WO2022257282A1 - 一种利用氨燃烧降低燃煤机组二氧化碳排放的系统及方法 - Google Patents

一种利用氨燃烧降低燃煤机组二氧化碳排放的系统及方法 Download PDF

Info

Publication number
WO2022257282A1
WO2022257282A1 PCT/CN2021/115646 CN2021115646W WO2022257282A1 WO 2022257282 A1 WO2022257282 A1 WO 2022257282A1 CN 2021115646 W CN2021115646 W CN 2021115646W WO 2022257282 A1 WO2022257282 A1 WO 2022257282A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonia
coal
carbon dioxide
fired
dioxide emissions
Prior art date
Application number
PCT/CN2021/115646
Other languages
English (en)
French (fr)
Inventor
王志超
张喜来
姚伟
郑金
张向宇
周科
李宇航
黄钢英
李明皓
白永岗
鲁晓宇
司小飞
马百灵
Original Assignee
西安热工研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安热工研究院有限公司 filed Critical 西安热工研究院有限公司
Publication of WO2022257282A1 publication Critical patent/WO2022257282A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K5/00Feeding or distributing other fuel to combustion apparatus
    • F23K5/002Gaseous fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K3/00Feeding or distributing of lump or pulverulent fuel to combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/005Regulating fuel supply using electrical or electromechanical means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation

Definitions

  • the invention belongs to the technical field of coal-fired power generation, and in particular relates to a system and method for reducing carbon dioxide emissions of coal-fired units by using ammonia combustion.
  • the energy density is 18.8MJ/kg, comparable to that of fossil fuels (the calorific value of low-rank coal is about 16-20MJ/kg, the calorific value of natural gas is about 50MJ/kg, and the calorific value of H 2 is 141MJ/kg);
  • Table 2 compares the total cost per unit calorific value of liquid ammonia and liquefied natural gas (LNG) by calculating the fuel mass calorific value, production cost, transportation cost, and carbon emission reduction benefits. It can be seen from the table that when only the production cost is calculated, the total cost per unit calorific value of liquefied natural gas is about 83.6 yuan/GJ, and the total cost per unit calorific value of liquid ammonia is only 74.4 yuan/GJ. From the comparison of this group of data, we can see that, When excluding any transportation costs and carbon emission reduction benefits, the price of liquid ammonia as a fuel is the lowest.
  • the unit calorific value cost of 1,400 yuan/t of liquid ammonia is converted into the unit calorific value cost of gaseous natural gas at 2.67 yuan/m 3 , Much lower than 3 yuan/m 3 .
  • Liquid ammonia can also be transported using existing natural gas pipelines, and its transportation cost is comparable to that of LNG. With the inclusion of carbon emission reduction benefits, the price of liquid ammonia will further drop.
  • ammonia can be produced not only from coal, but also from abandoned electricity or valley electricity produced by some renewable energy sources, which can be used for power generation or heating when electricity is insufficient; by electrochemical methods to replace coal gasification and natural gas
  • the method of reforming to synthesize NH 3 can also realize the zero carbon emission of NH 3 in the whole life cycle.
  • the present invention proposes a system and method for reducing carbon dioxide emissions from coal-fired units by using ammonia combustion.
  • the ammonia gas is regulated by pressure and flow rate, and injected by a burner arranged in the secondary air. Combustion in the boiler, so as to achieve a certain proportion of pulverized coal replacement, thereby reducing the level of carbon dioxide emissions of coal-fired units.
  • the present invention adopts the following technical solutions to realize:
  • a system for reducing carbon dioxide emissions of coal-fired units by using ammonia combustion including a liquid ammonia storage station, the outlet of the liquid ammonia storage station is connected to the inlet of the gasification station, and the outlet of the gasification station is connected to the secondary air nozzle of the boiler through a valve group Ammonia burners.
  • valve group includes a flow regulating valve and a pressure regulating valve connected in sequence.
  • a further modification of the present invention is that the coal-fired unit includes a coal bunker, the outlet of the coal bin is connected to the inlet of the coal mill, and the outlet of the coal mill is connected to the burner of the boiler.
  • a further improvement of the present invention is that the liquid ammonia storage station is equipped with an interface for transporting liquid ammonia through pipelines or storage tanks.
  • the further improvement of the present invention is that the gasification station gasifies the liquid ammonia through heating, and the heat source is the low-pressure extraction steam of the unit boiler, steam or hot flue gas.
  • the further improvement of the present invention is that the ammonia burner is arranged in the secondary air nozzle of the boiler.
  • the further improvement of the present invention is to control and adjust the ammonia gas pressure and flow rate in real time according to the load of the coal-fired unit and the unit feed rate adjustment feedback, so that the ammonia gas feeding ratio is controlled within the range of 0-40%.
  • a method for reducing carbon dioxide emissions from coal-fired units by using ammonia combustion is based on the system for reducing carbon dioxide emissions from coal-fired units by using ammonia combustion, comprising:
  • the liquid ammonia stored in the liquid ammonia storage station is first gasified into ammonia gas through the gasification station, then the pressure is adjusted by the pressure regulating valve, and the flow is controlled by the flow regulating valve, and then sprayed into the boiler through the burner arranged in the secondary air nozzle of the boiler Furnace burning;
  • the ammonia flow rate is adjusted in real time according to the load of the coal-fired unit and the adjustment feedback of the unit powder supply.
  • the carbon dioxide emission of the unit can be effectively reduced by 0-35%.
  • the present invention replaces a certain proportion of power coal with ammonia, on the one hand, it can improve the flexibility of the load of the coal-fired unit without affecting the operating efficiency of the coal-fired unit, and on the other hand, it can significantly reduce the carbon dioxide of the coal-fired unit It is of great significance for coal-fired units to achieve carbon emission reduction under the background of carbon peak carbon neutrality.
  • Fig. 1 is a structural block diagram of a system for reducing carbon dioxide emissions of coal-fired units by using ammonia combustion in the present invention.
  • 1-liquid ammonia storage station 2-liquid ammonia gasification station, 3-pressure regulating valve, 4-flow regulating valve, 5-boiler, 6-coal bunker, 7-coal mill.
  • a system for reducing carbon dioxide emissions of coal-fired units by using ammonia combustion includes a liquid ammonia storage station 1, the outlet of the liquid ammonia storage station 1 is connected to the inlet of the gasification station 2, and the outlet of the gasification station 2 passes through a valve group Connect to the burner in the secondary air nozzle of the boiler.
  • the valve group includes a flow regulating valve 3 and a pressure regulating valve 4 connected in sequence.
  • the coal-fired unit includes a coal bunker 6, the outlet of the coal bunker 6 is connected to the inlet of a coal mill 7, and the outlet of the coal mill 7 is connected to the burner of the boiler.
  • the gasification station 2 gasifies the liquid ammonia through heating, and the heat source is the low-pressure extraction steam of the unit boiler, steam or hot flue gas. According to the load of the coal-fired unit and the adjustment feedback of the unit’s powder supply, the ammonia pressure and flow are controlled and adjusted in real time, so that the ammonia feeding ratio is controlled within the range of 0-40%.
  • a method for reducing carbon dioxide emissions of coal-fired units by using ammonia combustion includes:
  • a system that uses ammonia combustion to reduce carbon dioxide emissions from coal-fired units including a liquid ammonia storage station 1, a liquid ammonia gasification station 2, a pressure regulating valve 4, a flow control valve 3, and a coal-fired unit;
  • the coal-fired unit includes a coal bunker 6.
  • the outlet of the coal bunker 6 is connected to the inlet of the coal mill 7, and the outlet of the coal mill 7 is connected to the burner of the boiler;
  • liquid ammonia stored in the liquid ammonia storage station is first gasified into ammonia gas through the gasification station, then the pressure is adjusted by the pressure regulating valve, the flow is controlled by the flow regulating valve, and then the secondary air
  • the ammonia flow rate is adjusted in real time according to the load of the coal-fired unit and the feed rate of the unit to adjust the feedback.
  • the technical principle of the present invention is: determine the reasonable amount of ammonia gas combustion through the calorific value substitution ratio, and send the ammonia gas through the pipeline to the burner built in the secondary air nozzle of the boiler through liquid ammonia storage, gasification, pressure and flow adjustment. , Through the feedback of unit load and powder feed rate, the flow and pressure of ammonia gas can be adjusted in real time, and the replacement ratio of ammonia gas calorific value can be 0-40%, thereby reducing the amount of pulverized coal combustion and effectively reducing carbon dioxide emissions.
  • This embodiment takes a 300MW class coal-fired unit as an example, and the specific implementation steps are as follows:
  • the ammonia flow rate is adjusted in real time according to the load of the coal-fired unit and the feed rate of the unit to adjust the feedback.
  • the coal consumption of power generation is calculated according to 310g/kWh
  • the carbon dioxide emission factor of standard coal is 2.7716kg/kg
  • the utilization hours of coal-fired units are calculated according to 4500h.
  • the use of ammonia combustion can reduce carbon dioxide emissions by about 406,000 tons per year, and the environmental benefits are very significant. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Of Fluid Fuel (AREA)

Abstract

一种利用氨燃烧降低燃煤机组二氧化碳排放的系统及方法,该系统包括液氨储站(1),液氨储站(1)的出口连接至气化站(2)的进口,气化站(2)的出口通过阀组连接至锅炉二次风喷口内的氨用燃烧器。该方法通过将液氨气化为氨气、氨气经过压力和流量调节后,通过布置在二次风内的燃烧器喷入锅炉(5)内燃烧,从而实现一定比例的煤粉替代,从而降低燃煤机组的二氧化碳排放水平。

Description

一种利用氨燃烧降低燃煤机组二氧化碳排放的系统及方法 技术领域
本发明属于燃煤发电技术领域,具体涉及一种利用氨燃烧降低燃煤机组二氧化碳排放的系统及方法。
背景技术
对于燃煤机组而言,降低或减少二氧化碳的途径无外乎两种:一种是在锅炉尾部进行二氧化碳捕集,也称作CCUS,但该技术虽经过多年的发展,但捕集成本远超火电机组能够承受的范围,严重影响了该技术的应用;另一种是锅炉入口端燃用部分或者完全燃用无碳燃料,如生物质等,但生物质具有地域性、季节性,且成本较高,对稳定供给要求很高的燃煤机组而言并不适用。
无论是煤炭、还是天然气,其燃烧过程中均会产生大量的二氧化碳,国内外学者们提出了众多替代燃料,其中,氢气凭借其无碳排放和燃烧极限较宽等特性受到了人们的青睐。但是,相对于传统燃料,氢在运输时的单位体积能量极低,在-235℃下以液态储存时单位体积能量比汽油少4倍。此外,由于氢的点火能量低和火焰传播速度较高,导致其在储存、运输及运用时存在复杂的安全问题。而氨同样被视为有发展前景的清洁能源载体和存储介质。与氢类似,氨可以从化石燃料、生物质或其它可再生资源中获取。与氢相比,氨单位储存能量的成本较低、体积能量密度较高、也更加安全可靠。
表1 NH 3、H 2和CH 4理化特性
Figure PCTCN2021115646-appb-000001
Figure PCTCN2021115646-appb-000002
NH 3、H 2和CH 4等典型燃料的理化性质如表1所示。可见,H 2在常温下(25℃)液化需要70MPa,而NH 3在常温下液化仅需要1.03MPa,这就使得H 2压缩、储运的成本远高于NH 3;以单位携带的H 2质量计算,NH 3半年的储氢成本仅有0.54$/kg H 2,而H 2半年的储氢成本高达14.95$/kg H 2。总的来说,氨作为燃料的优势可以归纳为:
(1)属于无碳燃料,没有温室气体排放,并且可以通过可再生能源通过无碳的方法合成;
(2)能量密度为18.8MJ/kg,与化石燃料相当(低阶煤热值约16~20MJ/kg,天然气热值约50MJ/kg,H 2热值141MJ/kg);
(3)液化压力仅为1.03MPa,很容易液化;
(4)每年约有1.8亿吨NH 3被生产和运输,因此有成熟可靠的基础设施用于NH 3的储存和运输(包括管道、公路、铁路和船舶)。
通过计算燃料的质量热值、制取成本、运输成本以及碳减排收益,表2对比了液氨以及液化天然气(LNG)的单位热值总成本。从表中可知,在仅计算制取成本时,液化天然气单位热值总成本约为83.6元/GJ,液氨的单位热值总成本仅 为74.4元/GJ,从这一组数据对比可知,在不计算任何运输成本和碳减排收益时,液氨作为燃料的价格是最低的,1400元/t的液氨单位热值成本折算为气态天然气的单位热值成本为2.67元/m 3,远远低于3元/m 3。液氨还可以利用现有的天然气管道进行运输,其运输成本与LNG相当。随着碳减排收益的计入,液氨的使用价格会进一步下降。
表2液氨以及液化天然气(LNG)的成本计算
Figure PCTCN2021115646-appb-000003
注:(1)表中的液化天然气价格以工业气态天然气3元/m 3计算得到;
(2)碳减排收益:2019年7月欧盟的碳价为28欧元/吨。
此外,氨气不仅可以通过煤炭制取,还可以利用部分可再生能源产生的弃电或波谷电力制取,在电力不足时将其用于发电或者供热;通过电化学方法替代煤气化和天然气重整的方法来合成NH 3,还可以实现NH 3在全生命周期内的零碳排放。
发明内容
本发明提出的一种利用氨燃烧降低燃煤机组二氧化碳排放的系统及方法,通过将液氨气化为氨气、氨气经过压力和流量调节后,通过布置在二次风内的燃烧器喷入锅炉内燃烧,从而实现一定比例的煤粉替代,从而降低燃煤机组的二氧化碳排放水平。
为实现上述目标,本发明采用以下技术方案实现:
一种利用氨燃烧降低燃煤机组二氧化碳排放的系统,包括液氨储站,液氨储站的出口连接至气化站的进口,气化站的出口通过阀组连接至锅炉二次风喷口内的氨用燃烧器。
本发明进一步的改机在于,阀组包括依次连接的流量调节阀和调压阀。
本发明进一步的改机在于,燃煤机组包括煤仓,煤仓的出口连接至磨煤机的进口,磨煤机的出口连接至锅炉的燃烧器。
本发明进一步的改机在于,液氨储站具备连接通过管道输送或储罐输送液氨的接口。
本发明进一步的改机在于,气化站通过加热方式将液氨气化,热源为机组锅炉低压级抽汽、蒸汽或热烟气。
本发明进一步的改机在于,氨用燃烧器布置在锅炉二次风喷口内。
本发明进一步的改机在于,根据燃煤机组负荷、机组给粉量调节反馈,实时控制并调整氨气压力、流量,使得氨气送入比例控制在0~40%范围。
一种利用氨燃烧降低燃煤机组二氧化碳排放的方法,该方法基于所述的一种利用氨燃烧降低燃煤机组二氧化碳排放的系统,包括:
化验检测动力用煤、氨气发热量,按照氨的热值替代比例0~40%,确定氨的实际掺烧比例,确保氨气掺烧后对燃煤机组运行及效率无影响;
储存在液氨储站的液氨先经过气化站气化为氨气,随后经过调压阀调压、流量调节阀控制流量,然后通过布置在锅炉二次风喷口内的燃烧器喷入锅炉炉膛燃烧;
基于确定的氨实际掺烧比例,根据燃煤机组负荷、机组给粉量调节反馈,实时调整氨气流量。
本发明提出的一种利用氨燃烧降低燃煤机组二氧化碳排放的系统及方法,具有以下有益的技术效果:
1、按照氨的热值替代比例0~40%,确定氨的实际掺烧比例,可以确保氨气掺烧后对燃煤机组运行及效率基本无影响;
2、通过替代0~40%比例的煤粉,可以使机组二氧化碳排放量有效降低0~35%。
综上所述,本发明通过使用氨气替代一定比例的动力用煤,一方面可以提高燃煤机组负荷相应的灵活性、不影响燃煤机组运行效率,另一方面可以显著降低燃煤机组二氧化碳的排放水平,对于燃煤机组在碳达峰碳中和背景下实现碳减排意义重大。
附图说明
图1为本发明一种利用氨燃烧降低燃煤机组二氧化碳排放系统的结构框图。
附图标记说明:
1-液氨储站,2-液氨气化站,3-调压阀,4-流量调节阀,5-锅炉,6-煤仓,7-磨煤机。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里 阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
本发明提供的一种利用氨燃烧降低燃煤机组二氧化碳排放的系统,包括液氨储站1,液氨储站1的出口连接至气化站2的进口,气化站2的出口通过阀组连接至锅炉二次风喷口内的燃烧器。其中,阀组包括依次连接的流量调节阀3和调压阀4。燃煤机组包括煤仓6,煤仓6的出口连接至磨煤机7的进口,磨煤机7的出口连接至锅炉的燃烧器。气化站2通过加热方式将液氨气化,热源为机组锅炉低压级抽汽、蒸汽或热烟气。根据燃煤机组负荷、机组给粉量调节反馈,实时控制并调整氨气压力、流量,使得氨气送入比例控制在0~40%范围。
本发明提供的一种利用氨燃烧降低燃煤机组二氧化碳排放的方法,包括:
(1)化验检测动力用煤、氨气发热量,按照氨的热值替代比例0~40%,确定氨的实际掺烧比例,确保氨气掺烧后对燃煤机组运行及效率基本无影响;
(2)一种利用氨燃烧降低燃煤机组二氧化碳排放系统,包括液氨储站1、液氨气化站2、调压阀4、流量调节阀3、燃煤机组;燃煤机组包括煤仓6,煤仓6的出口连接至磨煤机7的进口,磨煤机7的出口连接至锅炉的燃烧器;
(3)基于(2),储存在液氨储站的液氨先经过气化站气化为氨气,随后经过调压阀调压、流量调节阀控制流量,然后通过布置在锅炉二次风喷口内的燃烧器喷入锅炉炉膛燃烧;
(4)基于(1)确定的氨实际掺烧比例,根据燃煤机组负荷、机组给粉量调节反馈,实时调整氨气流量。
本发明的技术原理为:通过热值替代比例确定合理的氨气燃烧量,通过液氨储存、气化、压力和流量调节,将氨气通过管道送入锅炉二次风喷口内置的燃烧器燃烧,通过机组负荷、给粉量等反馈,实时调节氨气的流量和压力,实现氨气热值替代比例0~40%,从而减少煤粉燃用量、有效降低二氧化碳排放。
实施例
本实施例以一台300MW等级燃煤机组为例,具体的实施步骤如下:
(1)化验检测动力用煤、氨气发热量,燃煤发热量18.0MJ/kg、氨气发热量14.3MJ/m 3,根据该机组实际燃用情况,确定氨的实际掺烧比例为热值替代比例35%;
(2)在燃煤机组上增加利用氨燃烧降低燃煤机组二氧化碳排放系统,包括液氨储站、液氨气化站、氨气调压阀、氨气流量调节阀等;
(3)根据天然气压力反馈调节氨气压力,确保氨气能够送入天然气管道并充分混合;
(4)基于(1)确定的氨实际掺烧比例,根据燃煤机组负荷、机组给粉量调节反馈,实时调整氨气流量。
发电煤耗量按照310g/kWh、标煤的二氧化碳排放因子2.7716kg/kg、燃煤机组发电利用小时数按4500h进行测算,则采用氨燃烧每年可以降低二氧化碳排放量约40.6万吨,环境效益十分显著。
虽然,上文中已经用一般性说明及具体实施方案对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (8)

  1. 一种利用氨燃烧降低燃煤机组二氧化碳排放的系统,其特征在于,包括液氨储站(1),液氨储站(1)的出口连接至气化站(2)的进口,气化站(2)的出口通过阀组连接至锅炉二次风喷口内的氨用燃烧器。
  2. 根据权利要求1所述的一种利用氨燃烧降低燃煤机组二氧化碳排放的系统,其特征在于,阀组包括依次连接的流量调节阀(3)和调压阀(4)。
  3. 根据权利要求1所述的一种利用氨燃烧降低燃煤机组二氧化碳排放的系统,其特征在于,燃煤机组包括煤仓(6),煤仓(6)的出口连接至磨煤机(7)的进口,磨煤机(7)的出口连接至锅炉的燃烧器。
  4. 根据权利要求1所述的一种利用氨燃烧降低燃煤机组二氧化碳排放的系统,其特征在于,液氨储站(1)具备连接通过管道输送或储罐输送液氨的接口。
  5. 根据权利要求1所述的一种利用氨燃烧降低燃煤机组二氧化碳排放的系统,其特征在于,气化站(2)通过加热方式将液氨气化,热源为机组锅炉低压级抽汽、蒸汽或热烟气。
  6. 根据权利要求1所述的一种利用氨燃烧降低燃煤机组二氧化碳排放的系统,其特征在于,氨用燃烧器布置在锅炉二次风喷口内。
  7. 根据权利要求1所述的一种利用氨燃烧降低燃煤机组二氧化碳排放的系统,其特征在于,根据燃煤机组负荷、机组给粉量调节反馈,实时控制并调整氨气压力、流量,使得氨气送入比例控制在0~40%范围。
  8. 一种利用氨燃烧降低燃煤机组二氧化碳排放的方法,其特征在于,该方法基于权利要求1至7中任一项所述的一种利用氨燃烧降低燃煤机组二氧化碳排放的系统,包括:
    化验检测动力用煤、氨气发热量,按照氨的热值替代比例0~40%,确定氨的 实际掺烧比例,确保氨气掺烧后对燃煤机组运行及效率无影响;
    储存在液氨储站(1)的液氨先经过气化站(2)气化为氨气,随后经过调压阀(4)调压、流量调节阀(3)控制流量,然后通过布置在锅炉二次风喷口内的燃烧器喷入锅炉炉膛燃烧;
    基于确定的氨实际掺烧比例,根据燃煤机组负荷、机组给粉量调节反馈,实时调整氨气流量。
PCT/CN2021/115646 2021-06-11 2021-08-31 一种利用氨燃烧降低燃煤机组二氧化碳排放的系统及方法 WO2022257282A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110655164.8A CN113217937A (zh) 2021-06-11 2021-06-11 一种利用氨燃烧降低燃煤机组二氧化碳排放的系统及方法
CN202110655164.8 2021-06-11

Publications (1)

Publication Number Publication Date
WO2022257282A1 true WO2022257282A1 (zh) 2022-12-15

Family

ID=77081472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/115646 WO2022257282A1 (zh) 2021-06-11 2021-08-31 一种利用氨燃烧降低燃煤机组二氧化碳排放的系统及方法

Country Status (2)

Country Link
CN (1) CN113217937A (zh)
WO (1) WO2022257282A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116792777A (zh) * 2023-05-22 2023-09-22 氨邦科技有限公司 一种锅炉掺氨燃烧顺序控制系统
CN117951418A (zh) * 2024-01-31 2024-04-30 北京尚清碧源科技有限责任公司 配煤掺烧入炉煤发热量计算方法、装置、设备及存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113217937A (zh) * 2021-06-11 2021-08-06 西安热工研究院有限公司 一种利用氨燃烧降低燃煤机组二氧化碳排放的系统及方法
CN113915607A (zh) * 2021-11-23 2022-01-11 北京丰润铭科贸有限责任公司 一种煤炭混氢充分燃烧的燃煤锅炉
CN114471106A (zh) * 2022-02-24 2022-05-13 西安西热锅炉环保工程有限公司 一种氨煤混合燃烧系统及方法
CN115015464B (zh) * 2022-05-30 2023-10-27 天津大学 用于混氨燃料燃烧特性及燃烧方式的测试装置和测试方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209511995U (zh) * 2018-08-29 2019-10-18 赫普科技发展(北京)有限公司 一种氨混配煤粉锅炉燃烧系统
US20210140634A1 (en) * 2018-09-11 2021-05-13 Ihi Corporation Combustion device and boiler
CN112879942A (zh) * 2021-03-31 2021-06-01 西安热工研究院有限公司 一种混氨燃料火力发电系统及方法
CN113154369A (zh) * 2021-05-27 2021-07-23 西安热工研究院有限公司 一种煤粉和氨混合燃料预热解燃烧系统和方法
CN113217937A (zh) * 2021-06-11 2021-08-06 西安热工研究院有限公司 一种利用氨燃烧降低燃煤机组二氧化碳排放的系统及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3217575B2 (ja) * 1994-02-15 2001-10-09 三菱重工業株式会社 燃焼方法
JP2000179836A (ja) * 1998-12-17 2000-06-27 Rb Controls Co 燃焼制御装置
CN109876658B (zh) * 2019-04-08 2023-07-07 国电环境保护研究院有限公司 分区涡流卷吸喷氨系统及喷氨调节方法
CN210544373U (zh) * 2019-04-08 2020-05-19 国电环境保护研究院有限公司 分区涡流卷吸喷氨系统
CN212005648U (zh) * 2020-04-14 2020-11-24 安徽工业大学 一种带有喷氨燃烧器的超临界二氧化碳燃煤锅炉

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209511995U (zh) * 2018-08-29 2019-10-18 赫普科技发展(北京)有限公司 一种氨混配煤粉锅炉燃烧系统
US20210140634A1 (en) * 2018-09-11 2021-05-13 Ihi Corporation Combustion device and boiler
CN112879942A (zh) * 2021-03-31 2021-06-01 西安热工研究院有限公司 一种混氨燃料火力发电系统及方法
CN113154369A (zh) * 2021-05-27 2021-07-23 西安热工研究院有限公司 一种煤粉和氨混合燃料预热解燃烧系统和方法
CN113217937A (zh) * 2021-06-11 2021-08-06 西安热工研究院有限公司 一种利用氨燃烧降低燃煤机组二氧化碳排放的系统及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116792777A (zh) * 2023-05-22 2023-09-22 氨邦科技有限公司 一种锅炉掺氨燃烧顺序控制系统
CN117951418A (zh) * 2024-01-31 2024-04-30 北京尚清碧源科技有限责任公司 配煤掺烧入炉煤发热量计算方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN113217937A (zh) 2021-08-06

Similar Documents

Publication Publication Date Title
WO2022257282A1 (zh) 一种利用氨燃烧降低燃煤机组二氧化碳排放的系统及方法
Chen et al. Oxy-fuel combustion of pulverized coal: Characterization, fundamentals, stabilization and CFD modeling
Dasappa et al. Biomass gasification technology–a route to meet energy needs
CA2755429C (en) High-temperature gasification process using biomass to produce synthetic gas and system therefor
CA2793930C (en) Process and system for producing synthesis gas from biomass by carbonization
CN1551946A (zh) 用于获得最大功率输出的燃气轮机燃料进口温度控制方法
CN101657525A (zh) 由煤制备天然气代用品的系统和方法
CN101235327A (zh) 类天然气联合循环
CN217763522U (zh) 一种耦合绿氢制氨的天然气掺氨燃烧系统
CN111623232A (zh) 一种bog和lng冷能综合回收利用系统及工艺
Ghiami et al. Techno-economic and environmental assessment of staged oxy-co-firing of biomass-derived syngas and natural gas
CN109679695B (zh) 一种生物质气化多联产炭热电装置及工艺
CN113154369A (zh) 一种煤粉和氨混合燃料预热解燃烧系统和方法
CN113339165A (zh) 一种利用氨燃烧降低燃气发电机组二氧化碳排放的系统及方法
CN114471401B (zh) 基于化学回热氨源部分裂解的布雷顿循环系统及循环方法
Su et al. Novel ammonia-driven chemically recuperated gas turbine cycle based on dual fuel mode
CN101865457B (zh) 循环流化床锅炉
Yueming et al. Development status of advanced thermal power technology and low-carbon path of China's thermal power industry
Hashimoto et al. Development of coal gasification system for producing chemical synthesis source gas
Tan et al. Numerical investigation of biomass and liquefied natural gas driven oxy-fuel combustion power system
CN108048138B (zh) 基于中低温双流化床的生物质分级转化与燃煤锅炉耦合发电方法及其系统
CN203513601U (zh) 生物质气化热解反应器
CN214891137U (zh) 一种煤粉和氨混合燃料预热解燃烧系统
US20090188449A1 (en) Method to enhance and improve solid carbonaceous fuel combustion systems using a hydrogen-rich gas
CN109084303A (zh) 石灰窑气固双燃料混烧方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21944784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21944784

Country of ref document: EP

Kind code of ref document: A1