WO2022255491A1 - Motor control device - Google Patents

Motor control device Download PDF

Info

Publication number
WO2022255491A1
WO2022255491A1 PCT/JP2022/022672 JP2022022672W WO2022255491A1 WO 2022255491 A1 WO2022255491 A1 WO 2022255491A1 JP 2022022672 W JP2022022672 W JP 2022022672W WO 2022255491 A1 WO2022255491 A1 WO 2022255491A1
Authority
WO
WIPO (PCT)
Prior art keywords
peak
current waveform
period
detected
calculated
Prior art date
Application number
PCT/JP2022/022672
Other languages
French (fr)
Japanese (ja)
Inventor
祐貴 伊達
亮介 小栗
将太 藤井
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2022255491A1 publication Critical patent/WO2022255491A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current

Definitions

  • the present disclosure relates to a motor control device.
  • Some motor control devices include a control unit that detects peaks in a current waveform or an induced voltage waveform and calculates the amount of rotation of the DC motor based on the number of peaks.
  • a control unit that detects peaks in a current waveform or an induced voltage waveform and calculates the amount of rotation of the DC motor based on the number of peaks.
  • a motor control device is a motor control device that includes a control unit that controls a DC motor and calculates an amount of rotation of the DC motor based on the number of peaks of a detected current waveform, a prediction cycle calculation unit for calculating a rotation speed at startup based on a current waveform at startup, and calculating a prediction cycle of a peak of the current waveform based on the calculated rotation speed; a peak missing detection unit for detecting missing peaks in the detected current waveform based on the prediction period calculated by the unit; and a rotation amount calculation unit that calculates the rotation amount of the DC motor by correcting the number of .
  • the prediction cycle calculation unit calculates the rotation speed at startup based on the current waveform at startup, and calculates the peak prediction cycle of the current waveform based on the calculated rotation speed. Further, the missing peak of the detected current waveform is detected by the missing peak detection unit based on the prediction cycle calculated by the prediction cycle calculation unit. Then, the amount of rotation of the DC motor is calculated by correcting the number of detected peaks of the current waveform according to the missing peak detected by the peak missing detection unit by the rotation amount calculating unit, so that the amount of rotation of the DC motor is calculated. The amount of rotation can be calculated with high accuracy.
  • FIG. 1 is a schematic circuit diagram of a motor control device in one embodiment
  • FIG. 2 is a flow diagram for explaining calculation processing of the control unit in one embodiment
  • FIG. 3 is a characteristic diagram of current versus time in one embodiment
  • FIG. 4 is a characteristic diagram of rotation speed with respect to current in one embodiment
  • FIG. 5 is a characteristic diagram of rotation speed against time in one embodiment
  • FIG. 6 is a characteristic diagram of period versus time in one embodiment.
  • FIG. 1 a motor controller 11 is connected to a DC motor M.
  • the DC motor M includes a commutator 13 in which commutator segments 12 are arranged in parallel in the circumferential direction, and a pair of power supply brushes 14 that are in sliding contact with the commutator 13 .
  • the DC motor M has a rotor that is drivingly connected to the driven part 15 .
  • the adjacent commutator segments 12 are also in contact with each other, and the resistance value changes each time the commutator segments 12 are crossed, thereby generating a current ripple waveform. A peak appears.
  • the motor control device 11 includes a control section 21 connected to a pair of power supply brushes 14 and an ammeter 22 connected between one of the power supply brushes 14 and the control section 21 .
  • the control unit 21 includes 1) one or more processors that execute various processes according to a computer program (software), and 2) an application specific integrated circuit (ASIC) that executes at least part of the various processes. It may be configured as circuitry including one or more dedicated hardware circuits, or 3) combinations thereof.
  • a processor includes a CPU and memory, such as RAM and ROM, which stores program code or instructions configured to cause the CPU to perform processes.
  • Memory or computer-readable media includes any available media that can be accessed by a general purpose or special purpose computer.
  • the control unit 21 supplies a driving current to the pair of power supply brushes 14 to control the DC motor M, and calculates the amount of rotation of the DC motor M based on the number of peaks of the current waveform detected by the ammeter 22. do.
  • control unit 21 includes a prediction period calculation unit 23 , a peak missing detection unit 24 , and a rotation amount calculation unit 25 .
  • the prediction period calculation unit 23 calculates the rotation speed at startup based on the current waveform at startup, more specifically, the period from startup until the rotation speed stabilizes, and calculates the peak of the current waveform based on the calculated rotation speed. , that is, the prediction period between peaks.
  • the peak dropout detector 24 detects the peak dropout of the detected current waveform based on the prediction cycle calculated by the prediction cycle calculator 23 .
  • the rotation amount calculation unit 25 calculates the rotation amount of the DC motor M by correcting the number of detected peaks in the current waveform according to the peak dropout detected by the peak dropout detection unit 24 .
  • control section 21 when starting the DC motor M, the control unit 21 performs the calculation process of step S1 and subsequent steps.
  • step S1 the control unit 21 holds the current waveform X1 detected by the ammeter 22 at the time of start-up, more specifically, during the period from start-up until the rotation speed stabilizes. Move to S2.
  • step S2 the predicted period calculator 23 of the controller 21 calculates the rotation speed at startup based on the current waveform X1 at startup, and calculates the predicted period Y1 of the peak of the current waveform X1 based on the calculated rotation speed. After calculating, the process proceeds to step S3.
  • step S2 the prediction cycle calculation unit 23 first converts the current waveform X1 at startup into a quadratic approximation formula X2.
  • step S2 the prediction cycle calculation unit 23 first converts the current waveform X1 at startup into a quadratic approximation formula X2.
  • step S2 the prediction cycle calculation unit 23 first converts the current waveform X1 at startup into a quadratic approximation formula X2.
  • the waveform of the quadratic approximation formula X2 is illustrated with a dashed line.
  • the prediction period calculation unit 23 creates a characteristic map X3 from the inrush current I1, the steady current I2, and the steady rotation speed V1.
  • the inrush current I1 is the maximum current value that flows immediately after the drive current is supplied to the DC motor M in the stopped state
  • the steady-state current I2 is the steady-state rotation speed V1 at which the rotation speed of the DC motor M is stable. It is the value of the current that flows. That is, the predicted period calculator 23 creates a linear function characteristic map X3 from the inrush current I1 when the rotation speed is 0 and the steady-state current I2 when the rotation speed is V1.
  • the prediction period calculation unit 23 calculates the rotation speed V2 at the time of starting from the quadratic approximation formula X2 based on the characteristic map X3. Then, as shown in FIG. 6, the prediction cycle calculation unit 23 calculates the prediction cycle Y1, which is the reciprocal of the rotation speed V2, more specifically, the prediction cycle Y1 of the peak of the current waveform X1, based on the rotation speed V2 at the time of startup. do.
  • step S3 the peak dropout detection unit 24 of the control unit 21 detects the peak dropout of the detected current waveform based on the prediction period Y1, and the process proceeds to step S4.
  • the peak missing detection unit 24 first calculates period threshold values Z1 and Z2 using the prediction period Y1 and the integral multiple prediction periods Y2 and Y3, which are integral multiples of the prediction period Y1. do.
  • the peak missing detection unit 24 of the present embodiment calculates integral multiple prediction cycles Y2 and Y3 that are at least twice and three times the prediction cycle Y1, and doubles the intermediate value between them. It is calculated as period threshold values Z1 and Z2 corresponding to 3 times.
  • the lower limit considered to be within the range of the prediction cycle Y1 is illustrated as the lower limit threshold Z3, and the upper limit considered to be within the range of the integral multiple prediction cycle Y3 corresponding to three times the prediction cycle Y1 is illustrated as the upper threshold Z4.
  • the lower threshold value Z3 is, for example, a value lower than the prediction cycle Y1 by half a cycle of the prediction cycle Y1
  • the upper threshold value Z4 is, for example, a value higher than the integer multiple prediction cycle Y3 corresponding to 3 times by a half cycle of the prediction cycle Y1. can be considered.
  • the peak dropout detection unit 24 compares the calculated period threshold values Z1 and Z2 with the detected peak period P of the current waveform to detect the peak dropout of the current waveform. Specifically, the peak missing detection unit 24 compares the calculated plurality of period threshold values Z1 and Z2 with the detected peak period P of the current waveform X1 to detect the peak missing of the current waveform in a plurality of stages. Specifically, the peak missing detection unit 24 of the present embodiment detects, for example, a peak whose amplitude is equal to or greater than a certain value from the current waveform X1, and sets the period P of the peak to the lower threshold value Z3, the period threshold values Z1 and Z2, and the upper Compare with threshold Z4.
  • the peak dropout detection unit 24 determines that there is no peak dropout. For example, when the peak cycle P is between the cycle threshold value Z1 and the cycle threshold value Z2, the peak dropout detection unit 24 determines that the peak dropout has occurred only once. For example, when the peak cycle P is between the cycle threshold value Z2 and the upper limit threshold value Z4, the peak dropout detection unit 24 determines that the peak dropout has occurred twice in succession.
  • step S4 the rotation amount calculation unit 25 of the control unit 21 corrects the number of peaks of the detected current waveform X1 according to the peak dropout detected by the peak dropout detection unit 24, and corrects the number of peaks of the DC motor M is calculated, and the calculation process ends.
  • the rotation amount calculation unit 25 corrects the number of peaks of the detected current waveform X1 in multiple steps according to the peak dropout detected in multiple steps by the peak dropout detection unit 24, and rotates the DC motor M. Calculate quantity. That is, when the peak dropout detection unit 24 determines that the peak dropout has occurred only once, the rotation amount calculation unit 25 corrects the number of peaks only once, and the peak dropout detection unit 24 corrects the number of peaks. If it is determined that the omission has occurred twice in succession, the number of peaks is corrected twice. Then, the rotation amount calculator 25 calculates the rotation amount of the DC motor M based on the corrected number of peaks.
  • the predicted period calculator 23 calculates the rotation speed V2 at startup based on the current waveform X1 at startup, and calculates the predicted period Y1 of the peak of the current waveform X1 based on the calculated rotation speed V2. . Further, the missing peak of the detected current waveform X1 is detected by the peak missing detection unit 24 based on the prediction cycle Y1 calculated by the prediction cycle calculation unit 23 . Then, the amount of rotation of the DC motor M is calculated by the amount of rotation calculator 25 by correcting the number of detected peaks of the current waveform X1 according to the missing peak detected by the peak missing detection unit 24. , the amount of rotation at startup can be calculated with high accuracy.
  • the peak missing detection unit 24 calculates period threshold values Z1 and Z2 corresponding to at least two and three times the predicted period Y1. are compared to detect a missing peak in the current waveform in a plurality of steps. Then, the number of detected peaks of the current waveform X1 is corrected in multiple steps by the rotation amount calculating unit 25 in accordance with the missing peaks detected in multiple steps by the peak missing detection unit 24, and the DC motor M rotates. Amount is calculated. Therefore, for example, even if peak omission occurs twice in succession, the number of peaks is corrected twice, and the amount of rotation can be calculated with high accuracy.
  • the prediction period calculation part 23 of the above-described embodiment may be configured to calculate the prediction period Y1 of the peak of the current waveform X1 by other calculations or the like.
  • the peak dropout detector 24 of the above embodiment may be configured to detect the peak dropout of the detected current waveform X1 by other calculations or the like.
  • the peak dropout detection unit 24 of the above embodiment is configured to detect peak dropouts in two stages. It is good also as a structure which carries out.
  • the peak dropout detection unit 24 may be configured to detect peak dropouts in one stage, that is, to determine that peak dropouts have occurred only once even if peak dropouts have occurred twice in succession. By doing so, the amount of calculation of the peak missing detection unit 24 and the amount of rotation calculation unit 25 can be reduced.
  • the amount of rotation of the DC motor M other than at startup may be detected or calculated by other methods. That is, the above-described method of calculating the amount of rotation at startup is a method of calculating the amount of rotation suitable for speed fluctuations at the time of startup. It may be detected or calculated by a method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Direct Current Motors (AREA)

Abstract

A motor control device (11) comprises a control unit (21) that controls a direct-current motor M and that calculates the rotational amount of the direct-current motor M on the basis of the number of peaks in a detected electric current waveform. The control unit (21) includes: a predicted cycle calculating unit (23) that calculates the rotational speed at a time of startup on the basis of the electric current waveform at the time of startup, and calculates a predicted cycle for peaks of the electric current waveform on the basis of the calculated rotational speed; a missing peak detecting unit (24) that detects instances of missing peaks of the detected electric current waveform on the basis of the predicted cycle calculated by the predicted cycle calculating unit (23); and a rotational amount calculating unit (25) that, in accordance with the instances of missing peaks detected by the missing peak detecting unit (24), corrects the number of peaks of the detected electric current waveform, and calculates the rotational amount of the direct-current motor (M).

Description

モータ制御装置motor controller 関連出願の相互参照Cross-reference to related applications
 本願は、2021年6月4日に出願された日本出願番号2021-094751号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2021-094751 filed on June 4, 2021, and the contents thereof are incorporated herein.
 本開示は、モータ制御装置に関するものである。 The present disclosure relates to a motor control device.
 従来、整流子と整流子に摺接される給電用ブラシとを有する直流モータでは、給電用ブラシの整流子セグメントへの接触状態の切り替わりによって電流や誘起電圧にリップルが生じる。そして、モータ制御装置としては、電流波形や誘起電圧波形におけるピークを検出し、ピークの数に基づいて直流モータの回転量を算出する制御部を備えたものがある。このようなモータ制御装置では、整流子セグメントが周方向に多数設けられることによって直流モータの回転子の細かい回転角度を検出でき、回転量を高精度に算出することができる。 Conventionally, in a DC motor having a commutator and power supply brushes that are in sliding contact with the commutator, ripples occur in current and induced voltage due to switching of the contact state of the power supply brushes with the commutator segments. Some motor control devices include a control unit that detects peaks in a current waveform or an induced voltage waveform and calculates the amount of rotation of the DC motor based on the number of peaks. In such a motor control device, since a large number of commutator segments are provided in the circumferential direction, it is possible to detect a fine rotation angle of the rotor of the DC motor and to calculate the amount of rotation with high accuracy.
 しかしながら、直流モータでは、例えば、給電用ブラシの整流子セグメントへの接触状態の切り替わりが不均一となることなどから、波形の振幅が一定とはならず、振幅が小さい場合に制御部がピークを検出できない、いわゆるピークの抜けが発生する場合がある。 However, in a DC motor, for example, the switching of the contact state of the power supply brush to the commutator segment becomes uneven, so the amplitude of the waveform is not constant. A so-called missing peak, which cannot be detected, may occur.
 そこで、例えば、波形のピークを検出しつつ、その周期を過去の定常作動時のピークの周期である平均リップル周期と比較し、ピークの抜けを検出して補正する技術がある(例えば、特許文献1参照)。 Therefore, for example, while detecting the peak of the waveform, there is a technique that compares the period with the average ripple period, which is the period of the peak during the past steady operation, and detects and corrects the omission of the peak (for example, Patent Document 1).
特開2011-109880号公報Japanese Patent Application Laid-Open No. 2011-109880
 しかしながら、上記のようなピークの抜けを検出する技術では、起動時、詳しくは起動してから回転速度が安定するまでの期間の速度変動時に、定常作動時の平均リップル周期を用いることができず、回転量を高精度に算出できないという問題があった。 However, with the above-described peak dropout detection technology, it is not possible to use the average ripple period during steady-state operation at startup, more specifically, during speed fluctuations during the period from startup until the rotation speed stabilizes. , there is a problem that the amount of rotation cannot be calculated with high accuracy.
 本開示の目的は、起動時の回転量を高精度に算出可能としたモータ制御装置を提供することにある。
 本開示の一態様において、モータ制御装置は、直流モータを制御するとともに、検出した電流波形のピークの数に基づいて前記直流モータの回転量を算出する制御部を備えたモータ制御装置であって、前記制御部は、起動時の電流波形に基づいて起動時の回転速度を算出し、算出した回転速度に基づいて電流波形のピークの予測周期を算出する予測周期算出部と、前記予測周期算出部にて算出した予測周期に基づいて、検出した電流波形のピークの抜けを検出するピーク抜け検出部と、前記ピーク抜け検出部にて検出したピークの抜けに応じて、検出した電流波形のピークの数を補正して前記直流モータの回転量を算出する回転量算出部とを備える。
An object of the present disclosure is to provide a motor control device capable of calculating a rotation amount at startup with high accuracy.
In one aspect of the present disclosure, a motor control device is a motor control device that includes a control unit that controls a DC motor and calculates an amount of rotation of the DC motor based on the number of peaks of a detected current waveform, a prediction cycle calculation unit for calculating a rotation speed at startup based on a current waveform at startup, and calculating a prediction cycle of a peak of the current waveform based on the calculated rotation speed; a peak missing detection unit for detecting missing peaks in the detected current waveform based on the prediction period calculated by the unit; and a rotation amount calculation unit that calculates the rotation amount of the DC motor by correcting the number of .
 同構成によれば、予測周期算出部によって、起動時の電流波形に基づいて起動時の回転速度が算出され、算出した回転速度に基づいて電流波形のピークの予測周期が算出される。また、ピーク抜け検出部によって、予測周期算出部にて算出された予測周期に基づいて、検出した電流波形のピークの抜けが検出される。そして、回転量算出部によって、ピーク抜け検出部にて検出されたピークの抜けに応じて、検出した電流波形のピークの数が補正されて直流モータの回転量が算出されるため、起動時の回転量を高精度に算出することができる。 According to the same configuration, the prediction cycle calculation unit calculates the rotation speed at startup based on the current waveform at startup, and calculates the peak prediction cycle of the current waveform based on the calculated rotation speed. Further, the missing peak of the detected current waveform is detected by the missing peak detection unit based on the prediction cycle calculated by the prediction cycle calculation unit. Then, the amount of rotation of the DC motor is calculated by correcting the number of detected peaks of the current waveform according to the missing peak detected by the peak missing detection unit by the rotation amount calculating unit, so that the amount of rotation of the DC motor is calculated. The amount of rotation can be calculated with high accuracy.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、一実施形態におけるモータ制御装置に関する模式回路図であり、 図2は、一実施形態における制御部の算出処理を説明するためのフロー図であり、 図3は、一実施形態における時間に対する電流の特性図であり、 図4は、一実施形態における電流に対する回転速度の特性図であり、 図5は、一実施形態における時間に対する回転速度の特性図であり、 図6は、一実施形態における時間に対する周期の特性図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is a schematic circuit diagram of a motor control device in one embodiment; FIG. 2 is a flow diagram for explaining calculation processing of the control unit in one embodiment, FIG. 3 is a characteristic diagram of current versus time in one embodiment; FIG. 4 is a characteristic diagram of rotation speed with respect to current in one embodiment, FIG. 5 is a characteristic diagram of rotation speed against time in one embodiment, FIG. 6 is a characteristic diagram of period versus time in one embodiment.
 以下、モータ制御装置11の一実施形態を図1~図6に従って説明する。
 図1に示すように、モータ制御装置11は、直流モータMに接続されている。直流モータMは、整流子セグメント12が周方向に並設された整流子13と、整流子13に摺接される一対の給電用ブラシ14とを備えている。直流モータMは、回転子が被駆動部15に駆動連結される。
An embodiment of the motor control device 11 will be described below with reference to FIGS. 1 to 6. FIG.
As shown in FIG. 1, a motor controller 11 is connected to a DC motor M. As shown in FIG. The DC motor M includes a commutator 13 in which commutator segments 12 are arranged in parallel in the circumferential direction, and a pair of power supply brushes 14 that are in sliding contact with the commutator 13 . The DC motor M has a rotor that is drivingly connected to the driven part 15 .
 直流モータMは、整流子13に摺接された給電用ブラシ14が整流子セグメント12間で切り替わるたび、すなわち整流子13が回転し一つの整流子セグメント12と接触していた給電用ブラシ14が隣の整流子セグメント12とも接触して、整流子セグメント12間を跨ぐたびに抵抗値が変化することで、電流のリップル波形が生成され、電流波形には整流子セグメント12が切り替わるごとに1つのピークが出現する。 In the DC motor M, each time the power supply brush 14 in sliding contact with the commutator 13 is switched between the commutator segments 12, that is, the power supply brush 14 in contact with one commutator segment 12 when the commutator 13 rotates The adjacent commutator segments 12 are also in contact with each other, and the resistance value changes each time the commutator segments 12 are crossed, thereby generating a current ripple waveform. A peak appears.
 モータ制御装置11は、一対の給電用ブラシ14に接続される制御部21と、一方の給電用ブラシ14と制御部21との間に接続される電流計22とを備えている。
 制御部21は、1)コンピュータプログラム(ソフトウェア)に従って各種処理を実行する1つ以上のプロセッサ、2)各種処理のうち少なくとも一部の処理を実行する、特定用途向け集積回路(ASIC)等の1つ以上の専用のハードウェア回路、或いは3)それらの組み合わせ、を含む回路(circuitry)として構成し得る。プロセッサは、CPU並びに、RAM及びROM等のメモリを含み、メモリは、処理をCPUに実行させるように構成されたプログラムコードまたは指令を格納している。メモリすなわちコンピュータ可読媒体は、汎用または専用のコンピュータでアクセスできるあらゆる利用可能な媒体を含む。
The motor control device 11 includes a control section 21 connected to a pair of power supply brushes 14 and an ammeter 22 connected between one of the power supply brushes 14 and the control section 21 .
The control unit 21 includes 1) one or more processors that execute various processes according to a computer program (software), and 2) an application specific integrated circuit (ASIC) that executes at least part of the various processes. It may be configured as circuitry including one or more dedicated hardware circuits, or 3) combinations thereof. A processor includes a CPU and memory, such as RAM and ROM, which stores program code or instructions configured to cause the CPU to perform processes. Memory or computer-readable media includes any available media that can be accessed by a general purpose or special purpose computer.
 制御部21は、一対の給電用ブラシ14に駆動電流を供給して直流モータMを制御するとともに、電流計22にて検出した電流波形のピークの数に基づいて直流モータMの回転量を算出する。 The control unit 21 supplies a driving current to the pair of power supply brushes 14 to control the DC motor M, and calculates the amount of rotation of the DC motor M based on the number of peaks of the current waveform detected by the ammeter 22. do.
 詳しくは、制御部21は、予測周期算出部23と、ピーク抜け検出部24と、回転量算出部25とを備えている。
 予測周期算出部23は、起動時、詳しくは起動してから回転速度が安定するまでの期間の電流波形に基づいて起動時の回転速度を算出し、算出した回転速度に基づいて電流波形のピークの予測周期、すなわちピークとピークの間の予測周期を算出する。
Specifically, the control unit 21 includes a prediction period calculation unit 23 , a peak missing detection unit 24 , and a rotation amount calculation unit 25 .
The prediction period calculation unit 23 calculates the rotation speed at startup based on the current waveform at startup, more specifically, the period from startup until the rotation speed stabilizes, and calculates the peak of the current waveform based on the calculated rotation speed. , that is, the prediction period between peaks.
 ピーク抜け検出部24は、予測周期算出部23にて算出した予測周期に基づいて、検出した電流波形のピークの抜けを検出する。
 回転量算出部25は、ピーク抜け検出部24にて検出したピークの抜けに応じて、検出した電流波形のピークの数を補正して直流モータMの回転量を算出する。
The peak dropout detector 24 detects the peak dropout of the detected current waveform based on the prediction cycle calculated by the prediction cycle calculator 23 .
The rotation amount calculation unit 25 calculates the rotation amount of the DC motor M by correcting the number of detected peaks in the current waveform according to the peak dropout detected by the peak dropout detection unit 24 .
 次に、上記した制御部21の具体的な動作及び作用を図2に従って説明する。
 図2に示すように、制御部21は、直流モータMを起動させる際、ステップS1以下の算出処理を行う。
Next, specific operations and actions of the control section 21 described above will be described with reference to FIG.
As shown in FIG. 2, when starting the DC motor M, the control unit 21 performs the calculation process of step S1 and subsequent steps.
 図3に示すように、ステップS1において、制御部21は、起動時、詳しくは起動してから回転速度が安定するまでの期間に電流計22にて検出された電流波形X1を保持してステップS2に移行する。 As shown in FIG. 3, in step S1, the control unit 21 holds the current waveform X1 detected by the ammeter 22 at the time of start-up, more specifically, during the period from start-up until the rotation speed stabilizes. Move to S2.
 ステップS2において、制御部21の予測周期算出部23は、起動時の電流波形X1に基づいて起動時の回転速度を算出し、算出した回転速度に基づいて電流波形X1のピークの予測周期Y1を算出して、ステップS3に移行する。 In step S2, the predicted period calculator 23 of the controller 21 calculates the rotation speed at startup based on the current waveform X1 at startup, and calculates the predicted period Y1 of the peak of the current waveform X1 based on the calculated rotation speed. After calculating, the process proceeds to step S3.
 詳しくは、ステップS2において、予測周期算出部23は、まず起動時の電流波形X1を2次近似式X2に変換する。なお、図3では、2次近似式X2の波形を破線で図示している。 Specifically, in step S2, the prediction cycle calculation unit 23 first converts the current waveform X1 at startup into a quadratic approximation formula X2. In addition, in FIG. 3, the waveform of the quadratic approximation formula X2 is illustrated with a dashed line.
 次に、図4に示すように、予測周期算出部23は、突入電流I1と定常電流I2と定常回転速度V1とによって特性マップX3を作成する。なお、突入電流I1は、停止状態にある直流モータMに駆動電流を供給した直後に流れる最大の電流値であり、定常電流I2は直流モータMの回転速度が安定した定常回転速度V1の状態で流れる電流値である。すなわち、予測周期算出部23は、回転速度が0のときの突入電流I1と定常回転速度V1のときの定常電流I2とから1次関数の特性マップX3を作成する。 Next, as shown in FIG. 4, the prediction period calculation unit 23 creates a characteristic map X3 from the inrush current I1, the steady current I2, and the steady rotation speed V1. Note that the inrush current I1 is the maximum current value that flows immediately after the drive current is supplied to the DC motor M in the stopped state, and the steady-state current I2 is the steady-state rotation speed V1 at which the rotation speed of the DC motor M is stable. It is the value of the current that flows. That is, the predicted period calculator 23 creates a linear function characteristic map X3 from the inrush current I1 when the rotation speed is 0 and the steady-state current I2 when the rotation speed is V1.
 次に、図5に示すように、予測周期算出部23は、特性マップX3に基づいて前記2次近似式X2から起動時の回転速度V2を算出する。
 そして、図6に示すように、予測周期算出部23は、起動時の回転速度V2に基づいて、回転速度V2の逆数である予測周期Y1、詳しくは電流波形X1のピークの予測周期Y1を算出する。
Next, as shown in FIG. 5, the prediction period calculation unit 23 calculates the rotation speed V2 at the time of starting from the quadratic approximation formula X2 based on the characteristic map X3.
Then, as shown in FIG. 6, the prediction cycle calculation unit 23 calculates the prediction cycle Y1, which is the reciprocal of the rotation speed V2, more specifically, the prediction cycle Y1 of the peak of the current waveform X1, based on the rotation speed V2 at the time of startup. do.
 次に、ステップS3において、制御部21のピーク抜け検出部24は、予測周期Y1に基づいて、検出した電流波形のピークの抜けを検出し、ステップS4に移行する。
 詳しくは、図6に示すように、ピーク抜け検出部24は、まず予測周期Y1と、その予測周期Y1の整数倍の周期である整数倍予測周期Y2,Y3とによって周期閾値Z1,Z2を算出する。具体的には、本実施形態のピーク抜け検出部24は、予測周期Y1の少なくとも2倍と3倍の周期である整数倍予測周期Y2,Y3を算出し、それらの中間の値を2倍と3倍に対応した周期閾値Z1,Z2として算出する。なお、図6では、予測周期Y1の範囲内と考えられる下限を下限閾値Z3として図示し、予測周期Y1の3倍に対応した整数倍予測周期Y3の範囲内と考えられる上限を上限閾値Z4として図示している。下限閾値Z3は、例えば予測周期Y1から予測周期Y1の半周期分低い値とし、上限閾値Z4は、例えば、3倍に対応した整数倍予測周期Y3から予測周期Y1の半周期分高い値とすることが考えられる。
Next, in step S3, the peak dropout detection unit 24 of the control unit 21 detects the peak dropout of the detected current waveform based on the prediction period Y1, and the process proceeds to step S4.
Specifically, as shown in FIG. 6, the peak missing detection unit 24 first calculates period threshold values Z1 and Z2 using the prediction period Y1 and the integral multiple prediction periods Y2 and Y3, which are integral multiples of the prediction period Y1. do. Specifically, the peak missing detection unit 24 of the present embodiment calculates integral multiple prediction cycles Y2 and Y3 that are at least twice and three times the prediction cycle Y1, and doubles the intermediate value between them. It is calculated as period threshold values Z1 and Z2 corresponding to 3 times. In FIG. 6, the lower limit considered to be within the range of the prediction cycle Y1 is illustrated as the lower limit threshold Z3, and the upper limit considered to be within the range of the integral multiple prediction cycle Y3 corresponding to three times the prediction cycle Y1 is illustrated as the upper threshold Z4. Illustrated. The lower threshold value Z3 is, for example, a value lower than the prediction cycle Y1 by half a cycle of the prediction cycle Y1, and the upper threshold value Z4 is, for example, a value higher than the integer multiple prediction cycle Y3 corresponding to 3 times by a half cycle of the prediction cycle Y1. can be considered.
 そして、ピーク抜け検出部24は、算出した周期閾値Z1,Z2と検出した電流波形のピークの周期Pとを比較して電流波形のピークの抜けを検出する。詳しくは、ピーク抜け検出部24は、算出した複数の周期閾値Z1,Z2と検出した電流波形X1のピークの周期Pとを比較して電流波形のピークの抜けを複数段階で検出する。具体的には、本実施形態のピーク抜け検出部24は、例えば、電流波形X1から振幅が一定以上であるピークを検出し、そのピークの周期Pを下限閾値Z3、周期閾値Z1,Z2及び上限閾値Z4と比較する。そして、ピーク抜け検出部24は、例えば、ピークの周期Pが下限閾値Z3と周期閾値Z1との間にある場合はピークの抜けは無いと判定する。また、ピーク抜け検出部24は、例えば、ピークの周期Pが周期閾値Z1と周期閾値Z2との間にある場合は1回だけピークの抜けが生じたと判定する。また、ピーク抜け検出部24は、例えば、ピークの周期Pが周期閾値Z2と上限閾値Z4との間にある場合はピークの抜けが2回続けて生じたと判定する。 Then, the peak dropout detection unit 24 compares the calculated period threshold values Z1 and Z2 with the detected peak period P of the current waveform to detect the peak dropout of the current waveform. Specifically, the peak missing detection unit 24 compares the calculated plurality of period threshold values Z1 and Z2 with the detected peak period P of the current waveform X1 to detect the peak missing of the current waveform in a plurality of stages. Specifically, the peak missing detection unit 24 of the present embodiment detects, for example, a peak whose amplitude is equal to or greater than a certain value from the current waveform X1, and sets the period P of the peak to the lower threshold value Z3, the period threshold values Z1 and Z2, and the upper Compare with threshold Z4. Then, for example, when the peak cycle P is between the lower limit threshold value Z3 and the cycle threshold value Z1, the peak dropout detection unit 24 determines that there is no peak dropout. For example, when the peak cycle P is between the cycle threshold value Z1 and the cycle threshold value Z2, the peak dropout detection unit 24 determines that the peak dropout has occurred only once. For example, when the peak cycle P is between the cycle threshold value Z2 and the upper limit threshold value Z4, the peak dropout detection unit 24 determines that the peak dropout has occurred twice in succession.
 次に、ステップS4において、制御部21の回転量算出部25は、ピーク抜け検出部24にて検出したピークの抜けに応じて、検出した電流波形X1のピークの数を補正して直流モータMの回転量を算出し、算出処理を終了する。 Next, in step S4, the rotation amount calculation unit 25 of the control unit 21 corrects the number of peaks of the detected current waveform X1 according to the peak dropout detected by the peak dropout detection unit 24, and corrects the number of peaks of the DC motor M is calculated, and the calculation process ends.
 詳しくは、回転量算出部25は、ピーク抜け検出部24にて複数段階で検出したピークの抜けに応じて、検出した電流波形X1のピークの数を複数段階で補正して直流モータMの回転量を算出する。すなわち、回転量算出部25は、ピーク抜け検出部24にて1回だけピークの抜けが生じたと判定した場合には、ピークの数を1回分だけ補正し、ピーク抜け検出部24にてピークの抜けが2回続けて生じたと判定した場合には、ピークの数を2回分補正する。そして、回転量算出部25は、補正したピークの数に基づいて直流モータMの回転量を算出する。 Specifically, the rotation amount calculation unit 25 corrects the number of peaks of the detected current waveform X1 in multiple steps according to the peak dropout detected in multiple steps by the peak dropout detection unit 24, and rotates the DC motor M. Calculate quantity. That is, when the peak dropout detection unit 24 determines that the peak dropout has occurred only once, the rotation amount calculation unit 25 corrects the number of peaks only once, and the peak dropout detection unit 24 corrects the number of peaks. If it is determined that the omission has occurred twice in succession, the number of peaks is corrected twice. Then, the rotation amount calculator 25 calculates the rotation amount of the DC motor M based on the corrected number of peaks.
 このように直流モータMの回転量が算出されることで算出処理が終了され、例えば、被駆動部15の位置が高精度に算出され、制御部21による被駆動部15の高精度な位置制御が可能となる。 When the amount of rotation of the DC motor M is calculated in this way, the calculation process is completed. becomes possible.
 次に、上記実施形態の効果を以下に記載する。
 (1)予測周期算出部23によって、起動時の電流波形X1に基づいて起動時の回転速度V2が算出され、算出した回転速度V2に基づいて電流波形X1のピークの予測周期Y1が算出される。また、ピーク抜け検出部24によって、予測周期算出部23にて算出された予測周期Y1に基づいて、検出した電流波形X1のピークの抜けが検出される。そして、回転量算出部25によって、ピーク抜け検出部24にて検出されたピークの抜けに応じて、検出した電流波形X1のピークの数が補正されて直流モータMの回転量が算出されるため、起動時の回転量を高精度に算出することができる。
Next, the effects of the above embodiment will be described below.
(1) The predicted period calculator 23 calculates the rotation speed V2 at startup based on the current waveform X1 at startup, and calculates the predicted period Y1 of the peak of the current waveform X1 based on the calculated rotation speed V2. . Further, the missing peak of the detected current waveform X1 is detected by the peak missing detection unit 24 based on the prediction cycle Y1 calculated by the prediction cycle calculation unit 23 . Then, the amount of rotation of the DC motor M is calculated by the amount of rotation calculator 25 by correcting the number of detected peaks of the current waveform X1 according to the missing peak detected by the peak missing detection unit 24. , the amount of rotation at startup can be calculated with high accuracy.
 (2)ピーク抜け検出部24によって、予測周期Y1の少なくとも2倍と3倍に対応した周期閾値Z1,Z2が算出され、複数の周期閾値Z1,Z2と検出した電流波形X1のピークの周期Pとが比較されて電流波形のピークの抜けが複数段階で検出される。そして、回転量算出部25によって、ピーク抜け検出部24にて複数段階で検出されたピークの抜けに応じて、検出した電流波形X1のピークの数が複数段階で補正されて直流モータMの回転量が算出される。よって、例えば、ピークの抜けが2回続けて生じた場合でもピークの数が2回分補正されて回転量を高精度に算出することができる。 (2) The peak missing detection unit 24 calculates period threshold values Z1 and Z2 corresponding to at least two and three times the predicted period Y1. are compared to detect a missing peak in the current waveform in a plurality of steps. Then, the number of detected peaks of the current waveform X1 is corrected in multiple steps by the rotation amount calculating unit 25 in accordance with the missing peaks detected in multiple steps by the peak missing detection unit 24, and the DC motor M rotates. Amount is calculated. Therefore, for example, even if peak omission occurs twice in succession, the number of peaks is corrected twice, and the amount of rotation can be calculated with high accuracy.
 本実施形態は、以下のように変更して実施することができる。本実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
 ・上記実施形態の予測周期算出部23は、電流波形X1のピークの予測周期Y1を他の演算等によって算出する構成としてもよい。
This embodiment can be implemented with the following modifications. This embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range.
- The prediction period calculation part 23 of the above-described embodiment may be configured to calculate the prediction period Y1 of the peak of the current waveform X1 by other calculations or the like.
 ・上記実施形態のピーク抜け検出部24は、検出した電流波形X1のピークの抜けを他の演算等によって検出する構成としてもよい。
 例えば、上記実施形態のピーク抜け検出部24は、ピークの抜けを2段階で検出する構成としたが、予測周期Y1の4倍以上の周期閾値を算出してピークの抜けを3段階以上で検出する構成としてもよい。また、ピーク抜け検出部24は、ピークの抜けを1段階で検出する構成、すなわちピークの抜けが2回続けて生じても1回だけピークの抜けが生じたと判定する構成としてもよい。このようにすると、ピーク抜け検出部24及び回転量算出部25の演算量を低減することができる。
The peak dropout detector 24 of the above embodiment may be configured to detect the peak dropout of the detected current waveform X1 by other calculations or the like.
For example, the peak dropout detection unit 24 of the above embodiment is configured to detect peak dropouts in two stages. It is good also as a structure which carries out. Further, the peak dropout detection unit 24 may be configured to detect peak dropouts in one stage, that is, to determine that peak dropouts have occurred only once even if peak dropouts have occurred twice in succession. By doing so, the amount of calculation of the peak missing detection unit 24 and the amount of rotation calculation unit 25 can be reduced.
 ・上記実施形態では特に言及していないが、起動時以外の直流モータMの回転量は、他の方法で検出または算出してもよい。すなわち、上記した起動時の回転量の算出方法は、起動時の速度変動時に適した回転量の算出方法であって、例えば、定常回転速度V1での駆動時は、回転量を簡素な他の方法で検出または算出してもよい。 ·Although not particularly mentioned in the above embodiment, the amount of rotation of the DC motor M other than at startup may be detected or calculated by other methods. That is, the above-described method of calculating the amount of rotation at startup is a method of calculating the amount of rotation suitable for speed fluctuations at the time of startup. It may be detected or calculated by a method.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described with reference to examples, it is understood that the present disclosure is not limited to those examples or structures. The present disclosure also includes various modifications and modifications within the equivalent range. In addition, various combinations and configurations, as well as other combinations and configurations, including single elements, more, or less, are within the scope and spirit of this disclosure.

Claims (5)

  1.  直流モータ(M)を制御するとともに、検出した電流波形(X1)のピークの数に基づいて前記直流モータの回転量を算出する制御部(21)を備えたモータ制御装置(11)であって、
     前記制御部は、
     起動時の電流波形に基づいて起動時の回転速度(V2)を算出し、算出した回転速度に基づいて電流波形のピークの予測周期(Y1)を算出する予測周期算出部(23)と、
     前記予測周期算出部にて算出した予測周期に基づいて、検出した電流波形のピークの抜けを検出するピーク抜け検出部(24)と、
     前記ピーク抜け検出部にて検出したピークの抜けに応じて、検出した電流波形のピークの数を補正して前記直流モータの回転量を算出する回転量算出部(25)と
    を備えたモータ制御装置。
    A motor control device (11) comprising a control section (21) for controlling a DC motor (M) and calculating the amount of rotation of the DC motor based on the number of peaks of a detected current waveform (X1), ,
    The control unit
    a predicted period calculation unit (23) that calculates a rotation speed (V2) at startup based on the current waveform at startup and calculates a predicted period (Y1) of the peak of the current waveform based on the calculated rotation speed;
    a peak missing detection unit (24) for detecting a missing peak in the detected current waveform based on the prediction cycle calculated by the prediction cycle calculation unit;
    a rotation amount calculation unit (25) for calculating the amount of rotation of the DC motor by correcting the number of peaks of the detected current waveform according to the peak dropout detected by the peak dropout detection unit. Device.
  2.  前記予測周期算出部は、起動時の電流波形を2次近似式(X2)に変換し、突入電流(I1)と定常電流(I2)と定常回転速度(V1)とによって作成された特性マップ(X3)に基づいて前記2次近似式から起動時の回転速度を算出し、算出した起動時の回転速度に基づいて電流波形のピークの予測周期を算出する請求項1に記載のモータ制御装置。 The prediction period calculation unit converts the current waveform at startup into a quadratic approximation formula (X2), and creates a characteristic map ( 2. The motor control device according to claim 1, wherein the rotational speed at startup is calculated from the quadratic approximation based on X3), and the predicted cycle of the peak of the current waveform is calculated based on the calculated rotational speed at startup.
  3.  前記ピーク抜け検出部は、前記予測周期算出部にて算出した予測周期と、その予測周期の整数倍の周期である整数倍予測周期(Y2,Y3)とによって周期閾値(Z1,Z2)を算出し、算出した周期閾値と検出した電流波形のピークの周期(P)とを比較して電流波形のピークの抜けを検出する請求項1または請求項2に記載のモータ制御装置。 The peak missing detection unit calculates period threshold values (Z1, Z2) based on the prediction period calculated by the prediction period calculation unit and the integer multiple prediction period (Y2, Y3) that is an integral multiple of the prediction period. 3. The motor control device according to claim 1, wherein the calculated period threshold is compared with the period (P) of the peak of the detected current waveform to detect the omission of the peak of the current waveform.
  4.  前記ピーク抜け検出部は、予測周期の少なくとも2倍と3倍に対応した周期閾値を算出し、算出した複数の周期閾値と検出した電流波形のピークの周期とを比較して電流波形のピークの抜けを複数段階で検出する請求項3に記載のモータ制御装置。 The peak missing detection unit calculates period thresholds corresponding to at least two and three times the predicted period, compares the calculated plurality of period thresholds with the period of the detected peak of the current waveform, and compares the period of the peak of the current waveform. 4. The motor control device according to claim 3, wherein the disconnection is detected in a plurality of steps.
  5.  前記回転量算出部は、前記ピーク抜け検出部にて複数段階で検出したピークの抜けに応じて、検出した電流波形のピークの数を複数段階で補正して前記直流モータの回転量を算出する請求項4に記載のモータ制御装置。 The rotation amount calculation unit calculates the rotation amount of the DC motor by correcting the number of detected peaks of the current waveform in multiple steps according to the peak dropouts detected in multiple steps by the peak dropout detection unit. 5. A motor control device according to claim 4.
PCT/JP2022/022672 2021-06-04 2022-06-03 Motor control device WO2022255491A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-094751 2021-06-04
JP2021094751A JP2022186494A (en) 2021-06-04 2021-06-04 Motor control device

Publications (1)

Publication Number Publication Date
WO2022255491A1 true WO2022255491A1 (en) 2022-12-08

Family

ID=84322586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022672 WO2022255491A1 (en) 2021-06-04 2022-06-03 Motor control device

Country Status (2)

Country Link
JP (1) JP2022186494A (en)
WO (1) WO2022255491A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003536355A (en) * 2000-06-06 2003-12-02 レオポルト・コスタール・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング・ウント・コンパニー・コマンデイトゲゼルシヤフト How to calculate the rotational position of the drive shaft of a DC motor
JP2011193591A (en) * 2010-03-12 2011-09-29 Aisin Seiki Co Ltd Device, method, and program for detecting dc motor ripple

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003536355A (en) * 2000-06-06 2003-12-02 レオポルト・コスタール・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング・ウント・コンパニー・コマンデイトゲゼルシヤフト How to calculate the rotational position of the drive shaft of a DC motor
JP2011193591A (en) * 2010-03-12 2011-09-29 Aisin Seiki Co Ltd Device, method, and program for detecting dc motor ripple

Also Published As

Publication number Publication date
JP2022186494A (en) 2022-12-15

Similar Documents

Publication Publication Date Title
US7498761B2 (en) Motor control method and motor control apparatus
KR100791814B1 (en) Control Method of Sensorless BLDC Motor
JP5024827B2 (en) Inverter device
KR101685968B1 (en) Inverter apparatus
JP5172998B2 (en) Control device for detecting whether or not irreversible demagnetization of permanent magnet of permanent magnet synchronous motor has occurred
JP2011155803A (en) Motor driving apparatus having power failure detection function
CN106533279A (en) Out-of-step detection method and out-of-step detection device of synchronous motor
KR20150081893A (en) Apparatus for driving motor and Controlling Method thereof
JP4760216B2 (en) Motor drive control device
JP2019135473A (en) Motor drive device capable of estimating stray capacitance
WO2022255491A1 (en) Motor control device
WO2022260113A1 (en) Motor control device
JP2019030119A (en) Motor drive controller and drive control method of motor
US9825569B2 (en) Method for reducing performance degradation due to redundant calculation in high integrity applications
JP2007244106A (en) Inverter control device and motor-driven compressor
JP2013172573A (en) Motor control device
US20150069943A1 (en) Motor driving control apparatus, motor driving control method, and motor system using the same
JP2011091934A (en) Method of controlling inverter
US11757394B2 (en) Motor control device and motor system
JP6044854B2 (en) Electric tool
US20150130391A1 (en) Motor drive controller and motor drive control method, and motor system using the same
Stando et al. Simple technique of initial speed identification for speed-sensorless predictive controlled induction motor drive
JP2009278733A (en) Motor controller
CN104009687B (en) Motor drive
US11515814B2 (en) Motor drive control device and method for controlling the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22816236

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE