WO2022255306A1 - Air-conditioning apparatus - Google Patents

Air-conditioning apparatus Download PDF

Info

Publication number
WO2022255306A1
WO2022255306A1 PCT/JP2022/021945 JP2022021945W WO2022255306A1 WO 2022255306 A1 WO2022255306 A1 WO 2022255306A1 JP 2022021945 W JP2022021945 W JP 2022021945W WO 2022255306 A1 WO2022255306 A1 WO 2022255306A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
air
irradiation device
air conditioner
heat exchanger
Prior art date
Application number
PCT/JP2022/021945
Other languages
French (fr)
Japanese (ja)
Inventor
智己 齋藤
聖史 黒井
利夫 田中
千佳 小山
衛 奥本
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN202280038503.0A priority Critical patent/CN117396707A/en
Publication of WO2022255306A1 publication Critical patent/WO2022255306A1/en
Priority to US18/520,720 priority patent/US20240093887A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0071Indoor units, e.g. fan coil units with means for purifying supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0071Indoor units, e.g. fan coil units with means for purifying supplied air
    • F24F1/0076Indoor units, e.g. fan coil units with means for purifying supplied air by electric means, e.g. ionisers or electrostatic separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F13/222Means for preventing condensation or evacuating condensate for evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/20Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation
    • F24F8/22Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation using UV light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F2006/006Air-humidification, e.g. cooling by humidification with water treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/17Details or features not otherwise provided for mounted in a wall

Definitions

  • the present disclosure relates to an air conditioner.
  • Patent Document 1 a device such as a Peltier device is required to cool the LED, which complicates the configuration of the device.
  • An object of the present disclosure is to enable LEDs to be cooled with a simple configuration.
  • a first aspect comprises an irradiation device (70) having an LED (72) for irradiating ultraviolet rays, and a heat radiating section (F, 91, 92) for releasing heat of the irradiation device (70) to the air. It is an air conditioner.
  • the LED (72) when the LED (72) generates heat, the heat radiation part (F, 91, 92) releases the heat of the irradiation device (70) to the air. Therefore, the LED (72) can be cooled with a simple configuration.
  • a second aspect is, in the first aspect, a heat exchanger (40) having a plurality of fins (F) as the heat radiating section and exchanging heat between air and a heat medium, and the irradiation device (70). and a heat conducting part (75) connecting the fins (F).
  • the LED (72) when the LED (72) generates heat, this heat is transferred from the irradiation device (70) to the fins (F) of the heat exchanger (40) via the heat conducting portion (75). Since the fins (F) have a relatively large heat transfer area, the heat of the LED can be released to the air through the fins (F).
  • a third aspect in the second aspect, includes a control section (100) that turns on the irradiation device (70) during cooling operation in which air is cooled by the heat exchanger (40).
  • the heat of the LED (72) can be transferred to the heat medium through the heat conducting portion (75) and the fins (F). can.
  • a fourth aspect is the second or third aspect, further comprising a controller (100) that turns on the irradiation device (70) during heating operation in which air is heated by the heat exchanger (40). .
  • the heat of the LED (72) can be transferred to the heat medium through the heat conducting portion (75) and the fins (F). can. Since the temperature of the LED (72) is higher than the temperature of the heat medium during the heating operation, the temperature rise of the LED (72) can be suppressed.
  • the output of the irradiation device (70) during cooling operation in which air is cooled by the heat exchanger (40) is 40) for heating the air to a higher output than the output of the irradiation device (70) during heating operation.
  • cooling operation is generally performed under high temperature and high humidity conditions, bacteria and mold are likely to grow inside the air conditioner (10).
  • the output of the irradiation device (70) is relatively large during cooling operation, the generation of these bacteria and molds can be suppressed.
  • the temperature of the fins (F) during cooling operation is lower than that during heating operation. Therefore, heat generation of the irradiation device (70) can be more effectively suppressed during cooling operation. As a result, the output of the LED (72) of the irradiation device (70) can be increased during cooling.
  • a controller (100) is provided that turns on the irradiation device (70) when the operation of the air conditioner (10) is stopped.
  • the irradiation device (70) is turned on when the operation of the air conditioner (10) is stopped, so the generation of these bacteria and molds can be suppressed.
  • a drain pan (60) is provided, and the irradiation device (70) irradiates the ultraviolet rays toward the drain pan (60).
  • the drain pan (60) can be sterilized by the ultraviolet rays emitted by the LED (72). This can suppress the growth of bacteria and mold in the drain pan (60).
  • the irradiation device (70) irradiates the ultraviolet rays toward the heat exchanger (40).
  • the heat exchanger (40) can be sterilized by ultraviolet light emitted from the LED (72). As a result, the heat exchanger (40) can be inhibited from generating bacteria and mold.
  • a ninth aspect according to any one of the second to eighth aspects is provided with a fan (50) that conveys air, and the irradiation device (70) moves toward the air conveyed by the fan (50). Irradiate with UV rays.
  • the air can be sterilized by the ultraviolet rays emitted by the LED (72). As a result, sterilized air can be supplied to the air-conditioned space.
  • the heat exchanger (40) is configured to cool air with the heat medium
  • the irradiation device (70) is configured to cool the heat It is arranged upstream of the air flow from the exchanger (40).
  • Condensed water is generated in the heat exchanger (40) due to cooling of the air.
  • the LED (72) faces the downstream side of the air flow.
  • a twelfth aspect is any one of the second to eleventh aspects, wherein the heat conducting portion (75) is a part of the fin (F).
  • the fins (F) also serve as the heat conducting portion (75), the number of parts can be reduced.
  • a thirteenth aspect in the first aspect, comprises a heat conducting portion (75) connecting the irradiation device (70) and the heat radiating portion (F, 91, 92).
  • At least one of the heat radiating portion (F, 91, 92) and the heat conducting portion (75) is made of a metal material.
  • At least one of the heat radiating portion (F, 91, 92) and the heat conducting portion (75) is made of a metal material and has excellent thermal conductivity, so that the heat of the LED (72) is quickly released to the air. can.
  • At least one of the heat conducting portion (75) and the heat conducting portion (75) has a thermal conductivity of 80 w/m ⁇ K or more.
  • the heat of the LED (72) can be quickly released to the air.
  • a casing (31) having an air passage (34) formed therein is provided, and the heat radiating portion (F, 91, 92) It includes a first heat radiating member (91) fixed to the inner surface of (31).
  • the heat of the irradiation device (70) is released to the air via the first heat radiation member (91) fixed to the inner surface of the casing (31). Since the installation area for the first heat radiation member (91) can be secured on the inner surface of the casing (31), the heat radiation area of the heat radiation part (F, 91, 92) can be expanded, and the heat radiation of the heat radiation part (F, 91, 92) can be increased. can improve performance.
  • the first heat radiation member (91) includes a metal plate or a metal tape.
  • the heat radiation portions (F, 91, 92) can be easily formed on the inner surface of the casing (31).
  • a casing (31) having an air passage (34) formed therein is provided, and the heat radiating portion (F, 91, 92) (31) includes a second heat dissipating member (92) constituted by a portion of (31).
  • the casing (31) also serves as the heat radiating section (F, 91, 92), the number of parts can be reduced.
  • FIG. 1 is a schematic piping system diagram of an air conditioner according to an embodiment.
  • FIG. 2 is a longitudinal sectional view showing the internal structure of the indoor unit.
  • FIG. 3 is a schematic diagram of the mounting structure of the irradiation device as viewed from the front side.
  • FIG. 4 is a block diagram of an air conditioner.
  • FIG. 5 is a diagram corresponding to FIG. 1 according to Modification 1.
  • FIG. 6 is a longitudinal sectional view showing the internal structure of an indoor unit according to Modification 3.
  • FIG. FIG. 7 is a schematic configuration diagram of a heat conducting portion and fins according to a first example of modification 5.
  • FIG. 8 is a schematic configuration diagram of a heat conducting portion and fins according to a second example of modification 5.
  • FIG. 9 is a vertical cross-sectional view showing the internal structure of the indoor unit of Modification 6.
  • FIG. 10 is a vertical cross-sectional view showing the internal structure of the indoor unit of Modification 7.
  • FIG. 11 is a vertical cross-sectional view showing the internal structure of the indoor unit of Modification 8.
  • FIG. 1 is a schematic piping system diagram of an air conditioner (10).
  • the air conditioner (10) adjusts the temperature of the air in the target space.
  • the target space is the indoor space (I).
  • the air conditioner (10) performs cooling operation and heating operation. In cooling operation, the air conditioner (10) cools the air in the indoor space (I). In heating operation, the air conditioner (10) heats the air in the indoor space (I).
  • the air conditioner (10) has a refrigerant circuit (11).
  • the refrigerant circuit (11) is filled with refrigerant.
  • the refrigerant circuit (11) performs a refrigeration cycle by circulating refrigerant.
  • the refrigerant is, for example, R32 (difluoromethane).
  • the air conditioner (10) includes an outdoor unit (20), an indoor unit (30), a first communication pipe (12), and a second communication pipe (13).
  • the air conditioner (10) of this example is of a pair type having one outdoor unit (20) and one indoor unit (30).
  • the outdoor unit (20) includes a compressor (21), an outdoor heat exchanger (22), an expansion valve (23), a four-way switching valve (24), and an outdoor fan (25).
  • the indoor unit (30) includes an indoor heat exchanger (40) and an indoor fan (50).
  • the first communication pipe (12) and the second communication pipe (13) connect the indoor unit (30) and the outdoor unit (20) to each other.
  • the first communication pipe (12) is a gas pipe
  • the second communication pipe (13) is a liquid pipe.
  • the first communication pipe (12) is connected to the gas end of the indoor heat exchanger (40).
  • the second communication pipe (13) is connected to the liquid end of the indoor heat exchanger (40).
  • the air conditioner (10) has an irradiation device (70).
  • the irradiation device (70) irradiates ultraviolet rays to disinfect a predetermined target.
  • the compressor (21) compresses refrigerant.
  • the compressor (21) is a rotary compressor.
  • the rotary compressor (21) is configured by an oscillating type, a rolling piston type, a scroll type, or the like.
  • the outdoor heat exchanger (22) exchanges heat between the refrigerant and the outdoor air.
  • the outdoor heat exchanger (22) is of the fin and tube type.
  • the outdoor fan (25) conveys outdoor air. Air carried by the outdoor fan (25) passes through the outdoor heat exchanger (22).
  • the outdoor fan (25) is a propeller fan.
  • the expansion valve (23) reduces the pressure of the refrigerant.
  • the expansion valve (23) is an electronic or temperature sensitive expansion valve.
  • the four-way switching valve (24) reverses the flow of refrigerant in the refrigerant circuit (11).
  • the four-way switching valve (24) switches between a first state indicated by solid lines in FIG. 1 and a second state indicated by broken lines in FIG.
  • the four-way switching valve (24) in the first state communicates the discharge side of the compressor (21) with the gas side of the outdoor heat exchanger (22), and at the same time, exchanges heat with the suction side of the compressor (21). communicate with the gas side of the vessel (40).
  • the four-way switching valve (24) in the second state allows communication between the discharge side of the compressor (21) and the gas side of the indoor heat exchanger (40), and at the same time exchanges heat with the suction side of the compressor (21). communicate with the gas side of the vessel (22).
  • FIG. 2 is a longitudinal sectional view of the indoor unit (30).
  • the terms “top”, “bottom”, “front”, and “back” are based on the directions indicated by the arrows in FIG.
  • the indoor unit (30) is installed in the indoor space (I).
  • the indoor unit (30) is provided on the wall surface.
  • the indoor unit (30) is a wall-mounted air conditioning indoor unit.
  • the indoor unit (30) includes a casing (31), a filter (38), an indoor heat exchanger (40), an indoor fan (50), and a drain pan (60).
  • the casing (31) forms an outer shell of the indoor unit (30).
  • a suction port (32) is formed in the upper portion of the casing (31).
  • An outlet (33) is formed in the lower portion of the casing (31).
  • An air passage (34) is formed inside the casing (31) from the inlet (32) to the outlet (33).
  • the suction port (32) takes indoor air in the indoor space (I) into the air passageway (34).
  • the blowout port (33) blows out the air in the air passageway (34) into the indoor space (I).
  • the outlet (33) is provided with a flap (not shown) for adjusting the direction of the blown air.
  • a filter (38), an indoor heat exchanger (40), and an indoor fan (50) are arranged in the air passage (34) in this order from the upstream side to the downstream side of the air flow.
  • the filter (38) is arranged upstream of the indoor heat exchanger (40) in the internal flow path (S1).
  • the filter (38) collects dust and the like in the air sent from the suction port (32) to the indoor heat exchanger (40).
  • the indoor unit may include a dust removing mechanism for removing dust adhering to the filter (38).
  • the indoor heat exchanger (40) exchanges heat between a refrigerant, which is a heat medium, and air.
  • the indoor heat exchanger (40) is of the fin-and-tube type.
  • the indoor heat exchanger (40) includes a first heat exchanger (41) and a second heat exchanger (42).
  • the first heat exchanger (41) is arranged in front of the indoor fan (50).
  • the second heat exchanger (42) is arranged behind the indoor fan (50).
  • the first heat exchanger (41) and the second heat exchanger (42) are configured separately from each other.
  • the first heat exchanger (41) and the second heat exchanger (42) are composed of a plurality of fins (41) and heat transfer tubes ( 42) and respectively.
  • the fin (F) is formed in a vertically long rectangular plate shape.
  • the fins (F) are made of a metal material such as aluminum with high thermal conductivity.
  • the heat transfer tube (P) is made of a metal material with high thermal conductivity such as copper.
  • a fin (F) is an example of a heat dissipation part.
  • the radiator radiates the heat of the irradiation device (70) to the air.
  • the heat radiation part of the present embodiment further releases the heat of the irradiation device (70) to the coolant.
  • the thermal conductivity of the fins (F) is preferably 80 W/m ⁇ K or more, more preferably 100 W/m ⁇ K or more.
  • the indoor fan (50) conveys the indoor air.
  • the indoor fan (50) is a cross-flow fan. Air conveyed by the indoor fan (50) passes through the indoor heat exchanger (40). The air that has passed through the indoor heat exchanger (40) is supplied to the indoor space (I) through the outlet (33).
  • the drain pan (60) is a tray that receives condensed water in the air.
  • the drain pan (60) includes a first drain pan (61) and a second drain pan (62).
  • the first drain pan (61) is arranged below the first heat exchanger (41).
  • the first drain pan (61) is located below the lower end of the first heat exchanger (41).
  • the first drain pan (61) receives condensed water generated around the first heat exchanger (41).
  • the second drain pan (62) is arranged below the second heat exchanger (42).
  • the second drain pan (62) is located below the lower end of the second heat exchanger (42).
  • the second drain pan (62) receives condensed water generated around the second heat exchanger (42).
  • the irradiation device (70) is provided in the indoor unit (30).
  • the irradiation device (70) is arranged inside the casing (31).
  • the irradiation device (70) of this example targets the first drain pan (61) and air.
  • the irradiation device (70) has a circuit board (71) and an LED (72).
  • the LED (72) is provided on the circuit board (71).
  • the LED (72) is a light emitting part that emits ultraviolet light.
  • the LED (72) emits ultraviolet light with a predetermined directivity.
  • the wavelength of ultraviolet rays emitted from the LED (72) is 190 nm or more and 280 nm or less. It is preferable that the wavelength of the ultraviolet rays is 220 mm or more and 270 nm or less.
  • the air conditioner (10) of this example has three irradiation devices (70).
  • the air conditioner (10) has a heat conducting part (75).
  • the heat conducting part (75) of this example is made of a metal material. Metal materials include aluminum, stainless steel, or iron.
  • the thermally conductive portion (75) may be made of a resin material having thermal conductivity. Examples of resin materials include polycarbonate, polybutylene terephthalate, polyacetal, and polyamide.
  • the thermal conductivity of the heat conducting portion (75) is preferably 80 W/m ⁇ K or more, more preferably 100 W/m ⁇ K or more.
  • the heat conducting part (75) connects the irradiation device (70) and the indoor heat exchanger (40).
  • the heat conducting part (75) of this example is connected to the plurality of fins (F) of the first heat exchanger (41).
  • the heat conducting part (75) is in contact with the endmost fin (end plate) of the first heat exchanger (41) and the side edges of the plurality of fins (F).
  • the heat conducting part (75) extends along the front edges of the fins (F) in the direction in which the fins (F) are arranged so as to be in contact with all the fins (F) of the first heat exchanger (41). extended.
  • the heat-conducting portion (75) may contact only a portion of all the fins (F).
  • the irradiation device (70) is fixed to the lower part of the heat conducting part (75).
  • the three irradiation devices (70) are arranged along the longitudinal direction of the heat conducting section (75).
  • a circuit board (71) is fixed to the heat conducting portion (75).
  • the LED (72) is thermally connected to the heat conducting portion (75) through the circuit board (71).
  • the heat conducting portion (75) may be in direct contact with the LED (72).
  • the LED (72) emits ultraviolet rays toward the first drain pan (61). Specifically, the LED (72) emits ultraviolet light toward the bottom surface (60a) of the first drain pan (61). As a result, the first drain pan (61) and the water inside the first drain pan (61) can be sterilized by the ultraviolet rays.
  • the LED (72) irradiates ultraviolet rays toward the air carried by the indoor fan (50). In other words, the LED (72) emits ultraviolet rays toward the air in the air passageway (34). Thereby, the air supplied to the indoor space (I) can be sterilized.
  • the heat conducting portion (75) is positioned upstream of the LEDs (72), and the LEDs (72) are fixed to the downstream surface (lower surface) of the heat conducting portion (75). Therefore, the heat conducting portion (75) can prevent dust in the air from adhering to the surface of the LED (72).
  • Condensed water generated around the indoor heat exchanger (40) may scatter downstream of the indoor heat exchanger (40).
  • the irradiation device (70) and the heat transfer section (75) are arranged upstream of the air flow in the first heat exchanger (41). Therefore, it is possible to suppress adhesion of condensed water to the LEDs (72) and the circuit board (71) of the irradiation device (70).
  • the air conditioner (10) includes a remote controller (80).
  • the remote controller (80) has an operation section (81).
  • the operating section (81) is a functional section for a person to input various instructions to the air conditioner (10).
  • the operation unit (81) includes switches, buttons, or a touch panel. Operation of the air conditioner (10) is selected by a person operating the operation unit (81).
  • the operation of the air conditioner (10) includes cooling operation and heating operation.
  • the air conditioner (10) has a control section (100).
  • the control section (100) controls the operation of the air conditioner (10).
  • the controller (100) controls the operation of the irradiation device (70).
  • the control unit (100) includes a first control device (101), a second control device (102), a remote controller (80), a first communication line (103), and a second communication line (104).
  • Each of the first controller (101) and the second controller (102) includes an MCU (Micro Control Unit), an electric circuit, and an electronic circuit.
  • the MCU includes a CPU (Central Processing Unit), memory, and a communication interface. Various programs for the CPU to execute are stored in the memory.
  • the first control device (101) is provided in the outdoor unit (20).
  • the second control device (102) is provided in the indoor unit (30).
  • the first control device (101) and the second control device (102) are connected to each other via a first communication line (103).
  • the second control device (102) and the remote controller (80) are connected to each other via a second communication line (104).
  • the first communication line (103) and the second communication line (104) are wired or wireless.
  • the first controller (101) controls the compressor (21), the expansion valve (23), the four-way switching valve (24), and the outdoor fan (25) according to the received command.
  • the second controller (102) controls the indoor fan (50) and the irradiation device (70) according to the received command.
  • the control unit (100) switches between cooling operation and heating operation according to the received command.
  • the control section (100) turns on the irradiation device (70) during cooling operation.
  • the controller (100) of the present example turns on the irradiation device (70) during the heating operation.
  • the control unit (100) makes the output of the irradiation device (70) during cooling operation higher than the output of the irradiation device (70) during heating operation.
  • the control unit (100) makes the emission intensity of the irradiation device (70) during cooling operation higher than the emission intensity of the irradiation device (70) during heating operation.
  • the operating behavior of the air conditioner (10) will be described in detail.
  • the air conditioner (10) switches between cooling operation and heating operation.
  • the control section (100) sets the four-way switching valve (24) to the first state.
  • the controller (100) operates the compressor (21), the outdoor fan (25), and the indoor fan (50).
  • the control section (100) adjusts the degree of opening of the expansion valve (23).
  • the refrigerant circuit (11) performs a refrigeration cycle (cooling cycle) in which the outdoor heat exchanger (22) functions as a radiator and the indoor heat exchanger (40) functions as an evaporator.
  • the refrigerant compressed by the compressor (21) flows through the outdoor heat exchanger (22).
  • the outdoor heat exchanger (22) exchanges heat between refrigerant and outdoor air.
  • the refrigerant that has released heat or condensed in the outdoor heat exchanger (22) is decompressed by the expansion valve (23) and then flows through the indoor heat exchanger (40).
  • the indoor heat exchanger (40) exchanges heat between the refrigerant and indoor air.
  • the refrigerant evaporated in the indoor heat exchanger (40) is compressed again in the compressor (21).
  • indoor air is sucked into the air passage (34) through the suction port (32).
  • Air in the air passageway (34) passes through the indoor heat exchanger (40).
  • the indoor heat exchanger (40) cools air with refrigerant.
  • the air cooled by the indoor heat exchanger (40) is supplied to the indoor space (I) through the outlet (33).
  • the controller (100) sets the four-way switching valve (24) to the second state.
  • the controller (100) operates the compressor (21), the outdoor fan (25), and the indoor fan (50).
  • the control section (100) adjusts the degree of opening of the expansion valve (23).
  • the refrigerant circuit (11) performs a refrigeration cycle (heating cycle) in which the indoor heat exchanger (40) functions as a radiator and the outdoor heat exchanger (22) functions as an evaporator.
  • the refrigerant compressed by the compressor (21) flows through the indoor heat exchanger (40).
  • the indoor heat exchanger (40) exchanges heat between the refrigerant and indoor air.
  • the refrigerant that has released heat or condensed in the indoor heat exchanger (40) is decompressed by the expansion valve (23) and then flows through the outdoor heat exchanger (22).
  • the outdoor heat exchanger (22) exchanges heat between refrigerant and outdoor air.
  • the refrigerant evaporated in the outdoor heat exchanger (22) is compressed again in the compressor (21).
  • indoor air is sucked into the air passage (34) through the suction port (32).
  • Air in the air passageway (34) passes through the indoor heat exchanger (40).
  • the indoor heat exchanger (40) heats air with refrigerant.
  • the air heated by the indoor heat exchanger (40) is supplied to the indoor space (I) through the outlet (33).
  • the controller (100) turns on the irradiation device (70).
  • the LED (72) emits ultraviolet rays.
  • the ultraviolet rays are applied to the first drain pan (61).
  • the first drain pan (61) and the water in the first drain pan (61) can be sterilized. Therefore, propagation of bacteria and fungi in the first drain pan (61) can be suppressed.
  • the ultraviolet rays irradiate the air flowing through the air passage (34). Therefore, the air flowing through the air passageway (34) can be sterilized, and the sterilized air can be supplied indoors.
  • the control unit (100) makes the emission intensity of the irradiation device (70) during cooling operation higher than the emission intensity of the irradiation device (70) during heating operation. Cooling operation is performed under high temperature and high humidity conditions. Therefore, bacteria and the like tend to grow inside the casing (31) during cooling operation. On the other hand, by increasing the emission intensity of the irradiation device (70) during the cooling operation, the propagation of such bacteria can be reliably suppressed.
  • the temperature of the fins (F) during cooling operation is lower than that during heating operation. Therefore, heat generation of the irradiation device (70) can be more effectively suppressed during cooling operation. As a result, the output of the LED (72) of the irradiation device (70) can be increased during cooling.
  • the control unit (100) turns on the irradiation device (70).
  • the LED (72) emits ultraviolet rays.
  • the ultraviolet rays irradiate the air flowing through the air passageway (34). Therefore, the air flowing through the air passageway (34) can be sterilized, and the sterilized air can be supplied indoors.
  • control unit (100) appropriately performs the reverse cycle defrost operation.
  • the indoor heat exchanger (40) functions as an evaporator, so that condensation water may occur.
  • the drain pan (60) receives this condensed water.
  • the water irradiated by the LED (72) is irradiated to the first drain pan (61). Therefore, the first drain pan (61) and the water in the first drain pan (61) can be sterilized. Therefore, it is possible to suppress the propagation of bacteria and fungi in the first drain pan (61) due to the reverse cycle defrosting operation.
  • the air conditioner (10) has fins (F) as heat radiators that release heat from the irradiation device (70) to the air. Therefore, the temperature rise of the LED (72) can be suppressed with a relatively simple configuration.
  • the air conditioner (10) has a heat conducting part (75) that connects with the fins (F). Therefore, the heat generated from the LED (72) can be transferred to the fins (F) through the heat conducting portion (75). Therefore, the temperature rise of the LED (72) can be suppressed by the heat dissipation effect of the fins (F). This allows the irradiation device (70) to perform desired operations.
  • the fins (F) are provided in the indoor heat exchanger (40) and have a sufficient heat transfer area, so they can effectively suppress the heat generation of the LEDs (72).
  • the heat conducting portion (75) is made of a metal material, the heat of the irradiation device (70) can be rapidly transferred to the fins (F) via the heat conducting portion (75). Therefore, it is possible to prevent a decrease in the heat dissipation effect of the LED (72) due to the rate-determining heat transfer of the heat conducting portion (75).
  • the thermal conductivity of the heat conductive portion (75) is 80 W/m ⁇ K or more, the heat dissipation effect of the LED (72) can be improved.
  • the thermal conductivity of the heat conducting portion (75) to 100 W/m ⁇ K or more, the heat dissipation effect of the LED (72) can be sufficiently obtained.
  • the heat dissipation effect of the LED (72) can be improved by setting the thermal conductivity of the fins (F) as the heat dissipation part to 80 W/m ⁇ K or more. In particular, by setting the thermal conductivity of the fins (F) to 100 W/m ⁇ K or more, a sufficient heat dissipation effect for the LEDs (72) can be obtained.
  • the controller (100) turns on the irradiation device (70) in cooling operation. Therefore, it is possible to sterilize predetermined objects (air and drain pan (60)) under conditions where bacteria and mold are particularly likely to occur.
  • the indoor heat exchanger (40) during cooling operation functions as an evaporator. Therefore, the LED (72) can be sufficiently cooled by the coolant.
  • the controller (100) turns on the irradiation device (70) in the heating operation. Therefore, objects (air and drain pan (60)) can be sterilized even in heating operation.
  • the irradiation device (70) is turned on, the temperature of the LED (72) may reach, for example, 80° C. or higher.
  • the temperature of the refrigerant condensed in the indoor heat exchanger (40) is much lower than the temperature of the LED (72). Therefore, even in heating operation, the LED (72) can be sufficiently cooled by the refrigerant.
  • the control unit (100) makes the emission intensity of the irradiation device (70) during cooling operation higher than the emission intensity of the irradiation device (70) during heating operation. Therefore, it is possible to reliably suppress the propagation of bacteria and fungi under conditions of high temperature and high humidity.
  • the irradiation device (70) irradiates ultraviolet rays toward the drain pan (60). Therefore, the drain pan (60) and the water in the drain pan (60) can be sterilized.
  • the irradiation device (70) irradiates the air conveyed by the fan (50) with ultraviolet rays. Therefore, sterilized air can be supplied to the indoor space (I).
  • the irradiation device (70) is arranged upstream of the indoor heat exchanger (40) in the air flow. Therefore, it is possible to prevent the condensation water generated near the indoor heat exchanger (40) from adhering to the circuit board (71) and the LEDs (72), thereby compensating the operation of the irradiation device (70).
  • the LED (72) faces the downstream side of the air flow. Therefore, it is possible to prevent dust in the air from adhering to the surface of the LED (72), and to prevent the substantial irradiation amount of the LED (72) from decreasing.
  • Modification 1 Modification regarding target of irradiation device (7-1-1)
  • the irradiation device (70) may irradiate the second drain pan (62) with ultraviolet rays.
  • the irradiation device (70) may irradiate both the first drain pan (61) and the second drain pan (62) with ultraviolet rays.
  • the irradiation device (70) may irradiate the indoor heat exchanger (40) with ultraviolet rays. Thereby, the surface of the indoor heat exchanger (40) can be sterilized.
  • the irradiation device (70) irradiates the first heat exchanger (41) with ultraviolet rays.
  • the heat conducting part (75) connects the irradiation device (70) and the first heat exchanger (41). In other words, the heat conducting part (75) connects the irradiation device (70) and the object of the irradiation device (70).
  • the irradiation device (70) may irradiate the second heat exchanger (42) with ultraviolet rays. In this case, the heat conducting part (75) connects the irradiation device (70) and the second heat exchanger (42).
  • the irradiation device (70) may irradiate the filter (38) with ultraviolet rays. Thereby, the surface and inside of the filter (38) can be sterilized.
  • the irradiation device (70) may irradiate the dust removing mechanism of the filter (38) with ultraviolet rays.
  • the irradiation device (70) may irradiate, of the air carried by the indoor fan (50), the air outside the casing (31) with ultraviolet rays. Specifically, the irradiation device (70) may irradiate the air sucked into the suction port (32) with ultraviolet rays. The irradiation device (70) may irradiate the air blown from the outlet (33) with ultraviolet rays.
  • the irradiation device (70) may irradiate an indoor fan (50) as a fan with ultraviolet rays. Thereby, the indoor fan (50) can be sterilized.
  • the irradiation device (70) may irradiate the inner wall of the casing (31) or the inner wall facing the air passageway (34) with ultraviolet rays. This allows these inner walls to be sterilized.
  • the irradiation device (70) may be arranged downstream of the air flow in the indoor heat exchanger (40).
  • the LED (72) may irradiate ultraviolet rays toward the upstream side of the airflow.
  • the air conditioner (10) may have a ceiling-mounted indoor unit (30).
  • the ceiling-mounted indoor unit (30) includes a ceiling-embedded type in which the indoor unit (30) is embedded in the ceiling surface, and a ceiling-mounted type in which the indoor unit (30) is suspended from the upper wall.
  • FIG. 6 is a longitudinal sectional view of the indoor unit (30).
  • the indoor unit (30) has a casing (31) installed above the ceiling.
  • the casing (31) includes a casing body (35) and a panel (36).
  • the casing body (35) is shaped like a rectangular box with an opening on the bottom.
  • the panel (36) is detachably attached to the opening surface of the casing body (35).
  • the panel (36) has a rectangular frame-shaped panel body (36a) and an intake grille (36b) provided in the center of the panel body (36a).
  • One suction port (32) is formed in the center of the panel body (36a).
  • the suction grille (36b) is attached to the suction port (32).
  • Each of the four side edges of the panel body (36a) is formed with one outlet (33).
  • Each outlet (33) extends along four side edges.
  • a flap (39) is provided inside each outlet (33).
  • An air passage (34) is formed in the casing (31) from the inlet (32) to the outlet (33).
  • a bell mouth (43), an indoor fan (50), an indoor heat exchanger (40), and a drain pan (60) are provided inside the casing body (35).
  • the bellmouth (43) and the indoor fan (50) are arranged above the intake grille (36b).
  • the indoor fan (50) is a centrifugal turbo fan.
  • the indoor heat exchanger (40) is arranged in the air passageway (34) so as to surround the indoor fan (50).
  • the indoor heat exchanger (40) is a fin-and-tube heat exchanger.
  • the drain pan (60) is arranged below the indoor heat exchanger (40) in the air passageway (34).
  • the irradiation device (70) is arranged upstream of the indoor heat exchanger (40).
  • the irradiation device (70) irradiates ultraviolet rays toward the drain pan (60).
  • the heat conducting part (75) of this example connects the irradiation device (70) and the fins (not shown) of the indoor heat exchanger (40). Thereby, the heat of the LED (72) can be released to the air through the fins.
  • the indoor unit (30) may be of a floor type or a duct type installed in the ceiling.
  • the air conditioner (10) may have a function of ventilating the indoor space (I).
  • the air conditioner (10) may have humidification and dehumidification functions.
  • the air conditioner (10) may have a function of purifying air.
  • the indoor unit (30) heat is exchanged between the refrigerant and air in the indoor heat exchanger (40).
  • the indoor heat exchanger (40) may heat-exchange air with a heat medium other than refrigerant, such as water or brine.
  • the air conditioner (10) may be of a multi-type having a plurality of indoor units (30).
  • the air conditioner (10) may have a plurality of outdoor units (20).
  • the control unit (100) may turn on the irradiation device (70) when the operation of the air conditioner (10) is stopped. Specifically, the control unit (100) may turn on the irradiation device (70) immediately after the cooling operation ends, for example. In this case, the irradiation device (70) irradiates the drain pan (60) with ultraviolet rays. Since condensed water tends to accumulate in the drain pan (60) immediately after the cooling operation ends, the water in the drain pan (60) can be reliably sterilized.
  • the control section (100) may turn off the irradiation device (70) in the heating operation. Also in this case, the control unit (100) preferably makes the output of the irradiation device (70) during cooling operation higher than the output (zero) during heating operation.
  • the control unit (100) may turn on the irradiation device (70) during the cooling operation of the cooling-only air conditioner (10).
  • the controller (100) may turn on the irradiation device (70) during the heating operation of the air conditioner (10) dedicated to heating.
  • FIG. 7 is a schematic diagram of the fin (F) viewed in the thickness direction.
  • the fin (F) has a rectangular plate-shaped fin body (Fa) and a protrusion (Fb) integral with the fin body (Fa).
  • the protrusion (Fb) protrudes outward from the widthwise end of the fin body (Fa).
  • the fin body (Fa) and the protrusion (Fb) are integrally molded. Specifically, the fin body (Fa) and the protrusion (Fb) are integrally formed by press working.
  • the projecting portion (Fb) is a heat conducting portion (75) that connects the irradiation device (70) and the fin body (Fa).
  • the irradiation device (70) in the example of FIG. 7 is provided on the side surface of the protrusion (Fb).
  • the heat conducting portion (75) is also used as part of the fins (F), so the number of parts can be reduced.
  • the heat conducting portion (75) and the fins (F) are composed of one member, heat transfer from the heat conducting portion to the fin main body (Fa) is facilitated. As a result, the heat dissipation effect of the LED (72) is improved.
  • a folded surface (Fc) is formed at the tip portion of the protrusion (Fb).
  • the folded surface (Fc) is formed by bending the tip portion of the protrusion (Fb).
  • the folded face (Fb) faces downward.
  • the irradiation device (70) is provided on the folded surface (Fb). Thereby, ultraviolet rays can be emitted downward from the LED (72).
  • a heat dissipation promotion part for promoting heat dissipation may be provided in the heat conduction part (75).
  • the heat dissipation promoting part may be a heat sink or a heat pipe.
  • the heat conducting part (75) may be made of any material having high heat conductivity, such as zinc, copper, or brass.
  • the heat-conducting portion (75) does not necessarily have to be made of a metal material, and may be made of a carbon material such as graphite.
  • Modification 6 First example in which a heat radiating part is provided on the inner surface of the casing
  • the air conditioner (10) of Modification 6 has a wall-mounted indoor unit (30).
  • a first heat radiation member (91) as a heat radiation section is provided on the inner surface of the casing (31) of the indoor unit (30).
  • the casing (31) has a front plate (31a).
  • the front plate (31a) constitutes the front surface of the casing (31).
  • the front plate (31a) is made of a resin material.
  • the first heat radiation member (91) is fixed to the inner surface of the front plate (31a).
  • the first heat radiation member (91) is made of a material with high thermal conductivity.
  • the first heat radiation member (91) of this example is made of a metal material.
  • the first heat radiation member (91) is composed of a metal plate or metal tape. Note that the first heat radiation member (91) may be made of a resin material having high thermal conductivity.
  • the first heat radiation member (91) extends along the inner surface of the front plate (31a).
  • the first heat radiation member (91) faces the air passageway (34).
  • the air flowing through the air passageway (34) flows along the first heat radiation member (91).
  • the first heat radiation member (91) is arranged upstream of the heat exchanger (40) in the air flow.
  • the first heat radiation member (91) may be fixed to the side plate of the casing (31).
  • the side plates form lateral sides of the casing (31).
  • the irradiation device (70) is fixed to the first heat radiation member (91) as a heat radiation section.
  • the irradiation device (70) of this example is directly fixed to the first heat radiation member (91).
  • Methods for directly fixing the irradiation device (70) to the heat radiating part include fixing by fastening with screws or the like, adhesion, fixing by fitting, and fixing by press-fitting. These fixing methods can also be employed in the above-described embodiment and other modifications.
  • the irradiation device (70) may be fixed to the first heat radiation member (91) via the heat conducting portion (75) described above.
  • the LED (72) of the irradiation device (70) of this example faces the downstream side of the air flow.
  • the LED (72) irradiates the air flowing through the air passageway (34) with ultraviolet rays.
  • the irradiation device (70) irradiates the indoor heat exchanger (40) and the drain pan (60) with ultraviolet rays.
  • the control unit (100) may turn on the irradiation device (70) when the air conditioner (10) is stopped. Also in this case, the heat of the irradiation device (70) can be released to the air through the first heat radiation member (91).
  • the installation space for the first heat radiation member (91) can be secured on the inner surface of the casing (31), it is easy to expand the area of the first heat radiation member (91). Therefore, the heat dissipation performance of the first heat dissipation member (91) can be improved.
  • the air conditioner (10) of Modification 7 includes a wall-mounted indoor unit (30). have.
  • a portion of the casing (31) of the indoor unit (30) constitutes a heat radiating section.
  • at least part of the front plate (31a) of the casing (31) is composed of a second heat radiating member (92) with high thermal conductivity.
  • the second heat dissipation member (92) is made of a metal material, but may be made of a resin material with high thermal conductivity.
  • the second heat radiation member (92) is shaped like a plate facing the air passageway (34).
  • the second heat radiation member (92) may be formed on the side plate of the casing (31).
  • Other basic configurations of the air conditioner (10) of the seventh modification are the same as those of the sixth modification.
  • the heat radiating portion is configured by part of the casing (31). Therefore, the number of parts can be reduced. Further, in this configuration, the heat transferred to the second heat radiation member (92) can be released not only to the air in the air passageway (34) but also to the air outside the casing (31). Therefore, the heat dissipation performance of the heat dissipation portion can be improved.
  • Modification 8 Second example in which a part of the casing is a heat radiating part As shown in FIG. indoor unit (30). A portion of the casing (31) of the indoor unit (30) constitutes a heat radiating section. Specifically, at least part of the top plate (31b) of the casing (31) is composed of the second heat radiation member (92) with high thermal conductivity. The second heat radiation member (92) of the top plate (31b) faces the air passageway (34). The second heat radiation member (92) may be a side plate of the casing.
  • the LED (72) of the irradiation device (70) faces downward.
  • the irradiation device (70) irradiates the air passageway (34) with ultraviolet rays.
  • the irradiation device (70) further irradiates the heat exchanger (40) and the drain pan (60) with ultraviolet rays.
  • the heat radiating portion is configured by part of the casing (31). Therefore, the number of parts can be reduced. Since the top plate (31b) has a relatively large area compared to the side plates, the heat dissipation performance of the heat dissipation portion can be improved.
  • the heat dissipating section may be provided on any component as long as it is made of a material with high heat transfer performance.
  • the heat radiation part may be a drain pan made of metal or a resin material having thermal conductivity.
  • the heat dissipation part may be a tube plate of the heat exchanger (40), a header collecting pipe of the heat exchanger (40), a flow divider, refrigerant pipes, or water pipes.
  • the heat radiation section is preferably an element part of the air conditioner (10).
  • the element parts are parts provided to achieve the original functions of the air conditioner (10). If it is an element part, since there is no need to separately provide a part for heat dissipation, the number of parts and cost can be reduced.
  • the present disclosure is useful for air conditioners.

Abstract

This air-conditioning apparatus (10) comprises a radiation device (70) having an LED (72) that radiates ultraviolet rays, and a heat-dissipating unit (F, 91, 92) that dissipates the heat of the radiation device (70) into air.

Description

空気調和装置air conditioner
 本開示は、空気調和装置に関する。 The present disclosure relates to an air conditioner.
 従来より、紫外線を照射するLEDを有する照射装置がある。LEDは、発熱量が多く温度の変化に対し急激に特性が変化する。そこで、特許文献1では、LEDをペルチェ素子で冷却し、LEDの温度上昇を抑制している。 Conventionally, there are irradiation devices that have LEDs that irradiate ultraviolet rays. LEDs generate a large amount of heat, and their characteristics change rapidly with changes in temperature. Therefore, in Patent Document 1, the LED is cooled by a Peltier element to suppress the temperature rise of the LED.
特開2020-177774号公報JP 2020-177774 A
 特許文献1では、LEDを冷却するためにペルチェ素子などの機器が必要となるため、装置の構成が複雑となる。 In Patent Document 1, a device such as a Peltier device is required to cool the LED, which complicates the configuration of the device.
 本開示の目的は、簡単な構成でLEDを冷却できるようにすることである。 An object of the present disclosure is to enable LEDs to be cooled with a simple configuration.
 第1の態様は、紫外線を照射するLED(72)を有する照射装置(70)と、前記照射装置(70)の熱を空気へ放出する放熱部(F,91,92)とを備えている空気調和装置である。 A first aspect comprises an irradiation device (70) having an LED (72) for irradiating ultraviolet rays, and a heat radiating section (F, 91, 92) for releasing heat of the irradiation device (70) to the air. It is an air conditioner.
 第1の態様では、LED(72)が発熱すると、放熱部(F,91,92)が照射装置(70)の熱を空気へ放出する。このため、簡単な構成でLED(72)を冷却できる。 In the first aspect, when the LED (72) generates heat, the heat radiation part (F, 91, 92) releases the heat of the irradiation device (70) to the air. Therefore, the LED (72) can be cooled with a simple configuration.
 第2の態様は、第1の態様において、前記放熱部としての複数のフィン(F)を有し、空気と熱媒体とを熱交換させる熱交換器(40)と、前記照射装置(70)と前記フィン(F)とを接続する熱伝導部(75)とを備える。 A second aspect is, in the first aspect, a heat exchanger (40) having a plurality of fins (F) as the heat radiating section and exchanging heat between air and a heat medium, and the irradiation device (70). and a heat conducting part (75) connecting the fins (F).
 第2の態様では、LED(72)が発熱すると、この熱が照射装置(70)から熱伝導部(75)を介して熱交換器(40)のフィン(F)へ伝わる。フィン(F)は、伝熱面積が比較的大きいため、LEDの熱をフィン(F)を介して空気へ放出できる。 In the second aspect, when the LED (72) generates heat, this heat is transferred from the irradiation device (70) to the fins (F) of the heat exchanger (40) via the heat conducting portion (75). Since the fins (F) have a relatively large heat transfer area, the heat of the LED can be released to the air through the fins (F).
 第3の態様は、第2の態様において、前記熱交換器(40)によって空気を冷却する冷房運転時において、前記照射装置(70)をON状態とする制御部(100)を備える。 A third aspect, in the second aspect, includes a control section (100) that turns on the irradiation device (70) during cooling operation in which air is cooled by the heat exchanger (40).
 第3の態様では、冷房運転時に照射装置(70)がON状態になることで、LED(72)の熱を熱伝導部(75)、およびフィン(F)を介して熱媒体に伝えることができる。 In the third aspect, when the irradiation device (70) is turned on during the cooling operation, the heat of the LED (72) can be transferred to the heat medium through the heat conducting portion (75) and the fins (F). can.
 第4の態様は、第2または第3の態様において、前記熱交換器(40)によって空気を加熱する暖房運転時において、前記照射装置(70)をON状態とする制御部(100)を備える。 A fourth aspect is the second or third aspect, further comprising a controller (100) that turns on the irradiation device (70) during heating operation in which air is heated by the heat exchanger (40). .
 第4の態様では、暖房運転時に照射装置(70)がON状態になることで、LED(72)の熱を熱伝導部(75)、およびフィン(F)を介して熱媒体に伝えることができる。LED(72)の温度は、暖房運転時の熱媒体の温度よりも高くなるため、LED(72)の温度上昇を抑制できる。 In the fourth aspect, when the irradiation device (70) is turned on during the heating operation, the heat of the LED (72) can be transferred to the heat medium through the heat conducting portion (75) and the fins (F). can. Since the temperature of the LED (72) is higher than the temperature of the heat medium during the heating operation, the temperature rise of the LED (72) can be suppressed.
 第5の態様は、第2~第4のいずれか1つの態様において、前記熱交換器(40)によって空気を冷却する冷房運転時の前記照射装置(70)の出力を、前記熱交換器(40)によって空気を加熱する暖房運転時の前記照射装置(70)の出力よりも大きくする制御部(100)を備える。 In a fifth aspect, in any one of the second to fourth aspects, the output of the irradiation device (70) during cooling operation in which air is cooled by the heat exchanger (40) is 40) for heating the air to a higher output than the output of the irradiation device (70) during heating operation.
 冷房運転は、一般に高温高湿条件下で実行されるため、空気調和装置(10)の内部において菌やカビなどが発生しやすい。第5の態様では、冷房運転時に照射装置(70)の出力を比較的大きくするため、これらの菌やカビの発生を抑制できる。冷房運転時のフィン(F)の温度は、暖房運転時のそれよりも低い。このため、冷房運転時には、照射装置(70)の発熱をより効果的に抑制できる。その結果、冷房時において、照射装置(70)のLED(72)の出力を大きくできる。 Since cooling operation is generally performed under high temperature and high humidity conditions, bacteria and mold are likely to grow inside the air conditioner (10). In the fifth aspect, since the output of the irradiation device (70) is relatively large during cooling operation, the generation of these bacteria and molds can be suppressed. The temperature of the fins (F) during cooling operation is lower than that during heating operation. Therefore, heat generation of the irradiation device (70) can be more effectively suppressed during cooling operation. As a result, the output of the LED (72) of the irradiation device (70) can be increased during cooling.
 第6の態様は、第2~第5のいずれか1つの態様において、前記空気調和装置(10)の運転の停止時に前記照射装置(70)をON状態とする制御部(100)を備える。 According to a sixth aspect, in any one of the second to fifth aspects, a controller (100) is provided that turns on the irradiation device (70) when the operation of the air conditioner (10) is stopped.
 空気調和装置(10)の運転停止時には、空気調和装置(10)の内部において菌やカビが発生しやすい。第6の態様は、空気調和装置(10)の運転停止時に照射装置(70)をON状態とするため、これらの菌やカビの発生を抑制できる。 When the operation of the air conditioner (10) is stopped, bacteria and mold are likely to grow inside the air conditioner (10). In the sixth aspect, the irradiation device (70) is turned on when the operation of the air conditioner (10) is stopped, so the generation of these bacteria and molds can be suppressed.
 第7の態様は、第2~第6のいずれか1つの態様において、ドレンパン(60)を備え、前記照射装置(70)は前記紫外線を前記ドレンパン(60)に向かって照射する。 According to a seventh aspect, in any one of the second to sixth aspects, a drain pan (60) is provided, and the irradiation device (70) irradiates the ultraviolet rays toward the drain pan (60).
 第7の態様では、LED(72)が照射する紫外線によってドレンパン(60)を除菌できる。これにより、ドレンパン(60)における菌やカビの発生を抑制できる。 In the seventh aspect, the drain pan (60) can be sterilized by the ultraviolet rays emitted by the LED (72). This can suppress the growth of bacteria and mold in the drain pan (60).
 第8の態様は、第2~第7のいずれか1つの態様において、前記照射装置(70)は前記紫外線を前記熱交換器(40)に向かって照射する。 According to an eighth aspect, in any one of the second to seventh aspects, the irradiation device (70) irradiates the ultraviolet rays toward the heat exchanger (40).
 第8の態様では、LED(72)が照射する紫外線によって熱交換器(40)を除菌できる。これにより、熱交換器(40)における菌やカビの発生を抑制できる。 In the eighth aspect, the heat exchanger (40) can be sterilized by ultraviolet light emitted from the LED (72). As a result, the heat exchanger (40) can be inhibited from generating bacteria and mold.
 第9の態様は、第2~第8のいずれか1つにおいて、空気を搬送するファン(50)を備え、前記照射装置(70)は、前記ファン(50)が搬送する空気に向かって前記紫外線を照射する。 A ninth aspect according to any one of the second to eighth aspects is provided with a fan (50) that conveys air, and the irradiation device (70) moves toward the air conveyed by the fan (50). Irradiate with UV rays.
 第9の態様では、LED(72)が照射する紫外線によって空気を除菌できる。これにより、除菌した空気を空調の対象空間へ供給できる。 In the ninth aspect, the air can be sterilized by the ultraviolet rays emitted by the LED (72). As a result, sterilized air can be supplied to the air-conditioned space.
 第10の態様は、第2~第9のいずれか1つにおいて、前記熱交換器(40)は、前記熱媒体によって空気を冷却するように構成され、前記照射装置(70)は、前記熱交換器(40)よりも空気流れの上流側に配置される。 According to a tenth aspect, in any one of the second to ninth aspects, the heat exchanger (40) is configured to cool air with the heat medium, and the irradiation device (70) is configured to cool the heat It is arranged upstream of the air flow from the exchanger (40).
 熱交換器(40)では、空気を冷却することに起因して結露水が発生する。第10の態様では、この結露水が照射装置(70)に付着することを抑制できる。 Condensed water is generated in the heat exchanger (40) due to cooling of the air. In the tenth aspect, it is possible to prevent the condensed water from adhering to the irradiation device (70).
 第11の態様は、第2~10のいずれか1つにおいて、前記LED(72)は、空気流れの下流側を向いている。 In the eleventh aspect according to any one of the second to tenth aspects, the LED (72) faces the downstream side of the air flow.
 第11の態様では、空気中の埃などがLED(72)の表面に付着することを抑制できる。 In the eleventh aspect, it is possible to prevent dust in the air from adhering to the surface of the LED (72).
 第12の態様は、第2~第11のいずれか1つの態様において、前記熱伝導部(75)は、前記フィン(F)の一部である。 A twelfth aspect is any one of the second to eleventh aspects, wherein the heat conducting portion (75) is a part of the fin (F).
 第12の態様では、フィン(F)が熱伝導部(75)を兼用するため、部品点数を削減できる。 In the twelfth aspect, since the fins (F) also serve as the heat conducting portion (75), the number of parts can be reduced.
 第13の態様は、第1の態様において、前記照射装置(70)と前記放熱部(F,91,92)とを接続する熱伝導部(75)を備える。 A thirteenth aspect, in the first aspect, comprises a heat conducting portion (75) connecting the irradiation device (70) and the heat radiating portion (F, 91, 92).
 第13の態様では、LED(72)が発熱すると、この熱が照射装置(70)から熱伝導部(75)を介して放熱部(F,91,92)へ伝わる。放熱部(F,91,92)は、この熱を空気へ放出する。 In the thirteenth aspect, when the LED (72) generates heat, this heat is transferred from the irradiation device (70) to the heat dissipation part (F, 91, 92) through the heat conduction part (75). A heat sink (F, 91, 92) releases this heat to the air.
 第14の態様は、第13の態様において、前記放熱部(F,91,92)および前記熱伝導部(75)の少なくとも一方は、金属材料である。 According to a fourteenth aspect, in the thirteenth aspect, at least one of the heat radiating portion (F, 91, 92) and the heat conducting portion (75) is made of a metal material.
 第14の態様では、放熱部(F,91,92)および熱伝導部(75)の少なくとも一方が金属材料であり、熱伝導性に優れるため、LED(72)の熱を速やかに空気へ放出できる。 In the fourteenth aspect, at least one of the heat radiating portion (F, 91, 92) and the heat conducting portion (75) is made of a metal material and has excellent thermal conductivity, so that the heat of the LED (72) is quickly released to the air. can.
 第15の態様は、第13または第14の態様において、前記熱伝導部(75)および前記熱伝導部(75)の少なくとも一方の熱伝導率は、80w/m・K以上である。 According to a fifteenth aspect, in the thirteenth or fourteenth aspect, at least one of the heat conducting portion (75) and the heat conducting portion (75) has a thermal conductivity of 80 w/m·K or more.
 第15の態様では、LED(72)の熱を速やかに空気へ放出できる。 In the fifteenth aspect, the heat of the LED (72) can be quickly released to the air.
 第16の態様は、第1~第15のいずれか1つの態様において、空気通路(34)を内部に形成するケーシング(31)を備え、前記放熱部(F,91,92)は、前記ケーシング(31)の内面に固定される第1放熱部材(91)を含む。 According to a sixteenth aspect, in any one of the first to fifteenth aspects, a casing (31) having an air passage (34) formed therein is provided, and the heat radiating portion (F, 91, 92) It includes a first heat radiating member (91) fixed to the inner surface of (31).
 第16の態様では、LED(72)が発熱すると、照射装置(70)の熱は、ケーシング(31)の内面に固定される第1放熱部材(91)を介して、空気へ放出される。ケーシング(31)の内面では、第1放熱部材(91)の設置面積を確保できるので、放熱部(F,91,92)の放熱面積を拡大でき、放熱部(F,91,92)の放熱性能を向上できる。 In the sixteenth aspect, when the LED (72) generates heat, the heat of the irradiation device (70) is released to the air via the first heat radiation member (91) fixed to the inner surface of the casing (31). Since the installation area for the first heat radiation member (91) can be secured on the inner surface of the casing (31), the heat radiation area of the heat radiation part (F, 91, 92) can be expanded, and the heat radiation of the heat radiation part (F, 91, 92) can be increased. can improve performance.
 第17の態様は、第16の態様において、前記第1放熱部材(91)は、金属板または金属製テープを含む。 In a seventeenth aspect based on the sixteenth aspect, the first heat radiation member (91) includes a metal plate or a metal tape.
 第17の態様では、第1放熱部材(91)を金属板または金属製テープとすることで、ケーシング(31)の内面に放熱部(F,91,92)を容易に形成できる。 In the seventeenth aspect, by using a metal plate or a metal tape as the first heat radiation member (91), the heat radiation portions (F, 91, 92) can be easily formed on the inner surface of the casing (31).
 第18の態様は、第1~第15のいずれか1つの態様において、空気通路(34)を内部に形成するケーシング(31)を備え、前記放熱部(F,91,92)は、前記ケーシング(31)の一部によって構成される第2放熱部材(92)を含む。 According to an eighteenth aspect, in any one of the first to fifteenth aspects, a casing (31) having an air passage (34) formed therein is provided, and the heat radiating portion (F, 91, 92) (31) includes a second heat dissipating member (92) constituted by a portion of (31).
 第18の態様では、ケーシング(31)が放熱部(F,91,92)を兼用するため、部品点数を削減できる。 In the eighteenth aspect, since the casing (31) also serves as the heat radiating section (F, 91, 92), the number of parts can be reduced.
図1は、実施形態に係る空気調和装置の概略の配管系統図である。FIG. 1 is a schematic piping system diagram of an air conditioner according to an embodiment. 図2は、室内機の内部構造を示す縦断面図である。FIG. 2 is a longitudinal sectional view showing the internal structure of the indoor unit. 図3は、照射装置の取付構造を前側から見た模式図である。FIG. 3 is a schematic diagram of the mounting structure of the irradiation device as viewed from the front side. 図4は、空気調和装置のブロック図である。FIG. 4 is a block diagram of an air conditioner. 図5は、変形例1に係る図1に相当する図である。FIG. 5 is a diagram corresponding to FIG. 1 according to Modification 1. As shown in FIG. 図6は、変形例3に係る室内機の内部構造を示す縦断面図である。6 is a longitudinal sectional view showing the internal structure of an indoor unit according to Modification 3. FIG. 図7は、変形例5の第1の例に係る熱伝導部およびフィンの概略の構成図である。FIG. 7 is a schematic configuration diagram of a heat conducting portion and fins according to a first example of modification 5. As shown in FIG. 図8は、変形例5の第2の例に係る熱伝導部およびフィンの概略の構成図である。FIG. 8 is a schematic configuration diagram of a heat conducting portion and fins according to a second example of modification 5. As shown in FIG. 図9は、変形例6の室内機の内部構造を示す縦断面図である。FIG. 9 is a vertical cross-sectional view showing the internal structure of the indoor unit of Modification 6. As shown in FIG. 図10は、変形例7の室内機の内部構造を示す縦断面図である。FIG. 10 is a vertical cross-sectional view showing the internal structure of the indoor unit of Modification 7. As shown in FIG. 図11は、変形例8の室内機の内部構造を示す縦断面図である。FIG. 11 is a vertical cross-sectional view showing the internal structure of the indoor unit of Modification 8. FIG.
 以下、本開示の実施形態について、図面を参照しながら詳細に説明する。なお、本開示は、以下に示される実施形態に限定されるものではなく、本開示の技術的思想を逸脱しない範囲内で各種の変更が可能である。各図面は、本開示を概念的に説明するためのものであるから、理解容易のために必要に応じて寸法、比または数を誇張または簡略化して表す場合がある。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. Note that the present disclosure is not limited to the embodiments shown below, and various modifications are possible without departing from the technical idea of the present disclosure. Each drawing is for the purpose of conceptually explaining the present disclosure, and therefore dimensions, ratios or numbers may be exaggerated or simplified as necessary for ease of understanding.
 (1)空気調和装置の全体構成
 図1は、空気調和装置(10)の概略の配管系統図である。空気調和装置(10)は、対象空間の空気の温度を調節する。対象空間は室内空間(I)である。空気調和装置(10)は、冷房運転と暖房運転とを行う。冷房運転では、空気調和装置(10)が室内空間(I)の空気を冷却する。暖房運転では、空気調和装置(10)が室内空間(I)の空気を加熱する。
(1) Overall Configuration of Air Conditioner Fig. 1 is a schematic piping system diagram of an air conditioner (10). The air conditioner (10) adjusts the temperature of the air in the target space. The target space is the indoor space (I). The air conditioner (10) performs cooling operation and heating operation. In cooling operation, the air conditioner (10) cools the air in the indoor space (I). In heating operation, the air conditioner (10) heats the air in the indoor space (I).
 空気調和装置(10)は、冷媒回路(11)を備える。冷媒回路(11)には、冷媒が充填される。冷媒回路(11)は、冷媒を循環させることにより冷凍サイクルを行う。冷媒は、例えばR32(ジフルオロメタン)である。 The air conditioner (10) has a refrigerant circuit (11). The refrigerant circuit (11) is filled with refrigerant. The refrigerant circuit (11) performs a refrigeration cycle by circulating refrigerant. The refrigerant is, for example, R32 (difluoromethane).
 空気調和装置(10)は、室外機(20)、室内機(30)、第1連絡配管(12)、第2連絡配管(13)を備える。本例の空気調和装置(10)は、1つの室外機(20)と1つの室内機(30)とを有するペア式である。室外機(20)は、圧縮機(21)、室外熱交換器(22)、膨張弁(23)、四方切換弁(24)、および室外ファン(25)を備える。室内機(30)は、室内熱交換器(40)および室内ファン(50)を備える。 The air conditioner (10) includes an outdoor unit (20), an indoor unit (30), a first communication pipe (12), and a second communication pipe (13). The air conditioner (10) of this example is of a pair type having one outdoor unit (20) and one indoor unit (30). The outdoor unit (20) includes a compressor (21), an outdoor heat exchanger (22), an expansion valve (23), a four-way switching valve (24), and an outdoor fan (25). The indoor unit (30) includes an indoor heat exchanger (40) and an indoor fan (50).
 第1連絡配管(12)と第2連絡配管(13)は、室内機(30)および室外機(20)を互いに接続する。第1連絡配管(12)はガス管であり、第2連絡配管(13)は、液管である。第1連絡配管(12)は、室内熱交換器(40)のガス端に接続する。第2連絡配管(13)は、室内熱交換器(40)の液端に接続する。 The first communication pipe (12) and the second communication pipe (13) connect the indoor unit (30) and the outdoor unit (20) to each other. The first communication pipe (12) is a gas pipe, and the second communication pipe (13) is a liquid pipe. The first communication pipe (12) is connected to the gas end of the indoor heat exchanger (40). The second communication pipe (13) is connected to the liquid end of the indoor heat exchanger (40).
 空気調和装置(10)は、照射装置(70)を備える。照射装置(70)は、紫外線を照射し、所定の対象を除菌する。 The air conditioner (10) has an irradiation device (70). The irradiation device (70) irradiates ultraviolet rays to disinfect a predetermined target.
 (2)室外機
 圧縮機(21)は、冷媒を圧縮する。圧縮機(21)は回転式の圧縮機である。回転式の圧縮機(21)は、揺動式、ローリングピストン式、スクロール式などで構成される。
(2) Outdoor unit The compressor (21) compresses refrigerant. The compressor (21) is a rotary compressor. The rotary compressor (21) is configured by an oscillating type, a rolling piston type, a scroll type, or the like.
 室外熱交換器(22)は、冷媒と室外空気とを熱交換させる。室外熱交換器(22)はフィンアンドチューブ式である。 The outdoor heat exchanger (22) exchanges heat between the refrigerant and the outdoor air. The outdoor heat exchanger (22) is of the fin and tube type.
 室外ファン(25)は、室外空気を搬送する。室外ファン(25)により搬送される空気は、室外熱交換器(22)を通過する。室外ファン(25)はプロペラファンである。 The outdoor fan (25) conveys outdoor air. Air carried by the outdoor fan (25) passes through the outdoor heat exchanger (22). The outdoor fan (25) is a propeller fan.
 膨張弁(23)は、冷媒を減圧する。膨張弁(23)は、電子式あるいは感温式の膨張弁である。 The expansion valve (23) reduces the pressure of the refrigerant. The expansion valve (23) is an electronic or temperature sensitive expansion valve.
 四方切換弁(24)は、冷媒回路(11)の冷媒の流れを正逆反転させる。四方切換弁(24)は、図1の実線で示す第1状態と、図1の破線で示す第2状態とに切り換わる。第1状態の四方切換弁(24)は、圧縮機(21)の吐出側と室外熱交換器(22)のガス側とを連通させると同時に、圧縮機(21)の吸入側と室内熱交換器(40)のガス側とを連通させる。第2状態の四方切換弁(24)は、圧縮機(21)の吐出側と室内熱交換器(40)のガス側とを連通させると同時に、圧縮機(21)の吸入側と室外熱交換器(22)のガス側とを連通させる。 The four-way switching valve (24) reverses the flow of refrigerant in the refrigerant circuit (11). The four-way switching valve (24) switches between a first state indicated by solid lines in FIG. 1 and a second state indicated by broken lines in FIG. The four-way switching valve (24) in the first state communicates the discharge side of the compressor (21) with the gas side of the outdoor heat exchanger (22), and at the same time, exchanges heat with the suction side of the compressor (21). communicate with the gas side of the vessel (40). The four-way switching valve (24) in the second state allows communication between the discharge side of the compressor (21) and the gas side of the indoor heat exchanger (40), and at the same time exchanges heat with the suction side of the compressor (21). communicate with the gas side of the vessel (22).
 (3)室内機
 図2は、室内機(30)の縦断面図である。以下の説明において、「上」、「下」、「前」、「後」に関する語句は、図2の矢印で示す方向を基準とする。
(3) Indoor Unit FIG. 2 is a longitudinal sectional view of the indoor unit (30). In the following description, the terms "top", "bottom", "front", and "back" are based on the directions indicated by the arrows in FIG.
 室内機(30)は、室内空間(I)に設置される。室内機(30)は、壁面に設けられる。室内機(30)は、壁掛け式の空調室内機である。室内機(30)は、ケーシング(31)、フィルタ(38)、室内熱交換器(40)、室内ファン(50)、およびドレンパン(60)を備える。 The indoor unit (30) is installed in the indoor space (I). The indoor unit (30) is provided on the wall surface. The indoor unit (30) is a wall-mounted air conditioning indoor unit. The indoor unit (30) includes a casing (31), a filter (38), an indoor heat exchanger (40), an indoor fan (50), and a drain pan (60).
 (3-1)ケーシング
 ケーシング(31)は、室内機(30)の外郭を形成している。ケーシング(31)の上部には、吸込口(32)が形成される。ケーシング(31)の下部には、吹出口(33)が形成される。ケーシング(31)の内部には、吸込口(32)から吹出口(33)に亘って空気通路(34)が形成される。吸込口(32)は、室内空間(I)の室内空気を空気通路(34)に取り込む。吹出口(33)は、空気通路(34)の空気を室内空間(I)に吹き出す。吹出口(33)には、吹出空気の風向を調節するフラップ(図示省略)が設けられる。
(3-1) Casing The casing (31) forms an outer shell of the indoor unit (30). A suction port (32) is formed in the upper portion of the casing (31). An outlet (33) is formed in the lower portion of the casing (31). An air passage (34) is formed inside the casing (31) from the inlet (32) to the outlet (33). The suction port (32) takes indoor air in the indoor space (I) into the air passageway (34). The blowout port (33) blows out the air in the air passageway (34) into the indoor space (I). The outlet (33) is provided with a flap (not shown) for adjusting the direction of the blown air.
 空気通路(34)には、空気流れの上流側から下流側に向かって順に、フィルタ(38)、室内熱交換器(40)、室内ファン(50)が配置される。 A filter (38), an indoor heat exchanger (40), and an indoor fan (50) are arranged in the air passage (34) in this order from the upstream side to the downstream side of the air flow.
 (3-2)フィルタ
 フィルタ(38)は、内部流路(S1)における室内熱交換器(40)の上流側に配置される。フィルタ(38)は、吸込口(32)から室内熱交換器(40)へ送られる空気中の塵埃などを捕集する。室内機は、フィルタ(38)に付着した塵埃を除去する塵埃除去機構を備えていてもよい。
(3-2) Filter The filter (38) is arranged upstream of the indoor heat exchanger (40) in the internal flow path (S1). The filter (38) collects dust and the like in the air sent from the suction port (32) to the indoor heat exchanger (40). The indoor unit may include a dust removing mechanism for removing dust adhering to the filter (38).
 (3-3)室内熱交換器
 室内熱交換器(40)は、熱媒体である冷媒と空気とを熱交換させる。室内熱交換器(40)は、フィンアンドチューブ式である。室内熱交換器(40)は、第1熱交換器(41)と第2熱交換器(42)とを含む。第1熱交換器(41)は、室内ファン(50)の前側に配置される。第2熱交換器(42)は、室内ファン(50)の後側に配置される。第1熱交換器(41)および第2熱交換器(42)は、互いに別体に構成される。
(3-3) Indoor heat exchanger The indoor heat exchanger (40) exchanges heat between a refrigerant, which is a heat medium, and air. The indoor heat exchanger (40) is of the fin-and-tube type. The indoor heat exchanger (40) includes a first heat exchanger (41) and a second heat exchanger (42). The first heat exchanger (41) is arranged in front of the indoor fan (50). The second heat exchanger (42) is arranged behind the indoor fan (50). The first heat exchanger (41) and the second heat exchanger (42) are configured separately from each other.
 第1熱交換器(41)および第2熱交換器(42)は、複数のフィン(41)と、複数のフィン(F)を厚さ方向(図2の紙面方向)に貫通する伝熱管(42)とをそれぞれ有する。フィン(F)は、縦長の矩形板状に形成される。フィン(F)は、熱伝導性の高いアルミニウムなどの金属材料で構成される。伝熱管(P)は、熱伝導性の高い銅などの金属材料で構成される。 The first heat exchanger (41) and the second heat exchanger (42) are composed of a plurality of fins (41) and heat transfer tubes ( 42) and respectively. The fin (F) is formed in a vertically long rectangular plate shape. The fins (F) are made of a metal material such as aluminum with high thermal conductivity. The heat transfer tube (P) is made of a metal material with high thermal conductivity such as copper.
 フィン(F)は、放熱部の一例である。放熱部は、照射装置(70)の熱を空気へ放出する。本実施形態の放熱部は、照射装置(70)の熱をさらに冷媒に放出する。フィン(F)の熱伝導率は、80W/m・K以上であることが好ましく、100W/m・K以上であることがより好ましい。 A fin (F) is an example of a heat dissipation part. The radiator radiates the heat of the irradiation device (70) to the air. The heat radiation part of the present embodiment further releases the heat of the irradiation device (70) to the coolant. The thermal conductivity of the fins (F) is preferably 80 W/m·K or more, more preferably 100 W/m·K or more.
 (3-4)室内ファン
 室内ファン(50)は、室内空気を搬送する。室内ファン(50)は、クロスフローファンである。室内ファン(50)により搬送される空気は、室内熱交換器(40)を通過する。室内熱交換器(40)を通過した空気は、吹出口(33)を通じて室内空間(I)へ供給される。
(3-4) Indoor fan The indoor fan (50) conveys the indoor air. The indoor fan (50) is a cross-flow fan. Air conveyed by the indoor fan (50) passes through the indoor heat exchanger (40). The air that has passed through the indoor heat exchanger (40) is supplied to the indoor space (I) through the outlet (33).
 (3-5)ドレンパン
 ドレンパン(60)は、空気中の結露水を受けるトレーである。ドレンパン(60)は、第1ドレンパン(61)と第2ドレンパン(62)とを含む。
(3-5) Drain Pan The drain pan (60) is a tray that receives condensed water in the air. The drain pan (60) includes a first drain pan (61) and a second drain pan (62).
 第1ドレンパン(61)は、第1熱交換器(41)の下側に配置される。第1ドレンパン(61)は、第1熱交換器(41)の下端部の下方に位置する。第1ドレンパン(61)は、第1熱交換器(41)の周囲で発生した結露水を受ける。 The first drain pan (61) is arranged below the first heat exchanger (41). The first drain pan (61) is located below the lower end of the first heat exchanger (41). The first drain pan (61) receives condensed water generated around the first heat exchanger (41).
 第2ドレンパン(62)は、第2熱交換器(42)の下側に配置される。第2ドレンパン(62)は、第2熱交換器(42)の下端部の下方に位置する。第2ドレンパン(62)は、第2熱交換器(42)の周囲で発生した結露水を受ける。 The second drain pan (62) is arranged below the second heat exchanger (42). The second drain pan (62) is located below the lower end of the second heat exchanger (42). The second drain pan (62) receives condensed water generated around the second heat exchanger (42).
 (3-6)照射装置および熱伝導部
 図2に示すように、照射装置(70)は、室内機(30)に設けられる。照射装置(70)は、ケーシング(31)の内部に配置される。本例の照射装置(70)は、第1ドレンパン(61)および空気を対象とする。
(3-6) Irradiation Device and Heat Conducting Section As shown in FIG. 2, the irradiation device (70) is provided in the indoor unit (30). The irradiation device (70) is arranged inside the casing (31). The irradiation device (70) of this example targets the first drain pan (61) and air.
 照射装置(70)は、回路基板(71)と、LED(72)とを有する。LED(72)は、回路基板(71)上に設けられる。LED(72)は紫外線を照射する発光部である。LED(72)は、所定の指向性をもって紫外線を照射する。LED(72)から照射される紫外線の波長は、190nm以上280nm以下である。紫外線の波長は220mm以上270nm以下であるのが好ましい。図3に示すように、本例の空気調和装置(10)は、3つの照射装置(70)を有する。 The irradiation device (70) has a circuit board (71) and an LED (72). The LED (72) is provided on the circuit board (71). The LED (72) is a light emitting part that emits ultraviolet light. The LED (72) emits ultraviolet light with a predetermined directivity. The wavelength of ultraviolet rays emitted from the LED (72) is 190 nm or more and 280 nm or less. It is preferable that the wavelength of the ultraviolet rays is 220 mm or more and 270 nm or less. As shown in FIG. 3, the air conditioner (10) of this example has three irradiation devices (70).
 空気調和装置(10)は、熱伝導部(75)を備える。本例の熱伝導部(75)は、金属材料で構成される。金属材料としては、アルミニウム、ステンレス、または鉄が挙げられる。熱伝導部(75)は、熱伝導性を有する樹脂材料であってもよい。樹脂材料としては、例えばポリカーボネート、ポリブチレンテレフタレート、ポリアセタール、ポリアミドなどが挙げられる。熱伝導部(75)の熱伝導率は、80W/m・K以上であることが好ましく、100W/m・K以上であることがより好ましい。 The air conditioner (10) has a heat conducting part (75). The heat conducting part (75) of this example is made of a metal material. Metal materials include aluminum, stainless steel, or iron. The thermally conductive portion (75) may be made of a resin material having thermal conductivity. Examples of resin materials include polycarbonate, polybutylene terephthalate, polyacetal, and polyamide. The thermal conductivity of the heat conducting portion (75) is preferably 80 W/m·K or more, more preferably 100 W/m·K or more.
 熱伝導部(75)は、照射装置(70)と室内熱交換器(40)とを接続する。本例の熱伝導部(75)は、第1熱交換器(41)の複数のフィン(F)と接続する。熱伝導部(75)は、第1熱交換器(41)のうち最も端のフィン(端板)、および複数のフィン(F)の側辺に接している。熱伝導部(75)は、第1熱交換器(41)の全てのフィン(F)と接するように、これらのフィン(F)の前縁に沿って複数のフィン(F)の配列方向に延びている。熱伝導部(75)は、全てのフィン(F)の一部のみと接してもよい。 The heat conducting part (75) connects the irradiation device (70) and the indoor heat exchanger (40). The heat conducting part (75) of this example is connected to the plurality of fins (F) of the first heat exchanger (41). The heat conducting part (75) is in contact with the endmost fin (end plate) of the first heat exchanger (41) and the side edges of the plurality of fins (F). The heat conducting part (75) extends along the front edges of the fins (F) in the direction in which the fins (F) are arranged so as to be in contact with all the fins (F) of the first heat exchanger (41). extended. The heat-conducting portion (75) may contact only a portion of all the fins (F).
 本例では、熱伝導部(75)の下部に照射装置(70)が固定される。3つの照射装置(70)は、熱伝導部(75)の長手方向に沿って配列される。熱伝導部(75)には、回路基板(71)が固定される。LED(72)は、回路基板(71)を介して熱伝導部(75)と熱的に接続する。熱伝導部(75)は、LED(72)と直接的に接してもよい。 In this example, the irradiation device (70) is fixed to the lower part of the heat conducting part (75). The three irradiation devices (70) are arranged along the longitudinal direction of the heat conducting section (75). A circuit board (71) is fixed to the heat conducting portion (75). The LED (72) is thermally connected to the heat conducting portion (75) through the circuit board (71). The heat conducting portion (75) may be in direct contact with the LED (72).
 LED(72)は、紫外線を第1ドレンパン(61)に向かって照射する。具体的には、LED(72)は、紫外線を第1ドレンパン(61)の底面(60a)に向かって照射する。これにより、第1ドレンパン(61)や、第1ドレンパン(61)の内部にある水を紫外線により除菌できる。 The LED (72) emits ultraviolet rays toward the first drain pan (61). Specifically, the LED (72) emits ultraviolet light toward the bottom surface (60a) of the first drain pan (61). As a result, the first drain pan (61) and the water inside the first drain pan (61) can be sterilized by the ultraviolet rays.
 LED(72)は、紫外線を室内ファン(50)が搬送する空気に向かって照射する。言い換えると、LED(72)は、紫外線を空気通路(34)の空気に向かって照射する。これにより、室内空間(I)に供給される空気を除菌できる。 The LED (72) irradiates ultraviolet rays toward the air carried by the indoor fan (50). In other words, the LED (72) emits ultraviolet rays toward the air in the air passageway (34). Thereby, the air supplied to the indoor space (I) can be sterilized.
 LED(72)の近傍では、空気が後側斜め下方に流れる。したがって、LED(72)は、空気流れの下流側に向かって紫外線を照射することになる。このようにすると、空気中の塵埃がLED(72)に付着することを抑制できる。 In the vicinity of the LED (72), air flows obliquely downward on the rear side. Therefore, the LED (72) irradiates ultraviolet rays toward the downstream side of the air flow. In this way, dust in the air can be prevented from adhering to the LED (72).
 特に、熱伝導部(75)はLED(72)の上流側に位置するとともに、熱伝導部(75)における下流側の面(下面)にLED(72)が固定される。このため、LED(72)の表面に空気中の塵埃が付着することを、熱伝導部(75)により抑制できる。 In particular, the heat conducting portion (75) is positioned upstream of the LEDs (72), and the LEDs (72) are fixed to the downstream surface (lower surface) of the heat conducting portion (75). Therefore, the heat conducting portion (75) can prevent dust in the air from adhering to the surface of the LED (72).
 室内熱交換器(40)の周囲で発生した結露水は、室内熱交換器(40)の下流側に飛散することがある。これに対し、本例では、照射装置(70)および熱伝導部(75)が、第1熱交換器(41)における空気流れの上流側に配置される。このため、照射装置(70)のLED(72)や回路基板(71)に結露水が付着することを抑制できる。 Condensed water generated around the indoor heat exchanger (40) may scatter downstream of the indoor heat exchanger (40). In contrast, in this example, the irradiation device (70) and the heat transfer section (75) are arranged upstream of the air flow in the first heat exchanger (41). Therefore, it is possible to suppress adhesion of condensed water to the LEDs (72) and the circuit board (71) of the irradiation device (70).
 (4)リモートコントローラおよび制御部
 図1および図4に示すように、空気調和装置(10)は、リモートコントローラ(80)を備える。リモートコントローラ(80)は、操作部(81)を有する。操作部(81)は、人が空気調和装置(10)に対する各種の指示を入力するための機能部である。操作部(81)は、スイッチ、ボタン、またはタッチパネルを含む。人が操作部(81)を操作することで空気調和装置(10)の運転が選択される。空気調和装置(10)の運転は、冷房運転と暖房運転とを含む。
(4) Remote Controller and Control Section As shown in FIGS. 1 and 4, the air conditioner (10) includes a remote controller (80). The remote controller (80) has an operation section (81). The operating section (81) is a functional section for a person to input various instructions to the air conditioner (10). The operation unit (81) includes switches, buttons, or a touch panel. Operation of the air conditioner (10) is selected by a person operating the operation unit (81). The operation of the air conditioner (10) includes cooling operation and heating operation.
 図1および図4に示すように、空気調和装置(10)は、制御部(100)を有する。制御部(100)は、空気調和装置(10)の動作を制御する。制御部(100)は、照射装置(70)の動作を制御する。制御部(100)は、第1制御装置(101)、第2制御装置(102)、リモートコントローラ(80)、第1通信線(103)、および第2通信線(104)を含む。 As shown in FIGS. 1 and 4, the air conditioner (10) has a control section (100). The control section (100) controls the operation of the air conditioner (10). The controller (100) controls the operation of the irradiation device (70). The control unit (100) includes a first control device (101), a second control device (102), a remote controller (80), a first communication line (103), and a second communication line (104).
 第1制御装置(101)および第2制御装置(102)のそれぞれは、MCU(Micro Control Unit,マイクロコントローラユニット)、電気回路、電子回路を含む。MCUは、CPU(Central Processing Unit,中央演算処理装置)、メモリ、通信インターフェースを含む。メモリには、CPUが実行するための各種のプログラムが記憶されている。 Each of the first controller (101) and the second controller (102) includes an MCU (Micro Control Unit), an electric circuit, and an electronic circuit. The MCU includes a CPU (Central Processing Unit), memory, and a communication interface. Various programs for the CPU to execute are stored in the memory.
 第1制御装置(101)は、室外機(20)に設けられる。第2制御装置(102)は、室内機(30)に設けられる。第1制御装置(101)および第2制御装置(102)は、第1通信線(103)を介して互いに接続される。第2制御装置(102)とリモートコントローラ(80)は、第2通信線(104)を介して互いに接続される。第1通信線(103)および第2通信線(104)は、有線または無線である。 The first control device (101) is provided in the outdoor unit (20). The second control device (102) is provided in the indoor unit (30). The first control device (101) and the second control device (102) are connected to each other via a first communication line (103). The second control device (102) and the remote controller (80) are connected to each other via a second communication line (104). The first communication line (103) and the second communication line (104) are wired or wireless.
 第1制御装置(101)は、受信した指令に応じて、圧縮機(21)、膨張弁(23)、四方切換弁(24)、および室外ファン(25)を制御する。第2制御装置(102)は、受信した指令に応じて、室内ファン(50)および照射装置(70)を制御する。 The first controller (101) controls the compressor (21), the expansion valve (23), the four-way switching valve (24), and the outdoor fan (25) according to the received command. The second controller (102) controls the indoor fan (50) and the irradiation device (70) according to the received command.
 制御部(100)は、受信した指令に応じて、冷房運転と暖房運転とを切り換えて実行させる。制御部(100)は、冷房運転時において照射装置(70)をON状態とする。本例の制御部(100)は、暖房運転時において照射装置(70)をON状態とする。制御部(100)は、冷房運転時の照射装置(70)の出力を、暖房運転時の照射装置(70)の出力よりも大きくする。具体的には、制御部(100)は、冷房運転時の照射装置(70)の発光強度を、暖房運転時の照射装置(70)の発光強度よりも大きくする。 The control unit (100) switches between cooling operation and heating operation according to the received command. The control section (100) turns on the irradiation device (70) during cooling operation. The controller (100) of the present example turns on the irradiation device (70) during the heating operation. The control unit (100) makes the output of the irradiation device (70) during cooling operation higher than the output of the irradiation device (70) during heating operation. Specifically, the control unit (100) makes the emission intensity of the irradiation device (70) during cooling operation higher than the emission intensity of the irradiation device (70) during heating operation.
 (5)運転動作
 空気調和装置(10)の運転動作について詳細に説明する。空気調和装置(10)は冷房運転と暖房運転とを切り換えて行う。
(5) Operating Behavior The operating behavior of the air conditioner (10) will be described in detail. The air conditioner (10) switches between cooling operation and heating operation.
 (5-1)冷房運転
 冷房運転では、制御部(100)が四方切換弁(24)を第1状態とする。制御部(100)は、圧縮機(21)、室外ファン(25)、および室内ファン(50)を運転する。制御部(100)は、膨張弁(23)の開度を調節する。冷房運転中の冷媒回路(11)は、室外熱交換器(22)が放熱器として機能し、室内熱交換器(40)が蒸発器として機能する冷凍サイクル(冷房サイクル)を行う。
(5-1) Cooling Operation In cooling operation, the control section (100) sets the four-way switching valve (24) to the first state. The controller (100) operates the compressor (21), the outdoor fan (25), and the indoor fan (50). The control section (100) adjusts the degree of opening of the expansion valve (23). During cooling operation, the refrigerant circuit (11) performs a refrigeration cycle (cooling cycle) in which the outdoor heat exchanger (22) functions as a radiator and the indoor heat exchanger (40) functions as an evaporator.
 具体的には、圧縮機(21)で圧縮された冷媒は、室外熱交換器(22)を流れる。室外熱交換器(22)は、冷媒と室外空気とを熱交換させる。室外熱交換器(22)で放熱、あるいは凝縮した冷媒は、膨張弁(23)で減圧された後、室内熱交換器(40)を流れる。室内熱交換器(40)は、冷媒と室内空気とを熱交換させる。室内熱交換器(40)で蒸発した冷媒は、圧縮機(21)で再び圧縮される。 Specifically, the refrigerant compressed by the compressor (21) flows through the outdoor heat exchanger (22). The outdoor heat exchanger (22) exchanges heat between refrigerant and outdoor air. The refrigerant that has released heat or condensed in the outdoor heat exchanger (22) is decompressed by the expansion valve (23) and then flows through the indoor heat exchanger (40). The indoor heat exchanger (40) exchanges heat between the refrigerant and indoor air. The refrigerant evaporated in the indoor heat exchanger (40) is compressed again in the compressor (21).
 室内機(30)では、室内空気が吸込口(32)を通じて空気通路(34)に吸い込まれる。空気通路(34)の空気は、室内熱交換器(40)を通過する。室内熱交換器(40)は、冷媒によって空気を冷却する。室内熱交換器(40)で冷却された空気は、吹出口(33)を通じて室内空間(I)へ供給される。 In the indoor unit (30), indoor air is sucked into the air passage (34) through the suction port (32). Air in the air passageway (34) passes through the indoor heat exchanger (40). The indoor heat exchanger (40) cools air with refrigerant. The air cooled by the indoor heat exchanger (40) is supplied to the indoor space (I) through the outlet (33).
 (5-2)暖房運転
 暖房運転では、制御部(100)が四方切換弁(24)を第2状態とする。制御部(100)は、圧縮機(21)、室外ファン(25)、および室内ファン(50)を運転する。制御部(100)は、膨張弁(23)の開度を調節する。暖房運転中の冷媒回路(11)は、室内熱交換器(40)が放熱器として機能し、室外熱交換器(22)が蒸発器として機能する冷凍サイクル(暖房サイクル)を行う。
(5-2) Heating operation In the heating operation, the controller (100) sets the four-way switching valve (24) to the second state. The controller (100) operates the compressor (21), the outdoor fan (25), and the indoor fan (50). The control section (100) adjusts the degree of opening of the expansion valve (23). During heating operation, the refrigerant circuit (11) performs a refrigeration cycle (heating cycle) in which the indoor heat exchanger (40) functions as a radiator and the outdoor heat exchanger (22) functions as an evaporator.
 具体的には、圧縮機(21)で圧縮された冷媒は、室内熱交換器(40)を流れる。室内熱交換器(40)は、冷媒と室内空気とを熱交換させる。室内熱交換器(40)で放熱、あるいは凝縮した冷媒は、膨張弁(23)で減圧された後、室外熱交換器(22)を流れる。室外熱交換器(22)は、冷媒と室外空気とを熱交換させる。室外熱交換器(22)で蒸発した冷媒は、圧縮機(21)で再び圧縮される。 Specifically, the refrigerant compressed by the compressor (21) flows through the indoor heat exchanger (40). The indoor heat exchanger (40) exchanges heat between the refrigerant and indoor air. The refrigerant that has released heat or condensed in the indoor heat exchanger (40) is decompressed by the expansion valve (23) and then flows through the outdoor heat exchanger (22). The outdoor heat exchanger (22) exchanges heat between refrigerant and outdoor air. The refrigerant evaporated in the outdoor heat exchanger (22) is compressed again in the compressor (21).
 室内機(30)では、室内空気が吸込口(32)を通じて空気通路(34)に吸い込まれる。空気通路(34)の空気は、室内熱交換器(40)を通過する。室内熱交換器(40)は、冷媒によって空気を加熱する。室内熱交換器(40)で加熱された空気は、吹出口(33)を通じて室内空間(I)へ供給される。 In the indoor unit (30), indoor air is sucked into the air passage (34) through the suction port (32). Air in the air passageway (34) passes through the indoor heat exchanger (40). The indoor heat exchanger (40) heats air with refrigerant. The air heated by the indoor heat exchanger (40) is supplied to the indoor space (I) through the outlet (33).
 (5-3)冷房運転時の照射装置の動作
 冷房運転時には、制御部(100)が照射装置(70)をON状態とする。照射装置(70)がON状態になると、LED(72)が紫外線を照射する。この紫外線は、第1ドレンパン(61)に照射される。これにより、第1ドレンパン(61)や第1ドレンパン(61)内の水を除菌できる。したがって、第1ドレンパン(61)における菌やカビの繁殖を抑制できる。
(5-3) Operation of irradiation device during cooling operation During cooling operation, the controller (100) turns on the irradiation device (70). When the irradiation device (70) is turned on, the LED (72) emits ultraviolet rays. The ultraviolet rays are applied to the first drain pan (61). As a result, the first drain pan (61) and the water in the first drain pan (61) can be sterilized. Therefore, propagation of bacteria and fungi in the first drain pan (61) can be suppressed.
 加えて、紫外線は、空気通路(34)を流れる空気に照射される。このため、空気通路(34)を流れる空気を除菌し、除菌した空気を室内へ供給できる。 In addition, the ultraviolet rays irradiate the air flowing through the air passage (34). Therefore, the air flowing through the air passageway (34) can be sterilized, and the sterilized air can be supplied indoors.
 制御部(100)は、冷房運転時における照射装置(70)の発光強度を、暖房運転時における照射装置(70)の発光強度よりも大きくする。冷房運転は、高温高湿条件下で実行される。このため、冷房運転時には、ケーシング(31)の内部において、菌などが繁殖しやすい。これに対し、冷房運転時の照射装置(70)の発光強度を大きくすることで、このような菌の繁殖を確実に抑制できる。 The control unit (100) makes the emission intensity of the irradiation device (70) during cooling operation higher than the emission intensity of the irradiation device (70) during heating operation. Cooling operation is performed under high temperature and high humidity conditions. Therefore, bacteria and the like tend to grow inside the casing (31) during cooling operation. On the other hand, by increasing the emission intensity of the irradiation device (70) during the cooling operation, the propagation of such bacteria can be reliably suppressed.
 冷房運転時のフィン(F)の温度は、暖房運転時のそれよりも低い。このため、冷房運転時には、照射装置(70)の発熱をより効果的に抑制できる。その結果、冷房時において、照射装置(70)のLED(72)の出力を大きくできる。 The temperature of the fins (F) during cooling operation is lower than that during heating operation. Therefore, heat generation of the irradiation device (70) can be more effectively suppressed during cooling operation. As a result, the output of the LED (72) of the irradiation device (70) can be increased during cooling.
 (5-4)暖房運転時の照射装置の動作
 暖房運転時には、制御部(100)が照射装置(70)をON状態とする。照射装置(70)がON状態になると、LED(72)が紫外線を照射する。この紫外線は、空気通路(34)を流れる空気に照射される。このため、空気通路(34)を流れる空気を除菌し、除菌した空気を室内へ供給できる。
(5-4) Operation of irradiation device during heating operation During heating operation, the control unit (100) turns on the irradiation device (70). When the irradiation device (70) is turned on, the LED (72) emits ultraviolet rays. The ultraviolet rays irradiate the air flowing through the air passageway (34). Therefore, the air flowing through the air passageway (34) can be sterilized, and the sterilized air can be supplied indoors.
 加えて、暖房運転中には、制御部(100)が逆サイクルデフロスト動作を適宜行う。逆サイクルデフロスト動作では、冷房運転と同様、室内熱交換器(40)が蒸発器となるため、結露水が発生することがある。ドレンパン(60)は、この結露水を受ける。 In addition, during heating operation, the control unit (100) appropriately performs the reverse cycle defrost operation. In the reverse cycle defrosting operation, as in the cooling operation, the indoor heat exchanger (40) functions as an evaporator, so that condensation water may occur. The drain pan (60) receives this condensed water.
 暖房運転時において、LED(72)が照射された水は第1ドレンパン(61)に照射される。このため、第1ドレンパン(61)や第1ドレンパン(61)内の水を除菌できる。したがって、逆サイクルデフロスト動作に起因して、第1ドレンパン(61)において菌やカビが繁殖することを抑制できる。 During heating operation, the water irradiated by the LED (72) is irradiated to the first drain pan (61). Therefore, the first drain pan (61) and the water in the first drain pan (61) can be sterilized. Therefore, it is possible to suppress the propagation of bacteria and fungi in the first drain pan (61) due to the reverse cycle defrosting operation.
 (6)特徴
 (6-1)空気調和装置(10)は、照射装置(70)の熱を空気へ放出する放熱部としてのフィン(F)を備える。このため、比較的簡単な構成により、LED(72)の温度上昇を抑制できる。
(6) Features (6-1) The air conditioner (10) has fins (F) as heat radiators that release heat from the irradiation device (70) to the air. Therefore, the temperature rise of the LED (72) can be suppressed with a relatively simple configuration.
 具体的には、空気調和装置(10)は、フィン(F)とを接続する熱伝導部(75)を有する。このため、LED(72)から発する熱を、熱伝導部(75)を介してフィン(F)に伝えることができる。したがって、フィン(F)の放熱効果により、LED(72)の温度上昇を抑制できる。これにより、照射装置(70)で所望の動作を行うことができる。フィン(F)は、室内熱交換器(40)に設けられ、十分な伝熱面積を有するため、LED(72)の発熱を効果的に抑制できる。 Specifically, the air conditioner (10) has a heat conducting part (75) that connects with the fins (F). Therefore, the heat generated from the LED (72) can be transferred to the fins (F) through the heat conducting portion (75). Therefore, the temperature rise of the LED (72) can be suppressed by the heat dissipation effect of the fins (F). This allows the irradiation device (70) to perform desired operations. The fins (F) are provided in the indoor heat exchanger (40) and have a sufficient heat transfer area, so they can effectively suppress the heat generation of the LEDs (72).
 (6-2)熱伝導部(75)は金属材料であるため、照射装置(70)の熱を、熱伝導部(75)を介して速やかにフィン(F)に伝えることができる。このため、熱伝導部(75)の熱移動が律速となることに起因して、LED(72)の放熱効果が低下することを抑制できる。特に熱伝導部(75)の熱伝導率を80W/m・K以上とすることで、LED(72)の放熱効果を向上できる。特に熱伝導部(75)の熱伝導率を100W/m・K以上とすることで、LED(72)の放熱効果を十分に得ることができる。 (6-2) Since the heat conducting portion (75) is made of a metal material, the heat of the irradiation device (70) can be rapidly transferred to the fins (F) via the heat conducting portion (75). Therefore, it is possible to prevent a decrease in the heat dissipation effect of the LED (72) due to the rate-determining heat transfer of the heat conducting portion (75). In particular, by setting the thermal conductivity of the heat conductive portion (75) to 80 W/m·K or more, the heat dissipation effect of the LED (72) can be improved. In particular, by setting the thermal conductivity of the heat conducting portion (75) to 100 W/m·K or more, the heat dissipation effect of the LED (72) can be sufficiently obtained.
 放熱部としてのフィン(F)の熱伝導率を80W/m・K以上とすることで、LED(72)の放熱効果を向上できる。特にフィン(F)の熱伝導率を100W/m・K以上とすることで、LED(72)の放熱効果を十分に得ることができる。 The heat dissipation effect of the LED (72) can be improved by setting the thermal conductivity of the fins (F) as the heat dissipation part to 80 W/m·K or more. In particular, by setting the thermal conductivity of the fins (F) to 100 W/m·K or more, a sufficient heat dissipation effect for the LEDs (72) can be obtained.
 (6-3)制御部(100)は、冷房運転において、照射装置(70)をON状態とする。このため、特に菌やカビなどが発生しやすい条件下において、所定の対象(空気やドレンパン(60))を除菌できる。加えて、冷房運転中の室内熱交換器(40)は、蒸発器として機能する。このため、LED(72)を冷媒によって十分に冷却できる。 (6-3) The controller (100) turns on the irradiation device (70) in cooling operation. Therefore, it is possible to sterilize predetermined objects (air and drain pan (60)) under conditions where bacteria and mold are particularly likely to occur. In addition, the indoor heat exchanger (40) during cooling operation functions as an evaporator. Therefore, the LED (72) can be sufficiently cooled by the coolant.
 (6-4)制御部(100)は、暖房運転において、照射装置(70)をON状態とする。このため、暖房運転においても、対象(空気やドレンパン(60))を除菌できる。照射装置(70)をON状態にすると、LED(72)の温度が例えば80℃以上になることもある。これに対し、室内熱交換器(40)で凝縮する冷媒の温度は、LED(72)の温度よりもかなり低くなる。したがって、暖房運転においても、LED(72)を冷媒によって十分に冷却できる。 (6-4) The controller (100) turns on the irradiation device (70) in the heating operation. Therefore, objects (air and drain pan (60)) can be sterilized even in heating operation. When the irradiation device (70) is turned on, the temperature of the LED (72) may reach, for example, 80° C. or higher. In contrast, the temperature of the refrigerant condensed in the indoor heat exchanger (40) is much lower than the temperature of the LED (72). Therefore, even in heating operation, the LED (72) can be sufficiently cooled by the refrigerant.
 (6-5)制御部(100)は、冷房運転時の照射装置(70)の発光強度を、暖房運転時の照射装置(70)の発光強度よりも大きくする。このため、高温高湿の条件下において、菌やカビが繁殖することを確実に抑制できる。 (6-5) The control unit (100) makes the emission intensity of the irradiation device (70) during cooling operation higher than the emission intensity of the irradiation device (70) during heating operation. Therefore, it is possible to reliably suppress the propagation of bacteria and fungi under conditions of high temperature and high humidity.
 (6-6)照射装置(70)は、紫外線をドレンパン(60)に向かって照射する。このため、ドレンパン(60)やドレンパン(60)内の水を除菌できる。 (6-6) The irradiation device (70) irradiates ultraviolet rays toward the drain pan (60). Therefore, the drain pan (60) and the water in the drain pan (60) can be sterilized.
 (6-7)照射装置(70)は、ファン(50)が搬送する空気に向かって紫外線を照射する。このため、除菌した空気を室内空間(I)へ供給できる。 (6-7) The irradiation device (70) irradiates the air conveyed by the fan (50) with ultraviolet rays. Therefore, sterilized air can be supplied to the indoor space (I).
 (6-8)照射装置(70)は、室内熱交換器(40)よりも空気流れの上流側に配置される。このため、室内熱交換器(40)の近傍で発生した結露水などが、回路基板(71)やLED(72)に付着することを抑制でき、照射装置(70)の動作を補償できる。 (6-8) The irradiation device (70) is arranged upstream of the indoor heat exchanger (40) in the air flow. Therefore, it is possible to prevent the condensation water generated near the indoor heat exchanger (40) from adhering to the circuit board (71) and the LEDs (72), thereby compensating the operation of the irradiation device (70).
 (6-9)LED(72)は、空気流れの下流側を向いている。このため、空気中の塵埃などがLED(72)の表面に付着することを抑制でき、LED(72)の実質的な照射量が小さくなることを抑制できる。 (6-9) The LED (72) faces the downstream side of the air flow. Therefore, it is possible to prevent dust in the air from adhering to the surface of the LED (72), and to prevent the substantial irradiation amount of the LED (72) from decreasing.
 (7)変形例
 上記各実施形態においては、以下のような変形例の構成を採用してもよい。
(7) Modifications In each of the embodiments described above, the following modifications may be employed.
 (7-1)変形例1:照射装置の対象に関する変形例
 (7-1-1)
 照射装置(70)は、第2ドレンパン(62)に紫外線を照射してもよい。照射装置(70)は、第1ドレンパン(61)および第2ドレンパン(62)の双方に紫外線を照射してもよい。
(7-1) Modification 1: Modification regarding target of irradiation device (7-1-1)
The irradiation device (70) may irradiate the second drain pan (62) with ultraviolet rays. The irradiation device (70) may irradiate both the first drain pan (61) and the second drain pan (62) with ultraviolet rays.
 (7-1-2)
 図5に示すように、照射装置(70)は、室内熱交換器(40)に紫外線を照射してもよい。これにより、室内熱交換器(40)の表面を除菌できる。本例では、照射装置(70)は、第1熱交換器(41)に紫外線を照射する。熱伝導部(75)は、照射装置(70)と第1熱交換器(41)とを接続する。言い換えると、熱伝導部(75)は、照射装置(70)と、この照射装置(70)の対象とを接続する。照射装置(70)は、第2熱交換器(42)に紫外線を照射してもよい。この場合、熱伝導部(75)は、照射装置(70)と第2熱交換器(42)とを接続する。
(7-1-2)
As shown in FIG. 5, the irradiation device (70) may irradiate the indoor heat exchanger (40) with ultraviolet rays. Thereby, the surface of the indoor heat exchanger (40) can be sterilized. In this example, the irradiation device (70) irradiates the first heat exchanger (41) with ultraviolet rays. The heat conducting part (75) connects the irradiation device (70) and the first heat exchanger (41). In other words, the heat conducting part (75) connects the irradiation device (70) and the object of the irradiation device (70). The irradiation device (70) may irradiate the second heat exchanger (42) with ultraviolet rays. In this case, the heat conducting part (75) connects the irradiation device (70) and the second heat exchanger (42).
 (7-1-3)
 照射装置(70)は、フィルタ(38)に紫外線を照射してもよい。これにより、フィルタ(38)の表面や内部を除菌できる。照射装置(70)は、フィルタ(38)の塵埃除去機構に紫外線を照射してもよい。
(7-1-3)
The irradiation device (70) may irradiate the filter (38) with ultraviolet rays. Thereby, the surface and inside of the filter (38) can be sterilized. The irradiation device (70) may irradiate the dust removing mechanism of the filter (38) with ultraviolet rays.
 (7-1-4)
 照射装置(70)は、室内ファン(50)によって搬送される空気のうち、ケーシング(31)の外部の空気に紫外線を照射してもよい。具体的には、照射装置(70)は、吸込口(32)に吸い込まれる空気に紫外線を照射してもよい。照射装置(70)は、吹出口(33)から吹き出される空気に紫外線を照射してもよい。
(7-1-4)
The irradiation device (70) may irradiate, of the air carried by the indoor fan (50), the air outside the casing (31) with ultraviolet rays. Specifically, the irradiation device (70) may irradiate the air sucked into the suction port (32) with ultraviolet rays. The irradiation device (70) may irradiate the air blown from the outlet (33) with ultraviolet rays.
 (7-1-5)
 照射装置(70)は、ファンとしての室内ファン(50)に紫外線を照射してもよい。これにより、室内ファン(50)を除菌できる。
(7-1-5)
The irradiation device (70) may irradiate an indoor fan (50) as a fan with ultraviolet rays. Thereby, the indoor fan (50) can be sterilized.
 (7-1-6)
 照射装置(70)は、ケーシング(31)の内壁や、空気通路(34)に面する内壁に紫外線を照射してもよい。これにより、これらの内壁を除菌できる。
(7-1-6)
The irradiation device (70) may irradiate the inner wall of the casing (31) or the inner wall facing the air passageway (34) with ultraviolet rays. This allows these inner walls to be sterilized.
 (7-2)変形例2:照射装置と空気流れとの関係
 照射装置(70)は、室内熱交換器(40)における空気流れの下流側に配置されてもよい。LED(72)は、空気流れの上流側に向かって紫外線を照射してもよい。
(7-2) Modified Example 2: Relationship Between Irradiation Device and Air Flow The irradiation device (70) may be arranged downstream of the air flow in the indoor heat exchanger (40). The LED (72) may irradiate ultraviolet rays toward the upstream side of the airflow.
 (7-3)変形例3:空気調和装置の方式に関する変形例
 (7-3-1)
 空気調和装置(10)は、天井設置式の室内機(30)を有してもよい。ここで、天井設置式の室内機(30)は、室内機(30)が天井面に埋め込まれる天井埋め込み式や、室内機(30)が上壁に吊り下げられる天井吊り式を含む。
(7-3) Modification 3: Modification of air conditioning system (7-3-1)
The air conditioner (10) may have a ceiling-mounted indoor unit (30). Here, the ceiling-mounted indoor unit (30) includes a ceiling-embedded type in which the indoor unit (30) is embedded in the ceiling surface, and a ceiling-mounted type in which the indoor unit (30) is suspended from the upper wall.
 図6は、室内機(30)の縦断面図である。室内機(30)は、天井裏に設置されるケーシング(31)を備えている。ケーシング(31)は、ケーシング本体(35)と、パネル(36)とを備える。ケーシング本体(35)は、下側に開口面が形成される矩形箱状に形成される。パネル(36)は、ケーシング本体(35)の開口面に着脱可能に取り付けられる。パネル(36)は、矩形枠状のパネル本体(36a)と、パネル本体(36a)の中央に設けられる吸込グリル(36b)とを有する。 FIG. 6 is a longitudinal sectional view of the indoor unit (30). The indoor unit (30) has a casing (31) installed above the ceiling. The casing (31) includes a casing body (35) and a panel (36). The casing body (35) is shaped like a rectangular box with an opening on the bottom. The panel (36) is detachably attached to the opening surface of the casing body (35). The panel (36) has a rectangular frame-shaped panel body (36a) and an intake grille (36b) provided in the center of the panel body (36a).
 パネル本体(36a)の中央には1つの吸込口(32)が形成される。吸込グリル(36b)は、吸込口(32)に取り付けられる。パネル本体(36a)の4つの側縁部には、それぞれ吹出口(33)が1つずつ形成される。各吹出口(33)は、4つの側縁部に沿うように延びている。各吹出口(33)の内部には、フラップ(39)がそれぞれ設けられる。ケーシング(31)内には、吸込口(32)から吹出口(33)に亘って空気通路(34)が形成される。 One suction port (32) is formed in the center of the panel body (36a). The suction grille (36b) is attached to the suction port (32). Each of the four side edges of the panel body (36a) is formed with one outlet (33). Each outlet (33) extends along four side edges. A flap (39) is provided inside each outlet (33). An air passage (34) is formed in the casing (31) from the inlet (32) to the outlet (33).
 ケーシング本体(35)の内部には、ベルマウス(43)と、室内ファン(50)と、室内熱交換器(40)と、ドレンパン(60)とが設けられる。ベルマウス(43)および室内ファン(50)は、吸込グリル(36b)の上方に配置される。室内ファン(50)は、遠心式のターボファンである。室内熱交換器(40)は、室内ファン(50)の周囲を囲むように空気通路(34)に配置される。室内熱交換器(40)は、フィンアンドチューブ式の熱交換器である。ドレンパン(60)は、空気通路(34)における室内熱交換器(40)の下方に配置される。 A bell mouth (43), an indoor fan (50), an indoor heat exchanger (40), and a drain pan (60) are provided inside the casing body (35). The bellmouth (43) and the indoor fan (50) are arranged above the intake grille (36b). The indoor fan (50) is a centrifugal turbo fan. The indoor heat exchanger (40) is arranged in the air passageway (34) so as to surround the indoor fan (50). The indoor heat exchanger (40) is a fin-and-tube heat exchanger. The drain pan (60) is arranged below the indoor heat exchanger (40) in the air passageway (34).
 本例では、照射装置(70)が室内熱交換器(40)の上流側に配置される。照射装置(70)は、ドレンパン(60)に向かって紫外線を照射する。 In this example, the irradiation device (70) is arranged upstream of the indoor heat exchanger (40). The irradiation device (70) irradiates ultraviolet rays toward the drain pan (60).
 本例の熱伝導部(75)は、照射装置(70)と室内熱交換器(40)のフィン(図示省略)とを接続する。これにより、LED(72)の熱を、フィンを介して空気中へ放出できる。 The heat conducting part (75) of this example connects the irradiation device (70) and the fins (not shown) of the indoor heat exchanger (40). Thereby, the heat of the LED (72) can be released to the air through the fins.
 (7-3-2)
 室内機(30)は、床置き式や、天井裏に設置されるダクト式であってもよい。
(7-3-2)
The indoor unit (30) may be of a floor type or a duct type installed in the ceiling.
 (7-3-3)空気調和装置(10)は、室内空間(I)を換気する機能を有してもよい。空気調和装置(10)は、加湿や除湿の機能を有してもよい。空気調和装置(10)は、空気を浄化する機能を有してもよい。 (7-3-3) The air conditioner (10) may have a function of ventilating the indoor space (I). The air conditioner (10) may have humidification and dehumidification functions. The air conditioner (10) may have a function of purifying air.
 (7-3-4)
 室内機(30)では、室内熱交換器(40)において冷媒と空気を熱交換させる。しかし、室内熱交換器(40)は、水やブラインなどの冷媒以外の熱媒体と空気を熱交換させてもよい。
(7-3-4)
In the indoor unit (30), heat is exchanged between the refrigerant and air in the indoor heat exchanger (40). However, the indoor heat exchanger (40) may heat-exchange air with a heat medium other than refrigerant, such as water or brine.
 (7-3-5)
 空気調和装置(10)は、複数の室内機(30)を有するマルチ式であってもよい。空気調和装置(10)は、複数の室外機(20)を有してもよい。
(7-3-5)
The air conditioner (10) may be of a multi-type having a plurality of indoor units (30). The air conditioner (10) may have a plurality of outdoor units (20).
 (7-4)変形例4:照射装置の制御に関する変形例
 (7-4-1)
 制御部(100)は、空気調和装置(10)の運転停止時において、照射装置(70)をON状態としてもよい。具体的には、制御部(100)は、例えば冷房運転の終了直後に照射装置(70)をON状態としてもよい。この場合、照射装置(70)は、ドレンパン(60)に向かって紫外線を照射する。冷房運転の終了直後には、ドレンパン(60)に結露水が溜まり易いため、ドレンパン(60)内の水を確実に除菌できる。
(7-4) Modification 4: Modification regarding control of irradiation device (7-4-1)
The control unit (100) may turn on the irradiation device (70) when the operation of the air conditioner (10) is stopped. Specifically, the control unit (100) may turn on the irradiation device (70) immediately after the cooling operation ends, for example. In this case, the irradiation device (70) irradiates the drain pan (60) with ultraviolet rays. Since condensed water tends to accumulate in the drain pan (60) immediately after the cooling operation ends, the water in the drain pan (60) can be reliably sterilized.
 (7-4-2)
 制御部(100)は、暖房運転において、照射装置(70)をOFF状態としもよい。この場合にも、制御部(100)は、冷房運転時の照射装置(70)の出力を、暖房運転時の出力(ゼロ)よりも大きくするとよい。
(7-4-2)
The control section (100) may turn off the irradiation device (70) in the heating operation. Also in this case, the control unit (100) preferably makes the output of the irradiation device (70) during cooling operation higher than the output (zero) during heating operation.
 (7-4-3)制御部(100)は、冷房専用の空気調和装置(10)の冷房運転時に、照射装置(70)をON状態としてもよい。 (7-4-3) The control unit (100) may turn on the irradiation device (70) during the cooling operation of the cooling-only air conditioner (10).
 (7-4-4)制御部(100)は、暖房専用の空気調和装置(10)の暖房運転時に、照射装置(70)をON状態としてもよい。 (7-4-4) The controller (100) may turn on the irradiation device (70) during the heating operation of the air conditioner (10) dedicated to heating.
 (7-5)変形例5:熱伝導部の構成に関する変形例
 (7-5-1)
 図7に示すように、熱伝導部(75)は、フィン(F)の一部であってもよい。図7は、フィン(F)を厚さ方向に見た模式図である。フィン(F)は、矩形板状のフィン本体(Fa)と、フィン本体(Fa)と一体の突起部(Fb)とを有する。突起部(Fb)は、フィン本体(Fa)の幅方向の端部から外方に突出している。フィン本体(Fa)と突起部(Fb)とは、一体に成形される。具体的には、フィン本体(Fa)と突起部(Fb)とは、プレス加工により一体に成形される。突起部(Fb)は、照射装置(70)とフィン本体(Fa)とを接続する熱伝導部(75)である。図7の例の照射装置(70)は、突起部(Fb)の側面に設けられている。
(7-5) Modification 5: Modification regarding configuration of heat conducting portion (7-5-1)
As shown in FIG. 7, the heat conducting portion (75) may be part of the fins (F). FIG. 7 is a schematic diagram of the fin (F) viewed in the thickness direction. The fin (F) has a rectangular plate-shaped fin body (Fa) and a protrusion (Fb) integral with the fin body (Fa). The protrusion (Fb) protrudes outward from the widthwise end of the fin body (Fa). The fin body (Fa) and the protrusion (Fb) are integrally molded. Specifically, the fin body (Fa) and the protrusion (Fb) are integrally formed by press working. The projecting portion (Fb) is a heat conducting portion (75) that connects the irradiation device (70) and the fin body (Fa). The irradiation device (70) in the example of FIG. 7 is provided on the side surface of the protrusion (Fb).
 この構成では、熱伝導部(75)がフィン(F)の一部に兼用されるため、部品点数を削減できる。加えて、熱伝導部(75)とフィン(F)とが一つの部材で構成されるため、熱伝導部からフィン本体(Fa)への熱伝達が促進される。この結果、LED(72)の放熱効果が向上する。 With this configuration, the heat conducting portion (75) is also used as part of the fins (F), so the number of parts can be reduced. In addition, since the heat conducting portion (75) and the fins (F) are composed of one member, heat transfer from the heat conducting portion to the fin main body (Fa) is facilitated. As a result, the heat dissipation effect of the LED (72) is improved.
 (7-5-2)
 図8に示す例では、突起部(Fb)の先端部分に折り返し面(Fc)が形成される。折り返し面(Fc)は、突起部(Fb)の先端部分を折り曲げることで形成される。折り返し面(Fb)は、下方を向いている。照射装置(70)は、折り返し面(Fb)に設けられる。これにより、LED(72)から下方に向かって紫外線を照射できる。
(7-5-2)
In the example shown in FIG. 8, a folded surface (Fc) is formed at the tip portion of the protrusion (Fb). The folded surface (Fc) is formed by bending the tip portion of the protrusion (Fb). The folded face (Fb) faces downward. The irradiation device (70) is provided on the folded surface (Fb). Thereby, ultraviolet rays can be emitted downward from the LED (72).
 (7-5-3)
 熱伝導部(75)に放熱を促進する放熱促進部を設けてもよい。放熱促進部は、ヒートシンクやヒートパイプであってもよい。
(7-5-3)
A heat dissipation promotion part for promoting heat dissipation may be provided in the heat conduction part (75). The heat dissipation promoting part may be a heat sink or a heat pipe.
 (7-5-4)
 熱伝導部(75)は、熱伝導率が高い材料であればよく、例えば亜鉛、銅、真鍮であってもよい。熱伝導部(75)は、必ずしも金属材料でなくてもよく、グラファイトなどの炭素材料であってもよい。
(7-5-4)
The heat conducting part (75) may be made of any material having high heat conductivity, such as zinc, copper, or brass. The heat-conducting portion (75) does not necessarily have to be made of a metal material, and may be made of a carbon material such as graphite.
 (7-6)変形例6:ケーシングの内面に放熱部を設ける第1の例
 図9に示すように、変形例6の空気調和装置(10)は、壁掛け式の室内機(30)を有する。室内機(30)のケーシング(31)の内面には、放熱部としての第1放熱部材(91)が設けられる。ケーシング(31)は、前板(31a)を備える。前板(31a)は、ケーシング(31)の前面を構成する。前板(31a)は、樹脂材料で構成される。
(7-6) Modification 6: First example in which a heat radiating part is provided on the inner surface of the casing As shown in Fig. 9, the air conditioner (10) of Modification 6 has a wall-mounted indoor unit (30). . A first heat radiation member (91) as a heat radiation section is provided on the inner surface of the casing (31) of the indoor unit (30). The casing (31) has a front plate (31a). The front plate (31a) constitutes the front surface of the casing (31). The front plate (31a) is made of a resin material.
 第1放熱部材(91)は、前板(31a)の内面に固定される。第1放熱部材(91)は、熱伝導性の高い材料で構成される。本例の第1放熱部材(91)は、金属材料で構成される。第1放熱部材(91)は、金属板また金属テープで構成される。なお、第1放熱部材(91)は、熱伝導性の高い樹脂材料で構成されてもよい。第1放熱部材(91)は、前板(31a)の内面に沿って延びている。第1放熱部材(91)は、空気通路(34)に面している。空気通路(34)を流れる空気は、第1放熱部材(91)に沿って流れる。第1放熱部材(91)は、熱交換器(40)よりも空気流れの上流側に配置される。第1放熱部材(91)は、ケーシング(31)の側板に固定されてもよい。側板は、ケーシング(31)のうち左右方向の側面を構成する。 The first heat radiation member (91) is fixed to the inner surface of the front plate (31a). The first heat radiation member (91) is made of a material with high thermal conductivity. The first heat radiation member (91) of this example is made of a metal material. The first heat radiation member (91) is composed of a metal plate or metal tape. Note that the first heat radiation member (91) may be made of a resin material having high thermal conductivity. The first heat radiation member (91) extends along the inner surface of the front plate (31a). The first heat radiation member (91) faces the air passageway (34). The air flowing through the air passageway (34) flows along the first heat radiation member (91). The first heat radiation member (91) is arranged upstream of the heat exchanger (40) in the air flow. The first heat radiation member (91) may be fixed to the side plate of the casing (31). The side plates form lateral sides of the casing (31).
 照射装置(70)は、放熱部としての第1放熱部材(91)に固定される。本例の照射装置(70)は、第1放熱部材(91)に直接固定される。照射装置(70)を放熱部に直接固定する方法としては、ビスなどによる締結による固定、接着、嵌合による固定、圧入による固定などが挙げられる。これらの固定方法は、上述した実施形態や他の変形例においても採用できる。照射装置(70)は、上述した熱伝導部(75)を介して第1放熱部材(91)に固定されてもよい。 The irradiation device (70) is fixed to the first heat radiation member (91) as a heat radiation section. The irradiation device (70) of this example is directly fixed to the first heat radiation member (91). Methods for directly fixing the irradiation device (70) to the heat radiating part include fixing by fastening with screws or the like, adhesion, fixing by fitting, and fixing by press-fitting. These fixing methods can also be employed in the above-described embodiment and other modifications. The irradiation device (70) may be fixed to the first heat radiation member (91) via the heat conducting portion (75) described above.
 本例の照射装置(70)のLED(72)は、空気流れの下流側を向いている。LED(72)は、空気通路(34)を流れる空気に紫外線を照射する。加えて、照射装置(70)は、室内熱交換器(40)やドレンパン(60)に紫外線を照射する。 The LED (72) of the irradiation device (70) of this example faces the downstream side of the air flow. The LED (72) irradiates the air flowing through the air passageway (34) with ultraviolet rays. In addition, the irradiation device (70) irradiates the indoor heat exchanger (40) and the drain pan (60) with ultraviolet rays.
 変形例6では、LED(72)が発熱すると、この熱が第1放熱部材(91)に伝わる。第1放熱部材(91)に伝わった熱は、空気通路(34)の空気に放出される。制御部(100)は、冷房運転および暖房運転において照射装置(70)のON状態とする。冷房運転および暖房運転では、制御部(100)が室内ファン(50)を運転するので、空気通路(34)を流れる空気によって第1放熱部材(91)を冷却できる。第1放熱部材(91)は室内熱交換器(40)の上流側に位置するので、暖房運転であっても第1放熱部材(91)を空気によって十分に冷却できる。 In Modified Example 6, when the LED (72) generates heat, this heat is transmitted to the first heat radiation member (91). The heat transferred to the first heat radiation member (91) is released to the air in the air passageway (34). The control unit (100) turns on the irradiation device (70) in the cooling operation and the heating operation. In the cooling operation and the heating operation, the controller (100) operates the indoor fan (50), so that the air flowing through the air passageway (34) can cool the first heat radiation member (91). Since the first heat radiation member (91) is located upstream of the indoor heat exchanger (40), the first heat radiation member (91) can be sufficiently cooled by air even during heating operation.
 制御部(100)は、空気調和装置(10)の停止時において、照射装置(70)をON状態としてもよい。この場合にも、照射装置(70)の熱を、第1放熱部材(91)から空気へ放出できる。 The control unit (100) may turn on the irradiation device (70) when the air conditioner (10) is stopped. Also in this case, the heat of the irradiation device (70) can be released to the air through the first heat radiation member (91).
 ケーシング(31)の内面では、第1放熱部材(91)の設置スペースを確保できるので、第1放熱部材(91)の面積を拡大しやすい。このため、第1放熱部材(91)の放熱性能を向上できる。 Since the installation space for the first heat radiation member (91) can be secured on the inner surface of the casing (31), it is easy to expand the area of the first heat radiation member (91). Therefore, the heat dissipation performance of the first heat dissipation member (91) can be improved.
 (7-7)変形例7:ケーシングの一部が放熱部である第1の例
 図10に示すように、変形例7の空気調和装置(10)は、壁掛け式の室内機(30)を有する。室内機(30)のケーシング(31)の一部が放熱部を構成する。具体的には、ケーシング(31)の前板(31a)の少なくとも一部は、熱伝導性の高い第2放熱部材(92)で構成される。第2放熱部材(92)は、金属材料で構成されるが、熱伝導性の高い樹脂材料で構成されてもよい。第2放熱部材(92)は、空気通路(34)に面する板状に形成される。第2放熱部材(92)は、ケーシング(31)の側板に構成されてもよい。変形例7の空気調和装置(10)の他の基本的な構成は、変形例6と同じである。
(7-7) Modification 7: First example in which a portion of the casing is a heat radiating section As shown in Fig. 10, the air conditioner (10) of Modification 7 includes a wall-mounted indoor unit (30). have. A portion of the casing (31) of the indoor unit (30) constitutes a heat radiating section. Specifically, at least part of the front plate (31a) of the casing (31) is composed of a second heat radiating member (92) with high thermal conductivity. The second heat dissipation member (92) is made of a metal material, but may be made of a resin material with high thermal conductivity. The second heat radiation member (92) is shaped like a plate facing the air passageway (34). The second heat radiation member (92) may be formed on the side plate of the casing (31). Other basic configurations of the air conditioner (10) of the seventh modification are the same as those of the sixth modification.
 変形例7では、放熱部がケーシング(31)の一部によって構成される。このため、部品点数を削減できる。また、この構成では、第2放熱部材(92)に伝わった熱を、空気通路(34)の空気だけでなく、ケーシング(31)の外部の空気にも放出できる。このため、放熱部の放熱性能を向上できる。 In Modified Example 7, the heat radiating portion is configured by part of the casing (31). Therefore, the number of parts can be reduced. Further, in this configuration, the heat transferred to the second heat radiation member (92) can be released not only to the air in the air passageway (34) but also to the air outside the casing (31). Therefore, the heat dissipation performance of the heat dissipation portion can be improved.
 (7-8)変形例8:ケーシングの一部が放熱部である第2の例
 図11に示すように、変形例8の空気調和装置(10)は、変形例3と同様、天井設置式の室内機(30)を有する。室内機(30)のケーシング(31)の一部が放熱部を構成する。具体的には、ケーシング(31)の天板(31b)の少なくとも一部は熱伝導性の高い第2放熱部材(92)で構成される。天板(31b)の第2放熱部材(92)は、空気通路(34)に面する。第2放熱部材(92)は、ケーシングの側板であってもよい。
(7-8) Modification 8: Second example in which a part of the casing is a heat radiating part As shown in FIG. indoor unit (30). A portion of the casing (31) of the indoor unit (30) constitutes a heat radiating section. Specifically, at least part of the top plate (31b) of the casing (31) is composed of the second heat radiation member (92) with high thermal conductivity. The second heat radiation member (92) of the top plate (31b) faces the air passageway (34). The second heat radiation member (92) may be a side plate of the casing.
 照射装置(70)のLED(72)は、下方を向いている。照射装置(70)は、空気通路(34)に紫外線を照射する。照射装置(70)は、熱交換器(40)やドレンパン(60)に紫外線をさらに照射する。 The LED (72) of the irradiation device (70) faces downward. The irradiation device (70) irradiates the air passageway (34) with ultraviolet rays. The irradiation device (70) further irradiates the heat exchanger (40) and the drain pan (60) with ultraviolet rays.
 変形例8においても、放熱部がケーシング(31)の一部によって構成される。このため、部品点数を削減できる。天板(31b)は、側板と比べて比較的広い面積を有するので、放熱部の放熱性能を向上できる。 Also in Modification 8, the heat radiating portion is configured by part of the casing (31). Therefore, the number of parts can be reduced. Since the top plate (31b) has a relatively large area compared to the side plates, the heat dissipation performance of the heat dissipation portion can be improved.
 (7-9)放熱部の他の構成
 放熱部は、伝熱性能の高い材料であれば如何なる部品に設けられてもよい。放熱部は、金属製、あるいは熱伝導性を有する樹脂材料からなるドレンパンであってもよい。放熱部は、熱交換器(40)の管板、熱交換器(40)のヘッダ集合管、分流器、冷媒配管、または水配管であってもよい。このように、放熱部は、空気調和装置(10)の要素部品であることが好ましい。ここで、要素部品は、空気調和装置(10)の本来の機能を達成するために設けられる部品である。要素部品であれば、別途、放熱用の部品を設けることがないので、部品点数やコストを削減できる。
(7-9) Other Configurations of Heat Dissipating Section The heat dissipating section may be provided on any component as long as it is made of a material with high heat transfer performance. The heat radiation part may be a drain pan made of metal or a resin material having thermal conductivity. The heat dissipation part may be a tube plate of the heat exchanger (40), a header collecting pipe of the heat exchanger (40), a flow divider, refrigerant pipes, or water pipes. Thus, the heat radiation section is preferably an element part of the air conditioner (10). Here, the element parts are parts provided to achieve the original functions of the air conditioner (10). If it is an element part, since there is no need to separately provide a part for heat dissipation, the number of parts and cost can be reduced.
 以上、実施形態および変形例を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。また、以上の実施形態、変形例、その他の実施形態は、本開示の対象の機能を損なわない限り、適宜組み合わせたり、置換したりしてもよい。 Although the embodiments and modifications have been described above, it will be understood that various changes in form and details are possible without departing from the spirit and scope of the claims. In addition, the above embodiments, modifications, and other embodiments may be appropriately combined or replaced as long as the functions of the object of the present disclosure are not impaired.
 以上に述べた「第1」、「第2」、「第3」…という記載は、これらの記載が付与された語句を区別するために用いられており、その語句の数や順序までも限定するものではない。 The descriptions of "first", "second", "third", etc. described above are used to distinguish the words and phrases to which these descriptions are given, and the number and order of the words and phrases are also limited. not something to do.
 以上に説明したように、本開示は、空気調和装置について有用である。 As described above, the present disclosure is useful for air conditioners.
      F   フィン(放熱部)
     10   空気調和装置
     31   ケーシング
     34   空気通路
     40   室内熱交換器(熱交換器)
     50   室内ファン(ファン)
     60   ドレンパン
     70   照射装置
     72   LED
     75   熱伝導部
     91   第1放熱部材(放熱部)
     92   第2熱伝導部材(放熱部)
    100   制御部
F Fin (Heat dissipation part)
10 air conditioner 31 casing 34 air passage 40 indoor heat exchanger (heat exchanger)
50 indoor fan (fan)
60 drain pan 70 irradiation device 72 LED
75 Heat conduction part 91 First heat dissipation member (heat dissipation part)
92 second thermally conductive member (radiator)
100 control unit

Claims (18)

  1.  紫外線を照射するLED(72)を有する照射装置(70)と、
     前記照射装置(70)の熱を空気へ放出する放熱部(F,91,92)とを備えている
     空気調和装置。
    an irradiation device (70) having an LED (72) for irradiating ultraviolet light;
    An air conditioner, comprising: a radiator (F, 91, 92) for releasing heat of the irradiation device (70) to the air.
  2.  前記放熱部としての複数のフィン(F)を有し、空気と熱媒体とを熱交換させる熱交換器(40)と、
     前記照射装置(70)と前記フィン(F)とを接続する熱伝導部(75)とを備える
     請求項1に記載の空気調和装置。
    a heat exchanger (40) having a plurality of fins (F) as the heat radiation part and exchanging heat between air and a heat medium;
    The air conditioner according to claim 1, further comprising a heat conducting portion (75) connecting the irradiation device (70) and the fins (F).
  3.  前記熱交換器(40)によって空気を冷却する冷房運転時において、前記照射装置(70)をON状態とする制御部(100)を備える
     請求項2に記載の空気調和装置。
    The air conditioner according to claim 2, further comprising a controller (100) that turns on the irradiation device (70) during cooling operation in which air is cooled by the heat exchanger (40).
  4.  前記熱交換器(40)によって空気を加熱する暖房運転時において、前記照射装置(70)をON状態とする制御部(100)を備える
     請求項2または3に記載の空気調和装置。
    The air conditioner according to claim 2 or 3, further comprising a controller (100) for turning on the irradiation device (70) during a heating operation in which the heat exchanger (40) heats the air.
  5.  前記熱交換器(40)によって空気を冷却する冷房運転時の前記照射装置(70)の出力を、前記熱交換器(40)によって空気を加熱する暖房運転時の前記照射装置(70)の出力よりも大きくする制御部(100)を備える
     請求項2~4のいずれか1つに記載の空気調和装置。
    The output of the irradiation device (70) during cooling operation in which air is cooled by the heat exchanger (40) is the output of the irradiation device (70) in heating operation in which air is heated by the heat exchanger (40). 5. The air conditioner according to any one of claims 2 to 4, further comprising a control section (100) that is larger than .
  6.  前記空気調和装置(10)の運転の停止時に前記照射装置(70)をON状態とする制御部(100)を備える
     請求項2~5のいずれか1つに記載の空気調和装置。
    The air conditioner according to any one of claims 2 to 5, further comprising a control section (100) that turns on the irradiation device (70) when the operation of the air conditioner (10) is stopped.
  7.  ドレンパン(60)を備え、
     前記照射装置(70)は前記紫外線を前記ドレンパン(60)に向かって照射する
     請求項2~6のいずれか1つに記載の空気調和装置。
    equipped with a drain pan (60),
    The air conditioner according to any one of claims 2 to 6, wherein the irradiation device (70) irradiates the ultraviolet rays toward the drain pan (60).
  8.  前記照射装置(70)は前記紫外線を前記熱交換器(40)に向かって照射する
     請求項2~7のいずれか1つに記載の空気調和装置。
    The air conditioner according to any one of claims 2 to 7, wherein the irradiation device (70) irradiates the ultraviolet rays toward the heat exchanger (40).
  9.  空気を搬送するファン(50)を備え、
     前記照射装置(70)は、前記ファン(50)が搬送する空気に向かって前記紫外線を照射する
     請求項2~8のいずれか1つに記載の空気調和装置。
    Equipped with a fan (50) to convey the air,
    The air conditioner according to any one of claims 2 to 8, wherein the irradiation device (70) irradiates the ultraviolet rays toward the air conveyed by the fan (50).
  10.  前記熱交換器(40)は、前記熱媒体によって空気を冷却するように構成され、
     前記照射装置(70)は、前記熱交換器(40)よりも空気流れの上流側に配置される
     請求項2~9のいずれか1つに記載の空気調和装置。
    The heat exchanger (40) is configured to cool air with the heat medium,
    The air conditioner according to any one of claims 2 to 9, wherein the irradiation device (70) is arranged upstream of the heat exchanger (40) in the air flow.
  11.  前記LED(72)は、空気流れの下流側を向いている
     請求項2~10のいずれか1つに記載の空気調和装置。
    The air conditioner according to any one of claims 2 to 10, wherein the LED (72) faces the downstream side of the air flow.
  12.  前記熱伝導部(75)は、前記フィン(F)の一部である
     請求項2~11のいずれか1つに記載の空気調和装置。
    The air conditioner according to any one of claims 2 to 11, wherein the heat conducting portion (75) is part of the fin (F).
  13.  前記照射装置(70)と前記放熱部(F,91,92)とを接続する熱伝導部(75)を備える
     請求項1に記載の空気調和装置。
    The air conditioner according to claim 1, further comprising a heat conducting section (75) connecting the irradiation device (70) and the heat radiating section (F, 91, 92).
  14.  前記放熱部(F,91,92)および前記熱伝導部(75)の少なくとも一方は、金属材料である
     請求項13のいずれか1つに記載の空気調和装置。
    The air conditioner according to any one of Claims 13, wherein at least one of the heat radiating portion (F, 91, 92) and the heat conducting portion (75) is made of a metal material.
  15.  前記熱伝導部(75)および前記熱伝導部(75)の少なくとも一方の熱伝導率は、80w/m・K以上である
     請求項13または14に記載の空気調和装置。
    The air conditioner according to claim 13 or 14, wherein at least one of the heat conducting portion (75) and the heat conducting portion (75) has a heat conductivity of 80 w/m·K or more.
  16.  空気通路(34)を内部に形成するケーシング(31)を備え、
     前記放熱部(F,91,92)は、前記ケーシング(31)の内面に固定される第1放熱部材(91)を含む
     請求項1~15のいずれか1つに記載の空気調和装置。
    A casing (31) having an air passage (34) formed therein,
    The air conditioner according to any one of claims 1 to 15, wherein the heat radiating portion (F, 91, 92) includes a first heat radiating member (91) fixed to the inner surface of the casing (31).
  17.  前記第1放熱部材(91)は、金属板または金属製テープを含む
     請求項16に記載の空気調和装置。
    The air conditioner according to claim 16, wherein the first heat radiation member (91) includes a metal plate or a metal tape.
  18.  空気通路(34)を内部に形成するケーシング(31)を備え、
     前記放熱部(F,91,92)は、前記ケーシング(31)の一部によって構成される第2放熱部材(92)を含む
     請求項1~15のいずれか1つに記載の空気調和装置。
    A casing (31) having an air passage (34) formed therein,
    The air conditioner according to any one of claims 1 to 15, wherein the heat radiating section (F, 91, 92) includes a second heat radiating member (92) constituted by part of the casing (31).
PCT/JP2022/021945 2021-06-03 2022-05-30 Air-conditioning apparatus WO2022255306A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280038503.0A CN117396707A (en) 2021-06-03 2022-05-30 Air conditioner
US18/520,720 US20240093887A1 (en) 2021-06-03 2023-11-28 Air-conditioning apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-093732 2021-06-03
JP2021093732 2021-06-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/520,720 Continuation US20240093887A1 (en) 2021-06-03 2023-11-28 Air-conditioning apparatus

Publications (1)

Publication Number Publication Date
WO2022255306A1 true WO2022255306A1 (en) 2022-12-08

Family

ID=84323308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021945 WO2022255306A1 (en) 2021-06-03 2022-05-30 Air-conditioning apparatus

Country Status (4)

Country Link
US (1) US20240093887A1 (en)
JP (1) JP7461409B2 (en)
CN (1) CN117396707A (en)
WO (1) WO2022255306A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001324195A (en) * 2000-05-18 2001-11-22 Daikin Ind Ltd Air-conditioning device
JP2006098037A (en) * 2004-09-03 2006-04-13 Fujitsu General Ltd Air conditioner
KR20070089002A (en) * 2006-02-27 2007-08-30 주식회사 대우일렉트로닉스 Uv lamp visual device of air-conditioner
WO2017175345A1 (en) * 2016-04-07 2017-10-12 三菱電機株式会社 Air conditioning device
KR20180010882A (en) * 2016-07-22 2018-01-31 엘지전자 주식회사 Air conditioner
JP2020134027A (en) * 2019-02-20 2020-08-31 パナソニックIpマネジメント株式会社 Indoor unit
CN211695153U (en) * 2020-03-27 2020-10-16 四川长虹空调有限公司 Ultraviolet lamp sterilization module and air conditioner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114278991B (en) 2017-09-28 2023-10-27 首尔伟傲世有限公司 Air conditioner including light source module and method of operating the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001324195A (en) * 2000-05-18 2001-11-22 Daikin Ind Ltd Air-conditioning device
JP2006098037A (en) * 2004-09-03 2006-04-13 Fujitsu General Ltd Air conditioner
KR20070089002A (en) * 2006-02-27 2007-08-30 주식회사 대우일렉트로닉스 Uv lamp visual device of air-conditioner
WO2017175345A1 (en) * 2016-04-07 2017-10-12 三菱電機株式会社 Air conditioning device
KR20180010882A (en) * 2016-07-22 2018-01-31 엘지전자 주식회사 Air conditioner
JP2020134027A (en) * 2019-02-20 2020-08-31 パナソニックIpマネジメント株式会社 Indoor unit
CN211695153U (en) * 2020-03-27 2020-10-16 四川长虹空调有限公司 Ultraviolet lamp sterilization module and air conditioner

Also Published As

Publication number Publication date
JP2022186636A (en) 2022-12-15
CN117396707A (en) 2024-01-12
US20240093887A1 (en) 2024-03-21
JP7461409B2 (en) 2024-04-03

Similar Documents

Publication Publication Date Title
JP4325714B2 (en) Refrigeration equipment
WO2013146006A1 (en) Heat exchanger for air-conditioning device and air-conditioning device
CN107806663B (en) Indoor unit of air conditioner and air conditioning system
JP6907653B2 (en) Air conditioning system
WO2022255306A1 (en) Air-conditioning apparatus
JP5239959B2 (en) Air conditioning system
JP2005180712A (en) Bathroom air conditioner
CN106016508B (en) Air condensing units and air conditioner
JP6951518B1 (en) Air conditioning system
CN110529936A (en) A kind of air-conditioner outdoor unit
CN110486805A (en) Air conditioner indoor unit and air-conditioning
JP6506121B2 (en) Air conditioning system
CN109618545A (en) Integrated service device cabinet heat pipe air conditioner
JP2020051721A (en) Residential air conditioning device
JP2003322386A (en) Heat-pump type air conditioner
JP2004177050A (en) Floor embedded air-conditioner
JP2000310433A (en) Ice storage air conditioning system
JP4720803B2 (en) Bathroom air conditioner
JP2017146026A (en) Air conditioner
JP2004093012A (en) Heat pump air conditioning system
JP2002323232A (en) Ceiling-mounted heat pump type air conditioner
KR200366680Y1 (en) Coil for air conditioner
JP5780189B2 (en) Air conditioner
KR20130063987A (en) Air conditioning device utilizing temperature differentiation of exhausted gas to even temperature of external heat exchanger
JP2021099192A (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22816053

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE