WO2022257118A1 - Multiple transport block scheduling with downlink control information and hybrid automatic repeat request ack/nack - Google Patents

Multiple transport block scheduling with downlink control information and hybrid automatic repeat request ack/nack Download PDF

Info

Publication number
WO2022257118A1
WO2022257118A1 PCT/CN2021/099752 CN2021099752W WO2022257118A1 WO 2022257118 A1 WO2022257118 A1 WO 2022257118A1 CN 2021099752 W CN2021099752 W CN 2021099752W WO 2022257118 A1 WO2022257118 A1 WO 2022257118A1
Authority
WO
WIPO (PCT)
Prior art keywords
assignments
tbs
padding
scheduling grant
acknowledgment
Prior art date
Application number
PCT/CN2021/099752
Other languages
French (fr)
Inventor
Fang Yuan
Yan Zhou
Tao Luo
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2021/099752 priority Critical patent/WO2022257118A1/en
Publication of WO2022257118A1 publication Critical patent/WO2022257118A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements

Definitions

  • the technology discussed below relates generally to wireless communication systems, and more particularly, to resource management with a downlink control information (DCI) message and hybrid automatic repeat request (HARQ) feedback.
  • DCI downlink control information
  • HARQ hybrid automatic repeat request
  • DCI downlink control information
  • HARQ hybrid automatic repeat request
  • the disclosure generally relates to an efficient single downlink control information (DCI) message for multiple transport blocks (TBs) and its hybrid automatic repeat request (HARQ) feedback.
  • a scheduling entity may transmit a single DCI message including real assignments assigning wireless resources for TBs and padding assignments without assigning wireless resources.
  • the scheduling entity may save unnecessary resources by using the padding assignments.
  • a scheduled entity may receive the single DCI message and generate HARQ feedback for the padding assignments even without assigned resources.
  • a scheduling entity may transmit a scheduling grant to a scheduled entity.
  • the scheduling grant may include one or more real assignments configured to assign wireless resources for one or more corresponding TBs over one or more slots.
  • the one or more TBs may be less than a configured maximum number of assignments for a plurality of corresponding TBs per scheduling grant.
  • the scheduling entity may further communicate the one or more TBs with the scheduled entity.
  • the scheduling grant may further include one or more padding assignments without assigning wireless resources for one or more corresponding disabled TBs.
  • the scheduling entity may further receive a first sequence of acknowledgment indications for the scheduling grant.
  • the first sequence of acknowledgment indications may include one or more first acknowledgment indications for the one or more real assignments and one or more second acknowledgment indications for the one or more padding assignments.
  • the scheduling entity may further receive a second sequence of acknowledgment indications for the plurality of TBs.
  • the second sequence of acknowledgment indications may include one or more third acknowledgment indications of the one or more corresponding TBs of the plurality of TBs and one or more fourth acknowledgment indications of the one or more padding assignments for a set of the plurality of TBs.
  • a scheduled entity may receive a scheduling grant from a scheduling entity.
  • the scheduling grant may include one or more real assignments assigning wireless resources for one or more corresponding TBs over one or more slots.
  • the one or more TBs may be less than a configured maximum number of assignments for a plurality of corresponding TBs per scheduling grant.
  • the scheduled entity may communicate the one or more TBs with the scheduling entity.
  • the scheduling grant may further include one or more padding assignments for one or more corresponding disabled TBs.
  • the one or more padding assignments may not assign wireless resources.
  • the scheduled entity may further transmit a sequence of acknowledgment indications for the scheduling grant.
  • the sequence of acknowledgment indications may include one or more first acknowledgment indications for the one or more real assignments and one or more second acknowledgment indications for the one or more padding assignments.
  • the scheduled entity may further transmit a sequence of acknowledgment indications for the plurality of TBs.
  • the sequence of acknowledgment indications may include one or more first acknowledgment indications of the one or more corresponding TBs of the plurality of TBs and one or more second acknowledgment indications of the one or more padding assignments for a set of the plurality of TBs
  • FIG. 1 is a schematic illustration of a wireless communication system according to some embodiments.
  • FIG. 2 is a conceptual illustration of an example of a radio access network according to some embodiments.
  • FIG. 3 is a schematic illustration of an organization of wireless resources in an air interface utilizing orthogonal frequency divisional multiplexing (OFDM) according to some embodiments.
  • OFDM orthogonal frequency divisional multiplexing
  • FIG. 4 is a block diagram conceptually illustrating an example of a hardware implementation for a scheduling entity according to some embodiments.
  • FIG. 5 is a block diagram conceptually illustrating an example of a hardware implementation for a scheduled entity according to some embodiments.
  • FIG. 6 is a conceptual illustration of an example of a scheduling grant for multiple resource assignments for multiple transport blocks according to some embodiments.
  • FIG. 7 is a schematic illustration of an example of a scheduling grant for multiple resource assignments and their acknowledgment indications according to some embodiments.
  • FIG. 8 is a schematic illustration of an example of a scheduling grant for multiple resource assignments and their acknowledgment indications of transport blocks on assigned resources according to some embodiments.
  • FIG. 9 is a flow chart illustrating an exemplary process for multi-TB assignments with a single scheduling grant and their acknowledgment indications according to some embodiments.
  • FIG. 10 is a flow chart illustrating an exemplary process at a scheduled entity for multiple-TB assignments with a single scheduling grant and their acknowledgment indications according to some embodiments.
  • FIG. 11 is a flow chart illustrating an exemplary process at a scheduling entity for multiple-TB assignments with a single scheduling grant and their acknowledgment indications according to some embodiments.
  • embodiments and/or uses may come about via integrated chip (IC) embodiments and other non-module-component based devices (e.g., end-user devices, vehicles, communication devices, computing devices, industrial equipment, retail/purchasing devices, medical devices, artificial intelligence (AI) -enabled devices, etc. ) . While some examples may or may not be specifically directed to use cases or applications, a wide assortment of applicability of described innovations may occur.
  • IC integrated chip
  • AI artificial intelligence
  • Implementations may span over a spectrum from chip- level or modular components to non-modular, non-chip-level implementations and further to aggregate, distributed, or original equipment manufacturer (OEM) devices or systems incorporating one or more aspects of the disclosed technology.
  • devices incorporating described aspects and features may also necessarily include additional components and features for implementation and practice of claimed and described embodiments.
  • transmission and reception of wireless signals necessarily includes a number of components for analog and digital purposes (e.g., hardware components including antenna, radio frequency (RF) chains, power amplifiers, modulators, buffer, processor (s) , interleaver, adders/summers, etc. ) .
  • RF radio frequency
  • FIG. 1 shows various aspects of the present disclosure with reference to a wireless communication system 100.
  • the wireless communication system 100 includes several interacting domains: a core network 102, a radio access network (RAN) 104, and a user equipment (UE) 106.
  • RAN radio access network
  • UE user equipment
  • the UE 106 may be enabled to carry out data communication with an external data network 110, such as (but not limited to) the Internet.
  • an external data network 110 such as (but not limited to) the Internet.
  • the RAN 104 may implement any suitable wireless communication technology or technologies to provide radio access to the UE 106.
  • the RAN 104 may operate according to 3rd Generation Partnership Project (3GPP) New Radio (NR) specifications, often referred to as 5G or 5G NR.
  • 3GPP 3rd Generation Partnership Project
  • NR New Radio
  • the RAN 104 may operate under a hybrid of 5G NR and Evolved Universal Terrestrial Radio Access Network (eUTRAN) standards, often referred to as Long-Term Evolution (LTE) .
  • eUTRAN Evolved Universal Terrestrial Radio Access Network
  • LTE Long-Term Evolution
  • 3GPP refers to this hybrid RAN as a next-generation RAN, or NG-RAN.
  • NG-RAN next-generation RAN
  • many other examples may be utilized within the scope of the present disclosure.
  • the RAN 104 includes a plurality of base stations 108.
  • a base station is a network element in a radio access network responsible for radio transmission and reception in one or more cells to or from a UE.
  • a base station may variously refer to a “base station” as a base transceiver station (BTS) , a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , an access point (AP) , a Node B (NB) , an eNode B (eNB) , a gNode B (gNB) , or some other suitable terminology.
  • BTS base transceiver station
  • ESS extended service set
  • AP access point
  • NB Node B
  • eNB eNode B
  • gNB gNode B
  • the RAN 104 supports wireless communication for multiple mobile apparatuses.
  • a mobile apparatus as a UE, as in 3GPP specifications, but may also refer to a UE as a mobile station (MS) , a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal (AT) , a mobile terminal, a wireless terminal, a remote terminal, a handset, a terminal, a user agent, a mobile client, a client, or some other suitable terminology.
  • a UE may be an apparatus that provides access to network services.
  • a UE may take on many forms and can include a range of devices.
  • a “mobile” apparatus (aka a UE) need not necessarily have a capability to move, and may be stationary.
  • the term mobile apparatus or mobile device broadly refers to a diverse array of devices and technologies.
  • UEs may include a number of hardware structural components sized, shaped, and arranged to help in communication; such components can include antennas, antenna arrays, RF chains, amplifiers, one or more processors, etc. electrically coupled to each other.
  • a mobile apparatus examples include a mobile, a cellular (cell) phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal computer (PC) , a notebook, a netbook, a smartbook, a tablet, a personal digital assistant (PDA) , and a broad array of embedded systems, e.g., corresponding to an “Internet of things” (IoT) .
  • IoT Internet of things
  • a mobile apparatus may additionally be an automotive or other transportation vehicle, a remote sensor or actuator, a robot or robotics device, a satellite radio, a global positioning system (GPS) device, an object tracking device, a drone, a multi-copter, a quad-copter, a remote control device, a consumer and/or wearable device, such as eyewear, a wearable camera, a virtual reality device, a smart watch, a health or fitness tracker, a digital audio player (e.g., MP3 player) , a camera, a game console, etc.
  • GPS global positioning system
  • a mobile apparatus may additionally be a digital home or smart home device such as a home audio, video, and/or multimedia device, an appliance, a vending machine, intelligent lighting, a home security system, a smart meter, etc.
  • a mobile apparatus may additionally be a smart energy device, a security device, a solar panel or solar array, a municipal infrastructure device controlling electric power (e.g., a smart grid) , lighting, water, etc.; an industrial automation and enterprise device; a logistics controller; agricultural equipment; military defense equipment, vehicles, aircraft, ships, and weaponry, etc.
  • a mobile apparatus may provide for connected medicine or telemedicine support, e.g., health care at a distance.
  • Telehealth devices may include telehealth monitoring devices and telehealth administration devices, whose communication may be given preferential treatment or prioritized access over other types of information, e.g., in terms of prioritized access for transport of critical service data, and/or relevant QoS for transport of critical service data.
  • Wireless communication between a RAN 104 and a UE 106 may be described as utilizing an air interface.
  • Transmissions over the air interface from a base station (e.g., base station 108) to one or more UEs (e.g., UE 106) may be referred to as downlink (DL) transmission.
  • DL downlink
  • the term downlink may refer to a point-to-multipoint transmission originating at a scheduling entity (described further below; e.g., base station 108) .
  • Another way to describe this scheme may be to use the term broadcast channel multiplexing.
  • Uplink Transmissions from a UE (e.g., UE 106) to a base station (e.g., base station 108) may be referred to as uplink (UL) transmissions.
  • UL uplink
  • the term uplink may refer to a point-to-point transmission originating at a scheduled entity (described further below; e.g., UE 106) .
  • a scheduling entity e.g., a base station 108 allocates resources for communication among some or all devices and equipment within its service area or cell.
  • the scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for one or more scheduled entities. That is, for scheduled communication, UEs 106, which may be scheduled entities, may utilize resources allocated by the scheduling entity 108.
  • the scheduling entity may transmit a scheduling grant including multiple resource assignments assigning resources for multiple transport blocks (TBs) . Based on the scheduling grant, the scheduling entity may communicate the multiple TBs with the scheduled entity.
  • TBs transport blocks
  • Base stations 108 are not the only entities that may function as scheduling entities. That is, in some examples, a UE may function as a scheduling entity, scheduling resources for one or more scheduled entities (e.g., one or more other UEs) .
  • a scheduling entity 108 may broadcast downlink traffic 112 to one or more scheduled entities 106.
  • the scheduling entity 108 is a node or device responsible for scheduling traffic in a wireless communication network, including the downlink traffic 112 and, in some examples, uplink traffic 116 from one or more scheduled entities 106 to the scheduling entity 108.
  • the scheduled entity 106 is a node or device that receives downlink control information 114, including but not limited to scheduling information (e.g., a grant) , synchronization or timing information, or other control information from another entity in the wireless communication network such as the scheduling entity 108.
  • base stations 108 may include a backhaul interface for communication with a backhaul portion 120 of the wireless communication system.
  • the backhaul 120 may provide a link between a base station 108 and the core network 102.
  • a backhaul network may provide interconnection between the respective base stations 108.
  • Various types of backhaul interfaces may be employed, such as a direct physical connection, a virtual network, or the like using any suitable transport network.
  • the core network 102 may be a part of the wireless communication system 100, and may be independent of the radio access technology used in the RAN 104.
  • the core network 102 may be configured according to 5G standards (e.g., 5GC) .
  • the core network 102 may be configured according to a 4G evolved packet core (EPC) , or any other suitable standard or configuration.
  • 5G standards e.g., 5GC
  • EPC 4G evolved packet core
  • FIG. 2 provides a schematic illustration of a RAN 200, by way of example and without limitation.
  • the RAN 200 may be the same as the RAN 104 described above and illustrated in FIG. 1.
  • the geographic area covered by the RAN 200 may be divided into cellular regions (cells) that a user equipment (UE) can uniquely identify based on an identification broadcasted from one access point or base station.
  • FIG. 2 illustrates macrocells 202, 204, and 206, and a small cell 208, each of which may include one or more sectors (not shown) .
  • a sector is a sub-area of a cell. All sectors within one cell are served by the same base station.
  • a radio link within a sector can be identified by a single logical identification belonging to that sector.
  • the multiple sectors within a cell can be formed by groups of antennas with each antenna responsible for communication with UEs in a portion of the cell.
  • FIG. 2 shows two base stations 210 and 212 in cells 202 and 204; and shows a third base station 214 controlling a remote radio head (RRH) 216 in cell 206.
  • a base station can have an integrated antenna or can be connected to an antenna or RRH by feeder cables.
  • the cells 202, 204, and 206 may be referred to as macrocells, as the base stations 210, 212, and 214 support cells having a large size.
  • a base station 218 is shown in the small cell 208 (e.g., a microcell, picocell, femtocell, home base station, home Node B, home eNode B, etc. ) which may overlap with one or more macrocells.
  • the cell 208 may be referred to as a small cell, as the base station 218 supports a cell having a relatively small size. Cell sizing can be done according to system design as well as component constraints.
  • the RAN 200 may include any number of wireless base stations and cells. Further, a RAN may include a relay node to extend the size or coverage area of a given cell.
  • the base stations 210, 212, 214, 218 provide wireless access points to a core network for any number of mobile apparatuses. In some examples, the base stations 210, 212, 214, and/or 218 may be the same as the base station/scheduling entity 108 described above and illustrated in FIG. 1.
  • FIG. 2 further includes a quadcopter or drone 220, which may be configured to function as a base station. That is, in some examples, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile base station such as the quadcopter 220.
  • a quadcopter or drone 220 may be configured to function as a base station. That is, in some examples, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile base station such as the quadcopter 220.
  • the cells may include UEs that may be in communication with one or more sectors of each cell.
  • each base station 210, 212, 214, 218, and 220 may be configured to provide an access point to a core network 102 (see FIG. 1) for all the UEs in the respective cells.
  • UEs 222 and 224 may be in communication with base station 210; UEs 226 and 228 may be in communication with base station 212; UEs 230 and 232 may be in communication with base station 214 by way of RRH 216; UE 234 may be in communication with base station 218; and UE 236 may be in communication with mobile base station 220.
  • the UEs 222, 224, 226, 228, 230, 232, 234, 236, 238, 240, and/or 242 may be the same as the UE/scheduled entity 106 described above and illustrated in FIG. 1.
  • a mobile network node e.g., quadcopter 220
  • quadcopter 220 may be configured to function as a UE.
  • the quadcopter 220 may operate within cell 202 by communicating with base station 210.
  • sidelink signals may be used between UEs without necessarily relying on scheduling or control information from a base station.
  • two or more UEs e.g., UEs 226 and 228, may communicate with each other using peer to peer (P2P) or sidelink signals 227 without relaying that communication through a base station (e.g., base station 212) .
  • P2P peer to peer
  • UE 238 is illustrated communicating with UEs 240 and 242.
  • the UE 238 may function as a scheduling entity or a primary sidelink device
  • UEs 240 and 242 may function as a scheduled entity or a non-primary (e.g., secondary) sidelink device.
  • a UE may function as a scheduling entity in a device-to-device (D2D) , peer-to-peer (P2P) , or vehicle-to-vehicle (V2V) network, and/or in a mesh network.
  • D2D device-to-device
  • P2P peer-to-peer
  • V2V vehicle-to-vehicle
  • UEs 240 and 242 may optionally communicate directly with one another in addition to communicating with the scheduling entity 238.
  • a scheduling entity and one or more scheduled entities may communicate utilizing the scheduled resources.
  • the increased mobile communications between a scheduling entity and one or more scheduled entities may make a scheduling entity to manage more data transmissions and effectively manage resources.
  • a scheduling grant (e.g., a DCI message) may assign resources for multiple TB transmissions using multiple resource assignments in the scheduling grant and manages resources for multiple TB transmissions.
  • FIG. 3 schematically illustrates various aspects of the present disclosure with reference to an OFDM waveform.
  • Those of ordinary skill in the art should understand that the various aspects of the present disclosure may be applied to a DFT-s-OFDMA waveform in substantially the same way as described herein below. That is, while some examples of the present disclosure may focus on an OFDM link for clarity, it should be understood that the same principles may be applied as well to DFT-s-OFDMA waveforms.
  • a frame may refer to a predetermined duration of time (e.g., 10 ms) for wireless transmissions. And further, each frame may consist of a set of subframes (e.g., 10 subframes of 1 ms each) .
  • a given carrier may include one set of frames in the UL, and another set of frames in the DL.
  • FIG. 3 illustrates an expanded view of an exemplary DL subframe 302, showing an OFDM resource grid 304.
  • the PHY transmission structure for any particular application may vary from the example described here, depending on any number of factors.
  • time is in the horizontal direction with units of OFDM symbols; and frequency is in the vertical direction with units of subcarriers or tones.
  • the resource grid 304 may schematically represent time–frequency resources for a given antenna port. That is, in a MIMO implementation with multiple antenna ports available, a corresponding multiple number of resource grids 304 may be available for communication.
  • the resource grid 304 is divided into multiple resource elements (REs) 306.
  • An RE which is 1 subcarrier ⁇ 1 symbol, is the smallest discrete part of the time–frequency grid, and may contain a single complex value representing data from a physical channel or signal.
  • each RE may represent one or more bits of information.
  • a block of REs may be referred to as a physical resource block (PRB) or more simply a resource block (RB) 308, which contains any suitable number of consecutive subcarriers in the frequency domain.
  • an RB may include 12 subcarriers, a number independent of the numerology used.
  • an RB may include any suitable number of consecutive OFDM symbols in the time domain.
  • the present disclosure assumes, by way of example, that a single RB such as the RB 308 entirely corresponds to a single direction of communication (either transmission or reception for a given device) .
  • a UE generally utilizes only a subset of the resource grid 304.
  • An RB may be the smallest unit of resources that a scheduler can allocate to a UE.
  • the RB 308 occupies less than the entire bandwidth of the subframe 302, with some subcarriers illustrated above and below the RB 308.
  • the subframe 302 may have a bandwidth corresponding to any number of one or more RBs 308.
  • the RB 308 is shown occupying less than the entire duration of the subframe 302, although this is merely one possible example.
  • Each 1 ms subframe 302 may consist of one or multiple adjacent slots.
  • one subframe 302 includes four slots 310, as an illustrative example.
  • a slot may be defined according to a specified number of OFDM symbols with a given cyclic prefix (CP) length. For example, a slot may include 7 or 14 OFDM symbols with a normal CP. In some examples, a slot may include 12 OFDM symbols with an extended CP. Additional examples may include mini-slots having a shorter duration (e.g., one or two OFDM symbols) .
  • a base station may in some cases transmit these mini-slots occupying resources scheduled for ongoing slot transmissions for the same or for different UEs.
  • An expanded view of one of the slots 310 illustrates the slot 310 including a control region 312 and a data region 314.
  • the control region 312 may carry control channels (e.g., PDCCH)
  • the data region 314 may carry data channels (e.g., PDSCH or PUSCH) .
  • a slot may contain all DL, all UL, or at least one DL portion and at least one UL portion.
  • one slot may include one or two PDSCHs or PUSCHs.
  • the one or two PDSCHs or PUSCHs in a slot may correspond to one or two transport blocks (TBs) .
  • the simple structure illustrated in FIG. 3 is merely exemplary in nature, and different slot structures may be utilized, and may include one or more of each of the control region (s) and data region (s) .
  • the various REs 306 within an RB 308 may carry one or more physical channels, including control channels, shared channels, data channels, etc.
  • Other REs 306 within the RB 308 may also carry pilots or reference signals. These pilots or reference signals may provide for a receiving device to perform channel estimation of the corresponding channel, which may enable coherent demodulation/detection of the control and/or data channels within the RB 308.
  • the transmitting device may allocate one or more REs 306 (e.g., within a control region 312) to carry one or more DL control channels.
  • These DL control channels may include a DL control information 114 (DCI) message that generally carries information originating from higher layers, such as a physical broadcast channel (PBCH) , a physical downlink control channel (PDCCH) , etc., to one or more scheduled entities 106.
  • DCI DL control information 114
  • the transmitting device may allocate one or more DL REs to carry DL physical signals that generally do not carry information originating from higher layers.
  • These DL physical signals may include a primary synchronization signal (PSS) ; a secondary synchronization signal (SSS) ; demodulation reference signals (DM-RS) ; phase-tracking reference signals (PT-RS) ; channel-state information reference signals (CSI-RS) ; etc.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • DM-RS demodulation reference signals
  • PT-RS phase-tracking reference signals
  • CSI-RS channel-state information reference signals
  • a base station may transmit the synchronization signals PSS and SSS (collectively referred to as SS) , and in some examples, the PBCH, in an SS block that includes 4 consecutive OFDM symbols, numbered via a time index in increasing order from 0 to 3.
  • the SS block may extend over 240 contiguous subcarriers, with the subcarriers being numbered via a frequency index in increasing order from 0 to 239.
  • the present disclosure is not limited to this specific SS block configuration.
  • Nonlimiting examples may utilize greater or fewer than two synchronization signals; may include one or more supplemental channels in addition to the PBCH; may omit a PBCH; and/or may utilize nonconsecutive symbols for an SS block, within the scope of the present disclosure.
  • the PDCCH may carry a downlink control information (DCI) message for one or more UEs in a cell.
  • DCI downlink control information
  • This can include, but is not limited to, power control commands, scheduling information, a grant, and/or an assignment of REs for DL and UL transmissions.
  • a transmitting device may utilize one or more REs 306 to carry one or more UL control channels, such as a physical uplink control channel (PUCCH) , a physical random access channel (PRACH) , etc.
  • UL control channels include UL control information 118 (UCI) that generally carries information originating from higher layers.
  • UL REs may carry UL physical signals that generally do not carry information originating from higher layers, such as demodulation reference signals (DM-RS) , phase-tracking reference signals (PT-RS) , sounding reference signals (SRS) , etc.
  • DM-RS demodulation reference signals
  • PT-RS phase-tracking reference signals
  • SRS sounding reference signals
  • control information 118 may include a scheduling request (SR) , i.e., a request for the scheduling entity 108 to schedule uplink transmissions.
  • SR scheduling request
  • the scheduling entity 108 may transmit downlink control information 114 that may schedule resources for uplink packet transmissions.
  • UL control information may also include hybrid automatic repeat request (HARQ) feedback such as an acknowledgment (ACK) or negative acknowledgment (NACK) , channel state information (CSI) , or any other suitable UL control information.
  • HARQ is a technique well-known to those of ordinary skill in the art, wherein a receiving device can check the integrity of packet transmissions for accuracy, e.g., utilizing any suitable integrity checking mechanism, such as a checksum or a cyclic redundancy check (CRC) . If the receiving device confirms the integrity of the transmission, it may transmit an ACK, whereas if not confirmed, it may transmit a NACK.
  • HARQ hybrid automatic repeat request
  • ACK acknowledgment
  • NACK negative acknowledgment
  • CSI channel state information
  • HARQ is a technique well-known to those of ordinary skill in the art, wherein a receiving device can check the integrity of packet transmissions for accuracy, e.g., utilizing any suitable integrity checking mechanism, such as a checksum or a cyclic redund
  • the transmitting device may send a HARQ retransmission, which may implement chase combining, incremental redundancy, etc.
  • the scheduled entity may use HARQ ACK/NACK feedback for acknowledging a received DCI message, which includes multiple resource assignments and/or received TBs.
  • one or more REs 406 may be allocated for user data or traffic data.
  • traffic may be carried on one or more traffic channels, such as, for a DL transmission, a physical downlink shared channel (PDSCH) ; or for an UL transmission, a physical uplink shared channel (PUSCH) .
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • the RAN may provide system information (SI) characterizing the cell.
  • the RAN may provide this system information utilizing minimum system information (MSI) , and other system information (OSI) .
  • the RAN may periodically broadcast the MSI over the cell to provide the most basic information a UE requires for initial cell access, and for enabling a UE to acquire any OSI that the RAN may broadcast periodically or send on-demand.
  • a network may provide MSI over two different downlink channels.
  • the PBCH may carry a master information block (MIB)
  • the PDSCH may carry a system information block type 1 (SIB1) .
  • MIB master information block
  • SIB1 system information block type 1
  • the MIB may provide a UE with parameters for monitoring a control resource set.
  • the control resource set may thereby provide the UE with scheduling information corresponding to the PDSCH, e.g., a resource location of SIB1.
  • SIB1 may be referred to as remaining minimum system information (RMSI) .
  • OSI may include any SI that is not broadcast in the MSI.
  • the PDSCH may carry a plurality of SIBs, not limited to SIB1, discussed above.
  • the RAN may provide the OSI in these SIBs, e.g., SIB2 and above.
  • channels or carriers described above and illustrated in FIGs. 1 and 3 are not necessarily all the channels or carriers that may be utilized between a scheduling entity 108 and scheduled entities 106, and those of ordinary skill in the art will recognize that other channels or carriers may be utilized in addition to those illustrated, such as other traffic, control, and feedback channels.
  • a physical layer may generally multiplex and map these physical channels described above to transport channels for handling at a medium access control (MAC) layer entity.
  • Transport channels carry blocks of information called transport blocks (TB) .
  • a TB may correspond to a physical channel (e.g., PDSCH, PUSCH) .
  • a DCI may include multiple resource assignments for multiple corresponding TBs on corresponding physical channels (e.g., PDSCHs or PUSCHs) .
  • the transport block size (TBS) which may correspond to a number of bits of information, may be a controlled parameter, based on the modulation and coding scheme (MCS) and the number of RBs in a given transmission.
  • MCS modulation and coding scheme
  • FIG. 4 is a block diagram illustrating an example of a hardware implementation for a scheduling entity 400 employing a processing system 414.
  • the scheduling entity 400 may be a user equipment (UE) as illustrated in any one or more of FIGs. 1, 2, 3, and/or 6–8.
  • the scheduling entity 400 may be a base station as illustrated in any one or more of FIGs. 1, 2, 3, and/or 6–8.
  • the scheduling entity 400 may include a processing system 414 having one or more processors 404.
  • processors 404 include microprocessors, microcontrollers, digital signal processors (DSPs) , field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure.
  • DSPs digital signal processors
  • FPGAs field programmable gate arrays
  • PLDs programmable logic devices
  • state machines gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure.
  • the scheduling entity 400 may be configured to perform any one or more of the functions described herein. That is, the processor 404, as utilized in a scheduling entity 400, may be configured (e.g., in coordination with the memory 405) to implement any one or more of the processes and procedures described below and illustrated in FIG. 9.
  • the processing system 414 may be implemented with a bus architecture, represented generally by the bus 402.
  • the bus 402 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 414 and the overall design constraints.
  • the bus 402 communicatively couples together various circuits including one or more processors (represented generally by the processor 404) , a memory 405, and computer-readable media (represented generally by the computer-readable medium 406) .
  • the bus 402 may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore, will not be described any further.
  • a bus interface 408 provides an interface between the bus 402 and a transceiver 410.
  • the transceiver 410 provides a communication interface or means for communicating with various other apparatus over a transmission medium.
  • a user interface 412 e.g., keypad, display, speaker, microphone, joystick
  • a user interface 412 is optional, and some examples, such as a base station, may omit it.
  • the processor 404 may include communication controlling circuitry 440 configured (e.g., in coordination with the memory 405) for various functions, including, e.g., transmitting a scheduling grant to a scheduled entity, communicating the one or more TBs with the scheduled entity, transmitting a multiple-TB assignment indication indicating the configured maximum number of assignments for the plurality of corresponding TBs per scheduling grant, receiving a sequence of acknowledgment indications for the scheduling grant, and/or receiving a sequence of acknowledgment indications for the plurality of TBs.
  • the communication controlling circuitry 440 may be configured to implement one or more of the functions described below in relation to FIG. 9, including, e.g., blocks 912, 914, 916, 918, and/or 922.
  • the processor 404 may further include resource assignment circuitry 442 configured (e.g., in coordination with the memory 405) for various functions, including, e.g., assigning wireless resources for one or more corresponding TBs over one or more slots, mapping the one or more TBs to the indicated wireless resources in an ordered sequence, and/or excluding the one or more padding assignments from mapping to the indicated wireless resources.
  • the resource assignment circuitry 442 may be configured to implement one or more of the functions described below in relation to FIG. 9, including, e.g., block 914.
  • the processor 404 may further include scheduling circuitry 444 configured (e.g., in coordination with the memory 405) for various functions, including, e.g., generating one or more padding assignments without assigning wireless resources for one or more corresponding disabled TBs, mapping a set of the plurality of TCI fields to the one or more TBs based in the ordered sequence, using a predetermined value in at least one of: a redundancy version (RV) field, a modulation and coding scheme index (MCS) field, or a transmission configuration indicator (TCI) field associated with the corresponding padding assignment, generating padding NACKs for padding assignments in a scheduling grant; and/or generating padding NACKs for disabled TBs for padding assignments.
  • the scheduling circuitry 444 may be configured to implement one or more of the functions described below in relation to FIG. 9, including, e.g., blocks 934, 936, and/or 944.
  • the processor 404 is responsible for managing the bus 402 and general processing, including the execution of software stored on the computer-readable medium 406.
  • the software when executed by the processor 404, causes the processing system 414 to perform the various functions described below for any particular apparatus.
  • the processor 404 may also use the computer-readable medium 406 and the memory 405 for storing data that the processor 404 manipulates when executing software.
  • One or more processors 404 in the processing system may execute software.
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • the software may reside on a computer-readable medium 406.
  • the computer-readable medium 406 may be a non-transitory computer-readable medium.
  • a non-transitory computer-readable medium includes, by way of example, a magnetic storage device (e.g., hard disk, floppy disk, magnetic strip) , an optical disk (e.g., a compact disc (CD) or a digital versatile disc (DVD) ) , a smart card, a flash memory device (e.g., a card, a stick, or a key drive) , a random access memory (RAM) , a read only memory (ROM) , a programmable ROM (PROM) , an erasable PROM (EPROM) , an electrically erasable PROM (EEPROM) , a register, a removable disk, and any other suitable medium for storing software and/or instructions that may be accessed and read by a computer.
  • a magnetic storage device e.g., hard disk, floppy disk, magnetic strip
  • an optical disk e.g., a compact disc (CD) or a digital versatile disc (DVD)
  • the computer-readable medium 406 may reside in the processing system 414, external to the processing system 414, or distributed across multiple entities including the processing system 414.
  • the computer-readable medium 406 may be embodied in a computer program product.
  • a computer program product may include a computer-readable medium in packaging materials.
  • the computer-readable storage medium 406 may store computer-executable code that includes communication controlling instructions 452 that configure a scheduling entity 400 for various functions, including, e.g., transmitting a scheduling grant to a scheduled entity, communicating the one or more TBs with the scheduled entity, transmitting a multiple-TB assignment indication indicating the configured maximum number of assignments for the plurality of corresponding TBs per scheduling grant, receiving a sequence of acknowledgment indications for the scheduling grant, and/or receiving a sequence of acknowledgment indications for the plurality of TBs.
  • the communication controlling instructions 452 may be configured to cause a scheduling entity 400 to implement one or more of the functions described below in relation to FIG. 9, including, e.g., blocks 912, 914, 916, 918, and/or 922.
  • the computer-readable storage medium 406 may store computer-executable code that includes resource assignment instructions 454 that configure a scheduling entity 400 for various functions, including, e.g., assigning wireless resources for one or more corresponding TBs over one or more slots, mapping the one or more TBs to the indicated wireless resources in an ordered sequence, and/or excluding the one or more padding assignments from mapping to the indicated wireless resources.
  • the resource assignment instructions 454 may be configured to cause a scheduling entity 400 to implement one or more of the functions described below in relation to FIG. 9, including, e.g., block 914.
  • the computer-readable storage medium 406 may store computer-executable code that includes scheduling instructions 456 that configure a scheduling entity 400 for various functions, including, e.g., generating one or more padding assignments without assigning wireless resources for one or more corresponding disabled TBs, mapping a set of the plurality of TCI fields to the one or more TBs based in the ordered sequence, using a predetermined value in at least one of: a redundancy version (RV) field, a modulation and coding scheme index (MCS, IMCS, or IMCS) field, or a transmission configuration indicator (TCI) field associated with the corresponding padding assignment, generating padding NACKs for padding assignments in a scheduling grant; and/or generating padding NACKs for disabled TBs for padding assignments.
  • the scheduling instructions 456 may be configured to cause a scheduling entity 400 to implement one or more of the functions described below in relation to FIG. 9, including, e.g., blocks 934, 936, and/or 944.
  • the apparatus 400 for wireless communication includes means for transmitting a scheduling grant to a scheduled entity, means for communicating the one or more TBs with the scheduled entity, means for transmitting a multiple-TB assignment indication indicating the configured maximum number of assignments for the plurality of corresponding TBs per scheduling grant, means for receiving a sequence of acknowledgment indications for the scheduling grant, means for receiving a sequence of acknowledgment indications for the plurality of TBs, means for assigning wireless resources for one or more corresponding TBs over one or more slots, generating one or more padding assignments without assigning wireless resources for one or more corresponding disabled TBs, means for mapping a set of the plurality of TCI fields to the one or more TBs based in the ordered sequence, means for using a predetermined value in at least one of: a redundancy version (RV) field, a modulation and coding scheme index (MCS, IMCS, or IMCS) field, or a transmission configuration indicator (TCI) field associated with the corresponding padding assignment, means for mapping the
  • the aforementioned means may be the processor (s) 404 configured to perform the functions recited by the aforementioned means.
  • the aforementioned means may be a circuit or any apparatus configured to perform the functions recited by the aforementioned means.
  • circuitry included in the processor 404 is merely provided as an example, and other means for carrying out the described functions may be included within various aspects of the present disclosure, including but not limited to the instructions stored in the computer-readable storage medium 406, or any other suitable apparatus or means described in any one of the FIGs. 1, 2, 3, and/or 6–8, and utilizing, for example, the processes and/or algorithms described herein in relation to FIG. 9.
  • FIG. 5 is a conceptual diagram illustrating an example of a hardware implementation for an exemplary scheduled entity 500 employing a processing system 514.
  • a processing system 514 may include an element, or any portion of an element, or any combination of elements having one or more processors 504.
  • the scheduled entity 500 may be a user equipment (UE) as illustrated in any one or more of FIGs. 1, 2, 3, and/or 6–8.
  • UE user equipment
  • the processing system 514 may be substantially the same as the processing system 414 illustrated in FIG. 4, including a bus interface 508, a bus 502, memory 505, a processor 504, and a computer-readable medium 506.
  • the scheduled entity 500 may include a user interface 512 and a transceiver 510 substantially similar to those described above in FIG. 4. That is, the processor 504, as utilized in a scheduled entity 500, may be configured (e.g., in coordination with the memory 505) to implement any one or more of the processes described below and illustrated in FIG. 9.
  • the processor 504 may include communication controlling circuitry 540 configured (e.g., in coordination with the memory 505) for various functions, including, for example, receiving a scheduling grant from a scheduling entity, communicating the one or more TBs with the scheduling entity, receiving a multiple-TB assignment indication indicating the configured maximum number of assignments for the plurality of corresponding TBs per scheduling grant, transmitting a sequence of acknowledgment indications for the scheduling grant, and/or transmitting a sequence of acknowledgment indications for the plurality of TBs.
  • the communication controlling circuitry 540 may be configured to implement one or more of the functions described below in relation to FIG. 9, including, e.g., blocks 932, 934, 936, 940, and/or 944.
  • the processor 504 may further include HARQ determining circuitry 542 configured (e.g., in coordination with the memory 505) for various functions, including, for example, determining one or more first acknowledgment indications for the one or more real assignments and one or more second acknowledgment indications for the one or more padding assignments, and/or determining one or more first acknowledgment indications of the one or more corresponding TBs of the plurality of TBs and one or more second acknowledgment indications of the one or more padding assignments for a set of the plurality of TBs.
  • the HARQ determining circuitry 542 may be configured to implement one or more of the functions described below in relation to FIG. 9, including, e.g., blocks 936, and/or 944.
  • the computer-readable storage medium 506 may store computer-executable code that includes communication controlling instructions 552 that configure a scheduled entity 500 for various functions, including, e.g., receiving a scheduling grant from a scheduling entity, communicating the one or more TBs with the scheduling entity, receiving a multiple-TB assignment indication indicating the configured maximum number of assignments for the plurality of corresponding TBs per scheduling grant, transmitting a sequence of acknowledgment indications for the scheduling grant, and/or transmitting a sequence of acknowledgment indications for the plurality of TBs.
  • the communication controlling instructions 552 may be configured to cause a scheduled entity 500 to implement one or more of the functions described below in relation to FIG. 9, including, e.g., blocks 932, 934, 936, 940, and/or 944.
  • the computer-readable storage medium 506 may further store computer-executable code that includes HARQ determining instructions 554 that configure a scheduled entity 500 for various functions, including, e.g., determining one or more first acknowledgment indications for the one or more real assignments and one or more second acknowledgment indications for the one or more padding assignments, and/or determining one or more first acknowledgment indications of the one or more corresponding TBs of the plurality of TBs and one or more second acknowledgment indications of the one or more padding assignments for a set of the plurality of TBs.
  • the HARQ determining instructions 554 may be configured to cause a scheduled entity 500 to implement one or more of the functions described below in relation to FIG. 9, including, e.g., blocks 936, and/or 944.
  • the apparatus 500 for wireless communication includes means for receiving a scheduling grant from a scheduling entity, means for communicating the one or more TBs with the scheduling entity, means for receiving a multiple-TB assignment indication indicating the configured maximum number of assignments for the plurality of corresponding TBs per scheduling grant, means for transmitting a sequence of acknowledgment indications for the scheduling grant, means for transmitting a sequence of acknowledgment indications for the plurality of TB, means for determining one or more first acknowledgment indications for the one or more real assignments and one or more second acknowledgment indications for the one or more padding assignments, and/or means for determining one or more first acknowledgment indications of the one or more corresponding TBs of the plurality of TBs and one or more second acknowledgment indications of the one or more padding assignments for a set of the plurality of TBs.
  • the aforementioned means may be the processor (s) 504 shown in FIG. 5 configured to perform the functions recited by the aforementioned means.
  • the aforementioned means may be a circuit or any apparatus configured to perform the functions recited by the aforementioned means.
  • circuitry included in the processor 504 is merely provided as an example, and other means for carrying out the described functions may be included within various aspects of the present disclosure, including but not limited to the instructions stored in the computer-readable storage medium 506, or any other suitable apparatus or means described in any one of the FIGs. 1, 2, 3 and/or 6–8, and utilizing, for example, the processes and/or algorithms described herein in relation to FIG. 9.
  • FIG. 6 is a conceptual illustration of an example of control information 612 for multiple-transport block (TB) resource assignments for TBs 614, 624 in accordance with some aspects of the present disclosure.
  • a slot 610 may include a control region 612 and data region (s) 614, 616.
  • the control region 612 may carry a control channel (e.g., physical downlink control channel (PDCCH) ) .
  • the control channel 612 may carry a scheduling grant (e.g., a downlink control information (DCI) message) for assigning wireless resources for one or more TBs over the data region (s) 614, 616.
  • DCI downlink control information
  • a DCI message 612 may indicate a downlink (DL) resource assignment assigning resources on a physical downlink shared channel (PDSCH) (e.g., using DCI Format 1_0, DCI Format 1_1, or DCI Format 1_2) and/or an uplink (UL) resource assignment assigning resources for one or more TBs on a physical uplink shared channel (PUSCH) (e.g., using DCI Format 0_0, DCI Format 0_1, or DCI Format 0_2) .
  • the data region 614, 616 may carry one or more data channels (e.g., physical downlink shared channel (PDSCH) , physical uplink shared channel (PUSCH) ) .
  • a data channel 612 e.g., PDSCH, PUSCH
  • a single scheduling grant 612 may include multiple resource assignments assigning resources for multiple TBs on multiple corresponding PDSCHs and/or PUSCHs 614, 624 in multiple slots 610, 620.
  • a scheduling entity may transmit to a scheduled entity, a single scheduling grant 612 (e.g., a DCI message) in a control region 612 (e.g., a PDCCH) .
  • the single scheduling grant 612 may include a multiple-TB resource assignment corresponding to data regions 614, 624 in multiple slots.
  • the scheduling entity may transmit a single DCI message 612 assigning resources for a first TB on a first PDSCH over a first slot 610.
  • the single DCI message 612 may further assign resources for a second TB 624 on a second PDSCH over a second slot 620. It should be appreciated that this is merely an example for multiple-TB assignments with a single DCI message. In some examples, the single DCI message may include any suitable number N assignments for corresponding N TBs over a plurality of lots. In some examples, the DCI message 612 may include some assignments 614, 616 for corresponding TBs in a slot 610. In other examples, each assignment 614, 616 may assign resources for a single TB over a single slot. In some examples, multiple-TB assignments with a single DCI message may apply to 120 kHz, 480 kHz, or 960 kHz. It should be appreciated that the subcarrier spacing (SCS) may be any suitable SCS.
  • SCS subcarrier spacing
  • each PDSCH or PUSCH of multiple PDSCHs or PUSCHs scheduled by a single DCI message may contain its own TB 614, 624. That is, each PDSCH or PUSCH may carry an individual or separate TB.
  • a TB may have its own HARQ process identification (ID) , redundancy version ID (RVID) , new data indicator (NDI) , time domain resource assignment (TDRA) , and/or frequency domain resource assignment (FDRA) fields to facilitate a HARQ process.
  • ID HARQ process identification
  • RVID redundancy version ID
  • NDI new data indicator
  • TDRA time domain resource assignment
  • FDRA frequency domain resource assignment
  • a PDSCH or PUSCH 614, 624 carrying a TB may be within a slot 610, 620.
  • a slot 610 may carry one data channel 614, 624 (e.g., PDSCH, PUSCH) for a TB.
  • the scheduling entity may transmit, to a scheduled entity, a single DCI message 612 (e.g., DCI Format 1_0, DCI Format 1_1, or DCI Format 1_2) for assigning DL resources for a first TB on a first PDSCH 614 over a first slot 610 and assigning other DL resources for a second TB on a second PDSCH 624 at a second slot 620.
  • the scheduling entity may transmit, to a scheduled entity, a single DCI message 612 (e.g., DCI Format 0_0, DCI Format 0_1, or DCI Format 0_2) for assigning UL resources for a first TB on a first PUSCH 614 at a first slot 610 and UL resources for a second TB on a second PUSCH 624 at a second slot 620.
  • a slot 610 may carry two data channels 614, 616 (e.g., PDSCHs, PUSCHs) for two corresponding TBs.
  • the single DCI message 612 may assign resources for two TBs on two corresponding data channels 614, 616 (e.g., PDSCHs, PUSCHs) in a single slot. In other examples, the single DCI message 612 may assign resources for TBs over corresponding slots. Thus, the single DCI message 612 may assign resources for a TB on a one data channel (e.g., PDSCH, PUSCH) in a slot. However, it should be appreciated that the number of data channels in a slot is not limited to one or two data channels 614, 616.
  • a single DCI message may not assign resources both on PDSCH (s) and PUSCH (s) for corresponding TBs. In other examples, a single DCI message may assign resources both on PDSCH (s) and PUSCH (s) for corresponding TBs. In some examples, a single DCI message may not schedule one or multiple TBs where the scheduling entity may map any single TB to multiple slots, where mapping is not by repetition. However, in other examples, a single DCI message may schedule one or multiple TBs where any single TB can be mapped over multiple slots, where mapping is not by repetition. In some examples, a single DCI message may not schedule multiple TBs where a TB can be repeated over multiple slots (or mini-slots) .
  • a single DCI message may schedule multiple TBs where a TB can be repeated over multiple slots (or mini-slots) .
  • the multiple-TB assignments with a single DCI message may not prevent the scheduling entity from performing slot aggregation and/or repetition for PDSCH and/or PUSCH by a single DCI message.
  • the scheduling grant 612 may exploit slot aggregation and/or repetition for repeating a TB on resources over consecutive slots.
  • FIG. 7 is a schematic illustration showing some aspects of an example of a scheduling grant (e.g., a DCI message) for multiple resource assignments and their acknowledgment indications.
  • the scheduling entity may transmit a multiple-TB assignment indication 702 for enabling multiple assignments 752, 754, 756, 758 with a single scheduling grant 710 for multiple TBs over multiple slots.
  • the multiple-TB assignment indication may include a configured maximum number 702 of the multiple assignments for a plurality of corresponding TBs per scheduling grant 710, 720, 730, 740. That is, the configured maximum number of assignments may be a maximum number of possible assignments for corresponding TBs for which a single DCI can assign resources.
  • the scheduling entity may determine a configured maximum number 702 of assignments as four (4) . That is, there would be four (4) possible assignments 752, 754, 756, 758 for corresponding four (4) TBs per scheduling grant 710, 720, 730, 740.
  • the scheduling entity may transmit the multiple-TB assignment indication via any suitable message or signal, including but not limited to a radio resource control (RRC) message, a MAC control element (MAC-CE) message, a DCI message, etc.
  • RRC radio resource control
  • MAC-CE MAC control element
  • the scheduling entity may transmit to the scheduled entity, a single scheduling grant 710 including the multiple assignments 752, 754, 756, 758 for one or more TBs 772, 774, 778 based on the configured maximum number 702 of multiple assignments per scheduling grant.
  • a scheduling entity may dynamically or selectively assign resources for any number of TBs 772, 774, 778 in a DCI, which may be less than or equal to a configured maximum number 702 of multiple assignments for a plurality of corresponding TBs per scheduling grant.
  • a scheduling entity may provide for this selective or dynamic multiple-TB resource assignment by employing the use of padding assignments for corresponding disabled TBs.
  • a padding assignment corresponds to information in a DCI that is configured for multiple-TB resource assignments, where the padding assignment indicates that the scheduling entity does not assign resources for a corresponding TB.
  • Such a multiple-TB resource assignment may further include one or more real assignments 752, 754, 758 assigning wireless resources for one or more corresponding TBs 772, 774, 778 over one or more slots.
  • the one or more real assignments within a given DCI may be less than a configured maximum number 702 of the multiple assignments per scheduling grant 710.
  • the number of padding assignments 756 and the number of real assignments 752, 754, 758 may sum to the configured maximum number of assignments for the plurality of corresponding TBs.
  • the scheduling entity may transmit the one or more real assignments and the one or more padding assignments per scheduling grant in an ordered sequence.
  • a scheduling entity may indicate that a particular assignment within a multiple-TB resource assignment is a padding assignment 756 by using a predetermined value or symbol in the scheduling grant.
  • a padding assignment 756 using predetermined value in the scheduling grant may disable a TB. That is, a scheduling entity may indicate a padding assignment by configuring that assignment with a predetermined value or symbol for indicating that the one or more assignments do not assign wireless resources for one or more corresponding TBs.
  • the scheduling entity may provide such a predetermined value in at least one of: a modulation and coding scheme index (MCS, IMCS, or IMCS) field 711, a redundancy version (RV) field 713, or a transmission configuration indicator (TCI) field 715 associated with the corresponding padding assignment 756.
  • MCS modulation and coding scheme index
  • RV redundancy version
  • TCI transmission configuration indicator
  • the scheduling entity may set the MCS field as ‘26’ and the RV field as ‘1’ for a padding assignment in a scheduling grant for indicating that the padding assignment does not assign wireless resources for a corresponding TB. It means, the corresponding TB is disabled by the padding assignment in the scheduling grant.
  • the MCS field, the RV field, and their predetermined values are mere examples to indicate a padding assignment.
  • the scheduling entity may indicate a padding assignment by using any other field in a scheduling grant (e.g., an explicit bit for each TB indicating enabling or disabling the TB in the DCI message) .
  • the scheduling entity may use other predetermined values or symbols in the MCS field and/or the RV field to indicate a padding assignment.
  • the scheduling grant may include a plurality of TCI fields corresponding to the configured maximum number of assignments for indicating the one or more real assignments and the one or more padding assignments.
  • the scheduling entity may map a set of the plurality of TCI fields to the one or more TBs of real assignments by using an ordered sequence corresponding to the ordered sequence used for resource assignments, described above.
  • the scheduling grant may include a resource indication indicating the wireless resources assigned by the scheduling grant.
  • the scheduling entity may map the one or more TBs granted via real assignments to the indicated wireless resources in an ordered sequence.
  • the scheduling entity may exclude the one or more padding assignments from the mapping.
  • a scheduling entity may determine a configured maximum number of assignments per scheduling grant (e.g., DCI message) as four (4) . That is, DCI message 1 (710) may include possible four (4) assignments 752, 754, 756, 758 assigning wireless resources on four (4) corresponding PDSCHs or PUSCHs for four (4) corresponding TBs over four (4) corresponding slots. If the scheduling entity transmits only three (3) TBs 772, 774, 778, one (1) assignment 756 among four (4) possible assignments 752, 754, 756, 758 of the DCI message 710 may not need resources for a TB.
  • DCI message 1 may include possible four (4) assignments 752, 754, 756, 758 assigning wireless resources on four (4) corresponding PDSCHs or PUSCHs for four (4) corresponding TBs over four (4) corresponding slots. If the scheduling entity transmits only three (3) TBs 772, 774, 778, one (1) assignment 756 among four (4) possible assignments 752, 754, 756, 758 of the DCI message 710 may
  • DCI message 1 (710) may include three (3) real assignments 752, 754, 758 assigning wireless resources for three (3) corresponding TBs 772, 774, 778.
  • DCI message 1 (710) may also include one (1) padding assignment 756 without assigning resources for a TB.
  • the padding assignment 756 may not be a real assignment to assign resources for a TB.
  • the scheduling entity may indicate the padding assignment 756 by setting the MCS and RV fields of the padding assignment 756 with predetermined values (e.g., MCS field: twenty six (26) , RV field: one (1) ) . With the predetermined values on the specific fields (e.g., MCS and RV fields) in an assignment of a DCI message, the scheduled entity may recognize that the assignment is a padding assignment 756.
  • the scheduling entity may transmit the real assignments 752, 754, 758 and the padding assignment 756 in an ordered sequence (e.g., 1st, 2nd, and 4th assignments: real assignments, 3rd assignment: padding assignment) .
  • the scheduling grant may include four (4) TCI fields corresponding to the configured maximum number of assignments of DCI message 1.
  • the scheduling entity may map three (3) TCI fields (TCI 1 (762) , TCI 2 (764) , and TCI 4 (768) ) to three (3) real assignments 752, 754, 758 for three (3) corresponding TBs (TB 1 (772) , TB 2 (774) , and TB 3 (778) ) in the ordered sequence.
  • the scheduling grant may include a resource indication indicating the wireless resources assigned by the scheduling grant.
  • the scheduling entity may map the three (3) scheduled TBs (TB 1 (772) , TB 2 (774) , and TB 3 (778) ) to the indicated wireless resources in an ordered sequence.
  • the scheduling entity may exclude one corresponding padding assignment 756 from the mapping because the padding assignment 756 does not assign resources for the TB.
  • the scheduled entity may transmit acknowledgment indications (e.g., according to a HARQ process) of the multiple assignments 752, 754, 756, 758 in the scheduling grant 710.
  • the scheduled entity may transmit acknowledgment indications 712, 714, 716 of one or more real assignments 752, 754, 758 first in an ordered sequence, and may transmit acknowledgment indications of one or more padding assignments 756 after the acknowledgment indications 712, 714, 716 in the ordered sequence.
  • the scheduled entity may transmit acknowledgment indications 712, 714, 716, 718 for one or more real assignments 752, 754, 758 and one or more padding assignments 756 in the same ordered sequence as in the scheduling grant 710.
  • the scheduled entity may check for errors (e.g., employing a cyclic redundancy check, CRC; a checksum; etc. ) within one or more received real assignments 752, 754, 758. If an error on a received real assignment 752, 754, 758 is detected, the scheduled entity may transmit a negative acknowledgment (NACK) . If the scheduled entity correctly decodes a real assignment 752, 754, 758 of the scheduling grant, the scheduled entity may transmit an acknowledgment (ACK) indicating that the scheduled entity received and decoded the real assignment 752, 754, 758 of the scheduling grant 710 without an error. In some examples, the scheduled entity may transmit a padding NACK 718 in an acknowledgment indication for a received padding assignment 756.
  • errors e.g., employing a cyclic redundancy check, CRC; a checksum; etc.
  • the scheduled entity may determine an acknowledgment indication for a padding assignment 756 as a padding NACK.
  • the padding NACK may be the same as a NACK in the acknowledgment indication for the padding assignment 756.
  • an acknowledgment indication bit value of ‘0’ may represent a NACK while an acknowledgment indication bit value of ‘1’ may represent an ACK or a confirmation.
  • the values representing a NACK and an ACK may be other predetermined values or symbols.
  • the scheduling entity may transmit DCI message 1 (710) including three (3) real assignments 752, 754, 758 for three (3) TBs 772, 774, 778 and one (1) padding assignment 756 in an ordered sequence (1st, 2nd, and 4th assignments (752, 754, 758) : real assignments, 3rd assignment (756) : padding assignment) .
  • the scheduled entity may receive and decode DCI message 1 (710) including four (4) assignments 752, 574, 756, 758.
  • the scheduled entity may transmit acknowledgment indications (ACK or NACK) for four (4) corresponding assignments 752, 754, 756, 758 to the scheduling entity.
  • ACK or NACK acknowledgment indications
  • the scheduled entity generate a codebook 711 (e.g., Type I A/N codebook or Type II A/N codebook) for acknowledging DCI message 1 (710) .
  • the scheduling entity may semi-statically fix the size of the codebook based on a multiple-TB assignment indication including a configured maximum number of assignments for a plurality of corresponding TBs per scheduling grant (e.g., DCI message) .
  • the size of the codebook may change based on the number of assignments for TBs.
  • the codebook 711 may include acknowledgment indications (e.g., ACK or NACK) 712, 714, 716, 718 for the four (4) assignments 752, 574, 756, 758 of DCI message 1 (710) .
  • the codebook 711 may include acknowledgment indications 712, 714, 718 of the three real (3) assignments 752, 574, 758 of DCI message 1 (710) in an ordered sequence, and the acknowledgment indication 716 of the one padding (1) assignment 756 of DCI message 1 (710) after the acknowledgment indications for real assignments.
  • the first three acknowledgment indications 712, 714, 716 in the codebook 711 may be for the three corresponding real assignments 752, 754, 758; and the last acknowledgment indication 718 may be the padding assignment 756.
  • the acknowledgment indication 716 of the one (1) padding assignment 756 of DCI message 1 (710) may indicate a padding NACK or a NACK.
  • the codebook 711 may include acknowledgment indications 712, 714, 716, 718 of the four (4) assignments 752, 574, 756, 758 of DCI message 1 (710) in an ordered sequence (1st: real assignment (752) , 2nd: real assignment (754) , 3rd: padding assignment (756) , and 4th: real assignment (758) ) .
  • the codebook 711 may indicate a group of acknowledgment indications for DCI message 1 710.
  • the scheduled entity may directly transmit a group of acknowledgment indications for DCI message 1 710 to the scheduling entity.
  • the scheduling entity may transmit a plurality of scheduling grants 710, 720, 730, 740.
  • Each of the scheduling grants 710, 720, 730, 740 may include multiple assignments, which may be equal to the number of assignments indicated in the multiple-TB assignment indication 702.
  • the multiple-TB assignment indication 702 may be applicable to a single DCI message or all DCI messages to the scheduled entity. In other examples, the multiple-TB assignment indication 702 may be applicable to all DCI messages to the scheduled entity for a predetermined period of time.
  • the scheduled entity may not receive a scheduling grant 720 from the scheduling entity.
  • the scheduling entity may transmit a sequential counter with each scheduling grant for the scheduled entity to determine whether the scheduled entity receives the scheduling grant. For example, the scheduling entity may transmit four (4) DCI messages 710, 720, 730, 740 to the scheduled entity with counters (one (1) for DCI message 1 (710) , two (2) for DCI message 2 (720) , three (3) for DCI message 3 (730) , and four (4) for DCI message 4 (740) ) .
  • the scheduled entity may recognize that it missed DCI message 2 (720) due to the missing counter number two (2) .
  • the scheduled entity determines the number of NACKs based on the multiple-TB assignment indication 702.
  • the scheduled entity may transmit a codebook 721 including four (4) NACKs 722, 724, 726, 728 for DCI message 2 to the scheduling entity.
  • FIG. 8 is a schematic illustration shown some aspects of an example of a scheduling grant 810 (e.g., a DCI message) for multiple resource assignments and their acknowledgment indications of the TBs.
  • the scheduling entity may transmit one or more TBs 862 on one or more PDSCHs 860.
  • the multiple assignments 852, 854, 856, 858 may correspond to a configured maximum number of assignments for a plurality of corresponding TBs per scheduling grant 810.
  • the multiple assignments may include one or more real assignments 852, 854, 858 for the one or more TBs 862.
  • the multiple assignments may also include one or more padding assignments 856 without assigning resources for one or more corresponding disabled TBs.
  • the scheduled entity may determine acknowledgment indications 812, 814, 816, 818 (e.g., according to a HARQ process) for one or more TBs 862 on corresponding real assignments 852, 854, 858 and for one or more padding assignments 856.
  • the scheduled entity may check for errors within the one or more received TBs 862 on the one or more real assignments 852, 854, 858. If an error on a received TB 862 is detected, the scheduled entity may automatically request a retransmission of the TB 862 to the scheduling entity by transmitting a negative acknowledgment (NACK) .
  • NACK negative acknowledgment
  • the scheduled entity may transmit an acknowledgment (ACK) indicating that the scheduled entity receives and decodes the one or more TBs 862 without an error.
  • the scheduled entity generate another codebook 811, 821, 831, 841 (e.g., Type I A/N codebook or Type II A/N codebook) for received one or more TBs 862 and one or more disabled TBs for the one or more padding assignments 818.
  • the scheduling entity may semi-statically fix the size of the codebook based on a multiple TB assignment indication including a configured maximum number of assignments for a plurality of corresponding TBs per scheduling grant (e.g., DCI message) .
  • the size of the codebook may change based on the number of received TBs.
  • the scheduled entity may transmit a padding NACK 818 in an acknowledgment indication for a TB for a padding assignment 856. Since a padding assignment 856 does not assign resources for a TB, the scheduled entity may not receive any TB for one or more padding assignments 856.
  • the scheduled entity may determine one or more acknowledgment indications for the received one or more TBs 862 on resources assigned by one or more real assignments 852, 854, 858 among the configured maximum number of assignments.
  • the scheduled entity may determine one or more acknowledgment indications 818 for one or more remaining assignments among the configured maximum number of assignments as one or more padding NACKs. The one or more remaining assignments may correspond to the one or more padding assignments 856.
  • the padding NACK 818 may be the same as a NACK in the acknowledgment indication for the padding assignment 756.
  • the scheduled entity may transmit the one or more acknowledgment indications (ACK or NACK) of the received one or more corresponding TBs 862 first and the one or more acknowledgment indications (padding NACK) for one or more padding assignments next.
  • the scheduled entity may transmit the one or more acknowledgment indications for the one or more TBs and one or more padding assignments in an ordered sequence as the scheduling grant 810 indicates.
  • an acknowledgment indication bit value of ‘0’ may represent a NACK while an acknowledgment indication bit value of ‘1’ may represent an ACK.
  • the values representing a NACK and an ACK may be other predetermined values or symbols.
  • the scheduling entity may transmit DCI message 1 (810) including three (3) real assignments 852, 854, 858 for three (3) TBs 853, 855, 859 and one (1) padding assignment 856 in an ordered sequence (1st, 2nd, and 4th assignments (752, 754, 758) : real assignments, 3rd assignment (756) : padding assignment) .
  • the scheduling entity may transmit the three (3) TBs 862 on corresponding PDSCHs.
  • the scheduled entity may receive DCI message 1 (810) and know the 3rd assignment (756) is a padding assignment without assigning resources for a corresponding TB.
  • the scheduled entity may receive the three (3) TBs 862 and determine whether the scheduled entity correctly decodes the three (3) TBs 862.
  • the scheduled entity may generate three (3) acknowledgment indications of the three (3) corresponding TBs 862.
  • the scheduled entity may additionally generate one (1) acknowledgment indication (padding NACK) for the one (1) padding assignment.
  • the scheduled entity may transmit to the scheduling entity, the four (4) acknowledgment indications of the three (3) TBs and one (1) padding assignment.
  • the scheduled entity may transmit a sequence of the four (4) acknowledgment indications as the three (3) acknowledgment indications of the three (3) TBs first and one (1) acknowledgment indication for the one (1) padding assignment later.
  • the sequence may be ⁇ ACK/NACK, ACK/NACK, ACK/NACK, padding NACK ⁇ .
  • the sequence of the acknowledgment indications may be the same as the sequence of the multiple assignments in DCI message 1 (810) .
  • the sequence may be ⁇ ACK/NACK, ACK/NACK, padding NACK, ACK/N
  • the scheduling entity may transmit a plurality of scheduling grants 810, 820, 830, 840.
  • Each of the plurality of scheduling grants 810, 820, 830, 840 may include multiple assignments, which may correspond to the maximum number of assignments indicated in the multiple-TB assignment indication 802.
  • the scheduling entity may transmit a plurality of sets 862, 872, 882, 892 of TBs on resources assigned by corresponding scheduling grants 810, 820, 830, 840.
  • the scheduled entity may not receive a scheduling grant 820 (e.g., DCI message 2 (820) ) and may not receive one or more TBs on resources assigned by the scheduling grant 820 from the scheduling entity.
  • the scheduled entity may determine the number of NACKs based on the multiple-TB assignment indication 802.
  • the scheduled entity may transmit a codebook 821 including four (4) NACKs 822, 824, 826, 828 for an unknown number of TBs indicated in missing DCI message 2 to the scheduling entity.
  • the scheduled entity may transmit one or more TBs on UL resources assigned by a single DCI.
  • the scheduling entity may transmit, to a scheduled entity, a single DCI message (e.g., DCI Format 0_0, DCI Format 0_1, or DCI Format 0_2) including multiple UL assignments assigning UL resources on multiple corresponding PUSCHs for one or more TBs over one or more slots.
  • the one or more TBs may be less than a configured maximum number of assignments for a plurality of corresponding TBs per DCI message.
  • the multiple UL assignments may include one or more real UL assignments assigning UL resources for the one or more corresponding TBs and one or more padding UL assignments without assigning UL resources for one or more other corresponding TBs.
  • the scheduled entity may transmit one or more TBs on UL resources that one or more real UL assignments assign to the scheduling entity.
  • the scheduling entity may not transmit acknowledgment indications for the one or more TBs to the scheduled entity. In that case, the scheduled entity may retransmit the one or more TBs under a certain condition (e.g., a predetermined period of time, a request for retransmission, or any other suitable condition for retransmission) .
  • FIG. 9 is a flow chart illustrating an exemplary process 900 for multiple-TB assignments with a single DCI and their acknowledgment indications in accordance with some aspects of the present disclosure. As described below, a particular implementation may omit some or all illustrated features, and may not require some illustrated features to implement all embodiments.
  • the scheduling entity 400 illustrated in FIG. 4 and the scheduled entity 500 illustrated in FIG. 5 may be configured to carry out the process 900.
  • any suitable apparatus or means for carrying out the functions or algorithm described below may carry out the process 900.
  • the scheduling entity 902 may transmit to the scheduled entity 904, a multiple-TB assignment indication indicating a configured maximum number of assignments for a plurality of corresponding TBs per scheduling grant (e.g., DCI message) .
  • the multiple-TB assignment indication may enable multiple-TB scheduling with a single scheduling grant by providing a configured maximum number of assignments in the single scheduling grant for a plurality of corresponding TBs.
  • the configured maximum number of assignments may correspond to a maximum number of TBs on wireless resources, which can be maximally assigned by a single DCI message.
  • the scheduling entity may transmit the multiple-TB assignment indication via any suitable message or signal, including but not limited to a radio resource control (RRC) message, a MAC control element (MAC-CE) message, a DCI message, etc.
  • RRC radio resource control
  • MAC-CE MAC control element
  • the scheduled entity 904 may receive from the scheduling entity 902, the multiple-TB assignment indication indicating a configured maximum number of assignments for a plurality of corresponding TBs per scheduling grant (e.g., DCI message) .
  • the scheduled entity 904 may know that the multiple-TB scheduling with a single scheduling grant is enabled. Further, the scheduled entity 904 may receive multiple resource assignments up to the configured maximum number of assignments in the scheduling grant for one or more TBs over one or more slots.
  • the scheduling entity 902 may transmit a scheduling grant (e.g., a DCI message) to the scheduled entity 904.
  • the scheduling grant may include multiple assignments.
  • the multiple assignments may include one or more real assignments assigning wireless resources for one or more corresponding TBs over one or more slots.
  • each slot of the one or more slots may include resources for a set (e.g., one or two TBs) of the one or more TBs.
  • each slot of the one or more slots may correspond to resources for a TB of the one or more TBs.
  • a real assignment in the single scheduling grant may assign resources for a corresponding TB over a corresponding slot.
  • the resource may include a resource block, a subcarrier, a frequency spectrum (channel or carrier) , a time slot or subframe of a TDD/FDD component carrier, a spreading code, a precoder, and/or other suitable resources commonly used for carrying a TB.
  • the one or more TBs may be less than the configured maximum number of assignments for a plurality of corresponding TBs per scheduling grant.
  • the multiple assignments may also include one or more padding assignments without assigning wireless resources for one or more corresponding disabled TBs.
  • a padding assignment may disable a TB without assigning wireless resources for the disabled TB by using a predetermined value in a field in a scheduling grant.
  • the number of the one or more padding assignments and the number of the one or more real assignments may sum to a configured maximum number of the multiple assignments by the scheduling grant.
  • a padding assignment may include a predetermined value to indicate that the corresponding padding assignment does not assign resources for a corresponding TB.
  • the predetermined value for a padding assignment may be in at least one of: a modulation and coding scheme index (MCS) field, a redundancy version (RV) field, or a transmission configuration indicator (TCI) field associated with a corresponding padding assignment.
  • MCS modulation and coding scheme index
  • RV redundancy version
  • TCI transmission configuration indicator
  • the scheduling entity 902 may set the MCS field as twenty six (26) and the RV field as one (1) for a padding assignment in a scheduling grant for indicating that the padding assignment does not assign wireless resources for a corresponding TB.
  • the MCS field, the RV field, and their predetermined values are mere examples to indicate a padding assignment.
  • the scheduling entity 902 may indicate a padding assignment by using any other field in a scheduling grant (e.g., a DCI message) .
  • the scheduling entity 902 may use other predetermined values or symbols in the MCS field and/or the RV field to indicate a padding assignment.
  • the scheduling grant may provide the one or more real assignments for one or more corresponding TBs and the one or more padding assignments for one or more corresponding disabled TBs in an ordered sequence.
  • ‘real’ means actual and existent.
  • a ‘real’ assignment is to assign, for a TB, resources that are actual and existent.
  • ‘padding’ means false and nonexistent.
  • a ‘padding’ assignment is to assign false and nonexistent resources. That is, a ‘padding’ assignment does not assign resources for a TB.
  • the ‘padding’ assignment may disable a TB by using a predetermined value or symbol in a scheduling grant.
  • the scheduling grant may include a plurality of TCI fields corresponding to the configured maximum number of the multiple assignments for the plurality of corresponding TBs.
  • the scheduling entity 902 may map a set of the plurality of TCI fields to the one or more TBs in the ordered sequence. In some examples, the scheduling entity 902 may not map another set of the plurality of TCI fields to the one or more disabled TBs by the one or more padding assignments.
  • the scheduling grant may include a resource indication indicating wireless resources assigned by the scheduling grant. In some examples, the scheduling entity 902 may map the one or more TBs to the indicated wireless resources in an ordered sequence, and may exclude the one or more corresponding padding assignments from the mapping.
  • the scheduling entity 902 may determine the configured maximum number of assignments per scheduling grant (e.g., DCI message) as five (5) .
  • a single DCI message may include five (5) assignments (1st, 3rd, and 5th assignments: real assignments, and 2nd and 4th assignments: padding assignments) in an ordered sequence ⁇ real assignment, padding assignment, real assignment, padding assignment, real assignment ⁇ .
  • the three (3) real assignments may assign resources for three (3) TBs over one or more slots.
  • the two (2) padding assignments may use predetermined values in the scheduling grant (e.g., MCS field: twenty six (26) , RV field: one (1) ) for the scheduled entity 904 to recognize that the 2nd and 4th assignments are padding assignments for two (2) disabled TBs.
  • the scheduling entity 902 may map three (3) TBs to the indicated wireless resources assigned by three (3) real assignments in an ordered sequence.
  • the scheduling entity may exclude the two (2) padding assignments from the mapping.
  • the scheduling grant may include five (5) TCI fields corresponding to the configured maximum number of assignments of the single DCI message.
  • the scheduling entity 902 may map three (3) TCI fields (1st TCI, 3rd TCI, and 5th TCI) to three (3) TBs on resources of three (3) real assignments (1st, 3rd, and 5th assignments) in the ordered sequence.
  • the scheduled entity 904 may receive the scheduling grant from the scheduling entity 902.
  • the scheduling grant may include one or more real assignments and one or more padding assignments.
  • the scheduling grant may provide the one or more real assignments and the one or more padding assignments in an ordered sequence.
  • the scheduled entity 904 may know assignments in the scheduling grant are in an ordered sequence.
  • the scheduled entity 904 may also know a predetermined value in a predetermined field of a scheduling grant for indicating a padding assignment. For example, if an assignment in a scheduling grant includes an MCS field of twenty six (26) and an RV field of one (1) , the scheduled entity 904 may recognize that the corresponding assignment is a padding assignment, which does not assign resources for a corresponding TB.
  • the scheduled entity 904 may determine and transmit a sequence of acknowledgment indications for multiple corresponding assignments in the scheduling grant.
  • the sequence of acknowledgment indications may include one or more first acknowledgment indications for the one or more real assignments and one or more second acknowledgment indications for the one or more padding assignments.
  • the number of the one or more first acknowledgment indications and the number of the one or more second acknowledgment indications may sum to the configured maximum number of multiple assignments per scheduling grant.
  • the scheduled entity 904 may check for errors within received one or more real assignments assigning resources for one or more corresponding TBs. If an error on a real assignment is detected, the scheduled entity 904 may set a negative acknowledgment (NACK) for the real assignment.
  • NACK negative acknowledgment
  • the scheduled entity 904 may transmit an acknowledgment (ACK) indicating that the scheduled entity 904 receives and decodes the real assignment of the scheduling grant without an error.
  • the scheduled entity 904 may transmit a padding NACK in the second acknowledgment indication for a received padding assignment. Since a padding assignment does not assign resources for a TB, the scheduled entity 904 may determine an acknowledgment indication for a padding assignment as a padding NACK.
  • the padding NACK may be the same as a NACK in the acknowledgment indication for the padding assignment.
  • an acknowledgment indication bit value of ‘0’ may represent a NACK while an acknowledgment indication bit value of ‘1’ may represent an ACK.
  • the values representing a NACK and an ACK may be other predetermined values.
  • the one or more first acknowledgment indications of the one or more corresponding real assignments may be in order prior to the one or more second acknowledgment indications of the one or more corresponding padding assignments in the sequence of acknowledgment indications.
  • the scheduled entity 904 may receive the single scheduling grant including five multiple assignments (1st, 3rd, and 5th assignments: real assignments, and 2nd and 4th assignments: padding assignments) in an ordered sequence.
  • the scheduled entity 904 may determine ACKs/NACKs for the 1st, 3rd, and 5th real assignments in the scheduling grant.
  • the scheduled entity 904 may determine padding NACKs for the 2nd and 4th padding assignments in the scheduling grant.
  • the scheduled entity 904 may determine a sequence of acknowledgment indications of the multiple assignments as ACKs/NACKs of the 1st, 3rd, and 5th real assignments first and padding NACKs for the 2nd and 4th padding assignments.
  • the sequence of acknowledgment indications may be ⁇ ACK/NACK, ACK/NACK, ACK/NACK, padding NACK, padding NACK ⁇ .
  • the sequence of acknowledgment indications may be the same as the sequence of multiple assignments in the scheduling grant.
  • the sequence of acknowledgment indications of the five (5) multiple assignments may be ⁇ ACK/NACK, padding NACK, ACK/NACK, padding NACK, ACK/NACK ⁇ .
  • the scheduling entity 902 may receive the sequence of acknowledgment indications of corresponding multiple assignments in the scheduling grant.
  • the multiple assignments may include one or more real assignments assigning resources for one or more corresponding TBs and one or more padding assignments without assigning resources for one or more corresponding disabled TBs. If the scheduling entity 902 receives a NACK for a corresponding real assignment, the scheduling may retransmit the real assignment or the scheduling grant including multiple assignments. In the examples above, the scheduling entity 902 may transmit a single scheduling grant including five assignments ⁇ 1st real assignment, 2nd padding assignment, 3rd real assignment, 4th padding assignment, and 5th real assignment ⁇ .
  • the scheduling entity 902 may receive a sequence of acknowledgment indications for five assignments in the single scheduling grant as ⁇ ACK, NACK, ACK, padding NACK, padding NACK ⁇ .
  • the scheduling may know that the first three acknowledgment indications are for the three (3) real assignments.
  • the scheduling entity 902 may retransmit the 3rd real assignment or the whole scheduling grant including the five (5) assignments.
  • the scheduling entity 902 may receive a sequence of acknowledgment indications for the five (5) assignments in the single scheduling grant as ⁇ ACK, padding NACK, NACK, padding NACK, ACK ⁇ as in the ordered sequence of the five (5) assignments in the scheduling grant.
  • the multiple assignments and acknowledgment indications of the assignments are elaborated in detail above in connection FIG. 7.
  • the scheduling entity 902 may communicate one or more TBs on resources assigned by one or more corresponding real assignments in a DCI message with the scheduled entity 904.
  • the scheduling entity 902 may transmit the one or more TBs assigned by the one or more corresponding real assignments on one or more corresponding PDSCHs.
  • the scheduling entity 902 may receive the one or more TBs assigned by the one or more corresponding real assignments on one or more corresponding PUSCHs.
  • the scheduling grant may include one or more padding assignments, the scheduling entity 902 does not transmit or receive any TB for the one or more padding assignments because the one or more padding assignments do not assign resources for one or more corresponding TBs.
  • the scheduled entity 904 may communicate one or more TBs on resources assigned by one or more corresponding real assignments in a scheduling grant with the scheduling entity 902.
  • the scheduled entity 904 may receive the one or more TBs assigned by the one or more corresponding real assignments in a DCI message (e.g., DCI Format 1_0, DCI Format 1_1, or DCI Format 1_2) on one or more corresponding PDSCHs over one or more slots.
  • a DCI message e.g., DCI Format 1_0, DCI Format 1_1, or DCI Format 1_2
  • the scheduled entity 904 may transmit the one or more TBs assigned by the one or more corresponding real assignments in a DCI message (e.g., DCI Format 0_0, DCI Format 0_1, or DCI Format 0_2) on one or more corresponding PUSCHs over one or more slots.
  • a DCI message e.g., DCI Format 0_0, DCI Format 0_1, or DCI Format 0_2
  • the scheduling grant may include one or more padding assignments, the scheduled entity 904 does not transmit or receive any TB for the one or more padding assignments.
  • the scheduled entity 904 may determine and transmit a sequence of acknowledgment indications for the received one or more TBs.
  • the scheduling entity 902 might not transmit acknowledgment indications for the received one or more TBs.
  • the scheduled entity 904 may retransmit the one or more TBs under a certain condition (e.g., a predetermined period of time, a request for retransmission, or any other suitable condition for retransmission) .
  • the scheduled entity 904 may determine acknowledgment indications for one or more received TBs on corresponding real assignments and for one or more disabled TBs for one or more padding assignments in the single scheduling grant.
  • a padding assignment may disable a TB without assigning wireless resources for the disabled TB by using a predetermined value in a field in a scheduling grant.
  • the scheduled entity 904 may check for errors within the one or more received TBs on the one or more real assignments and determine acknowledgment indications (ACKs or NACKs) for the one or more received TBs.
  • the scheduled entity 904 may not receive one or more disabled TBs for the one or more corresponding padding assignments because the one or more padding assignments may not assign resources for the one or more other corresponding TBs.
  • the scheduled entity 904 may determine a padding NACK in an acknowledgment indication of a corresponding disabled TB for a received padding assignment.
  • the scheduled entity 904 may generate a sequence of acknowledgment indications for a plurality of TBs.
  • the plurality of TBs may include the one or more TBs on the one or more real assignments and the one or more disabled TBs for the one or more padding assignments.
  • the sequence of acknowledgment indications may include one or more third acknowledgment indications of the one or more corresponding received TBs in a first order and one or more second acknowledgment indications of the one or more disabled TBs for the one or more padding assignments in a second order.
  • the one or more third acknowledgment indications is in order prior to the one or more fourth acknowledgment indications in the sequence of acknowledgment indications.
  • the sequence of acknowledgment indications may be the same as the sequence of the multiple assignments in the scheduling grant.
  • the scheduling entity 902 may transmit three (3) TBs on corresponding PUSCHs assigned by 1st, 3rd, and 5th real assignments.
  • the scheduled entity 904 may determine acknowledgment indications for the three (3) received TBs.
  • the scheduled entity 904 may determine acknowledgment indications of padding NACKs for two (2) disabled TBs for the two padding assignments.
  • the scheduled entity 904 may determine a sequence of acknowledgment indications of the plurality of TBs as ACKs/NACKs of the 1st, 3rd, and 5th received TBs corresponding to the 1st, 3rd, and 5th real assignments first and padding NACKs for two other padding assignments next.
  • the sequence of acknowledgment indications may be ⁇ ACK/NACK, ACK/NACK, ACK/NACK, padding NACK, padding NACK ⁇ .
  • the sequence of acknowledgment indications may be the same as the sequence of multiple assignments in the scheduling grant.
  • the sequence of acknowledgment indications of the three (3) TBs and two (2) disabled TBs for the two (2) padding assignments may be ⁇ ACK/NACK, padding NACK, ACK/NACK, padding NACK, ACK/NACK ⁇ .
  • the acknowledgment indications of the TBs are elaborated in detail above in connection FIG. 8.
  • FIG. 10 is a flow chart illustrating an exemplary process 1000 at a scheduled entity for multiple-TB assignments with a single scheduling grant and their acknowledgment indications in accordance with some aspects of the present disclosure. As described below, a particular implementation may omit some or all illustrated features, and may not require some illustrated features to implement all embodiments.
  • the scheduled entity 500 illustrated in FIG. 5 may be configured to carry out the process 1000. In some examples, any suitable apparatus or means for carrying out the functions or algorithm described below may carry out the process 1000.
  • the scheduled entity may receive a multiple-TB assignment indication indicating the configured maximum number of assignments for corresponding TBs per scheduling grant (e.g., DCI message, or DCI) .
  • the configured maximum number of assignments may correspond to a maximum number of TBs on wireless resources, which can be maximally assigned by a single DCI message.
  • the scheduled entity may know that the multiple-TB scheduling with a single scheduling grant is enabled.
  • the scheduled entity may receive the multiple-TB assignment indication via any suitable message or signal, including but not limited to a radio resource control (RRC) message, a MAC control element (MAC-CE) message, a DCI message, etc.
  • RRC radio resource control
  • MAC-CE MAC control element
  • the scheduled entity may receive a scheduling grant (e.g., a DCI message, or DCI) from a scheduling entity.
  • the scheduling grant may include one or more real assignments configured to assign wireless resources for one or more corresponding TBs over one or more slots.
  • a total number of TBs in the one or more TBs may be less than the configured maximum number of assignments for a plurality of corresponding TBs per scheduling grant.
  • ‘real’ means actual and existent.
  • a ‘real’ assignment is to assign, for a TB, resources that are actual and existent.
  • the resource may include a resource block, a subcarrier, a frequency spectrum (channel or carrier) , a time slot or subframe of a TDD/FDD component carrier, a spreading code, a precoder, and/or other suitable resources commonly used for carrying a TB.
  • the one or more TBs may be less than the configured maximum number of assignments for a plurality of corresponding TBs per scheduling grant.
  • the scheduling grant may further include one or more padding assignments for one or more corresponding disabled TBs.
  • the one or more padding assignments may not assign wireless resources.
  • ‘padding’ means false and nonexistent.
  • a ‘padding’ assignment is to assign false and nonexistent resources. That is, a ‘padding’ assignment does not assign resources for a TB.
  • the ‘padding’ assignment may disable a TB by using a predetermined value or symbol in a scheduling grant.
  • the predetermined value of each of the one or more padding assignments may be in at least one of: a redundancy version (RV) field, a modulation and coding scheme index (MCS) field, or a transmission configuration indicator (TCI) field associated with the respective padding assignment.
  • RV redundancy version
  • MCS modulation and coding scheme index
  • TCI transmission configuration indicator
  • a padding assignment may use predetermined values in a scheduling grant (e.g., MCS field: twenty six (26) , RV field: one (1) ) associated with a TB to disable the TB.
  • the total number of the padding assignments and the real assignments may sum to the configured maximum number of assignments for the corresponding TBs.
  • the scheduled entity may transmit a first sequence of acknowledgment indications for the scheduling grant.
  • the first sequence of acknowledgment indications may include one or more first acknowledgment indications for the one or more real assignments and one or more second acknowledgment indications for the one or more padding assignments.
  • the one or more first acknowledgment indications may be in order prior to the one or more second acknowledgment indications in the first sequence of acknowledgment indications.
  • a first acknowledgment indication may be an acknowledgment (ACK) indicating that the scheduled entity receives and decodes a real assignment, or a negative acknowledgment (NACK) indicating that the scheduled entity fails to correctly receive and decode a real assignment.
  • a second acknowledgment indication may include a padding NACK indicating that a corresponding assignment is a padding assignment.
  • a padding NACK may indicate that there are no resources assigned for a TB on a padding assignment.
  • the padding NACK may be the same as a NACK in the acknowledgment indication for the padding assignment.
  • the padding NACK may be a separate value or symbol to indicating a padding NACK for a padding assignment.
  • an acknowledgment indication bit value of ‘0’ may represent a NACK while an acknowledgment indication bit value of ‘1’ may represent an ACK.
  • the values representing a NACK and an ACK may be other predetermined values.
  • the scheduled entity may communicate one or more TBs with the scheduling entity.
  • the one or more TBs may be on the resources assigned by one or more corresponding real assignments in a scheduling grant.
  • the scheduled entity may receive one or more TBs assigned by one or more corresponding real assignments on one or more corresponding PDSCHs.
  • the scheduled entity may transmit one or more TBs assigned by one or more corresponding real assignments on one or more corresponding PUSCHs.
  • the scheduling grant may include one or more padding assignments, the scheduled entity does not receive or transmit any TB for the one or more padding assignments because the one or more padding assignments do not assign resources for one or more corresponding TBs.
  • the scheduled entity may determine whether the communication at block 1018 is downlink. If the communication is downlink, the scheduled entity may determine HARQ feedback on the received one or more TBs. However, If the communication is uplink, the scheduled entity may not wait for feedback on the transmitted one or more TBs from the scheduling entity.
  • the scheduled entity may transmit a second sequence of acknowledgment indications for the plurality of TBs.
  • the second sequence of acknowledgment indications may include one or more third acknowledgment indications of the one or more corresponding TBs and one or more fourth acknowledgment indications of the one or more padding assignments for a set of the plurality of TBs.
  • the one or more third acknowledgment indications may be in order prior to the one or more fourth acknowledgment indications in the second sequence of acknowledgment indications.
  • the total number of the one or more third acknowledgment indications and the total number of the one or more fourth acknowledgment indications may sum to the configured maximum number of assignments.
  • a third acknowledgment indication may be an acknowledgment (ACK) indicating that the scheduled entity receives and decodes a TB, or a negative acknowledgment (NACK) indicating that the scheduled entity fails to correctly receive and decode a TB.
  • a fourth acknowledgment indication may include a padding NACK indicating that a corresponding TB is disabled. That is, the scheduled entity may not receive a TB corresponding to a padding assignment because the padding assignment does not assign resources for the TB (disabled TB) .
  • the padding NACK may be the same as a NACK in the acknowledgment indication for the padding assignment.
  • the padding NACK may be a separate value or symbol to indicating a padding NACK for a padding assignment.
  • an acknowledgment indication bit value of ‘0’ may represent a NACK while an acknowledgment indication bit value of ‘1’ may represent an ACK.
  • the values representing a NACK and an ACK may be other predetermined values.
  • FIG. 11 is a flow chart illustrating an exemplary process 1100 at a scheduling entity for multiple-TB assignments with a single DCI and their acknowledgment indications in accordance with some aspects of the present disclosure. As described below, a particular implementation may omit some or all illustrated features, and may not require some illustrated features to implement all embodiments.
  • the scheduling entity 400 illustrated in FIG. 4 may be configured to carry out the process 1100. In some examples, any suitable apparatus or means for carrying out the functions or algorithm described below may carry out the process 1100.
  • the scheduling entity may transmit a multiple-TB assignment indication indicating the configured maximum number of assignments for corresponding TBs per scheduling grant (e.g., DCI message, or DCI) .
  • the configured maximum number of assignments may correspond to a maximum number of TBs on wireless resources, which can be maximally assigned by a single DCI message.
  • the scheduling entity may enable the multiple-TB scheduling with a single scheduling grant.
  • the scheduling entity may transmit the multiple-TB assignment indication via any suitable message or signal, including but not limited to a radio resource control (RRC) message, a MAC control element (MAC-CE) message, a DCI message, etc.
  • RRC radio resource control
  • MAC-CE MAC control element
  • the scheduling entity may transmit a scheduling grant (e.g., a DCI message, or DCI) to a scheduled entity.
  • the scheduling grant may include one or more real assignments configured to assign wireless resources for one or more corresponding TBs over one or more slots.
  • a total number of TBs in the one or more TBs may be less than the configured maximum number of assignments for a plurality of corresponding TBs per scheduling grant.
  • ‘real’ means actual and existent.
  • a ‘real’ assignment is to assign, for a TB, resources that are actual and existent.
  • the resource may include a resource block, a subcarrier, a frequency spectrum (channel or carrier) , a time slot or subframe of a TDD/FDD component carrier, a spreading code, a precoder, and/or other suitable resources commonly used for carrying a TB.
  • the one or more TBs may be less than the configured maximum number of assignments for a plurality of corresponding TBs per scheduling grant.
  • the scheduling grant may further include one or more padding assignments for one or more corresponding disabled TBs.
  • the one or more padding assignments may not assign wireless resources.
  • ‘padding’ means false and nonexistent.
  • a ‘padding’ assignment is to assign false and nonexistent resources. That is, a ‘padding’ assignment does not assign resources for a TB.
  • the ‘padding’ assignment may disable a TB by using a predetermined value or symbol in a scheduling grant.
  • the predetermined value of each of the one or more padding assignments may be in at least one of: a redundancy version (RV) field, a modulation and coding scheme index (MCS) field, or a transmission configuration indicator (TCI) field associated with the respective padding assignment.
  • RV redundancy version
  • MCS modulation and coding scheme index
  • TCI transmission configuration indicator
  • a padding assignment may use predetermined values in a scheduling grant (e.g., MCS field: twenty six (26) , RV field: one (1) ) associated with a TB to disable the TB.
  • the total number of the padding assignments and the real assignments may sum to the configured maximum number of assignments for the corresponding TBs.
  • the scheduling entity may receive a first sequence of acknowledgment indications for the scheduling grant.
  • the first sequence of acknowledgment indications may include one or more first acknowledgment indications for the one or more real assignments and one or more second acknowledgment indications for the one or more padding assignments.
  • the one or more first acknowledgment indications may be in order prior to the one or more second acknowledgment indications in the first sequence of acknowledgment indications.
  • a first acknowledgment indication may be an acknowledgment (ACK) indicating that the scheduled entity receives and decodes a real assignment, or a negative acknowledgment (NACK) indicating that the scheduled entity fails to correctly receive and decode a real assignment.
  • a second acknowledgment indication may include a padding NACK indicating that a corresponding assignment is a padding assignment.
  • a padding NACK may indicate that there are no resources assigned for a TB on a padding assignment.
  • the padding NACK may be the same as a NACK in the acknowledgment indication for the padding assignment.
  • the padding NACK may be a separate value or symbol to indicating a padding NACK for a padding assignment.
  • an acknowledgment indication bit value of ‘0’ may represent a NACK while an acknowledgment indication bit value of ‘1’ may represent an ACK.
  • the values representing a NACK and an ACK may be other predetermined values.
  • the scheduling entity may communicate one or more TBs with the scheduled entity.
  • the one or more TBs may be on the resources assigned by one or more corresponding real assignments in a scheduling grant.
  • the scheduling entity may transmit one or more TBs assigned by one or more corresponding real assignments on one or more corresponding PDSCHs.
  • the scheduling entity may receive one or more TBs assigned by one or more corresponding real assignments on one or more corresponding PUSCHs.
  • the scheduling grant may include one or more padding assignments, the scheduling entity does not transmit or receive any TB for the one or more padding assignments because the one or more padding assignments do not assign resources for one or more corresponding TBs.
  • the scheduling entity may determine whether the communication at block 1118 is downlink. If the communication is downlink, the scheduling entity may wait for HARQ feedback on the received one or more TBs. However, If the communication is uplink, the scheduling entity may not transmit feedback on the received one or more TBs from the scheduled entity.
  • the scheduling entity may receive a second sequence of acknowledgment indications for the plurality of TBs.
  • the second sequence of acknowledgment indications may include one or more third acknowledgment indications of the one or more corresponding TBs and one or more fourth acknowledgment indications of the one or more padding assignments for a set of the plurality of TBs.
  • the one or more third acknowledgment indications may be in order prior to the one or more fourth acknowledgment indications in the second sequence of acknowledgment indications.
  • the total number of the one or more third acknowledgment indications and the total number of the one or more fourth acknowledgment indications may sum to the configured maximum number of assignments.
  • a third acknowledgment indication may be an acknowledgment (ACK) indicating that the scheduled entity receives and decodes a TB, or a negative acknowledgment (NACK) indicating that the scheduled entity fails to correctly receive and decode a TB.
  • a fourth acknowledgment indication may include a padding NACK indicating that a corresponding TB is disabled. That is, the scheduled entity may not receive a TB corresponding to a padding assignment because the padding assignment does not assign resources for the TB (disabled TB) .
  • the padding NACK may be the same as a NACK in the acknowledgment indication for the padding assignment.
  • the padding NACK may be a separate value or symbol to indicating a padding NACK for a padding assignment.
  • an acknowledgment indication bit value of ‘0’ may represent a NACK while an acknowledgment indication bit value of ‘1’ may represent an ACK.
  • the values representing a NACK and an ACK may be other predetermined values.
  • Example 1 A method, apparatus, and non-transitory computer-readable medium of wireless communication operable at a scheduling entity, comprising: transmitting a scheduling grant to a scheduled entity, the scheduling grant comprising one or more real assignments assigning wireless resources for one or more corresponding TBs over one or more slots, a total number of TBs in the one or more TBs being less than a configured maximum number of assignments for a plurality of corresponding TBs per scheduling grant; and communicating the one or more TBs with the scheduled entity.
  • Example 2 The method, apparatus, and non-transitory computer-readable medium of Example 1, further comprising: transmitting a multiple-TB assignment indication indicating the configured maximum number of assignments for the plurality of corresponding TBs per scheduling grant.
  • Example 3 The method, apparatus, and non-transitory computer-readable medium of Examples 1 to 2, wherein each slot of the one or more slots comprises resources for a set of the one or more TBs.
  • Example 4 The method, apparatus, and non-transitory computer-readable medium of Examples 1 to 3, wherein the scheduling grant further comprises one or more padding assignments for one or more corresponding disabled TBs, wherein the one or more padding assignments do not assign wireless resources, and wherein the number of the one or more padding assignments and the number of the one or more real assignments sum to the configured maximum number of assignments for the plurality of corresponding TBs.
  • Example 5 The method, apparatus, and non-transitory computer-readable medium of Examples 1 to 4, wherein the scheduling grant provides the one or more real assignments and the one or more padding assignments in an ordered sequence.
  • Example 6 The method, apparatus, and non-transitory computer-readable medium of Examples 1 to 5, wherein the scheduling grant further comprises a plurality of transmission configuration indicator (TCI) fields corresponding to the configured maximum number of assignments for the plurality of corresponding TBs, and wherein the scheduling entity maps a set of the plurality of TCI fields to the one or more TBs based in the ordered sequence.
  • TCI transmission configuration indicator
  • Example 7 The method, apparatus, and non-transitory computer-readable medium of Examples 1 to 6, wherein each of the one or more padding assignments comprises a predetermine value, and wherein the predetermined value is in at least one of: a redundancy version (RV) field, a modulation and coding scheme index (MCS) field, or a transmission configuration indicator (TCI) field associated with the corresponding padding assignment.
  • RV redundancy version
  • MCS modulation and coding scheme index
  • TCI transmission configuration indicator
  • Example 8 The method, apparatus, and non-transitory computer-readable medium of Examples 1 to 7, wherein the scheduling grant further comprises a resource indication indicating the wireless resources assigned by the scheduling grant, wherein the scheduling entity maps the one or more TBs to the indicated wireless resources in an ordered sequence, and wherein the scheduling entity excludes the one or more corresponding padding assignments from mapping to the indicated wireless resources.
  • Example 9 The method, apparatus, and non-transitory computer-readable medium of Examples 1 to 8, further comprising: receiving a first sequence of acknowledgment indications for the scheduling grant, wherein the first sequence of acknowledgment indications comprises one or more first acknowledgment indications for the one or more real assignments and one or more second acknowledgment indications for the one or more padding assignments.
  • Example 10 The method, apparatus, and non-transitory computer-readable medium of Examples 1 to 9, wherein the one or more first acknowledgment indications are in order prior to the one or more second acknowledgment indications in the first sequence of acknowledgment indications.
  • Example 11 The method, apparatus, and non-transitory computer-readable medium of Examples 1 to 10, further comprising: receiving a second sequence of acknowledgment indications for the plurality of TBs, wherein the second sequence of acknowledgment indications comprises one or more third acknowledgment indications of the one or more corresponding TBs of the plurality of TBs and one or more fourth acknowledgment indications of the one or more padding assignments for a set of the plurality of TBs.
  • Example 12 The method, apparatus, and non-transitory computer-readable medium of Examples 1 to 11, wherein the one or more third acknowledgment indications are in order prior to the one or more fourth acknowledgment indications in the second sequence of acknowledgment indications.
  • Example 13 The method, apparatus, and non-transitory computer-readable medium of Examples 1 to 12, wherein the number of the one or more third acknowledgment indications and the number of the one or more fourth acknowledgment indications sum to the configured maximum number of assignments.
  • Example 14 A method, apparatus, and non-transitory computer-readable medium of wireless communication operable at a scheduled entity, comprising: receiving a scheduling grant from a scheduling entity, the scheduling grant comprising one or more real assignments assigning wireless resources for one or more corresponding TBs over one or more slots, a total number of TBs in the one or more TBs being less than a configured maximum number of assignments for a plurality of corresponding TBs per scheduling grant; and communicating the one or more TBs with the scheduling entity.
  • Example 15 The method, apparatus, and non-transitory computer-readable medium of Example 14, further comprising: receiving a multiple-TB assignment indication indicating the configured maximum number of assignments for the plurality of corresponding TBs per scheduling grant.
  • Example 16 The method, apparatus, and non-transitory computer-readable medium of Examples 14 to 15, wherein the scheduling grant further comprises one or more padding assignments for one or more corresponding disabled TBs, wherein the one or more padding assignments do not assign wireless resources, and wherein the number of the one or more padding assignments and the number of the one or more real assignments sum to the configured maximum number of assignments for the plurality of corresponding TBs.
  • Example 17 The method, apparatus, and non-transitory computer-readable medium of Examples 14 to 16, wherein the scheduling grant provides the one or more real assignments and the one or more padding assignments in an ordered sequence.
  • Example 18 The method, apparatus, and non-transitory computer-readable medium of Examples 14 to 17, wherein the scheduling grant further comprises a plurality of transmission configuration indicator (TCI) fields corresponding to the configured maximum number of assignments for the plurality of corresponding TBs, and wherein a set of the plurality of TCI fields is mapped to the one or more TBs based in the ordered sequence.
  • TCI transmission configuration indicator
  • Example 19 The method, apparatus, and non-transitory computer-readable medium of Examples 14 to 18, wherein each of the one or more padding assignments comprises a predetermine value, and wherein the predetermined value is in at least one of: a redundancy version (RV) field, a modulation and coding scheme index (MCS) field, or a transmission configuration indicator (TCI) field associated with the corresponding padding assignment.
  • RV redundancy version
  • MCS modulation and coding scheme index
  • TCI transmission configuration indicator
  • Example 20 The method, apparatus, and non-transitory computer-readable medium of Examples 14 to 19, wherein the scheduling grant further comprises a resource indication indicating the wireless resources assigned by the scheduling grant, wherein the one or more TBs are mapped to the indicated wireless resources in an ordered sequence, and wherein the one or more corresponding padding assignments are excluded from mapping to the indicated wireless resources.
  • Example 21 The method, apparatus, and non-transitory computer-readable medium of Examples 14 to 20, further comprising: transmitting a first sequence of acknowledgment indications for the scheduling grant, wherein the first sequence of acknowledgment indications comprises one or more first acknowledgment indications for the one or more real assignments and one or more second acknowledgment indications for the one or more padding assignments.
  • Example 22 The method, apparatus, and non-transitory computer-readable medium of Examples 14 to 22, wherein the one or more first acknowledgment indications are in order prior to the one or more second acknowledgment indications in the first sequence of acknowledgment indications.
  • Example 23 The method, apparatus, and non-transitory computer-readable medium of Examples 14 to 22, further comprising: transmitting a second sequence of acknowledgment indications for the plurality of TBs, wherein the second sequence of acknowledgment indications comprises one or more third acknowledgment indications of the one or more corresponding TBs of the plurality of TBs and one or more fourth acknowledgment indications of the one or more padding assignments for a set of the plurality of TBs.
  • Example 24 The method, apparatus, and non-transitory computer-readable medium of Examples 14 to 23, wherein the one or more third acknowledgment indications are in order prior to the one or more fourth acknowledgment indications in the second sequence of acknowledgment indications.
  • Example 25 The method, apparatus, and non-transitory computer-readable medium of Examples 14 to 24, wherein the number of the one or more third acknowledgment indications and the number of the one or more fourth acknowledgment indications sum to the configured maximum number of assignments.
  • Example 26 A apparatus of wireless communication operable at a scheduling entity, comprising: means for transmitting a scheduling grant to a scheduled entity, the scheduling grant comprising one or more real assignments assigning wireless resources for one or more corresponding TBs over one or more slots, a total number of TBs in the one or more TBs being less than a configured maximum number of assignments for a plurality of corresponding TBs per scheduling grant; and means for communicating the one or more TBs with the scheduled entity.
  • Example 27 The apparatus of Example 26, further comprising: means for transmitting a multiple-TB assignment indication indicating the configured maximum number of assignments for the plurality of corresponding TBs per scheduling grant.
  • Example 28 The apparatus of Examples 26 to 27, wherein each slot of the one or more slots comprises resources for a set of the one or more TBs.
  • Example 29 The apparatus of Examples 26 to 28, wherein the scheduling grant further comprises one or more padding assignments for one or more corresponding disabled TBs, wherein the one or more padding assignments do not assign wireless resources, and wherein the number of the one or more padding assignments and the number of the one or more real assignments sum to the configured maximum number of assignments for the plurality of corresponding TBs.
  • Example 30 The apparatus of Examples 26 to 29, wherein the scheduling grant provides the one or more real assignments and the one or more padding assignments in an ordered sequence.
  • Example 31 The apparatus of Examples 26 to30, wherein the scheduling grant further comprises a plurality of transmission configuration indicator (TCI) fields corresponding to the configured maximum number of assignments for the plurality of corresponding TBs, and wherein the scheduling entity maps a set of the plurality of TCI fields to the one or more TBs based in the ordered sequence.
  • TCI transmission configuration indicator
  • Example 32 The apparatus of Examples 26 to 31, wherein each of the one or more padding assignments comprises a predetermine value, and wherein the predetermined value is in at least one of: a redundancy version (RV) field, a modulation and coding scheme index (MCS) field, or a transmission configuration indicator (TCI) field associated with the corresponding padding assignment.
  • RV redundancy version
  • MCS modulation and coding scheme index
  • TCI transmission configuration indicator
  • Example 33 The apparatus of Examples 26 to 32, wherein the scheduling grant further comprises a resource indication indicating the wireless resources assigned by the scheduling grant, wherein the scheduling entity maps the one or more TBs to the indicated wireless resources in an ordered sequence, and wherein the scheduling entity excludes the one or more corresponding padding assignments from mapping to the indicated wireless resources.
  • Example 34 The apparatus of Examples 26 to 33, further comprising: means for receiving a first sequence of acknowledgment indications for the scheduling grant, wherein the first sequence of acknowledgment indications comprises one or more first acknowledgment indications for the one or more real assignments and one or more second acknowledgment indications for the one or more padding assignments.
  • Example 35 The apparatus of Examples 26 to 34, wherein the one or more first acknowledgment indications are in order prior to the one or more second acknowledgment indications in the first sequence of acknowledgment indications.
  • Example 36 The apparatus of Examples 26 to 35, further comprising: receiving a second sequence of acknowledgment indications for the plurality of TBs, wherein the second sequence of acknowledgment indications comprises one or more third acknowledgment indications of the one or more corresponding TBs of the plurality of TBs and one or more fourth acknowledgment indications of the one or more padding assignments for a set of the plurality of TBs.
  • Example 37 The apparatus of Examples 26 to 36, wherein the one or more third acknowledgment indications are in order prior to the one or more fourth acknowledgment indications in the second sequence of acknowledgment indications.
  • Example 38 The apparatus of Examples 26 to 37, wherein the number of the one or more third acknowledgment indications and the number of the one or more fourth acknowledgment indications sum to the configured maximum number of assignments.
  • Example 39 A apparatus of wireless communication, comprising: means for receiving a scheduling grant from a scheduling entity, the scheduling grant comprising one or more real assignments assigning wireless resources for one or more corresponding TBs over one or more slots, a total number of TBs in the one or more TBs being less than a configured maximum number of assignments for a plurality of corresponding TBs per scheduling grant; and means for communicating the one or more TBs with the scheduling entity.
  • Example 40 The apparatus of Example 39, further comprising: means for receiving a multiple-TB assignment indication indicating the configured maximum number of assignments for the plurality of corresponding TBs per scheduling grant.
  • Example 41 The apparatus of Examples 39 to 40, wherein the scheduling grant further comprises one or more padding assignments for one or more corresponding disabled TBs, wherein the one or more padding assignments do not assign wireless resources, and wherein the number of the one or more padding assignments and the number of the one or more real assignments sum to the configured maximum number of assignments for the plurality of corresponding TBs.
  • Example 42 The apparatus of Examples 39 to 41, wherein the scheduling grant provides the one or more real assignments and the one or more padding assignments in an ordered sequence.
  • Example 43 The apparatus of Examples 39 to 42, wherein the scheduling grant comprises a plurality of transmission configuration indicator (TCI) fields corresponding to the configured maximum number of assignments for the plurality of corresponding TBs, and wherein the scheduling entity maps a set of the plurality of TCI fields to the one or more TBs based in the ordered sequence.
  • TCI transmission configuration indicator
  • Example 44 The apparatus of Examples 39 to 43, wherein each of the one or more padding assignments comprises a predetermine value, and wherein the predetermined value is in at least one of: a redundancy version (RV) field, a modulation and coding scheme index (MCS) field, or a transmission configuration indicator (TCI) field associated with the corresponding padding assignment.
  • RV redundancy version
  • MCS modulation and coding scheme index
  • TCI transmission configuration indicator
  • Example 45 The apparatus of Examples 39 to 44, wherein the scheduling grant further comprises a resource indication indicating the wireless resources assigned by the scheduling grant, wherein the scheduling entity maps the one or more TBs to the indicated wireless resources in an ordered sequence, and wherein the scheduling entity excludes the one or more corresponding padding assignments from mapping to the indicated wireless resources.
  • Example 46 The apparatus of Examples 39 to 45, further comprising: means for transmitting a first sequence of acknowledgment indications for the scheduling grant, wherein the first sequence of acknowledgment indications comprises one or more first acknowledgment indications for the one or more real assignments and one or more second acknowledgment indications for the one or more padding assignments.
  • Example 47 The apparatus of Examples 39 to 46, wherein the one or more first acknowledgment indications are in order prior to the one or more second acknowledgment indications in the first sequence of acknowledgment indications.
  • Example 48 The apparatus of Examples 39 to 47, further comprising: means for transmitting a second sequence of acknowledgment indications for the plurality of TBs, wherein the second sequence of acknowledgment indications comprises one or more third acknowledgment indications of the one or more corresponding TBs of the plurality of TBs and one or more fourth acknowledgment indications of the one or more padding assignments for a set of the plurality of TBs.
  • Example 49 The apparatus of Examples 39 to 48, wherein the one or more third acknowledgment indications are in order prior to the one or more fourth acknowledgment indications in the second sequence of acknowledgment indications.
  • Example 50 The apparatus of Examples 39 to 49, wherein the number of the one or more third acknowledgment indications and the number of the one or more fourth acknowledgment indications sum to the configured maximum number of assignments.
  • Example 51 A apparatus of wireless communication operable at a scheduled entity, comprising: means for receiving a scheduling grant from a scheduling entity, the scheduling grant comprising one or more real assignments configured to assign wireless resources for one or more corresponding TBs over one or more slots, a total number of TBs in the one or more TBs being less than a configured maximum number of assignments for a plurality of corresponding TBs per scheduling grant; and means for communicating the one or more TBs with the scheduling entity.
  • Example 52 The method of Example 51, further comprising: means for receiving a multiple-TB assignment indication indicating the configured maximum number of assignments for the plurality of corresponding TBs per scheduling grant.
  • Example 53 The apparatus of Example 51, wherein the scheduling grant further comprises one or more padding assignments for one or more corresponding disabled TBs, wherein the one or more padding assignments do not assign wireless resources, and wherein a total number of the one or more padding assignments and a total number of the one or more real assignments sum to the configured maximum number of assignments for the plurality of corresponding TBs.
  • Example 54 The apparatus of Example 53, wherein the scheduling grant provides the one or more real assignments and the one or more padding assignments in an ordered sequence.
  • Example 55 The apparatus of Example 54, wherein the scheduling grant further comprises a plurality of transmission configuration indicator (TCI) fields corresponding to the configured maximum number of assignments for the plurality of corresponding TBs, and wherein a set of the plurality of TCI fields is mapped to the one or more TBs based in the ordered sequence.
  • TCI transmission configuration indicator
  • Example 56 The apparatus of Example 53, wherein each of the one or more padding assignments comprises a predetermined value, and wherein the predetermined value of each of the one or more padding assignments is in at least one of: a redundancy version (RV) field, a modulation and coding scheme index (MCS) field, or a transmission configuration indicator (TCI) field associated with the respective padding assignment.
  • RV redundancy version
  • MCS modulation and coding scheme index
  • TCI transmission configuration indicator
  • Example 57 The apparatus of Example 53, wherein the scheduling grant further comprises a resource indication indicating the wireless resources assigned by the scheduling grant, wherein the one or more TBs are mapped to the indicated wireless resources in an ordered sequence, and wherein the one or more corresponding padding assignments are excluded from mapping to the indicated wireless resources.
  • Example 58 The apparatus of Example 53, further comprising: means for transmitting a first sequence of acknowledgment indications for the scheduling grant, wherein the first sequence of acknowledgment indications comprises one or more first acknowledgment indications for the one or more real assignments and one or more second acknowledgment indications for the one or more padding assignments.
  • Example 59 The apparatus of Example 58, wherein the one or more first acknowledgment indications are in order prior to the one or more second acknowledgment indications in the first sequence of acknowledgment indications.
  • Example 60 The apparatus of Example 53, further comprising: means for transmitting a second sequence of acknowledgment indications for the plurality of TBs, wherein the second sequence of acknowledgment indications comprises one or more third acknowledgment indications of the one or more corresponding TBs of the plurality of TBs and one or more fourth acknowledgment indications of the one or more padding assignments for a set of the plurality of TBs.
  • Example 61 The apparatus of Example 60, wherein the one or more third acknowledgment indications are in order prior to the one or more fourth acknowledgment indications in the second sequence of acknowledgment indications.
  • Example 62 The apparatus of Example 60, wherein a total number of the one or more third acknowledgment indications and a total number of the one or more fourth acknowledgment indications sum to the configured maximum number of assignments.
  • various aspects may be implemented within other systems defined by 3GPP, such as Long-Term Evolution (LTE) , the Evolved Packet System (EPS) , the Universal Mobile Telecommunication System (UMTS) , and/or the Global System for Mobile (GSM) .
  • LTE Long-Term Evolution
  • EPS Evolved Packet System
  • UMTS Universal Mobile Telecommunication System
  • GSM Global System for Mobile
  • Various aspects may also be extended to systems defined by the 3rd Generation Partnership Project 2 (3GPP2) , such as CDMA2000 and/or Evolution-Data Optimized (EV-DO) .
  • 3GPP2 3rd Generation Partnership Project 2
  • EV-DO Evolution-Data Optimized
  • Other examples may be implemented within systems employing IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Ultra-Wideband (UWB) , Bluetooth, and/or other suitable systems.
  • Wi-Fi IEEE 802.11
  • WiMAX IEEE 8
  • the present disclosure uses the word “exemplary” to mean “serving as an example, instance, or illustration. ” Any implementation or aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects of the disclosure. Likewise, the term “aspects” does not require that all aspects of the disclosure include the discussed feature, advantage or mode of operation.
  • the present disclosure uses the term “coupled” to refer to a direct or indirect coupling between two objects. For example, if object A physically touches object B, and object B touches object C, then objects A and C may still be considered coupled to one another-even if they do not directly physically touch each other. For instance, a first object may be coupled to a second object even though the first object is never directly physically in contact with the second object.
  • circuit and “circuitry” broadly, to include both hardware implementations of electrical devices and conductors that, when connected and configured, enable the performance of the functions described in the present disclosure, without limitation as to the type of electronic circuits, as well as software implementations of information and instructions that, when executed by a processor, enable the performance of the functions described in the present disclosure.
  • FIGs. 1–9 One or more of the components, steps, features and/or functions illustrated in FIGs. 1–9 may be rearranged and/or combined into a single component, step, feature or function or embodied in several components, steps, or functions. Additional elements, components, steps, and/or functions may also be added without departing from novel features disclosed herein.
  • the apparatus, devices, and/or components illustrated in FIGs. 1–9 may be configured to perform one or more of the methods, features, or steps described herein.
  • the novel algorithms described herein may also be efficiently implemented in software and/or embedded in hardware.
  • “at least one of: a, b, or c” is intended to cover: a; b; c; a and b; a and c; b and c; and a, b and c. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Aspects of the disclosure relate to multiple transport blocks scheduling with downlink control information (DCI) and hybrid automatic repeat request (HARQ) ACK/NACK. In one example, a scheduling entity may transmit a scheduling grant to a scheduled entity. The scheduling grant may include one or more real assignments assigning wireless resources for one or more corresponding TBs over one or more slots. The one or more TBs may be less than a configured maximum number of assignments for a plurality of corresponding TBs per scheduling grant. The scheduling entity may use padding assignment without assigning resources for a corresponding TB for selective or dynamic multiple-TB resource assignment. Other aspects, embodiments, and features are also claimed and described.

Description

MULTIPLE TRANSPORT BLOCK SCHEDULING WITH DOWNLINK CONTROL INFORMATION AND HYBRID AUTOMATIC REPEAT REQUEST ACK/NACK TECHNICAL FIELD
The technology discussed below relates generally to wireless communication systems, and more particularly, to resource management with a downlink control information (DCI) message and hybrid automatic repeat request (HARQ) feedback.
INTRODUCTION
As the demand for mobile broadband access continues to increase, research and development for effective resource management with a downlink control information (DCI) message and hybrid automatic repeat request (HARQ) feedback to support the efficacious resource allocation continue. The efforts to advance wireless communication technologies are made not only to meet the growing demand for mobile broadband access, but to advance and enhance the user experience with mobile communications.
BRIEF SUMMARY OF SOME EXAMPLES
The following presents a simplified summary of one or more aspects of the present disclosure, to provide a basic understanding of such aspects. This summary is not an extensive overview of all contemplated features of the disclosure, and is intended neither to identify key or critical elements of all aspects of the disclosure nor to delineate the scope of any or all aspects of the disclosure. Its sole purpose is to present some concepts of one or more aspects of the disclosure in a simplified form as a prelude to the more detailed description that is presented later.
In various aspects, the disclosure generally relates to an efficient single downlink control information (DCI) message for multiple transport blocks (TBs) and its hybrid automatic repeat request (HARQ) feedback. In some scenarios, a scheduling entity may transmit a single DCI message including real assignments assigning wireless resources for TBs and padding assignments without assigning wireless resources. Thus, the scheduling entity may save unnecessary resources by using the padding assignments. A  scheduled entity may receive the single DCI message and generate HARQ feedback for the padding assignments even without assigned resources.
In some aspects of the disclosure, a scheduling entity may transmit a scheduling grant to a scheduled entity. The scheduling grant may include one or more real assignments configured to assign wireless resources for one or more corresponding TBs over one or more slots. The one or more TBs may be less than a configured maximum number of assignments for a plurality of corresponding TBs per scheduling grant. The scheduling entity may further communicate the one or more TBs with the scheduled entity. The scheduling grant may further include one or more padding assignments without assigning wireless resources for one or more corresponding disabled TBs. The scheduling entity may further receive a first sequence of acknowledgment indications for the scheduling grant. The first sequence of acknowledgment indications may include one or more first acknowledgment indications for the one or more real assignments and one or more second acknowledgment indications for the one or more padding assignments. The scheduling entity may further receive a second sequence of acknowledgment indications for the plurality of TBs. The second sequence of acknowledgment indications may include one or more third acknowledgment indications of the one or more corresponding TBs of the plurality of TBs and one or more fourth acknowledgment indications of the one or more padding assignments for a set of the plurality of TBs.
In some aspects of the disclosure, a scheduled entity may receive a scheduling grant from a scheduling entity. The scheduling grant may include one or more real assignments assigning wireless resources for one or more corresponding TBs over one or more slots. The one or more TBs may be less than a configured maximum number of assignments for a plurality of corresponding TBs per scheduling grant. The scheduled entity may communicate the one or more TBs with the scheduling entity. The scheduling grant may further include one or more padding assignments for one or more corresponding disabled TBs. The one or more padding assignments may not assign wireless resources. The scheduled entity may further transmit a sequence of acknowledgment indications for the scheduling grant. The sequence of acknowledgment indications may include one or more first acknowledgment indications for the one or more real assignments and one or more second acknowledgment indications for the one or more padding assignments. The scheduled entity may further transmit a sequence of acknowledgment indications for the plurality of TBs. The sequence of acknowledgment indications may include one or more first acknowledgment indications of the one or more  corresponding TBs of the plurality of TBs and one or more second acknowledgment indications of the one or more padding assignments for a set of the plurality of TBs
These and other aspects of the technology discussed herein will become more fully understood upon a review of the detailed description, which follows. Other aspects, features, and embodiments will become apparent to those of ordinary skill in the art upon reviewing the following description of specific, exemplary embodiments in conjunction with the accompanying figures. While the following description may discuss various advantages and features relative to certain embodiments and figures, all embodiments can include one or more of the advantageous features discussed herein. In other words, while this description may discuss one or more embodiments as having certain advantageous features, one or more of such features may also be used in accordance with the various embodiments discussed herein. In similar fashion, while this description may discuss exemplary embodiments as device, system, or method embodiments, it should be understood that such exemplary embodiments can be implemented in various devices, systems, and methods.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a schematic illustration of a wireless communication system according to some embodiments.
FIG. 2 is a conceptual illustration of an example of a radio access network according to some embodiments.
FIG. 3 is a schematic illustration of an organization of wireless resources in an air interface utilizing orthogonal frequency divisional multiplexing (OFDM) according to some embodiments.
FIG. 4 is a block diagram conceptually illustrating an example of a hardware implementation for a scheduling entity according to some embodiments.
FIG. 5 is a block diagram conceptually illustrating an example of a hardware implementation for a scheduled entity according to some embodiments.
FIG. 6 is a conceptual illustration of an example of a scheduling grant for multiple resource assignments for multiple transport blocks according to some embodiments.
FIG. 7 is a schematic illustration of an example of a scheduling grant for multiple resource assignments and their acknowledgment indications according to some embodiments.
FIG. 8 is a schematic illustration of an example of a scheduling grant for multiple resource assignments and their acknowledgment indications of transport blocks on assigned resources according to some embodiments.
FIG. 9 is a flow chart illustrating an exemplary process for multi-TB assignments with a single scheduling grant and their acknowledgment indications according to some embodiments.
FIG. 10 is a flow chart illustrating an exemplary process at a scheduled entity for multiple-TB assignments with a single scheduling grant and their acknowledgment indications according to some embodiments.
FIG. 11 is a flow chart illustrating an exemplary process at a scheduling entity for multiple-TB assignments with a single scheduling grant and their acknowledgment indications according to some embodiments.
DETAILED DESCRIPTION
The detailed description set forth below in connection with the appended drawings is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of various concepts. However, those skilled in the art will readily recognize that these concepts may be practiced without these specific details. In some instances, this description provides well known structures and components in block diagram form in order to avoid obscuring such concepts.
While this description describes aspects and embodiments by illustration to some examples, those skilled in the art will understand that additional implementations and use cases may come about in many different arrangements and scenarios. Innovations described herein may be implemented across many differing platform types, devices, systems, shapes, sizes, packaging arrangements. For example, embodiments and/or uses may come about via integrated chip (IC) embodiments and other non-module-component based devices (e.g., end-user devices, vehicles, communication devices, computing devices, industrial equipment, retail/purchasing devices, medical devices, artificial intelligence (AI) -enabled devices, etc. ) . While some examples may or may not be specifically directed to use cases or applications, a wide assortment of applicability of described innovations may occur. Implementations may span over a spectrum from chip- level or modular components to non-modular, non-chip-level implementations and further to aggregate, distributed, or original equipment manufacturer (OEM) devices or systems incorporating one or more aspects of the disclosed technology. In some practical settings, devices incorporating described aspects and features may also necessarily include additional components and features for implementation and practice of claimed and described embodiments. For example, transmission and reception of wireless signals necessarily includes a number of components for analog and digital purposes (e.g., hardware components including antenna, radio frequency (RF) chains, power amplifiers, modulators, buffer, processor (s) , interleaver, adders/summers, etc. ) . It is intended that the disclosed technology may be practiced in a wide variety of devices, chip-level components, systems, distributed arrangements, end-user devices, etc. of varying sizes, shapes and constitution.
The disclosure that follows presents various concepts that may be implemented across a broad variety of telecommunication systems, network architectures, and communication standards. Referring now to FIG. 1, as an illustrative example without limitation, this schematic illustration shows various aspects of the present disclosure with reference to a wireless communication system 100. The wireless communication system 100 includes several interacting domains: a core network 102, a radio access network (RAN) 104, and a user equipment (UE) 106. By virtue of the wireless communication system 100, the UE 106 may be enabled to carry out data communication with an external data network 110, such as (but not limited to) the Internet.
The RAN 104 may implement any suitable wireless communication technology or technologies to provide radio access to the UE 106. As one example, the RAN 104 may operate according to 3rd Generation Partnership Project (3GPP) New Radio (NR) specifications, often referred to as 5G or 5G NR. In some examples, the RAN 104 may operate under a hybrid of 5G NR and Evolved Universal Terrestrial Radio Access Network (eUTRAN) standards, often referred to as Long-Term Evolution (LTE) . 3GPP refers to this hybrid RAN as a next-generation RAN, or NG-RAN. Of course, many other examples may be utilized within the scope of the present disclosure.
As illustrated, the RAN 104 includes a plurality of base stations 108. Broadly, a base station is a network element in a radio access network responsible for radio transmission and reception in one or more cells to or from a UE. In different technologies, standards, or contexts, those skilled in the art may variously refer to a “base station” as a base transceiver station (BTS) , a radio base station, a radio transceiver, a transceiver  function, a basic service set (BSS) , an extended service set (ESS) , an access point (AP) , a Node B (NB) , an eNode B (eNB) , a gNode B (gNB) , or some other suitable terminology.
The RAN 104 supports wireless communication for multiple mobile apparatuses. Those skilled in the art may refer to a mobile apparatus as a UE, as in 3GPP specifications, but may also refer to a UE as a mobile station (MS) , a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal (AT) , a mobile terminal, a wireless terminal, a remote terminal, a handset, a terminal, a user agent, a mobile client, a client, or some other suitable terminology. A UE may be an apparatus that provides access to network services. A UE may take on many forms and can include a range of devices.
Within the present document, a “mobile” apparatus (aka a UE) need not necessarily have a capability to move, and may be stationary. The term mobile apparatus or mobile device broadly refers to a diverse array of devices and technologies. UEs may include a number of hardware structural components sized, shaped, and arranged to help in communication; such components can include antennas, antenna arrays, RF chains, amplifiers, one or more processors, etc. electrically coupled to each other. For example, some non-limiting examples of a mobile apparatus include a mobile, a cellular (cell) phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal computer (PC) , a notebook, a netbook, a smartbook, a tablet, a personal digital assistant (PDA) , and a broad array of embedded systems, e.g., corresponding to an “Internet of things” (IoT) . A mobile apparatus may additionally be an automotive or other transportation vehicle, a remote sensor or actuator, a robot or robotics device, a satellite radio, a global positioning system (GPS) device, an object tracking device, a drone, a multi-copter, a quad-copter, a remote control device, a consumer and/or wearable device, such as eyewear, a wearable camera, a virtual reality device, a smart watch, a health or fitness tracker, a digital audio player (e.g., MP3 player) , a camera, a game console, etc. A mobile apparatus may additionally be a digital home or smart home device such as a home audio, video, and/or multimedia device, an appliance, a vending machine, intelligent lighting, a home security system, a smart meter, etc. A mobile apparatus may additionally be a smart energy device, a security device, a solar panel or solar array, a municipal infrastructure device controlling electric power (e.g., a smart grid) , lighting, water, etc.; an industrial automation and enterprise device; a logistics controller; agricultural equipment; military defense equipment, vehicles, aircraft, ships, and weaponry, etc. Still  further, a mobile apparatus may provide for connected medicine or telemedicine support, e.g., health care at a distance. Telehealth devices may include telehealth monitoring devices and telehealth administration devices, whose communication may be given preferential treatment or prioritized access over other types of information, e.g., in terms of prioritized access for transport of critical service data, and/or relevant QoS for transport of critical service data.
Wireless communication between a RAN 104 and a UE 106 may be described as utilizing an air interface. Transmissions over the air interface from a base station (e.g., base station 108) to one or more UEs (e.g., UE 106) may be referred to as downlink (DL) transmission. In accordance with certain aspects of the present disclosure, the term downlink may refer to a point-to-multipoint transmission originating at a scheduling entity (described further below; e.g., base station 108) . Another way to describe this scheme may be to use the term broadcast channel multiplexing. Transmissions from a UE (e.g., UE 106) to a base station (e.g., base station 108) may be referred to as uplink (UL) transmissions. In accordance with further aspects of the present disclosure, the term uplink may refer to a point-to-point transmission originating at a scheduled entity (described further below; e.g., UE 106) .
In some examples, access to the air interface may be scheduled, wherein a scheduling entity (e.g., a base station 108) allocates resources for communication among some or all devices and equipment within its service area or cell. Within the present disclosure, as discussed further below, the scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for one or more scheduled entities. That is, for scheduled communication, UEs 106, which may be scheduled entities, may utilize resources allocated by the scheduling entity 108. In some examples, the scheduling entity may transmit a scheduling grant including multiple resource assignments assigning resources for multiple transport blocks (TBs) . Based on the scheduling grant, the scheduling entity may communicate the multiple TBs with the scheduled entity.
Base stations 108 are not the only entities that may function as scheduling entities. That is, in some examples, a UE may function as a scheduling entity, scheduling resources for one or more scheduled entities (e.g., one or more other UEs) .
As illustrated in FIG. 1, a scheduling entity 108 may broadcast downlink traffic 112 to one or more scheduled entities 106. Broadly, the scheduling entity 108 is a node or device responsible for scheduling traffic in a wireless communication network,  including the downlink traffic 112 and, in some examples, uplink traffic 116 from one or more scheduled entities 106 to the scheduling entity 108. On the other hand, the scheduled entity 106 is a node or device that receives downlink control information 114, including but not limited to scheduling information (e.g., a grant) , synchronization or timing information, or other control information from another entity in the wireless communication network such as the scheduling entity 108.
In general, base stations 108 may include a backhaul interface for communication with a backhaul portion 120 of the wireless communication system. The backhaul 120 may provide a link between a base station 108 and the core network 102. Further, in some examples, a backhaul network may provide interconnection between the respective base stations 108. Various types of backhaul interfaces may be employed, such as a direct physical connection, a virtual network, or the like using any suitable transport network.
The core network 102 may be a part of the wireless communication system 100, and may be independent of the radio access technology used in the RAN 104. In some examples, the core network 102 may be configured according to 5G standards (e.g., 5GC) . In other examples, the core network 102 may be configured according to a 4G evolved packet core (EPC) , or any other suitable standard or configuration.
FIG. 2 provides a schematic illustration of a RAN 200, by way of example and without limitation. In some examples, the RAN 200 may be the same as the RAN 104 described above and illustrated in FIG. 1. The geographic area covered by the RAN 200 may be divided into cellular regions (cells) that a user equipment (UE) can uniquely identify based on an identification broadcasted from one access point or base station. FIG. 2 illustrates  macrocells  202, 204, and 206, and a small cell 208, each of which may include one or more sectors (not shown) . A sector is a sub-area of a cell. All sectors within one cell are served by the same base station. A radio link within a sector can be identified by a single logical identification belonging to that sector. In a cell that is divided into sectors, the multiple sectors within a cell can be formed by groups of antennas with each antenna responsible for communication with UEs in a portion of the cell.
FIG. 2 shows two base stations 210 and 212 in  cells  202 and 204; and shows a third base station 214 controlling a remote radio head (RRH) 216 in cell 206. That is, a base station can have an integrated antenna or can be connected to an antenna or RRH by feeder cables. In the illustrated example, the  cells  202, 204, and 206 may be referred to as macrocells, as the  base stations  210, 212, and 214 support cells having a large size. Further, a base station 218 is shown in the small cell 208 (e.g., a microcell, picocell,  femtocell, home base station, home Node B, home eNode B, etc. ) which may overlap with one or more macrocells. In this example, the cell 208 may be referred to as a small cell, as the base station 218 supports a cell having a relatively small size. Cell sizing can be done according to system design as well as component constraints.
The RAN 200 may include any number of wireless base stations and cells. Further, a RAN may include a relay node to extend the size or coverage area of a given cell. The  base stations  210, 212, 214, 218 provide wireless access points to a core network for any number of mobile apparatuses. In some examples, the  base stations  210, 212, 214, and/or 218 may be the same as the base station/scheduling entity 108 described above and illustrated in FIG. 1.
FIG. 2 further includes a quadcopter or drone 220, which may be configured to function as a base station. That is, in some examples, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile base station such as the quadcopter 220.
Within the RAN 200, the cells may include UEs that may be in communication with one or more sectors of each cell. Further, each  base station  210, 212, 214, 218, and 220 may be configured to provide an access point to a core network 102 (see FIG. 1) for all the UEs in the respective cells. For example,  UEs  222 and 224 may be in communication with base station 210;  UEs  226 and 228 may be in communication with base station 212;  UEs  230 and 232 may be in communication with base station 214 by way of RRH 216; UE 234 may be in communication with base station 218; and UE 236 may be in communication with mobile base station 220. In some examples, the  UEs  222, 224, 226, 228, 230, 232, 234, 236, 238, 240, and/or 242 may be the same as the UE/scheduled entity 106 described above and illustrated in FIG. 1.
In some examples, a mobile network node (e.g., quadcopter 220) may be configured to function as a UE. For example, the quadcopter 220 may operate within cell 202 by communicating with base station 210.
In a further aspect of the RAN 200, sidelink signals may be used between UEs without necessarily relying on scheduling or control information from a base station. For example, two or more UEs (e.g., UEs 226 and 228) may communicate with each other using peer to peer (P2P) or sidelink signals 227 without relaying that communication through a base station (e.g., base station 212) . In a further example, UE 238 is illustrated communicating with  UEs  240 and 242. Here, the UE 238 may function as a scheduling entity or a primary sidelink device, and  UEs  240 and 242 may function as a scheduled  entity or a non-primary (e.g., secondary) sidelink device. In still another example, a UE may function as a scheduling entity in a device-to-device (D2D) , peer-to-peer (P2P) , or vehicle-to-vehicle (V2V) network, and/or in a mesh network. In a mesh network example,  UEs  240 and 242 may optionally communicate directly with one another in addition to communicating with the scheduling entity 238. Thus, in a wireless communication system with scheduled access to time–frequency resources and having a cellular configuration, a P2P configuration, or a mesh configuration, a scheduling entity and one or more scheduled entities may communicate utilizing the scheduled resources. The increased mobile communications between a scheduling entity and one or more scheduled entities may make a scheduling entity to manage more data transmissions and effectively manage resources. Within the present disclosure, as discussed further below, a scheduling grant (e.g., a DCI message) may assign resources for multiple TB transmissions using multiple resource assignments in the scheduling grant and manages resources for multiple TB transmissions.
FIG. 3 schematically illustrates various aspects of the present disclosure with reference to an OFDM waveform. Those of ordinary skill in the art should understand that the various aspects of the present disclosure may be applied to a DFT-s-OFDMA waveform in substantially the same way as described herein below. That is, while some examples of the present disclosure may focus on an OFDM link for clarity, it should be understood that the same principles may be applied as well to DFT-s-OFDMA waveforms.
In some examples, a frame may refer to a predetermined duration of time (e.g., 10 ms) for wireless transmissions. And further, each frame may consist of a set of subframes (e.g., 10 subframes of 1 ms each) . A given carrier may include one set of frames in the UL, and another set of frames in the DL. FIG. 3 illustrates an expanded view of an exemplary DL subframe 302, showing an OFDM resource grid 304. However, as those skilled in the art will readily appreciate, the PHY transmission structure for any particular application may vary from the example described here, depending on any number of factors. Here, time is in the horizontal direction with units of OFDM symbols; and frequency is in the vertical direction with units of subcarriers or tones.
The resource grid 304 may schematically represent time–frequency resources for a given antenna port. That is, in a MIMO implementation with multiple antenna ports available, a corresponding multiple number of resource grids 304 may be available for communication. The resource grid 304 is divided into multiple resource elements (REs)  306. An RE, which is 1 subcarrier × 1 symbol, is the smallest discrete part of the time–frequency grid, and may contain a single complex value representing data from a physical channel or signal. Depending on the modulation utilized in a particular implementation, each RE may represent one or more bits of information. In some examples, a block of REs may be referred to as a physical resource block (PRB) or more simply a resource block (RB) 308, which contains any suitable number of consecutive subcarriers in the frequency domain. In one example, an RB may include 12 subcarriers, a number independent of the numerology used. In some examples, depending on the numerology, an RB may include any suitable number of consecutive OFDM symbols in the time domain. The present disclosure assumes, by way of example, that a single RB such as the RB 308 entirely corresponds to a single direction of communication (either transmission or reception for a given device) .
A UE generally utilizes only a subset of the resource grid 304. An RB may be the smallest unit of resources that a scheduler can allocate to a UE. Thus, the more RBs scheduled for a UE, and the higher the modulation scheme chosen for the air interface, the higher the data rate for the UE.
In this illustration, the RB 308 occupies less than the entire bandwidth of the subframe 302, with some subcarriers illustrated above and below the RB 308. In a given implementation, the subframe 302 may have a bandwidth corresponding to any number of one or more RBs 308. Further, the RB 308 is shown occupying less than the entire duration of the subframe 302, although this is merely one possible example.
Each 1 ms subframe 302 may consist of one or multiple adjacent slots. In FIG. 3, one subframe 302 includes four slots 310, as an illustrative example. In some examples, a slot may be defined according to a specified number of OFDM symbols with a given cyclic prefix (CP) length. For example, a slot may include 7 or 14 OFDM symbols with a normal CP. In some examples, a slot may include 12 OFDM symbols with an extended CP. Additional examples may include mini-slots having a shorter duration (e.g., one or two OFDM symbols) . A base station may in some cases transmit these mini-slots occupying resources scheduled for ongoing slot transmissions for the same or for different UEs.
An expanded view of one of the slots 310 illustrates the slot 310 including a control region 312 and a data region 314. In general, the control region 312 may carry control channels (e.g., PDCCH) , and the data region 314 may carry data channels (e.g., PDSCH or PUSCH) . Of course, a slot may contain all DL, all UL, or at least one DL  portion and at least one UL portion. In some examples, one slot may include one or two PDSCHs or PUSCHs. The one or two PDSCHs or PUSCHs in a slot may correspond to one or two transport blocks (TBs) . The simple structure illustrated in FIG. 3 is merely exemplary in nature, and different slot structures may be utilized, and may include one or more of each of the control region (s) and data region (s) .
Although not illustrated in FIG. 3, the various REs 306 within an RB 308 may carry one or more physical channels, including control channels, shared channels, data channels, etc. Other REs 306 within the RB 308 may also carry pilots or reference signals. These pilots or reference signals may provide for a receiving device to perform channel estimation of the corresponding channel, which may enable coherent demodulation/detection of the control and/or data channels within the RB 308.
In a DL transmission, the transmitting device (e.g., the scheduling entity 108) may allocate one or more REs 306 (e.g., within a control region 312) to carry one or more DL control channels. These DL control channels may include a DL control information 114 (DCI) message that generally carries information originating from higher layers, such as a physical broadcast channel (PBCH) , a physical downlink control channel (PDCCH) , etc., to one or more scheduled entities 106. In addition, the transmitting device may allocate one or more DL REs to carry DL physical signals that generally do not carry information originating from higher layers. These DL physical signals may include a primary synchronization signal (PSS) ; a secondary synchronization signal (SSS) ; demodulation reference signals (DM-RS) ; phase-tracking reference signals (PT-RS) ; channel-state information reference signals (CSI-RS) ; etc.
A base station may transmit the synchronization signals PSS and SSS (collectively referred to as SS) , and in some examples, the PBCH, in an SS block that includes 4 consecutive OFDM symbols, numbered via a time index in increasing order from 0 to 3. In the frequency domain, the SS block may extend over 240 contiguous subcarriers, with the subcarriers being numbered via a frequency index in increasing order from 0 to 239. Of course, the present disclosure is not limited to this specific SS block configuration. Other nonlimiting examples may utilize greater or fewer than two synchronization signals; may include one or more supplemental channels in addition to the PBCH; may omit a PBCH; and/or may utilize nonconsecutive symbols for an SS block, within the scope of the present disclosure.
The PDCCH may carry a downlink control information (DCI) message for one or more UEs in a cell. This can include, but is not limited to, power control commands,  scheduling information, a grant, and/or an assignment of REs for DL and UL transmissions.
In an UL transmission, a transmitting device (e.g., a scheduled entity 106) may utilize one or more REs 306 to carry one or more UL control channels, such as a physical uplink control channel (PUCCH) , a physical random access channel (PRACH) , etc. These UL control channels include UL control information 118 (UCI) that generally carries information originating from higher layers. Further, UL REs may carry UL physical signals that generally do not carry information originating from higher layers, such as demodulation reference signals (DM-RS) , phase-tracking reference signals (PT-RS) , sounding reference signals (SRS) , etc. In some examples, the control information 118 may include a scheduling request (SR) , i.e., a request for the scheduling entity 108 to schedule uplink transmissions. Here, in response to the SR transmitted on the control channel 118, the scheduling entity 108 may transmit downlink control information 114 that may schedule resources for uplink packet transmissions.
UL control information may also include hybrid automatic repeat request (HARQ) feedback such as an acknowledgment (ACK) or negative acknowledgment (NACK) , channel state information (CSI) , or any other suitable UL control information. HARQ is a technique well-known to those of ordinary skill in the art, wherein a receiving device can check the integrity of packet transmissions for accuracy, e.g., utilizing any suitable integrity checking mechanism, such as a checksum or a cyclic redundancy check (CRC) . If the receiving device confirms the integrity of the transmission, it may transmit an ACK, whereas if not confirmed, it may transmit a NACK. In response to a NACK, the transmitting device may send a HARQ retransmission, which may implement chase combining, incremental redundancy, etc. In some examples, the scheduled entity may use HARQ ACK/NACK feedback for acknowledging a received DCI message, which includes multiple resource assignments and/or received TBs.
In addition to control information, one or more REs 406 (e.g., within the data region 414) may be allocated for user data or traffic data. Such traffic may be carried on one or more traffic channels, such as, for a DL transmission, a physical downlink shared channel (PDSCH) ; or for an UL transmission, a physical uplink shared channel (PUSCH) .
In order for a UE to gain initial access to a cell, the RAN may provide system information (SI) characterizing the cell. The RAN may provide this system information utilizing minimum system information (MSI) , and other system information (OSI) . The RAN may periodically broadcast the MSI over the cell to provide the most basic  information a UE requires for initial cell access, and for enabling a UE to acquire any OSI that the RAN may broadcast periodically or send on-demand. In some examples, a network may provide MSI over two different downlink channels. For example, the PBCH may carry a master information block (MIB) , and the PDSCH may carry a system information block type 1 (SIB1) . Here, the MIB may provide a UE with parameters for monitoring a control resource set. The control resource set may thereby provide the UE with scheduling information corresponding to the PDSCH, e.g., a resource location of SIB1. In the art, SIB1 may be referred to as remaining minimum system information (RMSI) .
OSI may include any SI that is not broadcast in the MSI. In some examples, the PDSCH may carry a plurality of SIBs, not limited to SIB1, discussed above. Here, the RAN may provide the OSI in these SIBs, e.g., SIB2 and above.
The channels or carriers described above and illustrated in FIGs. 1 and 3 are not necessarily all the channels or carriers that may be utilized between a scheduling entity 108 and scheduled entities 106, and those of ordinary skill in the art will recognize that other channels or carriers may be utilized in addition to those illustrated, such as other traffic, control, and feedback channels.
In some examples, a physical layer may generally multiplex and map these physical channels described above to transport channels for handling at a medium access control (MAC) layer entity. Transport channels carry blocks of information called transport blocks (TB) . A TB may correspond to a physical channel (e.g., PDSCH, PUSCH) . In some examples, a DCI may include multiple resource assignments for multiple corresponding TBs on corresponding physical channels (e.g., PDSCHs or PUSCHs) . The transport block size (TBS) , which may correspond to a number of bits of information, may be a controlled parameter, based on the modulation and coding scheme (MCS) and the number of RBs in a given transmission.
FIG. 4 is a block diagram illustrating an example of a hardware implementation for a scheduling entity 400 employing a processing system 414. For example, the scheduling entity 400 may be a user equipment (UE) as illustrated in any one or more of FIGs. 1, 2, 3, and/or 6–8. In another example, the scheduling entity 400 may be a base station as illustrated in any one or more of FIGs. 1, 2, 3, and/or 6–8.
The scheduling entity 400 may include a processing system 414 having one or more processors 404. Examples of processors 404 include microprocessors, microcontrollers, digital signal processors (DSPs) , field programmable gate arrays  (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure. In various examples, the scheduling entity 400 may be configured to perform any one or more of the functions described herein. That is, the processor 404, as utilized in a scheduling entity 400, may be configured (e.g., in coordination with the memory 405) to implement any one or more of the processes and procedures described below and illustrated in FIG. 9.
The processing system 414 may be implemented with a bus architecture, represented generally by the bus 402. The bus 402 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 414 and the overall design constraints. The bus 402 communicatively couples together various circuits including one or more processors (represented generally by the processor 404) , a memory 405, and computer-readable media (represented generally by the computer-readable medium 406) . The bus 402 may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore, will not be described any further. A bus interface 408 provides an interface between the bus 402 and a transceiver 410. The transceiver 410 provides a communication interface or means for communicating with various other apparatus over a transmission medium. Depending upon the nature of the apparatus, a user interface 412 (e.g., keypad, display, speaker, microphone, joystick) may also be provided. Of course, such a user interface 412 is optional, and some examples, such as a base station, may omit it.
In some aspects of the disclosure, the processor 404 may include communication controlling circuitry 440 configured (e.g., in coordination with the memory 405) for various functions, including, e.g., transmitting a scheduling grant to a scheduled entity, communicating the one or more TBs with the scheduled entity, transmitting a multiple-TB assignment indication indicating the configured maximum number of assignments for the plurality of corresponding TBs per scheduling grant, receiving a sequence of acknowledgment indications for the scheduling grant, and/or receiving a sequence of acknowledgment indications for the plurality of TBs. For example, the communication controlling circuitry 440 may be configured to implement one or more of the functions described below in relation to FIG. 9, including, e.g., blocks 912, 914, 916, 918, and/or 922.
In some aspects of the disclosure, the processor 404 may further include resource assignment circuitry 442 configured (e.g., in coordination with the memory 405) for various functions, including, e.g., assigning wireless resources for one or more corresponding TBs over one or more slots, mapping the one or more TBs to the indicated wireless resources in an ordered sequence, and/or excluding the one or more padding assignments from mapping to the indicated wireless resources. For example, the resource assignment circuitry 442 may be configured to implement one or more of the functions described below in relation to FIG. 9, including, e.g., block 914.
In some aspects of the disclosure, the processor 404 may further include scheduling circuitry 444 configured (e.g., in coordination with the memory 405) for various functions, including, e.g., generating one or more padding assignments without assigning wireless resources for one or more corresponding disabled TBs, mapping a set of the plurality of TCI fields to the one or more TBs based in the ordered sequence, using a predetermined value in at least one of: a redundancy version (RV) field, a modulation and coding scheme index (MCS) field, or a transmission configuration indicator (TCI) field associated with the corresponding padding assignment, generating padding NACKs for padding assignments in a scheduling grant; and/or generating padding NACKs for disabled TBs for padding assignments. For example, the scheduling circuitry 444 may be configured to implement one or more of the functions described below in relation to FIG. 9, including, e.g., blocks 934, 936, and/or 944.
The processor 404 is responsible for managing the bus 402 and general processing, including the execution of software stored on the computer-readable medium 406. The software, when executed by the processor 404, causes the processing system 414 to perform the various functions described below for any particular apparatus. The processor 404 may also use the computer-readable medium 406 and the memory 405 for storing data that the processor 404 manipulates when executing software.
One or more processors 404 in the processing system may execute software. Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. The software may reside on a computer-readable medium 406. The computer-readable medium 406 may be a non-transitory computer-readable medium. A non-transitory  computer-readable medium includes, by way of example, a magnetic storage device (e.g., hard disk, floppy disk, magnetic strip) , an optical disk (e.g., a compact disc (CD) or a digital versatile disc (DVD) ) , a smart card, a flash memory device (e.g., a card, a stick, or a key drive) , a random access memory (RAM) , a read only memory (ROM) , a programmable ROM (PROM) , an erasable PROM (EPROM) , an electrically erasable PROM (EEPROM) , a register, a removable disk, and any other suitable medium for storing software and/or instructions that may be accessed and read by a computer. The computer-readable medium 406 may reside in the processing system 414, external to the processing system 414, or distributed across multiple entities including the processing system 414. The computer-readable medium 406 may be embodied in a computer program product. By way of example, a computer program product may include a computer-readable medium in packaging materials. Those skilled in the art will recognize how best to implement the described functionality presented throughout this disclosure depending on the particular application and the overall design constraints imposed on the overall system.
In one or more examples, the computer-readable storage medium 406 may store computer-executable code that includes communication controlling instructions 452 that configure a scheduling entity 400 for various functions, including, e.g., transmitting a scheduling grant to a scheduled entity, communicating the one or more TBs with the scheduled entity, transmitting a multiple-TB assignment indication indicating the configured maximum number of assignments for the plurality of corresponding TBs per scheduling grant, receiving a sequence of acknowledgment indications for the scheduling grant, and/or receiving a sequence of acknowledgment indications for the plurality of TBs. For example, the communication controlling instructions 452 may be configured to cause a scheduling entity 400 to implement one or more of the functions described below in relation to FIG. 9, including, e.g., blocks 912, 914, 916, 918, and/or 922.
In one or more examples, the computer-readable storage medium 406 may store computer-executable code that includes resource assignment instructions 454 that configure a scheduling entity 400 for various functions, including, e.g., assigning wireless resources for one or more corresponding TBs over one or more slots, mapping the one or more TBs to the indicated wireless resources in an ordered sequence, and/or excluding the one or more padding assignments from mapping to the indicated wireless resources. For example, the resource assignment instructions 454 may be configured to cause a  scheduling entity 400 to implement one or more of the functions described below in relation to FIG. 9, including, e.g., block 914.
In one or more examples, the computer-readable storage medium 406 may store computer-executable code that includes scheduling instructions 456 that configure a scheduling entity 400 for various functions, including, e.g., generating one or more padding assignments without assigning wireless resources for one or more corresponding disabled TBs, mapping a set of the plurality of TCI fields to the one or more TBs based in the ordered sequence, using a predetermined value in at least one of: a redundancy version (RV) field, a modulation and coding scheme index (MCS, IMCS, or IMCS) field, or a transmission configuration indicator (TCI) field associated with the corresponding padding assignment, generating padding NACKs for padding assignments in a scheduling grant; and/or generating padding NACKs for disabled TBs for padding assignments. For example, the scheduling instructions 456 may be configured to cause a scheduling entity 400 to implement one or more of the functions described below in relation to FIG. 9, including, e.g., blocks 934, 936, and/or 944.
In one configuration, the apparatus 400 for wireless communication includes means for transmitting a scheduling grant to a scheduled entity, means for communicating the one or more TBs with the scheduled entity, means for transmitting a multiple-TB assignment indication indicating the configured maximum number of assignments for the plurality of corresponding TBs per scheduling grant, means for receiving a sequence of acknowledgment indications for the scheduling grant, means for receiving a sequence of acknowledgment indications for the plurality of TBs, means for assigning wireless resources for one or more corresponding TBs over one or more slots, generating one or more padding assignments without assigning wireless resources for one or more corresponding disabled TBs, means for mapping a set of the plurality of TCI fields to the one or more TBs based in the ordered sequence, means for using a predetermined value in at least one of: a redundancy version (RV) field, a modulation and coding scheme index (MCS, IMCS, or IMCS) field, or a transmission configuration indicator (TCI) field associated with the corresponding padding assignment, means for mapping the one or more TBs to the indicated wireless resources in an ordered sequence, and/or means for excluding the one or more padding assignments from mapping to the indicated wireless resources. In one aspect, the aforementioned means may be the processor (s) 404 configured to perform the functions recited by the aforementioned means. In another  aspect, the aforementioned means may be a circuit or any apparatus configured to perform the functions recited by the aforementioned means.
Of course, in the above examples, the circuitry included in the processor 404 is merely provided as an example, and other means for carrying out the described functions may be included within various aspects of the present disclosure, including but not limited to the instructions stored in the computer-readable storage medium 406, or any other suitable apparatus or means described in any one of the FIGs. 1, 2, 3, and/or 6–8, and utilizing, for example, the processes and/or algorithms described herein in relation to FIG. 9.
FIG. 5 is a conceptual diagram illustrating an example of a hardware implementation for an exemplary scheduled entity 500 employing a processing system 514. In accordance with various aspects of the disclosure, a processing system 514 may include an element, or any portion of an element, or any combination of elements having one or more processors 504. For example, the scheduled entity 500 may be a user equipment (UE) as illustrated in any one or more of FIGs. 1, 2, 3, and/or 6–8.
The processing system 514 may be substantially the same as the processing system 414 illustrated in FIG. 4, including a bus interface 508, a bus 502, memory 505, a processor 504, and a computer-readable medium 506. Furthermore, the scheduled entity 500 may include a user interface 512 and a transceiver 510 substantially similar to those described above in FIG. 4. That is, the processor 504, as utilized in a scheduled entity 500, may be configured (e.g., in coordination with the memory 505) to implement any one or more of the processes described below and illustrated in FIG. 9.
In some aspects of the disclosure, the processor 504 may include communication controlling circuitry 540 configured (e.g., in coordination with the memory 505) for various functions, including, for example, receiving a scheduling grant from a scheduling entity, communicating the one or more TBs with the scheduling entity, receiving a multiple-TB assignment indication indicating the configured maximum number of assignments for the plurality of corresponding TBs per scheduling grant, transmitting a sequence of acknowledgment indications for the scheduling grant, and/or transmitting a sequence of acknowledgment indications for the plurality of TBs. For example, the communication controlling circuitry 540 may be configured to implement one or more of the functions described below in relation to FIG. 9, including, e.g., blocks 932, 934, 936, 940, and/or 944.
In some aspects of the disclosure, the processor 504 may further include HARQ determining circuitry 542 configured (e.g., in coordination with the memory 505) for various functions, including, for example, determining one or more first acknowledgment indications for the one or more real assignments and one or more second acknowledgment indications for the one or more padding assignments, and/or determining one or more first acknowledgment indications of the one or more corresponding TBs of the plurality of TBs and one or more second acknowledgment indications of the one or more padding assignments for a set of the plurality of TBs. For example, the HARQ determining circuitry 542 may be configured to implement one or more of the functions described below in relation to FIG. 9, including, e.g., blocks 936, and/or 944.
And further, the computer-readable storage medium 506 may store computer-executable code that includes communication controlling instructions 552 that configure a scheduled entity 500 for various functions, including, e.g., receiving a scheduling grant from a scheduling entity, communicating the one or more TBs with the scheduling entity, receiving a multiple-TB assignment indication indicating the configured maximum number of assignments for the plurality of corresponding TBs per scheduling grant, transmitting a sequence of acknowledgment indications for the scheduling grant, and/or transmitting a sequence of acknowledgment indications for the plurality of TBs. For example, the communication controlling instructions 552 may be configured to cause a scheduled entity 500 to implement one or more of the functions described below in relation to FIG. 9, including, e.g., blocks 932, 934, 936, 940, and/or 944.
The computer-readable storage medium 506 may further store computer-executable code that includes HARQ determining instructions 554 that configure a scheduled entity 500 for various functions, including, e.g., determining one or more first acknowledgment indications for the one or more real assignments and one or more second acknowledgment indications for the one or more padding assignments, and/or determining one or more first acknowledgment indications of the one or more corresponding TBs of the plurality of TBs and one or more second acknowledgment indications of the one or more padding assignments for a set of the plurality of TBs. For example, the HARQ determining instructions 554 may be configured to cause a scheduled entity 500 to implement one or more of the functions described below in relation to FIG. 9, including, e.g., blocks 936, and/or 944.
In one configuration, the apparatus 500 for wireless communication includes means for receiving a scheduling grant from a scheduling entity, means for  communicating the one or more TBs with the scheduling entity, means for receiving a multiple-TB assignment indication indicating the configured maximum number of assignments for the plurality of corresponding TBs per scheduling grant, means for transmitting a sequence of acknowledgment indications for the scheduling grant, means for transmitting a sequence of acknowledgment indications for the plurality of TB, means for determining one or more first acknowledgment indications for the one or more real assignments and one or more second acknowledgment indications for the one or more padding assignments, and/or means for determining one or more first acknowledgment indications of the one or more corresponding TBs of the plurality of TBs and one or more second acknowledgment indications of the one or more padding assignments for a set of the plurality of TBs. In one aspect, the aforementioned means may be the processor (s) 504 shown in FIG. 5 configured to perform the functions recited by the aforementioned means. In another aspect, the aforementioned means may be a circuit or any apparatus configured to perform the functions recited by the aforementioned means.
Of course, in the above examples, the circuitry included in the processor 504 is merely provided as an example, and other means for carrying out the described functions may be included within various aspects of the present disclosure, including but not limited to the instructions stored in the computer-readable storage medium 506, or any other suitable apparatus or means described in any one of the FIGs. 1, 2, 3 and/or 6–8, and utilizing, for example, the processes and/or algorithms described herein in relation to FIG. 9.
FIG. 6 is a conceptual illustration of an example of control information 612 for multiple-transport block (TB) resource assignments for  TBs  614, 624 in accordance with some aspects of the present disclosure. As explained above in relation to FIG. 3, a slot 610 may include a control region 612 and data region (s) 614, 616. The control region 612 may carry a control channel (e.g., physical downlink control channel (PDCCH) ) . For example, the control channel 612 may carry a scheduling grant (e.g., a downlink control information (DCI) message) for assigning wireless resources for one or more TBs over the data region (s) 614, 616. In some examples, a DCI message 612 may indicate a downlink (DL) resource assignment assigning resources on a physical downlink shared channel (PDSCH) (e.g., using DCI Format 1_0, DCI Format 1_1, or DCI Format 1_2) and/or an uplink (UL) resource assignment assigning resources for one or more TBs on a physical uplink shared channel (PUSCH) (e.g., using DCI Format 0_0, DCI Format 0_1, or DCI Format 0_2) . The  data region  614, 616 may carry one or more data channels (e.g.,  physical downlink shared channel (PDSCH) , physical uplink shared channel (PUSCH) ) . In some examples, a data channel 612 (e.g., PDSCH, PUSCH) may carry its own TB within a slot.
In some examples, a single scheduling grant 612 (e.g., a DCI message) may include multiple resource assignments assigning resources for multiple TBs on multiple corresponding PDSCHs and/or  PUSCHs  614, 624 in  multiple slots  610, 620. In some examples, a scheduling entity may transmit to a scheduled entity, a single scheduling grant 612 (e.g., a DCI message) in a control region 612 (e.g., a PDCCH) . The single scheduling grant 612 may include a multiple-TB resource assignment corresponding to  data regions  614, 624 in multiple slots. For example, the scheduling entity may transmit a single DCI message 612 assigning resources for a first TB on a first PDSCH over a first slot 610. The single DCI message 612 may further assign resources for a second TB 624 on a second PDSCH over a second slot 620. It should be appreciated that this is merely an example for multiple-TB assignments with a single DCI message. In some examples, the single DCI message may include any suitable number N assignments for corresponding N TBs over a plurality of lots. In some examples, the DCI message 612 may include some  assignments  614, 616 for corresponding TBs in a slot 610. In other examples, each  assignment  614, 616 may assign resources for a single TB over a single slot. In some examples, multiple-TB assignments with a single DCI message may apply to 120 kHz, 480 kHz, or 960 kHz. It should be appreciated that the subcarrier spacing (SCS) may be any suitable SCS.
In some examples, each PDSCH or PUSCH of multiple PDSCHs or PUSCHs scheduled by a single DCI message may contain its  own TB  614, 624. That is, each PDSCH or PUSCH may carry an individual or separate TB. A TB may have its own HARQ process identification (ID) , redundancy version ID (RVID) , new data indicator (NDI) , time domain resource assignment (TDRA) , and/or frequency domain resource assignment (FDRA) fields to facilitate a HARQ process.
In further examples, a PDSCH or  PUSCH  614, 624 carrying a TB may be within a  slot  610, 620. In some examples, a slot 610 may carry one data channel 614, 624 (e.g., PDSCH, PUSCH) for a TB. For example, the scheduling entity may transmit, to a scheduled entity, a single DCI message 612 (e.g., DCI Format 1_0, DCI Format 1_1, or DCI Format 1_2) for assigning DL resources for a first TB on a first PDSCH 614 over a first slot 610 and assigning other DL resources for a second TB on a second PDSCH 624 at a second slot 620. In other examples, the scheduling entity may transmit, to a scheduled  entity, a single DCI message 612 (e.g., DCI Format 0_0, DCI Format 0_1, or DCI Format 0_2) for assigning UL resources for a first TB on a first PUSCH 614 at a first slot 610 and UL resources for a second TB on a second PUSCH 624 at a second slot 620. In other examples, a slot 610 may carry two data channels 614, 616 (e.g., PDSCHs, PUSCHs) for two corresponding TBs. In some examples, the single DCI message 612 may assign resources for two TBs on two corresponding data channels 614, 616 (e.g., PDSCHs, PUSCHs) in a single slot. In other examples, the single DCI message 612 may assign resources for TBs over corresponding slots. Thus, the single DCI message 612 may assign resources for a TB on a one data channel (e.g., PDSCH, PUSCH) in a slot. However, it should be appreciated that the number of data channels in a slot is not limited to one or two  data channels  614, 616.
In some examples, a single DCI message may not assign resources both on PDSCH (s) and PUSCH (s) for corresponding TBs. In other examples, a single DCI message may assign resources both on PDSCH (s) and PUSCH (s) for corresponding TBs. In some examples, a single DCI message may not schedule one or multiple TBs where the scheduling entity may map any single TB to multiple slots, where mapping is not by repetition. However, in other examples, a single DCI message may schedule one or multiple TBs where any single TB can be mapped over multiple slots, where mapping is not by repetition. In some examples, a single DCI message may not schedule multiple TBs where a TB can be repeated over multiple slots (or mini-slots) . However, in other examples, a single DCI message may schedule multiple TBs where a TB can be repeated over multiple slots (or mini-slots) . However, it should be appreciated that the multiple-TB assignments with a single DCI message may not prevent the scheduling entity from performing slot aggregation and/or repetition for PDSCH and/or PUSCH by a single DCI message. For example, the scheduling grant 612 may exploit slot aggregation and/or repetition for repeating a TB on resources over consecutive slots.
FIG. 7 is a schematic illustration showing some aspects of an example of a scheduling grant (e.g., a DCI message) for multiple resource assignments and their acknowledgment indications. For multiple-TB assignments, the scheduling entity may transmit a multiple-TB assignment indication 702 for enabling  multiple assignments  752, 754, 756, 758 with a single scheduling grant 710 for multiple TBs over multiple slots. The multiple-TB assignment indication may include a configured maximum number 702 of the multiple assignments for a plurality of corresponding TBs per  scheduling grant  710, 720, 730, 740. That is, the configured maximum number of assignments may be a  maximum number of possible assignments for corresponding TBs for which a single DCI can assign resources. In an example shown in FIG 7, the scheduling entity may determine a configured maximum number 702 of assignments as four (4) . That is, there would be four (4)  possible assignments  752, 754, 756, 758 for corresponding four (4) TBs per  scheduling grant  710, 720, 730, 740. The scheduling entity may transmit the multiple-TB assignment indication via any suitable message or signal, including but not limited to a radio resource control (RRC) message, a MAC control element (MAC-CE) message, a DCI message, etc.
In some examples, the scheduling entity may transmit to the scheduled entity, a single scheduling grant 710 including the  multiple assignments  752, 754, 756, 758 for one or  more TBs  772, 774, 778 based on the configured maximum number 702 of multiple assignments per scheduling grant. However, according to an aspect of the present disclosure, a scheduling entity may dynamically or selectively assign resources for any number of  TBs  772, 774, 778 in a DCI, which may be less than or equal to a configured maximum number 702 of multiple assignments for a plurality of corresponding TBs per scheduling grant. As described herein, a scheduling entity may provide for this selective or dynamic multiple-TB resource assignment by employing the use of padding assignments for corresponding disabled TBs. Here, a padding assignment corresponds to information in a DCI that is configured for multiple-TB resource assignments, where the padding assignment indicates that the scheduling entity does not assign resources for a corresponding TB. Such a multiple-TB resource assignment, may further include one or more  real assignments  752, 754, 758 assigning wireless resources for one or more  corresponding TBs  772, 774, 778 over one or more slots. The one or more real assignments within a given DCI may be less than a configured maximum number 702 of the multiple assignments per scheduling grant 710. The number of padding assignments 756 and the number of  real assignments  752, 754, 758 may sum to the configured maximum number of assignments for the plurality of corresponding TBs. The scheduling entity may transmit the one or more real assignments and the one or more padding assignments per scheduling grant in an ordered sequence.
According to a further aspect of the disclosure, a scheduling entity may indicate that a particular assignment within a multiple-TB resource assignment is a padding assignment 756 by using a predetermined value or symbol in the scheduling grant. A padding assignment 756 using predetermined value in the scheduling grant may disable a TB. That is, a scheduling entity may indicate a padding assignment by configuring that  assignment with a predetermined value or symbol for indicating that the one or more assignments do not assign wireless resources for one or more corresponding TBs. In some examples, the scheduling entity may provide such a predetermined value in at least one of: a modulation and coding scheme index (MCS, IMCS, or IMCS) field 711, a redundancy version (RV) field 713, or a transmission configuration indicator (TCI) field 715 associated with the corresponding padding assignment 756. For example, the scheduling entity may set the MCS field as ‘26’ and the RV field as ‘1’ for a padding assignment in a scheduling grant for indicating that the padding assignment does not assign wireless resources for a corresponding TB. It means, the corresponding TB is disabled by the padding assignment in the scheduling grant. However, it should be appreciated that the MCS field, the RV field, and their predetermined values are mere examples to indicate a padding assignment. For example, the scheduling entity may indicate a padding assignment by using any other field in a scheduling grant (e.g., an explicit bit for each TB indicating enabling or disabling the TB in the DCI message) . Also, the scheduling entity may use other predetermined values or symbols in the MCS field and/or the RV field to indicate a padding assignment. In some examples, the scheduling grant may include a plurality of TCI fields corresponding to the configured maximum number of assignments for indicating the one or more real assignments and the one or more padding assignments. The scheduling entity may map a set of the plurality of TCI fields to the one or more TBs of real assignments by using an ordered sequence corresponding to the ordered sequence used for resource assignments, described above. In some examples, the scheduling grant may include a resource indication indicating the wireless resources assigned by the scheduling grant. The scheduling entity may map the one or more TBs granted via real assignments to the indicated wireless resources in an ordered sequence. The scheduling entity may exclude the one or more padding assignments from the mapping.
For example, a scheduling entity may determine a configured maximum number of assignments per scheduling grant (e.g., DCI message) as four (4) . That is, DCI message 1 (710) may include possible four (4)  assignments  752, 754, 756, 758 assigning wireless resources on four (4) corresponding PDSCHs or PUSCHs for four (4) corresponding TBs over four (4) corresponding slots. If the scheduling entity transmits only three (3)  TBs  772, 774, 778, one (1) assignment 756 among four (4)  possible assignments  752, 754, 756, 758 of the DCI message 710 may not need resources for a TB. That is, DCI message 1 (710) may include three (3)  real assignments  752, 754, 758 assigning wireless resources  for three (3) corresponding  TBs  772, 774, 778. DCI message 1 (710) may also include one (1) padding assignment 756 without assigning resources for a TB. The padding assignment 756 may not be a real assignment to assign resources for a TB. The scheduling entity may indicate the padding assignment 756 by setting the MCS and RV fields of the padding assignment 756 with predetermined values (e.g., MCS field: twenty six (26) , RV field: one (1) ) . With the predetermined values on the specific fields (e.g., MCS and RV fields) in an assignment of a DCI message, the scheduled entity may recognize that the assignment is a padding assignment 756.
In some examples, the scheduling entity may transmit the  real assignments  752, 754, 758 and the padding assignment 756 in an ordered sequence (e.g., 1st, 2nd, and 4th assignments: real assignments, 3rd assignment: padding assignment) . In the illustrated example, the scheduling grant may include four (4) TCI fields corresponding to the configured maximum number of assignments of DCI message 1. The scheduling entity may map three (3) TCI fields (TCI 1 (762) , TCI 2 (764) , and TCI 4 (768) ) to three (3)  real assignments  752, 754, 758 for three (3) corresponding TBs (TB 1 (772) , TB 2 (774) , and TB 3 (778) ) in the ordered sequence. In some examples, the scheduling grant may include a resource indication indicating the wireless resources assigned by the scheduling grant. The scheduling entity may map the three (3) scheduled TBs (TB 1 (772) , TB 2 (774) , and TB 3 (778) ) to the indicated wireless resources in an ordered sequence. The scheduling entity may exclude one corresponding padding assignment 756 from the mapping because the padding assignment 756 does not assign resources for the TB.
After the scheduling entity transmits a scheduling grant 710 (e.g., a DCI message) for the multiple- TB assignments  752, 754, 756, 758, the scheduled entity may transmit acknowledgment indications (e.g., according to a HARQ process) of the  multiple assignments  752, 754, 756, 758 in the scheduling grant 710. In some examples, the scheduled entity may transmit  acknowledgment indications  712, 714, 716 of one or more  real assignments  752, 754, 758 first in an ordered sequence, and may transmit acknowledgment indications of one or more padding assignments 756 after the  acknowledgment indications  712, 714, 716 in the ordered sequence. In other examples, the scheduled entity may transmit  acknowledgment indications  712, 714, 716, 718 for one or more  real assignments  752, 754, 758 and one or more padding assignments 756 in the same ordered sequence as in the scheduling grant 710.
The scheduled entity may check for errors (e.g., employing a cyclic redundancy check, CRC; a checksum; etc. ) within one or more received  real assignments  752, 754,  758. If an error on a received  real assignment  752, 754, 758 is detected, the scheduled entity may transmit a negative acknowledgment (NACK) . If the scheduled entity correctly decodes a  real assignment  752, 754, 758 of the scheduling grant, the scheduled entity may transmit an acknowledgment (ACK) indicating that the scheduled entity received and decoded the  real assignment  752, 754, 758 of the scheduling grant 710 without an error. In some examples, the scheduled entity may transmit a padding NACK 718 in an acknowledgment indication for a received padding assignment 756. Since a padding assignment 756 does not assign resources for a TB, the scheduled entity may determine an acknowledgment indication for a padding assignment 756 as a padding NACK. In some examples, the padding NACK may be the same as a NACK in the acknowledgment indication for the padding assignment 756. In some examples, an acknowledgment indication bit value of ‘0’ may represent a NACK while an acknowledgment indication bit value of ‘1’ may represent an ACK or a confirmation. However, it should be appreciated that the values representing a NACK and an ACK may be other predetermined values or symbols.
For example, referring again to FIG. 7, the scheduling entity may transmit DCI message 1 (710) including three (3)  real assignments  752, 754, 758 for three (3)  TBs  772, 774, 778 and one (1) padding assignment 756 in an ordered sequence (1st, 2nd, and 4th assignments (752, 754, 758) : real assignments, 3rd assignment (756) : padding assignment) . The scheduled entity may receive and decode DCI message 1 (710) including four (4)  assignments  752, 574, 756, 758. In some examples, the scheduled entity may transmit acknowledgment indications (ACK or NACK) for four (4) corresponding  assignments  752, 754, 756, 758 to the scheduling entity. In some examples, the scheduled entity generate a codebook 711 (e.g., Type I A/N codebook or Type II A/N codebook) for acknowledging DCI message 1 (710) . In some examples, the scheduling entity may semi-statically fix the size of the codebook based on a multiple-TB assignment indication including a configured maximum number of assignments for a plurality of corresponding TBs per scheduling grant (e.g., DCI message) . In other examples, the size of the codebook may change based on the number of assignments for TBs.
The codebook 711 may include acknowledgment indications (e.g., ACK or NACK) 712, 714, 716, 718 for the four (4)  assignments  752, 574, 756, 758 of DCI message 1 (710) . In some examples, the codebook 711 may include  acknowledgment indications  712, 714, 718 of the three real (3)  assignments  752, 574, 758 of DCI message 1 (710) in an ordered sequence, and the acknowledgment indication 716 of the one  padding (1) assignment 756 of DCI message 1 (710) after the acknowledgment indications for real assignments. Thus, the first three  acknowledgment indications  712, 714, 716 in the codebook 711 may be for the three corresponding  real assignments  752, 754, 758; and the last acknowledgment indication 718 may be the padding assignment 756. The acknowledgment indication 716 of the one (1) padding assignment 756 of DCI message 1 (710) may indicate a padding NACK or a NACK. In other examples, the codebook 711 may include  acknowledgment indications  712, 714, 716, 718 of the four (4)  assignments  752, 574, 756, 758 of DCI message 1 (710) in an ordered sequence (1st: real assignment (752) , 2nd: real assignment (754) , 3rd: padding assignment (756) , and 4th: real assignment (758) ) . In some examples, the codebook 711 may indicate a group of acknowledgment indications for DCI message 1 710. Thus, the scheduled entity may directly transmit a group of acknowledgment indications for DCI message 1 710 to the scheduling entity.
In some examples, the scheduling entity may transmit a plurality of  scheduling grants  710, 720, 730, 740. Each of the scheduling grants 710, 720, 730, 740 may include multiple assignments, which may be equal to the number of assignments indicated in the multiple-TB assignment indication 702. In some examples, the multiple-TB assignment indication 702 may be applicable to a single DCI message or all DCI messages to the scheduled entity. In other examples, the multiple-TB assignment indication 702 may be applicable to all DCI messages to the scheduled entity for a predetermined period of time.
In some examples, the scheduled entity may not receive a scheduling grant 720 from the scheduling entity. The scheduling entity may transmit a sequential counter with each scheduling grant for the scheduled entity to determine whether the scheduled entity receives the scheduling grant. For example, the scheduling entity may transmit four (4)  DCI messages  710, 720, 730, 740 to the scheduled entity with counters (one (1) for DCI message 1 (710) , two (2) for DCI message 2 (720) , three (3) for DCI message 3 (730) , and four (4) for DCI message 4 (740) ) . If the scheduled entity receives DCI message 1 (710) with counter one (1) , DCI message 3 (730) with counter three (3) , and DCI message 4 (740) with counter four (4) , the scheduled entity may recognize that it missed DCI message 2 (720) due to the missing counter number two (2) . The scheduled entity determines the number of NACKs based on the multiple-TB assignment indication 702. The scheduled entity may transmit a codebook 721 including four (4)  NACKs  722, 724, 726, 728 for DCI message 2 to the scheduling entity.
FIG. 8 is a schematic illustration shown some aspects of an example of a scheduling grant 810 (e.g., a DCI message) for multiple resource assignments and their acknowledgment indications of the TBs. In some examples, based on a single scheduling grant 810 including  multiple assignments  852, 854, 856, 858 for one or more TBs, the scheduling entity may transmit one or more TBs 862 on one or more PDSCHs 860. The  multiple assignments  852, 854, 856, 858 may correspond to a configured maximum number of assignments for a plurality of corresponding TBs per scheduling grant 810. The multiple assignments may include one or more  real assignments  852, 854, 858 for the one or more TBs 862. The multiple assignments may also include one or more padding assignments 856 without assigning resources for one or more corresponding disabled TBs.
After the scheduling entity may transmit one or more TBs 862 on one or more PDSCHs 860, the scheduled entity may determine  acknowledgment indications  812, 814, 816, 818 (e.g., according to a HARQ process) for one or more TBs 862 on corresponding  real assignments  852, 854, 858 and for one or more padding assignments 856. The scheduled entity may check for errors within the one or more received TBs 862 on the one or more  real assignments  852, 854, 858. If an error on a received TB 862 is detected, the scheduled entity may automatically request a retransmission of the TB 862 to the scheduling entity by transmitting a negative acknowledgment (NACK) . If the scheduled entity correctly decodes the one or more TBs 862, the scheduled entity may transmit an acknowledgment (ACK) indicating that the scheduled entity receives and decodes the one or more TBs 862 without an error. In some examples, the scheduled entity generate another  codebook  811, 821, 831, 841 (e.g., Type I A/N codebook or Type II A/N codebook) for received one or more TBs 862 and one or more disabled TBs for the one or more padding assignments 818. In some examples, the scheduling entity may semi-statically fix the size of the codebook based on a multiple TB assignment indication including a configured maximum number of assignments for a plurality of corresponding TBs per scheduling grant (e.g., DCI message) . In other examples, the size of the codebook may change based on the number of received TBs.
In some examples, the scheduled entity may transmit a padding NACK 818 in an acknowledgment indication for a TB for a padding assignment 856. Since a padding assignment 856 does not assign resources for a TB, the scheduled entity may not receive any TB for one or more padding assignments 856. The scheduled entity may determine one or more acknowledgment indications for the received one or more TBs 862 on  resources assigned by one or more  real assignments  852, 854, 858 among the configured maximum number of assignments. In some examples, the scheduled entity may determine one or more acknowledgment indications 818 for one or more remaining assignments among the configured maximum number of assignments as one or more padding NACKs. The one or more remaining assignments may correspond to the one or more padding assignments 856. The padding NACK 818 may be the same as a NACK in the acknowledgment indication for the padding assignment 756. In some examples, the scheduled entity may transmit the one or more acknowledgment indications (ACK or NACK) of the received one or more corresponding TBs 862 first and the one or more acknowledgment indications (padding NACK) for one or more padding assignments next. In other examples, the scheduled entity may transmit the one or more acknowledgment indications for the one or more TBs and one or more padding assignments in an ordered sequence as the scheduling grant 810 indicates. In some examples, an acknowledgment indication bit value of ‘0’ may represent a NACK while an acknowledgment indication bit value of ‘1’ may represent an ACK. However, it should be appreciated that the values representing a NACK and an ACK may be other predetermined values or symbols.
For example, referring again to FIG. 8, the scheduling entity may transmit DCI message 1 (810) including three (3)  real assignments  852, 854, 858 for three (3)  TBs  853, 855, 859 and one (1) padding assignment 856 in an ordered sequence (1st, 2nd, and 4th assignments (752, 754, 758) : real assignments, 3rd assignment (756) : padding assignment) . Based on DCI message 1 (810) , the scheduling entity may transmit the three (3) TBs 862 on corresponding PDSCHs. The scheduled entity may receive DCI message 1 (810) and know the 3rd assignment (756) is a padding assignment without assigning resources for a corresponding TB. The scheduled entity may receive the three (3) TBs 862 and determine whether the scheduled entity correctly decodes the three (3) TBs 862. The scheduled entity may generate three (3) acknowledgment indications of the three (3) corresponding TBs 862. The scheduled entity may additionally generate one (1) acknowledgment indication (padding NACK) for the one (1) padding assignment. The scheduled entity may transmit to the scheduling entity, the four (4) acknowledgment indications of the three (3) TBs and one (1) padding assignment. In some examples, the scheduled entity may transmit a sequence of the four (4) acknowledgment indications as the three (3) acknowledgment indications of the three (3) TBs first and one (1) acknowledgment indication for the one (1) padding assignment later. The sequence may be {ACK/NACK, ACK/NACK, ACK/NACK, padding NACK} . In other examples, the  sequence of the acknowledgment indications may be the same as the sequence of the multiple assignments in DCI message 1 (810) . The sequence may be {ACK/NACK, ACK/NACK, padding NACK, ACK/NACK} .
In some examples, the scheduling entity may transmit a plurality of  scheduling grants  810, 820, 830, 840. Each of the plurality of  scheduling grants  810, 820, 830, 840 may include multiple assignments, which may correspond to the maximum number of assignments indicated in the multiple-TB assignment indication 802. Based on the plurality of  scheduling grants  810, 820, 830, 840, the scheduling entity may transmit a plurality of  sets  862, 872, 882, 892 of TBs on resources assigned by corresponding scheduling grants 810, 820, 830, 840.
In some examples, the scheduled entity may not receive a scheduling grant 820 (e.g., DCI message 2 (820) ) and may not receive one or more TBs on resources assigned by the scheduling grant 820 from the scheduling entity. The scheduled entity may determine the number of NACKs based on the multiple-TB assignment indication 802. The scheduled entity may transmit a codebook 821 including four (4)  NACKs  822, 824, 826, 828 for an unknown number of TBs indicated in missing DCI message 2 to the scheduling entity.
In some examples, the scheduled entity may transmit one or more TBs on UL resources assigned by a single DCI. For example, the scheduling entity may transmit, to a scheduled entity, a single DCI message (e.g., DCI Format 0_0, DCI Format 0_1, or DCI Format 0_2) including multiple UL assignments assigning UL resources on multiple corresponding PUSCHs for one or more TBs over one or more slots. The one or more TBs may be less than a configured maximum number of assignments for a plurality of corresponding TBs per DCI message. The multiple UL assignments may include one or more real UL assignments assigning UL resources for the one or more corresponding TBs and one or more padding UL assignments without assigning UL resources for one or more other corresponding TBs. The scheduled entity may transmit one or more TBs on UL resources that one or more real UL assignments assign to the scheduling entity. In some examples, the scheduling entity may not transmit acknowledgment indications for the one or more TBs to the scheduled entity. In that case, the scheduled entity may retransmit the one or more TBs under a certain condition (e.g., a predetermined period of time, a request for retransmission, or any other suitable condition for retransmission) .
FIG. 9 is a flow chart illustrating an exemplary process 900 for multiple-TB assignments with a single DCI and their acknowledgment indications in accordance with  some aspects of the present disclosure. As described below, a particular implementation may omit some or all illustrated features, and may not require some illustrated features to implement all embodiments. In some examples, the scheduling entity 400 illustrated in FIG. 4 and the scheduled entity 500 illustrated in FIG. 5 may be configured to carry out the process 900. In some examples, any suitable apparatus or means for carrying out the functions or algorithm described below may carry out the process 900.
At block 912, the scheduling entity 902 may transmit to the scheduled entity 904, a multiple-TB assignment indication indicating a configured maximum number of assignments for a plurality of corresponding TBs per scheduling grant (e.g., DCI message) . In some examples, the multiple-TB assignment indication may enable multiple-TB scheduling with a single scheduling grant by providing a configured maximum number of assignments in the single scheduling grant for a plurality of corresponding TBs. The configured maximum number of assignments may correspond to a maximum number of TBs on wireless resources, which can be maximally assigned by a single DCI message. The scheduling entity may transmit the multiple-TB assignment indication via any suitable message or signal, including but not limited to a radio resource control (RRC) message, a MAC control element (MAC-CE) message, a DCI message, etc.
At block 932, the scheduled entity 904 may receive from the scheduling entity 902, the multiple-TB assignment indication indicating a configured maximum number of assignments for a plurality of corresponding TBs per scheduling grant (e.g., DCI message) . Through the multiple-TB assignment indication, the scheduled entity 904 may know that the multiple-TB scheduling with a single scheduling grant is enabled. Further, the scheduled entity 904 may receive multiple resource assignments up to the configured maximum number of assignments in the scheduling grant for one or more TBs over one or more slots.
At block 914, the scheduling entity 902 may transmit a scheduling grant (e.g., a DCI message) to the scheduled entity 904. The scheduling grant may include multiple assignments. The multiple assignments may include one or more real assignments assigning wireless resources for one or more corresponding TBs over one or more slots. In some examples, each slot of the one or more slots may include resources for a set (e.g., one or two TBs) of the one or more TBs. In some examples, each slot of the one or more slots may correspond to resources for a TB of the one or more TBs. Thus, in the examples, a real assignment in the single scheduling grant may assign resources for a corresponding  TB over a corresponding slot. Examples of the resource may include a resource block, a subcarrier, a frequency spectrum (channel or carrier) , a time slot or subframe of a TDD/FDD component carrier, a spreading code, a precoder, and/or other suitable resources commonly used for carrying a TB. In some examples, the one or more TBs may be less than the configured maximum number of assignments for a plurality of corresponding TBs per scheduling grant.
In some examples, the multiple assignments may also include one or more padding assignments without assigning wireless resources for one or more corresponding disabled TBs. A padding assignment may disable a TB without assigning wireless resources for the disabled TB by using a predetermined value in a field in a scheduling grant. The number of the one or more padding assignments and the number of the one or more real assignments may sum to a configured maximum number of the multiple assignments by the scheduling grant. In some examples, a padding assignment may include a predetermined value to indicate that the corresponding padding assignment does not assign resources for a corresponding TB. In some examples, the predetermined value for a padding assignment may be in at least one of: a modulation and coding scheme index (MCS) field, a redundancy version (RV) field, or a transmission configuration indicator (TCI) field associated with a corresponding padding assignment. For example, the scheduling entity 902 may set the MCS field as twenty six (26) and the RV field as one (1) for a padding assignment in a scheduling grant for indicating that the padding assignment does not assign wireless resources for a corresponding TB. However, it should be appreciated that the MCS field, the RV field, and their predetermined values are mere examples to indicate a padding assignment. For example, the scheduling entity 902 may indicate a padding assignment by using any other field in a scheduling grant (e.g., a DCI message) . Also, the scheduling entity 902 may use other predetermined values or symbols in the MCS field and/or the RV field to indicate a padding assignment.
In some examples, the scheduling grant may provide the one or more real assignments for one or more corresponding TBs and the one or more padding assignments for one or more corresponding disabled TBs in an ordered sequence. Here, ‘real’ means actual and existent. Thus, a ‘real’ assignment is to assign, for a TB, resources that are actual and existent. Contrary, ‘padding’ means false and nonexistent. Thus, a ‘padding’ assignment is to assign false and nonexistent resources. That is, a ‘padding’ assignment does not assign resources for a TB. In some examples, the ‘padding’ assignment may disable a TB by using a predetermined value or symbol in a scheduling grant. In some  examples, the scheduling grant may include a plurality of TCI fields corresponding to the configured maximum number of the multiple assignments for the plurality of corresponding TBs. In some examples, the scheduling entity 902 may map a set of the plurality of TCI fields to the one or more TBs in the ordered sequence. In some examples, the scheduling entity 902 may not map another set of the plurality of TCI fields to the one or more disabled TBs by the one or more padding assignments. In some examples, the scheduling grant may include a resource indication indicating wireless resources assigned by the scheduling grant. In some examples, the scheduling entity 902 may map the one or more TBs to the indicated wireless resources in an ordered sequence, and may exclude the one or more corresponding padding assignments from the mapping.
For examples, the scheduling entity 902 may determine the configured maximum number of assignments per scheduling grant (e.g., DCI message) as five (5) . A single DCI message may include five (5) assignments (1st, 3rd, and 5th assignments: real assignments, and 2nd and 4th assignments: padding assignments) in an ordered sequence {real assignment, padding assignment, real assignment, padding assignment, real assignment} . The three (3) real assignments may assign resources for three (3) TBs over one or more slots. The two (2) padding assignments may use predetermined values in the scheduling grant (e.g., MCS field: twenty six (26) , RV field: one (1) ) for the scheduled entity 904 to recognize that the 2nd and 4th assignments are padding assignments for two (2) disabled TBs. Thus, the scheduling entity 902 may map three (3) TBs to the indicated wireless resources assigned by three (3) real assignments in an ordered sequence. In some examples, the scheduling entity may exclude the two (2) padding assignments from the mapping. In the examples, the scheduling grant may include five (5) TCI fields corresponding to the configured maximum number of assignments of the single DCI message. The scheduling entity 902 may map three (3) TCI fields (1st TCI, 3rd TCI, and 5th TCI) to three (3) TBs on resources of three (3) real assignments (1st, 3rd, and 5th assignments) in the ordered sequence.
At block 934, the scheduled entity 904 may receive the scheduling grant from the scheduling entity 902. In some examples, the scheduling grant may include one or more real assignments and one or more padding assignments. In some examples, the scheduling grant may provide the one or more real assignments and the one or more padding assignments in an ordered sequence. In some examples, the scheduled entity 904 may know assignments in the scheduling grant are in an ordered sequence. The scheduled entity 904 may also know a predetermined value in a predetermined field of a scheduling  grant for indicating a padding assignment. For example, if an assignment in a scheduling grant includes an MCS field of twenty six (26) and an RV field of one (1) , the scheduled entity 904 may recognize that the corresponding assignment is a padding assignment, which does not assign resources for a corresponding TB.
At block 936, the scheduled entity 904 may determine and transmit a sequence of acknowledgment indications for multiple corresponding assignments in the scheduling grant. In some examples, the sequence of acknowledgment indications may include one or more first acknowledgment indications for the one or more real assignments and one or more second acknowledgment indications for the one or more padding assignments. In some examples, the number of the one or more first acknowledgment indications and the number of the one or more second acknowledgment indications may sum to the configured maximum number of multiple assignments per scheduling grant. In some examples, the scheduled entity 904 may check for errors within received one or more real assignments assigning resources for one or more corresponding TBs. If an error on a real assignment is detected, the scheduled entity 904 may set a negative acknowledgment (NACK) for the real assignment. If the scheduled entity 904 correctly decodes a real assignment of the scheduling grant, the scheduled entity 904 may transmit an acknowledgment (ACK) indicating that the scheduled entity 904 receives and decodes the real assignment of the scheduling grant without an error. In some examples, the scheduled entity 904 may transmit a padding NACK in the second acknowledgment indication for a received padding assignment. Since a padding assignment does not assign resources for a TB, the scheduled entity 904 may determine an acknowledgment indication for a padding assignment as a padding NACK. In some examples, the padding NACK may be the same as a NACK in the acknowledgment indication for the padding assignment. In some examples, an acknowledgment indication bit value of ‘0’ may represent a NACK while an acknowledgment indication bit value of ‘1’ may represent an ACK. However, it should be appreciated that the values representing a NACK and an ACK may be other predetermined values.
In some examples, the one or more first acknowledgment indications of the one or more corresponding real assignments may be in order prior to the one or more second acknowledgment indications of the one or more corresponding padding assignments in the sequence of acknowledgment indications. In the examples with five (5) configured maximum number of assignments of a scheduling grant, the scheduled entity 904 may receive the single scheduling grant including five multiple assignments (1st, 3rd, and 5th  assignments: real assignments, and 2nd and 4th assignments: padding assignments) in an ordered sequence. In some examples, the scheduled entity 904 may determine ACKs/NACKs for the 1st, 3rd, and 5th real assignments in the scheduling grant. On the other hand, the scheduled entity 904 may determine padding NACKs for the 2nd and 4th padding assignments in the scheduling grant. The scheduled entity 904 may determine a sequence of acknowledgment indications of the multiple assignments as ACKs/NACKs of the 1st, 3rd, and 5th real assignments first and padding NACKs for the 2nd and 4th padding assignments. Thus, the sequence of acknowledgment indications may be {ACK/NACK, ACK/NACK, ACK/NACK, padding NACK, padding NACK} . In other examples, the sequence of acknowledgment indications may be the same as the sequence of multiple assignments in the scheduling grant. Thus, in the examples above, the sequence of acknowledgment indications of the five (5) multiple assignments may be {ACK/NACK, padding NACK, ACK/NACK, padding NACK, ACK/NACK} .
At block 916, the scheduling entity 902 may receive the sequence of acknowledgment indications of corresponding multiple assignments in the scheduling grant. In some examples, the multiple assignments may include one or more real assignments assigning resources for one or more corresponding TBs and one or more padding assignments without assigning resources for one or more corresponding disabled TBs. If the scheduling entity 902 receives a NACK for a corresponding real assignment, the scheduling may retransmit the real assignment or the scheduling grant including multiple assignments. In the examples above, the scheduling entity 902 may transmit a single scheduling grant including five assignments {1st real assignment, 2nd padding assignment, 3rd real assignment, 4th padding assignment, and 5th real assignment} . If the received 3rd real assignment includes an error, the scheduling entity 902 may receive a sequence of acknowledgment indications for five assignments in the single scheduling grant as {ACK, NACK, ACK, padding NACK, padding NACK} . In some examples, the scheduling may know that the first three acknowledgment indications are for the three (3) real assignments. In some examples, the scheduling entity 902 may retransmit the 3rd real assignment or the whole scheduling grant including the five (5) assignments. In other examples, the scheduling entity 902 may receive a sequence of acknowledgment indications for the five (5) assignments in the single scheduling grant as {ACK, padding NACK, NACK, padding NACK, ACK} as in the ordered sequence of the five (5) assignments in the scheduling grant. The multiple assignments and acknowledgment indications of the assignments are elaborated in detail above in connection FIG. 7.
At block 918, the scheduling entity 902 may communicate one or more TBs on resources assigned by one or more corresponding real assignments in a DCI message with the scheduled entity 904. In some examples, the scheduling entity 902 may transmit the one or more TBs assigned by the one or more corresponding real assignments on one or more corresponding PDSCHs. In other examples, the scheduling entity 902 may receive the one or more TBs assigned by the one or more corresponding real assignments on one or more corresponding PUSCHs. Although the scheduling grant may include one or more padding assignments, the scheduling entity 902 does not transmit or receive any TB for the one or more padding assignments because the one or more padding assignments do not assign resources for one or more corresponding TBs.
Similarly, the scheduled entity 904 may communicate one or more TBs on resources assigned by one or more corresponding real assignments in a scheduling grant with the scheduling entity 902. In some examples, the scheduled entity 904 may receive the one or more TBs assigned by the one or more corresponding real assignments in a DCI message (e.g., DCI Format 1_0, DCI Format 1_1, or DCI Format 1_2) on one or more corresponding PDSCHs over one or more slots. In other examples, the scheduled entity 904 may transmit the one or more TBs assigned by the one or more corresponding real assignments in a DCI message (e.g., DCI Format 0_0, DCI Format 0_1, or DCI Format 0_2) on one or more corresponding PUSCHs over one or more slots. Although the scheduling grant may include one or more padding assignments, the scheduled entity 904 does not transmit or receive any TB for the one or more padding assignments.
At  blocks  920 and 942, if the scheduling entity 902 transmits one or more TBs on resources assigned by one or more corresponding real assignments in the single scheduling grant to the scheduled entity 904 (downlink) , the scheduled entity 904 may determine and transmit a sequence of acknowledgment indications for the received one or more TBs. On the other hand, if the scheduled entity 904 transmits one or more TBs on resources assigned by one or more corresponding real assignments in the single scheduling grant to the scheduling entity 902 (uplink) , the scheduling entity 902 might not transmit acknowledgment indications for the received one or more TBs. The scheduled entity 904 may retransmit the one or more TBs under a certain condition (e.g., a predetermined period of time, a request for retransmission, or any other suitable condition for retransmission) .
At block 944, the scheduled entity 904 may determine acknowledgment indications for one or more received TBs on corresponding real assignments and for one  or more disabled TBs for one or more padding assignments in the single scheduling grant. A padding assignment may disable a TB without assigning wireless resources for the disabled TB by using a predetermined value in a field in a scheduling grant. The scheduled entity 904 may check for errors within the one or more received TBs on the one or more real assignments and determine acknowledgment indications (ACKs or NACKs) for the one or more received TBs. In some examples, the scheduled entity 904 may not receive one or more disabled TBs for the one or more corresponding padding assignments because the one or more padding assignments may not assign resources for the one or more other corresponding TBs. In some examples, the scheduled entity 904 may determine a padding NACK in an acknowledgment indication of a corresponding disabled TB for a received padding assignment. In some examples, the scheduled entity 904 may generate a sequence of acknowledgment indications for a plurality of TBs. The plurality of TBs may include the one or more TBs on the one or more real assignments and the one or more disabled TBs for the one or more padding assignments. In some examples, the sequence of acknowledgment indications may include one or more third acknowledgment indications of the one or more corresponding received TBs in a first order and one or more second acknowledgment indications of the one or more disabled TBs for the one or more padding assignments in a second order. Thus, the one or more third acknowledgment indications is in order prior to the one or more fourth acknowledgment indications in the sequence of acknowledgment indications. In other examples, the sequence of acknowledgment indications may be the same as the sequence of the multiple assignments in the scheduling grant.
In the examples above, the scheduling entity 902 may transmit three (3) TBs on corresponding PUSCHs assigned by 1st, 3rd, and 5th real assignments. The scheduled entity 904 may determine acknowledgment indications for the three (3) received TBs. In addition, the scheduled entity 904 may determine acknowledgment indications of padding NACKs for two (2) disabled TBs for the two padding assignments. The scheduled entity 904 may determine a sequence of acknowledgment indications of the plurality of TBs as ACKs/NACKs of the 1st, 3rd, and 5th received TBs corresponding to the 1st, 3rd, and 5th real assignments first and padding NACKs for two other padding assignments next. Thus, the sequence of acknowledgment indications may be {ACK/NACK, ACK/NACK, ACK/NACK, padding NACK, padding NACK} . In other examples, the sequence of acknowledgment indications may be the same as the sequence of multiple assignments in the scheduling grant. Thus, in the examples above, the sequence of acknowledgment  indications of the three (3) TBs and two (2) disabled TBs for the two (2) padding assignments may be {ACK/NACK, padding NACK, ACK/NACK, padding NACK, ACK/NACK} . The acknowledgment indications of the TBs are elaborated in detail above in connection FIG. 8.
FIG. 10 is a flow chart illustrating an exemplary process 1000 at a scheduled entity for multiple-TB assignments with a single scheduling grant and their acknowledgment indications in accordance with some aspects of the present disclosure. As described below, a particular implementation may omit some or all illustrated features, and may not require some illustrated features to implement all embodiments. In some examples, the scheduled entity 500 illustrated in FIG. 5 may be configured to carry out the process 1000. In some examples, any suitable apparatus or means for carrying out the functions or algorithm described below may carry out the process 1000.
At block 1012, the scheduled entity may receive a multiple-TB assignment indication indicating the configured maximum number of assignments for corresponding TBs per scheduling grant (e.g., DCI message, or DCI) . The configured maximum number of assignments may correspond to a maximum number of TBs on wireless resources, which can be maximally assigned by a single DCI message. In some examples, through the multiple-TB assignment indication, the scheduled entity may know that the multiple-TB scheduling with a single scheduling grant is enabled. The scheduled entity may receive the multiple-TB assignment indication via any suitable message or signal, including but not limited to a radio resource control (RRC) message, a MAC control element (MAC-CE) message, a DCI message, etc.
At block 1014, the scheduled entity may receive a scheduling grant (e.g., a DCI message, or DCI) from a scheduling entity. The scheduling grant may include one or more real assignments configured to assign wireless resources for one or more corresponding TBs over one or more slots. A total number of TBs in the one or more TBs may be less than the configured maximum number of assignments for a plurality of corresponding TBs per scheduling grant. Here, ‘real’ means actual and existent. Thus, a ‘real’ assignment is to assign, for a TB, resources that are actual and existent. Examples of the resource may include a resource block, a subcarrier, a frequency spectrum (channel or carrier) , a time slot or subframe of a TDD/FDD component carrier, a spreading code, a precoder, and/or other suitable resources commonly used for carrying a TB. In some examples, the one or more TBs may be less than the configured maximum number of assignments for a plurality of corresponding TBs per scheduling grant.
The scheduling grant may further include one or more padding assignments for one or more corresponding disabled TBs. The one or more padding assignments may not assign wireless resources. Here, ‘padding’ means false and nonexistent. Thus, a ‘padding’ assignment is to assign false and nonexistent resources. That is, a ‘padding’ assignment does not assign resources for a TB. In some examples, the ‘padding’ assignment may disable a TB by using a predetermined value or symbol in a scheduling grant. For example, the predetermined value of each of the one or more padding assignments may be in at least one of: a redundancy version (RV) field, a modulation and coding scheme index (MCS) field, or a transmission configuration indicator (TCI) field associated with the respective padding assignment. For example, a padding assignment may use predetermined values in a scheduling grant (e.g., MCS field: twenty six (26) , RV field: one (1) ) associated with a TB to disable the TB. The total number of the padding assignments and the real assignments may sum to the configured maximum number of assignments for the corresponding TBs.
At block 1016, the scheduled entity may transmit a first sequence of acknowledgment indications for the scheduling grant. The first sequence of acknowledgment indications may include one or more first acknowledgment indications for the one or more real assignments and one or more second acknowledgment indications for the one or more padding assignments. The one or more first acknowledgment indications may be in order prior to the one or more second acknowledgment indications in the first sequence of acknowledgment indications. A first acknowledgment indication may be an acknowledgment (ACK) indicating that the scheduled entity receives and decodes a real assignment, or a negative acknowledgment (NACK) indicating that the scheduled entity fails to correctly receive and decode a real assignment. A second acknowledgment indication may include a padding NACK indicating that a corresponding assignment is a padding assignment. That is, a padding NACK may indicate that there are no resources assigned for a TB on a padding assignment. In some examples, the padding NACK may be the same as a NACK in the acknowledgment indication for the padding assignment. In other examples, the padding NACK may be a separate value or symbol to indicating a padding NACK for a padding assignment. In some examples, an acknowledgment indication bit value of ‘0’ may represent a NACK while an acknowledgment indication bit value of ‘1’ may represent an ACK. However, it should be appreciated that the values representing a NACK and an ACK may be other predetermined values.
At block 1018, the scheduled entity may communicate one or more TBs with the scheduling entity. The one or more TBs may be on the resources assigned by one or more corresponding real assignments in a scheduling grant. In some examples, the scheduled entity may receive one or more TBs assigned by one or more corresponding real assignments on one or more corresponding PDSCHs. In other examples, the scheduled entity may transmit one or more TBs assigned by one or more corresponding real assignments on one or more corresponding PUSCHs. Although the scheduling grant may include one or more padding assignments, the scheduled entity does not receive or transmit any TB for the one or more padding assignments because the one or more padding assignments do not assign resources for one or more corresponding TBs.
At block 1020, the scheduled entity may determine whether the communication at block 1018 is downlink. If the communication is downlink, the scheduled entity may determine HARQ feedback on the received one or more TBs. However, If the communication is uplink, the scheduled entity may not wait for feedback on the transmitted one or more TBs from the scheduling entity.
At block 1022, the scheduled entity may transmit a second sequence of acknowledgment indications for the plurality of TBs. The second sequence of acknowledgment indications may include one or more third acknowledgment indications of the one or more corresponding TBs and one or more fourth acknowledgment indications of the one or more padding assignments for a set of the plurality of TBs. The one or more third acknowledgment indications may be in order prior to the one or more fourth acknowledgment indications in the second sequence of acknowledgment indications. The total number of the one or more third acknowledgment indications and the total number of the one or more fourth acknowledgment indications may sum to the configured maximum number of assignments. In some examples, a third acknowledgment indication may be an acknowledgment (ACK) indicating that the scheduled entity receives and decodes a TB, or a negative acknowledgment (NACK) indicating that the scheduled entity fails to correctly receive and decode a TB. A fourth acknowledgment indication may include a padding NACK indicating that a corresponding TB is disabled. That is, the scheduled entity may not receive a TB corresponding to a padding assignment because the padding assignment does not assign resources for the TB (disabled TB) . In some examples, the padding NACK may be the same as a NACK in the acknowledgment indication for the padding assignment. In other examples, the padding NACK may be a separate value or symbol to indicating a padding NACK for a padding assignment. In  some examples, an acknowledgment indication bit value of ‘0’ may represent a NACK while an acknowledgment indication bit value of ‘1’ may represent an ACK. However, it should be appreciated that the values representing a NACK and an ACK may be other predetermined values.
FIG. 11 is a flow chart illustrating an exemplary process 1100 at a scheduling entity for multiple-TB assignments with a single DCI and their acknowledgment indications in accordance with some aspects of the present disclosure. As described below, a particular implementation may omit some or all illustrated features, and may not require some illustrated features to implement all embodiments. In some examples, the scheduling entity 400 illustrated in FIG. 4 may be configured to carry out the process 1100. In some examples, any suitable apparatus or means for carrying out the functions or algorithm described below may carry out the process 1100.
At block 1112, the scheduling entity may transmit a multiple-TB assignment indication indicating the configured maximum number of assignments for corresponding TBs per scheduling grant (e.g., DCI message, or DCI) . The configured maximum number of assignments may correspond to a maximum number of TBs on wireless resources, which can be maximally assigned by a single DCI message. In some examples, through the multiple-TB assignment indication, the scheduling entity may enable the multiple-TB scheduling with a single scheduling grant. The scheduling entity may transmit the multiple-TB assignment indication via any suitable message or signal, including but not limited to a radio resource control (RRC) message, a MAC control element (MAC-CE) message, a DCI message, etc.
At block 1114, the scheduling entity may transmit a scheduling grant (e.g., a DCI message, or DCI) to a scheduled entity. The scheduling grant may include one or more real assignments configured to assign wireless resources for one or more corresponding TBs over one or more slots. A total number of TBs in the one or more TBs may be less than the configured maximum number of assignments for a plurality of corresponding TBs per scheduling grant. Here, ‘real’ means actual and existent. Thus, a ‘real’ assignment is to assign, for a TB, resources that are actual and existent. Examples of the resource may include a resource block, a subcarrier, a frequency spectrum (channel or carrier) , a time slot or subframe of a TDD/FDD component carrier, a spreading code, a precoder, and/or other suitable resources commonly used for carrying a TB. In some examples, the one or more TBs may be less than the configured maximum number of assignments for a plurality of corresponding TBs per scheduling grant.
The scheduling grant may further include one or more padding assignments for one or more corresponding disabled TBs. The one or more padding assignments may not assign wireless resources. Here, ‘padding’ means false and nonexistent. Thus, a ‘padding’ assignment is to assign false and nonexistent resources. That is, a ‘padding’ assignment does not assign resources for a TB. In some examples, the ‘padding’ assignment may disable a TB by using a predetermined value or symbol in a scheduling grant. For example, the predetermined value of each of the one or more padding assignments may be in at least one of: a redundancy version (RV) field, a modulation and coding scheme index (MCS) field, or a transmission configuration indicator (TCI) field associated with the respective padding assignment. For example, a padding assignment may use predetermined values in a scheduling grant (e.g., MCS field: twenty six (26) , RV field: one (1) ) associated with a TB to disable the TB. The total number of the padding assignments and the real assignments may sum to the configured maximum number of assignments for the corresponding TBs.
At block 1116, the scheduling entity may receive a first sequence of acknowledgment indications for the scheduling grant. The first sequence of acknowledgment indications may include one or more first acknowledgment indications for the one or more real assignments and one or more second acknowledgment indications for the one or more padding assignments. The one or more first acknowledgment indications may be in order prior to the one or more second acknowledgment indications in the first sequence of acknowledgment indications. A first acknowledgment indication may be an acknowledgment (ACK) indicating that the scheduled entity receives and decodes a real assignment, or a negative acknowledgment (NACK) indicating that the scheduled entity fails to correctly receive and decode a real assignment. A second acknowledgment indication may include a padding NACK indicating that a corresponding assignment is a padding assignment. That is, a padding NACK may indicate that there are no resources assigned for a TB on a padding assignment. In some examples, the padding NACK may be the same as a NACK in the acknowledgment indication for the padding assignment. In other examples, the padding NACK may be a separate value or symbol to indicating a padding NACK for a padding assignment. In some examples, an acknowledgment indication bit value of ‘0’ may represent a NACK while an acknowledgment indication bit value of ‘1’ may represent an ACK. However, it should be appreciated that the values representing a NACK and an ACK may be other predetermined values.
At block 1118, the scheduling entity may communicate one or more TBs with the scheduled entity. The one or more TBs may be on the resources assigned by one or more corresponding real assignments in a scheduling grant. In some examples, the scheduling entity may transmit one or more TBs assigned by one or more corresponding real assignments on one or more corresponding PDSCHs. In other examples, the scheduling entity may receive one or more TBs assigned by one or more corresponding real assignments on one or more corresponding PUSCHs. Although the scheduling grant may include one or more padding assignments, the scheduling entity does not transmit or receive any TB for the one or more padding assignments because the one or more padding assignments do not assign resources for one or more corresponding TBs.
At block 1120, the scheduling entity may determine whether the communication at block 1118 is downlink. If the communication is downlink, the scheduling entity may wait for HARQ feedback on the received one or more TBs. However, If the communication is uplink, the scheduling entity may not transmit feedback on the received one or more TBs from the scheduled entity.
At block 1122, the scheduling entity may receive a second sequence of acknowledgment indications for the plurality of TBs. The second sequence of acknowledgment indications may include one or more third acknowledgment indications of the one or more corresponding TBs and one or more fourth acknowledgment indications of the one or more padding assignments for a set of the plurality of TBs. The one or more third acknowledgment indications may be in order prior to the one or more fourth acknowledgment indications in the second sequence of acknowledgment indications. The total number of the one or more third acknowledgment indications and the total number of the one or more fourth acknowledgment indications may sum to the configured maximum number of assignments. In some examples, a third acknowledgment indication may be an acknowledgment (ACK) indicating that the scheduled entity receives and decodes a TB, or a negative acknowledgment (NACK) indicating that the scheduled entity fails to correctly receive and decode a TB. A fourth acknowledgment indication may include a padding NACK indicating that a corresponding TB is disabled. That is, the scheduled entity may not receive a TB corresponding to a padding assignment because the padding assignment does not assign resources for the TB (disabled TB) . In some examples, the padding NACK may be the same as a NACK in the acknowledgment indication for the padding assignment. In other examples, the padding NACK may be a separate value or symbol to indicating a padding NACK for a padding assignment. In  some examples, an acknowledgment indication bit value of ‘0’ may represent a NACK while an acknowledgment indication bit value of ‘1’ may represent an ACK. However, it should be appreciated that the values representing a NACK and an ACK may be other predetermined values.
Further Examples Having a Variety of Features:
Example 1. A method, apparatus, and non-transitory computer-readable medium of wireless communication operable at a scheduling entity, comprising: transmitting a scheduling grant to a scheduled entity, the scheduling grant comprising one or more real assignments assigning wireless resources for one or more corresponding TBs over one or more slots, a total number of TBs in the one or more TBs being less than a configured maximum number of assignments for a plurality of corresponding TBs per scheduling grant; and communicating the one or more TBs with the scheduled entity.
Example 2. The method, apparatus, and non-transitory computer-readable medium of Example 1, further comprising: transmitting a multiple-TB assignment indication indicating the configured maximum number of assignments for the plurality of corresponding TBs per scheduling grant.
Example 3. The method, apparatus, and non-transitory computer-readable medium of Examples 1 to 2, wherein each slot of the one or more slots comprises resources for a set of the one or more TBs.
Example 4. The method, apparatus, and non-transitory computer-readable medium of Examples 1 to 3, wherein the scheduling grant further comprises one or more padding assignments for one or more corresponding disabled TBs, wherein the one or more padding assignments do not assign wireless resources, and wherein the number of the one or more padding assignments and the number of the one or more real assignments sum to the configured maximum number of assignments for the plurality of corresponding TBs.
Example 5. The method, apparatus, and non-transitory computer-readable medium of Examples 1 to 4, wherein the scheduling grant provides the one or more real assignments and the one or more padding assignments in an ordered sequence.
Example 6. The method, apparatus, and non-transitory computer-readable medium of Examples 1 to 5, wherein the scheduling grant further comprises a plurality of transmission configuration indicator (TCI) fields corresponding to the configured maximum number of assignments for the plurality of corresponding TBs, and wherein the  scheduling entity maps a set of the plurality of TCI fields to the one or more TBs based in the ordered sequence.
Example 7. The method, apparatus, and non-transitory computer-readable medium of Examples 1 to 6, wherein each of the one or more padding assignments comprises a predetermine value, and wherein the predetermined value is in at least one of: a redundancy version (RV) field, a modulation and coding scheme index (MCS) field, or a transmission configuration indicator (TCI) field associated with the corresponding padding assignment.
Example 8. The method, apparatus, and non-transitory computer-readable medium of Examples 1 to 7, wherein the scheduling grant further comprises a resource indication indicating the wireless resources assigned by the scheduling grant, wherein the scheduling entity maps the one or more TBs to the indicated wireless resources in an ordered sequence, and wherein the scheduling entity excludes the one or more corresponding padding assignments from mapping to the indicated wireless resources.
Example 9. The method, apparatus, and non-transitory computer-readable medium of Examples 1 to 8, further comprising: receiving a first sequence of acknowledgment indications for the scheduling grant, wherein the first sequence of acknowledgment indications comprises one or more first acknowledgment indications for the one or more real assignments and one or more second acknowledgment indications for the one or more padding assignments.
Example 10. The method, apparatus, and non-transitory computer-readable medium of Examples 1 to 9, wherein the one or more first acknowledgment indications are in order prior to the one or more second acknowledgment indications in the first sequence of acknowledgment indications.
Example 11. The method, apparatus, and non-transitory computer-readable medium of Examples 1 to 10, further comprising: receiving a second sequence of acknowledgment indications for the plurality of TBs, wherein the second sequence of acknowledgment indications comprises one or more third acknowledgment indications of the one or more corresponding TBs of the plurality of TBs and one or more fourth acknowledgment indications of the one or more padding assignments for a set of the plurality of TBs.
Example 12. The method, apparatus, and non-transitory computer-readable medium of Examples 1 to 11, wherein the one or more third acknowledgment indications  are in order prior to the one or more fourth acknowledgment indications in the second sequence of acknowledgment indications.
Example 13. The method, apparatus, and non-transitory computer-readable medium of Examples 1 to 12, wherein the number of the one or more third acknowledgment indications and the number of the one or more fourth acknowledgment indications sum to the configured maximum number of assignments.
Example 14. A method, apparatus, and non-transitory computer-readable medium of wireless communication operable at a scheduled entity, comprising: receiving a scheduling grant from a scheduling entity, the scheduling grant comprising one or more real assignments assigning wireless resources for one or more corresponding TBs over one or more slots, a total number of TBs in the one or more TBs being less than a configured maximum number of assignments for a plurality of corresponding TBs per scheduling grant; and communicating the one or more TBs with the scheduling entity.
Example 15. The method, apparatus, and non-transitory computer-readable medium of Example 14, further comprising: receiving a multiple-TB assignment indication indicating the configured maximum number of assignments for the plurality of corresponding TBs per scheduling grant.
Example 16. The method, apparatus, and non-transitory computer-readable medium of Examples 14 to 15, wherein the scheduling grant further comprises one or more padding assignments for one or more corresponding disabled TBs, wherein the one or more padding assignments do not assign wireless resources, and wherein the number of the one or more padding assignments and the number of the one or more real assignments sum to the configured maximum number of assignments for the plurality of corresponding TBs.
Example 17. The method, apparatus, and non-transitory computer-readable medium of Examples 14 to 16, wherein the scheduling grant provides the one or more real assignments and the one or more padding assignments in an ordered sequence.
Example 18. The method, apparatus, and non-transitory computer-readable medium of Examples 14 to 17, wherein the scheduling grant further comprises a plurality of transmission configuration indicator (TCI) fields corresponding to the configured maximum number of assignments for the plurality of corresponding TBs, and wherein a set of the plurality of TCI fields is mapped to the one or more TBs based in the ordered sequence.
Example 19. The method, apparatus, and non-transitory computer-readable medium of Examples 14 to 18, wherein each of the one or more padding assignments comprises a predetermine value, and wherein the predetermined value is in at least one of: a redundancy version (RV) field, a modulation and coding scheme index (MCS) field, or a transmission configuration indicator (TCI) field associated with the corresponding padding assignment.
Example 20. The method, apparatus, and non-transitory computer-readable medium of Examples 14 to 19, wherein the scheduling grant further comprises a resource indication indicating the wireless resources assigned by the scheduling grant, wherein the one or more TBs are mapped to the indicated wireless resources in an ordered sequence, and wherein the one or more corresponding padding assignments are excluded from mapping to the indicated wireless resources.
Example 21. The method, apparatus, and non-transitory computer-readable medium of Examples 14 to 20, further comprising: transmitting a first sequence of acknowledgment indications for the scheduling grant, wherein the first sequence of acknowledgment indications comprises one or more first acknowledgment indications for the one or more real assignments and one or more second acknowledgment indications for the one or more padding assignments.
Example 22. The method, apparatus, and non-transitory computer-readable medium of Examples 14 to 22, wherein the one or more first acknowledgment indications are in order prior to the one or more second acknowledgment indications in the first sequence of acknowledgment indications.
Example 23. The method, apparatus, and non-transitory computer-readable medium of Examples 14 to 22, further comprising: transmitting a second sequence of acknowledgment indications for the plurality of TBs, wherein the second sequence of acknowledgment indications comprises one or more third acknowledgment indications of the one or more corresponding TBs of the plurality of TBs and one or more fourth acknowledgment indications of the one or more padding assignments for a set of the plurality of TBs.
Example 24. The method, apparatus, and non-transitory computer-readable medium of Examples 14 to 23, wherein the one or more third acknowledgment indications are in order prior to the one or more fourth acknowledgment indications in the second sequence of acknowledgment indications.
Example 25. The method, apparatus, and non-transitory computer-readable medium of Examples 14 to 24, wherein the number of the one or more third acknowledgment indications and the number of the one or more fourth acknowledgment indications sum to the configured maximum number of assignments.
Example 26. A apparatus of wireless communication operable at a scheduling entity, comprising: means for transmitting a scheduling grant to a scheduled entity, the scheduling grant comprising one or more real assignments assigning wireless resources for one or more corresponding TBs over one or more slots, a total number of TBs in the one or more TBs being less than a configured maximum number of assignments for a plurality of corresponding TBs per scheduling grant; and means for communicating the one or more TBs with the scheduled entity.
Example 27. The apparatus of Example 26, further comprising: means for transmitting a multiple-TB assignment indication indicating the configured maximum number of assignments for the plurality of corresponding TBs per scheduling grant.
Example 28. The apparatus of Examples 26 to 27, wherein each slot of the one or more slots comprises resources for a set of the one or more TBs.
Example 29. The apparatus of Examples 26 to 28, wherein the scheduling grant further comprises one or more padding assignments for one or more corresponding disabled TBs, wherein the one or more padding assignments do not assign wireless resources, and wherein the number of the one or more padding assignments and the number of the one or more real assignments sum to the configured maximum number of assignments for the plurality of corresponding TBs.
Example 30. The apparatus of Examples 26 to 29, wherein the scheduling grant provides the one or more real assignments and the one or more padding assignments in an ordered sequence.
Example 31. The apparatus of Examples 26 to30, wherein the scheduling grant further comprises a plurality of transmission configuration indicator (TCI) fields corresponding to the configured maximum number of assignments for the plurality of corresponding TBs, and wherein the scheduling entity maps a set of the plurality of TCI fields to the one or more TBs based in the ordered sequence.
Example 32. The apparatus of Examples 26 to 31, wherein each of the one or more padding assignments comprises a predetermine value, and wherein the predetermined value is in at least one of: a redundancy version (RV) field, a modulation  and coding scheme index (MCS) field, or a transmission configuration indicator (TCI) field associated with the corresponding padding assignment.
Example 33. The apparatus of Examples 26 to 32, wherein the scheduling grant further comprises a resource indication indicating the wireless resources assigned by the scheduling grant, wherein the scheduling entity maps the one or more TBs to the indicated wireless resources in an ordered sequence, and wherein the scheduling entity excludes the one or more corresponding padding assignments from mapping to the indicated wireless resources.
Example 34. The apparatus of Examples 26 to 33, further comprising: means for receiving a first sequence of acknowledgment indications for the scheduling grant, wherein the first sequence of acknowledgment indications comprises one or more first acknowledgment indications for the one or more real assignments and one or more second acknowledgment indications for the one or more padding assignments.
Example 35. The apparatus of Examples 26 to 34, wherein the one or more first acknowledgment indications are in order prior to the one or more second acknowledgment indications in the first sequence of acknowledgment indications.
Example 36. The apparatus of Examples 26 to 35, further comprising: receiving a second sequence of acknowledgment indications for the plurality of TBs, wherein the second sequence of acknowledgment indications comprises one or more third acknowledgment indications of the one or more corresponding TBs of the plurality of TBs and one or more fourth acknowledgment indications of the one or more padding assignments for a set of the plurality of TBs.
Example 37. The apparatus of Examples 26 to 36, wherein the one or more third acknowledgment indications are in order prior to the one or more fourth acknowledgment indications in the second sequence of acknowledgment indications.
Example 38. The apparatus of Examples 26 to 37, wherein the number of the one or more third acknowledgment indications and the number of the one or more fourth acknowledgment indications sum to the configured maximum number of assignments.
Example 39. A apparatus of wireless communication, comprising: means for receiving a scheduling grant from a scheduling entity, the scheduling grant comprising one or more real assignments assigning wireless resources for one or more corresponding TBs over one or more slots, a total number of TBs in the one or more TBs being less than a configured maximum number of assignments for a plurality of  corresponding TBs per scheduling grant; and means for communicating the one or more TBs with the scheduling entity.
Example 40. The apparatus of Example 39, further comprising: means for receiving a multiple-TB assignment indication indicating the configured maximum number of assignments for the plurality of corresponding TBs per scheduling grant.
Example 41. The apparatus of Examples 39 to 40, wherein the scheduling grant further comprises one or more padding assignments for one or more corresponding disabled TBs, wherein the one or more padding assignments do not assign wireless resources, and wherein the number of the one or more padding assignments and the number of the one or more real assignments sum to the configured maximum number of assignments for the plurality of corresponding TBs.
Example 42. The apparatus of Examples 39 to 41, wherein the scheduling grant provides the one or more real assignments and the one or more padding assignments in an ordered sequence.
Example 43. The apparatus of Examples 39 to 42, wherein the scheduling grant comprises a plurality of transmission configuration indicator (TCI) fields corresponding to the configured maximum number of assignments for the plurality of corresponding TBs, and wherein the scheduling entity maps a set of the plurality of TCI fields to the one or more TBs based in the ordered sequence.
Example 44. The apparatus of Examples 39 to 43, wherein each of the one or more padding assignments comprises a predetermine value, and wherein the predetermined value is in at least one of: a redundancy version (RV) field, a modulation and coding scheme index (MCS) field, or a transmission configuration indicator (TCI) field associated with the corresponding padding assignment.
Example 45. The apparatus of Examples 39 to 44, wherein the scheduling grant further comprises a resource indication indicating the wireless resources assigned by the scheduling grant, wherein the scheduling entity maps the one or more TBs to the indicated wireless resources in an ordered sequence, and wherein the scheduling entity excludes the one or more corresponding padding assignments from mapping to the indicated wireless resources.
Example 46. The apparatus of Examples 39 to 45, further comprising: means for transmitting a first sequence of acknowledgment indications for the scheduling grant, wherein the first sequence of acknowledgment indications comprises one or more first  acknowledgment indications for the one or more real assignments and one or more second acknowledgment indications for the one or more padding assignments.
Example 47. The apparatus of Examples 39 to 46, wherein the one or more first acknowledgment indications are in order prior to the one or more second acknowledgment indications in the first sequence of acknowledgment indications.
Example 48. The apparatus of Examples 39 to 47, further comprising: means for transmitting a second sequence of acknowledgment indications for the plurality of TBs, wherein the second sequence of acknowledgment indications comprises one or more third acknowledgment indications of the one or more corresponding TBs of the plurality of TBs and one or more fourth acknowledgment indications of the one or more padding assignments for a set of the plurality of TBs.
Example 49. The apparatus of Examples 39 to 48, wherein the one or more third acknowledgment indications are in order prior to the one or more fourth acknowledgment indications in the second sequence of acknowledgment indications.
Example 50. The apparatus of Examples 39 to 49, wherein the number of the one or more third acknowledgment indications and the number of the one or more fourth acknowledgment indications sum to the configured maximum number of assignments.
Example 51. A apparatus of wireless communication operable at a scheduled entity, comprising: means for receiving a scheduling grant from a scheduling entity, the scheduling grant comprising one or more real assignments configured to assign wireless resources for one or more corresponding TBs over one or more slots, a total number of TBs in the one or more TBs being less than a configured maximum number of assignments for a plurality of corresponding TBs per scheduling grant; and means for communicating the one or more TBs with the scheduling entity.
Example 52. The method of Example 51, further comprising: means for receiving a multiple-TB assignment indication indicating the configured maximum number of assignments for the plurality of corresponding TBs per scheduling grant.
Example 53. The apparatus of Example 51, wherein the scheduling grant further comprises one or more padding assignments for one or more corresponding disabled TBs, wherein the one or more padding assignments do not assign wireless resources, and wherein a total number of the one or more padding assignments and a total number of the one or more real assignments sum to the configured maximum number of assignments for the plurality of corresponding TBs.
Example 54. The apparatus of Example 53, wherein the scheduling grant provides the one or more real assignments and the one or more padding assignments in an ordered sequence.
Example 55. The apparatus of Example 54, wherein the scheduling grant further comprises a plurality of transmission configuration indicator (TCI) fields corresponding to the configured maximum number of assignments for the plurality of corresponding TBs, and wherein a set of the plurality of TCI fields is mapped to the one or more TBs based in the ordered sequence.
Example 56. The apparatus of Example 53, wherein each of the one or more padding assignments comprises a predetermined value, and wherein the predetermined value of each of the one or more padding assignments is in at least one of: a redundancy version (RV) field, a modulation and coding scheme index (MCS) field, or a transmission configuration indicator (TCI) field associated with the respective padding assignment.
Example 57. The apparatus of Example 53, wherein the scheduling grant further comprises a resource indication indicating the wireless resources assigned by the scheduling grant, wherein the one or more TBs are mapped to the indicated wireless resources in an ordered sequence, and wherein the one or more corresponding padding assignments are excluded from mapping to the indicated wireless resources.
Example 58. The apparatus of Example 53, further comprising: means for transmitting a first sequence of acknowledgment indications for the scheduling grant, wherein the first sequence of acknowledgment indications comprises one or more first acknowledgment indications for the one or more real assignments and one or more second acknowledgment indications for the one or more padding assignments.
Example 59. The apparatus of Example 58, wherein the one or more first acknowledgment indications are in order prior to the one or more second acknowledgment indications in the first sequence of acknowledgment indications.
Example 60. The apparatus of Example 53, further comprising: means for transmitting a second sequence of acknowledgment indications for the plurality of TBs, wherein the second sequence of acknowledgment indications comprises one or more third acknowledgment indications of the one or more corresponding TBs of the plurality of TBs and one or more fourth acknowledgment indications of the one or more padding assignments for a set of the plurality of TBs.
Example 61. The apparatus of Example 60, wherein the one or more third acknowledgment indications are in order prior to the one or more fourth acknowledgment indications in the second sequence of acknowledgment indications.
Example 62. The apparatus of Example 60, wherein a total number of the one or more third acknowledgment indications and a total number of the one or more fourth acknowledgment indications sum to the configured maximum number of assignments.
This disclosure presents several aspects of a wireless communication network with reference to an exemplary implementation. As those skilled in the art will readily appreciate, various aspects described throughout this disclosure may be extended to other telecommunication systems, network architectures and communication standards.
By way of example, various aspects may be implemented within other systems defined by 3GPP, such as Long-Term Evolution (LTE) , the Evolved Packet System (EPS) , the Universal Mobile Telecommunication System (UMTS) , and/or the Global System for Mobile (GSM) . Various aspects may also be extended to systems defined by the 3rd Generation Partnership Project 2 (3GPP2) , such as CDMA2000 and/or Evolution-Data Optimized (EV-DO) . Other examples may be implemented within systems employing IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Ultra-Wideband (UWB) , Bluetooth, and/or other suitable systems. The actual telecommunication standard, network architecture, and/or communication standard employed will depend on the specific application and the overall design constraints imposed on the system.
The present disclosure uses the word “exemplary” to mean “serving as an example, instance, or illustration. ” Any implementation or aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects of the disclosure. Likewise, the term “aspects” does not require that all aspects of the disclosure include the discussed feature, advantage or mode of operation. The present disclosure uses the term “coupled” to refer to a direct or indirect coupling between two objects. For example, if object A physically touches object B, and object B touches object C, then objects A and C may still be considered coupled to one another-even if they do not directly physically touch each other. For instance, a first object may be coupled to a second object even though the first object is never directly physically in contact with the second object. The present disclosure uses the terms “circuit” and “circuitry” broadly, to include both hardware implementations of electrical devices and conductors that, when  connected and configured, enable the performance of the functions described in the present disclosure, without limitation as to the type of electronic circuits, as well as software implementations of information and instructions that, when executed by a processor, enable the performance of the functions described in the present disclosure.
One or more of the components, steps, features and/or functions illustrated in FIGs. 1–9 may be rearranged and/or combined into a single component, step, feature or function or embodied in several components, steps, or functions. Additional elements, components, steps, and/or functions may also be added without departing from novel features disclosed herein. The apparatus, devices, and/or components illustrated in FIGs. 1–9 may be configured to perform one or more of the methods, features, or steps described herein. The novel algorithms described herein may also be efficiently implemented in software and/or embedded in hardware.
It is to be understood that the specific order or hierarchy of steps in the methods disclosed is an illustration of exemplary processes. Based upon design preferences, it is understood that the specific order or hierarchy of steps in the methods may be rearranged. The accompanying method claims present elements of the various steps in a sample order, and are not meant to be limited to the specific order or hierarchy presented unless specifically recited therein.
Applicant provides this description to enable any person skilled in the art to practice the various aspects described herein. Those skilled in the art will readily recognize various modifications to these aspects, and may apply the generic principles defined herein to other aspects. Applicant does not intend the claims to be limited to the aspects shown herein, but to be accorded the full scope consistent with the language of the claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more. ” Unless specifically stated otherwise, the present disclosure uses the term “some” to refer to one or more. A phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover: a; b; c; a and b; a and c; b and c; and a, b and c. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims.

Claims (30)

  1. A method of wireless communication operable at a scheduled entity, comprising:
    receiving a scheduling grant from a scheduling entity, the scheduling grant comprising one or more real assignments configured to assign wireless resources for one or more corresponding TBs over one or more slots, a total number of TBs in the one or more TBs being less than a configured maximum number of assignments for a plurality of corresponding TBs per scheduling grant; and
    communicating the one or more TBs with the scheduling entity.
  2. The method of claim 1, further comprising:
    receiving a multiple-TB assignment indication indicating the configured maximum number of assignments for the plurality of corresponding TBs per scheduling grant.
  3. The method of claim 1, wherein the scheduling grant further comprises one or more padding assignments for one or more corresponding disabled TBs,
    wherein the one or more padding assignments do not assign wireless resources, and
    wherein a total number of the one or more padding assignments and a total number of the one or more real assignments sum to the configured maximum number of assignments for the plurality of corresponding TBs.
  4. The method of claim 3, wherein the scheduling grant provides the one or more real assignments and the one or more padding assignments in an ordered sequence.
  5. The method of claim 4, wherein the scheduling grant further comprises a plurality of transmission configuration indicator (TCI) fields corresponding to the configured maximum number of assignments for the plurality of corresponding TBs, and
    wherein a set of the plurality of TCI fields is mapped to the one or more TBs based in the ordered sequence.
  6. The method of claim 3, wherein each of the one or more padding assignments comprises a predetermined value, and
    wherein the predetermined value of each of the one or more padding assignments is in at least one of: a redundancy version (RV) field, a modulation and coding scheme index (MCS) field, or a transmission configuration indicator (TCI) field associated with the respective padding assignment.
  7. The method of claim 3, wherein the scheduling grant further comprises a resource indication indicating the wireless resources assigned by the scheduling grant,
    wherein the one or more TBs are mapped to the indicated wireless resources in an ordered sequence, and
    wherein the one or more corresponding padding assignments are excluded from mapping to the indicated wireless resources.
  8. The method of claim 3, further comprising:
    transmitting a first sequence of acknowledgment indications for the scheduling grant,
    wherein the first sequence of acknowledgment indications comprises one or more first acknowledgment indications for the one or more real assignments and one or more second acknowledgment indications for the one or more padding assignments.
  9. The method of claim 8, wherein the one or more first acknowledgment indications are in order prior to the one or more second acknowledgment indications in the first sequence of acknowledgment indications.
  10. The method of claim 3, further comprising:
    transmitting a second sequence of acknowledgment indications for the plurality of TBs,
    wherein the second sequence of acknowledgment indications comprises one or more third acknowledgment indications of the one or more corresponding TBs of the plurality of TBs and one or more fourth acknowledgment indications of the one or more padding assignments for a set of the plurality of TBs.
  11. The method of claim 10, wherein the one or more third acknowledgment indications are in order prior to the one or more fourth acknowledgment indications in the second acknowledgment sequence of acknowledgment indications.
  12. The method of claim 10, wherein a total number of the one or more third acknowledgment indications and a total number of the one or more fourth acknowledgment indications sum to the configured maximum number of assignments.
  13. A method of wireless communication operable at a scheduling entity, comprising:
    transmitting a scheduling grant to a scheduled entity, the scheduling grant comprising one or more real assignments configured to assign wireless resources for one or more corresponding TBs over one or more slots, a total number of TBs in the one or more TBs being less than a configured maximum number of assignments for a plurality of corresponding TBs per scheduling grant; and
    communicating the one or more TBs with the scheduled entity.
  14. The method of claim 13, further comprising:
    transmitting a multiple-TB assignment indication indicating the configured maximum number of assignments for the plurality of corresponding TBs per scheduling grant.
  15. The method of claim 13, wherein the scheduling grant further comprises one or more padding assignments for one or more corresponding disabled TBs,
    wherein the one or more padding assignments do not assign wireless resources, and
    wherein a total number of the one or more padding assignments and a total of the one or more real assignments sum to the configured maximum number of assignments for the plurality of corresponding TBs.
  16. The method of claim 15, wherein the scheduling grant provides the one or more real assignments and the one or more padding assignments in an ordered sequence.
  17. The method of claim 16, wherein the scheduling grant further comprises a plurality of transmission configuration indicator (TCI) fields corresponding to the configured maximum number of assignments for the plurality of corresponding TBs, and
    wherein the scheduling entity maps a set of the plurality of TCI fields to the one or more TBs based in the ordered sequence.
  18. The method of claim 15, wherein each of the one or more padding assignments comprises a predetermined value, and
    wherein the predetermined value of each of the one or more padding assignments is in at least one of: a redundancy version (RV) field, a modulation and coding scheme index (MCS) field, or a transmission configuration indicator (TCI) field associated with the respective padding assignment.
  19. The method of claim 15, wherein the scheduling grant further comprises a resource indication indicating the wireless resources assigned by the scheduling grant,
    wherein the scheduling entity maps the one or more TBs to the indicated wireless resources in an ordered sequence, and
    wherein the scheduling entity excludes the one or more corresponding padding assignments from mapping to the indicated wireless resources.
  20. The method of claim 15, further comprising:
    receiving a first sequence of acknowledgment indications for the scheduling grant,
    wherein the first sequence of acknowledgment indications comprises one or more first acknowledgment indications for the one or more real assignments and one or more second acknowledgment indications for the one or more padding assignments.
  21. The method of claim 20, wherein the one or more first acknowledgment indications are in order prior to the one or more second acknowledgment indications in the first sequence of acknowledgment indications.
  22. The method of claim 15, further comprising:
    receiving a sequence of acknowledgment indications for the plurality of TBs,
    wherein the second sequence of acknowledgment indications comprises one or more third acknowledgment indications of the one or more corresponding TBs of the plurality of TBs and one or more fourth acknowledgment indications of the one or more padding assignments for a set of the plurality of TBs.
  23. The method of claim 22, wherein the one or more third acknowledgment indications are in order prior to the one or more fourth acknowledgment indications in the second sequence of acknowledgment indications.
  24. The method of claim 22, wherein a total number of the one or more third acknowledgment indications and a total number of the one or more fourth acknowledgment indications sum to the configured maximum number of assignments.
  25. A scheduling entity for wireless communication, comprising:
    a processor;
    a transceiver communicatively coupled to the processor; and
    a memory communicatively coupled to the processor,
    wherein the processor is configured to:
    transmit a scheduling grant to a scheduled entity, the scheduling grant comprising one or more real assignments configured to assign wireless resources for one or more corresponding TBs over one or more slots, a total number of TBs in the one or more TBs being less than a configured maximum number of assignments for a plurality of corresponding TBs per scheduling grant; and
    communicate the one or more TBs with the scheduled entity.
  26. The scheduled entity of claim 25, wherein the scheduling grant further comprises one or more padding assignments for one or more corresponding disabled TBs,
    wherein the one or more padding assignments do not assign wireless resources, and
    wherein a total number of the one or more padding assignments and a total number of the one or more real assignments sum to the configured maximum number of assignments for the plurality of corresponding TBs.
  27. The scheduled entity of claim 26, wherein the processor is further configured to:
    transmit a first sequence of acknowledgment indications for the scheduling grant,
    wherein the first sequence of acknowledgment indications comprises one or more first acknowledgment indications for the one or more real assignments and one or more second acknowledgment indications for the one or more padding assignments.
  28. The scheduled entity of claim 27, wherein the processor is further configured to:
    transmit a second sequence of acknowledgment indications for the plurality of TBs,
    wherein the second sequence of acknowledgment indications comprises one or more third acknowledgment indications of the one or more corresponding TBs of the plurality of TBs and one or more fourth acknowledgment indications of the one or more padding assignments for a set of the plurality of TBs.
  29. The method of claim 28, wherein a total number of the one or more third acknowledgment indications and a total number of the one or more fourth acknowledgment indications sum to the configured maximum number of assignments.
  30. A scheduled entity for wireless communication, comprising:
    a processor;
    a transceiver communicatively coupled to the processor; and
    a memory communicatively coupled to the processor,
    wherein the processor is configured to:
    receive a scheduling grant from a scheduling entity, the scheduling grant comprising one or more real assignments configured to assign wireless resources for one or more corresponding TBs over one or more slots, a total number of TBs in the one or more TBs being less than a configured maximum number of assignments for a plurality of corresponding TBs per scheduling grant; and
    communicate the one or more TBs with the scheduling entity.
PCT/CN2021/099752 2021-06-11 2021-06-11 Multiple transport block scheduling with downlink control information and hybrid automatic repeat request ack/nack WO2022257118A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/099752 WO2022257118A1 (en) 2021-06-11 2021-06-11 Multiple transport block scheduling with downlink control information and hybrid automatic repeat request ack/nack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/099752 WO2022257118A1 (en) 2021-06-11 2021-06-11 Multiple transport block scheduling with downlink control information and hybrid automatic repeat request ack/nack

Publications (1)

Publication Number Publication Date
WO2022257118A1 true WO2022257118A1 (en) 2022-12-15

Family

ID=76829212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/099752 WO2022257118A1 (en) 2021-06-11 2021-06-11 Multiple transport block scheduling with downlink control information and hybrid automatic repeat request ack/nack

Country Status (1)

Country Link
WO (1) WO2022257118A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120170525A1 (en) * 2011-01-05 2012-07-05 Telefonaktiebolaget L M Ericsson (Publ) Efficient information mapping for transmission grants
EP2849379A1 (en) * 2010-10-04 2015-03-18 Telefonaktiebolaget L M Ericsson (publ) Methods and arrangements in a telecommunication system
EP3576336A1 (en) * 2018-04-05 2019-12-04 LG Electronics Inc. -1- Method for transmitting and receiving downlink data channel and apparatus therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2849379A1 (en) * 2010-10-04 2015-03-18 Telefonaktiebolaget L M Ericsson (publ) Methods and arrangements in a telecommunication system
US20120170525A1 (en) * 2011-01-05 2012-07-05 Telefonaktiebolaget L M Ericsson (Publ) Efficient information mapping for transmission grants
EP3576336A1 (en) * 2018-04-05 2019-12-04 LG Electronics Inc. -1- Method for transmitting and receiving downlink data channel and apparatus therefor

Similar Documents

Publication Publication Date Title
US11641262B2 (en) Strategic mapping of uplink resources
EP3616377B1 (en) Transmitting uplink control information (uci)
US10925041B2 (en) Common indexing for uplink physical resource blocks
US11277860B2 (en) Rate-matching behavior for overlapping resource block (RB) sets
US10952196B2 (en) DMRS indication for transmissions scheduled by fallback DCI in NR
US12119940B2 (en) Hybrid automatic repeat request processes for sub-band full duplex
US11051324B2 (en) Multi-bit scheduling request
US11129187B2 (en) Network-assisted sidelink scheduling techniques
WO2022151350A1 (en) Uplink control information (uci) multiplexed in uplink message with uplink message repetition
US20230171779A1 (en) Uplink cancelation indication
WO2022257118A1 (en) Multiple transport block scheduling with downlink control information and hybrid automatic repeat request ack/nack
US20230104972A1 (en) Physical uplink shared channel (pusch) repetition counting in paired spectrum
US20240244702A1 (en) Transmission configuration indicator state mapping for multiple transport block transmission
WO2021223197A1 (en) Communication using multi-user payloads
US20230180232A1 (en) Multiple communication opportunities for semi-persistent scheduling occasion
WO2023056220A1 (en) Physical uplink shared channel (pusch) repetition counting in paired spectrum
CN117999751A (en) Physical Uplink Shared Channel (PUSCH) repetition count in paired spectrum

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21739230

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21739230

Country of ref document: EP

Kind code of ref document: A1