WO2022255601A1 - 3차원 격자구조를 가진 미세입자 포집 필터 - Google Patents

3차원 격자구조를 가진 미세입자 포집 필터 Download PDF

Info

Publication number
WO2022255601A1
WO2022255601A1 PCT/KR2022/003413 KR2022003413W WO2022255601A1 WO 2022255601 A1 WO2022255601 A1 WO 2022255601A1 KR 2022003413 W KR2022003413 W KR 2022003413W WO 2022255601 A1 WO2022255601 A1 WO 2022255601A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
lattice structure
dimensional
dimensional lattice
fine particles
Prior art date
Application number
PCT/KR2022/003413
Other languages
English (en)
French (fr)
Inventor
조영태
김석
김도혁
이효준
박서림
정광호
심재윤
Original Assignee
창원대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 창원대학교 산학협력단 filed Critical 창원대학교 산학협력단
Publication of WO2022255601A1 publication Critical patent/WO2022255601A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing

Definitions

  • the present invention relates to a filter for collecting fine particles having a three-dimensional lattice structure, and more particularly, to a filter for collecting fine particles having a three-dimensional lattice structure that selectively collects fine particles and improves filter performance.
  • an air filter that removes dust in the air, it has a collection performance of 85 to 99.99% or more for particles of 0.3 ⁇ m depending on the grade. This is called a HEPA filter.
  • coarse particles are filtered out by a pre-filter or a composite filter to remove large dust to improve the lifespan.
  • the filter's collection performance is lowered at a certain level, and energy efficiency is lowered due to a pressure drop by the filter.
  • the HEPA filter is initially designed to have a pressure drop of 250Pa, and the filter is to be replaced at 510Pa. Since the HEPA filter has a structure in which thin fibers of several ⁇ m or less are woven together, there is also a problem in that the designer cannot control the design of the filter.
  • the object of the present invention is designed to solve the above-mentioned problems of the conventional filter, it can selectively collect only ultra-fine particles and fine particles, the designer can control the design of the filter, and the filter performance is better than that of the conventional filter. I would like to suggest a new type of invention that can improve the.
  • the fine particle collecting filter having a three-dimensional grid structure according to the present invention for achieving the above object includes a filter for collecting fine particles having a three-dimensional grid structure manufactured by periodically arranging unit cells connected by grid members. And, among the particles included in the fluid passing through the filter, fine particles having a first particle size or less are adhered to the grid members and are selectively collected by the filter.
  • the first particle size is characterized in that 10um or less.
  • the thickness of the grating member is characterized in that 50 ⁇ 200um.
  • the size of the space between the grid members is characterized in that at least 500um.
  • the particles larger than the first particle size and smaller than the predetermined second particle size are characterized in that they pass through the space between the grid members.
  • the unit cell is characterized in that the unit cell is at least one of a Kelvin lattice structure, a cubic lattice structure, and an octet truss lattice structure.
  • the three-dimensional lattice structure is characterized in that the cross-sectional shape of the filter viewed in the direction of the flow axis through which the fluid passes is produced to have a certain lattice pattern by rotating the three-dimensional lattice structure in a predetermined direction do.
  • the rotation of the three-dimensional lattice structure is performed until the patterns of the lattice members match when viewed from the center in the flow axis direction through which the fluid passes.
  • the rotation of the three-dimensional lattice structure is performed until the space between the lattice members is largest when viewed from the direction of the flow axis through which the fluid passes.
  • the energy required for the fine particles to adhere to the grid member is characterized in that it varies depending on the size and flow rate of the particles.
  • the microparticles collected in the filter are characterized in that they can be reused after washing.
  • the pressure drop is prevented from being reduced by selectively collecting only fine particles of a certain size or less, there is an effect of superior performance and longer lifespan than conventional filters.
  • the filter design can be controlled.
  • the present invention has a fine lattice structure and is very light, has high specific strength and can flexibly absorb external shocks, so that it can be used as an internal material for airplanes, shock absorbing equipment such as heat and vibration damping, battery electrodes and catalysts, It can be used in various industrial fields such as structural reinforcement in the automotive and aviation airport fields.
  • the fine dust adhering to the filter can be washed using a washing liquid or the like, so it can be reused.
  • FIG. 1 is a view showing a fine particle collecting filter having a three-dimensional lattice structure according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a unit cell of a three-dimensional lattice structure according to an embodiment of the present invention.
  • FIG. 3 is a view showing a state in which a three-dimensional lattice structure is formed by periodically arranging unit cells shown in FIG. 1 .
  • FIG. 4 is a view showing a filter for collecting fine particles having a three-dimensional lattice structure of various sizes actually manufactured according to an embodiment of the present invention.
  • FIG. 5 is a view showing a state viewed from a specific direction by rotating a three-dimensional lattice structure according to an embodiment of the present invention.
  • FIG. 6A is a view in which a three-dimensional lattice structure according to an embodiment of the present invention is manufactured as a filter in a first rotated state and placed on the flow axis of fluid, and FIG. 6B is cut along line A-A′ shown in FIG. 6A is a cross section.
  • FIG. 7A is a view in which a three-dimensional lattice structure according to an embodiment of the present invention is fabricated as a filter in a second rotated state and placed on the flow axis of fluid, and FIG. 7B is cut along line BB′ shown in FIG. 7A is a cross section.
  • FIG 8 is a graph showing the pressure drop of the fine particle collecting filter having a three-dimensional lattice structure according to an embodiment of the present invention.
  • FIG. 9 is a view showing a filter cross-section when the three-dimensional lattice structure is a Kelvin structure.
  • FIG. 10 is a view showing a streamline of a fluid passing through a filter for collecting fine particles having a three-dimensional lattice structure according to an embodiment of the present invention.
  • FIG. 11 is a view showing, by color, the pressure received by grid members when a fluid passes through a fine particle collecting filter having a three-dimensional grid structure according to an embodiment of the present invention.
  • FIGS. 12A is an enlarged view of a fine particle collecting filter having a three-dimensional lattice structure according to an embodiment of the present invention before collecting fine particles
  • FIGS. It is an enlarged view of a fine particle collecting filter having a lattice structure.
  • FIG. 13 is a graph showing the amount of fine particles collected by the fine particle collecting filter having a three-dimensional lattice structure according to an embodiment of the present invention.
  • FIG. 14 is a view showing the shapes of various unit cells according to another embodiment of the present invention.
  • a conventional filter structure for removing fine particles is a structure in which thin fibers of several ⁇ m or less are interwoven non-periodically. This means that the filter designer cannot control the formation of a desired filter structure, and defective products may be mass-produced if there is a portion with poor collection performance in the conventional filter structure.
  • the present applicant has arrived at the present invention by adopting a completely different structure from the conventional filter structure for collecting fine particles in order to solve the above problems.
  • the filter structure for collecting fine particles has a three-dimensional lattice structure in which unit cells are periodically arranged, and this 3-dimensional lattice structure can be manufactured in patterns and specifications desired by a filter designer.
  • the collection filter F according to the present invention has various mechanical properties suitable for use as a filter due to the shape of the three-dimensional lattice structure. The present applicant directly tested the performance of the filter according to the present invention and found an effect that could not be found in the conventional filter structure.
  • FIG. 1 is a view showing a fine particle collecting filter having a three-dimensional lattice structure according to an embodiment of the present invention.
  • the fine particle collecting filter F having a three-dimensional lattice structure is placed on a moving path of a fluid and collects fine particles included in the fluid.
  • the fluid includes both liquid and gas, but in this specification, the fluid is described as air.
  • the flow path of the fluid is shown by an arrow.
  • the air containing the fine particles (P) moves from left to right, and as the fine particles are adhered to the collection filter (F), the air passing through the collection filter (F) ) is removed.
  • the collection filter F of the present invention has a larger surface area capable of collecting fine dust than the conventional filter.
  • the process of removing fine particles while passing through the collection filter F is related to the shape of the lattice structure, and will be described later.
  • FIG. 2 is a view showing a unit cell of a 3D lattice structure according to an embodiment of the present invention
  • FIG. 3 is a view showing a state in which a 3D lattice structure is formed by periodically arranging the unit cells shown in FIG. 1
  • FIG. 4 is a view showing a filter for collecting fine particles having a three-dimensional lattice structure of various sizes actually manufactured according to an embodiment of the present invention.
  • a unit cell of a three-dimensional lattice structure according to an embodiment of the present invention has an octet-truss mesh structure.
  • the octet-truss structure is a structure formed by alternately arranging regular octahedrons and regular tetrahedrons in which the lattice members L are spatially connected.
  • the reason why the octet-truss structure is selected as the unit cell in one embodiment of the present invention is that durability, stability, pressure drop, and the like are considered.
  • unit cells capable of forming a three-dimensional lattice structure may be selected as unit cells.
  • 14 illustrates BCC, FCCz, FBCCz, FBCCXYZ, BCCz, and FCC as some examples of unit cells.
  • the type of unit cell is not limited thereto, and all known lattice structures such as Kelvin, Kagome, Octahedron, and Dodecahedron may be selected.
  • the unit cell has the same length (a) in its width, length and height, and the lattice member (L) constituting the unit cell has a constant thickness (d).
  • the unit cell has a width, length, and height of 2.5 mm, and the thickness (d) of the grid member (L) is manufactured to be 0.15 mm.
  • the size of the unit cell may be manufactured in various lengths and thicknesses depending on the conditions of use and the intention of the designer.
  • the lattice structure was produced with a 3D printer using software for 3D printing.
  • photocuring methods that use light energy to cure polymers include PuSL (projection micro-stereolithography), DLP (digital light processing), SLA (Stereo Lithography Apparatus), SLS (Selective laser sintering), SPPW (Self -propagating photopolymer waveguide), FDM (Fused deposition modeling, or FFF, Fused filament fabrication), binder jetting, etc.
  • the size of the unit cell and the thickness of the grid member vary according to the manufacturing method. Can be adjusted to size.
  • the diameter (thickness) of the grid member constituting the three-dimensional grid structure has a size of 50 to 200 ⁇ m.
  • the space between the grid members has a size of 500 ⁇ m.
  • the thickness of the grid member and the space between the grid members can be set in various ways, but it is preferable to have a size of at least 500 ⁇ m in order to reduce the pressure drop and for the coarse particles to pass through the space between the grid members. .
  • FIG. 4 is a view showing a filter for collecting fine particles having a three-dimensional lattice structure of various sizes actually manufactured according to an embodiment of the present invention.
  • the collection filter F shown in FIG. 4 has a horizontal and vertical length of 30 mm, respectively, and a height of 10 to 40 mm, which is manufactured differently from each other.
  • FIG. 5 is a view showing a state viewed from a specific direction by rotating a three-dimensional lattice structure according to an embodiment of the present invention.
  • FIG. 6A is a view in which a three-dimensional lattice structure according to an embodiment of the present invention is fabricated as a filter in a first rotated state and placed on the flow axis of fluid
  • FIG. 6B is cut along line
  • A-A′ shown in FIG. 6A 7a is a view of a three-dimensional lattice structure according to an embodiment of the present invention fabricated as a filter in a second rotated state and placed on the flow axis of fluid
  • FIG. 7b is BB' shown in FIG. 7a.
  • the collection filter F is manufactured to form a filter section based on the principle described in FIG. 5 . This is because the performance of the filter may vary depending on the shape of the lattice pattern of the cross section of the filter.
  • a manufacturing process of the collection filter F according to an embodiment of the present invention will be described. First, after manufacturing the octet-truss structure using 3D printing technology, it is rotated in a predetermined direction in the state and processed to the size (width, length, height) of the filter suitable for the purpose of use. At this time, the cross-sectional shape of the filter viewed from a specific direction (flow direction of the fluid) matches the lattice pattern, so that the space S between the lattice members L can be formed uniformly.
  • the cross-sectional shape of the filter viewed from a specific direction may have various lattice patterns.
  • FIG. 6A shows a collection filter F configured in a first rotated state of a three-dimensional lattice structure
  • FIG. 6B shows a cross-section of the filter shown in FIG. 6A.
  • the fluid flows in the direction of the flow axis (X) around the collection filter (F).
  • FIG. 7A shows a collecting filter F configured in a second rotated state of a three-dimensional grid structure.
  • the overall size of the filter and the flow direction of the fluid are as described in FIGS. 6A and 6B.
  • the filters shown in Figures 6a and 7a have the same surface area.
  • the lattice space S is formed larger at the filter cross section in the second rotation state of the 3D lattice structure.
  • pressure drop is considered as one of filter performance.
  • the pressure drop means the pressure difference before and after the filter, and the smaller the pressure drop, the better the filter performance.
  • the fluid passes through the collecting filter F, if the lattice space S is large, the fluid moves easily, so the pressure drop is small.
  • the lattice space S is formed larger than that in the first rotated state, so the pressure drop is small. That is, the second rotated three-dimensional lattice structure is a monolithic structure, and the cross-sectional shape of the filter is simplified.
  • FIG. 8 is a graph showing the pressure drop of a filter for collecting fine particles having a three-dimensional lattice structure according to an embodiment of the present invention
  • FIG. 9 is a view showing a cross-section of the filter when the 3-dimensional lattice structure is a Kelvin structure.
  • FIG. 8 shows a graph comparing the pressure drop between the case where the three-dimensional lattice structure is an octet-truss structure and the case where a Kelvin structure is used.
  • 6B and 7B may be referred to for the cross-sectional shape of the filter in the case of the octet-truss structure
  • FIG. 9 may be referred to for the cross-sectional shape of the filter in the case of the Kelvin structure.
  • the pressure drop increases as the flow rate increases.
  • the pressure drop was larger than that of the Kelvin structure.
  • the pressure drop in the Kelvin structure was similar. Therefore, it can be seen that the pressure drop varies depending on the rotational state even in the case of having the same octet-truss structure.
  • the octet-truss structure has a larger surface area due to the lattice members than the Kelvin structure. Therefore, the octet-truss structure has better collection efficiency than the Kelvin structure when a filter of the same size is manufactured as a whole.
  • FIG. 10 is a view showing a streamline of a fluid passing through a filter for collecting fine particles having a three-dimensional lattice structure according to an embodiment of the present invention.
  • FIG. 10 shows the distribution of streamlines when the fluid flows through the collecting filter F in one direction (from left to right in FIG. 10).
  • a conventional filter for example, a HEPA filter
  • the distribution of streamlines after passing through the filter is not uniform due to the complex configuration of the filter, but the collection filter (F) of the present invention has a periodic structure, so that The distribution of posterior streamlines can be formed substantially uniformly.
  • FIG. 11 is a view showing, by color, the pressure received by grid members when a fluid passes through a fine particle collecting filter having a three-dimensional grid structure according to an embodiment of the present invention.
  • the pressure applied to the grid member on the front side of the filter (the side where the fluid flows in) is high, and the pressure on the grid member on the rear side of the filter (the side where the fluid flows out) is small.
  • red means that a large pressure acts
  • blue means that a small pressure acts.
  • FIGS. 12A is an enlarged view of a fine particle collecting filter having a three-dimensional lattice structure according to an embodiment of the present invention before collecting fine particles
  • FIGS. It is an enlarged view of a fine particle collecting filter having a lattice structure.
  • fine particles having a size equal to or smaller than a predetermined first particle size among fine particles are adhered when they collide with the grid member (L).
  • the first particle size has a size of 10 ⁇ m.
  • particles having a size larger than the first particle size and smaller than the predetermined second particle size may pass through the grid space S without being adhered even when colliding with the grid member L.
  • the second particle size may be set to 500 ⁇ m.
  • the first particle size and the second particle size may be variously set according to the intention of the designer of the collection filter (F).
  • FIGS. 12B to 12D show an enlarged state of the three-dimensional lattice structure before the microparticles are attached. Thereafter, when the fine particles collide with the grid member (L) when the fluid passes through the collecting filter (F), the fine particles having a size of the first particle size or less adhere to the grid member (L) as shown in FIGS. 12B to 12D. do.
  • FIG. 13 is a graph showing the amount of fine particles collected by the fine particle collecting filter having a three-dimensional lattice structure according to an embodiment of the present invention.
  • the fine particle collection experiment was performed 5 times, and the amount of fine dust input was maintained approximately constant in each experiment. As a result, the average amount of fine particles captured is 14.07 mg.
  • the collection filter F of the present invention selectively collects only fine particles of a certain size or less among particles included in the air. Thereafter, since the fine particles adhering to the collection filter F can be washed away with a washing liquid such as water, the collection filter F can be reused.
  • the collection filter F of the present invention has an excellent collection efficiency of about 80% compared to the conventional filter (HEPA filter).
  • the collection filter (F) of the present invention has a periodic three-dimensional lattice structure, and since the lattice spaces are regularly arranged, it is superior to the conventional filter structure in terms of pressure drop.
  • the collection filter (F) of the present invention is very light as its weight is only 1/100 of Styrofoam, has high specific strength due to its periodic three-dimensional lattice structure and can flexibly absorb external shocks, so it can be used in various industrial fields. can

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Filtering Materials (AREA)

Abstract

본 발명은 미세입자를 선택적으로 포집하고 필터의 성능이 향상된 3차원 격자구조를 가진 미세입자 포집 필터에 관한 것으로, 격자부재들로 연결된 단위 셀을 주기적으로 배열시켜 제작된 3차원 격자구조를 가진 미세입자 포집용 필터를 포함하고, 상기 필터를 통과하는 유체에 포함된 입자 중 제1 입자크기 이하의 미세입자는 상기 격자부재들에 점착되어 상기 필터에 의해 선택적으로 포집되는 것을 특징으로 한다.

Description

3차원 격자구조를 가진 미세입자 포집 필터
본 발명은 3차원 격자구조를 가진 미세입자 포집 필터에 관한 것으로서, 더욱 상세하게는 미세입자를 선택적으로 포집하고 필터의 성능이 향상된 3차원 격자구조를 가진 미세입자 포집 필터에 관한 것이다.
공기 중에 먼지 등을 제거하는 에어필터의 경우 등급에 따라 0.3㎛의 입자에 대해 85 ~ 99.99% 이상의 포집 성능을 가진다. 이를 헤파필터라 한다. 이러한 공기 정화용 필터의 경우 수명 향상을 위해 큰 먼지를 제거하기 위한 프리필터, 복합필터 등으로 조대입자를 걸러주기도 한다.
그러나, 종래의 필터의 경우 공기 중 미세먼지 등을 제거하고 나면 일정 수준에서 필터의 포집 성능이 하향되고, 필터에 의한 압력강하 등으로 인하여 에너지 효율이 떨어지게 된다. 헤파필터의 경우 250Pa의 압력강하를 가지도록 초기 설계가 되어 있으며, 510Pa에서 필터를 교체해주도록 되어 있다. 헤파필터는 수 ㎛ 이하의 얇은 섬유들이 얼기설기 엮여 있는 구조이므로 설계자가 필터의 설계를 제어할 수 없는 문제도 있다.
또한, 종래의 필터의 경우 초미세입자(PM2.5), 미세입자(PM10) 뿐만 아니라 조대입자(10㎛ 이상)의 입자까지 모두 포집하여, 외부에서 사용할 경우 수명이 급격히 짧아지며, 재사용하기 어렵다.
본 발명의 과제는 상술한 종래 필터가 가진 문제를 해결하기 위해 고안된 것으로, 초미세입자와 미세입자만을 선택적으로 포집할 수 있고, 필터의 설계를 설계자가 제어할 수 있고, 재종래의 필터 보다 필터 성능을 향상시킬 수 있는 새로운 형태의 발명을 제시하고자 한다.
상기의 과제를 달성하기 위한 본 발명에 따른 3차원 격자구조를 가진 미세입자 포집 필터는, 격자부재들로 연결된 단위 셀을 주기적으로 배열시켜 제작된 3차원 격자구조를 가진 미세입자 포집용 필터를 포함하고, 상기 필터를 통과하는 유체에 포함된 입자 중 제1 입자크기 이하의 미세입자는 상기 격자부재들에 점착되어 상기 필터에 의해 선택적으로 포집되는 것을 특징으로 한다.
바람직하게는, 상기 제1 입자크기는 10um 이하인 것을 특징으로 한다.
또한, 바람직하게는, 상기 격자부재의 두께는 50 ~ 200um 인 것을 특징으로 한다.
또한, 바람직하게는, 상기 격자부재 사이의 공간 크기는 적어도 500um 인 것을 특징으로 한다.
또한, 바람직하게는, 상기 제1 입자크기 보다 크고 기 설정된 제2 입자크기 보다 작은 입자는 상기 격자부재들 사이의 공간으로 통과하는 것을 특징으로 한다.
또한, 바람직하게는, 상기 단위 셀은 켈빈 격자구조, 큐빅 격자구조 및 옥텟 트러스 격자구조 중 적어도 어느 하나의 단위 셀인 것을 특징으로 한다.
또한, 바람직하게는, 상기 3차원 격자구조는, 상기 유체가 통과하는 흐름축 방향으로 바라본 필터의 단면 형상이 상기 3차원 격자구조를 기 설정된 방향으로 회전시켜 일정한 격자패턴을 갖도록 제작되는 것을 특징으로 한다.
또한, 바람직하게는, 상기 3차원 격자구조의 회전은 상기 유체가 통과하는 흐름축 방향을 중심으로 바라볼 때 상기 격자부재들에 의한 패턴이 일치하는 상태까지 수행되는 것을 특징으로 한다.
또한, 바람직하게는, 상기 3차원 격자구조의 회전은 상기 유체가 통과하는 흐름축 방향을 중심으로 바라볼 때 상기 격자부재들 사이의 공간이 가장 큰 상태까지 수행되는 것을 특징으로 한다.
또한, 바람직하게는, 상기 미세입자가 상기 격자부재에 점착되는데 필요한 에너지는 입자의 크기 및 유동 속도에 따라 달라지는 것을 특징으로 한다.
또한, 바람직하게는, 상기 필터에 포집된 미세입자는 세척 후 재사용이 가능한 것을 특징으로 한다.
본 발명에 따르면, 일정 크기 이하의 미세입자만 선택적으로 포집하여 압력 강하가 작아지는 것이 방지되므로 종래의 필터 보다 성능이 우수하고 수명이 길어지는 효과가 있다.
또한, 본 발명에 따르면, 다양한 단위 셀을 사용하여 주기적인 3차원 격자구조를 형성시킬 수 있으므로 필터의 설계가 제어될 수 있다.
또한, 본 발명에 따르면, 미세 격자구조를 가지고 있어 매우 가벼우며, 비강도가 높고 외부 충격을 유연하게 흡수할 수 있어 비행기의 내부소재, 열 및 진동 감쇠와 같은 충격 흡수장비, 배터리 전극 및 촉매제, 자동차 및 항공 공항 분야에서 구조의 보강 등 다양한 산업 분야에 활용될 수 있다.
또한, 본 발명에 따르면, 필터에 점착된 미세먼지를 세척액 등을 이용하여 세척이 가능하므로 재사용이 가능하다.
도 1은 본 발명의 일 실시예에 따른 3차원 격자구조를 가진 미세입자 포집 필터를 나타낸 도면이다.
도 2는 본 발명의 일 실시예에 따른 3차원 격자구조의 단위 셀을 나타낸 도면이다.
도 3은 도 1에 도시된 단위 셀을 주기적으로 배열하여 3차원 격자구조가 형성된 상태를 나타낸 도면이다.
도 4는 본 발명의 일 실시예에 따라 실제 제작된 다양한 크기의 3차원 격자구조를 가진 미세입자 포집 필터를 나타낸 도면이다.
도 5는 본 발명의 일 실시예에 따른 3차원 격자구조를 회전시켜 특정 방향에서 바라본 상태를 나타낸 도면이다.
도 6a는 본 발명의 일 실시예에 따른 3차원 격자구조가 제1 회전된 상태에서 필터로 제작되어 유체의 흐름축 상에 놓인 도면이며, 도 6b는 도 6a에 도시된 A-A' 라인을 따라 절단된 단면도이다.
도 7a는 본 발명의 일 실시예에 따른 3차원 격자구조가 제2 회전된 상태에서 필터로 제작되어 유체의 흐름축 상에 놓인 도면이며, 도 7b는 도 7a에 도시된 B-B' 라인을 따라 절단된 단면도이다.
도 8은 본 발명의 일 실시예에 따른 3차원 격자구조를 가진 미세입자 포집 필터의 압력강하를 나타낸 그래프이다.
도 9는 3차원 격자구조가 캘빈 구조인 경우의 필터 단면을 나타낸 도면이다.
도 10은 본 발명의 일 실시예에 따른 3차원 격자구조를 가진 미세입자 포집 필터를 통과하는 유체의 유선을 나타낸 도면이다.
도 11은 본 발명의 일 실시예에 따른 3차원 격자구조를 가진 미세입자 포집 필터를 유체가 통과할 때 격자부재들이 받는 압력 크기를 색깔 별로 가시화하여 나타낸 도면이다.
도 12a는 미세입자 포집 전 본 발명의 일 실시예에 3차원 격자구조를 가진 미세입자 포집 필터를 확대한 도면이고, 도 12b 내지 도 12d는 미세입자 포집 후 본 발명의 일 실시예에 따른 3차원 격자구조를 가진 미세입자 포집 필터를 확대한 도면이다.
도 13은 본 발명의 일 실시예에 따른 3차원 격자구조를 가진 미세입자 포집 필터에 의해 포집된 미세입자의 양을 나타낸 그래프이다.
도 14는 본 발명의 다른 실시예에 따른 다양한 단위 셀의 형상을 나타낸 도면이다.
이하 첨부된 도면을 참조하여, 바람직한 실시예에 따른 본 발명의 일 실시예에 따른 3차원 격자구조를 가진 미세입자 포집 필터에 대해 상세히 설명하면 다음과 같다. 여기서, 동일한 구성에 대해서는 동일부호를 사용하며, 반복되는 설명, 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략한다. 발명의 실시형태는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다. 따라서, 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있다.
미세입자를 제거하기 위한 종래의 필터 구조는 수 ㎛ 이하의 얇은 섬유들이 비주기적으로 얼기설기 엮여 있는 구조이다. 이는 필터 설계자가 원하는 필터 구조가 형성되도록 제어할 수 없음을 의미하며, 종래의 필터 구조 중 포집 성능이 떨어지는 부분이 존재할 경우 불량품이 양산될 수도 있다.
본 출원인은 상술한 문제를 해결하기 위해 종래의 미세입자 포집용 필터 구조와 전혀 다른 구조를 채택하여 본 발명에 이르게 되었다. 본 발명에서 미세입자 포집용 필터 구조는 단위 셀이 주기적으로 배열된 3차원 격자구조를 가지며, 이러한 3차원 격자구조는 필터 설계자가 원하는 패턴 및 사양으로 제조될 수 있다. 또한, 본 발명에 따른 포집 필터(F)는 3차원 격자구조의 형상으로 인해 필터로 사용하기에 적합한 다양한 기계적 성질을 갖는다. 본 출원인은 본 발명에 따른 필터의 성능을 직접 실험하여 종래 필터 구조에서는 발견될 수 없는 효능을 발견하였다.
이하, 본 발명의 일 실시예에 따른 3차원 격자구조를 가진 미세입자 포집 필터의 구조 및 성능을 설명한다.
도 1은 본 발명의 일 실시예에 따른 3차원 격자구조를 가진 미세입자 포집 필터를 나타낸 도면이다.
도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 3차원 격자구조를 가진 미세입자 포집 필터(F)는 유체의 이동 경로 상에 놓여 유체에 포함된 미세입자를 포집한다. 여기서 유체는 액체 및 기체를 모두 포함하나 본 명세서에서 유체는 공기인 것으로 설명한다. 도 1에는 유체의 이동 경로가 화살표로 도시되어 있다. 포집 필터(F)를 기준으로 미세입자(P)가 포함된 공기가 좌측에서 우측 방향으로 이동하다가 포집 필터(F)에 미세입자가 점착되면서 포집 필터(F)를 통과한 공기는 미세입자(P)가 제거된다. 종래의 필터와 본 발명의 포집 필터(F)를 같은 크기로 제작하는 경우, 본 발명의 포집 필터(F)는 종래의 필터 보다 미세먼지를 포집할 수 있는 표면적이 더 크게 형성된다.
한편, 미세입자가 포집 필터(F)를 통과하며 제거되는 과정은 격자구조의 형상과 관련되므로 후술하기로 한다.
도 2는 본 발명의 일 실시예에 따른 3차원 격자구조의 단위 셀을 나타낸 도면이고, 도 3은 도 1에 도시된 단위 셀을 주기적으로 배열하여 3차원 격자구조가 형성된 상태를 나타낸 도면이며, 도 4는 본 발명의 일 실시예에 따라 실제 제작된 다양한 크기의 3차원 격자구조를 가진 미세입자 포집 필터를 나타낸 도면이다.
본 발명의 일 실시예에 따른 3차원 격자구조의 단위 셀은 옥텟-트러스(Octet-Truss)의 그물망 구조이다. 옥텟-트러스 구조는 격자부재(L)가 공간적으로 연결된 정팔면체 및 정사면체를 번갈아 배열함으로써 형성된 구조이다. 본 발명의 일 실시예에서 옥텟-트러스 구조가 단위 셀로 선택된 이유는 내구성, 안정성, 압력강하 등을 고려하였기 때문이다.
본 발명의 다른 실시예에서 단위 셀은 3차원 격자구조를 형성할 수 있는 다양한 단위 셀이 선택될 수 있다. 도 14에는 단위 셀의 일부 예시로서, BCC, FCCz, FBCCz, FBCCXYZ, BCCz, FCC가 도시되어 있다. 다만, 단위 셀의 종류는 이에 한정되지 않으며, 켈빈(Kelvin), 삼육각형(Kagome), 팔면체(Octahedron), 십이면체(Dodecahedron) 등 공지된 모든 격자구조가 선택될 수 있다.
도 2에 도시된 바와 같이, 단위 셀은 그 가로, 세로 및 높이가 동일한 길이(a)를 가지고 있으며 단위 셀을 구성하는 격자부재(L)는 일정한 두께(d)를 가지고 있다. 본 발명의 일 실시예에서 단위 셀은 가로, 세로 및 높이의 길이가 2.5mm이고, 격자부재(L)의 두께(d)가 0.15mm로 제작되었다. 다만, 단위 셀의 크기는 사용조건 및 설계자의 의도에 따라 다양한 길이 및 두께로 제작될 수 있다.
본 발명의 일 실시예에서 격자구조는 3D 프린팅용 소프트웨어를 사용하여 3D 프린터로 제작되었다. 3D 프린팅 방식 중 빛에너지를 이용하여 폴리머를 경화시키는 광경화 방식으로는 PuSL(projection micro-stereolithography], DLP(digital light processing), SLA(Stereo Lithography Apparatus), SLS(Selective laser sintering), SPPW(Self-propagating photopolymer waveguide) 등이 있고, 소재를 출력하는 방식인 FDM(Fused deposition modeling, 또는 FFF, Fused filament fabrication), Binder jetting 등이 있다. 제작 방법에 따라 단위 셀의 크기 및 격자부재의 두께는 다양한 크기로 조절될 수 있다.
본 발명의 일 실시예에서 3차원 격자구조를 구성하고 있는 격자부재의 직경(두께)는 50 ~ 200㎛의 크기를 가지고 있다. 또한, 본 발명의 일 실시예에서 격자부재들 사이의 공간은 500㎛의 크기를 가지고 있다. 물론, 상술한 바와 같이 격자부재의 두께 및 격자부재들 사이의 공간은 다양하게 설정될 수 있으나 압력강하와, 조대입자가 격자부재들 사이의 공간을 통과하기 위해서는 최소 500㎛의 크기를 가지는 것이 좋다.
도 4는 본 발명의 일 실시예에 따라 실제 제작된 다양한 크기의 3차원 격자구조를 가진 미세입자 포집 필터를 나타낸 도면이다.
도 4에 도시된 포집 필터(F)는 가로 및 세로의 길이가 각각 30mm이고, 높이가 10 ~ 40mm로 서로 다르게 하여 제작되었다.
도 5는 본 발명의 일 실시예에 따른 3차원 격자구조를 회전시켜 특정 방향에서 바라본 상태를 나타낸 도면이다.
3차원 격자구조는 바라보는 방향에 따라 서로 다른 격자패턴이 형성된다. 도 5의 (a) 내지 (d)에 아래 도시된 도면들은 3차원 격자구조를 다양한 방향으로 회전시켜가며 특정 방향에서 바라본 상태가 도시되어 있고, 위에 도시된 도면들은 각 격자구조의 회전된 방향이 밀러 지수로 표현되었다.
도 6a는 본 발명의 일 실시예에 따른 3차원 격자구조가 제1 회전된 상태에서 필터로 제작되어 유체의 흐름축 상에 놓인 도면이고, 도 6b는 도 6a에 도시된 A-A' 라인을 따라 절단된 단면도이고, 도 7a는 본 발명의 일 실시예에 따른 3차원 격자구조가 제2 회전된 상태에서 필터로 제작되어 유체의 흐름축 상에 놓인 도면이며, 도 7b는 도 7a에 도시된 B-B' 라인을 따라 절단된 단면도이다.
본 발명의 일 실시예에 따른 포집 필터(F)는 도 5에서 설명한 원리에 기반하여 필터 단면이 형성되도록 제작된다. 이는 필터 단면의 격자 패턴 형상에 따라 필터의 성능이 달라질 수 있기 때문이다.
본 발명의 일 실시예에 따른 포집 필터(F)의 제작 과정을 살펴본다. 우선 옥텟-트러스 구조를 3D 프린팅 기술을 이용하여 제작한 후, 그 상태에서 기 설정된 방향으로 회전시켜 사용 목적에 맞는 필터의 크기(가로, 세로, 높이)로 가공한다. 이때, 특정 방향(유체의 흐름 방향)에서 바라본 필터의 단면 형상은 격자 패턴이 일치되어 격자부재(L)들 사이의 공간(S)이 일정하게 형성될 수 있다. 물론 상술한 바와 같이 포집 필터(F)를 구성하는 3차원 격자구조의 회전 상태에는 제한이 없으므로, 본 발명의 다른 실시예에서 특정 방향에서 바라본 필터의 단면 형상은 다양한 격자 패턴을 가질 수 있다.
도 6a에는 3차원 격자구조가 제1 회전된 상태로 구성된 포집 필터(F)가 도시되어 있고, 도 6b에는 도 6a에 도시된 필터의 단면이 도시되어 있다. 유체는 포집 필터(F)를 중심으로 흐름축(X) 방향으로 흐른다.
도 7a에는 3차원 격자구조가 제2 회전된 상태로 구성된 포집 필터(F)가 도시되어 있다. 여기서, 필터의 전체 크기 및 유체의 흐름 방향은 도 6a 및 도 6b에서 설명한 바와 같다. 도 6a와 도 7a에 도시된 필터는 동일한 표면적을 가지고 있다. 그러나, 도 6b와 도 7b를 비교하면, 3차원 격자구조가 제2 회전된 상태에서의 필터 단면에서 격자공간(S)이 더 크게 형성된다.
일반적으로 필터의 성능 중 하나로 압력강하가 고려된다. 압력강하는 필터 전후 압력 차이를 의미하며, 압력강하가 작을수록 필터 성능이 좋다. 유체가 포집 필터(F)를 통과할 때 격자공간(S)이 크면 유체의 이동이 쉬우므로 압력강하가 작다. 상술한 바와 같이, 3차원 격자구조가 제2 회전된 상태로 구성되면 제1 회전된 상태보다 격자공간(S)이 더 크게 형성되므로 압력강하가 작다. 즉, 제2 회전된 3차원 격자구조는 모노리식 구조로서, 필터의 단면 형상이 단순해진다.
반면, 상술한 바와 같이, 3차원 격자구조가 제1 회전된 상태와 제2 회전된 상태에서의 표면적은 동일하므로 미세입자 포집효율은 동일하다.
도 8은 본 발명의 일 실시예에 따른 3차원 격자구조를 가진 미세입자 포집 필터의 압력강하를 나타낸 그래프이고, 도 9는 3차원 격자구조가 캘빈 구조인 경우의 필터 단면을 나타낸 도면이다.
도 8에는 3차원 격자구조가 옥텟-트러스 구조인 경우와 캘빈 구조인 경우의 압력강하를 비교한 그래프가 도시되었다. 이때, 옥텟-트러스 구조인 경우의 필터 단면 형상은 도 6b와 도 7b가 참조될 수 있으며, 캘빈 구조인 경우의 필터 단면 형상은 도 9가 참조될 수 있다.
도 8을 참조하면, 일반적으로 유량의 흐름이 커짐에 따라 압력강하가 커진다. 이때, 제1 회전된 상태의 옥텟-트러스 구조에서는 캘빈 구조 보다 압력강하가 크게 나타났다. 그러나, 제2 회전된 상태의 옥텟-트러스 구조에서는 캘빈 구조에서의 압력강하와 비슷하게 나타났다. 따라서, 같은 옥텟-트러스 구조를 가지는 경우라도 회전 상태에 따라 압력강하가 달라짐을 알 수 있다.
한편, 옥텟-트러스 구조는 캘빈 구조 보다 격자부재에 의한 표면적이 더 크다. 따라서, 전체적으로 같은 크기의 필터를 제작하였을 때 캘빈 구조 보다 옥텟-트러스 구조가 포집효율이 더 좋다.
도 10은 본 발명의 일 실시예에 따른 3차원 격자구조를 가진 미세입자 포집 필터를 통과하는 유체의 유선을 나타낸 도면이다.
도 10에는 유체가 포집 필터(F)를 일 방향(도 10의 좌측에서 우측 방향)으로 흐를 때 유선 분포가 도시되어 있다. 종래의 필터(예를 들어 헤파 필터)에 의하면 필터의 복잡한 구성에 의해 필터를 통과한 후 유선의 분포가 균일하지 못하나, 본 발명의 포집 필터(F)는 주기적인 구조를 가지므로 필터를 통과한 후 유선의 분포가 대략 균일하게 형성될 수 있다.
도 11은 본 발명의 일 실시예에 따른 3차원 격자구조를 가진 미세입자 포집 필터를 유체가 통과할 때 격자부재들이 받는 압력 크기를 색깔 별로 가시화하여 나타낸 도면이다.
도 11을 참조하면, 필터의 전방 측(유체가 흘러 들어오는 측)에서 격자부재가 받는 압력은 크게 작용하고, 필터의 후방 측(유체가 흘러 나가는 측)에서 격자부재가 받는 압력은 작게 작용한다. 도 11에서 빨간색은 압력이 크게 작용함을 의미하고, 파란색은 압력이 작게 작용함을 의미한다.
도 12a는 미세입자 포집 전 본 발명의 일 실시예에 3차원 격자구조를 가진 미세입자 포집 필터를 확대한 도면이고, 도 12b 내지 도 12d는 미세입자 포집 후 본 발명의 일 실시예에 따른 3차원 격자구조를 가진 미세입자 포집 필터를 확대한 도면이다.
미세입자가 본 발명의 포집 필터(F)와 충돌하게 되면 대전에 의한 정전기로 인해 격자부재(L)에 점착된다. 이때, 점착력의 크기는 미세입자의 크기와 속도에 따라 달라진다. 즉, 속도가 빠르고 입자가 클수록 격자부재(L)에 점착되지 못하고 튕겨 나가게 된다. 이론적으로 입자가 격자부재(L)에 튕겨져 나가기 위한 에너지는 아래 수학식에 의해 연산될 수 있다. 그러나, 실제 실험환경에서는 2 ~ 15㎛ 크기를 갖는 미세입자는 격자부재(L)에 충돌하기만 하면 점착되는 것을 확인할 수 있다.
< 수학식 >
Figure PCTKR2022003413-appb-I000001
여기서, x는 분리거리이고, A는 Hamaker 상수이고, e는 반발계수이다.
본 발명의 일 실시예에서 미세입자 중 기 설정된 제1 입자크기 이하의 크기를 갖는 미세입자는 격자부재(L)에 충돌하면 점착된다. 본 발명의 일 실시예에서 제1 입자크기는 10㎛ 크기를 갖는다. 한편, 제1 입자크기 보다 크고 기 설정된 제2 입자크기 보다 작은 크기를 갖는 입자는 격자부재(L)에 충돌하여도 점착되지 못하고 격자공간(S)을 통과할 수 있다. 본 발명의 일 실시예에서 제2 입자크기는 500㎛로 설정될 수 있다. 그러나, 제1 입자크기 및 제2 입자크기는 포집 필터(F) 설계자의 의도에 따라 다양하게 설정될 수 있다.
도 12a에는 미세입자가 점착되기 전 3차원 격자구조를 확대한 상태가 도시되어 있다. 이후, 유체가 포집 필터(F)를 통과할 때 미세입자가 격자부재(L)에 충돌하면 도 12b 내지 도 12d와 같이 제1 입자크기 이하의 크기를 갖는 미세입자는 격자부재(L)에 점착된다.
도 13은 본 발명의 일 실시예에 따른 3차원 격자구조를 가진 미세입자 포집 필터에 의해 포집된 미세입자의 양을 나타낸 그래프이다.
도 13에 도시된 바와 같이, 본 발명의 포집 필터(F)를 이용한 미세입자 포집 실험을 수행하여 아래 < 표 1>와 같은 결과가 도출되었다.
시료명 옥텟-트러스
No. 1 2 3 4 5
미세먼지
투입량(g)
0.10073 0.10077 0.09928 0.09954 0.10092
실험 전
무게평균(g)
28.98074 23.64857 26.29834 29.72107 27.27938
실험 후
무게평균(g)
28.98832 23.65856 26.31602 29.73490 27.30066
미세먼지
포집량(g)
0.00758 0.00999 0.01768 0.01383 0.02128
평균 포집량(mg) 14.07
상기 실험표를 참조하면, 미세입자 포집 실험은 5번이 수행되었고 각 실험에서 미세먼지 투입량은 대략 일정하게 유지되었다. 그 결과 평균적으로 미세입자의 포집량은 14.07mg이다.
종래의 필터 구조에서는 입자 크기가 커도 필터에 포집되므로 포집효율은 좋으나, 필터의 압력강하가 낮아져 필터 성능이 떨어지면 교체해야 하는 문제가 있다.
반면, 본 발명의 포집 필터(F)는 공기에 포함된 입자 중 일정 크기 이하의 미세입자만 선택적으로 포집한다. 이후, 포집 필터(F)에 점착된 미세입자는 물 등의 세척액에 의해 씻겨 나갈 수 있으므로, 포집 필터(F)를 재사용하는 것이 가능하다.
또한, 본 발명의 포집 필터(F)는 종래의 필터(헤파 필터)에 비해 포집효율이 80% 정도로서 우수한 포집효율을 나타낸다. 본 발명의 포집 필터(F)는 주기적인 3차원 격자구조를 가지고 있어 격자공간이 일정하게 배열되므로 종래의 필터 구조보다 압력강하 측면에서 우수하다.
본 발명의 포집 필터(F)는 무게가 스티로폼의 100분의 1에 불과하여 매우 가볍고, 주기적인 3차원 격자구조로 인해 비강도가 높고 외부 충격을 유연하게 흡수할 수 있으므로 다양한 산업분야에서 활용될 수 있다.
본 발명은 첨부된 도면에 도시된 일 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 수 있을 것이다. 따라서, 본 발명의 진정한 보호 범위는 첨부된 청구 범위에 의해서만 정해져야 할 것이다.

Claims (11)

  1. 격자부재들로 연결된 단위 셀을 주기적으로 배열시켜 제작된 3차원 격자구조를 가진 미세입자 포집용 필터를 포함하고,
    상기 필터를 통과하는 유체에 포함된 입자 중 제1 입자크기 이하의 미세입자는 상기 격자부재들에 점착되어 상기 필터에 의해 선택적으로 포집되는 것을 특징으로 하는 3차원 격자구조를 가진 미세입자 포집 필터.
  2. 제 1 항에 있어서,
    상기 제1 입자크기는 10um 인 것을 특징으로 하는 3차원 격자구조를 가진 미세입자 포집 필터.
  3. 제 1 항에 있어서,
    상기 격자부재의 두께는 50 ~ 200um 인 것을 특징으로 하는 3차원 격자구조를 가진 미세입자 포집 필터.
  4. 제 1 항에 있어서,
    상기 격자부재 사이의 공간 크기는 적어도 500um 인 것을 특징으로 하는 3차원 격자구조를 가진 미세입자 포집 필터.
  5. 제 1 항에 있어서,
    상기 제1 입자크기 보다 크고 기 설정된 제2 입자크기 보다 작은 입자는 상기 격자부재들 사이의 공간으로 통과하는 것을 특징으로 하는 3차원 격자구조를 가진 미세입자 포집 필터.
  6. 제 1 항에 있어서,
    상기 단위 셀은 켈빈, 큐빅, 옥텟 트러스, BCC, FCCz, FBCCz, FBCCXYZ, BCCz, FCC, Kagome, Octahedron, Dodecahedron의 격자구조 중 적어도 어느 하나의 단위 셀인 것을 특징으로 하는 3차원 격자구조를 가진 미세입자 포집 필터.
  7. 제 1 항에 있어서,
    상기 3차원 격자구조는, 상기 유체가 통과하는 흐름축 방향으로 바라본 필터의 단면 형상이 상기 3차원 격자구조를 기 설정된 방향으로 회전시켜 일정한 격자패턴을 갖도록 제작되는 것을 특징으로 하는 3차원 격자구조를 가진 미세입자 포집 필터.
  8. 제 7 항에 있어서,
    상기 3차원 격자구조의 회전은 상기 유체가 통과하는 흐름축 방향을 중심으로 바라볼 때 상기 격자부재들에 의한 패턴이 일치하는 상태까지 수행되는 것을 특징으로 하는 3차원 격자구조를 가진 미세입자 포집 필터.
  9. 제 7 항에 있어서,
    상기 3차원 격자구조의 회전은 상기 유체가 통과하는 흐름축 방향을 중심으로 바라볼 때 상기 격자부재들 사이의 공간이 가장 큰 상태까지 수행되는 것을 특징으로 하는 3차원 격자구조를 가진 미세입자 포집 필터.
  10. 제 1 항에 있어서,
    상기 미세입자가 상기 격자부재에 점착되는데 필요한 에너지는 입자의 크기 및 유동 속도에 따라 달라지는 것을 특징으로 하는 3차원 격자구조를 가진 미세입자 포집 필터.
  11. 제 1 항에 있어서,
    상기 필터에 포집된 미세입자는 세척 후 재사용이 가능한 것을 특징으로 하는 3차원 격자구조를 가진 미세입자 포집 필터.
PCT/KR2022/003413 2021-06-04 2022-03-11 3차원 격자구조를 가진 미세입자 포집 필터 WO2022255601A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0072720 2021-06-04
KR1020210072720A KR102387451B1 (ko) 2021-06-04 2021-06-04 3차원 격자구조를 가진 미세입자 포집 필터

Publications (1)

Publication Number Publication Date
WO2022255601A1 true WO2022255601A1 (ko) 2022-12-08

Family

ID=81212144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/003413 WO2022255601A1 (ko) 2021-06-04 2022-03-11 3차원 격자구조를 가진 미세입자 포집 필터

Country Status (2)

Country Link
KR (1) KR102387451B1 (ko)
WO (1) WO2022255601A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115206558B (zh) * 2022-07-07 2024-04-19 中国核动力研究设计院 基于多层错排点阵结构的燃料组件下管座及过滤体和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130109344A (ko) * 2012-03-27 2013-10-08 (주)이앤지필터텍 다공성 먼지흡착 흡입필터
US8852523B1 (en) * 2009-03-17 2014-10-07 Hrl Laboratories, Llc Ordered open-cellular materials for mass transfer and/or phase separation applications
KR20170014483A (ko) * 2015-07-30 2017-02-08 서울바이오시스 주식회사 광촉매필터 및 그 제조방법
KR20180033250A (ko) * 2015-07-22 2018-04-02 에이에스케이 케미칼스 엘엘씨 세라믹 필터 및 그 필터를 형성하는 방법
KR20200087414A (ko) * 2019-01-11 2020-07-21 충남대학교산학협력단 재사용 가능한 미세먼지 포집용 필터 및 이의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8852523B1 (en) * 2009-03-17 2014-10-07 Hrl Laboratories, Llc Ordered open-cellular materials for mass transfer and/or phase separation applications
KR20130109344A (ko) * 2012-03-27 2013-10-08 (주)이앤지필터텍 다공성 먼지흡착 흡입필터
KR20180033250A (ko) * 2015-07-22 2018-04-02 에이에스케이 케미칼스 엘엘씨 세라믹 필터 및 그 필터를 형성하는 방법
KR20170014483A (ko) * 2015-07-30 2017-02-08 서울바이오시스 주식회사 광촉매필터 및 그 제조방법
KR20200087414A (ko) * 2019-01-11 2020-07-21 충남대학교산학협력단 재사용 가능한 미세먼지 포집용 필터 및 이의 제조방법

Also Published As

Publication number Publication date
KR102387451B1 (ko) 2022-04-15

Similar Documents

Publication Publication Date Title
WO2022255601A1 (ko) 3차원 격자구조를 가진 미세입자 포집 필터
CN105413330B (zh) 激光选区熔化增材制造设备的烟尘处理装置
US4323374A (en) Air filter assembly
WO2019177289A1 (ko) 정전기적 포집과 물리적 포집을 동시 적용하여 미세먼지를 차단하는, 가시광선 투과성 및 고내구성의 다층구조 평면 필터 및 이의 제조방법
ITMI930377A1 (it) Sistema di filtro
US4902319A (en) Gas filter
EP0169233A4 (en) FILTER MATERIAL AND FILTER APPARATUS USING THE SAME.
CN206897854U (zh) 斜壁过滤装置及设备
WO2014081218A1 (ko) 세라믹 필터의 제조방법
WO2013168883A1 (ko) 고농도 및 저농도의 2층 구조를 갖는 필터 여과재
KR20220164416A (ko) 3차원 격자구조를 가진 필터로 구성된 차량용 범퍼
US11628620B2 (en) Bottom element for an additive manufacturing system, and additive manufacturing system
KR101549600B1 (ko) 유해나노입자 제거장치
KR20220164415A (ko) 3차원 격자구조를 가진 필터로 구성된 차량용 그릴
CN106964235B (zh) 一种除尘过滤装置
CN209569094U (zh) 空气滤清器及包括该空气滤清器的内燃机
CN210474311U (zh) 一种微尘捕集装置
KR102092199B1 (ko) 미세먼지 차단용 필터 제조 방법
CN205913954U (zh) 一种颗粒床除尘器
WO2022050676A1 (ko) 폴리머 에어필터 및 그 제조방법
WO2023243762A1 (ko) 하이브리드 다층필터 및 그 제작방법
EP3627519B1 (en) Post-accident fission products removal system and method of removing post-accident fission products
CN107019968B (zh) 一种除尘装置
CN215232721U (zh) 用于户外基站机柜的气流旋转分离式除尘空气过滤装置
CN213942442U (zh) 过滤系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22816264

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE