WO2022255509A1 - Magnetorheological elastic body-based strain gauge capable of sensitivity control, and sensing apparatus comprising same - Google Patents

Magnetorheological elastic body-based strain gauge capable of sensitivity control, and sensing apparatus comprising same Download PDF

Info

Publication number
WO2022255509A1
WO2022255509A1 PCT/KR2021/006822 KR2021006822W WO2022255509A1 WO 2022255509 A1 WO2022255509 A1 WO 2022255509A1 KR 2021006822 W KR2021006822 W KR 2021006822W WO 2022255509 A1 WO2022255509 A1 WO 2022255509A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
conductive thin
strain gauge
support member
present
Prior art date
Application number
PCT/KR2021/006822
Other languages
French (fr)
Korean (ko)
Inventor
김태훈
이석한
고현우
김상연
배한얼
나종립
김성원
김성운
Original Assignee
(주)이미지스테크놀로지
한국기술교육대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)이미지스테크놀로지, 한국기술교육대학교 산학협력단 filed Critical (주)이미지스테크놀로지
Publication of WO2022255509A1 publication Critical patent/WO2022255509A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2287Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • G01B7/24Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in magnetic properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/225Measuring circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L25/00Testing or calibrating of apparatus for measuring force, torque, work, mechanical power, or mechanical efficiency
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C10/00Adjustable resistors
    • H01C10/10Adjustable resistors adjustable by mechanical pressure or force

Definitions

  • the present invention relates to a strain gauge, and more particularly, to a strain gauge whose sensitivity can be controlled using a magnetorheological elastomer.
  • a strain gauge is a conductive thin film formed on the surface of a thin insulating substrate, and the mechanical deformation of the measured object is electrically measured by using the phenomenon in which the resistance value of the conductive thin film changes due to the tensile or compressive force applied to the measured object. It plays a role in converting into a signal.
  • Strain gauges are widely used in pressure sensors, load cells, torque sensors, acceleration sensors, and vibration sensors, and are attached to large structures (bridges, buildings, dams, retaining walls, etc.) It is also widely used to prevent safety accidents.
  • strain gauges are used in very diverse fields, when manufacturing strain gauges, they must be manufactured in consideration of sensitivity according to the purpose. For example, strain gauges used for low pressure measurement require higher sensitivity than those for high pressure measurement.
  • the sensitivity of the strain gauge is determined by the physical properties or shapes of the substrate and the conductive pattern, it is difficult to adjust the sensitivity of the finished product ex post facto.
  • the present invention has been conceived against this background, and an object of the present invention is to provide a method for adjusting the sensitivity of a strain gauge.
  • a conductive thin film As for supporting at least one surface of the conductive thin film, a strain gauge including a support member made of a magnetorheological elastomer in which magnetic particles are contained in an elastic substrate is provided.
  • the magnetorheological elastomer may be a porous magnetorheological elastomer in which a plurality of pores are formed inside an elastic substrate.
  • the conductive thin film may include a first conductive thin film and a second conductive thin film disposed vertically.
  • the first conductive thin film and the second conductive thin film may be connected to the sensing device through separate wires.
  • the first conductive thin film and the second conductive thin film may be connected in parallel between two points connected to the sensing circuit.
  • the first conductive thin film and the second conductive thin film may be connected in series between two points connected to the sensing circuit.
  • a strain gauge comprising a conductive thin film and a support member made of a magnetorheological elastomer in which magnetic particles are contained in an elastic substrate as supporting at least one surface of the conductive thin film; a sensing circuit connected to the strain gauge; a power supply unit supplying driving power to the sensing circuit; a sensing unit that detects changes in electrical characteristics of the sensing circuit; Provided is a sensing device including a control unit for controlling the output of a power supply unit in order to adjust the sensitivity of a strain gauge.
  • the magnetorheological elastomer may be a porous magnetorheological elastomer in which a plurality of pores are formed inside the elastic substrate.
  • the strain gauge includes a first conductive thin film and a second conductive thin film disposed vertically, and the support member surrounds the first conductive thin film and includes at least one of the second conductive thin film.
  • the sensing circuit may be a Wheatstone bridge circuit
  • the first conductive thin film and the second conductive thin film may be a first resistor and a second resistor constituting the Wheatstone bridge circuit, respectively.
  • the sensitivity of the strain gauge can be adjusted in various ways by using a magnetorheological elastomer for a support member supporting the conductive thin film and controlling the stiffness of the support member by adjusting the strength of a magnetic field formed around the conductive thin film.
  • FIG. 1 is a cross-sectional view of a strain gauge according to a first embodiment of the present invention
  • Figure 2 is a cross-sectional view taken along line A-A' of Figure 1
  • Figure 3 is a cross-sectional view taken along line BB 'of Figure 2
  • FIG. 4 is a schematic configuration diagram of a sensing device including a strain gauge according to a first embodiment of the present invention.
  • FIG. 5 is a process flow chart showing a method of manufacturing a strain gauge according to a first embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of a strain gauge according to a second embodiment of the present invention.
  • FIG. 7 is a process flow chart showing a method of manufacturing a strain gauge according to a second embodiment of the present invention.
  • FIG. 8 is a cross-sectional view of a strain gauge according to a third embodiment of the present invention.
  • FIG. 9 is a process flow chart showing a method of manufacturing a strain gauge according to a third embodiment of the present invention.
  • FIG. 10 is a cross-sectional view of a strain gauge according to a fourth embodiment of the present invention.
  • FIG. 11 is a cross-sectional view of a strain gauge according to a fifth embodiment of the present invention.
  • strain gauge 12 is a view showing a state in which strain gauges are arranged in multiple layers
  • FIG. 13 is a cross-sectional view taken along line C-C′ of FIG. 11
  • FIG. 14 is a schematic configuration diagram of a sensing device including a strain gauge according to a fifth embodiment of the present invention.
  • 15 is a process flow chart showing a method of manufacturing a strain gauge according to a fifth embodiment of the present invention.
  • 16 is a process flow chart showing another manufacturing method of a strain gauge according to a fifth embodiment of the present invention.
  • FIG. 17 is a cross-sectional view of a strain gauge according to a sixth embodiment of the present invention.
  • FIGS. 18 to 20 are views showing various methods of connecting upper and lower conductive thin films in a strain gauge according to a sixth embodiment of the present invention, respectively.
  • the strain gauge 100 is a conductive thin film having a predetermined pattern ( 120), a support member 110 made of a magnetorheological elastomer (MRE) material surrounding both sides of the conductive thin film 120, and the support member 110 in a state in which one end of each is coupled to both ends of the conductive thin film 120 (110) may include a first wire 131 and a second wire 132 extending to the outside.
  • MRE magnetorheological elastomer
  • the strain gage 100 must be flexibly deformed when the object to be measured is deformed while being attached to the object to be measured.
  • the supporting member 110 is preferably made of a thin and flexible material.
  • the support member 110 of the strain gauge 100 may be divided into a base 110a and a cover 110b.
  • the conductive thin film 120 may be coupled to the upper surface of the base 110a made of magnetorheological elastomer
  • the cover 110b made of magnetorheological elastomer may be coupled to the upper surface of the conductive thin film 120 and the base 110a. have.
  • Magneto-rheological elastomer is one in which magnetic particles 114 are contained in an elastic base material 112 such as natural rubber or silicone rubber. It is relatively flexible in a state in which a magnetic field is not applied, but when a magnetic field is applied, the attractive force between the magnetic particles 114 It has the characteristic of changing elasticity and rigidity.
  • the magnetorheological elastomer may be prepared by mixing, for example, a silicone rubber material, carbonyl iron powder (CIP), silicone oil, etc., but the type of composition is not necessarily limited thereto.
  • the conductive thin film 120 connects a plurality of grids 122 having an elongated strip shape and ends of adjacent grids 122 to each other, but connecting the entire grid 122 in series.
  • the connection part 124, the first electrode pad 126a to which the first wire 131 is coupled, the second electrode pad 126b to which the second wire 132 is coupled, and the first electrode pad 126a A first feeding part 128a connecting one end of the entire grid 122 and a second feeding part 128b connecting the second electrode pad 126b and the other end of the entire grid 122 are included.
  • the plurality of grids 122 having fine line widths are compressed or stretched, respectively, and the resistance value is changed. Deformation can be measured.
  • the material or thickness of the conductive thin film 120 and the length or width of the grid 122 are not limited to those shown in the drawings, and may be deformed and manufactured into various shapes depending on the purpose of the strain gauge 100.
  • the conductive thin film 120 is also made of a thin and flexible material.
  • the conductive thin film 120 may be a metal-based material such as metal, carbon-coated metal, or a heterogeneous composite metal, or may be a carbon-based material such as carbon nanotube, graphene, graphite, or fullerene, or may be doped with It may be a ceramic material such as zinc oxide, indium tin oxide (ITO), copper oxide, or iron oxide, an organic material such as pentacene, a conductive polymer material, or other types of conductive material.
  • a metal-based material such as metal, carbon-coated metal, or a heterogeneous composite metal
  • a carbon-based material such as carbon nanotube, graphene, graphite, or fullerene
  • It may be a ceramic material such as zinc oxide, indium tin oxide (ITO), copper oxide, or iron oxide, an organic material such as pentacene, a conductive polymer material, or other types of conductive material.
  • the conductive thin film 120 may be connected to the Wheatstone bridge circuit ( 210 in FIG. 4 ) through the first and second wires 131 and 132 and serve as a resistance of the Wheatstone bridge circuit 210 .
  • a method of forming the conductive thin film 120 on the upper surface of the base 110a is not particularly limited either.
  • a conductive material may be directly printed on the upper surface of the base 110a by a technique such as screen printing or inkjet printing, or a conductive material may be printed by a method such as chemical vapor deposition (CVD) or physical vapor deposition (PVD) using a mask. may be deposited to form the conductive thin film 120 .
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • the conductive thin film 120 may be formed by photolithography.
  • a film or plate made of a conductive material may be processed into a predetermined pattern and attached to the upper surface of the base 110a.
  • FIG. 3 is a cross section taken along the line BB' of FIG. 1, illustrating a magnetic field formed around the grid 122 and the power supply portions 128a and 120b when current flows through the conductive thin film 120. .
  • the range of change due to external force decreases, so it is more suitable for the purpose of measuring minute deformation of the object to be measured in detail.
  • the support member 110 is relatively flexible and its rigidity is low, it is more suitable for measuring the large deformation of the object to be measured because the range of change due to external force is large.
  • the rigidity of the support member 110 can be appropriately changed, and through this, it is possible to adjust the sensitivity of the strain gauge 100 ex post facto.
  • the stiffness of the support member 110 can be changed by adjusting the strength of the current flowing through the conductive thin film 120 .
  • the strength of the current flowing through the conductive thin film 120 may be controlled by adjusting the magnitude of the voltage applied across both ends of the conductive thin film 120 .
  • FIG. 4 shows a schematic configuration diagram of a sensing device 200 including a strain gauge 100 according to a first embodiment of the present invention.
  • the sensing device 200 includes a Wheatstone bridge circuit 210 in which the conductive thin film 120 of the strain gauge 100 and three resistors R1, R2, and R3 are connected in a rectangular shape, and a Wheatstone bridge circuit 210.
  • the power supply unit 220 for applying the driving voltage Vin between a pair of nodes (eg, N1 and N3) facing each other of the stone bridge circuit 210, and the opposite side of the Wheatstone bridge circuit 210
  • a sensing unit 230 for detecting a voltage or current between another pair of nodes (eg, N2 and N4)
  • a control unit 240 for controlling the operation of the sensing unit 230 and the power supply unit 220
  • the controller 240 may include a memory and a processor that executes a computer program stored in the memory.
  • the processor of the control unit 240 may calculate values such as pressure, displacement, torque, acceleration, frequency, etc. applied to the object to be measured using the voltage value or current value detected by the sensing unit 230 and an operation program stored in the memory. have.
  • the input unit 250 is a means for inputting necessary commands by the user, and buttons, keypads, touch pads, touch screens, toggle switches, and the like can be used without limitation.
  • the processor of the control unit 250 executes a sensitivity control program so that the driving voltage output from the power supply unit 220 corresponds to the input command. can be changed by
  • the rigidity of the support member 110 varies as the attraction between the magnetic particles 114 contained in the support member 110 changes.
  • the sensitivity of the strain gauge 100 also changes.
  • the sensitivity level of the strain gage 100 and the corresponding driving voltage are stored in a lookup table through a preliminary experiment, and when the user selects a sensitivity level through the input unit 250, the control unit 240 generates the lookup table
  • the sensing device 200 can be configured to control the driving voltage of the power supply unit 220 with reference to , and through this, the user can adjust the sensitivity of the strain gauge 100 ex post facto as needed.
  • a base 110a made of a magnetorheological elastomer is prepared, and a conductive thin film 120 is formed on an upper surface of the base 110a.
  • the conductive thin film 120 may be formed on the upper surface of the base 110a by various methods such as photolithography, screen printing, inkjet printing, deposition, and coating. (See Fig. 5 (a), (b))
  • first and second wires 131 and 132 are respectively coupled to the first and second electrode pads 126a and 126b of the conductive thin film 120 with solder or the like.
  • the other ends of the first and second wires 131 and 132 are coupled to the node of the Wheatstone bridge circuit 210, whereby the strain gauge 100 is one resistor among the four resistors constituting the Wheatstone bridge circuit 210. becomes (See Fig. 5 (c))
  • a cover 110b made of magnetorheological elastomer is prepared, and the cover 110b is coupled to the top of the conductive thin film 120 and the base 110a.
  • the cover 110b may be attached after applying an adhesive to the top of the conductive thin film 120 and the base 110a, or an intermediate product in which the conductive thin film 120 and the wires 131 and 132 are coupled to the base 110a.
  • the cover 110b may be formed by putting the molten magneto-rheological elastomer in a mold. (See Fig. 5 (d))
  • the conductive thin film 120 is formed on the upper surface of the thin insulating film 150, and the insulating film 150 and the conductive thin film 120 are formed. There is a difference in that the thin film 120 is surrounded by the base 110a and the cover 110b.
  • a thin insulating film 150 is prepared and a conductive thin film 120 is formed on the upper surface thereof.
  • the conductive thin film 120 may be formed on the upper surface of the insulating film 150 by photolithography, screen printing, inkjet printing, deposition, coating, or the like. (See Fig. 7 (a))
  • the insulating film 150 on which the conductive thin film 120 is formed is coupled to the upper surface of the magnetorheological elastomer base 110a using an adhesive or the like, and the first and second electrode pads 126a of the conductive thin film 120 , 126b) is coupled to one end of the first and second wires 131 and 132, respectively. (See Fig. 7 (b))
  • a cover 110b made of magnetorheological elastomer is prepared, and the cover 110b is coupled to the top of the conductive thin film 120, the insulating film 150, and the base 110a.
  • the cover 110b may be attached after applying the adhesive on the upper portion of the conductive thin film 120 and the base 110a, or the middle where the conductive thin film 120 and the wires 131 and 132 are coupled to the base 110a.
  • the cover 110b may be formed by placing the product in a mold and injecting a melted magnetorheological elastomer. (See Fig. 7 (c))
  • the strain gauge 100b according to the third embodiment of the present invention is the same as the second embodiment in that the insulating film 150 on which the conductive thin film 120 is formed is used, but the strain gauge 100b according to the third embodiment is supported. There is a difference from the second embodiment in that the member 110 is not divided into the base 110a and the cover 110b but is integrally formed.
  • a thin insulating film 150 is prepared and a conductive thin film 120 is formed on the upper surface thereof. (See Fig. 9 (a))
  • the support member 160 surrounding the conductive thin film 120 includes a base 160a made of a porous magnetorheological elastomer and a cover. 160b is different from the first embodiment, and the basic structure is the same as that of the strain gauge 100 according to the first embodiment.
  • the porous magnetorheological elastomer is prepared by mixing, for example, silicone rubber material, silicone oil, carbonyl iron powder, ethanol, etc. in a predetermined weight ratio, and going through a homogenization and curing process, while ethanol evaporates during the curing process. A large number of pores are formed inside.
  • the support member 160 surrounding the conductive thin film 120 is formed of a porous magnetorheological elastomer in which a large number of pores 116 are formed inside the elastic substrate 112, a magnetorheological elastomer without pores can be obtained. Since flexibility and elasticity are improved compared to the case of using the strain gauge, it is possible to manufacture a strain gauge more suitable for large deformation.
  • the strain gauge 100d includes a first conductive thin film 120a and a second conductive thin film ( 120b) is different from the previous embodiment in that it is formed in multiple layers.
  • FIG. 13 is a cross-sectional view taken along line C-C' of FIG. 11, the upper and lower grids 122 and Since current flows in both of the front parts 128a and 128n, the strength of the magnetic field greatly increases in the area where the upper and lower magnetic fields overlap, and the strength of the magnetic field greatly decreases in the area where the magnetic fields cancel out.
  • each grid 122 as well as the vertical spacing between the first and second conductive thin films 120a and 120b or the upper grid 122 and the lower grid
  • the rigidity of the support member 110 can be adjusted more diversely than in the case of using the single-layer conductive thin film 120 .
  • strain gage 100d includes three or more conductive thin films 120 , three or four conductive thin films may be used as resistors of the Wheatstone bridge circuit 210 .
  • a method of manufacturing the strain gauge 100d according to the fifth embodiment of the present invention is not particularly limited.
  • a first conductive thin film 120a is formed on the base 110a made of magnetorheological elastomer, and the first and second wires 131a and 132a are coupled. (See Fig. 15 (a), (b))
  • an intermediate layer 110c made of a magnetorheological elastomer is formed on the base 110a and the first conductive thin film 120a.
  • the intermediate layer 110c may be attached after applying an adhesive on the base 110a and the first conductive thin film 120a, and the first conductive thin film 120a and the wires 131 and 132 may be attached to the base 110a.
  • the intermediate layer 110c may be formed by putting the combined intermediate product into a mold and injecting a melted magnetorheological elastomer. (See Fig. 15 (c))
  • a second conductive thin film 120b is formed on the upper surface of the intermediate layer 110c, and the first and second wires 131b and 132b are coupled. (See Fig. 15 (d))
  • a cover 110b made of a magnetorheological elastomer is formed on the middle layer 110c and the second conductive thin film 120b.
  • the cover 110b may be attached after applying an adhesive on the upper portion of the second conductive thin film 120b and the intermediate layer 110c, or the cover 110b may be formed by putting the intermediate product in a mold and injecting a magneto-rheological elastomer melt. can also form. (See Fig. 15 (e))
  • the support member 110 is formed at once by putting the first intermediate product and the second intermediate product into a mold and injecting a melted magnetorheological elastomer. (See Fig. 16 (b))
  • conductive thin films 120a and 120b are arranged vertically in FIGS. 11 and 12, it is not limited thereto, so three or more conductive thin films may be arranged vertically.
  • FIGS. 11 and 12 show that the first conductive thin film 120a and the second conductive thin film 120b are disposed in the same direction while being vertically spaced apart, but are not limited thereto.
  • the first conductive thin film 120a and the second conductive thin film 120b may be disposed in directions that cross each other when viewed from above.
  • the strain gauge 100e As illustrated in the cross-sectional view of FIG. 17 , the strain gauge 100e according to the sixth embodiment of the present invention includes a first conductive thin film 120a and a second conductive thin film 120b inside the support member 110 . It is the same as that of the fifth embodiment in that it is formed of multiple layers.
  • the first conductive thin film 120a and the second conductive thin film 120b are electrically connected to each other by the connecting portion 180 to form a Wheatstone bridge circuit 210 ) is different from the fifth embodiment in that it serves as a single resistor.
  • the first conductive thin film 120a and the second conductive thin film 120b may be connected in various ways.
  • the first electrode pad 126a of the first conductive thin film 120a and the first electrode pad 126a of the second conductive thin film 120b located thereon are connected to each other. 180, and connect the second electrode pad 126b of the first conductive thin film 120a and the second electrode pad 126b of the second conductive thin film 120b positioned above the second electrode pad 126b to the connecting portion 180. can connect
  • the first and second wires 131 and 132 are respectively connected to the first and second electrode pads 126a and 126b of the second conductive thin film 120b, the first conductive thin film 120a and the second conductive thin film ( 120b) are resistors connected in parallel with each other.
  • the second electrode pad 126b of the first conductive thin film 120a and the first electrode pad 126a of the second conductive thin film 120b positioned diagonally above the second electrode pad 126a are Connected to the connection part 180, the first wire 131 and the second electrode pad 126a of the first conductive thin film 120a and the second electrode pad 126b of the second conductive thin film 120b, respectively.
  • Wires 132 can be connected.
  • the first conductive thin film 120a and the second conductive thin film 120b become resistors connected in series with each other, and the grid 122 of the first conductive thin film 120a and the grid of the second conductive thin film 120b In 122, currents in the same direction flow.
  • the first electrode pad 126a of the first conductive thin film 120a and the first electrode pad 126a of the second conductive thin film 120b positioned above the first electrode pad 126a are Connected to the connection part 180, the first wire 131 and the second electrode pad 126b of the first conductive thin film 120a and the second electrode pad 126b of the second conductive thin film 120b, respectively.
  • Wires 132 can be connected.
  • the first conductive thin film 120a and the second conductive thin film 120b become resistors connected in series with each other, and the grid 122 of the first conductive thin film 120a and the grid of the second conductive thin film 120b In 122, currents in opposite directions flow.
  • the support member 110 made of a magnetorheological elastomer surrounds both sides of the conductive thin film 120, but is not limited thereto.
  • one side of the conductive thin film 120 is bonded to and supported by a base 110a made of magnetorheological elastomer, and a protective layer is formed on the other side of the conductive thin film 120 using an insulating material other than magnetorheological elastomer.
  • strain gauge 110 support member
  • connection portion 120 conductive thin film 122: grid 124: connection portion
  • first and second electrode pads 128a, 128b first and second power supply units
  • first and second wires 150 insulating film
  • connection part 200 detection device 210: Wheatstone bridge circuit

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

The present invention provides a strain gauge capable of sensitivity control. The strain gauge according to the present invention comprises: a conductive thin film; and a support member for supporting at least one surface of the conductive thin film, and formed from a magnetorheological elastic body in which an elastic base contains magnetic particles. According to the present invention, by using the magnetorheological elastic body on the support member, for supporting the conductive thin film, and adjusting the strength of an electric field formed near the conductive thin film to adjust the rigidity of the support member, the sensitivity of the strain gauge may be variably adjusted.

Description

민감도 제어가 가능한 자기 유변 탄성체 기반 스트레인 게이지와 이를 포함하는 감지장치Magneto-rheological elastomer-based strain gauge capable of controlling sensitivity and sensing device including the same
본 발명은 스트레인 게인지에 관한 것으로서, 구체적으로는 자기 유변 탄성체를 이용하여 민감도 제어가 가능한 스트레인 게이지에 관한 것이다.The present invention relates to a strain gauge, and more particularly, to a strain gauge whose sensitivity can be controlled using a magnetorheological elastomer.
스트레인 게이지(strain gauge)는 얇은 절연기판의 표면에 도전성 박막을 형성한 것으로서, 피측정물에 가해지는 인장력이나 압축력에 의해 도전성 박막의 저항값이 변하는 현상을 이용하여 피측정물의 기계적인 변형을 전기적 신호로 변환하는 역할을 한다.A strain gauge is a conductive thin film formed on the surface of a thin insulating substrate, and the mechanical deformation of the measured object is electrically measured by using the phenomenon in which the resistance value of the conductive thin film changes due to the tensile or compressive force applied to the measured object. It plays a role in converting into a signal.
스트레인 게이지는 압력센서, 로드셀(load cell), 토크센서, 가속도센서, 진동센서 등에 널리 사용되고 있으며, 대형 구조물(교량, 빌딩, 댐, 옹벽 등)이나 차량에 부착하여 구조물의 특성과 변형량을 파악하여 안전사고를 방지하는 용도에도 많이 사용되고 있다.Strain gauges are widely used in pressure sensors, load cells, torque sensors, acceleration sensors, and vibration sensors, and are attached to large structures (bridges, buildings, dams, retaining walls, etc.) It is also widely used to prevent safety accidents.
이와 같이 스트레인 게이지가 매우 다양한 분야에서 사용되므로 스트레인 게이지를 제작할 때는 용도에 따른 민감도를 감안하여 제작해야 한다. 예를 들어, 저압 측정용으로 사용되는 스트레인 게이지는 고압 측정용에 비하여 높은 감도가 요구된다.As such, since strain gauges are used in very diverse fields, when manufacturing strain gauges, they must be manufactured in consideration of sensitivity according to the purpose. For example, strain gauges used for low pressure measurement require higher sensitivity than those for high pressure measurement.
그런데 스트레인 게이지의 민감도는 기판과 도전성 패턴의 물성이나 형상에 의해 결정되므로 완성품의 민감도를 사후적으로 조절하기는 어려운 문제가 있다.However, since the sensitivity of the strain gauge is determined by the physical properties or shapes of the substrate and the conductive pattern, it is difficult to adjust the sensitivity of the finished product ex post facto.
본 발명은 이러한 배경에서 고안된 것으로서, 스트레인 게이지의 민감도를 조절할 수 있는 방안을 마련하는데 그 목적이 있다.The present invention has been conceived against this background, and an object of the present invention is to provide a method for adjusting the sensitivity of a strain gauge.
이러한 목적을 달성하기 위하여, 본 발명의 일 양상은, 도전성 박막; 도전성 박막의 적어도 일면을 지지하는 것으로서, 탄성기재에 자성입자가 함유된 자기유변탄성체로 이루어진 지지부재를 포함하는 스트레인 게이지를 제공한다.In order to achieve this object, one aspect of the present invention, a conductive thin film; As for supporting at least one surface of the conductive thin film, a strain gauge including a support member made of a magnetorheological elastomer in which magnetic particles are contained in an elastic substrate is provided.
본 발명의 일 양상에 따른 스트레인 게이지에서, 상기 자기유변탄성체는 탄성기재의 내부에 다수의 기공이 형성된 다공성 자기유변탄성체일 수 있다.In the strain gauge according to one aspect of the present invention, the magnetorheological elastomer may be a porous magnetorheological elastomer in which a plurality of pores are formed inside an elastic substrate.
또한 본 발명의 일 양상에 따른 스트레인 게이지에서, 상기 도전성 박막은 상하로 배치된 제1 도전성 박막과 제2 도전성 박막을 포함할 수 있다.In addition, in the strain gage according to one aspect of the present invention, the conductive thin film may include a first conductive thin film and a second conductive thin film disposed vertically.
또한 본 발명의 일 양상에 따른 스트레인 게이지에서, 상기 제1 도전성 박막과 상기 제2 도전성 박막은 각각 별도의 전선을 통해 감지장치에 연결될 수 있다.In addition, in the strain gauge according to one aspect of the present invention, the first conductive thin film and the second conductive thin film may be connected to the sensing device through separate wires.
또한 본 발명의 일 양상에 따른 스트레인 게이지에서, 상기 제1 도전성 박막과 상기 제2 도전성 박막은 감지회로와 연결되는 두 지점의 사이에서 서로 병렬로 연결될 수 있다.In addition, in the strain gage according to one aspect of the present invention, the first conductive thin film and the second conductive thin film may be connected in parallel between two points connected to the sensing circuit.
또한 본 발명의 일 양상에 따른 스트레인 게이지에서, 상기 제1 도전성 박막과 상기 제2 도전성 박막은 감지회로와 연결되는 두 지점의 사이에서 서로 직렬로 연결될 수 있다.In addition, in the strain gage according to an aspect of the present invention, the first conductive thin film and the second conductive thin film may be connected in series between two points connected to the sensing circuit.
본 발명의 다른 양상은, 도전성 박막과, 도전성 박막의 적어도 일면을 지지하는 것으로서 탄성기재에 자성입자가 함유된 자기유변탄성체로 이루어진 지지부재를 포함하는 스트레인 게이지; 스트레인 게이지와 연결된 감지회로; 감지회로에 구동전원을 공급하는 전원공급부; 감지회로의 전기적 특성 변화를 검출하는 감지부; 스트레인 게이지의 민감도 조절을 위하여 전원공급부의 출력을 제어하는 제어부를 포함하는 감지장치를 제공한다.Another aspect of the present invention is a strain gauge comprising a conductive thin film and a support member made of a magnetorheological elastomer in which magnetic particles are contained in an elastic substrate as supporting at least one surface of the conductive thin film; a sensing circuit connected to the strain gauge; a power supply unit supplying driving power to the sensing circuit; a sensing unit that detects changes in electrical characteristics of the sensing circuit; Provided is a sensing device including a control unit for controlling the output of a power supply unit in order to adjust the sensitivity of a strain gauge.
본 발명에 따른 감지장치에서, 상기 자기유변탄성체는 탄성기재의 내부에 다수의 기공이 형성된 다공성 자기유변탄성체일 수 있다.In the sensing device according to the present invention, the magnetorheological elastomer may be a porous magnetorheological elastomer in which a plurality of pores are formed inside the elastic substrate.
또한 본 발명에 따른 감지장치에서, 상기 스트레인 게이지는 상하로 배치된 제1 도전성 박막과 제2 도전성 박막을 포함하고, 상기 지지부재는 상기 제1 도전성 박막을 둘러싼 상태에서 상기 제2 도전성 박막의 적어도 일면을 지지하며, 상기 감지회로는 휘스톤 브릿지 회로이고, 상기 제1 도전성 박막과 상기 제2 도전성 박막은 각각 상기 휘스톤 브릿지 회로를 구성하는 제1 저항과 제2 저항일 수 있다.In addition, in the sensing device according to the present invention, the strain gauge includes a first conductive thin film and a second conductive thin film disposed vertically, and the support member surrounds the first conductive thin film and includes at least one of the second conductive thin film. One surface may be supported, the sensing circuit may be a Wheatstone bridge circuit, and the first conductive thin film and the second conductive thin film may be a first resistor and a second resistor constituting the Wheatstone bridge circuit, respectively.
본 발명에 따르면, 도전성 박막을 지지하는 지지부재에 자기유변탄성체를 사용하고 도전성 박막의 주변에 형성되는 자기장의 세기를 조절하여 지지부재의 강성을 조절함으로써 스트레인 게이지의 민감도를 다양하게 조절할 수 있다.According to the present invention, the sensitivity of the strain gauge can be adjusted in various ways by using a magnetorheological elastomer for a support member supporting the conductive thin film and controlling the stiffness of the support member by adjusting the strength of a magnetic field formed around the conductive thin film.
도 1은 본 발명의 제1 실시예에 따른 스트레인 게이지의 단면도1 is a cross-sectional view of a strain gauge according to a first embodiment of the present invention;
도 2는 도 1의 A-A'선에 따른 단면도Figure 2 is a cross-sectional view taken along line A-A' of Figure 1
도 3은 도 2의 B-B'선에 따른 단면도Figure 3 is a cross-sectional view taken along line BB 'of Figure 2
도 4는 본 발명의 제1 실시예에 따른 스트레인 게이지를 포함하는 감지장치의 개략 구성도4 is a schematic configuration diagram of a sensing device including a strain gauge according to a first embodiment of the present invention.
도 5는 본 발명의 제1 실시예에 따른 스트레인 게이지의 제조방법을 나타낸 공정 순서도5 is a process flow chart showing a method of manufacturing a strain gauge according to a first embodiment of the present invention.
도 6은 본 발명의 제2 실시예에 따른 스트레인 게이지의 단면도6 is a cross-sectional view of a strain gauge according to a second embodiment of the present invention
도 7은 본 발명의 제2 실시예에 따른 스트레인 게이지의 제조방법을 나타낸 공정 순서도7 is a process flow chart showing a method of manufacturing a strain gauge according to a second embodiment of the present invention.
도 8은 본 발명의 제3 실시예에 따른 스트레인 게이지의 단면도8 is a cross-sectional view of a strain gauge according to a third embodiment of the present invention
도 9는 본 발명의 제3 실시예에 따른 스트레인 게이지의 제조방법을 나타낸 공정 순서도9 is a process flow chart showing a method of manufacturing a strain gauge according to a third embodiment of the present invention.
도 10은 본 발명의 제4 실시예에 따른 스트레인 게이지의 단면도10 is a cross-sectional view of a strain gauge according to a fourth embodiment of the present invention
도 11은 본 발명의 제5 실시예에 따른 스트레인 게이지의 단면도11 is a cross-sectional view of a strain gauge according to a fifth embodiment of the present invention
도 12는 스트레인 게이지가 복층으로 배열된 모습을 나타낸 도면12 is a view showing a state in which strain gauges are arranged in multiple layers;
도 13은 도 11의 C-C'선에 따른 단면도13 is a cross-sectional view taken along line C-C′ of FIG. 11
도 14는 본 발명의 제5 실시예에 따른 스트레인 게이지를 포함하는 감지장치의 개략 구성도14 is a schematic configuration diagram of a sensing device including a strain gauge according to a fifth embodiment of the present invention.
도 15는 본 발명의 제5 실시예에 따른 스트레인 게이지의 제조방법을 나타낸 공정 순서도15 is a process flow chart showing a method of manufacturing a strain gauge according to a fifth embodiment of the present invention.
도 16은 본 발명의 제5 실시예에 따른 스트레인 게이지의 다른 제조방법을 나타낸 공정 순서도16 is a process flow chart showing another manufacturing method of a strain gauge according to a fifth embodiment of the present invention.
도 17은 본 발명의 제6 실시예에 따른 스트레인 게이지의 단면도17 is a cross-sectional view of a strain gauge according to a sixth embodiment of the present invention
도 18 내지 도 20은 각각 본 발명의 제6 실시예에 따른 스트레인 게이지에서 상하층 도전성 박막을 연결하는 여러 방법을 나타낸 도면18 to 20 are views showing various methods of connecting upper and lower conductive thin films in a strain gauge according to a sixth embodiment of the present invention, respectively.
이하에서는 도면을 참조하여 본 발명의 바람직한 실시예를 설명한다. Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
참고로 본 명세서에 첨부된 도면에는 실제와 다른 치수 또는 비율로 표시된 부분이 있으나 이는 설명과 이해의 편의를 위한 것이므로 이로 인해 본 발명의 범위가 제한적으로 해석되어서는 아니됨을 미리 밝혀 둔다. 또한 본 명세서에서 하나의 구성요소(element)가 다른 구성요소와 연결, 결합 또는 전기적으로 연결되는 경우는 다른 구성요소와 직접적으로 연결, 결합 또는 전기적으로 연결되는 경우뿐 아니라 중간에 다른 요소를 사이에 두고 간접적으로 연결, 결합 또는 전기적으로 연결되는 경우도 포함한다. 또한 하나의 구성요소(element)가 다른 구성요소와 직접 연결 또는 결합되는 경우는 중간에 다른 요소 없이 연결 또는 결합되는 것을 의미한다. 또한 어떤 부분이 어떤 구성요소를 포함하는 것은 특별히 반대되는 기재가 없다면 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한 본 명세서에서 전, 후, 좌, 우, 위, 아래 등의 표현은 보는 위치에 따라 달라질 수 있는 상대적인 개념이므로 본 발명의 범위가 반드시 해당 표현으로 제한되어서는 아니된다.For reference, there are portions shown in dimensions or ratios different from those of the actual drawings in the drawings attached to this specification, but this is for convenience of explanation and understanding, so it should be noted in advance that the scope of the present invention should not be construed as being limited thereto. In addition, in the present specification, when one element is connected, coupled, or electrically connected to another element, not only when it is directly connected, coupled, or electrically connected to another element, but also between other elements in the middle. and indirectly connected, bonded or electrically connected. In addition, when one element is directly connected or combined with another element, it means that it is connected or combined without another element in the middle. In addition, the fact that a part includes a certain component means that it may further include other components without excluding other components unless otherwise stated. In addition, since expressions such as front, back, left, right, up, and down in this specification are relative concepts that may vary depending on the viewing position, the scope of the present invention is not necessarily limited to the corresponding expressions.
<제1 실시예><First Embodiment>
본 발명의 제1 실시예에 따른 스트레인 게이지(100)는, 도 1의 평단면도와 도 1의 A-A'선에 따른 단면도인 도 2에 예시한 바와 같이, 소정의 패턴을 갖는 도전성 박막(120)과, 도전성 박막(120)의 양면을 둘러싸는 자기유변탄성체(Magnetorheological elastomer, MRE) 재질의 지지부재(110)와, 각각의 일단이 도전성 박막(120)의 양단에 결합된 상태에서 지지부재(110)의 외부로 연장된 제1 전선(131)과 제2 전선(132)을 포함할 수 있다.The strain gauge 100 according to the first embodiment of the present invention is a conductive thin film having a predetermined pattern ( 120), a support member 110 made of a magnetorheological elastomer (MRE) material surrounding both sides of the conductive thin film 120, and the support member 110 in a state in which one end of each is coupled to both ends of the conductive thin film 120 (110) may include a first wire 131 and a second wire 132 extending to the outside.
스트레인 게이지(100)는 피측정물에 부착된 상태에서 피측정물이 변형될 때 함께 유연하게 변형되어야 하며, 이를 위해서는 지지부재(110)는 얇고 유연한 재질인 것이 바람직하다.The strain gage 100 must be flexibly deformed when the object to be measured is deformed while being attached to the object to be measured. To this end, the supporting member 110 is preferably made of a thin and flexible material.
본 발명의 제1 실시예에 따른 스트레인 게이지(100)의 지지부재(110)는 베이스(110a)와 커버(110b)로 구분될 수 있다. 예를 들어 자기유변탄성체 재질의 베이스(110a)의 상면에 도전성 박막(120)이 결합되고, 도전성 박막(120)과 베이스(110a)의 상면에 자기유변탄성체 재질의 커버(110b)가 결합될 수 있다.The support member 110 of the strain gauge 100 according to the first embodiment of the present invention may be divided into a base 110a and a cover 110b. For example, the conductive thin film 120 may be coupled to the upper surface of the base 110a made of magnetorheological elastomer, and the cover 110b made of magnetorheological elastomer may be coupled to the upper surface of the conductive thin film 120 and the base 110a. have.
자기유변탄성체는 천연고무, 실리콘 고무 등의 탄성기재(112)에 자성 입자(114)가 함유된 것으로서, 자기장이 인가되지 않은 상태에서는 상대적으로 유연하지만 자기장이 인가되면 자성입자(114) 간의 인력으로 인해 탄성력과 강성이 변하는 특성이 있다.Magneto-rheological elastomer is one in which magnetic particles 114 are contained in an elastic base material 112 such as natural rubber or silicone rubber. It is relatively flexible in a state in which a magnetic field is not applied, but when a magnetic field is applied, the attractive force between the magnetic particles 114 It has the characteristic of changing elasticity and rigidity.
자기유변탄성체는 예를 들어 실리콘 고무재, 카르보닐 철 분말(CIP), 실리콘 오일 등을 배합하여 제조될 수 있으나, 조성물의 종류가 반드시 이에 한정되는 것은 아니다.The magnetorheological elastomer may be prepared by mixing, for example, a silicone rubber material, carbonyl iron powder (CIP), silicone oil, etc., but the type of composition is not necessarily limited thereto.
도전성 박막(120)은, 도 1에 예시한 바와 같이, 가늘고 긴 스트립 형상을 갖는 다수의 그리드(122)와, 인접 그리드(122)의 단부를 서로 연결하되 전체 그리드(122)를 직렬로 연결하는 연결부(124)와, 제1 전선(131)이 결합되는 제1 전극패드(126a)와, 제2 전선(132)이 결합되는 제2 전극패드(126b)와, 제1 전극패드(126a)와 전체 그리드(122)의 일단을 연결하는 제1 급전부(128a)와, 제2 전극패드(126b)와 전체 그리드(122)의 타단을 연결하는 제2 급전부(128b)를 포함한다.As illustrated in FIG. 1, the conductive thin film 120 connects a plurality of grids 122 having an elongated strip shape and ends of adjacent grids 122 to each other, but connecting the entire grid 122 in series. The connection part 124, the first electrode pad 126a to which the first wire 131 is coupled, the second electrode pad 126b to which the second wire 132 is coupled, and the first electrode pad 126a A first feeding part 128a connecting one end of the entire grid 122 and a second feeding part 128b connecting the second electrode pad 126b and the other end of the entire grid 122 are included.
스트레인 게이지(100)를 피측정물에 부착한 상태에서 피측정물에서 변형이 발생하면, 미세한 선폭을 갖는 다수의 그리드(122)가 각각 압축 또는 신장되면서 저항값이 변하게 되므로 이를 이용하여 피측정물의 변형량을 측정할 수 있다.When deformation occurs in the object to be measured while the strain gauge 100 is attached to the object to be measured, the plurality of grids 122 having fine line widths are compressed or stretched, respectively, and the resistance value is changed. Deformation can be measured.
도전성 박막(120)의 재질이나 두께, 그리드(122)의 길이나 폭 등은 도면에 나타낸 것에 한정되지 않으며, 스트레인 게이지(100)의 용도에 따라 다양한 형상으로 변형되어 제작될 수 있다.The material or thickness of the conductive thin film 120 and the length or width of the grid 122 are not limited to those shown in the drawings, and may be deformed and manufactured into various shapes depending on the purpose of the strain gauge 100.
다만, 피측정물의 변형에 응하여 스트레인 게이지(100)가 유연하게 변형되기 위해서는 도전성 박막(120)도 얇고 유연한 재질인 것이 바람직하다.However, in order for the strain gauge 100 to be flexibly deformed in response to the deformation of the object to be measured, it is preferable that the conductive thin film 120 is also made of a thin and flexible material.
예를 들어, 도전성 박막(120)은 금속, 탄소 코팅된 금속, 이종 복합 금속 등의 금속계 재질일 수도 있고, 탄소나노튜브, 그래핀, 흑연, 플루 렌 등의 탄소계 재질일 수도 있고, 도핑된 산화아연, 산화인듐주석(ITO), 산화구리, 산화철 등의 세라믹계 재질일 수도 있고, 펜타센 등의 유기계 재질일 수도 있고, 도전성 고분자 재질일 수도 있고, 기타 다른 종류의 도전성 재질일 수도 있다.For example, the conductive thin film 120 may be a metal-based material such as metal, carbon-coated metal, or a heterogeneous composite metal, or may be a carbon-based material such as carbon nanotube, graphene, graphite, or fullerene, or may be doped with It may be a ceramic material such as zinc oxide, indium tin oxide (ITO), copper oxide, or iron oxide, an organic material such as pentacene, a conductive polymer material, or other types of conductive material.
도전성 박막(120)은 제1 및 제2 전선(131,132)을 통해 휘스톤 브릿지 회로(도 4의 210)에 연결되어 휘스톤 브릿지 회로(210)의 저항 역할을 할 수 있다.The conductive thin film 120 may be connected to the Wheatstone bridge circuit ( 210 in FIG. 4 ) through the first and second wires 131 and 132 and serve as a resistance of the Wheatstone bridge circuit 210 .
베이스(110a)의 상면에 도전성 박막(120)을 형성하는 방법도 특별히 한정되지 않는다. A method of forming the conductive thin film 120 on the upper surface of the base 110a is not particularly limited either.
일 예로서, 베이스(110a)의 상면에 직접 스크린 프린팅, 잉크젯 프린팅 등의 기법으로 도전성 물질을 프린팅하거나, 마스크를 활용한 화학기상증착(CVD), 물리기상증착(PVD) 등의 방식으로 도전성 물질을 증착하여 도전성 박막(120)을 형성할 수 있다. As an example, a conductive material may be directly printed on the upper surface of the base 110a by a technique such as screen printing or inkjet printing, or a conductive material may be printed by a method such as chemical vapor deposition (CVD) or physical vapor deposition (PVD) using a mask. may be deposited to form the conductive thin film 120 .
다른 예로서, 베이스(110a)의 상면 전체에 도전성 물질을 증착하거나 결합한 후에 사진식각 등의 방식으로 도전성 박막(120)을 형성할 수도 있다.As another example, after depositing or combining a conductive material on the entire upper surface of the base 110a, the conductive thin film 120 may be formed by photolithography.
또 다른 예로서, 도전성 재질의 필름이나 판재를 소정 패턴으로 가공하여 베이스(110a)의 상면에 부착할 수도 있다. As another example, a film or plate made of a conductive material may be processed into a predetermined pattern and attached to the upper surface of the base 110a.
도 3은 도 1의 B-B'선에 따른 단면을 나타낸 것으로서, 도전성 박막(120)에 전류가 흐를 때 그리드(122)와 급전부(128a,120b)의 주변에 형성되는 자기장을 예시한 것이다.FIG. 3 is a cross section taken along the line BB' of FIG. 1, illustrating a magnetic field formed around the grid 122 and the power supply portions 128a and 120b when current flows through the conductive thin film 120. .
이와 같이 그리드(122)와 급전부(128a,120b)의 주변에 자기장이 형성되면 자기유변탄성체 재질의 지지부재(110)에 함유된 자성입자(114) 간에 인력이 발생하고, 이로 인해 자기장이 없는 경우에 비하여 지지부재(110)가 단단해지고 강성이 증가한다.In this way, when a magnetic field is formed around the grid 122 and the feeding parts 128a and 120b, an attractive force is generated between the magnetic particles 114 contained in the support member 110 made of magnetorheological elastomer, and this causes no magnetic field. Compared to the case, the support member 110 is hardened and rigidity is increased.
지지부재(110)의 강성이 증가하면 외력에 의한 변화폭이 작아지므로 피측정물의 미소 변형을 세밀하게 측정하는 용도에 보다 적합해진다.As the rigidity of the support member 110 increases, the range of change due to external force decreases, so it is more suitable for the purpose of measuring minute deformation of the object to be measured in detail.
이와 반대로 지지부재(110)가 상대적으로 유연해지고 강성이 낮아지면 외력에 의한 변화폭이 크기 때문에 피측정물의 대변형을 측정하는 용도에 보다 적합해진다.Conversely, when the support member 110 is relatively flexible and its rigidity is low, it is more suitable for measuring the large deformation of the object to be measured because the range of change due to external force is large.
따라서 도전성 박막(120)에서 생성되는 자기장의 세기를 조절하면 지지부재(110)의 강성을 적절히 변화시킬 수 있으며, 이를 통해 스트레인 게이지(100)의 민감도를 사후적으로 조절하는 것이 가능해진다.Accordingly, by adjusting the intensity of the magnetic field generated from the conductive thin film 120, the rigidity of the support member 110 can be appropriately changed, and through this, it is possible to adjust the sensitivity of the strain gauge 100 ex post facto.
자기장의 세기는 전류의 세기에 비례하므로 도전성 박막(120)에 흐르는 전류의 세기를 조절하면 지지부재(110)의 강성을 변화시킬 수 있다. 또한 도전성 박막(120)에 흐르는 전류의 세기는 도전성 박막(120)의 양단에 걸리는 전압의 크기를 조절하여 제어할 수도 있다.Since the strength of the magnetic field is proportional to the strength of the current, the stiffness of the support member 110 can be changed by adjusting the strength of the current flowing through the conductive thin film 120 . In addition, the strength of the current flowing through the conductive thin film 120 may be controlled by adjusting the magnitude of the voltage applied across both ends of the conductive thin film 120 .
도 4는 본 발명의 제1 실시예에 따른 스트레인 게이지(100)를 포함하는 감지장치(200)의 개략적인 구성도를 나타낸 것이다.4 shows a schematic configuration diagram of a sensing device 200 including a strain gauge 100 according to a first embodiment of the present invention.
감지장치(200)는, 도면에 예시한 바와 같이, 스트레인 게이지(100)의 도전성 박막(120)과 3개의 저항(R1, R2, R3)이 사각형으로 연결된 휘스톤 브릿지 회로(210)와, 휘스톤 브릿지 회로(210)의 서로 마주보는 한 쌍의 노드(예, N1, N3)의 사이에 구동전압(Vin)을 인가하는 전원공급부(220)와, 휘스톤 브릿지 회로(210)의 서로 마주보는 다른 한 쌍의 노드(예, N2, N4) 사이의 전압 또는 전류를 검출하는 감지부(230)와, 감지부(230)와 전원공급부(220)의 동작을 제어하는 제어부(240)와, 입력부(250)를 포함할 수 있다.As illustrated in the drawing, the sensing device 200 includes a Wheatstone bridge circuit 210 in which the conductive thin film 120 of the strain gauge 100 and three resistors R1, R2, and R3 are connected in a rectangular shape, and a Wheatstone bridge circuit 210. The power supply unit 220 for applying the driving voltage Vin between a pair of nodes (eg, N1 and N3) facing each other of the stone bridge circuit 210, and the opposite side of the Wheatstone bridge circuit 210 A sensing unit 230 for detecting a voltage or current between another pair of nodes (eg, N2 and N4), a control unit 240 for controlling the operation of the sensing unit 230 and the power supply unit 220, and an input unit (250).
도면에는 나타내지 않았으나, 제어부(240)는 메모리와, 메모리에 저장된 컴퓨터 프로그램을 실행하는 프로세서를 포함할 수 있다.Although not shown in the drawing, the controller 240 may include a memory and a processor that executes a computer program stored in the memory.
제어부(240)의 프로세서는 감지부(230)에서 검출된 전압값 또는 전류값과, 메모리에 저장된 연산 프로그램을 이용하여 피측정물에 가해진 압력, 변위, 토크, 가속도, 진동수 등의 수치를 계산할 수도 있다.The processor of the control unit 240 may calculate values such as pressure, displacement, torque, acceleration, frequency, etc. applied to the object to be measured using the voltage value or current value detected by the sensing unit 230 and an operation program stored in the memory. have.
입력부(250)는 사용자가 필요한 명령을 입력하는 수단으로서, 버튼, 키패드, 터치패드, 터치스크린, 토글스위치 등이 제한없이 사용될 수 있다. 본 발명의 실시예에서는, 사용자가 입력부(250)를 통해 민감도 선택 명령을 입력하면 제어부(250)의 프로세서가 민감도 제어프로그램을 실행하여 전원공급부(220)에서 출력되는 구동전압을 입력된 명령에 대응하여 변경할 수 있다.The input unit 250 is a means for inputting necessary commands by the user, and buttons, keypads, touch pads, touch screens, toggle switches, and the like can be used without limitation. In an embodiment of the present invention, when a user inputs a sensitivity selection command through the input unit 250, the processor of the control unit 250 executes a sensitivity control program so that the driving voltage output from the power supply unit 220 corresponds to the input command. can be changed by
전원공급부(220)의 구동전압이 변경되면 스트레인 게이지(100)의 도전성 박막(120)으로 흐르는 전류의 세기가 달라지고, 이로 인해 그리드(122)와 급전부(128a,128b) 주변의 자기장 세기가 달라지므로 지지부재(110)에 함유된 자성입자(114) 간의 인력이 변함에 따라 지지부재(110)의 강성이 달라진다.When the driving voltage of the power supply unit 220 changes, the strength of the current flowing through the conductive thin film 120 of the strain gauge 100 changes, and as a result, the strength of the magnetic field around the grid 122 and the power supply units 128a and 128b increases. Therefore, the rigidity of the support member 110 varies as the attraction between the magnetic particles 114 contained in the support member 110 changes.
이와 같이 지지부재(110)의 강성이 변하면 스트레인 게이지(100)의 민감도도 변하게 된다.As such, when the stiffness of the support member 110 changes, the sensitivity of the strain gauge 100 also changes.
따라서 사전 실험을 통해 스트레인 게이지(100)의 민감도 레벨과 이에 대응하는 구동전압을 룩업테이블(lookup table) 등에 저장해두고, 사용자가 입력부(250)를 통해 민감도 레벨을 선택하면 제어부(240)가 룩업테이블을 참조하여 전원공급부(220)의 구동전압을 제어하도록 감지장치(200)를 구성할 수 있고, 이를 통해 사용자는 스트레인 게이지(100)의 민감도를 필요에 따라 사후적으로 조절할 수 있게 된다.Therefore, the sensitivity level of the strain gage 100 and the corresponding driving voltage are stored in a lookup table through a preliminary experiment, and when the user selects a sensitivity level through the input unit 250, the control unit 240 generates the lookup table The sensing device 200 can be configured to control the driving voltage of the power supply unit 220 with reference to , and through this, the user can adjust the sensitivity of the strain gauge 100 ex post facto as needed.
이하에서는 도 5의 흐름도를 참조하여 본 발명의 제1 실시예에 따른 스트레인 게이지(100)의 제조방법을 설명한다.Hereinafter, the manufacturing method of the strain gauge 100 according to the first embodiment of the present invention will be described with reference to the flowchart of FIG. 5 .
먼저 자기유변탄성체 재질의 베이스(110a)를 준비하고, 베이스(110a)의 상면에 도전성 박막(120)을 형성한다. 도전성 박막(120)은, 앞서 설명한 바와 같이, 사진식각, 스크린 프린팅, 잉크젯 프린팅, 증착, 코팅 등의 다양한 방법으로 베이스(110a)의 상면에 형성할 수 있다. (도 5 (a), (b) 참조) First, a base 110a made of a magnetorheological elastomer is prepared, and a conductive thin film 120 is formed on an upper surface of the base 110a. As described above, the conductive thin film 120 may be formed on the upper surface of the base 110a by various methods such as photolithography, screen printing, inkjet printing, deposition, and coating. (See Fig. 5 (a), (b))
이어서, 도전성 박막(120)의 제1 및 제2 전극패드(126a,126b)에 땜납 등으로 제1 및 제2 전선(131,132)의 일단을 각각 결합한다. 제1 및 제2 전선(131,132)의 타단은 휘스톤 브릿지 회로(210)의 노드에 결합되며, 이로 인해 스트레인 게이지(100)는 휘스톤 브릿지 회로(210)를 구성하는 4개의 저항 중에서 하나의 저항이 된다. (도 5 (c) 참조)Subsequently, ends of the first and second wires 131 and 132 are respectively coupled to the first and second electrode pads 126a and 126b of the conductive thin film 120 with solder or the like. The other ends of the first and second wires 131 and 132 are coupled to the node of the Wheatstone bridge circuit 210, whereby the strain gauge 100 is one resistor among the four resistors constituting the Wheatstone bridge circuit 210. becomes (See Fig. 5 (c))
이어서, 자기유변탄성체 재질의 커버(110b)를 준비하고, 도전성 박막(120)과 베이스(110a)의 상부에 커버(110b)를 결합한다. Subsequently, a cover 110b made of magnetorheological elastomer is prepared, and the cover 110b is coupled to the top of the conductive thin film 120 and the base 110a.
이때, 도전성 박막(120)과 베이스(110a)의 상부에 접착제를 도포한 후에 커버(110b)를 부착할 수도 있고, 베이스(110a)에 도전성 박막(120)과 전선(131,132)이 결합된 중간제품을 몰드에 넣고 자기유변탄성체 용융액을 주입하여 커버(110b)를 형성할 수도 있다. (도 5 (d) 참조)At this time, the cover 110b may be attached after applying an adhesive to the top of the conductive thin film 120 and the base 110a, or an intermediate product in which the conductive thin film 120 and the wires 131 and 132 are coupled to the base 110a. The cover 110b may be formed by putting the molten magneto-rheological elastomer in a mold. (See Fig. 5 (d))
<제2 실시예><Second Embodiment>
본 발명의 제2 실시예에 따른 스트레인 게이지(100a)는, 도 6의 단면도에 나타낸 바와 같이, 얇은 절연필름(150)의 상면에 도전성 박막(120)을 형성하고, 절연필름(150)과 도전성 박막(120)을 베이스(110a)와 커버(110b)로 둘러싸는 점에서 차이가 있다.As shown in the cross-sectional view of FIG. 6 , in the strain gauge 100a according to the second embodiment of the present invention, the conductive thin film 120 is formed on the upper surface of the thin insulating film 150, and the insulating film 150 and the conductive thin film 120 are formed. There is a difference in that the thin film 120 is surrounded by the base 110a and the cover 110b.
도 7의 공정순서도를 참조하면, 본 발명의 제2 실시예에 따른 스트레인 게이지(100a)를 제조하기 위해서는 먼저 얇은 절연필름(150)을 준비하고 그 상면에 도전성 박막(120)을 형성한다.Referring to the process flow chart of FIG. 7 , in order to manufacture the strain gauge 100a according to the second embodiment of the present invention, first, a thin insulating film 150 is prepared and a conductive thin film 120 is formed on the upper surface thereof.
앞서 설명한 바와 같이, 사진식각, 스크린 프린팅, 잉크젯 프린팅, 증착, 코팅 등의 방법으로 절연필름(150)의 상면에 도전성 박막(120)을 형성할 수 있다. (도 7 (a) 참조)As described above, the conductive thin film 120 may be formed on the upper surface of the insulating film 150 by photolithography, screen printing, inkjet printing, deposition, coating, or the like. (See Fig. 7 (a))
이어서, 도전성 박막(120)이 형성된 절연필름(150)을 접착제 등을 이용하여 자기유변탄성체 재질의 베이스(110a)의 상면에 결합하고, 도전성 박막(120)의 제1 및 제2 전극패드(126a,126b)에 제1 및 제2 전선(131,132)의 일단을 각각 결합한다. (도 7 (b) 참조) Subsequently, the insulating film 150 on which the conductive thin film 120 is formed is coupled to the upper surface of the magnetorheological elastomer base 110a using an adhesive or the like, and the first and second electrode pads 126a of the conductive thin film 120 , 126b) is coupled to one end of the first and second wires 131 and 132, respectively. (See Fig. 7 (b))
이어서, 자기유변탄성체 재질의 커버(110b)를 준비하고, 도전성 박막(120), 절연필름(150) 및 베이스(110a)의 상부에 커버(110b)를 결합한다. Subsequently, a cover 110b made of magnetorheological elastomer is prepared, and the cover 110b is coupled to the top of the conductive thin film 120, the insulating film 150, and the base 110a.
이 경우에도 도전성 박막(120)과 베이스(110a)의 상부에 접착제를 도포한 후에 커버(110b)를 부착할 수도 있고, 베이스(110a)에 도전성 박막(120)과 전선(131,132)이 결합된 중간제품을 몰드에 넣고 자기유변탄성체 용융액을 주입하여 커버(110b)를 형성할 수도 있다. (도 7 (c) 참조)Even in this case, the cover 110b may be attached after applying the adhesive on the upper portion of the conductive thin film 120 and the base 110a, or the middle where the conductive thin film 120 and the wires 131 and 132 are coupled to the base 110a. The cover 110b may be formed by placing the product in a mold and injecting a melted magnetorheological elastomer. (See Fig. 7 (c))
<제3 실시예><Third Embodiment>
본 발명의 제3 실시예에 따른 스트레인 게이지(100b)는, 도 8의 단면도에 나타낸 바와 같이, 도전성 박막(120)이 형성된 절연필름(150)을 사용하는 점에서는 제2 실시예와 동일하지만 지지부재(110)가 베이스(110a)와 커버(110b)로 구분되지 않고 일체로 형성된 점에서 제2 실시예와 차이가 있다.As shown in the cross-sectional view of FIG. 8, the strain gauge 100b according to the third embodiment of the present invention is the same as the second embodiment in that the insulating film 150 on which the conductive thin film 120 is formed is used, but the strain gauge 100b according to the third embodiment is supported. There is a difference from the second embodiment in that the member 110 is not divided into the base 110a and the cover 110b but is integrally formed.
도 9의 공정순서도를 참조하면, 본 발명의 제3 실시예에 따른 스트레인 게이지(100b)를 제조하기 위해서는 먼저 얇은 절연필름(150)을 준비하고 그 상면에 도전성 박막(120)을 형성한다. (도 9 (a) 참조)Referring to the process flow chart of FIG. 9 , in order to manufacture the strain gauge 100b according to the third embodiment of the present invention, first, a thin insulating film 150 is prepared and a conductive thin film 120 is formed on the upper surface thereof. (See Fig. 9 (a))
이어서, 도전성 박막(120)이 형성된 절연필름(150)을 몰드에 넣고 자기유변탄성체 용융액을 주입하면, 도전성 박막(120)과 절연필름(150)의 상면과 하면을 모두 둘러싸는 지지부재(110)를 한번에 형성할 수도 있다. (도 9 (b) 참조)Subsequently, when the insulating film 150 on which the conductive thin film 120 is formed is put into a mold and a magnetorheological elastomer melt is injected, the support member 110 surrounding both the upper and lower surfaces of the conductive thin film 120 and the insulating film 150 can be formed at once. (See Fig. 9 (b))
<제4 실시예><Fourth Embodiment>
본 발명의 제4 실시예에 따른 스트레인 게이지(100c)는, 도 10의 단면도에 나타낸 바와 같이 도전성 박막(120)을 둘러싸는 지지부재(160)가 다공성 자기유변탄성체로 이루어진 베이스(160a)와 커버(160b)로 이루어진 점에서 제1 실시예와 차이가 있고, 기본적인 구조는 제1 실시예에 따른 스트레인 게이지(100)와 동일하다.In the strain gauge 100c according to the fourth embodiment of the present invention, as shown in the cross-sectional view of FIG. 10, the support member 160 surrounding the conductive thin film 120 includes a base 160a made of a porous magnetorheological elastomer and a cover. 160b is different from the first embodiment, and the basic structure is the same as that of the strain gauge 100 according to the first embodiment.
다공성 자기유변탄성체는, 예를 들어 실리콘 고무재, 실리콘 오일, 카르보닐 철(Carbonyl) 분말, 에탄올 등을 소정의 중량비로 혼합하고, 균질화 및 경화 공정을 거쳐 제조되며, 경화 과정에서 에탄올이 증발하면서 내부에 다수의 기공이 형성된다.The porous magnetorheological elastomer is prepared by mixing, for example, silicone rubber material, silicone oil, carbonyl iron powder, ethanol, etc. in a predetermined weight ratio, and going through a homogenization and curing process, while ethanol evaporates during the curing process. A large number of pores are formed inside.
도면에 나타낸 바와 같이, 탄성기재(112)의 내부에 기공(116)이 다량 형성된 다공성 자기유변탄성체로 도전성 박막(120)을 둘러싸는 지지부재(160)를 형성하면, 기공이 없는 자기유변탄성체를 사용하는 경우에 비하여 유연성과 탄력성이 향상되므로 대변형에 보다 적합한 스트레인 게이지를 제조할 수 있다.As shown in the figure, when the support member 160 surrounding the conductive thin film 120 is formed of a porous magnetorheological elastomer in which a large number of pores 116 are formed inside the elastic substrate 112, a magnetorheological elastomer without pores can be obtained. Since flexibility and elasticity are improved compared to the case of using the strain gauge, it is possible to manufacture a strain gauge more suitable for large deformation.
<제5 실시예><Fifth Embodiment>
본 발명의 제5 실시예에 따른 스트레인 게이지(100d)는, 도 11의 단면도와 도 12에 예시한 바와 같이, 지지부재(110)의 내부에 제1 도전성 박막(120a)과 제2 도전성 박막(120b)이 복층으로 형성된 점에서 앞선 실시예와 차이가 있다.As illustrated in the cross-sectional view of FIG. 11 and FIG. 12, the strain gauge 100d according to the fifth embodiment of the present invention includes a first conductive thin film 120a and a second conductive thin film ( 120b) is different from the previous embodiment in that it is formed in multiple layers.
이와 같이 제1 및 제2 도전성 박막(120a.120b)을 복층으로 형성하면, 도 11의 C-C'에 따른 단면도인 도 13에 예시한 바와 같이, 상부와 하부의 각 그리드(122)와 급전부(128a,128n)에 모두 전류가 흐르기 때문에 상하의 자기장이 중첩되는 영역에서는 자기장의 세기가 크게 증가하고 자기장이 상쇄되는 영역에서는 자기장의 세기가 크게 감소한다.In this way, when the first and second conductive thin films 120a and 120b are formed in multiple layers, as illustrated in FIG. 13, which is a cross-sectional view taken along line C-C' of FIG. 11, the upper and lower grids 122 and Since current flows in both of the front parts 128a and 128n, the strength of the magnetic field greatly increases in the area where the upper and lower magnetic fields overlap, and the strength of the magnetic field greatly decreases in the area where the magnetic fields cancel out.
따라서 본 발명의 제5 실시예에 따른 스트레인 게이지(100d)에서는 각 그리드(122)의 형상은 물론이고 제1 및 제2 도전성 박막(120a.120b)의 상하 간격이나 상부 그리드(122)와 하부 그리드(122)의 수평방향 엇갈림 정도 등을 적절히 조절하여 단층의 도전성 박막(120)을 사용하는 경우에 비하여 자기장의 세기를 훨씬 다양하게 조절할 수 있다.Therefore, in the strain gauge 100d according to the fifth embodiment of the present invention, the shape of each grid 122 as well as the vertical spacing between the first and second conductive thin films 120a and 120b or the upper grid 122 and the lower grid By appropriately adjusting the degree of horizontal misalignment of (122), the strength of the magnetic field can be adjusted in a much more diverse manner than in the case of using the single-layer conductive thin film 120.
따라서 본 발명의 제5 실시예에 따른 스트레인 게이지(100d)에서는 단층의 도전성 박막(120)을 사용하는 경우에 비하여 지지부재(110)의 강성을 보다 다양하게 조절할 수 있다.Therefore, in the strain gauge 100d according to the fifth embodiment of the present invention, the rigidity of the support member 110 can be adjusted more diversely than in the case of using the single-layer conductive thin film 120 .
한편 본 발명의 제5 실시예에 따른 스트레인 게이지(100d)에 포함된 제1 도전성 박막(120a)과 제2 도전성 박막(120b)은, 도 14의 감지장치(200a)에 나타낸 바와 같이, 각각 휘스톤 브릿지 회로(210)의 저항으로 사용될 수도 있다.Meanwhile, the first conductive thin film 120a and the second conductive thin film 120b included in the strain gauge 100d according to the fifth embodiment of the present invention, as shown in the sensing device 200a of FIG. It may also be used as a resistance of the stone bridge circuit 210.
이와 같이 휘스톤 브릿지 회로(210)에 사용되는 스트레인 게이지의 수가 늘어나면 감지장치(200a)의 정확도가 보다 높아지는 것으로 알려져 있다.As such, it is known that the accuracy of the sensing device 200a increases as the number of strain gauges used in the Wheatstone bridge circuit 210 increases.
스트레인 게이지(100d)가 3개 이상의 도전성 박막(120)을 포함하는 경우에는 3개 또는 4개의 도전성 박막이 휘스톤 브릿지 회로(210)의 저항으로 사용될 수 있다.When the strain gage 100d includes three or more conductive thin films 120 , three or four conductive thin films may be used as resistors of the Wheatstone bridge circuit 210 .
본 발명의 제5 실시예에 따른 스트레인 게이지(100d)를 제조하는 방법은 특별히 한정되지 않는다. A method of manufacturing the strain gauge 100d according to the fifth embodiment of the present invention is not particularly limited.
이하에서는 도 15를 참조하여 제1 실시예에 따른 제조 방법을 설명한다.Hereinafter, the manufacturing method according to the first embodiment will be described with reference to FIG. 15 .
먼저 자기유변탄성체 재질의 베이스(110a)에 제1 도전성 박막(120a)을 형성하고 제1 및 제2 전선(131a,132a)을 결합한다. (도 15 (a), (b) 참조)First, a first conductive thin film 120a is formed on the base 110a made of magnetorheological elastomer, and the first and second wires 131a and 132a are coupled. (See Fig. 15 (a), (b))
이어서 베이스(110a)와 제1 도전성 박막(120a)의 상부에 자기유변탄성체 재질의 중간층(110c)을 형성한다. 이때, 베이스(110a)와 제1 도전성 박막(120a)의 상부에 접착제를 도포한 후에 중간층(110c)을 부착할 수도 있고, 베이스(110a)에 제1 도전성 박막(120a)과 전선(131,132)이 결합된 중간제품을 몰드에 넣고 자기유변탄성체 용융액을 주입하여 중간층(110c)을 형성할 수도 있다. (도 15 (c) 참조)Next, an intermediate layer 110c made of a magnetorheological elastomer is formed on the base 110a and the first conductive thin film 120a. At this time, the intermediate layer 110c may be attached after applying an adhesive on the base 110a and the first conductive thin film 120a, and the first conductive thin film 120a and the wires 131 and 132 may be attached to the base 110a. The intermediate layer 110c may be formed by putting the combined intermediate product into a mold and injecting a melted magnetorheological elastomer. (See Fig. 15 (c))
이어서 중간층(110c)의 상면에 제2 도전성 박막(120b)을 형성하고 제1 및 제2 전선(131b, 132b)을 결합한다. (도 15 (d) 참조)Subsequently, a second conductive thin film 120b is formed on the upper surface of the intermediate layer 110c, and the first and second wires 131b and 132b are coupled. (See Fig. 15 (d))
이어서 중간층(110c)과 제2 도전성 박막(120b)의 상부에 자기유변탄성체 재질의 커버(110b)를 형성한다. 이 경우에도 제2 도전성 박막(120b)과 중간층(110c)의 상부에 접착제를 도포한 후에 커버(110b)를 부착할 수도 있고, 중간제품을 몰드에 넣고 자기유변탄성체 용융액을 주입하여 커버(110b)를 형성할 수도 있다. (도 15 (e) 참조)Subsequently, a cover 110b made of a magnetorheological elastomer is formed on the middle layer 110c and the second conductive thin film 120b. Even in this case, the cover 110b may be attached after applying an adhesive on the upper portion of the second conductive thin film 120b and the intermediate layer 110c, or the cover 110b may be formed by putting the intermediate product in a mold and injecting a magneto-rheological elastomer melt. can also form. (See Fig. 15 (e))
다음으로 도 16을 참조하여 제2 실시예에 따른 제조 방법을 설명한다.Next, a manufacturing method according to the second embodiment will be described with reference to FIG. 16 .
먼저 제1 절연필름(150a)에 제1 도전성 박막(120a)을 형성하고 제1 및 제2 전선(131a,132a)을 결합한 제1 중간제품과, 제2 절연필름(150b)에 제2 도전성 박막(120b)을 형성하고 제1 및 제2 전선(131b,132b)을 결합한 제2 중간제품을 준비한다. (도 16 (a) 참조)First, a first intermediate product in which the first conductive thin film 120a is formed on the first insulating film 150a and the first and second wires 131a and 132a are combined, and the second conductive thin film is formed on the second insulating film 150b. (120b) is formed and the second intermediate product is prepared by combining the first and second wires (131b, 132b). (See Fig. 16 (a))
이어서, 제1 중간제품과 제2 중간제품을 몰드에 넣고 자기유변탄성체 용융액을 주입하여 지지부재(110)를 한꺼번에 형성한다. (도 16 (b) 참조)Subsequently, the support member 110 is formed at once by putting the first intermediate product and the second intermediate product into a mold and injecting a melted magnetorheological elastomer. (See Fig. 16 (b))
한편 도 11 및 도 12에는 2개의 도전성 박막(120a,120b)이 상하로 배치된 것으로 나타나 있으나, 이에 한정되는 것은 아니므로 3개 이상의 도전성 박막이 상하로 배치될 수도 있다.Meanwhile, although it is shown that two conductive thin films 120a and 120b are arranged vertically in FIGS. 11 and 12, it is not limited thereto, so three or more conductive thin films may be arranged vertically.
또한 도 11 및 도 12에는 제1 도전성 박막(120a)과 제2 도전성 박막(120b)이 상하로 이격된 상태에서 같은 방향으로 배치된 것으로 나타나 있으나 이에 한정되는 것은 아니다. 예를 들어, 제1 도전성 박막(120a)과 제2 도전성 박막(120b)은 위에서 보았을 때 서로 교차하는 방향으로 배치될 수도 있다.In addition, FIGS. 11 and 12 show that the first conductive thin film 120a and the second conductive thin film 120b are disposed in the same direction while being vertically spaced apart, but are not limited thereto. For example, the first conductive thin film 120a and the second conductive thin film 120b may be disposed in directions that cross each other when viewed from above.
또한 도 13에는 제1 도전성 박막(120a)과 제2 도전성 박막(120b)에 흐르는 전류의 방향이 같은 것으로 나타나 있으나 이에 한정되는 것은 아니므로 서로 반대 방향의 전류가 흐르도록 구성할 수도 있다.In addition, although it is shown in FIG. 13 that the directions of currents flowing through the first conductive thin film 120a and the second conductive thin film 120b are the same, it is not limited thereto, and currents may flow in opposite directions.
<제6 실시예><Sixth Embodiment>
본 발명의 제6 실시예에 따른 스트레인 게이지(100e)는, 도 17의 단면도에 예시한 바와 같이, 지지부재(110)의 내부에 제1 도전성 박막(120a)과 제2 도전성 박막(120b)이 복층으로 형성된 점에서 제5 실시예와 동일하다.As illustrated in the cross-sectional view of FIG. 17 , the strain gauge 100e according to the sixth embodiment of the present invention includes a first conductive thin film 120a and a second conductive thin film 120b inside the support member 110 . It is the same as that of the fifth embodiment in that it is formed of multiple layers.
다만, 본 발명의 제6 실시예에 따른 스트레인 게이지(100e)에서는 제1 도전성 박막(120a)과 제2 도전성 박막(120b)이 연결부(180)에 의해 서로 전기적으로 연결되어 휘스톤 브릿지 회로(210)에서 단일 저항의 역할을 하는 점에서 제5 실시예와 차이가 있다.However, in the strain gauge 100e according to the sixth embodiment of the present invention, the first conductive thin film 120a and the second conductive thin film 120b are electrically connected to each other by the connecting portion 180 to form a Wheatstone bridge circuit 210 ) is different from the fifth embodiment in that it serves as a single resistor.
제1 도전성 박막(120a)과 제2 도전성 박막(120b)은 여러 방식으로 연결될 수 있다. The first conductive thin film 120a and the second conductive thin film 120b may be connected in various ways.
일 예로서, 도 18에 나타낸 바와 같이, 제1 도전성 박막(120a)의 제1 전극패드(126a)와 그것의 상부에 위치하는 제2 도전성 박막(120b)의 제1 전극패드(126a)를 연결부(180)로 연결하고, 제1 도전성 박막(120a)의 제2 전극패드(126b)와 그것의 상부에 위치하는 제2 도전성 박막(120b)의 제2 전극패드(126b)를 연결부(180)로 연결할 수 있다. As an example, as shown in FIG. 18, the first electrode pad 126a of the first conductive thin film 120a and the first electrode pad 126a of the second conductive thin film 120b located thereon are connected to each other. 180, and connect the second electrode pad 126b of the first conductive thin film 120a and the second electrode pad 126b of the second conductive thin film 120b positioned above the second electrode pad 126b to the connecting portion 180. can connect
이 상태에서 제2 도전성 박막(120b)의 제1 및 제2 전극패드(126a,126b)에 각각 제1 및 제2 전선(131,132)을 연결하면 제1 도전성 박막(120a)과 제2 도전성 박막(120b)은 서로 병렬로 연결된 저항이 된다.In this state, if the first and second wires 131 and 132 are respectively connected to the first and second electrode pads 126a and 126b of the second conductive thin film 120b, the first conductive thin film 120a and the second conductive thin film ( 120b) are resistors connected in parallel with each other.
다른 예로서, 도 19에 나타낸 바와 같이, 제1 도전성 박막(120a)의 제2 전극패드(126b)와 그것의 대각선 상부에 위치하는 제2 도전성 박막(120b)의 제1 전극패드(126a)를 연결부(180)로 연결하고, 제1 도전성 박막(120a)의 제1 전극패드(126a)와 제2 도전성 박막(120b)의 제2 전극패드(126b)에 각각 제1 전선(131)과 제2 전선(132)을 연결할 수 잇다. As another example, as shown in FIG. 19, the second electrode pad 126b of the first conductive thin film 120a and the first electrode pad 126a of the second conductive thin film 120b positioned diagonally above the second electrode pad 126a are Connected to the connection part 180, the first wire 131 and the second electrode pad 126a of the first conductive thin film 120a and the second electrode pad 126b of the second conductive thin film 120b, respectively. Wires 132 can be connected.
이렇게 연결하면, 제1 도전성 박막(120a)과 제2 도전성 박막(120b)은 서로 직렬로 연결된 저항이 되고, 제1 도전성 박막(120a)의 그리드(122)와 제2 도전성 박막(120b)의 그리드(122)에서는 서로 같은 방향의 전류가 흐르게 된다.When connected in this way, the first conductive thin film 120a and the second conductive thin film 120b become resistors connected in series with each other, and the grid 122 of the first conductive thin film 120a and the grid of the second conductive thin film 120b In 122, currents in the same direction flow.
또 다른 예로서, 도 20에 나타낸 바와 같이, 제1 도전성 박막(120a)의 제1 전극패드(126a)와 그것의 상부에 위치하는 제2 도전성 박막(120b)의 제1 전극패드(126a)를 연결부(180)로 연결하고, 제1 도전성 박막(120a)의 제2 전극패드(126b)와 제2 도전성 박막(120b)의 제2 전극패드(126b)에 각각 제1 전선(131)과 제2 전선(132)을 연결할 수 잇다. As another example, as shown in FIG. 20 , the first electrode pad 126a of the first conductive thin film 120a and the first electrode pad 126a of the second conductive thin film 120b positioned above the first electrode pad 126a are Connected to the connection part 180, the first wire 131 and the second electrode pad 126b of the first conductive thin film 120a and the second electrode pad 126b of the second conductive thin film 120b, respectively. Wires 132 can be connected.
이렇게 연결하면, 제1 도전성 박막(120a)과 제2 도전성 박막(120b)은 서로 직렬로 연결된 저항이 되고, 제1 도전성 박막(120a)의 그리드(122)와 제2 도전성 박막(120b)의 그리드(122)에서는 서로 반대 방향의 전류가 흐르게 된다.When connected in this way, the first conductive thin film 120a and the second conductive thin film 120b become resistors connected in series with each other, and the grid 122 of the first conductive thin film 120a and the grid of the second conductive thin film 120b In 122, currents in opposite directions flow.
이상에서는 본 발명의 바람직한 실시예를 설명하였으나 본 발명은 전술한 실시예에 한정되지 않고 구체적인 적용 과정에서 다양한 형태로 변형 또는 수정되어 실시될 수 있다.In the above, preferred embodiments of the present invention have been described, but the present invention is not limited to the above-described embodiments and may be modified or modified in various forms in a specific application process.
예를 들어, 이상에서는 자기유변탄성체로 이루어진 지지부재(110)가 도전성 박막(120)의 양면을 모두 둘러싸는 것으로 설명하였으나 이에 한정되는 것은 아니다.For example, it has been described above that the support member 110 made of a magnetorheological elastomer surrounds both sides of the conductive thin film 120, but is not limited thereto.
예를 들어, 도전성 박막(120)의 일면은 자기유변탄성체 재질의 베이스(110a)에 결합하여 지지하고, 도전성 박막(120)의 타면에는 자기유변탄성체가 아닌 절연물질을 이용하여 보호층을 형성할 수도 있다.For example, one side of the conductive thin film 120 is bonded to and supported by a base 110a made of magnetorheological elastomer, and a protective layer is formed on the other side of the conductive thin film 120 using an insulating material other than magnetorheological elastomer. may be
이와 같이 본 발명은 다양한 형태로 변형 또는 수정되어 실시될 수 있으며, 변형 또는 수정된 실시예도 후술하는 특허청구범위에 개시된 본 발명의 기술적 사상을 포함한다면 본 발명의 권리범위에 속함은 당연하다 할 것이다.As such, the present invention can be practiced in various forms, modified or modified, and if the modified or modified embodiments also include the technical spirit of the present invention disclosed in the claims to be described later, it is natural that they fall within the scope of the present invention. .
[부호의 설명][Description of code]
100: 스트레인 게이지 110: 지지부재100: strain gauge 110: support member
110a: 베이스 110b: 커버 110c: 중간층110a: base 110b: cover 110c: intermediate layer
112: 탄성기재 114: 자성입자 116: 기공112: elastic substrate 114: magnetic particles 116: pores
120: 도전성 박막 122: 그리드 124: 연결부120: conductive thin film 122: grid 124: connection portion
126a, 126b: 제1, 제2 전극패드 128a, 128b: 제1, 제2 급전부126a, 126b: first and second electrode pads 128a, 128b: first and second power supply units
131, 132: 제1, 제2 전선 150: 절연필름131, 132: first and second wires 150: insulating film
160: 지지부재 160a: 베이스 160b: 커버160: support member 160a: base 160b: cover
180: 연결부 200: 감지장치 210: 휘스톤 브릿지 회로180: connection part 200: detection device 210: Wheatstone bridge circuit
220: 전원공급부 230: 감지부 240: 제어부220: power supply unit 230: detection unit 240: control unit
250: 입력부250: input unit

Claims (9)

  1. 도전성 박막;conductive thin film;
    도전성 박막의 적어도 일면을 지지하는 것으로서, 탄성기재에 자성입자가 함유된 자기유변탄성체로 이루어진 지지부재A support member made of a magneto-rheological elastomer containing magnetic particles in an elastic substrate for supporting at least one surface of a conductive thin film.
    를 포함하는 스트레인 게이지A strain gauge containing
  2. 제1항에 있어서,According to claim 1,
    상기 자기유변탄성체는 탄성기재의 내부에 다수의 기공이 형성된 다공성 자기유변탄성체인 것을 특징으로 하는 스트레인 게이지The magnetorheological elastomer is a strain gauge, characterized in that a porous magnetorheological elastomer in which a plurality of pores are formed inside the elastic substrate
  3. 제1항에 있어서,According to claim 1,
    상기 도전성 박막은 상하로 배치된 제1 도전성 박막과 제2 도전성 박막을 포함하는 것을 특징으로 하는 스트레인 게이지The strain gauge characterized in that the conductive thin film includes a first conductive thin film and a second conductive thin film disposed vertically
  4. 제3항에 있어서,According to claim 3,
    상기 제1 도전성 박막과 상기 제2 도전성 박막은 각각 별도의 전선을 통해 감지회로에 연결되는 것을 특징으로 하는 스트레인 게이지The strain gauge characterized in that the first conductive thin film and the second conductive thin film are connected to the sensing circuit through separate wires, respectively.
  5. 제3항에 있어서,According to claim 3,
    상기 제1 도전성 박막과 상기 제2 도전성 박막은 감지회로와 연결되는 두 지점의 사이에서 서로 병렬로 연결되는 것을 특징으로 하는 스트레인 게이지The first conductive thin film and the second conductive thin film are connected in parallel to each other between two points connected to the sensing circuit, characterized in that the strain gauge
  6. 제3항에 있어서,According to claim 3,
    상기 제1 도전성 박막과 상기 제2 도전성 박막은 감지회로와 연결되는 두 지점의 사이에서 서로 직렬로 연결되는 것을 특징으로 하는 스트레인 게이지The first conductive thin film and the second conductive thin film are connected in series between two points connected to the sensing circuit, characterized in that the strain gauge
  7. 도전성 박막과, 도전성 박막의 적어도 일면을 지지하는 것으로서 탄성기재에 자성입자가 함유된 자기유변탄성체로 이루어진 지지부재를 포함하는 스트레인 게이지;a strain gauge comprising a conductive thin film and a supporting member supporting at least one surface of the conductive thin film and made of a magnetorheological elastomer in which magnetic particles are contained in an elastic substrate;
    스트레인 게이지와 연결된 감지회로;a sensing circuit connected to the strain gauge;
    감지회로에 구동전원을 공급하는 전원공급부;a power supply unit supplying driving power to the sensing circuit;
    감지회로의 전기적 특성 변화를 검출하는 감지부;a sensing unit that detects changes in electrical characteristics of the sensing circuit;
    스트레인 게이지의 지지부재의 강성을 조절하기 위하여 전원공급부의 출력을 제어하는 제어부A control unit that controls the output of the power supply unit to adjust the rigidity of the support member of the strain gauge.
    를 포함하는 감지 장치a sensing device comprising
  8. 제7항에 있어서,According to claim 7,
    상기 자기유변탄성체는 탄성기재의 내부에 다수의 기공이 형성된 다공성 자기유변탄성체인 것을 특징으로 하는 감지 장치The magnetorheological elastomer is a sensing device, characterized in that a porous magnetorheological elastomer in which a plurality of pores are formed inside the elastic substrate
  9. 제7항에 있어서, According to claim 7,
    상기 스트레인 게이지는 상하로 배치된 제1 도전성 박막과 제2 도전성 박막을 포함하고, The strain gauge includes a first conductive thin film and a second conductive thin film disposed vertically,
    상기 지지부재는 상기 제1 도전성 박막을 둘러싼 상태에서 상기 제2 도전성 박막의 적어도 일면을 지지하며, The support member supports at least one surface of the second conductive thin film in a state surrounding the first conductive thin film,
    상기 감지회로는 휘스톤 브릿지 회로이고,The sensing circuit is a Wheatstone bridge circuit,
    상기 제1 도전성 박막과 상기 제2 도전성 박막은 각각 상기 휘스톤 브릿지 회로를 구성하는 제1 저항과 제2 저항인 것을 특징으로 하는 감지 장치The first conductive thin film and the second conductive thin film are a first resistor and a second resistor constituting the Wheatstone bridge circuit, respectively.
PCT/KR2021/006822 2021-05-31 2021-06-01 Magnetorheological elastic body-based strain gauge capable of sensitivity control, and sensing apparatus comprising same WO2022255509A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210070465A KR102565808B1 (en) 2021-05-31 2021-05-31 Strain gauge capable of controlling sensitivity based on magnetorheological elastomer and sensing device comprising the same
KR10-2021-0070465 2021-05-31

Publications (1)

Publication Number Publication Date
WO2022255509A1 true WO2022255509A1 (en) 2022-12-08

Family

ID=84323687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/006822 WO2022255509A1 (en) 2021-05-31 2021-06-01 Magnetorheological elastic body-based strain gauge capable of sensitivity control, and sensing apparatus comprising same

Country Status (2)

Country Link
KR (1) KR102565808B1 (en)
WO (1) WO2022255509A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5280265A (en) * 1988-10-14 1994-01-18 The Board Of Trustees Of The Leland Stanford Junior University Strain-sensing goniometers, systems and recognition algorithms
KR101273561B1 (en) * 2011-11-17 2013-06-11 주식회사 카스 Load measuring circuit for lord cell
JP6019227B2 (en) * 2013-06-18 2016-11-02 本田技研工業株式会社 Sensor device
KR20180101492A (en) * 2016-02-11 2018-09-12 로베르트 보쉬 게엠베하 Methods for controlling vehicle impact energy absorption and stiffness of energy absorbing elements by magnetorheological or electrorheological materials
KR102005666B1 (en) * 2018-01-30 2019-07-30 고려대학교 산학협력단 Strain gauge sensor and method of manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6019227B2 (en) * 1978-07-04 1985-05-15 三菱電機株式会社 High voltage thyristor device
KR102151766B1 (en) 2019-05-22 2020-09-03 전북대학교산학협력단 Strain gauge, strain sensor including the same, and strain measurement method using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5280265A (en) * 1988-10-14 1994-01-18 The Board Of Trustees Of The Leland Stanford Junior University Strain-sensing goniometers, systems and recognition algorithms
KR101273561B1 (en) * 2011-11-17 2013-06-11 주식회사 카스 Load measuring circuit for lord cell
JP6019227B2 (en) * 2013-06-18 2016-11-02 本田技研工業株式会社 Sensor device
KR20180101492A (en) * 2016-02-11 2018-09-12 로베르트 보쉬 게엠베하 Methods for controlling vehicle impact energy absorption and stiffness of energy absorbing elements by magnetorheological or electrorheological materials
KR102005666B1 (en) * 2018-01-30 2019-07-30 고려대학교 산학협력단 Strain gauge sensor and method of manufacturing the same

Also Published As

Publication number Publication date
KR102565808B1 (en) 2023-08-11
KR20220162243A (en) 2022-12-08

Similar Documents

Publication Publication Date Title
Jeong et al. Flexible resistive pressure sensor with silver nanowire networks embedded in polymer using natural formation of air gap
Castro et al. Printed Wheatstone bridge with embedded polymer based piezoresistive sensors for strain sensing applications
KR101210937B1 (en) Pressure Sensitive Device And Tactile Sensors Using The Same
WO2020036253A1 (en) Pixel-type pressure sensor and manufacturing method therefor
WO2014079316A1 (en) Flexible touch control panel structure and manufacturing method thereof
WO2020045739A1 (en) Hybrid large-area pressure sensor including capacitive sensor and resistive sensor integrated with each other
US6791532B2 (en) Input device and detection device using resistance type strain sensor element
CN107340917A (en) Touch display panel, touch display device and driving method
WO2011105837A2 (en) Soft electrode material and manufacturing method thereof
WO2017204514A1 (en) Pressure detection sensor and pressure detection insole including same
WO2012057399A1 (en) Bidirectional conductive sheet, preparation method thereof, bidirectional conductive multilayered sheet, and semiconductor test socket
WO2011068282A1 (en) Mems microphone and manufacturing method thereof
WO2012165839A9 (en) Reversible electrical connector using interlocking of a fine cilium, a multi functional sensor using same, and method of manufacturing same
WO2022255509A1 (en) Magnetorheological elastic body-based strain gauge capable of sensitivity control, and sensing apparatus comprising same
WO2018016680A1 (en) Method for 3d printing carbon nanotube microstructure having high conductivity, and ink to be used therein
WO2011081245A1 (en) Hydrogen sensor, and method for fabricating same
WO2018088881A1 (en) Heat convection-type acceleration sensor and method for manufacturing same
WO2016076469A1 (en) Method for manufacturing angle and curvature detection sensor, and sensor
Hay et al. Examination of silver–graphite lithographically printed resistive strain sensors
Wang et al. PVC gel-based electro-adhesion on extremely rough surfaces
AU687030B2 (en) Force sensor
WO2020111862A1 (en) Magnetic sensor and hall sensor, each using anomalous hall effect, and method for manufacturing hall sensor
WO2009136777A2 (en) Resilient body for measuring loads, and a non-contact load-measuring device employing the same
WO2017095097A1 (en) High-sensitivity sensor containing linearly induced cracks and method for manufacturing same
WO2023182737A1 (en) Stretchable pressure sensor array and electronic device comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21944264

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21944264

Country of ref document: EP

Kind code of ref document: A1