WO2022257014A1 - 用于展示pet设备的晶体效率的方法、装置、电子设备及介质 - Google Patents

用于展示pet设备的晶体效率的方法、装置、电子设备及介质 Download PDF

Info

Publication number
WO2022257014A1
WO2022257014A1 PCT/CN2021/098953 CN2021098953W WO2022257014A1 WO 2022257014 A1 WO2022257014 A1 WO 2022257014A1 CN 2021098953 W CN2021098953 W CN 2021098953W WO 2022257014 A1 WO2022257014 A1 WO 2022257014A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
ring
efficiency
user operation
crystals
Prior art date
Application number
PCT/CN2021/098953
Other languages
English (en)
French (fr)
Inventor
苏进
程琛
刁先举
王芝杨
周笛
陈娣娟
Original Assignee
中加健康工程研究院(合肥)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中加健康工程研究院(合肥)有限公司 filed Critical 中加健康工程研究院(合肥)有限公司
Priority to PCT/CN2021/098953 priority Critical patent/WO2022257014A1/zh
Priority to CN202180097293.8A priority patent/CN117203555A/zh
Publication of WO2022257014A1 publication Critical patent/WO2022257014A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T7/00Details of radiation-measuring instruments

Definitions

  • the disclosure belongs to the technical field of medical equipment, and in particular relates to a method, device, electronic equipment and medium for displaying the crystal efficiency of PET equipment.
  • PET Positron Emission computed Tomography
  • image quality is a prerequisite for doctors to make a correct diagnosis. Due to long-term use, the crystals in the PET equipment may shift, which will reduce the reliability of the scanning results. Therefore, regular or irregular quality testing, such as efficiency testing, is required for PET. Wherein, the crystal deviation in the PET equipment can be judged by checking the crystal efficiency detection result of the PET equipment.
  • the PET device includes M detectors, and the M detectors are divided into r groups, wherein each group of detectors is connected into a ring to obtain r rings, and the r rings are respectively perpendicular to the PET
  • the axial setting of the device where r is an integer greater than or equal to 1, and M is a positive integer multiple of r.
  • the method includes: receiving a first user operation for selecting a ring among the r rings as a target ring for visual display; in response to the first user operation, displaying the an arrangement diagram of detectors in the target ring; receiving a second user operation for selecting a detector in the arrangement diagram as a target detector; and responding to the second The user operates to display the crystal efficiency distribution map of the target detector.
  • the arrangement structure graph is a ring graph having a mapping relationship with the target ring.
  • the crystal efficiency profile is shown inside a ring in the ring graph.
  • the crystal efficiency distribution graph includes a horizontal axis and a vertical axis that are perpendicular to each other.
  • the arrangement specification of the crystals in the target detector along the first direction is shown along the horizontal axis
  • the arrangement specification of the crystals in the target detector along the second direction is shown along the vertical axis.
  • the first direction and the second direction are directions perpendicular to each other in a plane parallel to the axial direction of the PET device.
  • the displaying the crystal efficiency distribution map of the target detector further includes: dividing the target from the crystal efficiency distribution map by the coordinates of the horizontal axis and the coordinates of the vertical axis
  • the crystals in the detector correspond to cells one by one; and according to the crystal efficiency of each crystal in the target detector, the corresponding cells in the crystal efficiency distribution diagram are rendered.
  • the crystal efficiency includes the single event crystal efficiency.
  • the single-event crystal efficiency is obtained by: acquiring the single-event number Scn of each crystal acquisition of the PET device in the current scan; The number of single events Srn; wherein, the reference scan is the scan performed for the first time after the latest calibration, and the current scan is the scan selected by the user for quality control after the reference scan; determine the current scan and the The relative difference Rdn between the single event numbers Scn and Srn of each crystal in the reference scan; and the relative difference Rdn corresponding to each crystal is used as the single event crystal efficiency of each crystal.
  • rendering the corresponding cells in the crystal efficiency distribution diagram includes: according to where the relative difference Rdn corresponding to each crystal is located Numerical range, determining the efficiency level of each crystal; and rendering the color corresponding to the efficiency level of the crystal to the cell corresponding to each crystal; wherein, the colors corresponding to different efficiency levels are different.
  • the efficiency level is set to include at least two of good, a slight position change, or a large position change.
  • rendering the corresponding cells in the crystal efficiency distribution map according to the crystal efficiency of each crystal in the target detector includes: assigning the cells corresponding to the crystals whose efficiency level is good cells are rendered in green; cells corresponding to crystals whose efficiency class is a slight positional change are rendered in orange; and cells corresponding to crystals whose efficiency class is a large positional change are rendered in red.
  • each detector in the PET device has two layers of inner and outer crystals
  • the ring formed by connecting each group of detectors includes an inner ring and an outer ring, wherein the inner ring and the The outer ring is composed of corresponding connections between the inner layer and the outer layer of crystals of each group of detectors.
  • the second user operation is used to select any one layer of crystals in the inner and outer layers of crystals of the target detector in the arrangement structure diagram.
  • displaying the crystal efficiency distribution graph of the target detector includes: displaying the crystal efficiency distribution graph of a selected layer in the target detector.
  • the method further includes displaying the digitized detection results of the r rings in a list form.
  • the digital detection result and the visual detection result are displayed in different regions, wherein the visual detection result includes the arrangement structure diagram and the crystal efficiency distribution diagram.
  • the digital detection result and the visual detection result are displayed on different interfaces, wherein the visual detection result includes the arrangement structure diagram and the crystal efficiency distribution diagram.
  • the receiving a first user operation includes receiving an operation in which the user specifies the target ring in the digitized detection result.
  • an apparatus for demonstrating crystallographic efficiency of a PET device includes M detectors, and the M detectors are divided into r groups, wherein each group of detectors is connected into a ring to obtain r rings, and the r rings are respectively perpendicular to the PET
  • the axial setting of the device wherein r is an integer greater than or equal to 1, and M is a positive integer multiple of r
  • the device includes a first receiving module, a first visualization module, a second reception module and a second visualization module .
  • the first receiving module is configured to receive a first user operation, and the first user operation is used to select a ring among the r rings as a target ring for visual presentation.
  • the first visualization module is configured to display an arrangement diagram of detectors in the target ring in response to the first user operation.
  • the second receiving module is further configured to receive a second user operation, and the second user operation is used to select a detector in the arrangement diagram as the target detector.
  • the second visualization module is further configured to display a crystal efficiency distribution map of the target detector in response to the second user operation.
  • the crystal efficiency distribution diagram includes a horizontal axis and a vertical axis perpendicular to each other, wherein, along the horizontal axis, the arrangement specifications of the crystals in the target detector along the first direction are displayed; and along the The vertical axis shows the arrangement specification of the crystals in the target detector along the second direction.
  • the first direction and the second direction are directions perpendicular to each other in a plane parallel to the axial direction of the PET device.
  • the second visualization module is further configured to divide crystals in the target detector from the crystal efficiency distribution diagram by using the coordinates of the horizontal axis and the coordinates of the vertical axis— and rendering the corresponding cells in the crystal efficiency distribution diagram according to the crystal efficiency of each crystal in the target detector.
  • each detector in the PET device has two layers of inner and outer crystals
  • the ring formed by connecting each group of detectors includes an inner ring and an outer ring, wherein the inner ring and the The outer ring is composed of corresponding connections between the inner layer and the outer layer of crystals of each group of detectors.
  • the second user operation is used to select any one layer of crystals in the inner and outer layers of crystals of the target detector in the arrangement structure diagram.
  • the second visualization module is used to display the crystal efficiency distribution map of the selected layer in the target detector.
  • the device further includes a digital display module.
  • the digital display module is used to display the digital detection results of the r rings in a list form.
  • the digital detection result and the visual detection result are displayed in different regions, wherein the visual detection result includes the arrangement structure diagram and the crystal efficiency distribution diagram.
  • the digital detection result and the visual detection result are displayed on different interfaces, wherein the visual detection result includes the arrangement structure diagram and the crystal efficiency distribution diagram.
  • the electronic device includes one or more memories, and one or more processors.
  • the memory stores executable instructions, and the processor executes the executable instructions to implement the method according to the above.
  • Another aspect of the embodiments of the present disclosure provides a computer-readable storage medium, on which executable instructions are stored, and when the instructions are executed by a processor, the processor executes the above method.
  • Another aspect of the embodiments of the present disclosure provides a computer program, where the computer program includes computer-executable instructions, and the instructions are used to implement the above method when executed.
  • FIG. 1 is a flowchart of a method for demonstrating the crystal efficiency of a PET device according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a visual detection result of a PET device according to an embodiment of the present disclosure
  • FIG. 3 is a flowchart of a method for demonstrating crystallographic efficiency of a PET device according to another embodiment of the present disclosure
  • FIG. 4A and FIG. 4B are schematic diagrams showing digitized detection results and visual detection results of PET equipment on an interface according to an embodiment of the present disclosure
  • FIG. 5 is a block diagram of an apparatus for demonstrating crystallographic efficiency of a PET plant according to an embodiment of the disclosure.
  • FIG. 6 is a block diagram of an electronic device suitable for implementing crystal efficiency for demonstrating PET devices, according to an embodiment of the disclosure.
  • the PET device may include M detectors, and the M detectors are divided into r groups, wherein each group of detectors is connected into a ring to obtain r rings, and the r rings are respectively arranged perpendicular to the axial direction of the PET device, wherein , r is an integer greater than or equal to 1, and M is a positive integer multiple of r.
  • the PET device has a total of 64 detectors, wherein every 16 detectors form a ring, and there are 4 rings in total, and these 4 rings are arranged in sequence along the same axis.
  • an arrangement structure diagram of detectors in a ring and a crystal efficiency distribution diagram of detectors in the ring may be displayed based on user operations.
  • the crystal efficiency of the detector in the form of images (for example, single-event crystal efficiency distribution), it can help users to intuitively see the crystal efficiency of the crystal on any detector, so as to judge whether individual or partial crystals occur on the detector offset.
  • the digitized detection results presented in tabular form may also be displayed in partitions or interfaces.
  • the digitized results and visualized results are displayed separately, which is simple and intuitive, and non-professionals can also view and operate very intuitively and conveniently, with strong ease of use.
  • each detector in the PET device may have two layers of inner and outer crystals, and the ring formed by connecting each group of detectors includes an inner ring and an outer ring, wherein the inner ring and the outer ring are formed by each A group of detectors is composed of corresponding connections between the inner layer and the outer layer of crystals.
  • each detector in the PET device may also have only a single layer of crystals, or may have more layers of crystals, and the crystals of the same layer correspond to one layer connected to form a ring.
  • each detector in the PET device can have two layers of crystals inside and outside is only exemplary and not limiting.
  • the methods, devices, electronic equipment, media and programs of the embodiments of the present disclosure are not
  • the specific structure of the detector is not limited, for example, the present disclosure is also applicable to the case where the detector includes a single layer or more crystal layers in a PET device.
  • FIG. 1 is a flowchart of a method for demonstrating the crystal efficiency of a PET device according to an embodiment of the present disclosure.
  • the method for demonstrating crystal efficiency of a PET device may include operation S110 ⁇ operation S140.
  • a first user operation is received, the first user operation is used to select a ring from the r rings as a target ring for visual presentation.
  • operation S130 a second user operation is received, and the second user operation is used to select a detector in the layout structure diagram as the target detector.
  • the crystal efficiency distribution diagram of all crystals in the detector can be displayed; in another In one embodiment, after clicking on any layer of crystals in the target detector, only the crystal efficiency distribution diagram of the layer of crystals can be displayed.
  • the layout structure diagram and the crystal efficiency distribution diagram may be displayed in different user interfaces, or may be displayed in the same user interface.
  • the display form of the layout structure diagram can be selected according to the key points of the design or display.
  • the arrangement structure diagram may be presented as a ring diagram having a mapping relationship with the target ring. Therefore, each position of the arrangement structure diagram forms a mapping relationship with the detectors in the target ring.
  • the relative position between the layout structure diagram and the crystal efficiency distribution diagram or the layout in the user interface can be set according to the design of the user interface.
  • the layout map is displayed in a ring structure, and the crystal efficiency distribution map can be displayed inside the ring of the ring structure. This structure is compact and beautiful, as shown in Figure 2.
  • FIG. 2 is a schematic diagram of a visual detection result of a PET device according to an embodiment of the present disclosure.
  • each detector has two inner and outer layers of crystals, for example, reference numerals 23 and 25 are the inner and outer layers of crystals on the same detector.
  • the ring formed by connecting each group of detectors includes two layers, an inner ring 22 and an outer ring 21 .
  • the crystal efficiency distribution graph 24 is displayed inside the ring in the ring graph (ie, the layout structure graph).
  • the dark mark 23 on the inner ring 22 represents the inner layer crystal of the selected target detector, wherein the crystal efficiency distribution diagram 24 can show the crystal efficiency distribution diagram of the inner layer crystal in the target detector.
  • the crystal efficiency distribution diagram may include a horizontal axis and a vertical axis perpendicular to each other, where the horizontal axis shows the arrangement specifications of the crystals in the target detector along the first direction, and the vertical axis shows Specification of the arrangement of crystals along the second direction in the target detector.
  • the first direction and the second direction are directions perpendicular to each other in a plane parallel to the axial direction of the PET device.
  • the ordinate represents the number of rows of crystals
  • the abscissa represents the number of crystals in each row.
  • there are 995 crystals on a detector wherein the arrangement specification of the outer crystals may be 20*26, and the arrangement specification of the inner crystals may be 19*25, for example. Therefore, it is reflected in the crystal efficiency distribution diagram that the horizontal axis and vertical axis image lengths of the crystal efficiency distribution diagram corresponding to the outer crystal are 20*26 respectively, and the horizontal axis and vertical axis image lengths of the crystal efficiency distribution diagram corresponding to the inner crystal are 19 *25.
  • the crystal efficiency distribution map can be divided into cells corresponding to the crystals in the target detector one by one by the coordinates of the horizontal axis and the vertical axis, and then according to each crystal in the target detector The crystal efficiency for , renders the corresponding cell in the crystal efficiency distribution map. Therefore, the position of the crystal on any detector is shifted or not, and/or the degree of shifting information can be visually seen through the rendering effect in the crystal efficiency distribution diagram.
  • the crystal efficiency may be a single event crystal efficiency (Singles Crystal Efficiency) or a coincidence event crystal efficiency (Coincidence Crystal Efficiency) or the like.
  • the single event crystal efficiency can be obtained as follows: first, obtain the number of single events Scn acquired by each crystal of the PET equipment in the current scan; then obtain the reference scan The number of single events Srn acquired by each crystal of the PET equipment in ; Among them, the reference scan is the scan performed for the first time after the latest calibration, and the current scan is the scan selected by the user for quality control after the reference scan; Next, determine the current scan and the relative difference Rdn between the single event numbers Scn and Srn of each crystal in the reference scan; finally, the relative difference Rdn corresponding to each crystal is used as the single event crystal efficiency of each crystal.
  • the relative difference Rdn can be calculated by the following formula:
  • the efficiency level of each crystal can be determined according to the value range of the relative difference Rdn corresponding to each crystal, and then the The cell corresponding to each crystal renders the color corresponding to that crystal's efficiency class. Wherein, different efficiency levels correspond to different colors.
  • the efficiency level may be set to include at least two of good, slight position change, or large position change.
  • the efficiency level of crystals with Rdn less than 20% can be set as good
  • the efficiency level of crystals with 20% ⁇ Rdn ⁇ 30% is slight position change
  • the efficiency level of crystals with Rdn>30% is large position change.
  • the cells corresponding to the crystals whose efficiency level is good can be rendered as Green, cells corresponding to crystals with a slight positional change in efficiency class are rendered in orange, and cells corresponding to crystals with a large positional change in efficiency class are rendered in red.
  • the arrangement structure diagram of the detectors in a ring can be formed into a double-layer ring array, and the crystal efficiency distribution diagram of the selected layer is displayed in the middle, where the horizontal and vertical coordinates are crystal specifications, and the unit The color of the grid is rendered with the efficiency level of the crystal.
  • the crystal efficiency detection results of PET equipment are displayed in images, which is convenient for users (either ordinary users or professional technicians) to view intuitively and quickly locate problematic crystals, and it is also convenient for technicians to only Calibration is performed for an offset crystal.
  • FIG. 3 is a flowchart of a method for demonstrating crystal efficiency of a PET device according to another embodiment of the present disclosure.
  • the method for demonstrating crystal efficiency of a PET device may include operation S310 , operation S111 , and operation S120 - operation S140 .
  • the digitized detection results of the r rings may be displayed in a list form.
  • the digital detection results and the visual detection results are displayed in different areas, or the digital detection results and the visual detection results are displayed on different interfaces, wherein the visual detection results include the above-mentioned arrangement structure diagram and crystal efficiency distribution diagram.
  • operation S111 an operation of specifying the target ring in the digitized detection result by the user may be received, so as to realize specifying the target ring to be displayed.
  • operation S111 is an embodiment of operation S110.
  • FIG. 4A and FIG. 4B are schematic diagrams showing digitized detection results and visual detection results of a PET device on an interface according to an embodiment of the present disclosure.
  • the flow of the method shown in FIG. 3 will be further exemplarily described below in conjunction with FIG. 4A and FIG. 4B .
  • Figure 4A schematically shows the detector inspection interface showing the digitized inspection results of the PET equipment, and the various areas in it are described as follows.
  • Area 41 represents the digitized results Numerical Results.
  • Area 45 indicates that the currently displayed data comes from this ring.
  • Area 46 represents the single event uniformity score and the coincidence event uniformity score for this detection
  • Region 47 displays the number of events counts, the count rate Counts Rate, the number of single events singles, the single event count rate Singles Rate, and/or the Coincidence Uniformity of the current ring.
  • area 47 After clicking on area 43, area 47 will display the data of the previous ring.
  • area 47 will display the data of the next ring.
  • FIG. 4B schematically shows a detector inspection interface displaying visual inspection results of PET equipment, and each area therein is described as follows.
  • the Color Map is displayed in area 48. Drag the button min to adjust the minimum value of the color contrast of the graphic on the right, and the image displayed on the right will change accordingly. Drag the button Max to adjust the maximum color contrast of the graphic on the right, and the image displayed on the right will change accordingly.
  • Area 49 contains four function keys including: Previous Ring (previous ring), Next Ring (next ring), Previous Detector (previous detector) and Next Detector (next detector).
  • the area 11 After clicking the corresponding functional element in the area 49, the area 11 will display the corresponding image of the target detector specified by the user in the specified target ring.
  • Three radio menus are included in the area 410: View Singles Crystal Efficiency Map (single event crystal efficiency map,), View Coincidence Crystal Efficiency Map (coincidence event crystal efficiency map), View Flood Histogram (flood histogram, etc.), after clicking The corresponding graphics for the detectors in the specified ring will be displayed.
  • Area 411 shows the corresponding graphics for the specified detectors in the current ring.
  • ring a represents the outer crystal and ring b represents the inner crystal in the interface, and the user clicks on any layer of crystal on ring a or ring b (this layer of crystal is the target crystal layer c) Operation, after the target crystal layer c is selected, the color changes (for example, the color deepens). In response to the click operation, the crystal efficiency distribution graph d of the target crystal layer is displayed in ring a.
  • the digitized result and the visualized result can be displayed separately, which is simple and intuitive, and non-professionals can also use a very intuitive and convenient operation interface, which is easy to use.
  • various detection data of each detector of the PET equipment can be displayed, such as the number of events, count rate, crystal efficiency of a single event, count rate of a single event, or uniformity of coincidence events, etc.
  • FIG. 5 is a block diagram of an apparatus 500 for demonstrating crystallographic efficiency of a PET device, according to an embodiment of the disclosure.
  • the apparatus 500 for displaying the crystal efficiency of a PET device may include a first receiving module 510 , a first visualization module 520 , a second reception module 530 and a second visualization module 540 .
  • the device 500 may further include a digital display module 550 .
  • the device 500 can be used to implement the method described with reference to FIGS. 1 to 4B , to demonstrate the crystal efficiency of PET equipment.
  • the PET device may include M detectors, and the M detectors are divided into r groups, wherein each group of detectors is connected into a ring to obtain r rings, and the r rings are respectively perpendicular to the axis of the PET device direction setting, where r is an integer greater than or equal to 1, and M is a positive integer multiple of r.
  • the first receiving module 510 may, for example, perform operation S110 for receiving a first user operation, where the first user operation is for selecting a ring from the r rings as a target ring for visual presentation.
  • the first visualization module 520 may, for example, perform operation S120, for displaying an arrangement diagram of detectors in the target ring in response to a first user operation.
  • the second receiving module 530 may, for example, perform operation S130 for receiving a second user operation, where the second user operation is for selecting a detector in the arrangement diagram as the target detector.
  • the second visualization module 540 may perform operation S140 for displaying a crystal efficiency distribution diagram of the target detector in response to a second user operation.
  • the digitized display module 550 may, for example, perform operation S310 for displaying the digitized detection results of the r rings in a list form.
  • the digital detection results and the visual detection results can be displayed in different regions, wherein the visual detection results include an arrangement structure diagram and a crystal efficiency distribution diagram.
  • the digital detection result and the visual detection result are displayed on different interfaces, wherein the visual detection result includes an arrangement structure diagram and a crystal efficiency distribution diagram.
  • the crystal efficiency distribution diagram includes a horizontal axis and a vertical axis perpendicular to each other, wherein, along the horizontal axis, the arrangement specifications of the crystals in the target detector along the first direction are shown; and along the vertical axis, the crystals in the target detector are shown The alignment specification along the second direction.
  • the first direction and the second direction are directions perpendicular to each other in a plane parallel to the axial direction of the PET device.
  • the second visualization module 540 is also used to divide the crystal efficiency distribution map from the crystal efficiency distribution diagram to divide the corresponding cells of the crystals in the target detector according to the coordinates of the horizontal axis and the vertical axis, and according to the target detection The crystal efficiency of each crystal in the detector, rendering the corresponding cell in the crystal efficiency distribution map.
  • each detector in the PET device has two layers of inner and outer crystals
  • the ring formed by connecting each group of detectors includes an inner ring and an outer ring, wherein the inner ring and the outer ring are composed of each A group of detectors is composed of corresponding connections between the inner layer and the outer layer of crystals.
  • the second user operation is used to select any one layer of crystals of the inner and outer crystal layers of the target detector in the layout structure diagram.
  • the second visualization module 540 is used to display the crystal efficiency distribution map of the selected layer in the target detector.
  • Modules, sub-modules, units, any multiple of sub-units according to the embodiments of the present disclosure, or at least part of the functions of any multiple of them may be implemented in one module. Any one or more of modules, submodules, units, and subunits according to the embodiments of the present disclosure may be implemented by being divided into multiple modules.
  • modules, submodules, units, and subunits may be at least partially implemented as hardware circuits, such as field programmable gate arrays (FPGAs), programmable logic arrays (PLAs), A system on a chip, a system on a substrate, a system on a package, an application-specific integrated circuit (ASIC), or any other reasonable means of integrating or packaging a circuit in hardware or firmware, or in a combination of software, hardware, and firmware Any one of these implementations or an appropriate combination of any of them.
  • FPGAs field programmable gate arrays
  • PLAs programmable logic arrays
  • ASIC application-specific integrated circuit
  • one or more of the modules, submodules, units, and subunits according to the embodiments of the present disclosure may be at least partially implemented as computer program modules, and when the computer program modules are executed, corresponding functions may be performed.
  • any number of the first receiving module 510, the first visualization module 520, the second receiving module 530, the second visualization module 540, and the digital display module 550 can be combined into one module, or any one of them Can be split into multiple modules.
  • at least part of the functions of one or more of these modules may be combined with at least part of the functions of other modules and implemented in one module.
  • At least one of the first receiving module 510, the first visualization module 520, the second receiving module 530, the second visualization module 540, and the digital presentation module 550 may be at least partially implemented as a hardware circuit
  • Examples include Field Programmable Gate Arrays (FPGAs), Programmable Logic Arrays (PLAs), System-on-Chip, System-on-Substrate, System-on-Package, Application-Specific Integrated Circuits (ASICs), or any other It can be implemented in a reasonable manner such as hardware or firmware, or in any one of the three implementations of software, hardware, and firmware, or in an appropriate combination of any of them.
  • At least one of the first receiving module 510, the first visualization module 520, the second receiving module 530, the second visualization module 540, and the digital presentation module 550 may be at least partially implemented as a computer program module, when the computer program When the module is run, it can perform the corresponding function.
  • FIG. 6 is a block diagram of an electronic device 600 suitable for implementing crystal efficiency for demonstrating PET devices, according to an embodiment of the disclosure.
  • the electronic device 600 shown in FIG. 6 is only an example, and should not limit the functions and application scope of the embodiments of the present disclosure.
  • an electronic device 600 includes a processor 601, which can be loaded into a random access memory (RAM) 603 according to a program stored in a read-only memory (ROM) 602 or from a storage section 608.
  • processor 601 may include, for example, a general-purpose microprocessor (eg, a CPU), an instruction set processor and/or related chipsets, and/or a special-purpose microprocessor (eg, an application-specific integrated circuit (ASIC)), and the like.
  • Processor 601 may also include on-board memory for caching purposes.
  • the processor 601 may include a single processing unit or multiple processing units for executing different actions of the method flow according to the embodiments of the present disclosure.
  • the processor 601, ROM 602, and RAM 603 are connected to each other through a bus 604.
  • the processor 601 executes various operations according to the method flow of the embodiment of the present disclosure by executing programs in the ROM 602 and/or RAM 603. It should be noted that the program can also be stored in one or more memories other than ROM 602 and RAM 603.
  • the processor 601 may also perform various operations according to the method flow of the embodiments of the present disclosure by executing programs stored in the one or more memories.
  • the electronic device 600 may further include an input/output (I/O) interface 605 which is also connected to the bus 604 .
  • the electronic device 600 may also include one or more of the following components connected to the I/O interface 605: an input section 606 including a keyboard, a mouse, etc.; including a cathode ray tube (CRT), a liquid crystal display (LCD), etc.
  • the communication section 609 performs communication processing via a network such as the Internet.
  • a drive 610 is also connected to the I/O interface 605 as needed.
  • a removable medium 611 such as a magnetic disk, optical disk, magneto-optical disk, semiconductor memory, etc. is mounted on the drive 610 as necessary so that a computer program read therefrom is installed into the storage section 608 as necessary.
  • the method flow according to the embodiments of the present disclosure can be implemented as a computer software program.
  • the embodiments of the present disclosure include a computer program product, which includes a computer program carried on a computer-readable storage medium, where the computer program includes program codes for executing the methods shown in the flowcharts.
  • the computer program may be downloaded and installed from a network via communication portion 609 and/or installed from removable media 611 .
  • the computer program is executed by the processor 601
  • the above-mentioned functions defined in the system of the embodiment of the present disclosure are performed.
  • the above-described systems, devices, devices, modules, units, etc. may be implemented by computer program modules.
  • the present disclosure also provides a computer-readable storage medium.
  • the computer-readable storage medium may be included in the device/apparatus/system described in the above embodiments; it may also exist independently without being assembled into the device/system device/system.
  • the above-mentioned computer-readable storage medium carries one or more programs, and when the above-mentioned one or more programs are executed, the method according to the embodiment of the present disclosure is implemented.
  • the computer-readable storage medium may be a non-volatile computer-readable storage medium, such as may include but not limited to: portable computer disk, hard disk, random access memory (RAM), read-only memory (ROM) , erasable programmable read-only memory (EPROM or flash memory), portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • a computer-readable storage medium may be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device.
  • a computer-readable storage medium may include one or more memories other than the above-described ROM 602 and/or RAM 603 and/or ROM 602 and RAM 603.
  • Embodiments of the present disclosure also include a computer program product, which includes a computer program, and the computer program includes program codes for executing the method provided by the embodiments of the present disclosure.
  • the computer program product is run on an electronic device, the program The code is used to enable the electronic device to implement the method provided by the embodiment of the present disclosure.
  • the computer program may rely on tangible storage media such as optical storage devices and magnetic storage devices.
  • the computer program can also be transmitted and distributed in the form of a signal on a network medium, downloaded and installed through the communication part 609, and/or installed from the removable medium 611.
  • the program code contained in the computer program can be transmitted by any appropriate network medium, including but not limited to: wireless, wired, etc., or any appropriate combination of the above.
  • the program codes for executing the computer programs provided by the embodiments of the present disclosure can be written in any combination of one or more programming languages, specifically, high-level procedural and/or object-oriented programming language, and/or assembly/machine language to implement these computing programs.
  • Programming languages include, but are not limited to, programming languages such as Java, C++, python, "C" or similar programming languages.
  • the program code can execute entirely on the user computing device, partly on the user device, partly on the remote computing device, or entirely on the remote computing device or server.
  • the remote computing device may be connected to the user computing device through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computing device (for example, using an Internet service provider). business to connect via the Internet).
  • LAN local area network
  • WAN wide area network
  • Internet service provider for example, using an Internet service provider
  • each block in a flowchart or block diagram may represent a module, program segment, or portion of code that includes one or more logical functions for implementing specified executable instructions.
  • the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or they may sometimes be executed in the reverse order, depending upon the functionality involved.
  • each block in the block diagrams or flowchart illustrations, and combinations of blocks in the block diagrams or flowchart illustrations can be implemented by a dedicated hardware-based system that performs the specified function or operation, or can be implemented by a A combination of dedicated hardware and computer instructions.

Abstract

一种用于展示PET设备的晶体效率的方法,PET设备包括M个探测器,M个探测器分成r组,其中,每一组探测器连接成一个环以得到r个环,r个环分别垂直于PET设备的轴向设置,其中,r为大于或等于1的整数,M为r的正整数倍。方法包括:接收第一用户操作,第一用户操作用于在r个环中选择一个环来作为进行可视化展示的目标环(S110);响应于第一用户操作,展示目标环中的探测器的排布结构图(S120);接收第二用户操作,第二用户操作用于在排布结构图选择一个探测器来作为目标探测器(S130);以及响应于第二用户操作,展示目标探测器的晶体效率分布图(S140)。还提供了一种用于展示PET设备的晶体效率的装置、电子设备及介质。

Description

用于展示PET设备的晶体效率的方法、装置、电子设备及介质 技术领域
本公开属于医疗设备技术领域,具体地涉及一种用于展示PET设备的晶体效率的方法、装置、电子设备及介质。
背景技术
PET(Positron Emission computed Tomography,正电子发射型计算机断层显像)图像质量,是医生做出正确诊断的前提条件。由于长期使用过程中,PET设备中的晶体可能发生偏移,会导致扫描结果的可靠性降低。因此,需要对PET定期或不定期地进行质量检测,例如效率检测。其中,通过查看PET设备的晶体效率检测结果可以判断PET设备中的晶体偏移情况。
发明内容
本公开的一个方面,提供了一种用于展示PET设备的晶体效率的方法。其中,所述PET设备包括M个探测器,所述M个探测器分成r组,其中,每一组探测器连接成一个环以得到r个环,所述r个环分别垂直于所述PET设备的轴向设置,其中,r为大于或等于1的整数,M为r的正整数倍。所述方法包括:接收第一用户操作,所述第一用户操作用于在所述r个环中选择一个环来作为进行可视化展示的目标环;响应于所述第一用户操作,展示所述目标环中的探测器的排布结构图;接收第二用户操作,所述第二用户操作用于在所述排布结构图选择一个探测器来作为目标探测器;以及响应于所述第二用户操作,展示所述目标探测器的晶体效率分布图。
根据本公开的实施例,所述排布结构图为与所述目标环具有映射关系的环形图。
根据本公开的实施例,所述晶体效率分布图被展示在所述环形图中的环形内部。
根据本公开的实施例,所述晶体效率分布图包括相互垂直的横轴和纵轴。其中,沿所述横轴展示所述目标探测器中晶体沿第一方向的排列规格,以及沿所述纵轴展示所述目标探测器中晶体沿第二方向的排列规格。其中,所述第一方向和所述第二方向为在平行于所述PET设备的轴向的平面内相互垂直的方向。
根据本公开的实施例,所述展示所述目标探测器的晶体效率分布图还包括:通过所述横轴的坐标和所述纵轴的坐标从所述晶体效率分布图中划分出所述目标探测器中的晶体一一对应的单元格;以及根据所述目标探测器中每个晶体的晶体效率,渲染所述晶体效率分布图中 对应的单元格。
根据本公开的实施例,所述晶体效率包括所述单一事件晶体效率。
根据本公开的实施例,所述单一事件晶体效率通过如下方式获得:获取当前扫描中所述PET设备的每个晶体获取的单一事件数Scn;获取参考扫描中所述PET设备的每个晶体获取的单一事件数Srn;其中,所述参考扫描为最新一次校准之后首次执行的扫描,所述当前扫描为所述参考扫描之后用户选定的用于质量控制的扫描;确定所述当前扫描和所述参考扫描中每个晶体的单一事件数Scn和Srn之间的相对差异Rdn;以及以每个晶体对应的所述相对差异Rdn,作为每个晶体的所述单一事件晶体效率。
根据本公开的实施例,所述根据所述目标探测器中每个晶体的晶体效率,渲染所述晶体效率分布图中对应的单元格包括:根据每个晶体对应的所述相对差异Rdn所在的数值范围,确定每个晶体的效率等级;以及对与每个晶体对应的单元格渲染与该晶体的所述效率等级对应的颜色;其中,不同的所述效率等级对应的颜色不同。
根据本公开的实施例,所述效率等级被设置为包括良好、稍微位置变化、或较大位置变化中的至少二者。
根据本公开的实施例,所述根据所述目标探测器中每个晶体的晶体效率,渲染所述晶体效率分布图中对应的单元格包括:将与所述效率等级为良好的晶体对应的单元格渲染为绿色;将与所述效率等级为稍微位置变化的晶体对应的单元格渲染为橙色;以及将与所述效率等级为较大位置变化的晶体对应的单元格渲染为红色。
根据本公开的实施例,所述PET设备中每个探测器具有内外两层晶体,每一组探测器连接而成的环中包括内环和外环两层,其中,所述内环和所述外环分别由每一组探测器的内层外两层晶体对应连接组成。
根据本公开的实施例,所述第二用户操作用于在所述排布结构图中选择所述目标探测器的内外两层晶体中任意一层晶体。
根据本公开的实施例,所述响应于所述第二用户操作,展示所述目标探测器的晶体效率分布图包括:展示所述目标探测器中被选择层的所述晶体效率分布图。
根据本公开的实施例,所述方法还包括以列表形式展示所述r个环的数字化检测结果。
根据本公开的实施例,所述数字化检测结果与可视化检测结果分区展示,其中,所述可视化检测结果包括所述排布结构图和所述晶体效率分布图。
根据本公开的实施例,所述数字化检测结果与可视化检测结果分不同界面展示,其中,所述可视化检测结果包括所述排布结构图和所述晶体效率分布图。
根据本公开的实施例,所述接收第一用户操作,包括接收用户在所述数字化检测结果中 指定所述目标环的操作。
本公开实施例的另一方面,提供了一种用于展示PET设备的晶体效率的装置。其中,所述PET设备包括M个探测器,所述M个探测器分成r组,其中,每一组探测器连接成一个环以得到r个环,所述r个环分别垂直于所述PET设备的轴向设置,其中,r为大于或等于1的整数,M为r的正整数倍,其中,所述装置包括第一接收模块、第一可视化模块、第二接收模块和第二可视化模块。所述第一接收模块用于接收第一用户操作,所述第一用户操作用于在所述r个环中选择一个环来作为进行可视化展示的目标环。所述第一可视化模块用于响应于所述第一用户操作,展示所述目标环中的探测器的排布结构图。所述第二接收模块还用于接收第二用户操作,所述第二用户操作用于在所述排布结构图选择一个探测器来作为目标探测器。所述第二可视化模块还用于响应于所述第二用户操作,展示所述目标探测器的晶体效率分布图。
根据本公开的实施例,所述晶体效率分布图包括相互垂直的横轴和纵轴,其中,沿所述横轴展示所述目标探测器中晶体沿第一方向的排列规格;以及沿所述纵轴展示所述目标探测器中晶体沿第二方向的排列规格。其中,所述第一方向和所述第二方向为在平行于所述PET设备的轴向的平面内相互垂直的方向。
根据本公开的实施例,所述第二可视化模块还用于通过所述横轴的坐标和所述纵轴的坐标从所述晶体效率分布图中划分出所述目标探测器中的晶体一一对应的单元格,以及根据所述目标探测器中每个晶体的晶体效率,渲染所述晶体效率分布图中对应的单元格。
根据本公开的实施例,所述PET设备中每个探测器具有内外两层晶体,每一组探测器连接而成的环中包括内环和外环两层,其中,所述内环和所述外环分别由每一组探测器的内层外两层晶体对应连接组成。
根据本公开的实施例,所述第二用户操作用于在所述排布结构图中选择所述目标探测器的内外两层晶体中任意一层晶体。
根据本公开的实施例,所述第二可视化模块用于展示目标探测器中被选择层的所述晶体效率分布图。
根据本公开的实施例,所述装置还包括数字化展示模块。所述数字化展示模块用于以列表形式展示所述r个环的数字化检测结果。
根据本公开的实施例,所述数字化检测结果与可视化检测结果分区展示,其中,所述可视化检测结果包括所述排布结构图和所述晶体效率分布图。
根据本公开的实施例,所述数字化检测结果与可视化检测结果分不同界面展示,其中,所述可视化检测结果包括所述排布结构图和所述晶体效率分布图。
本公开实施例的另一方面,提供了一种电子设备。所述电子设备包括一个或多个存储器,以及一个或多个处理器。所述存储器存储有可执行指令,以及所述处理器执行所述可执行指令,以实现根据如上所述的方法。
本公开实施例的另一方面,提供了一种计算机可读存储介质,其上存储有可执行指令,该指令被处理器执行时使处理器执行如上所述的方法。
本公开实施例的另一方面,提供了一种计算机程序,所述计算机程序包括计算机可执行指令,所述指令在被执行时用于实现如上所述的方法。
附图说明
图1为根据本公开一实施例的用于展示PET设备的晶体效率的方法流程图;
图2为根据本公开一实施例的PET设备的可视化检测结果的示意图;
图3为根据本公开另一实施例的用于展示PET设备的晶体效率的方法流程图;
图4A和图4B为根据本公开一实施例的分界面展示PET设备的数字化检测结果和可视化检测结果的示意图;
图5为根据本公开实施例的用于展示PET设备的晶体效率的装置的框图;以及
图6为根据本公开实施例的适于实现用于展示PET设备的晶体效率的电子设备的结构图。
具体实施方式
以下,将参照附图来描述本公开的实施例。但是应该理解,这些描述只是示例性的,而并非要限制本公开的范围。在下面的详细描述中,为便于解释,阐述了许多具体的细节以提供对本公开实施例的全面理解。然而,明显地,一个或多个实施例在没有这些具体细节的情况下也可以被实施。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本公开的概念。
本公开的各个实施例提供了一种用于展示PET设备的晶体效率的方法、装置、电子设备、介质及程序。其中,PET设备可以包括M个探测器,M个探测器分成r组,其中,每一组探测器连接成一个环以得到r个环,r个环分别垂直于PET设备的轴向设置,其中,r为大于或等于1的整数,M为r的正整数倍。例如,在一个实施例中,PET设备共有64个探测器,其中,每16个探测器组成一个环,共有4个环,这4个环沿同一轴向依次排列。
根据本公开实施例,可以基于用户的操作展示一个环中的探测器的排布结构图,以及该环中的探测器的晶体效率分布图。通过以图像的方式展示探测器的晶体效率(例如,单一事件晶体效率分布),可以帮助用户直观的看到任一探测器上晶体的晶体效率,以判断该探测器 上是个别还是部分晶体发生偏移。
根据本公开的实施例,在以图像可视化展示晶体效率的同时,还可以分区或分界面展示以表格形式呈现的数字化检测结果。数字化结果以及可视化结果分开展示,简洁直观,非专业人员也可非常直观方便的查看和操作,易用性强。
在一些实施例中,PET设备中每个探测器可以具有内外两层晶体,每一组探测器连接而成的环中包括内环和外环两层,其中,内环和外环分别由每一组探测器的内层外两层晶体对应连接组成。当然在另一些实施例中,PET设备中每个探测器也可以仅具有单层晶体、或者可以具有更多层晶体,同一层的晶体对应连接成环的一层。
以下结合附图,对本公开实施例的用于展示PET设备的晶体效率的方法、装置和电子设备进行示例性说明。需要说明的是,在下文中以PET设备中每个探测器可以具有内外两层晶体进行举例说明仅是示例性而非限定性的,本公开实施例的方法、装置、电子设备、介质和程序并不限制探测器的具体结构,例如本公开同样可以适用于PET设备中探测器包括单层、或者更多层晶体的情况。
图1为根据本公开一实施例的用于展示PET设备的晶体效率的方法流程图。
如图1所示,该用于展示PET设备的晶体效率的方法可以包括操作S110~操作S140。
首先在操作S110,接收第一用户操作,第一用户操作用于在r个环中选择一个环来作为进行可视化展示的目标环。
然后在操作S120,响应于第一用户操作,展示目标环中的探测器的排布结构图。
接下来在操作S130,接收第二用户操作,第二用户操作用于在排布结构图选择一个探测器来作为目标探测器。
再然后在操作S140,响应于第二用户操作,展示目标探测器的晶体效率分布图。
当PET设备中的探测器包括双层晶体的情况下,在一个实施例中,点击目标探测器中的任意一层晶体后,就可以展示该探测器中所有晶体的晶体效率分布图;在另一个实施例中,点击目标探测器中的任意一层晶体后,可以仅展示该层晶体的晶体效率分布图。
根据本公开的实施例,排布结构图和晶体效率分布图可以在不同的用户界面中展示,也可以在同一个用户界面中展示。
排布结构图的展示形式可以根据设计或展示的要点需要进行选择。根据本公开的一个实施例,可以以与目标环具有映射关系的环形图来呈现该排布结构图。从而使得该排布结构图的各个位置与目标环中的探测器形成映射关系。
当在同一个界面中展示排布结构图和晶体效率分布图时,可以根据用户界面的设计来设置排布结构图和晶体效率分布图二者之间的相对位置或在用户界面中的布局。在一个实施例 中,排布结构图以环形结构展示,而晶体效率分布图则可以展示在环形结构的环形内部。这样结构紧凑且美观,如图2所示。
具体地,图2为根据本公开一实施例的PET设备的可视化检测结果的示意图。
图2所展示的PET设备中,每个探测器具有内外两层晶体,例如标号23、25为同一探测器上的内外层晶体。每一组探测器连接而成的环中包括内环22和外环21两层。
其中,晶体效率分布图24被展示在环形图(即,排布结构图)中的环形内部。
内环22上深色标记23代表被选中的目标探测器的内层晶体,其中,晶体效率分布图24可以展示目标探测器中该内层晶体的晶体效率分布图。
结合图2,根据本公开的实施例,晶体效率分布图可以包括相互垂直的横轴和纵轴,其中,沿横轴展示目标探测器中晶体沿第一方向的排列规格,以及沿纵轴展示目标探测器中晶体沿第二方向的排列规格。其中,第一方向和第二方向为在平行于PET设备的轴向的平面内相互垂直的方向。
例如纵坐标代表晶体的排数,横坐标代表每排晶体的个数。例如,在一个实施例中一个探测器上有995个晶体,其中,外层晶体的排列规格可以为20*26,内层晶体的排列规格例如可以为19*25。从而反映在晶体效率分布图上就是外层晶体对应的晶体效率分布图横轴和纵轴图像长度分别是20*26,内层晶体对应的晶体效率分布图横轴和纵轴图像长度分别是19*25。
根据本公开的实施例,可以通过横轴的坐标和纵轴的坐标从晶体效率分布图中划分出与目标探测器中的晶体一一对应的单元格,以及然后根据目标探测器中每个晶体的晶体效率,渲染晶体效率分布图中对应的单元格。从而可以通过晶体效率分布图中的渲染效果,直观地看到任一探测器上晶体的位置偏移与否、和/或偏移程度信息。
根据本公开的实施例,晶体效率可以是单一事件晶体效率(Singles Crystal Efficiency)或巧合事件晶体效率(Coincidence Crystal Efficiency)等。
当以单一事件晶体效率(Singles Crystal Efficiency)表示晶体效率时,该单一事件晶体效率可以通过如下方式获得:首先,获取当前扫描中PET设备的每个晶体获取的单一事件数Scn;然后获取参考扫描中PET设备的每个晶体获取的单一事件数Srn;其中,参考扫描为最新一次校准之后首次执行的扫描,当前扫描为参考扫描之后用户选定的用于质量控制的扫描;接下来确定当前扫描和参考扫描中每个晶体的单一事件数Scn和Srn之间的相对差异Rdn;最后以每个晶体对应的相对差异Rdn,作为每个晶体的单一事件晶体效率。在一个实施例中,该相对差异Rdn可以通过如下公式计算得到:
Figure PCTCN2021098953-appb-000001
在根据目标探测器中每个晶体的晶体效率,渲染晶体效率分布图中对应的单元格时,可以根据每个晶体对应的相对差异Rdn所在的数值范围,确定每个晶体的效率等级,然后对与每个晶体对应的单元格渲染与该晶体的效率等级对应的颜色。其中,不同的效率等级对应的颜色不同。
例如可以设置效率等级被包括良好、稍微位置变化、或较大位置变化中的至少二者。比如,可以设置Rdn小于20%的晶体的效率等级为良好,20%≤Rdn<30%的晶体的效率等级为稍微位置变化,Rdn>30%的晶体的效率等级为较大位置变化。
相应地,根据本公开的实施例,在根据目标探测器中每个晶体的晶体效率,渲染晶体效率分布图中对应的单元格时,可以将与效率等级为良好的晶体对应的单元格渲染为绿色,将与效率等级为稍微位置变化的晶体对应的单元格渲染为橙色,以及将与效率等级为较大位置变化的晶体对应的单元格渲染为红色。
从而,例如如图2所示,可以将一个环中的探测器的排布结构图呈双层环状阵列,中间展示被选择层的晶体效率分布图,其中,横纵坐标为晶体规格,单元格的颜色以晶体的效率等级进行渲染。以此方式,将PET设备的晶体效率检测结果以图像化展示,方便使用者(可以是普通用户,也可以是专业技术人员)直观的查看,并迅速定位有问题的晶体,也方便技术人员仅针对发生偏移的晶体的进行校准。
图3为根据本公开另一实施例的用于展示PET设备的晶体效率的方法流程图。
如图3所示,该用于展示PET设备的晶体效率的方法可以包括操作S310、操作S111、以及操作S120~操作S140。
首先在操作S310,可以以列表形式展示r个环的数字化检测结果。根据本公开的实施例,数字化检测结果与可视化检测结果分区展示,或者,数字化检测结果与可视化检测结果分不同界面展示,其中,可视化检测结果包括上述的排布结构图和晶体效率分布图。
然后在操作S111,可以接收用户在数字化检测结果中指定目标环的操作,以此来实现指定要展示的目标环。其中,操作S111为操作S110的一个实施例。
接下来通过操作S120~操作S140展示目标环的排布结构图,以及用户选定的目标探测器的晶体效率分布图,具体可以参考上文的相关描述,此处不再赘述。
图4A和图4B为根据本公开一实施例的分界面展示PET设备的数字化检测结果和可视化检测结果的示意图。以下结合图4A和图4B对图3所示的方法流程进行进一步示例性说明。
首先参考图4A。图4A示意了展示PET设备的数字化检测结果的探测器检查界面,其中 的各个区域说明如下。
区域41表示数字化结果Numerical Results。
区域42表示可视化结果Visualize Results。
区域45表示当前展示的数据来自此环。
区域46表示此次检测的单一事件均匀性分数和巧合事件均匀性分数
区域47展示当前环的事件数counts,计数率Counts Rate,单一事件数singles,单一事件计数率Singles Rate,和/或巧合事件均匀性Coincidence Uniformity。
点击区域43后,区域47将展示前一个环的数据。
点击区域44后,区域47将展示后一个环的数据。
在通过对区域43和/或区域44的点击操作,选定要展示的目标环(即区域45中显示的环)后,点击区域42后可以跳转到图4B所示的用户界面。
图4B示意了展示PET设备的可视化检测结果的探测器检查界面,其中的各个区域说明如下。
区域48中展示颜色带Color Map。拖动按钮min调节右侧图形颜色对比度的最小值,右侧展示的图像会相应的变化。拖动按钮Max调节右侧图形颜色对比度的最大值,右侧展示的图像会相应的变化。
区域49中包含四个功能键包括:Previous Ring(前一个环)、Next Ring(下一个环),Previous Detector(前一个探测器)和Next Detector(下一个探测器)。
点击区域49中的相应功能件后,区域11将会展示指定的目标环中用户指定的目标探测器的对应图像。
区域410中包含三个单选菜单:View Singles Crystal Efficiency Map(单一事件晶体效率图、),View Coincidence Crystal Efficiency Map(巧合事件晶体效效率图),View Flood Histogram(洪水直方图等),点击后将会展示指定的环中探测器的对应图形。
区域411中展示当前环中指定探测器的对应图形。对于具有双层晶体的探测器,界面内显示环a代表外层晶体、环b代表内层晶体,用户对环a或者环b上的任一层晶体(该层晶体为目标晶体层c)点击操作,目标晶体层c选中后,颜色发生变化(例如,颜色加深)。响应于点击操作,环a内显示该目标晶体层的晶体效率分布图d。
以此方式,根据本公开的实施例,可以将数字化结果以及可视化结果分开展示,简洁直观,非专业人员也可非常直观方便操作界面,易用性强。而且可以展示PET设备的各个探测器的各类检测数据,例如事件数,计数率,单一事件晶体效率、单一事件计数率、或巧合事件均匀性等。
图5为根据本公开实施例的用于展示PET设备的晶体效率的装置500的框图。
如图5所示,该用于展示PET设备的晶体效率的装置500可以包括第一接收模块510、第一可视化模块520、第二接收模块530和第二可视化模块540。根据本公开的另一些实施例,该装置500还可以进一步包括数字化展示模块550。该装置500可以用于实现参考图1~图4B所描述的方法,对PET设备的晶体效率进行展示。其中,如上文描述,PET设备可以包括M个探测器,M个探测器分成r组,其中,每一组探测器连接成一个环以得到r个环,r个环分别垂直于PET设备的轴向设置,其中,r为大于或等于1的整数,M为r的正整数倍。
具体地,第一接收模块510例如可以执行操作S110,用于接收第一用户操作,第一用户操作用于在r个环中选择一个环来作为进行可视化展示的目标环。
第一可视化模块520例如可以执行操作S120,用于响应于第一用户操作,展示目标环中的探测器的排布结构图。
第二接收模块530例如可以执行操作S130,用于接收第二用户操作,第二用户操作用于在排布结构图选择一个探测器来作为目标探测器。
第二可视化模块540例如可以执行操作S140,用于响应于第二用户操作,展示目标探测器的晶体效率分布图。
数字化展示模块550例如可以执行操作S310,用于以列表形式展示r个环的数字化检测结果。
根据本公开的实施例,数字化检测结果与可视化检测结果可以分区展示,其中,可视化检测结果包括排布结构图和晶体效率分布图。或者,根据本公开的实施例,数字化检测结果与可视化检测结果分不同界面展示,其中,可视化检测结果包括排布结构图和晶体效率分布图。
根据本公开的实施例,晶体效率分布图包括相互垂直的横轴和纵轴,其中,沿横轴展示目标探测器中晶体沿第一方向的排列规格;以及沿纵轴展示目标探测器中晶体沿第二方向的排列规格。其中,第一方向和第二方向为在平行于PET设备的轴向的平面内相互垂直的方向。
根据本公开的实施例,第二可视化模块540还用于通过横轴的坐标和纵轴的坐标从晶体效率分布图中划分出目标探测器中的晶体一一对应的单元格,以及根据目标探测器中每个晶体的晶体效率,渲染晶体效率分布图中对应的单元格。
根据本公开的实施例,PET设备中每个探测器具有内外两层晶体,每一组探测器连接而成的环中包括内环和外环两层,其中,内环和外环分别由每一组探测器的内层外两层晶体对应连接组成。根据本公开的一些实施例,第二用户操作用于在排布结构图中选择目标探测器的内外两层晶体中任意一层晶体。相应地,根据本公开的实施例,第二可视化模块540用于 展示目标探测器中被选择层的晶体效率分布图。
根据本公开的实施例的模块、子模块、单元、子单元中的任意多个、或其中任意多个的至少部分功能可以在一个模块中实现。根据本公开实施例的模块、子模块、单元、子单元中的任意一个或多个可以被拆分成多个模块来实现。根据本公开实施例的模块、子模块、单元、子单元中的任意一个或多个可以至少被部分地实现为硬件电路,例如现场可编程门阵列(FPGA)、可编程逻辑阵列(PLA)、片上系统、基板上的系统、封装上的系统、专用集成电路(ASIC),或可以通过对电路进行集成或封装的任何其他的合理方式的硬件或固件来实现,或以软件、硬件以及固件三种实现方式中任意一种或以其中任意几种的适当组合来实现。或者,根据本公开实施例的模块、子模块、单元、子单元中的一个或多个可以至少被部分地实现为计算机程序模块,当该计算机程序模块被运行时,可以执行相应的功能。
例如,第一接收模块510、第一可视化模块520、第二接收模块530、第二可视化模块540、以及数字化展示模块550中的任意多个可以合并在一个模块中实现,或者其中的任意一个模块可以被拆分成多个模块。或者,这些模块中的一个或多个模块的至少部分功能可以与其他模块的至少部分功能相结合,并在一个模块中实现。根据本公开的实施例,第一接收模块510、第一可视化模块520、第二接收模块530、第二可视化模块540、以及数字化展示模块550中的至少一个可以至少被部分地实现为硬件电路,例如现场可编程门阵列(FPGA)、可编程逻辑阵列(PLA)、片上系统、基板上的系统、封装上的系统、专用集成电路(ASIC),或可以通过对电路进行集成或封装的任何其他的合理方式等硬件或固件来实现,或以软件、硬件以及固件三种实现方式中任意一种或以其中任意几种的适当组合来实现。或者,第一接收模块510、第一可视化模块520、第二接收模块530、第二可视化模块540、以及数字化展示模块550中的至少一个可以至少被部分地实现为计算机程序模块,当该计算机程序模块被运行时,可以执行相应的功能。
图6为根据本公开实施例的适于实现用于展示PET设备的晶体效率的电子设备600的结构图。图6示出的电子设备600仅仅是一个示例,不应对本公开实施例的功能和使用范围带来任何限制。
如图6所示,根据本公开实施例的电子设备600包括处理器601,其可以根据存储在只读存储器(ROM)602中的程序或者从存储部分608加载到随机访问存储器(RAM)603中的程序而执行各种适当的动作和处理。处理器601例如可以包括通用微处理器(例如CPU)、指令集处理器和/或相关芯片组和/或专用微处理器(例如,专用集成电路(ASIC)),等等。处理器601还可以包括用于缓存用途的板载存储器。处理器601可以包括用于执行根据本公开实施例的方法流程的不同动作的单一处理单元或者是多个处理单元。
在RAM 603中,存储有电子设备600操作所需的各种程序和数据。处理器601、ROM 602以及RAM 603通过总线604彼此相连。处理器601通过执行ROM 602和/或RAM 603中的程序来执行根据本公开实施例的方法流程的各种操作。需要注意,所述程序也可以存储在除ROM 602和RAM 603以外的一个或多个存储器中。处理器601也可以通过执行存储在所述一个或多个存储器中的程序来执行根据本公开实施例的方法流程的各种操作。
根据本公开的实施例,电子设备600还可以包括输入/输出(I/O)接口605,输入/输出(I/O)接口605也连接至总线604。电子设备600还可以包括连接至I/O接口605的以下部件中的一项或多项:包括键盘、鼠标等的输入部分606;包括诸如阴极射线管(CRT)、液晶显示器(LCD)等以及扬声器等的输出部分607;包括硬盘等的存储部分608;以及包括诸如LAN卡、调制解调器等的网络接口卡的通信部分609。通信部分609经由诸如因特网的网络执行通信处理。驱动器610也根据需要连接至I/O接口605。可拆卸介质611,诸如磁盘、光盘、磁光盘、半导体存储器等等,根据需要安装在驱动器610上,以便于从其上读出的计算机程序根据需要被安装入存储部分608。
根据本公开的实施例,根据本公开实施例的方法流程可以被实现为计算机软件程序。例如,本公开的实施例包括一种计算机程序产品,其包括承载在计算机可读存储介质上的计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。在这样的实施例中,该计算机程序可以通过通信部分609从网络上被下载和安装,和/或从可拆卸介质611被安装。在该计算机程序被处理器601执行时,执行本公开实施例的系统中限定的上述功能。根据本公开的实施例,上文描述的系统、设备、装置、模块、单元等可以通过计算机程序模块来实现。
本公开还提供了一种计算机可读存储介质,该计算机可读存储介质可以是上述实施例中描述的设备/装置/系统中所包含的;也可以是单独存在,而未装配入该设备/装置/系统中。上述计算机可读存储介质承载有一个或者多个程序,当上述一个或者多个程序被执行时,实现根据本公开实施例的方法。
根据本公开的实施例,计算机可读存储介质可以是非易失性的计算机可读存储介质,例如可以包括但不限于:便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本公开中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。例如,根据本公开的实施例,计算机可读存储介质可以包括上文描述的ROM 602和/或RAM 603和/或ROM 602和RAM 603以外的一个或多个存储器。
本公开的实施例还包括一种计算机程序产品,其包括计算机程序,该计算机程序包含用于执行本公开实施例所提供的方法的程序代码,当计算机程序产品在电子设备上运行时,该程序代码用于使电子设备实现本公开实施例所提供的方法。
在该计算机程序被处理器601执行时,执行本公开实施例的系统/装置中限定的上述功能。根据本公开的实施例,上文描述的系统、装置、模块、单元等可以通过计算机程序模块来实现。
在一种实施例中,该计算机程序可以依托于光存储器件、磁存储器件等有形存储介质。在另一种实施例中,该计算机程序也可以在网络介质上以信号的形式进行传输、分发,并通过通信部分609被下载和安装,和/或从可拆卸介质611被安装。该计算机程序包含的程序代码可以用任何适当的网络介质传输,包括但不限于:无线、有线等等,或者上述的任意合适的组合。
根据本公开的实施例,可以以一种或多种程序设计语言的任意组合来编写用于执行本公开实施例提供的计算机程序的程序代码,具体地,可以利用高级过程和/或面向对象的编程语言、和/或汇编/机器语言来实施这些计算程序。程序设计语言包括但不限于诸如Java,C++,python,“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算设备上执行、部分地在用户设备上执行、部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。在涉及远程计算设备的情形中,远程计算设备可以通过任意种类的网络,包括局域网(LAN)或广域网(WAN),连接到用户计算设备,或者,可以连接到外部计算设备(例如利用因特网服务提供商来通过因特网连接)。
附图中的流程图和框图,图示了按照本公开各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,上述模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图或流程图中的每个方框、以及框图或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
以上对本公开的实施例进行了描述。这些实施例仅仅是为了说明的目的,而并非为了限制本公开的范围。不脱离本公开的范围,本领域技术人员可以做出多种替代和修改,这些替代和修改都应落在本公开的范围之内。

Claims (21)

  1. 一种用于展示PET设备的晶体效率的方法,其中,所述PET设备包括M个探测器,所述M个探测器分成r组,其中,每一组探测器连接成一个环以得到r个环,所述r个环分别垂直于所述PET设备的轴向设置,其中,r为大于或等于1的整数,M为r的正整数倍,其中,所述方法包括:
    接收第一用户操作,所述第一用户操作用于在所述r个环中选择一个环来作为进行可视化展示的目标环;
    响应于所述第一用户操作,展示所述目标环中的探测器的排布结构图;
    接收第二用户操作,所述第二用户操作用于在所述排布结构图中选择一个探测器来作为目标探测器;以及
    响应于所述第二用户操作,展示所述目标探测器的晶体效率分布图。
  2. 根据权利要求1所述的方法,其中,所述排布结构图为与所述目标环具有映射关系的环形图。
  3. 根据权利要求2所述的方法,其中,所述晶体效率分布图被展示在所述环形图中的环形内部。
  4. 根据权利要求1~3任意一项所述的方法,其中,所述晶体效率分布图包括相互垂直的横轴和纵轴,其中,
    沿所述横轴展示所述目标探测器中晶体沿第一方向的排列规格;以及
    沿所述纵轴展示所述目标探测器中晶体沿第二方向的排列规格;
    其中,所述第一方向和所述第二方向为在平行于所述PET设备的轴向的平面内相互垂直的方向。
  5. 根据权利要求4所述的方法,其中,所述展示所述目标探测器的晶体效率分布图还包括:
    通过所述横轴的坐标和所述纵轴的坐标从所述晶体效率分布图中划分出所述目标探测器中的晶体一一对应的单元格;以及
    根据所述目标探测器中每个晶体的晶体效率,渲染所述晶体效率分布图中对应的单元格。
  6. 根据权利要求5所述的方法,其中,所述晶体效率包括单一事件晶体效率。
  7. 根据权利要求6所述的方法,其中,所述单一事件晶体效率通过如下方式获得:
    获取当前扫描中所述PET设备的每个晶体获取的单一事件数Scn;
    获取参考扫描中所述PET设备的每个晶体获取的单一事件数Srn;其中,所述参考扫描为最新一次校准之后首次执行的扫描,所述当前扫描为所述参考扫描之后用户选定的用于质量控制的扫描;
    确定所述当前扫描和所述参考扫描中每个晶体的单一事件数Scn和Srn之间的相对差异Rdn;以及
    以每个晶体对应的所述相对差异Rdn,作为每个晶体的所述单一事件晶体效率。
  8. 根据权利要求7所述的方法,其中,所述根据所述目标探测器中每个晶体的晶体效率,渲染所述晶体效率分布图中对应的单元格包括:
    根据每个晶体对应的所述相对差异Rdn所在的数值范围,确定每个晶体的效率等级;以及
    对与每个晶体对应的单元格渲染与该晶体的所述效率等级对应的颜色;其中,不同的所述效率等级对应的颜色不同。
  9. 根据权利要求6所述的方法,其中,所述效率等级被设置为包括良好、稍微位置变化、或较大位置变化中的至少二者。
  10. 根据权利要求9所述的方法,其中,所述根据所述目标探测器中每个晶体的晶体效率,渲染所述晶体效率分布图中对应的单元格包括:
    将与所述效率等级为良好的晶体对应的单元格渲染为绿色;
    将与所述效率等级为稍微位置变化的晶体对应的单元格渲染为橙色;以及
    将与所述效率等级为较大位置变化的晶体对应的单元格渲染为红色。
  11. 根据权利要求1~10任意一项所述的方法,其中,所述PET设备中每个探测器具有内外两层晶体,每一组探测器连接而成的环中包括内环和外环两层,其中,所述内环和所述外环分别由每一组探测器的内层外两层晶体对应连接组成。
  12. 根据权利要求11所述的方法,其中,所述第二用户操作用于在所述排布结构图中选择所述目标探测器的内外两层晶体中任意一层晶体。
  13. 根据权利要求12所述的方法,其中,所述响应于所述第二用户操作,展示所述目标探测器的晶体效率分布图包括:
    展示所述目标探测器中被选择层的所述晶体效率分布图。
  14. 根据权利要求1所述的方法,其中,所述方法还包括以列表形式展示所述r个环的数字化检测结果。
  15. 根据权利要求14所述的方法,其中,所述数字化检测结果与可视化检测结果分区展示,其中,所述可视化检测结果包括所述排布结构图和所述晶体效率分布图。
  16. 根据权利要求14所述的方法,其中,所述数字化检测结果与可视化检测结果分不同界面展示,其中,所述可视化检测结果包括所述排布结构图和所述晶体效率分布图。
  17. 根据权利要求16所述的方法,其中,所述接收第一用户操作包括:
    接收用户在所述数字化检测结果中指定所述目标环的操作。
  18. 一种用于展示PET设备的晶体效率的装置,其中,所述PET设备包括M个探测器,所述M个探测器分成r组,其中,每一组探测器连接成一个环以得到r个环,所述r个环分别垂直于所述PET设备的轴向设置,其中,r为大于或等于1的整数,M为r的正整数倍,其中,所述装置包括:
    接收模块,用于接收第一用户操作,所述第一用户操作用于在所述r个环中选择一个环来作为进行可视化展示的目标环;
    可视化模块,用于响应于所述第一用户操作,展示所述目标环中的探测器的排布结构图;
    所述接收模块还用于接收第二用户操作,所述第二用户操作用于在所述排布结构图中选择一个探测器来作为目标探测器;以及
    所述可视化模块还用于响应于所述第二用户操作,展示所述目标探测器的晶体效率分布图。
  19. 一种电子设备,包括:
    一个或多个存储器,存储有可执行指令;以及
    一个或多个处理器,执行所述可执行指令,以实现根据权利要求1~17中任一项所述的方法。
  20. 一种计算机可读存储介质,其上存储有可执行指令,该指令被处理器执行时使处理器执行根据权利要求1~17中任一项所述的方法。
  21. 一种计算机程序,所述计算机程序包括计算机可执行指令,所述指令在被执行时用于实现根据权利要求1~17中任一项所述的方法。
PCT/CN2021/098953 2021-06-08 2021-06-08 用于展示pet设备的晶体效率的方法、装置、电子设备及介质 WO2022257014A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/098953 WO2022257014A1 (zh) 2021-06-08 2021-06-08 用于展示pet设备的晶体效率的方法、装置、电子设备及介质
CN202180097293.8A CN117203555A (zh) 2021-06-08 2021-06-08 用于展示pet设备的晶体效率的方法、装置、电子设备及介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/098953 WO2022257014A1 (zh) 2021-06-08 2021-06-08 用于展示pet设备的晶体效率的方法、装置、电子设备及介质

Publications (1)

Publication Number Publication Date
WO2022257014A1 true WO2022257014A1 (zh) 2022-12-15

Family

ID=84424741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098953 WO2022257014A1 (zh) 2021-06-08 2021-06-08 用于展示pet设备的晶体效率的方法、装置、电子设备及介质

Country Status (2)

Country Link
CN (1) CN117203555A (zh)
WO (1) WO2022257014A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011075419A (ja) * 2009-09-30 2011-04-14 Shimadzu Corp 放射線断層撮影装置
CN106264588A (zh) * 2016-07-29 2017-01-04 上海联影医疗科技有限公司 正电子发射断层成像系统探测效率检测、校正方法及装置
CN109077748A (zh) * 2018-08-31 2018-12-25 北京锐视康科技发展有限公司 一种精准的pet归一化校正方法
CN110179485A (zh) * 2019-05-29 2019-08-30 明峰医疗系统股份有限公司 一种用于pet成像系统增益调整的方法和装置
CN110301926A (zh) * 2019-07-04 2019-10-08 东软医疗系统股份有限公司 确定晶体固有效率的方法、装置、存储介质及医疗设备
CN110687585A (zh) * 2019-09-23 2020-01-14 上海联影医疗科技有限公司 获取晶体效率的方法、装置、计算机设备和存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011075419A (ja) * 2009-09-30 2011-04-14 Shimadzu Corp 放射線断層撮影装置
CN106264588A (zh) * 2016-07-29 2017-01-04 上海联影医疗科技有限公司 正电子发射断层成像系统探测效率检测、校正方法及装置
CN109077748A (zh) * 2018-08-31 2018-12-25 北京锐视康科技发展有限公司 一种精准的pet归一化校正方法
CN110179485A (zh) * 2019-05-29 2019-08-30 明峰医疗系统股份有限公司 一种用于pet成像系统增益调整的方法和装置
CN110301926A (zh) * 2019-07-04 2019-10-08 东软医疗系统股份有限公司 确定晶体固有效率的方法、装置、存储介质及医疗设备
CN110687585A (zh) * 2019-09-23 2020-01-14 上海联影医疗科技有限公司 获取晶体效率的方法、装置、计算机设备和存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Nuclear Medicine Quality Control and Management, 1st ed.", 1 January 2018, GANSU SCIENCE AND TECHNOLOGY PRESS, CN, ISBN: 978-7-309-13572-5, article LIU XINGDANG ET AL.: "Aadrenal cortex imaging", pages: 34 - 35, XP009541892 *

Also Published As

Publication number Publication date
CN117203555A (zh) 2023-12-08

Similar Documents

Publication Publication Date Title
US11538202B2 (en) Time-series analysis system
US20110084967A1 (en) Visualization of Datasets
JP4077858B1 (ja) 地図表示装置及びプログラム
US7941742B1 (en) Visualizing growing time series data in a single view
US10147162B2 (en) Method and system for recognizing POI outside map screen
EP2893426B1 (en) User interface for orienting a camera view toward surfaces in a 3d map and devices incorporating the user interface
US10567246B2 (en) Processing performance data of a content delivery network
US20130159924A1 (en) Systems and methods for efficient spatial feature analysis
US8989478B2 (en) Method and system for visualization of semiconductor wafer inspection data acquired in a photovoltaic cell production process
WO2022257014A1 (zh) 用于展示pet设备的晶体效率的方法、装置、电子设备及介质
EP3945321A1 (en) Quality control support method, quality control support system, quality control support device, and program
US9280612B2 (en) Visualizing a relationship of attributes using a relevance determination process to select from candidate attribute values
US10517559B2 (en) Nuclear medicine diagnostic apparatus, diagnostic imaging apparatus, and image processing method
WO2022257013A1 (zh) 用于展示pet设备的检测结果的方法、装置、电子设备及介质
US10062193B2 (en) Attribute based map marker clustering
US20150187097A1 (en) Computing devices and methods for deterministically placing geometric shapes within geographic maps
Asim et al. Multi‐resolution grids in earthquake forecasting: The Quadtree approach
US10186058B2 (en) Visualization of cross-pivoted data
US20190196662A1 (en) Graphical control of grid views
US20160267069A1 (en) Single click in a partially protected cell of a table
US20150294598A1 (en) Connect-the-nodes
US11493434B2 (en) Method for visualizing spectral data as an image, data processing device and computer-readable storage medium
US20180021017A1 (en) A method and apparatus for displaying a region of interest on a current ultrasonic image
JP7429482B1 (ja) 建物変化検出装置、方法およびプログラム
US20220283325A1 (en) Method and terminal device for processing positron emission tomography data

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21944524

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE