antenna device in the sixth simulation.
  • FIG. 13 is a diagram illustrating the configuration of an antenna device according to a comparative example prepared in the sixth simulation;
  • FIG. 14 is a diagram illustrating the result of the sixth simulation;
  • FIG. 15 is a diagram illustrating an appearance of a smartphone according to an implementation example;
  • FIG. 16 is a diagram illustrating an example of an internal configuration of a smartphone according to an implementation example;
  • FIG. 17 is a first diagram illustrating variations in the shape of the first ground substrate.
  • FIG. 18 is a second diagram illustrating variations in the shape of the first ground substrate.
  • FIG. 19 is a diagram illustrating a configuration in which the first ground substrate and the second ground substrate do not overlap in plan view.
  • FIG. 20 is a diagram illustrating a configuration in which a feeding point is connected to the center of an antenna.
  • An antenna device has, for example, the following configuration.
  • An antenna device includes an antenna that operates at a first frequency and a second frequency that is higher than the first frequency, and a feeding point that feeds power to the antenna, and a first conductive plate formed in a plate shape. a second conductor plate formed in a plate shape; a connecting portion electrically connecting the first conductor plate and the second conductor plate; and a circuit element provided between the conductor plate.
  • a first distance from a nearby portion of the first conductor plate closest to the antenna to a first spaced portion of the first conductor plate furthest from the antenna is a distance from the vicinity portion to the second distance. is set shorter than a second distance from the antenna to a second spaced portion of the conductor plate, and the circuit element is positioned between the first conductor plate and the second distance at the first frequency.
  • the conductor plate is electrically connected, and the first conductor plate and the second conductor plate are electrically disconnected at the second frequency.
  • the circuit element electrically connects the first conductor plate and the second conductor plate at the first frequency, thereby connecting the antenna, the first conductor plate, and the second conductor plate. can operate as a radiator, and the radiation efficiency of the antenna device at the first frequency can be increased. Also, at a second frequency higher than the first frequency, it is considered that a strong current distribution occurs in the antenna and the first conductor plate connected to the antenna by the feeding point. Therefore, at the second frequency, the circuit element electrically disconnects the first conductor plate and the second conductor plate so that the first conductor plate operates as a radiator and the second conductor The effect of the plate on radiation efficiency can be reduced. Therefore, according to this antenna device, the radiation efficiency of the antenna can be further improved.
  • FIG. 1 is a diagram showing an example of an antenna device 1 according to an embodiment.
  • FIG. 1A is a front view of the antenna device 1.
  • FIG. 1(B) is a side view of the antenna device 1 from the direction of the arrow in FIG. 1(A).
  • the antenna device 1 includes a first ground substrate 11, a feeding point 12, a second ground substrate 13, an antenna 15, contacts P2, contacts P3, contacts P4, and contacts P5.
  • the X direction in FIG. 1 is the width direction
  • the Y direction is the height direction
  • the Z direction is the thickness direction.
  • a direction view from the Z direction is also referred to as a planar view.
  • the first ground substrate 11 is a grounded substrate.
  • the first ground board 11 is, for example, a printed board on which various electronic components are mounted.
  • the first ground substrate 11 is provided with, for example, a plate-shaped conductor, and is used as, for example, the ground of the antenna 15 .
  • Various electronic components may be mounted on the first ground substrate 11 .
  • the first ground substrate 11 is formed in, for example, a rectangular plate shape in plan view. At one end of the first ground substrate 11 in the width direction, for example, a feeding point 12 that feeds an antenna 15 is provided.
  • the first ground substrate 11 is an example of a "first conductor plate".
  • Antenna 15 is a monopole antenna having one end connected to feeding point 12 and the other end being an open end.
  • the antenna 15 receives power from, for example, the feeding point 12 and emits radio waves in the microwave band.
  • the antenna 15 resonates, for example, at two frequencies in the microwave band (a first frequency f 1 and a second frequency f 2 higher than the first frequency f 1 ).
  • the length of the antenna 15 is a quarter wavelength, and is approximately equal to the width of the first ground substrate 11, for example.
  • the antenna 15 is arranged along the end surface 111 on the short side of the first ground substrate 11 formed in a plate shape.
  • the longitudinal direction of the antenna 15 coincides with the width direction of the antenna device 1, for example. In other words, the antenna 15 is parallel to the end surface 111 on the short side of the first ground substrate 11 formed in a rectangular plate shape. Further, the end face 111 forms a straight line parallel to the antenna 15 in plan view.
  • the second ground board 13 is a grounded board.
  • the second ground substrate 13 is, for example, a plate-shaped conductor.
  • the second ground board 13 is used as a ground for the antenna 15, for example.
  • the second ground substrate 13 is formed in a rectangular plate shape in plan view.
  • the length of the short side of the second ground board 13 is substantially equal to the length of the short side of the first ground board 11 .
  • the length of the long side of the second ground substrate 13 is longer than the length of the long side of the first ground substrate 11 .
  • One of the two short sides of the second ground board 13 overlaps the short side of the first ground board 11 on the antenna 15 side in plan view. Therefore, one of the two short sides of second ground substrate 13 is parallel to antenna 15 .
  • the second ground board 13 is an example of a "second conductor plate".
  • the third ground board 14 is a grounded board.
  • the third ground substrate 14 is, for example, a plate-shaped conductor.
  • the conductivity of the third ground substrate 14 is preferably lower than the conductivity of the second ground substrate 13 .
  • the second ground substrate 13 is formed in a rectangular plate shape in plan view.
  • the length of the short side of the third ground board 14 is substantially equal to the length of the short side of the first ground board 11 .
  • the length of the long side of the third ground board 14 is substantially equal to the length of the long side of the second ground board 13 . That is, the size of the third ground board 14 is substantially the same as that of the second ground board 13 .
  • the third ground board 14 is an example of a "third conductor plate".
  • the third ground substrate 14 is arranged so as to be in contact with the second ground substrate 13 over its entire surface so as to overlap with the second ground substrate 13 in plan view. Then, in the thickness direction, the second ground substrate 13 is provided on the third ground substrate 14 , and the feeding point 12 is provided on the second ground substrate 13 . In other words, the second ground board 13 is provided between the first ground board 11 and the third ground board 14 .
  • the third ground substrate 14 may be, for example, an organic electroluminescence (organic EL) display.
  • the length of the first ground substrate 11 to the furthest point from the end surface 111 (D1 in FIG. 1)
  • the length (D2 in FIG. 1) from the end surface 111 of the second ground substrate 13 to the furthest point is longer than the length.
  • the length of D1 is ⁇ 1 /2 ( ⁇ 1 is the effective wavelength of radio waves of the first frequency f 1 ), and the length of D2 is ⁇ 2 /2 ( ⁇ 2 is the second frequency f 2 effective wavelength of radio waves).
  • the effective wavelength is the wavelength shorter than the free space wavelength due to the surrounding dielectric constant.
  • the first ground substrate 11 and the second ground substrate 13 are separated in the thickness direction. That is, a gap is formed between the first ground substrate 11 and the second ground substrate 13 .
  • a contact P2, a contact P3, a contact P4, and a contact P5 are provided in the gap.
  • the contacts P2, P3, P4, and P5 are provided near four corners of the first ground substrate 11, for example.
  • the contacts P2, P3, P4, and P5 are not limited to being provided near the four corners of the first ground substrate 11, and may be provided at other locations on the first ground substrate 11.
  • the number of contacts is not limited to four and may be more than four.
  • the contact P2, the contact P3, the contact P4, and the contact P5 may be provided at the edge of the first ground substrate 11 (near each side forming the rectangle of the first ground substrate 11).
  • the contact P2 is provided at a position closest to the feeding point 12.
  • FIG. Contact point P2 is preferably provided within a range of ⁇ 1 /8 from feed point 12 .
  • the contact P3, the contact P4, and the contact P5 are preferably provided at positions separated from the feeding point 12 by ⁇ 1 /8 or more.
  • Contact points P2, P3, contact point P4, and contact point P5 electrically connect, for example, the first ground substrate 11 and the second ground substrate 13 via spring contacts.
  • the contact P2 has a low impedance at the first frequency f1 and a high impedance at the second frequency f2. That is, when the feeding point 12 operates at the first frequency f1, the contact P2 has a low impedance, so that the first ground substrate 11 and the second ground substrate 13 are also electrically connected by the contact P2. When the feeding point 12 operates at the second frequency f2, the electrical connection between the first ground substrate 11 and the second ground substrate 13 through the contact P2 is cut off because the contact P2 becomes high impedance.
  • the contact P2 may be implemented by, for example, a parallel resonant circuit including a capacitor and an inductor, or a switch.
  • ⁇ Simulation> A simulation was performed to verify the performance of the antenna device 1 and will be described.
  • the length of D1 was set to 45.0 mm and the length of D2 was set to 137.0 mm.
  • the length of the antenna 15 and the widths of the first ground substrate 11, the second ground substrate 13, and the third ground substrate 14 were set to 66.0 mm.
  • the distance between the antenna 15 and the end surface 111 of the first ground substrate 11 was set to 1 mm.
  • the distance between the antenna 15 and the end face 111 was set to 1.0 mm.
  • the conductivity of the antenna 15 is 1 ⁇ 10 6 (S/m)
  • the conductivity of the first ground substrate 11 is 1 ⁇ 10 6 (S/m)
  • the conductivity of the second ground substrate 13 is 1 ⁇ 10 6 . (S/m)
  • the conductivity of the third ground substrate 14 was set to 5.8 ⁇ 10 4 (S/m).
  • FIG. 2 is a diagram illustrating the configuration adopted in the simulation.
  • a conduction model (FIG. 2A) in which the first ground substrate 11 and the second ground substrate 13 are electrically connected
  • a non-conducting model (FIG. 2(B)) that is non-conducting at the same time was verified.
  • FIG. 3 is a diagram illustrating the radiation efficiency of the antenna device 1 verified by simulation.
  • the vertical axis in FIG. 3 indicates radiation efficiency (dB), and the horizontal axis indicates frequency (GHz).
  • the dotted line in FIG. 3 indicates the simulation result of the non-conducting model, and the solid line in FIG. 3 indicates the simulation result of the conducting model.
  • FIG. 4 is a Smith chart showing simulation results of a non-conducting model.
  • FIG. 5 is a Smith chart showing simulation results of the conduction model.
  • the conduction model has higher radiation efficiency in the low frequency range (for example, frequency 0.7 GHz). Also, in a high frequency region (for example, frequencies of 2.6 GHz or higher), the non-conducting model has higher radiation efficiency. According to the results of this simulation, the radiation efficiency of the antenna device 1 is higher when the first ground substrate 11 and the second ground substrate 13 are electrically connected in the low frequency region, and the radiation efficiency of the antenna device 1 is higher in the high frequency region. It can be understood that the radiation efficiency of the antenna device 1 is higher when the ground substrate 11 and the second ground substrate 13 are electrically non-conductive.
  • FIGS. 6 and 7 are diagrams illustrating the results of the second simulation.
  • FIG. 6 illustrates the current distribution when the frequency is low (when the frequency is 0.75 GHz)
  • FIG. 7 illustrates the current distribution when the frequency is high (when the frequency is 4.0 GHz).
  • FIGS. 6A and 7B illustrate the current distribution in the conduction model
  • FIGS. 6B and 7B illustrate the current distribution in the non-conduction model. Note that in FIGS. 6 and 7, a stronger current is distributed in a dark-colored region (region with dense dots) than in a light-colored region (region with sparse dots).
  • a stronger current is distributed in a dark-colored region (region with dense dots) than in a light-colored region (region with sparse dots).
  • the conduction model produces a strong current distribution over a wider area. Since a strong current distribution also occurs in the first ground substrate 11 and the second ground substrate 13, it is assumed that the first ground substrate 11 and the second ground substrate 13 operate as radiators when the frequency is low. Conceivable. Therefore, when the frequency is low, the radiation efficiency of the antenna device 1 is considered to be higher in the conduction model.
  • the non-conducting model produces a strong current distribution over a wider area. Since a strong current distribution occurs in the first ground substrate 11, it is considered that the first ground substrate 11 operates as a radiator when the frequency is high. Also, when the frequency is high, a strong current distribution occurs near the antenna 15, so it is considered preferable to suppress the influence of the third ground substrate 14 on the current distribution. Therefore, when the frequency is high, the radiation efficiency of the antenna device 1 is considered to be higher in the non-conducting model.
  • FIG. 8 is a diagram illustrating the results of the third simulation.
  • the vertical axis in FIG. 8 indicates radiation efficiency (dB), and the horizontal axis indicates frequency (GHz).
  • the thin solid lines indicate the radiation efficiency when the contacts P2, P3, P4, and P5 are cut (denoted as “p2O_p3O_p4O_p5O” in the legend in the drawing).
  • a dotted line indicates the radiation efficiency when the contact P3 is connected and the contact P2, the contact P4, and the contact P5 are disconnected (denoted as "p2O_p3S_p4O_p5O” in the legend in the figure).
  • the dashed-dotted line indicates the radiation efficiency when the contact P2 is connected and the contact P3, contact P4, and contact P5 are disconnected (denoted as “p2S_p3O_p4O_p5O” in the legend in the figure).
  • a two-dot chain line indicates the radiation efficiency when the contacts P2 and P3 are connected and the contacts P4 and P5 are disconnected (denoted as "p2S_p3S_p4O_p5O” in the legend in the figure).
  • a thick solid line indicates the radiation efficiency when the contact P2, the contact P3, the contact P4, and the contact P5 are connected (denoted as "p2S_p3S_p4S_p5S” in the legend in the figure).
  • the radiation efficiency indicated by the thin solid line is high in the low frequency region. Also, it can be understood that the radiation efficiency indicated by the thick solid line increases in the high frequency region. Since there is no significant difference between the radiation efficiency indicated by the two-dot chain line and the radiation efficiency indicated by the thick solid line, it can be understood that connection and disconnection of the contacts P4 and P5 have little effect on the radiation efficiency. On the other hand, since the radiation efficiency indicated by the one-dot chain line is lower than the radiation efficiency indicated by the two-dot chain line, it can be understood that it is preferable to connect the contact point P3.
  • the radiation efficiency indicated by the dotted line has low radiation efficiency in the low frequency range, and high radiation efficiency in the high frequency range. That is, it can be understood that the radiation efficiency of the antenna device 1 can be improved by connecting the contact P2 in the low frequency region and disconnecting the contact P2 in the high frequency region.
  • FIG. 9 is a diagram illustrating results of the fourth simulation.
  • the vertical axis indicates radiation efficiency (dB) and the horizontal axis indicates frequency (GHz).
  • the dashed-dotted line indicates the radiation efficiency when an inductor with an inductance of 1 nH is provided as the contact P2 (denoted as "p2-1n_p3S_p4O_p5O" in the legend in the figure).
  • a dotted line indicates the radiation efficiency when an inductor with an inductance of 2 nH is provided as the contact P2 (denoted as “p2-2n_p3S_p4O_p5O” in the legend in the figure).
  • a thick solid line indicates the radiation efficiency when an inductor with an inductance of 10 nH is provided as the contact P2 (denoted as “p2-10n_p3S_p4O_p5O” in the legend in the figure).
  • a two-dot chain line indicates the radiation efficiency when the contact P2 is disconnected (denoted as "p2O_p3S_p4O_p5O” in the legend in the figure).
  • a thin solid line indicates the radiation efficiency when the contact P2 is connected (denoted as "p2S_p3S_p4O_p5O" in the legend in the figure).
  • no inductor is provided as the contact P2. Note that in each of the radiation efficiencies illustrated in FIG. 9, contact P3 is connected and contact P4 and contact P5 are disconnected.
  • the radiation efficiency indicated by the dashed dotted line and the radiation efficiency indicated by the thin solid line are equally good in the low frequency region of the antenna device 1 .
  • the radiation efficiency indicated by the thick solid line it can be understood that the radiation efficiency of the antenna device 1 is low in the low frequency range, while the radiation efficiency of the antenna device 1 is high in the high frequency range. That is, by providing an inductor having an inductance of 1 nH or less as the contact point P2, the radiation efficiency of the antenna device 1 can be increased in a low frequency region.
  • FIG. 10 is a diagram illustrating a circuit employed as contact P2.
  • 10(A) and 10(B) are views of the antenna device 1 viewed from the side (from the direction of the arrow in FIG. 1(A)) near the contact point P2.
  • FIG. 10A is a diagram showing an example of the trap circuit 16 employed as the contact P2.
  • the trap circuit 16 is a circuit in which an inductor 161 and a capacitor 162 are connected in parallel, and is also called a parallel resonant circuit.
  • the trap circuit 16 is provided to connect the first ground substrate 11 and the second ground substrate 13 .
  • FIG. 10(B) is a diagram showing an example of the switch circuit 17 employed as the contact P2.
  • the switch circuit 17 is, for example, a high-frequency switch that is switched between opening and closing according to the frequency.
  • Examples of the switch circuit 17 include a diode switch, a field effect transistor (FET) switch, or a Micro Electro Mechanical Systems (MEMS) switch.
  • the switch circuit 17 is in a closed state (switch-on) in a low frequency range (for example, a frequency of 0.7 GHz), and electrically connects the first ground substrate 11 and the second ground substrate 13 .
  • the switch circuit 17 is in an open state (switch is off) in a high frequency range (for example, a frequency of 2.6 GHz or higher), and the first ground substrate 11 and the second ground substrate 13 are electrically disconnected.
  • FIG. 11 is a diagram illustrating the results of the fifth simulation.
  • the vertical axis indicates radiation efficiency (dB) and the horizontal axis indicates frequency (GHz).
  • the thick solid line illustrates the radiation efficiency when the trap circuit 16 with the inductance of the inductor 161 of 1 nH and the capacitance of the capacitor 162 of 2 pF is provided as the contact P2 (in the legend in the figure, "p2 -1n-2p_p3S_p4O_p5O”).
  • a thin solid line indicates the radiation efficiency when the contact P2 is disconnected (denoted as "p2O_p3S_p4O_p5O" in the legend in the drawing).
  • a two-dot chain line indicates the radiation efficiency with the contact P2 connected (denoted as “p2S_p3S_p4O_p5O" in the legend in the drawing). Note that in each of the radiation efficiencies illustrated in FIG. 11, contact P3 is connected and contact P4 and contact P5 are disconnected.
  • the contact P2 is connected in the low frequency region and disconnected in the high frequency region, so that the radiation efficiency of the antenna device 1 can be increased.
  • the radiation efficiency indicated by the thick solid line shows a high radiation efficiency in the low frequency region as in the state where the contact P2 is connected (thin solid line), and in the high frequency region when the contact P2 is disconnected. It can be understood that high radiation efficiency is exhibited similarly to the state (two-dot chain line). That is, the radiation efficiency of the antenna device 1 can be improved by providing the trap circuit 16 at the position of the contact point P2. Moreover, it is preferable to set the inductance of the inductor 161 included in the trap circuit 16 to 1 nH and the capacitance of the capacitor 162 to 2 pF.
  • FIG. 12 is a diagram illustrating the configuration of the antenna device 1 in the sixth simulation.
  • the radiation efficiency of the antenna device 1 was simulated when the distance D3 from the end face 111 to the contact P3 was changed while the contacts P2, P4, and P5 were disconnected.
  • FIG. 13 is a diagram illustrating the configuration of an antenna device 500 according to a comparative example prepared in the sixth simulation.
  • the distance D4 from the end face 111 to the contact P2 is set to ⁇ 2 /8
  • the distance D5 from the end face 111 to the contact P3 is set to 3 ⁇ 2 /8.
  • the contacts P4 and P5 are omitted.
  • FIG. 14 is a diagram illustrating the result of the sixth simulation.
  • the vertical axis indicates the radiation efficiency (dB) and indicates the distance (mm) from the antenna 15 to the contact point P3.
  • the solid line indicates the radiation efficiency of the antenna device 1
  • the dotted line indicates the radiation efficiency of the antenna device 500.
  • the radiation efficiency of the antenna device 1 can be made higher than that of the antenna device 500 by setting the distance D3 from the end face 111 to the contact point P3 in a range of 10 mm or more ( ⁇ 2 /8 or more). I understand what you can do.
  • the contact P3 is connected in both the low frequency region (for example, the frequency region near 0.7 GHz) and the high frequency region (for example, the frequency region near 2.6 GHz).
  • the radiation efficiency of the antenna device 1 can be increased.
  • the radiation efficiency of the antenna device 1 can be increased from a low frequency region to a high frequency region.
  • the position of the contact point P3 is determined so that the distance D3 from the end surface 111 to the contact point P3 is in the range of 10 mm or more (the range of ⁇ 2 /8 or more). can increase the radiation efficiency of
  • FIG. 15 is a diagram showing an appearance of a smartphone 200 according to an implementation example.
  • Smartphone 200 is a portable wireless terminal.
  • a speaker 211 , a microphone 212 and a display 213 are provided on the front surface of a housing 210 of the smart phone 200 .
  • the display 213 is, for example, an organic electroluminescence (organic EL) display panel.
  • the display 213 is an example of a "display panel.”
  • FIG. 16 is a diagram showing an example of the internal configuration of the smartphone 200 according to the implementation example.
  • FIG. 16 illustrates a state in which housing 210 of smartphone 200 is removed.
  • FIG. 16A is a front view of the smartphone 200 with the housing 210 removed.
  • FIG. 16B is a side view of smartphone 200 with housing 210 removed from the direction of the arrow in FIG. 16A.
  • electronic components that perform various controls of the smartphone 200 are mounted on the first ground substrate 11 .
  • a second ground substrate 13 is provided on the back surface of the display 213 . That is, it can be said that the internal configuration of the smartphone 200 is obtained by replacing the third ground substrate 14 of the antenna device 1 with the display 213 .
  • the display of the smart phone includes electrodes for touch sensors and the like, but the equivalent conductivity of the display 213 is approximately the same as that of the third ground substrate 14 .
  • the antenna device 1 By mounting the antenna device 1 on the smartphone 200, high radiation efficiency can be achieved from a low frequency range to a high frequency range, and the communication performance of the smart phone 200 can be improved.
  • the first ground substrate 11 is formed in a rectangular shape, but the shape of the first ground substrate 11 is not limited to a rectangle.
  • FIG. 17 is a first diagram illustrating variations in the shape of the first ground substrate 11.
  • FIG. 17 illustrates a triangular first ground substrate 11a.
  • the first ground substrate 11 a is arranged with the side 112 , which is one side of the triangle, parallel to the antenna 15 .
  • FIG. 17 also illustrates an example of the position of the contact point P2.
  • the length D1a from the side 112 to the vertex 113 facing the side 112 is ⁇ 1 /2, and the length D2 is ⁇ 2 / 2 is preferable for increasing the radiation efficiency of the antenna device 1 .
  • FIG. 18A and 18B are second diagrams illustrating variations in the shape of the first ground substrate 11.
  • FIG. FIG. 18 illustrates the first ground substrate 11b formed in a shape combining two rectangles.
  • the first ground substrate 11 b is arranged with a side 114 , which is one side, parallel to the antenna 15 .
  • FIG. 18 also illustrates an example of the position of the contact point P2.
  • the length D1b from the side 114 to the farthest point from the first ground substrate 114 on the first ground substrate 11b is ⁇ 1 /2
  • the length of D2 is ⁇ 2 /2 in order to improve the radiation efficiency of the antenna device 1 .
  • FIG. 19 is a diagram illustrating a configuration in which the first ground substrate 11 and the second ground substrate 13 do not overlap in plan view.
  • FIG. 19 also illustrates an example of the position of the contact point P2.
  • the length D1 between the end surface 111 and the farthest point between the end surface 111 and the first ground substrate 11 is ⁇ 1 /2.
  • the length D2 from the end face 111 to the farthest point of the second ground substrate 13 from the end face 111 is ⁇ 2 /2.
  • FIG. 20 is a diagram illustrating a configuration in which the feeding point 12 is connected to the center of the antenna 15. As shown in FIG. The feed point 12 may be connected to the center of the antenna 15, as illustrated in FIG.
  • the antenna provided in the antenna device 1 was a monopole antenna.
  • the antenna provided in the antenna device 1 is not limited to the monopole antenna.
  • the antenna provided in the antenna device 1 may be an inverted F antenna or a loop antenna.

Abstract

Provided are an antenna device having higher radiation efficiency, and a wireless terminal provided with said antenna device. This antenna device is provided with an antenna that operates at a first frequency and a second frequency that is higher than the first frequency, a first conductor plate having a feeding point for supplying electric power to the antenna, a second conductor plate, a connection part that electrically connects the first conductor plate and the second conductor plate, and a circuit element provided between the first conductor plate and the second conductor plate. A first distance from a proximate location of the first conductor that is closest to the antenna to a first distant location of the first conductor plate that is farthest from the antenna is set to be less than a second distance from the proximate location to a second distant location of the second conductor plate that is farthest from the antenna, and the circuit element electrically connects the first conductor plate and the second conductor plate at the first frequency, and electrically disconnects the first conductor plate and the second conductor plate at the second frequency.

Description

アンテナ装置及び無線端末Antenna device and wireless terminal
 本発明は、アンテナ装置及び無線端末に関する。 The present invention relates to an antenna device and a wireless terminal.
 スマートフォンによって例示される無線端末では、端末内部に設けられた導体をアンテナのグランドとして活用されている(特許文献1、2参照)。 In a wireless terminal exemplified by a smartphone, a conductor provided inside the terminal is used as an antenna ground (see Patent Documents 1 and 2).
特開2017-085540公報Japanese Patent Laid-Open No. 2017-085540 特開2013-074361号公報JP 2013-074361 A
 スマートフォン等の無線端末では、給電点を備える基板に形成された第1のグランドと、ディスプレイ裏面に導体によって形成された第2のグランドとを電気的に接続することで、可及的に大きなグランドをアンテナに対して確保していた。このような構成を採用すると、第1のグランドと第2のグランドとに流れる電流を制御できないことから、アンテナの放射効率向上には限界があった。 In a wireless terminal such as a smartphone, a ground as large as possible is established by electrically connecting a first ground formed on a substrate having a feeding point and a second ground formed by a conductor on the rear surface of the display. was secured to the antenna. If such a configuration is adopted, the current flowing through the first ground and the second ground cannot be controlled, so there is a limit to improving the radiation efficiency of the antenna.
 開示の技術の1つの側面は、より放射効率の高いアンテナ装置及び当該アンテナ装置を備える無線端末を提供することを目的とする。 One aspect of the disclosed technique aims to provide an antenna device with higher radiation efficiency and a wireless terminal including the antenna device.
 開示の技術の1つの側面は、次のようなアンテナ装置によって例示される。本アンテナ装置は、第1周波数及び上記第1周波数より高い第2周波数で動作するアンテナと、上記アンテナに給電する給電点を有し、板状に形成される第1の導体板と、板状に形成される第2の導体板と、上記第1の導体板と上記第2の導体板とを電気的に接続する接続部と、上記第1の導体板と上記第2の導体板との間に設けられた回路素子と、を備える。上記第1の導体板のうち上記アンテナに最も近い近傍箇所から上記第1の導体板のうち上記アンテナから最も離れた第1の離間箇所までの第1の距離が、上記近傍箇所から上記第2の導体板のうち上記アンテナから最も離れた第2の離間箇所までの第2の距離よりも短く設定され、上記回路素子は、上記第1周波数においては上記第1の導体板と上記第2の導体板とを電気的に接続し、上記第2周波数においては、上記第1の導体板と上記第2の導体板とを電気的に切り離す。 One aspect of the disclosed technique is exemplified by the following antenna device. The present antenna device includes an antenna operating at a first frequency and a second frequency higher than the first frequency, a feeding point for feeding power to the antenna, a first conductor plate formed in a plate shape, a second conductor plate formed in the second conductor plate, a connecting portion electrically connecting the first conductor plate and the second conductor plate, and the first conductor plate and the second conductor plate and a circuit element disposed therebetween. A first distance from a nearby portion of the first conductor plate closest to the antenna to a first spaced portion of the first conductor plate furthest from the antenna is a distance from the vicinity portion to the second distance. is set shorter than a second distance from the antenna to a second spaced portion of the conductor plate, and the circuit element is positioned between the first conductor plate and the second distance at the first frequency. The conductor plate is electrically connected, and the first conductor plate and the second conductor plate are electrically disconnected at the second frequency.
 開示の技術によれば、より放射効率の高いアンテナ装置及び当該アンテナ装置を備える無線端末を提供することができる。 According to the disclosed technology, it is possible to provide an antenna device with higher radiation efficiency and a wireless terminal equipped with the antenna device.
図1は、実施形態に係るアンテナ装置1の一例を示す図である。FIG. 1 is a diagram showing an example of an antenna device 1 according to an embodiment. 図2は、シミュレーションで採用した構成を例示する図である。FIG. 2 is a diagram illustrating the configuration adopted in the simulation. 図3は、第1シミュレーションの結果を示す第1の図である。FIG. 3 is a first diagram showing the results of the first simulation. 図4は、第1シミュレーションの結果を示す第2の図である。FIG. 4 is a second diagram showing the results of the first simulation. 図5は、第1シミュレーションの結果を示す第3の図である。FIG. 5 is a third diagram showing the results of the first simulation. 図6は、第2シミュレーションの結果を例示する第1の図である。FIG. 6 is a first diagram illustrating the results of the second simulation. 図7は、第2シミュレーションの結果を例示する第2の図である。FIG. 7 is a second diagram illustrating the results of the second simulation. 図8は、第3シミュレーションの結果を例示する図である。FIG. 8 is a diagram illustrating the results of the third simulation. 図9は、第4シミュレーションの結果を例示する図である。FIG. 9 is a diagram illustrating results of the fourth simulation. 図10は、接点P2として採用される回路を例示する図である。FIG. 10 is a diagram illustrating a circuit employed as contact P2. 図11は、第5シミュレーションの結果を例示する図である。FIG. 11 is a diagram illustrating the results of the fifth simulation; 図12は、第6シミュレーションにおけるアンテナ装置の構成を説明する図である。FIG. 12 is a diagram explaining the configuration of the antenna device in the sixth simulation. 図13は、第6シミュレーションにおいて用意した比較例に係るアンテナ装置の構成を説明する図である。FIG. 13 is a diagram illustrating the configuration of an antenna device according to a comparative example prepared in the sixth simulation; 図14は、第6シミュレーションの結果を例示する図である。FIG. 14 is a diagram illustrating the result of the sixth simulation; 図15は、実装例に係るスマートフォンの外観を示す図である。FIG. 15 is a diagram illustrating an appearance of a smartphone according to an implementation example; 図16は、実装例に係るスマートフォンの内部構成の一例を示す図である。FIG. 16 is a diagram illustrating an example of an internal configuration of a smartphone according to an implementation example; 図17は、第1グランド基板の形状のバリエーションを例示する第1の図である。FIG. 17 is a first diagram illustrating variations in the shape of the first ground substrate. 図18は、第1グランド基板の形状のバリエーションを例示する第2の図である。FIG. 18 is a second diagram illustrating variations in the shape of the first ground substrate. 図19は、第1グランド基板と第2グランド基板とが平面視において重畳していない構成を例示する図である。FIG. 19 is a diagram illustrating a configuration in which the first ground substrate and the second ground substrate do not overlap in plan view. 図20は、アンテナの中央に給電点を接続した構成を例示する図である。FIG. 20 is a diagram illustrating a configuration in which a feeding point is connected to the center of an antenna.
 <実施形態>
 以下に示す実施形態の構成は例示であり、開示の技術は実施形態の構成に限定されない。実施形態に係るアンテナ装置は、例えば、以下の構成を備える。本実施形態に係るアンテナ装置は、第1周波数及び上記第1周波数より高い第2周波数で動作するアンテナと、上記アンテナに給電する給電点を有し、板状に形成される第1の導体板と、板状に形成される第2の導体板と、上記第1の導体板と上記第2の導体板とを電気的に接続する接続部と、上記第1の導体板と上記第2の導体板との間に設けられた回路素子と、を備える。上記第1の導体板のうち上記アンテナに最も近い近傍箇所から上記第1の導体板のうち上記アンテナから最も離れた第1の離間箇所までの第1の距離が、上記近傍箇所から上記第2の導体板のうち上記アンテナから最も離れた第2の離間箇所までの第2の距離よりも短く設定され、上記回路素子は、上記第1周波数においては上記第1の導体板と上記第2の導体板とを電気的に接続し、上記第2周波数においては、上記第1の導体板と上記第2の導体板とを電気的に切り離す。
<Embodiment>
The configuration of the embodiment shown below is an example, and the disclosed technology is not limited to the configuration of the embodiment. An antenna device according to an embodiment has, for example, the following configuration. An antenna device according to the present embodiment includes an antenna that operates at a first frequency and a second frequency that is higher than the first frequency, and a feeding point that feeds power to the antenna, and a first conductive plate formed in a plate shape. a second conductor plate formed in a plate shape; a connecting portion electrically connecting the first conductor plate and the second conductor plate; and a circuit element provided between the conductor plate. A first distance from a nearby portion of the first conductor plate closest to the antenna to a first spaced portion of the first conductor plate furthest from the antenna is a distance from the vicinity portion to the second distance. is set shorter than a second distance from the antenna to a second spaced portion of the conductor plate, and the circuit element is positioned between the first conductor plate and the second distance at the first frequency. The conductor plate is electrically connected, and the first conductor plate and the second conductor plate are electrically disconnected at the second frequency.
 上記アンテナ装置によれば、第1周波数においては上記回路素子が第1の導体板と第2の導体板とを電気的に接続することで、アンテナ、第1の導体板及び第2の導体板を放射体として動作させることができ、第1周波数におけるアンテナ装置の放射効率を高めることができる。また、第1周波数よりも高い第2周波数においては、アンテナ及び給電点によってアンテナと接続される第1の導体板に強い電流分布が生じると考えられる。そこで、第2周波数においては、上記回路素子が第1の導体板と第2の導体板とを電気的に切断することで、第1の導体板を放射体として動作させるとともに、第2の導体板による放射効率への影響を低減することができる。そのため、本アンテナ装置によれば、アンテナの放射効率をより高めることができる。 According to the antenna device, the circuit element electrically connects the first conductor plate and the second conductor plate at the first frequency, thereby connecting the antenna, the first conductor plate, and the second conductor plate. can operate as a radiator, and the radiation efficiency of the antenna device at the first frequency can be increased. Also, at a second frequency higher than the first frequency, it is considered that a strong current distribution occurs in the antenna and the first conductor plate connected to the antenna by the feeding point. Therefore, at the second frequency, the circuit element electrically disconnects the first conductor plate and the second conductor plate so that the first conductor plate operates as a radiator and the second conductor The effect of the plate on radiation efficiency can be reduced. Therefore, according to this antenna device, the radiation efficiency of the antenna can be further improved.
 以下、図面を参照して上記アンテナ装置についてさらに説明する。図1は、実施形態に係るアンテナ装置1の一例を示す図である。図1(A)は、アンテナ装置1を正面視した図である。図1(B)は、図1(A)の矢印の方向からアンテナ装置1を側面視した図である。アンテナ装置1は、第1グランド基板11、給電点12、第2グランド基板13、アンテナ15、接点P2、接点P3、接点P4及び接点P5を備える。図1のX方向を幅方向、Y方向を高さ方向、Z方向を厚さ方向とする。また、Z方向からの方向視を平面視とも称する。 The above antenna device will be further described below with reference to the drawings. FIG. 1 is a diagram showing an example of an antenna device 1 according to an embodiment. FIG. 1A is a front view of the antenna device 1. FIG. FIG. 1(B) is a side view of the antenna device 1 from the direction of the arrow in FIG. 1(A). The antenna device 1 includes a first ground substrate 11, a feeding point 12, a second ground substrate 13, an antenna 15, contacts P2, contacts P3, contacts P4, and contacts P5. The X direction in FIG. 1 is the width direction, the Y direction is the height direction, and the Z direction is the thickness direction. A direction view from the Z direction is also referred to as a planar view.
 第1グランド基板11は、接地された基板である。第1グランド基板11は、例えば、各種電子部品を実装するプリント基板である。第1グランド基板11には、例えば、板状の導体が設けられることで、例えば、アンテナ15のグランドとして使用される。第1グランド基板11には、各種の電子部品が実装されてもよい。第1グランド基板11は、平面視において、例えば、長方形の板状に形成される。第1グランド基板11の幅方向における一方の端部には、例えば、アンテナ15に給電する給電点12が設けられる。第1グランド基板11は、「第1の導体板」の一例である。 The first ground substrate 11 is a grounded substrate. The first ground board 11 is, for example, a printed board on which various electronic components are mounted. The first ground substrate 11 is provided with, for example, a plate-shaped conductor, and is used as, for example, the ground of the antenna 15 . Various electronic components may be mounted on the first ground substrate 11 . The first ground substrate 11 is formed in, for example, a rectangular plate shape in plan view. At one end of the first ground substrate 11 in the width direction, for example, a feeding point 12 that feeds an antenna 15 is provided. The first ground substrate 11 is an example of a "first conductor plate".
 アンテナ15は、一端が給電点12に接続され、他端が開放端となっているモノポールアンテナである。アンテナ15は、例えば、給電点12からの給電を受けてマイクロ波帯の電波を出射する。アンテナ15は、例えば、マイクロ波帯域の2つの周波数(第1周波数fと第1周波数fよりも高い第2周波数f)で共振する。アンテナ15の長さは、四分の一波長であり、例えば、第1グランド基板11の幅と略等しい。アンテナ15は、板状に形成された第1グランド基板11の短辺側の端面111に沿って配置される。アンテナ15の長手方向は、例えば、アンテナ装置1の幅方向と一致する。換言すれば、アンテナ15は、長方形の板状に形成された第1グランド基板11の短辺側の端面111と平行である。また、端面111は、平面視においてアンテナ15と平行な直線を形成する。 Antenna 15 is a monopole antenna having one end connected to feeding point 12 and the other end being an open end. The antenna 15 receives power from, for example, the feeding point 12 and emits radio waves in the microwave band. The antenna 15 resonates, for example, at two frequencies in the microwave band (a first frequency f 1 and a second frequency f 2 higher than the first frequency f 1 ). The length of the antenna 15 is a quarter wavelength, and is approximately equal to the width of the first ground substrate 11, for example. The antenna 15 is arranged along the end surface 111 on the short side of the first ground substrate 11 formed in a plate shape. The longitudinal direction of the antenna 15 coincides with the width direction of the antenna device 1, for example. In other words, the antenna 15 is parallel to the end surface 111 on the short side of the first ground substrate 11 formed in a rectangular plate shape. Further, the end face 111 forms a straight line parallel to the antenna 15 in plan view.
 第2グランド基板13は、接地された基板である。第2グランド基板13は、例えば、板状の導体である。第2グランド基板13は、例えば、アンテナ15のグランドとして使用される。第2グランド基板13は、平面視において長方形の板状に形成される。第2グランド基板13の短辺の長さは第1グランド基板11の短辺の長さと略等しい。また、第2グランド基板13の長辺の長さは第1グランド基板11の長辺の長さよりも長い。第2グランド基板13の2つの短辺のうちの一方は、平面視において第1グランド基板11のアンテナ15側の短辺と重なっている。そのため、第2グランド基板13の2つの短辺のうちの一方は、アンテナ15と平行である。第2グランド基板13は、「第2の導体板」の一例である。 The second ground board 13 is a grounded board. The second ground substrate 13 is, for example, a plate-shaped conductor. The second ground board 13 is used as a ground for the antenna 15, for example. The second ground substrate 13 is formed in a rectangular plate shape in plan view. The length of the short side of the second ground board 13 is substantially equal to the length of the short side of the first ground board 11 . Also, the length of the long side of the second ground substrate 13 is longer than the length of the long side of the first ground substrate 11 . One of the two short sides of the second ground board 13 overlaps the short side of the first ground board 11 on the antenna 15 side in plan view. Therefore, one of the two short sides of second ground substrate 13 is parallel to antenna 15 . The second ground board 13 is an example of a "second conductor plate".
 第3グランド基板14は、接地された基板である。第3グランド基板14は、例えば、板状の導体である。第3グランド基板14の導電率は、第2グランド基板13の導電率よりも低いことが好ましい。第2グランド基板13は、平面視において長方形の板状に形成される。第3グランド基板14の短辺の長さは第1グランド基板11の短辺の長さと略等しい。また、第3グランド基板14の長辺の長さは第2グランド基板13の長辺の長さと略等しい。すなわち、第3グランド基板14の大きさは第2グランド基板13と略同じである。第3グランド基板14は、「第3の導体板」の一例である。 The third ground board 14 is a grounded board. The third ground substrate 14 is, for example, a plate-shaped conductor. The conductivity of the third ground substrate 14 is preferably lower than the conductivity of the second ground substrate 13 . The second ground substrate 13 is formed in a rectangular plate shape in plan view. The length of the short side of the third ground board 14 is substantially equal to the length of the short side of the first ground board 11 . Also, the length of the long side of the third ground board 14 is substantially equal to the length of the long side of the second ground board 13 . That is, the size of the third ground board 14 is substantially the same as that of the second ground board 13 . The third ground board 14 is an example of a "third conductor plate".
 第3グランド基板14は、平面視において第2グランド基板13と重畳するように全面で第2グランド基板13と接触するように配置される。そして、厚さ方向において、第3グランド基板14の上に第2グランド基板13が設けられ、第2グランド基板13の上に給電点12が設けられる。換言すれば、第2グランド基板13は、第1グランド基板11と第3グランド基板14との間に設けられる。スマートフォンによって例示される無線端末にアンテナ装置1が実装される場合、第3グランド基板14は、例えば、有機エレクトロルミネッセンス(有機EL)ディスプレイであってもよい。 The third ground substrate 14 is arranged so as to be in contact with the second ground substrate 13 over its entire surface so as to overlap with the second ground substrate 13 in plan view. Then, in the thickness direction, the second ground substrate 13 is provided on the third ground substrate 14 , and the feeding point 12 is provided on the second ground substrate 13 . In other words, the second ground board 13 is provided between the first ground board 11 and the third ground board 14 . When the antenna device 1 is mounted on a wireless terminal exemplified by a smart phone, the third ground substrate 14 may be, for example, an organic electroluminescence (organic EL) display.
 アンテナ装置1では、第1グランド基板11と第2グランド基板13とがこのように配置されることで、第1グランド基板11のうち端面111から最も遠い箇所までの長さ(図1のD1)よりも第2グランド基板13のうち端面111から最も遠い箇所までの長さ(図1のD2)の方が長くなることが理解できる。好ましくは、D1の長さがλ/2(λは、第1周波数fの電波の実効波長)であり、D2の長さがλ/2(λは、第2周波数fの電波の実効波長)である。ここで、実効波長とは周囲の誘電率によって自由空間の波長よりも短くなった波長のことである。 In the antenna device 1, by arranging the first ground substrate 11 and the second ground substrate 13 in this manner, the length of the first ground substrate 11 to the furthest point from the end surface 111 (D1 in FIG. 1) It can be understood that the length (D2 in FIG. 1) from the end surface 111 of the second ground substrate 13 to the furthest point is longer than the length. Preferably, the length of D1 is λ 1 /2 (λ 1 is the effective wavelength of radio waves of the first frequency f 1 ), and the length of D2 is λ 2 /2 (λ 2 is the second frequency f 2 effective wavelength of radio waves). Here, the effective wavelength is the wavelength shorter than the free space wavelength due to the surrounding dielectric constant.
 第1グランド基板11と第2グランド基板13とは、厚さ方向において離れている。すなわち、第1グランド基板11と第2グランド基板13との間には、隙間が形成される。その隙間には、接点P2、接点P3、接点P4、接点P5が設けられる。接点P2、接点P3、接点P4、接点P5は、例えば、第1グランド基板11の4つの角部付近に設けられる。なお、接点P2、接点P3、接点P4、接点P5は、第1グランド基板11の4つの角部付近に設けられることに限定されず第1グランド基板11の他の場所に設けられてもよい。接点は4つに限定されず4つより多くてもよい。接点P2、接点P3、接点P4、接点P5は、第1グランド基板11の縁部(第1グランド基板11の長方形を形成する各辺の付近)に設けられてもよい。接点P2、接点P3、接点P4、接点P5のうち、接点P2が最も給電点12に近い位置に設けられる。接点P2は、給電点12からλ/8の範囲内に設けられるのが好ましい。また、接点P3、接点P4、接点P5は、給電点12からλ/8以上離れた位置に設けられることが好ましい。接点P2、P3、接点P4、接点P5は、例えば、第1グランド基板11と第2グランド基板13を電気的にバネ接点を介して接続する。 The first ground substrate 11 and the second ground substrate 13 are separated in the thickness direction. That is, a gap is formed between the first ground substrate 11 and the second ground substrate 13 . A contact P2, a contact P3, a contact P4, and a contact P5 are provided in the gap. The contacts P2, P3, P4, and P5 are provided near four corners of the first ground substrate 11, for example. The contacts P2, P3, P4, and P5 are not limited to being provided near the four corners of the first ground substrate 11, and may be provided at other locations on the first ground substrate 11. The number of contacts is not limited to four and may be more than four. The contact P2, the contact P3, the contact P4, and the contact P5 may be provided at the edge of the first ground substrate 11 (near each side forming the rectangle of the first ground substrate 11). Of the contact P2, the contact P3, the contact P4, and the contact P5, the contact P2 is provided at a position closest to the feeding point 12. FIG. Contact point P2 is preferably provided within a range of λ 1 /8 from feed point 12 . Moreover, the contact P3, the contact P4, and the contact P5 are preferably provided at positions separated from the feeding point 12 by λ 1 /8 or more. Contact points P2, P3, contact point P4, and contact point P5 electrically connect, for example, the first ground substrate 11 and the second ground substrate 13 via spring contacts.
 接点P2は、第1周波数fのときに低インピーダンス、第2周波数fのときに高インピーダンスとなる接点である。すなわち、給電点12が第1周波数f1で動作するときは、接点P2が低インピーダンスとなることで、第1グランド基板11と第2グランド基板13とが接点P2によっても電気的に接続される。給電点12が第2周波数f2で動作するときは、接点P2が高インピーダンスとなることで、第1グランド基板11と第2グランド基板13との接点P2による電気的な接続が切断される。接点P2は、例えば、コンデンサとインダクタとを含む並列共振回路や、スイッチによって実現されてもよい。 The contact P2 has a low impedance at the first frequency f1 and a high impedance at the second frequency f2. That is, when the feeding point 12 operates at the first frequency f1, the contact P2 has a low impedance, so that the first ground substrate 11 and the second ground substrate 13 are also electrically connected by the contact P2. When the feeding point 12 operates at the second frequency f2, the electrical connection between the first ground substrate 11 and the second ground substrate 13 through the contact P2 is cut off because the contact P2 becomes high impedance. The contact P2 may be implemented by, for example, a parallel resonant circuit including a capacitor and an inductor, or a switch.
 <シミュレーション>
 アンテナ装置1の性能を検証するためシミュレーションを行ったので説明する。本シミュレーションでは、D1の長さを45.0mmに設定し、D2の長さを137.0mmに設定した。アンテナ15の長さ、及び、第1グランド基板11、第2グランド基板13、第3グランド基板14の幅を66.0mmに設定した。アンテナ15と第1グランド基板11の端面111との間隔を1mmに設定した。また、アンテナ15と端面111との距離を1.0mmに設定した。さらに、アンテナ15の導電率を1×10(S/m)、第1グランド基板11の導電率を1×10(S/m)、第2グランド基板13の導電率を1×10(S/m)、第3グランド基板14の導電率を5.8×10(S/m)に設定した。
<Simulation>
A simulation was performed to verify the performance of the antenna device 1 and will be described. In this simulation, the length of D1 was set to 45.0 mm and the length of D2 was set to 137.0 mm. The length of the antenna 15 and the widths of the first ground substrate 11, the second ground substrate 13, and the third ground substrate 14 were set to 66.0 mm. The distance between the antenna 15 and the end surface 111 of the first ground substrate 11 was set to 1 mm. Also, the distance between the antenna 15 and the end face 111 was set to 1.0 mm. Furthermore, the conductivity of the antenna 15 is 1×10 6 (S/m), the conductivity of the first ground substrate 11 is 1×10 6 (S/m), and the conductivity of the second ground substrate 13 is 1×10 6 . (S/m), and the conductivity of the third ground substrate 14 was set to 5.8×10 4 (S/m).
 図2は、シミュレーションで採用した構成を例示する図である。本シミュレーションでは、第1グランド基板11と第2グランド基板13とが電気的に導通している導通モデル(図2(A))と、第1グランド基板11と第2グランド基板13とが電気的に非導通となっている非導通モデル(図2(B))と、について検証した。 FIG. 2 is a diagram illustrating the configuration adopted in the simulation. In this simulation, a conduction model (FIG. 2A) in which the first ground substrate 11 and the second ground substrate 13 are electrically connected, and a conduction model in which the first ground substrate 11 and the second ground substrate 13 are electrically connected A non-conducting model (FIG. 2(B)) that is non-conducting at the same time was verified.
 <第1シミュレーション>
 第1シミュレーションでは、導通モデル及び非導通モデルの夫々についてアンテナ装置1の放射効率について検証した。図3から図5は、第1シミュレーションの結果を示す図である。図3は、シミュレーションによって検証したアンテナ装置1の放射効率を例示する図である。図3の縦軸は放射効率(dB)を示し、横軸は周波数(GHz)を示す。図3の点線は非導通モデルのシミュレーション結果を示し、図3の実線は導通モデルのシミュレーション結果を示す。図4は、非導通モデルのシミュレーション結果を示すスミスチャートである。図5は、導通モデルのシミュレーション結果を示すスミスチャートである。
<First simulation>
In the first simulation, the radiation efficiency of the antenna device 1 was verified for each of the conducting model and the non-conducting model. 3 to 5 are diagrams showing the results of the first simulation. FIG. 3 is a diagram illustrating the radiation efficiency of the antenna device 1 verified by simulation. The vertical axis in FIG. 3 indicates radiation efficiency (dB), and the horizontal axis indicates frequency (GHz). The dotted line in FIG. 3 indicates the simulation result of the non-conducting model, and the solid line in FIG. 3 indicates the simulation result of the conducting model. FIG. 4 is a Smith chart showing simulation results of a non-conducting model. FIG. 5 is a Smith chart showing simulation results of the conduction model.
 図3から図5を参照すると理解できるように、周波数の低い領域(例えば、周波数0.7GHz)では、導通モデルの方が放射効率が高い。また、周波数の高い領域(例えば、周波数2.6GHz以上)では、非導通モデルの方が放射効率が高い。本シミュレーションの結果により、周波数の低い領域では第1グランド基板11と第2グランド基板13とが電気的に導通している方がアンテナ装置1の放射効率が高くなり、周波数の高い領域では第1グランド基板11と第2グランド基板13とが電気的に非導通の方がアンテナ装置1の放射効率が高くなることが理解できる。 As can be understood by referring to FIGS. 3 to 5, the conduction model has higher radiation efficiency in the low frequency range (for example, frequency 0.7 GHz). Also, in a high frequency region (for example, frequencies of 2.6 GHz or higher), the non-conducting model has higher radiation efficiency. According to the results of this simulation, the radiation efficiency of the antenna device 1 is higher when the first ground substrate 11 and the second ground substrate 13 are electrically connected in the low frequency region, and the radiation efficiency of the antenna device 1 is higher in the high frequency region. It can be understood that the radiation efficiency of the antenna device 1 is higher when the ground substrate 11 and the second ground substrate 13 are electrically non-conductive.
 <第2シミュレーション>
 次に、導通モデルと非導通モデルの夫々について、電流分布を検証する第2シミュレーションを行った。図6及び図7は、第2シミュレーションの結果を例示する図である。図6は周波数が低い場合(周波数0.75GHzの場合)の電流分布を例示し、図7は周波数が高い場合(周波数4.0GHzの場合)の電流分布を例示する。また、図6(A)及び図7(B)は導通モデルにおける電流分布を例示し、図6(B)及び図7(B)は非導通モデルにおける電流分布を例示する。なお、図6及び図7では、色が濃い領域(点が密になっている領域)の方が、色が薄い領域(点が疎になっている領域)よりも強い電流が分布していることを例示する。
<Second simulation>
Next, a second simulation was performed to verify the current distribution for each of the conducting model and the non-conducting model. 6 and 7 are diagrams illustrating the results of the second simulation. FIG. 6 illustrates the current distribution when the frequency is low (when the frequency is 0.75 GHz), and FIG. 7 illustrates the current distribution when the frequency is high (when the frequency is 4.0 GHz). Also, FIGS. 6A and 7B illustrate the current distribution in the conduction model, and FIGS. 6B and 7B illustrate the current distribution in the non-conduction model. Note that in FIGS. 6 and 7, a stronger current is distributed in a dark-colored region (region with dense dots) than in a light-colored region (region with sparse dots). Here is an example.
 まず、図6を参照して、周波数が低い場合について検討する。周波数が低い場合では、導通モデルの方が広い領域で強い電流分布が生じている。そして、強い電流分布は第1グランド基板11及び第2グランド基板13にも生じていることから、周波数が低い場合では第1グランド基板11及び第2グランド基板13が放射体として動作していると考えられる。そのため、周波数が低い場合では導通モデルの方がアンテナ装置1の放射効率が高くなると考えられる。 First, the case where the frequency is low will be considered with reference to FIG. At low frequencies, the conduction model produces a strong current distribution over a wider area. Since a strong current distribution also occurs in the first ground substrate 11 and the second ground substrate 13, it is assumed that the first ground substrate 11 and the second ground substrate 13 operate as radiators when the frequency is low. Conceivable. Therefore, when the frequency is low, the radiation efficiency of the antenna device 1 is considered to be higher in the conduction model.
 次に、図7を参照して、周波数が高い場合について検討する。周波数が高い場合では、非導通モデルの方が広い領域で強い電流分布が生じている。そして、強い電流分布は第1グランド基板11に生じていることから、周波数が高い場合では、第1グランド基板11が放射体として動作していると考えられる。また、周波数が高い場合では、強い電流分布がアンテナ15の近傍に生じることから、第3グランド基板14による電流分布への影響を抑制した方が好ましいと考えられる。そのため、周波数が高い場合では、非導通モデルの方がアンテナ装置1の放射効率が高くなると考えられる。 Next, with reference to FIG. 7, the case where the frequency is high will be considered. At high frequencies, the non-conducting model produces a strong current distribution over a wider area. Since a strong current distribution occurs in the first ground substrate 11, it is considered that the first ground substrate 11 operates as a radiator when the frequency is high. Also, when the frequency is high, a strong current distribution occurs near the antenna 15, so it is considered preferable to suppress the influence of the third ground substrate 14 on the current distribution. Therefore, when the frequency is high, the radiation efficiency of the antenna device 1 is considered to be higher in the non-conducting model.
 <第3シミュレーション>
 つづいて、第1グランド基板11と第2グランド基板13との接続状態を接点によって切り替えた場合におけるアンテナ15の特性について検証する第3シミュレーションについて説明する。第3シミュレーションでは、図1に例示した接点P2、接点P3、接点P4、接点P5の夫々の位置において接続と切断とを切り替えてアンテナ15の放射効率をシミュレーションした。
<Third simulation>
Next, a third simulation will be described for verifying the characteristics of the antenna 15 when the connection state between the first ground substrate 11 and the second ground substrate 13 is switched by a contact. In the third simulation, the radiation efficiency of the antenna 15 was simulated by switching between connection and disconnection at each position of the contact P2, contact P3, contact P4, and contact P5 illustrated in FIG.
 図8は、第3シミュレーションの結果を例示する図である。図8の縦軸は放射効率(dB)を示し、横軸は周波数(GHz)を示す。図8において、細い実線は、接点P2、接点P3、接点P4、接点P5の夫々を切断した場合の放射効率を示す(図中の凡例では、「p2O_p3O_p4O_p5O」と記載)。点線は、接点P3を接続するとともに接点P2、接点P4、接点P5の夫々を切断した場合の放射効率を示す(図中の凡例では、「p2O_p3S_p4O_p5O」と記載)。一点鎖線は接点P2を接続するとともに接点P3、接点P4、接点P5の夫々を切断した場合の放射効率を示す(図中の凡例では、「p2S_p3O_p4O_p5O」と記載)。二点鎖線は、接点P2、接点P3を接続するとともに接点P4、接点P5の夫々を切断した場合の放射効率を示す(図中の凡例では、「p2S_p3S_p4O_p5O」と記載)。太い実線は、接点P2、接点P3、接点P4、接点P5の夫々を接続した場合の放射効率を示す(図中の凡例では、「p2S_p3S_p4S_p5S」と記載)。 FIG. 8 is a diagram illustrating the results of the third simulation. The vertical axis in FIG. 8 indicates radiation efficiency (dB), and the horizontal axis indicates frequency (GHz). In FIG. 8, the thin solid lines indicate the radiation efficiency when the contacts P2, P3, P4, and P5 are cut (denoted as "p2O_p3O_p4O_p5O" in the legend in the drawing). A dotted line indicates the radiation efficiency when the contact P3 is connected and the contact P2, the contact P4, and the contact P5 are disconnected (denoted as "p2O_p3S_p4O_p5O" in the legend in the figure). The dashed-dotted line indicates the radiation efficiency when the contact P2 is connected and the contact P3, contact P4, and contact P5 are disconnected (denoted as "p2S_p3O_p4O_p5O" in the legend in the figure). A two-dot chain line indicates the radiation efficiency when the contacts P2 and P3 are connected and the contacts P4 and P5 are disconnected (denoted as "p2S_p3S_p4O_p5O" in the legend in the figure). A thick solid line indicates the radiation efficiency when the contact P2, the contact P3, the contact P4, and the contact P5 are connected (denoted as "p2S_p3S_p4S_p5S" in the legend in the figure).
 図8を参照すると、細い実線によって示される放射効率は、周波数の低い領域において高くなることが理解できる。また、太い実線によって示される放射効率は、周波数の高い領域において高くなることが理解できる。二点鎖線によって示される放射効率と太い実線によって示される放射効率との間で大きな違いが無いことから、接点P4、接点P5の接続、切断による放射効率への影響は小さいことが理解できる。一方で、一点鎖線によって示される放射効率の方が二点鎖線によって示される放射効率よりも低くなっていることから、接点P3は接続した方が好ましいことが理解できる。 With reference to FIG. 8, it can be understood that the radiation efficiency indicated by the thin solid line is high in the low frequency region. Also, it can be understood that the radiation efficiency indicated by the thick solid line increases in the high frequency region. Since there is no significant difference between the radiation efficiency indicated by the two-dot chain line and the radiation efficiency indicated by the thick solid line, it can be understood that connection and disconnection of the contacts P4 and P5 have little effect on the radiation efficiency. On the other hand, since the radiation efficiency indicated by the one-dot chain line is lower than the radiation efficiency indicated by the two-dot chain line, it can be understood that it is preferable to connect the contact point P3.
 点線によって示される放射効率は、周波数の低い領域では低放射効率となる一方で、周波数の高い領域では高放射効率となることが理解できる。すなわち、周波数が低い領域では接点P2を接続し、周波数が高い領域では接点P2を切断することで、アンテナ装置1の放射効率を高めることができることが理解できる。 It can be understood that the radiation efficiency indicated by the dotted line has low radiation efficiency in the low frequency range, and high radiation efficiency in the high frequency range. That is, it can be understood that the radiation efficiency of the antenna device 1 can be improved by connecting the contact P2 in the low frequency region and disconnecting the contact P2 in the high frequency region.
 <第4シミュレーション>
 つづいて、接点P3、接点P4、接点P5の夫々を接続した状態で、接点P2としてインダクタを設けた場合におけるアンテナ装置1の放射効率を検証する第4シミュレーションについて説明する。図9は、第4シミュレーションの結果を例示する図である。図9において、縦軸は放射効率(dB)を示し、横軸は周波数(GHz)を示す。図9において、一点鎖線は、インダクタンス1nHのインダクタを接点P2として設けた場合の放射効率を示す(図中の凡例では、「p2-1n_p3S_p4O_p5O」と記載)。点線は、インダクタンス2nHのインダクタを接点P2として設けた場合の放射効率を示す(図中の凡例では、「p2-2n_p3S_p4O_p5O」と記載)。太い実線は、インダクタンス10nHのインダクタを接点P2として設けた場合の放射効率を示す(図中の凡例では、「p2-10n_p3S_p4O_p5O」と記載)。二点鎖線は、接点P2を切断した状態の放射効率を示す(図中の凡例では、「p2O_p3S_p4O_p5O」と記載)。細い実線は、接点P2を接続した状態の放射効率を示す(図中の凡例では、「p2S_p3S_p4O_p5O」と記載)。二点鎖線及び細い実線の場合は、接点P2としてインダクタを設けていない。なお、図9に例示される放射効率の夫々では、接点P3は接続され、接点P4及び接点P5は切断されている。
<Fourth simulation>
Next, a fourth simulation for verifying the radiation efficiency of the antenna device 1 when an inductor is provided as the contact P2 with the contacts P3, P4, and P5 connected to each other will be described. FIG. 9 is a diagram illustrating results of the fourth simulation. In FIG. 9, the vertical axis indicates radiation efficiency (dB) and the horizontal axis indicates frequency (GHz). In FIG. 9, the dashed-dotted line indicates the radiation efficiency when an inductor with an inductance of 1 nH is provided as the contact P2 (denoted as "p2-1n_p3S_p4O_p5O" in the legend in the figure). A dotted line indicates the radiation efficiency when an inductor with an inductance of 2 nH is provided as the contact P2 (denoted as "p2-2n_p3S_p4O_p5O" in the legend in the figure). A thick solid line indicates the radiation efficiency when an inductor with an inductance of 10 nH is provided as the contact P2 (denoted as "p2-10n_p3S_p4O_p5O" in the legend in the figure). A two-dot chain line indicates the radiation efficiency when the contact P2 is disconnected (denoted as "p2O_p3S_p4O_p5O" in the legend in the figure). A thin solid line indicates the radiation efficiency when the contact P2 is connected (denoted as "p2S_p3S_p4O_p5O" in the legend in the figure). In the case of the two-dot chain line and the thin solid line, no inductor is provided as the contact P2. Note that in each of the radiation efficiencies illustrated in FIG. 9, contact P3 is connected and contact P4 and contact P5 are disconnected.
 図9を参照すると、一点鎖線によって示される放射効率と細い実線によって示される放射効率とは、周波数の低い領域でアンテナ装置1の放射効率が同程度に良いことが理解できる。太い実線によって示される放射効率では、周波数の低い領域におけるアンテナ装置1の放射効率が低い一方で、周波数の高い領域におけるアンテナ装置1の放射効率は高いことが理解できる。すなわち、インダクタンスが1nH以下のインダクタを接点P2として設けることで周波数の低い領域におけるアンテナ装置1の放射効率を高くすることができる。 With reference to FIG. 9, it can be understood that the radiation efficiency indicated by the dashed dotted line and the radiation efficiency indicated by the thin solid line are equally good in the low frequency region of the antenna device 1 . As for the radiation efficiency indicated by the thick solid line, it can be understood that the radiation efficiency of the antenna device 1 is low in the low frequency range, while the radiation efficiency of the antenna device 1 is high in the high frequency range. That is, by providing an inductor having an inductance of 1 nH or less as the contact point P2, the radiation efficiency of the antenna device 1 can be increased in a low frequency region.
 <第5シミュレーション>
 つづいて、接点P3、接点P4、接点P5の夫々を接続した状態で、接点P2としてトラップ回路やスイッチを設けた場合におけるアンテナ装置1の放射効率を検証する第5シミュレーションについて説明する。図10は、接点P2として採用される回路を例示する図である。図10(A)及び図10(B)は、アンテナ装置1を側面から(図1(A)の矢印方向から)接点P2付近を見た図となっている。図10(A)は、接点P2として採用するトラップ回路16の一例を示す図である。トラップ回路16は、インダクタ161とコンデンサ162とを並列に接続した回路であり、並列共振回路とも称される。トラップ回路16は、第1グランド基板11と第2グランド基板13とを接続するように設けられる。
<Fifth simulation>
Next, a fifth simulation for verifying the radiation efficiency of the antenna device 1 when a trap circuit or a switch is provided as the contact P2 with the contacts P3, P4, and P5 connected will be described. FIG. 10 is a diagram illustrating a circuit employed as contact P2. 10(A) and 10(B) are views of the antenna device 1 viewed from the side (from the direction of the arrow in FIG. 1(A)) near the contact point P2. FIG. 10A is a diagram showing an example of the trap circuit 16 employed as the contact P2. The trap circuit 16 is a circuit in which an inductor 161 and a capacitor 162 are connected in parallel, and is also called a parallel resonant circuit. The trap circuit 16 is provided to connect the first ground substrate 11 and the second ground substrate 13 .
 図10(B)は、接点P2として採用するスイッチ回路17の一例を示す図である。スイッチ回路17は、例えば、周波数に応じて開閉が切り替えられる高周波スイッチである。スイッチ回路17としては、例えば、ダイオードスイッチ、Field Effect Transistor(FET)スイッチあるいはMicro Electro Mechanical Systems(MEMS)スイッチを挙げることができる。スイッチ回路17は、例えば、周波数の低い領域(例えば、周波数0.7GHz)ではスイッチが閉状態(スイッチオン)となり、第1グランド基板11と第2グランド基板13とを電気的に接続する。また、スイッチ回路17は、周波数の高い領域(例えば、周波数2.6GHz以上)では開状態(スイッチがオフ)となり、第1グランド基板11と第2グランド基板13とが電気的に切断される。 FIG. 10(B) is a diagram showing an example of the switch circuit 17 employed as the contact P2. The switch circuit 17 is, for example, a high-frequency switch that is switched between opening and closing according to the frequency. Examples of the switch circuit 17 include a diode switch, a field effect transistor (FET) switch, or a Micro Electro Mechanical Systems (MEMS) switch. The switch circuit 17 is in a closed state (switch-on) in a low frequency range (for example, a frequency of 0.7 GHz), and electrically connects the first ground substrate 11 and the second ground substrate 13 . Also, the switch circuit 17 is in an open state (switch is off) in a high frequency range (for example, a frequency of 2.6 GHz or higher), and the first ground substrate 11 and the second ground substrate 13 are electrically disconnected.
 図11は、第5シミュレーションの結果を例示する図である。図11において、縦軸は放射効率(dB)を示し、横軸は周波数(GHz)を示す。図11において、太い実線は、インダクタ161のインダクタンスを1nH、コンデンサ162の静電容量を2pFとしたトラップ回路16を接点P2として設けた場合の放射効率を例示する(図中の凡例では、「p2-1n-2p_p3S_p4O_p5O」と記載)。細い実線は、接点P2を切断した状態の放射効率を示す(図中の凡例では、「p2O_p3S_p4O_p5O」と記載)。二点鎖線は、接点P2を接続した状態の放射効率を示す(図中の凡例では、「p2S_p3S_p4O_p5O」と記載)。なお、図11に例示される放射効率の夫々では、接点P3は接続され、接点P4及び接点P5は切断されている。 FIG. 11 is a diagram illustrating the results of the fifth simulation. In FIG. 11, the vertical axis indicates radiation efficiency (dB) and the horizontal axis indicates frequency (GHz). In FIG. 11, the thick solid line illustrates the radiation efficiency when the trap circuit 16 with the inductance of the inductor 161 of 1 nH and the capacitance of the capacitor 162 of 2 pF is provided as the contact P2 (in the legend in the figure, "p2 -1n-2p_p3S_p4O_p5O”). A thin solid line indicates the radiation efficiency when the contact P2 is disconnected (denoted as "p2O_p3S_p4O_p5O" in the legend in the drawing). A two-dot chain line indicates the radiation efficiency with the contact P2 connected (denoted as "p2S_p3S_p4O_p5O" in the legend in the drawing). Note that in each of the radiation efficiencies illustrated in FIG. 11, contact P3 is connected and contact P4 and contact P5 are disconnected.
 図8及び図9を参照して説明した通り、周波数の低い領域では接点P2が接続され、周波数の高い領域では接点P2が切断されることで、アンテナ装置1の放射効率を高くすることができる。図11を参照すると、太い実線によって示される放射効率は、周波数の低い領域では接点P2が接続された状態(細い実線)と同様に高い放射効率を示し、周波数の高い領域では接点P2が切断された状態(二点鎖線)と同様に高い放射効率を示すことが理解できる。すなわち、接点P2の位置にトラップ回路16を設けることで、アンテナ装置1の放射効率を高めることができる。また、トラップ回路16に含まれるインダクタ161のインダクタンスを1nH、コンデンサ162の静電容量を2pFとすることが好ましい。 As described with reference to FIGS. 8 and 9, the contact P2 is connected in the low frequency region and disconnected in the high frequency region, so that the radiation efficiency of the antenna device 1 can be increased. . Referring to FIG. 11, the radiation efficiency indicated by the thick solid line shows a high radiation efficiency in the low frequency region as in the state where the contact P2 is connected (thin solid line), and in the high frequency region when the contact P2 is disconnected. It can be understood that high radiation efficiency is exhibited similarly to the state (two-dot chain line). That is, the radiation efficiency of the antenna device 1 can be improved by providing the trap circuit 16 at the position of the contact point P2. Moreover, it is preferable to set the inductance of the inductor 161 included in the trap circuit 16 to 1 nH and the capacitance of the capacitor 162 to 2 pF.
 <第6シミュレーション>
 以上のシミュレーションにより、接点P3が接続された状態において、周波数の低い領域では接点P2を接続し、周波数の高い領域では接点P2を切断することが、アンテナ装置1の高い放射効率実現には好ましいということができる。ここでは、接点P3の位置を検討する第6シミュレーションについて説明する。
<Sixth simulation>
According to the above simulation, it is preferable to connect the contact P2 in the low frequency region and disconnect the contact P2 in the high frequency region while the contact P3 is connected, in order to realize high radiation efficiency of the antenna device 1. be able to. A sixth simulation for examining the position of the contact point P3 will now be described.
 図12は、第6シミュレーションにおけるアンテナ装置1の構成を説明する図である。第6シミュレーションでは、接点P2、接点P4、接点P5を切断した状態で、端面111から接点P3までの距離D3を変化させた場合におけるアンテナ装置1の放射効率についてシミュレーションを行った。図13は、第6シミュレーションにおいて用意した比較例に係るアンテナ装置500の構成を説明する図である。比較例に係るアンテナ装置500では、端面111から接点P2までの距離D4をλ/8、端面111から接点P3までの距離D5を3λ/8に設定した。なお、アンテナ装置500では、接点P4、接点P5は省略されている。 FIG. 12 is a diagram illustrating the configuration of the antenna device 1 in the sixth simulation. In the sixth simulation, the radiation efficiency of the antenna device 1 was simulated when the distance D3 from the end face 111 to the contact P3 was changed while the contacts P2, P4, and P5 were disconnected. FIG. 13 is a diagram illustrating the configuration of an antenna device 500 according to a comparative example prepared in the sixth simulation. In the antenna device 500 according to the comparative example, the distance D4 from the end face 111 to the contact P2 is set to λ 2 /8, and the distance D5 from the end face 111 to the contact P3 is set to 3λ 2 /8. Incidentally, in the antenna device 500, the contacts P4 and P5 are omitted.
 図14は、第6シミュレーションの結果を例示する図である。図14において、縦軸は放射効率(dB)を示し、アンテナ15から接点P3までの距離(mm)を示す。図14において、実線がアンテナ装置1の放射効率を示し、点線がアンテナ装置500の放射効率を示す。図14を参照すると、端面111から接点P3までの距離D3が10mm以上の範囲(λ/8以上の範囲)とすることで、アンテナ装置1の放射効率をアンテナ装置500よりも高くすることができることが理解できる。 FIG. 14 is a diagram illustrating the result of the sixth simulation; In FIG. 14, the vertical axis indicates the radiation efficiency (dB) and indicates the distance (mm) from the antenna 15 to the contact point P3. 14, the solid line indicates the radiation efficiency of the antenna device 1, and the dotted line indicates the radiation efficiency of the antenna device 500. In FIG. Referring to FIG. 14, the radiation efficiency of the antenna device 1 can be made higher than that of the antenna device 500 by setting the distance D3 from the end face 111 to the contact point P3 in a range of 10 mm or more (λ 2 /8 or more). I understand what you can do.
 第1から第5シミュレーションの結果により、周波数が低い領域(例えば、周波数0.7GHz付近の領域)及び高い領域(例えば、周波数2.6GHz付近の領域)のいずれにおいても、接点P3は接続した方がアンテナ装置1の放射効率は高くできることが理解できる。また、周波数が低い領域では接点P2を接続し、周波数が高い領域では接点P2を切断することで、周波数が低い領域から高い領域までにおけるアンテナ装置1の放射効率を高くすることができる。 According to the results of the first to fifth simulations, in both the low frequency region (for example, the frequency region near 0.7 GHz) and the high frequency region (for example, the frequency region near 2.6 GHz), the contact P3 is connected. However, it can be understood that the radiation efficiency of the antenna device 1 can be increased. Further, by connecting the contact P2 in a low frequency region and disconnecting the contact P2 in a high frequency region, the radiation efficiency of the antenna device 1 can be increased from a low frequency region to a high frequency region.
 また、第6シミュレーションの結果により、接点P3の位置は、端面111から接点P3までの距離D3が10mm以上の範囲(λ/8以上の範囲)となるように決定することで、アンテナ装置1の放射効率を高めることができる。 Further, according to the result of the sixth simulation, the position of the contact point P3 is determined so that the distance D3 from the end surface 111 to the contact point P3 is in the range of 10 mm or more (the range of λ 2 /8 or more). can increase the radiation efficiency of
 <実装例>
 以上説明したアンテナ装置1をスマートフォンに実装する場合について説明する。図15は、実装例に係るスマートフォン200の外観を示す図である。スマートフォン200は、可搬型の無線端末である。スマートフォン200の筐体210の前面にはスピーカー211、マイクロフォン212及びディスプレイ213が設けられる。ディスプレイ213は、例えば、有機エレクトロルミネッセンス(有機EL)ディスプレイパネルである。ディスプレイ213は、「ディスプレイパネル」の一例である。
<Example of implementation>
A case where the antenna device 1 described above is mounted on a smartphone will be described. FIG. 15 is a diagram showing an appearance of a smartphone 200 according to an implementation example. Smartphone 200 is a portable wireless terminal. A speaker 211 , a microphone 212 and a display 213 are provided on the front surface of a housing 210 of the smart phone 200 . The display 213 is, for example, an organic electroluminescence (organic EL) display panel. The display 213 is an example of a "display panel."
 図16は、実装例に係るスマートフォン200の内部構成の一例を示す図である。図16は、スマートフォン200の筐体210を外した状態を例示する。図16(A)は、筐体210を外したスマートフォン200を正面視した図である。図16(B)は、図16(A)の矢印の方向から筐体210を外したスマートフォン200を側面視した図である。スマートフォン200では、例えば、第1グランド基板11上にスマートフォン200の各種制御を実行する電子部品が実装される。また、ディスプレイ213の背面には第2グランド基板13が設けられる。すなわち、スマートフォン200の内部構成は、アンテナ装置1の第3グランド基板14をディスプレイ213に置き換えたものということができる。なお、スマートフォンのディスプレイ内部にはタッチセンサ用の電極等を含むが、ディスプレイ213の等価的な導電率は、第3グランド基板14と同程度である。 FIG. 16 is a diagram showing an example of the internal configuration of the smartphone 200 according to the implementation example. FIG. 16 illustrates a state in which housing 210 of smartphone 200 is removed. FIG. 16A is a front view of the smartphone 200 with the housing 210 removed. FIG. 16B is a side view of smartphone 200 with housing 210 removed from the direction of the arrow in FIG. 16A. In the smartphone 200 , for example, electronic components that perform various controls of the smartphone 200 are mounted on the first ground substrate 11 . A second ground substrate 13 is provided on the back surface of the display 213 . That is, it can be said that the internal configuration of the smartphone 200 is obtained by replacing the third ground substrate 14 of the antenna device 1 with the display 213 . The display of the smart phone includes electrodes for touch sensors and the like, but the equivalent conductivity of the display 213 is approximately the same as that of the third ground substrate 14 .
 スマートフォン200にアンテナ装置1が実装されることで、周波数の低い領域から高い領域まで高い放射効率を実現することができ、スマートフォン200の通信性能を向上させることができる。 By mounting the antenna device 1 on the smartphone 200, high radiation efficiency can be achieved from a low frequency range to a high frequency range, and the communication performance of the smart phone 200 can be improved.
 <変形例>
 以上説明した実施形態では、第1グランド基板11は長方形に形成されたが、第1グランド基板11の形状が長方形に限定されるわけではない。図17は、第1グランド基板11の形状のバリエーションを例示する第1の図である。図17には、三角形に形成された第1グランド基板11aが例示される。第1グランド基板11aは、三角形の一辺である辺112をアンテナ15と平行にして配置される。また、図17では、参考のため、接点P2の位置の一例も例示している。そして、このような第1グランド基板11aが採用された場合においても、辺112から当該辺112に対向する頂点113までの長さD1aがλ/2であり、D2の長さがλ/2であることが、アンテナ装置1の放射効率を高める上では好ましい。
<Modification>
In the embodiment described above, the first ground substrate 11 is formed in a rectangular shape, but the shape of the first ground substrate 11 is not limited to a rectangle. FIG. 17 is a first diagram illustrating variations in the shape of the first ground substrate 11. FIG. FIG. 17 illustrates a triangular first ground substrate 11a. The first ground substrate 11 a is arranged with the side 112 , which is one side of the triangle, parallel to the antenna 15 . For reference, FIG. 17 also illustrates an example of the position of the contact point P2. Even when such a first ground substrate 11a is employed, the length D1a from the side 112 to the vertex 113 facing the side 112 is λ 1 /2, and the length D2 is λ 2 / 2 is preferable for increasing the radiation efficiency of the antenna device 1 .
 図18は、第1グランド基板11の形状のバリエーションを例示する第2の図である。図18には、2つの長方形を組み合わせた形状に形成された第1グランド基板11bが例示される。第1グランド基板11bは、一辺である辺114をアンテナ15と平行にして配置される。また、図18では、参考のため、接点P2の位置の一例も例示している。そして、このような第1グランド基板11bが採用された場合においても、辺114から第1グランド基板11bにおいて第1グランド基板114から最も離れた箇所までの長さD1bがλ/2であり、D2の長さがλ/2であることが、アンテナ装置1の放射効率を高める上では好ましい。 18A and 18B are second diagrams illustrating variations in the shape of the first ground substrate 11. FIG. FIG. 18 illustrates the first ground substrate 11b formed in a shape combining two rectangles. The first ground substrate 11 b is arranged with a side 114 , which is one side, parallel to the antenna 15 . For reference, FIG. 18 also illustrates an example of the position of the contact point P2. Even when such a first ground substrate 11b is employed, the length D1b from the side 114 to the farthest point from the first ground substrate 114 on the first ground substrate 11b is λ 1 /2, It is preferable that the length of D2 is λ 2 /2 in order to improve the radiation efficiency of the antenna device 1 .
 以上説明した実施形態では、第1グランド基板11と第2グランド基板13とが平面視において重畳して配置された。しかしながら、第1グランド基板11と第2グランド基板13とは平面視において重畳していなくともよい。図19は、第1グランド基板11と第2グランド基板13とが平面視において重畳していない構成を例示する図である。また、図19では、参考のため、接点P2の位置の一例も例示している。第1グランド基板11及び第2グランド基板13がこのように配置された場合においても、端面111と第1グランド基板11のうち端面111から最も離れた箇所までの長さD1がλ/2であり、端面111から第2グランド基板13のうち端面111から最も離れた箇所までの長さD2がλ/2であることが、アンテナ装置1の放射効率を高める上では好ましい。 In the embodiment described above, the first ground substrate 11 and the second ground substrate 13 are arranged to overlap each other in plan view. However, the first ground substrate 11 and the second ground substrate 13 do not have to overlap in plan view. FIG. 19 is a diagram illustrating a configuration in which the first ground substrate 11 and the second ground substrate 13 do not overlap in plan view. For reference, FIG. 19 also illustrates an example of the position of the contact point P2. Even when the first ground substrate 11 and the second ground substrate 13 are arranged in this way, the length D1 between the end surface 111 and the farthest point between the end surface 111 and the first ground substrate 11 is λ 1 /2. In order to increase the radiation efficiency of the antenna device 1, it is preferable that the length D2 from the end face 111 to the farthest point of the second ground substrate 13 from the end face 111 is λ 2 /2.
 以上説明した実施形態では、給電点12はアンテナ15の端部に設けられたが、給電点12はアンテナ15の端部以外に設けられてもよい。図20は、アンテナ15の中央に給電点12を接続した構成を例示する図である。図20に例示するように、給電点12はアンテナ15の中央に接続されてもよい。 In the embodiment described above, the feeding point 12 was provided at the end of the antenna 15, but the feeding point 12 may be provided at a position other than the end of the antenna 15. FIG. 20 is a diagram illustrating a configuration in which the feeding point 12 is connected to the center of the antenna 15. As shown in FIG. The feed point 12 may be connected to the center of the antenna 15, as illustrated in FIG.
 以上説明した実施形態では、アンテナ装置1が備えるアンテナはモノポールアンテナであった。しかしながら、アンテナ装置1が備えるアンテナがモノポールアンテナに限定されるわけではない。アンテナ装置1が備えるアンテナは、逆Fアンテナまたはループアンテナであってもよい。 In the embodiment described above, the antenna provided in the antenna device 1 was a monopole antenna. However, the antenna provided in the antenna device 1 is not limited to the monopole antenna. The antenna provided in the antenna device 1 may be an inverted F antenna or a loop antenna.
 以上で開示した実施形態や変形例は夫々組み合わせることができる。 The embodiments and modifications disclosed above can be combined.
 1・・アンテナ装置
 11・・第1グランド基板
 11a・・第1グランド基板
 11b・・第1グランド基板
 12・・給電点
 13・・第2グランド基板
 14・・第3グランド基板
 15・・アンテナ
 16・・トラップ回路
 161・・インダクタ
 162・・コンデンサ
 111・・端面
 112・・辺
 113・・頂点
 200・・スマートフォン
 210・・筐体
 211・・スピーカー
 212・・マイクロフォン
 213・・ディスプレイ
 500・・アンテナ装置
 P2・・接点
 P3・・接点
 P4・・接点
 P5・・接点
Reference Signs List 1 Antenna device 11 First ground substrate 11a First ground substrate 11b First ground substrate 12 Feeding point 13 Second ground substrate 14 Third ground substrate 15 Antenna 16 Trap circuit 161 Inductor 162 Capacitor 111 End face 112 Side 113 Vertex 200 Smartphone 210 Case 211 Speaker 212 Microphone 213 Display 500 Antenna device P2...contact P3...contact P4...contact P5...contact

Claims (11)

  1.  第1周波数及び前記第1周波数より高い第2周波数で動作するアンテナと、
     前記アンテナに給電する給電点を有し、板状に形成される第1の導体板と、
     板状に形成される第2の導体板と、
     前記第1の導体板と前記第2の導体板とを電気的に接続する接続部と、
     前記第1の導体板と前記第2の導体板との間に設けられた回路素子と、を備え、
     前記第1の導体板のうち前記アンテナに最も近い近傍箇所から前記第1の導体板のうち前記アンテナから最も離れた第1の離間箇所までの第1の距離が、前記近傍箇所から前記第2の導体板のうち前記アンテナから最も離れた第2の離間箇所までの第2の距離よりも短く設定され、
     前記回路素子は、
     前記第1周波数においては前記第1の導体板と前記第2の導体板とを電気的に接続し、
     前記第2周波数においては、前記第1の導体板と前記第2の導体板とを電気的に切り離す、
     アンテナ装置。
    an antenna operating at a first frequency and a second frequency higher than the first frequency;
    a first conductor plate having a feeding point for feeding power to the antenna and formed in a plate shape;
    a second conductor plate formed in a plate shape;
    a connection portion that electrically connects the first conductor plate and the second conductor plate;
    A circuit element provided between the first conductor plate and the second conductor plate,
    A first distance from a nearby portion of the first conductor plate closest to the antenna to a first spaced portion of the first conductor plate furthest from the antenna is a distance from the vicinity portion to the second distance. is set shorter than a second distance to a second distance farthest from the antenna among the conductor plates of
    The circuit element is
    electrically connecting the first conductor plate and the second conductor plate at the first frequency;
    At the second frequency, the first conductor plate and the second conductor plate are electrically separated;
    antenna device.
  2.  前記第1の距離は、前記第1周波数の電波の実効波長の凡そ1/2であり、
     前記第2の距離は、前記第2周波数の電波の実効波長の凡そ1/2である、
     請求項1に記載のアンテナ装置。
    the first distance is approximately 1/2 of the effective wavelength of the radio wave of the first frequency;
    The second distance is approximately 1/2 of the effective wavelength of the radio wave of the second frequency,
    The antenna device according to claim 1.
  3.  前記第2の導体板の面上に重畳して第3の導体板が設けられ、
     前記第3の導体板の導電率は、前記第2の導体板の導電率よりも低い、
     請求項1または2に記載のアンテナ装置。
    A third conductor plate is provided superimposed on the surface of the second conductor plate,
    The conductivity of the third conductor plate is lower than the conductivity of the second conductor plate,
    The antenna device according to claim 1 or 2.
  4.  前記第1の導体板の前記アンテナ側の端部は、平面視において前記アンテナと平行な直線を形成し、
     前記給電点は前記直線の端部に設けられる、
     請求項1から3のいずれか一項に記載のアンテナ装置。
    the antenna-side end of the first conductor plate forms a straight line parallel to the antenna in plan view,
    The feed point is provided at the end of the straight line,
    The antenna device according to any one of claims 1 to 3.
  5.  前記接続部は、前記第1の導体板の縁部に設けられる、
     請求項1から4のいずれか一項に記載のアンテナ装置。
    The connecting portion is provided at the edge of the first conductor plate,
    The antenna device according to any one of claims 1 to 4.
  6.  前記接続部は、前記給電点からの距離が前記第1周波数の実効波長の1/8以下の範囲内に設けられる、
     請求項1から5のいずれか一項に記載のアンテナ装置。
    The connecting portion is provided within a range of 1/8 or less of the effective wavelength of the first frequency from the feeding point.
    The antenna device according to any one of claims 1 to 5.
  7.  前記回路素子は、インダクタとコンデンサとを含むトラップ回路である、
     請求項1から6のいずれか一項に記載のアンテナ装置。
    wherein the circuit element is a trap circuit including an inductor and a capacitor;
    The antenna device according to any one of claims 1 to 6.
  8.  前記回路素子は、高周波スイッチである、
     請求項1から6のいずれか一項に記載のアンテナ装置。
    The circuit element is a high frequency switch,
    The antenna device according to any one of claims 1 to 6.
  9.  前記アンテナは、モノポールアンテナ、逆Fアンテナ及びループアンテナのうちのいずれかである、
     請求項1から8のいずれか一項に記載のアンテナ装置。
    wherein the antenna is one of a monopole antenna, an inverted F antenna and a loop antenna;
    The antenna device according to any one of claims 1 to 8.
  10.  請求項1から9のいずれか一項に記載のアンテナ装置を備える、
     無線端末。
    An antenna device according to any one of claims 1 to 9,
    wireless terminal.
  11.  請求項3に記載のアンテナ装置を備え、
     前記第3の導体板がディスプレイパネルを含む、
     無線端末。
    The antenna device according to claim 3,
    wherein the third conductive plate comprises a display panel;
    wireless terminal.
PCT/JP2021/021560 2021-06-07 2021-06-07 Antenna device and wireless terminal WO2022259308A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/021560 WO2022259308A1 (en) 2021-06-07 2021-06-07 Antenna device and wireless terminal
JP2023527152A JPWO2022259308A1 (en) 2021-06-07 2021-06-07

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/021560 WO2022259308A1 (en) 2021-06-07 2021-06-07 Antenna device and wireless terminal

Publications (1)

Publication Number Publication Date
WO2022259308A1 true WO2022259308A1 (en) 2022-12-15

Family

ID=84425011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021560 WO2022259308A1 (en) 2021-06-07 2021-06-07 Antenna device and wireless terminal

Country Status (2)

Country Link
JP (1) JPWO2022259308A1 (en)
WO (1) WO2022259308A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000332530A (en) * 1999-05-11 2000-11-30 Nokia Mobile Phones Ltd Antenna
WO2006092979A1 (en) * 2005-03-04 2006-09-08 Matsushita Electric Industrial Co., Ltd. Portable wireless device
JP2008523655A (en) * 2004-12-06 2008-07-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Apparatus having an antenna for exchanging radio frequency signals

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000332530A (en) * 1999-05-11 2000-11-30 Nokia Mobile Phones Ltd Antenna
JP2008523655A (en) * 2004-12-06 2008-07-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Apparatus having an antenna for exchanging radio frequency signals
WO2006092979A1 (en) * 2005-03-04 2006-09-08 Matsushita Electric Industrial Co., Ltd. Portable wireless device

Also Published As

Publication number Publication date
JPWO2022259308A1 (en) 2022-12-15

Similar Documents

Publication Publication Date Title
JP5321290B2 (en) Antenna structure
TWI425713B (en) Three-band antenna device with resonance generation
JP4297164B2 (en) Antenna structure and wireless communication device including the same
JP2001522558A (en) Antenna for wireless communication device
JP2011120071A (en) Portable radio device
JP2007221288A (en) Antenna system and wireless communication apparatus
WO2015042092A1 (en) Techniques of tuning an antenna by weak coupling of a variable impedance component
CN111916889B (en) Antenna structure and wireless communication device with same
TW201644095A (en) Antenna structure and wireless communication device using the same
JPWO2005069439A1 (en) Multiband antenna and portable communication device
US11349199B2 (en) Antenna structure and wireless communication device using same
US11923599B2 (en) Antenna structure and wireless communication device using same
KR20020011141A (en) Integrable dual-band antenna
US11342669B2 (en) Antenna structure and wireless communication device using same
US11342653B2 (en) Antenna structure and wireless communication device using same
CN112825386A (en) Antenna structure and wireless communication device with same
US20210210837A1 (en) Antenna structure and wireless communication device using same
JP4645603B2 (en) Antenna structure and wireless communication apparatus including the same
TWI743971B (en) Antenna structure and electronic device with same
TWI724754B (en) Antenna structure and wireless communication device with same
WO2009090995A1 (en) Antenna
JP2019106690A (en) Wireless communication device
WO2022259308A1 (en) Antenna device and wireless terminal
JP2006340202A (en) Antenna system and wireless communication device comprising the same
TWI724738B (en) Antenna structure and wireless communication device with same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21944989

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023527152

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE