WO2022254874A1 - Water-absorbent resin composition, absorber and absorbent article employing same, and method for manufacturing water-absorbent resin composition - Google Patents

Water-absorbent resin composition, absorber and absorbent article employing same, and method for manufacturing water-absorbent resin composition Download PDF

Info

Publication number
WO2022254874A1
WO2022254874A1 PCT/JP2022/011302 JP2022011302W WO2022254874A1 WO 2022254874 A1 WO2022254874 A1 WO 2022254874A1 JP 2022011302 W JP2022011302 W JP 2022011302W WO 2022254874 A1 WO2022254874 A1 WO 2022254874A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
resin composition
group
absorbent resin
cross
Prior art date
Application number
PCT/JP2022/011302
Other languages
French (fr)
Japanese (ja)
Inventor
英二 森田
駿佑 鈴木
一充 鈴木
Original Assignee
Sdpグローバル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sdpグローバル株式会社 filed Critical Sdpグローバル株式会社
Priority to JP2023525422A priority Critical patent/JPWO2022254874A1/ja
Publication of WO2022254874A1 publication Critical patent/WO2022254874A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof

Definitions

  • the present invention relates to a water absorbent resin composition, absorbent bodies and absorbent articles using the same, and a method for producing a water absorbent resin composition.
  • a water-absorbing resin composition is a resin that can absorb water several tens to thousands times its own weight.
  • a polyacrylic acid-based absorbent resin composition is known.
  • These water-absorbing resin compositions are widely used in disposable sanitary products due to their high water-absorbing properties.
  • conventional water-absorbing resin compositions are problematic from the viewpoint of environmental load in the disposal method of sanitary goods containing them, and that the method of disposal in an incinerator causes global warming.
  • water absorbent resin compositions using plant-derived raw materials include carboxymethylcellulose crosslinked products (Patent Document 1), alginic acid crosslinked products, starch crosslinked products (Patent Document 2), polyamino acid crosslinked products (Patent Documents 3 to 7), Galactomannan-metal ion crosslinked products (Patent Documents 8 to 10) and the like are known.
  • Patent Document 1 carboxymethylcellulose crosslinked products
  • Patent Document 2 alginic acid crosslinked products
  • Patent Documents 3 to 7 polyamino acid crosslinked products
  • Galactomannan-metal ion crosslinked products Patent Documents 8 to 10
  • Patent Document 11 As an example of a polyacrylic acid-based water absorbent resin composition, for example, there is an example in which mercerized cellulose is dissolved or dispersed in an aqueous acrylic acid solution derived from petrification during polymerization, and this is polymerized (Patent Document 11). However, in the example described in Patent Literature 11, a mercerization treatment using a strong base substance such as sodium hydroxide is essential in advance, which is not a preferable form from the viewpoint of safety and productivity efficiency.
  • Patent Documents 12 and 13 water absorbent resin compositions obtained by copolymerizing acrylic acid and methylenesuccinic acid are also known (Patent Documents 12 and 13).
  • the water-absorbent resin compositions described in Patent Documents 12 and 13 do not have sufficient water absorbency under load and cannot withstand practical use.
  • Another way of thinking is to improve the biomass ratio by changing acrylic acid from petrified acrylic acid to plant-derived acrylic acid.
  • plant-derived acrylic acid contains impurities such as, for example, propionic acid, 3-hydroxypropionic acid, hydroxypropionic acid derivatives, formic acid, acetic acid, lactic acid, lactic acid derivatives, acetaldehyde, acrolein, furfural, or mixtures thereof.
  • the plant-derived acrylic acid is made into a water-absorbing resin composition after chemical treatment such as polymerization, and sanitary products such as disposable diapers and napkins are the cause of reduced absorption performance and odor generation. This is not preferable for users because it leads to Therefore, for example, when producing plant-derived acrylic acid, the amount of impurities contained in acrylic acid is reduced by distillation or recrystallization, or when drying is performed in the gel state after polymerization of acrylic acid. (Patent Documents 14 and 15).
  • Patent Documents 16 and 17 also report that traceability is possible by specifying the stable carbon isotope ratio ⁇ 13 C.
  • these patent documents there are examples in which the ratio of acrylic acid derived from petrification and acrylic acid derived from plants and cross-linking conditions are variously studied.
  • the object of the present invention is to use a plant-derived raw material that is useful for environmental conservation from the carbon-neutral viewpoint, does not require removal of impurities contained in the raw material during the manufacturing process, and has a main component monomer A water-absorbent resin composition having absorption performance comparable to that of a single-component polyacrylic acid-based absorbent resin composition, an absorbent body and absorbent articles using the same, and a method for producing a water-absorbent resin composition. to provide.
  • the present invention one or more monomers (A1) selected from the group consisting of water-soluble unsaturated monocarboxylic acids (a1) and salts thereof, and monomers (a2) that become the water-soluble unsaturated monocarboxylic acids (a1) by hydrolysis; , one or more monomers (A2) selected from the group consisting of a water-soluble unsaturated dicarboxylic acid (a3) and a salt thereof, and a monomer (a4) that becomes the water-soluble unsaturated dicarboxylic acid (a3) by hydrolysis;
  • a water-absorbing resin composition containing a cross-linked polymer (A) having a cross-linking agent (b) as a structural unit, and having a structure in which the surface of the cross-linked polymer (A) is cross-linked by the surface cross-linking agent (d).
  • At least one of the monomer (A1) and the monomer (A2) has a 14 C/C measured by a carbon radiocarbon dating method of 1.2 ⁇ 10 ⁇ 12 to 1.0 ⁇ 10 ⁇ 16 .
  • a water-absorbing resin having a water retention capacity (g/g) of 0.9 wt% saline of 10 to 60 and an absorption capacity (g/g) of 0.9 wt% saline under load of 12 to 25. composition.
  • the main component monomer is A water-absorbent resin composition having absorption performance comparable to that of a single-component polyacrylic acid-based absorbent resin composition, an absorbent body and absorbent articles using the same, and a method for producing a water-absorbent resin composition. can provide.
  • FIG. 3 is a perspective view schematically showing a pressurizing shaft and a weight for measuring the liquid permeability of the water absorbent resin composition.
  • the water absorbent resin composition of the present embodiment is one or more monomers (A1) selected from the group consisting of water-soluble unsaturated monocarboxylic acids (a1) and salts thereof, and monomers (a2) that become the water-soluble unsaturated monocarboxylic acids (a1) by hydrolysis; , one or more monomers (A2) selected from the group consisting of a water-soluble unsaturated dicarboxylic acid (a3) and a salt thereof, and a monomer (a4) that becomes the water-soluble unsaturated dicarboxylic acid (a3) by hydrolysis;
  • a water-absorbing resin composition containing a cross-linked polymer (A) having a cross-linking agent (b) as a structural unit, and having a structure in which the surface of the cross-linked polymer (A) is cross-linked by the surface cross-linking agent (d).
  • At least one of the monomer (A1) and the monomer (A2) has a 14 C/C measured by a carbon radiocarbon dating method of 1.2 ⁇ 10 ⁇ 12 to 1.0 ⁇ 10 ⁇ 16 .
  • the water retention capacity (g/g) of 0.9% by weight saline is 10-60, and the absorption under load (g/g) of 0.9% by weight saline is 12-25.
  • the water absorbent resin composition uses plant-derived raw materials that are useful for environmental conservation from the viewpoint of carbon neutrality, does not require removal of impurities contained in the raw materials during the manufacturing process, and It has the same level of absorption performance as a polyacrylic acid-based absorbent resin composition having a single monomer composition.
  • the water-soluble unsaturated monocarboxylic acid (a1) can be used without particular limitation as long as it is a water-soluble unsaturated monocarboxylic acid.
  • the water-soluble unsaturated monocarboxylic acid (a1) is preferably at least one selected from the group consisting of acrylic acid, methacrylic acid, and crotonic acid, from the viewpoint of water absorption performance when crosslinked and ease of availability. , acrylic acid, and methacrylic acid are more preferred.
  • Examples of the salt of the water-soluble unsaturated monocarboxylic acid (a1) include alkali metal (lithium, sodium, potassium, etc.) salts, alkaline earth metal (magnesium, calcium, etc.) salts and ammonium (NH 4 ) salts. .
  • alkali metal salts and ammonium salts are preferable, alkali metal salts are more preferable, and sodium salts are particularly preferable, from the viewpoint of absorption performance and the like.
  • the monomer (a2) that becomes the water-soluble unsaturated monocarboxylic acid (a1) by hydrolysis can be used together with or instead of the water-soluble unsaturated monocarboxylic acid (a1).
  • the monomer (a2) is not particularly limited, and a monomer having one hydrolyzable substituent that becomes a carboxy group by hydrolysis can be exemplified.
  • hydrolyzable substituent examples include acid anhydride-containing groups (1,3-oxo-1-oxapropylene group, -COO-CO-), ester bond-containing groups (alkyloxycarbonyl, vinyloxycarbonyl, allyl oxycarbonyl or propenyloxycarbonyl, —COOR), cyano group and the like.
  • R is an alkyl group having 1 to 3 carbon atoms (methyl, ethyl and propyl), vinyl, allyl and propenyl.
  • water-soluble means that at least 100 g dissolves in 100 g of water at 25°C.
  • hydrolyzability of the monomer (a2) means the property of being hydrolyzed by the action of water and, if necessary, a catalyst (acid, base, etc.) to become water-soluble.
  • the hydrolysis of the monomer (a2) may be carried out during polymerization, after polymerization, or both of them, but from the viewpoint of the absorption performance of the resulting water-absorbent resin composition, it is preferably carried out after polymerization.
  • the water-soluble unsaturated dicarboxylic acid (a3) can be used without particular limitation as long as it is a water-soluble unsaturated dicarboxylic acid.
  • the water-soluble unsaturated dicarboxylic acid (a3) consists of maleic acid, fumaric acid, methylenesuccinic acid, and citraconic acid from the viewpoint of reactivity with the water-soluble unsaturated monocarboxylic acid (a1) and availability.
  • One or more selected from the group is preferable, and methylenesuccinic acid is more preferable.
  • Examples of the salt of the water-soluble unsaturated dicarboxylic acid (a3) include alkali metal (lithium, sodium, potassium, etc.) salts, alkaline earth metal (magnesium, calcium, etc.) salts and ammonium (NH 4 ) salts.
  • alkali metal salts and ammonium salts are preferable, alkali metal salts are more preferable, and sodium salts are particularly preferable, from the viewpoint of absorption performance and the like.
  • the monomer (a4) that becomes the water-soluble unsaturated dicarboxylic acid (a3) by hydrolysis can be used together with or instead of the water-soluble unsaturated dicarboxylic acid (a3).
  • the monomer (a4) is not particularly limited, and examples thereof include monomers having at least one hydrolyzable substituent.
  • the hydrolysis of the monomer (a4) may be performed during polymerization, after polymerization, or both of them, but from the viewpoint of the absorption performance of the resulting water-absorbent resin composition, it is preferably performed after polymerization.
  • At least one of the monomer (A1) and the monomer (A2) has a 14 C/C measured by carbon radiocarbon dating of 1.2 ⁇ 10 ⁇ 12 to 1.0 ⁇ 10 ⁇ 16 , preferably is 1.5 ⁇ 10 ⁇ 12 to 1.2 ⁇ 10 ⁇ 14 .
  • the radiocarbon age of carbon is specifically measured by the method described in Examples.
  • radiocarbon dating method of carbon the carbon that existed as carbon dioxide in the atmosphere is incorporated into plants, and radiocarbon, which is carbon present in plant-derived raw materials synthesized using the plants as raw materials (i.e., Carbon 14) is measured. Since almost no carbon-14 atoms remain in fossil raw materials such as petroleum, the concentration of carbon-14 in the target sample is measured, and the content of carbon-14 in the atmosphere (107 pMC (percent modern carbon)) By calculating back using as an index, the ratio of biomass-derived carbon in the carbon contained in the sample can be obtained.
  • ⁇ 13 C ( ⁇ ) [( ⁇ 13 C/ ⁇ 12 C) sample / ( 13 C/ 12 C) PDB ⁇ 1.0] ⁇ 1000
  • [( 13 C/ 12 C) sample ] represents the stable isotope ratio of the measurement sample
  • [( 13 C/ 12 C) PDB ] represents the stable isotope ratio of the standard substance
  • PDB is an abbreviation for "Pee Dee Belemnite” and means a fossil of a pilaster made of calcium carbonate (as a reference material, a fossil of a pilaster excavated from the PeeDee Formation in South Carolina), and has a 13 C/ 12 C ratio. used as a standard body for
  • the "stable carbon isotope ratio ( ⁇ 13 C)” is measured by accelerator mass spectrometry (AMS method; Accelerator Mass Spectrometry). Since standard substances are scarce, a working standard with a known stable isotope ratio to the standard substance can also be used.
  • At least one of the monomer (A1) and the monomer (A2) preferably has a stable carbon isotope ratio ( ⁇ 13 C) of ⁇ 60 ⁇ to ⁇ 5 ⁇ from the viewpoint of environmental conservation, more preferably -50 ⁇ to -10 ⁇ .
  • the ratio of the substance amount of the monomer (A1) to the substance amount of the monomer (A2) in the crosslinked polymer (A) is the load From the standpoints of improving water absorption performance under conditions and protecting the environment, it is preferably from 99/1 to 1/99, more preferably from 99/1 to 10/90, still more preferably from 90/10 to 10/90.
  • vinyl monomers (A3) copolymerizable therewith can be used as structural units of the crosslinked polymer (A).
  • One of the vinyl monomers (A3) may be used alone, or two or more of them may be used in combination.
  • the vinyl monomer (A3) is not particularly limited, and is known (for example, hydrophobic vinyl monomers disclosed in paragraphs 0028 to 0029 of Japanese Patent No. 3648553; 2005-75982, paragraph 0058) can be used, and specifically, vinyl monomers (i) to (iii) below can be used.
  • (i) Aromatic ethylenic monomer having 8 to 30 carbon atoms Styrene such as styrene, ⁇ -methylstyrene, vinyltoluene and hydroxystyrene, vinylnaphthalene, and halogen-substituted styrene such as dichlorostyrene.
  • Aliphatic ethylenic monomers having 2 to 20 carbon atoms Alkenes (ethylene, propylene, butene, isobutylene, pentene, heptene, diisobutylene, octene, dodecene, octadecene, etc.); and alkadienes (butadiene, isoprene, etc.).
  • the content (mol%) of the vinyl monomer (A3) unit is preferably 0 to 5, based on the total number of moles of the monomer (A1) unit and the monomer (A2) unit, from the viewpoint of absorption performance and the like. It is more preferably 0 to 3, particularly preferably 0 to 2, and most preferably 0 to 1.5. From the viewpoint of absorption performance and the like, the content of the vinyl monomer (A3) unit is preferably 0 mol%. Most preferred.
  • the cross-linking agent (b) is not particularly limited and is known (for example, a cross-linking agent having two or more ethylenically unsaturated groups disclosed in paragraphs 0031 to 0034 of Japanese Patent No.
  • a water-soluble substituent and a A cross-linking agent having at least one functional group capable of reacting with at least one ethylenically unsaturated group and a cross-linking agent having at least two functional groups capable of reacting with a water-soluble substituent
  • JP-A-2003-165883 A cross-linking agent having two or more ethylenically unsaturated groups, a cross-linking agent having an ethylenically unsaturated group and a reactive functional group, and a cross-linking having two or more reactive substituents disclosed in paragraphs 0028 to 0031 of the publication crosslinkable vinyl monomers disclosed in paragraph 0059 of JP-A-2005-75982 and crosslinkable vinyl monomers disclosed in paragraphs 0015-0016 of JP-A-2005-95759). can.
  • the cross-linking agent (b) is preferably a cross-linking agent having two or more ethylenically unsaturated groups, and from the viewpoint of reactivity with monomers and water absorption properties, polyvalent (meta) having two or more ethylenically unsaturated groups More preferably one or more selected from the group consisting of allyl compounds and acrylamide compounds, poly (meth) allyl ethers of polyhydric alcohols such as alkylene glycol, trimethylolpropane, glycerin, pentaerythritol and sorbitol, tetraallyloxyethane and tri
  • polyvalent (meth)allyl compounds such as allyl isocyanurate and compounds represented by the following general formula (1) are more preferred.
  • the said crosslinking agent (b) may be used individually by 1 type, or may use 2 or more types together. From the viewpoint of reactivity and balance between water retention capacity and absorption capacity under load, it is more preferable to use poly(meth)allyl ether of polyhydric alcohol and a compound represented by the following general formula (1) in combination.
  • R 1 and R 2 are each independently a hydrogen atom or a methyl group.
  • X 1 is an n-valent organic group having an aliphatic group having 2 or more carbon atoms and optionally containing a nitrogen atom, an oxygen atom, or a sulfur atom, and the aliphatic group may be linear or branched. may have.
  • n is an integer from 2 to 6;
  • R 1 and R 2 are each independently a hydrogen atom or a methyl group.
  • R 1 and R 2 are preferably hydrogen atoms from the viewpoint of good polymerization reactivity.
  • X 1 is an n-valent organic group having an aliphatic group having 2 or more carbon atoms and optionally containing a nitrogen atom, an oxygen atom or a sulfur atom.
  • the aliphatic group may be linear or branched.
  • the number of carbon atoms in the aliphatic group is 2 or more, preferably 30 or less, more preferably 15 or less, from the viewpoint of absorption performance and the like.
  • the aliphatic group is from —O— and —NX 2 — (wherein X 2 is a hydrogen atom, an alkyl group, or a (meth)acryloyl group). It is preferable to connect via at least one selected divalent linking group.
  • the linking group is preferably one or more selected from —O— and —NX 2 — (where X 2 is a (meth)acryloyl group) from the viewpoint of absorption performance and the like.
  • the number of linking groups is preferably 1 to 4, more preferably 1 to 3, from the viewpoint of absorption performance and the like.
  • n is an integer of 2 to 6, and preferably an integer of 2 to 4 from the viewpoint of absorption performance and the like.
  • X 1 is preferably an organic group represented by the following general formula (b1) or the following general formula (b2) from the viewpoint of absorption performance and the like.
  • R 3 is an alkylene group having 1 to 6 carbon atoms
  • R 4 is a hydrogen atom or a methyl group
  • x is an integer of 2 to 4
  • r is an integer of 1 to 6
  • R 5 is a single bond or an alkylene group having 1 to 6 carbon atoms.
  • R 6 is an alkylene group having 1 to 3 carbon atoms
  • y is an integer of 2 to 4
  • s is an integer of 1 to 6
  • R 7 is a single bond or an alkylene group having 1 to 3 carbon atoms.
  • R 3 is an alkylene group having 1 to 6 carbon atoms, preferably an alkylene group having 1 to 3 carbon atoms, and more preferably an ethylene group, from the viewpoint of availability of raw materials.
  • R 4 is a hydrogen atom or a methyl group, preferably a hydrogen atom, from the viewpoint of good polymerization reactivity.
  • x is an integer of 2 to 4, preferably 2 or 3, more preferably 2, from the viewpoint of availability of raw materials.
  • r is an integer of 1 to 6, preferably 1 or 2, from the viewpoint of availability of raw materials.
  • R 5 is a single bond or an alkylene group having 1 to 6 carbon atoms, preferably a single bond, from the viewpoint of availability of raw materials.
  • R 6 is an alkylene group having 1 to 3 carbon atoms, preferably an alkylene group having 2 or 3 carbon atoms, and more preferably a propylene group, from the viewpoint of availability of raw materials.
  • y is an integer of 2 to 4, preferably 2, from the viewpoint of raw material availability.
  • s is an integer of 1 to 6, preferably 2 to 5, more preferably 3 or 4, from the viewpoint of availability of raw materials.
  • R 7 is a single bond or an alkylene group having 1 to 3 carbon atoms, preferably a methylene group, from the viewpoint of availability of raw materials.
  • cross-linking agent (b) when X 1 is an organic group represented by the general formula (b1), a specific example of the cross-linking agent (b) is represented by the following general formula (b1-1) Cross-linking agents (b1-1), cross-linking agents (b1-2) represented by the following general formula (b1-2), and the like.
  • a specific example of the cross-linking agent (b) is represented by the following general formula (b2-1).
  • X 1 is preferably an organic group represented by the following general formula (b3) from the viewpoint of absorption performance and the like.
  • R 8 is a single bond or an alkylene group having 1 to 3 carbon atoms, preferably an alkylene group having 1 or 2 carbon atoms, more preferably a methylene group, from the viewpoint of availability of raw materials. preferable.
  • z is an integer of 2 to 4, preferably 2 or 3, more preferably 2, from the viewpoint of raw material availability.
  • t is an integer of 1 to 6, preferably an integer of 1 to 4, more preferably 1, from the viewpoint of availability of raw materials.
  • R 9 is a single bond or an alkylene group having 1 to 3 carbon atoms, preferably an alkylene group having 1 or 2 carbon atoms, more preferably a methylene group, from the viewpoint of availability of raw materials. preferable.
  • X 1 is an organic group represented by the general formula (b3)
  • a specific example of the cross-linking agent (b) is represented by the following general formula (b3-1).
  • examples thereof include a cross-linking agent (b3-1) and a cross-linking agent (b3-2) represented by the following general formula (b3-2).
  • Examples of commercially available products of the cross-linking agent (b) include FOM-03006, FOM-03007, FOM-03008, and FOM-03009 (all manufactured by FUJIFILM Corporation).
  • the content (mol%) of the cross-linking agent (b) in the cross-linked polymer (A) is, from the viewpoint of absorption performance, etc., the total number of moles of the monomer (A1) units and the monomer (A2) units, other When the vinyl monomer (A3) is used, it is preferably 0.001 to 5, more preferably 0.005 to 3, particularly preferably 0.005 to 1, based on the total number of moles of (A1) to (A3). is.
  • the water retention capacity of 0.9% by weight physiological saline of the crosslinked polymer (A) is preferably 20 g/g or more, more preferably 25 g/g or more.
  • the water absorbent resin composition has a structure in which the surface of the crosslinked polymer (A) is crosslinked by the surface crosslinking agent (d).
  • the monomer (A1) and the monomer (A2) are copolymerized, the dicarboxylic acid moiety derived from the monomer (A2) is more ordered than the monocarboxylic acid homopolymer derived from the monomer (A1). It can be assumed that the copolymer is likely to have a low molecular weight and the gel elasticity of the crosslinked polymer is low.
  • the gel strength of the water-absorbing resin composition can be improved, and the water-absorbing resin composition satisfies the desired water retention capacity and absorption capacity under load. can be done.
  • the surface cross-linking agent (d) can be inorganic or organic.
  • one or more selected from the group consisting of polyhydric glycidyl compounds, polyhydric alcohols and polyhydric amines is preferable from the viewpoint of economic efficiency and absorption characteristics. More preferably, one or more selected from the group consisting of, more preferably polyhydric glycidyl compounds, and still more preferably ethylene glycol diglycidyl ether.
  • the surface cross-linking agent (d) may be used alone or in combination of two or more.
  • the water-absorbing resin composition may contain some other components such as residual solvent and residual cross-linking components within a range that does not impair its performance.
  • the crosslinked polymer (A) contains an organic solvent that can be used in the surface cross-linking step of the method for producing a water-absorbent resin composition described later, the crosslinked polymer (A) is broken. It also has the advantage of contributing to prevention and stability against aging. This is because the diol or triol site in the solvent forms an ester site, i.e., a double bond, formed by the dicarboxylic acid site derived from the monomer (A2) in the crosslinked polymer (A) and the surface cross-linking agent (d). We speculate that the coordination to the oxygen site in the carbon-oxygen group increases the stability against nucleophilic attack.
  • the content of the organic solvent in the water absorbent resin composition is preferably 0.1% by weight or more from the viewpoint of preventing breakage of the crosslinked polymer (A) and improving stability against changes over time. And from the viewpoint of handleability, it is preferably 3.0% by weight or less.
  • the content of the organic solvent in the water absorbent resin composition can be measured by the method described below.
  • the other component is preferably selected from the group consisting of iodine, tellurium, antimony, and bismuth, from the viewpoint of improving gel strength, absorption under load, and gel flow rate at the time of water absorption. It contains at least one type of typical element.
  • the content of the typical element in the water-absorbent resin composition is adjusted from the viewpoint of improving the gel strength, the absorption amount under load, and the gel liquid permeation rate at the time of water absorption. , preferably 0.0005 to 0.1% by weight, more preferably 0.001 to 0.05% by weight.
  • the water-absorbing resin composition containing the main group element is prepared by adding a monomer composition containing the monomer (A1) and the monomer (A2) and the cross-linking agent (b) in the presence of the organic main group element compound described later. It can be obtained by polymerizing and drying the resulting hydrous gel.
  • ingredients include preservatives, antifungal agents, antibacterial agents, antioxidants, ultraviolet absorbers, antioxidants, colorants, fragrances, deodorants, liquid permeability improvers, and inorganic substances.
  • examples include powders and organic fibrous materials. The amount is usually 5% by weight or less based on the weight of the water absorbent resin composition.
  • the shape of the water-absorbing resin composition is not particularly limited, it is preferably particulate from the viewpoint of improving absorption performance.
  • the particulate water absorbent resin composition (hereinafter also referred to as water absorbent resin particles) has a weight average particle diameter ( ⁇ m) of 250-600, preferably 300-500, more preferably 340-460.
  • ⁇ m weight average particle diameter
  • the weight-average particle size is less than 250 ⁇ m, the liquid permeability deteriorates, and when it exceeds 600 ⁇ m, the absorption speed deteriorates.
  • the weight average particle size was measured using a low-tap test sieve shaker and a standard sieve (JISZ8801-1:2006), Perry's Chemical Engineers Handbook 6th Edition (McGraw-Hill Book Company, 1984, page 21). That is, JIS standard sieves of 1000 ⁇ m, 850 ⁇ m, 710 ⁇ m, 500 ⁇ m, 425 ⁇ m, 355 ⁇ m, 250 ⁇ m, 150 ⁇ m, 125 ⁇ m, 75 ⁇ m and 45 ⁇ m and a saucer are combined in this order from the top. About 50 g of the particles to be measured are placed in the top sieve and shaken for 5 minutes with a Rotap test sieve shaker.
  • the weight of the particles to be measured on each sieve and the tray is weighed, the total is 100% by weight, and the weight fraction of the particles on each sieve is obtained. ) and the weight fraction on the vertical axis], draw a line connecting the points, determine the particle diameter corresponding to a weight fraction of 50% by weight, and take this as the weight average particle diameter.
  • the weight ratio (weight %) is 3 or less, preferably 1 or less.
  • the weight ratio of the water-absorbing resin particles having a particle size of less than 150 ⁇ m can be determined using the graph created when determining the weight average particle size.
  • the shape of the water-absorbent resin particles is not particularly limited, and examples thereof include irregular crushed shapes, scale-like shapes, pearl-like shapes, and grain-like shapes. Of these, irregularly crushed forms are preferred from the viewpoints of good entanglement with fibrous materials for use in paper diapers and the like, and no fear of falling off from fibrous materials.
  • the method for producing the water absorbent resin composition of the present embodiment is a method for producing the water absorbent resin composition, A polymerization step of obtaining a hydrous gel containing the crosslinked polymer (A); A drying step of drying the hydrous gel; and a surface cross-linking step of cross-linking the surface of the cross-linked polymer (A) after the drying step with a surface cross-linking agent (d).
  • the polymerization step is a step of obtaining a hydrous gel containing the crosslinked polymer (A) by polymerizing a monomer composition containing the monomer (A1), the monomer (A2), and the crosslinking agent (b).
  • Examples of the method for polymerizing the monomer composition include known solution polymerization and known reversed-phase suspension polymerization.
  • the solution polymerization method which does not require the use of an organic solvent and is advantageous in terms of production cost, and from the viewpoint of water absorption performance under load.
  • the aqueous solution polymerization method is particularly preferable, and the aqueous solution adiabatic polymerization method is the most preferable in that a water-absorbent resin composition having a large water retention capacity and a small amount of water-soluble components can be obtained, and temperature control during polymerization is unnecessary. preferable.
  • a mixed solvent containing water and an organic solvent can be used, and the organic solvent includes methanol, ethanol, acetone, methyl ethyl ketone, N,N-dimethylformamide, Dimethylsulfoxide and mixtures of two or more thereof are included.
  • the amount (% by weight) of the organic solvent used is preferably 40 or less, more preferably 30 or less based on the weight of water.
  • radical polymerization catalysts can be used, for example, azo compounds [azobisisobutyronitrile, azobiscyanovaleric acid and 2,2′-azobis(2-amidinopropane) hydrochloride etc.], inorganic peroxides (hydrogen peroxide, ammonium persulfate, potassium persulfate and sodium persulfate, etc.), organic peroxides [benzoyl peroxide, di-t-butyl peroxide, cumene hydroperoxide, persuccinic acid oxide and di(2-ethoxyethyl) peroxydicarbonate, etc.] and redox catalysts (alkali metal sulfites or bisulfites, ammonium sulfite, ammonium bisulfite and reducing agents such as ascorbic acid and alkali metal persulfates, A combination with an oxidizing agent such as ammonium persulfate, hydrogen peroxid
  • the amount (% by weight) of the radical polymerization catalyst used is 0 based on the total weight of the monomers (A1) and (A2), and (A1) to (A3) when another vinyl monomer (A3) is used. 0.0005 to 5 is preferred, and 0.001 to 2 is more preferred.
  • a polymerization control agent such as a chain transfer agent may be used in combination as necessary.
  • a polymerization control agent such as a chain transfer agent
  • Specific examples thereof include sodium hypophosphite, sodium phosphite, alkyl mercaptan, alkyl halide, thiocarbonyl compound etc.
  • These polymerization control agents may be used alone, or two or more of them may be used in combination.
  • the amount (% by weight) of the polymerization control agent used is 0, based on the total weight of the monomers (A1) and (A2), and (A1) to (A3) when another vinyl monomer (A3) is used. 0.0005 to 5 is preferred, and 0.001 to 2 is more preferred.
  • the crosslinked polymer (A) is a monomer composition containing the monomers (A1) and (A2) and the crosslinking agent (b), and By polymerizing in the presence of at least one organic main group element compound selected from the group consisting of compounds, gel strength, absorption under load and gel permeation rate upon water absorption can be improved.
  • the organic iodine compound, the organic tellurium compound, the organic antimony compound, and the organic bismuth compound are not limited as long as they are organic main group element compounds that act as dormant species for radical polymerization, and are described as dormant species in WO2011/016166.
  • Organic iodine compounds, organic tellurium compounds described in WO2004/014848, organic antimony compounds described in WO2006/001496, organic bismuth compounds described in WO2006/062255, and the like can be used.
  • an organic main group element compound represented by the following general formula (2) is preferable. These organic main group element compounds may be used alone or in combination of two or more.
  • R 10 and R 11 are each independently a hydrogen atom, a saturated hydrocarbon group having 1 to 7 carbon atoms, or at least one non-addition polymerizable double bond or at least one non-addition polymerizable triple is a monovalent group having 1 to 7 carbon atoms and having a bond
  • R 12 is an m-valent saturated hydrocarbon group having 1 to 6 carbon atoms or at least one non-addition polymerizable double bond or at least one non- an m-valent group having 2 to 12 carbon atoms and an addition-polymerizable triple bond, provided that at least one of R 10 to R 12 in one molecule is the corresponding non-addition-polymerizable divalent a group having a double bond or at least one non-addition polymerizable triple bond, m is an integer of 1 to 3, and when m is 1, R 10 and R 11 may be bonded to each other; 3 is a monovalent organic main group element group containing tellurium, antimony
  • non-addition polymerizable double bond (hereinafter also simply referred to as non-polymerizable double bond) and non-addition polymerizable triple bond (hereinafter simply referred to as non-polymerizable triple bond) means an unsaturated bond Of these, the bonds excluding addition-polymerizable unsaturated bonds (addition-polymerizable carbon-carbon double bonds and addition-polymerizable carbon-carbon triple bonds, respectively), non-addition-polymerizable double bonds and non-addition-polymerizable
  • the triple bond the carbon-oxygen double bond contained in the carbonyl group, the carbon-nitrogen triple bond contained in the nitrile group, the carbon-carbon double bond that constitutes the aromatic hydrocarbon, and the oxygen that constitutes the heteroaromatic compound -Nitrogen double bonds and carbon-nitrogen double bonds, among others, carbon-oxygen double bonds contained in carbonyl groups, carbon-nitrogen triple bonds contained in nitrile groups and
  • the saturated hydrocarbon groups having 1 to 7 carbon atoms include linear saturated hydrocarbon groups having 1 to 7 carbon atoms (methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group and n-hexyl group) and branched saturated hydrocarbon groups having 1 to 7 carbon atoms (i-propyl group, isobutyl group, s-butyl group, t -butyl group, isopentyl group, neopentyl group, t-pentyl group, 1-methylbutyl group, isohexyl group, s-hexyl group, t-hexyl group, neohexyl group, heptyl group, etc.).
  • straight-chain saturated hydrocarbon groups having 1 to 5 carbon atoms are preferable, and straight-chain saturated hydrocarbon groups having 1 to 3 carbon
  • R 10 and R 11 are C 1-7 monovalent groups having at least one non-polymerizable double bond or at least one non-polymerizable triple bond
  • preferred groups are carboxy (salt) groups.
  • carbon number 1, carbon-oxygen double bond phenyl group (carbon number 6, non-polymerizable carbon-carbon double bond), cyano group (carbon number 1, carbon-nitrogen triple bond), cyanomethyl group (carbon number 2, carbon-nitrogen triple bond), cyanoethyl group (3 carbon atoms, carbon-nitrogen triple bond), cyanopropyl group (4 carbon atoms, carbon-nitrogen triple bond), cyanobutyl group (5 carbon atoms, carbon-nitrogen triple bond ), cyanopentyl group (6 carbon atoms, carbon-nitrogen triple bond), cyanohexyl group (7 carbon atoms, carbon-nitrogen triple bond), carboxymethyl group (2 carbon atoms, carbon-oxygen double bond), carboxyethyl group (3 carbon atoms, carbon-oxygen double bond
  • salts examples include alkali metal (lithium, sodium, potassium, etc.) salts, alkaline earth metal (magnesium, calcium, etc.) salts, ammonium (NH 4 ) salts, and the like.
  • alkali metal salts and ammonium salts are preferable, alkali metal salts are more preferable, and sodium salts are particularly preferable, from the viewpoint of absorption performance and the like.
  • R 12 is an m-valent saturated hydrocarbon group having 1 to 7 carbon atoms or an m-valent group having 2 to 12 carbon atoms and having at least one non-polymerizable double bond or at least one non-polymerizable triple bond; , m is an integer from 1 to 3.
  • the monovalent saturated hydrocarbon group having 1 to 7 carbon atoms is a linear saturated hydrocarbon group having 1 to 7 carbon atoms. (methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, heptyl group, etc.) and branched saturated hydrocarbon groups having 1 to 7 carbon atoms (i-propyl group, isobutyl group, etc.) group, s-butyl group, t-butyl group, isopentyl group, neopentyl group, t-pentyl group, 1-methylbutyl group, isohexyl group, s-hexyl group, t-hexyl group, neohexyl group, isoheptyl group, etc.).
  • the divalent saturated hydrocarbon group having 1 to 7 carbon atoms is a linear saturated divalent hydrocarbon group having 1 to 7 carbon atoms.
  • Hydrocarbon groups methylene group, ethylene group, propylene group, butylene group, pentene group, hexene group, heptene group, etc.
  • divalent branched saturated hydrocarbon groups having 1 to 7 carbon atoms isopropylene group, isobutylene group, s -butylene group, t-butylene group, isopentylene group, neopentylene group, t-pentylene group, 1-methylbutylene group, isohexylene group, s-hexylene group, t-hexylene group, neohexylene group, isoheptylene group, etc.).
  • trivalent saturated hydrocarbon groups having 1 to 7 carbon atoms include a methine group and the like.
  • methyl group, methylene group and methine group are preferred, and methyl group and methylene group are more preferred.
  • the monovalent groups include R 10 and R 11 Examples include the same groups as the exemplified groups, and preferred ones are also the same.
  • R 12 is a divalent group having 2 to 12 carbon atoms and having at least one non-polymerizable double bond or at least one non-polymerizable triple bond
  • preferred groups include a benzenediyl group (6 carbon atoms , non-polymerizable carbon-carbon double bond), 1-methoxycarbonyl-carbonyloxyethyleneoxycarbonyl group (6 carbon atoms, oxygen-oxygen double bond) and carbonyloxyethylenecarbonyl group (4 carbon atoms, oxygen-oxygen two double bond) and the like.
  • R 12 is a trivalent group having 2 to 12 carbon atoms having at least one non-polymerizable double bond or at least one non-polymerizable triple bond, it is preferably a benzenetriyl group (having 6, non-polymerizable carbon-carbon double bond) and 2-carbonyloxy-carbonyloxypropylenecarbonyl group (5 carbon atoms, oxygen-oxygen double bond).
  • R 10 and R 11 may be bonded to each other, and preferred groups having a ring structure formed by bonding R 10 and R 11 are ⁇ -butyrolactonyl and A fluorenyl group and the like can be mentioned.
  • the group in which R 10 and R 11 are bonded together to form a ring structure includes the carbon atom to which R 10 and R 11 are bonded in the ring structure.
  • X3 is a monovalent organic main group element group containing tellurium, antimony or bismuth or an iodine group, preferably methyltheranyl, dimethylstivanyl, dimethylbismutanyl and iodine. Among them, a methylteranyl group and an iodo group are more preferred, and an iodo group is most preferred.
  • Examples of the organic main element compound represented by the general formula (2) include 2-iodopropionitrile, 2-methyl-2-iodopropionitrile, ⁇ -iodobenzyl cyanide, 2-iodopropionamide, ethyl -2-methyl-2-iodo-propionate, methyl 2-methyl-iodopropionate, 2-methyl-propyl iodopropionate, butyl 2-methyl-iodopropionate, 2-methyl-pentyl iodopropionate, 2-methyl - hydroxyethyl iodopropionate, 2-methyl-2-iodo-propionic acid (salt), 2-iodopropionic acid (salt), 2-iodoacetic acid (salt), methyl 2-iodoacetate, ethyl 2-iodoacetate, Ethyl 2-iodopentanoate, Methyl 2-iodopentanoate, 2-iod
  • 2-methyl-2-iodopropionitrile, ethyl-2-methyl-2-iodo-propionate, 2-methyl-2-iodo-propionic acid (salt ), 2-iodoacetic acid (salt), methyl 2-iodoacetate, diethyl 2,5-diiodoadipate, 2,5-diiodoadipate, ethylene glycol bis(2-methyl-2-iodo-propinate), Ethylene glycol bis(2-iodo-2phenylacetate) can be mentioned.
  • the amount of the organic main group element compound used is preferably 0.0005 to 0.1% by weight, more preferably 0.005 to 0.05% by weight.
  • polymerization may be carried out in the presence of a conventionally known dispersant or surfactant, if necessary.
  • the polymerization can be carried out using conventionally known hydrocarbon solvents such as xylene, normal hexane and normal heptane.
  • the polymerization initiation temperature can be appropriately adjusted depending on the type of catalyst used, but is preferably 0 to 100°C, more preferably 2 to 80°C.
  • the solvent organic solvent, water, etc.
  • the content (% by weight) of the organic solvent after distillation is preferably 0 to 10, more preferably 0 to 5, particularly preferably 0 to 5, based on the weight of the crosslinked polymer (A). is 0-3, most preferably 0-1. Within this range, the absorption performance of the water absorbent resin composition is further improved.
  • the water content (% by weight) after distillation is preferably 0 to 20, more preferably 1 to 10, particularly preferably 2 to 9, based on the weight of the crosslinked polymer (A). Most preferably 3-8. Within this range, the absorption performance is further improved.
  • a water-containing gel-like substance (hereinafter also referred to as a water-containing gel) in which the crosslinked polymer (A) contains water can be obtained by the polymerization method described above.
  • the hydrous gel may be neutralized with a base.
  • the degree of neutralization of acid groups is preferably 50 to 80 mol %. If the degree of neutralization is less than 50 mol %, the resulting hydrous gel polymer will have high adhesiveness, and workability during production and use may deteriorate. Furthermore, the water-retaining capacity of the obtained water-absorbent resin composition may decrease. On the other hand, if the degree of neutralization exceeds 80%, the resulting resin will have a high pH and may be unsafe for human skin.
  • the neutralization may be performed at any stage after the polymerization of the crosslinked polymer (A) in the production of the water-absorbent resin composition. exemplified as
  • alkali metal hydroxides such as sodium hydroxide and potassium hydroxide
  • alkali metal carbonates such as sodium carbonate, sodium hydrogencarbonate and potassium carbonate
  • the content and water content of the organic solvent were measured using an infrared moisture meter [JE400 manufactured by KETT Co., Ltd., etc.: 120 ⁇ 5 ° C., 30 minutes, atmospheric humidity before heating 50 ⁇ 10% RH, lamp specifications 100 V, 40 W ] is obtained from the weight loss of the measurement sample when heated by
  • the method for producing the water-absorbing resin composition of the present embodiment may have a shredding step of shredding the hydrous gel, if necessary.
  • the size (maximum diameter) of the gel after shredding is preferably 50 ⁇ m to 10 cm, more preferably 100 ⁇ m to 2 cm, particularly preferably 1 mm to 1 cm. Within this range, the drying property in the drying step is further improved.
  • Shredding can be performed by a known method, and can be performed using a shredding device (eg, Vex mill, rubber chopper, farmer mill, mincing machine, impact pulverizer, and roll pulverizer).
  • a shredding device eg, Vex mill, rubber chopper, farmer mill, mincing machine, impact pulverizer, and roll pulverizer.
  • the method for producing a water-absorbent resin composition of the present embodiment has a drying step of drying the water-containing gel and distilling off the solvent (including water) in the water-containing gel to obtain the crosslinked polymer (A).
  • the method of distilling off the solvent in the hydrous gel includes a method of distilling (drying) with hot air at a temperature of 80 to 230 ° C., and a thin film drying method using a drum dryer or the like heated to 100 to 230 ° C. , (heating) vacuum drying method, freeze drying method, infrared drying method, decantation, filtration, and the like can be applied.
  • the method for producing a water absorbent resin composition of the present embodiment includes a pulverizing step of pulverizing the crosslinked polymer (A) obtained in the drying step to obtain the crosslinked polymer (A) in the form of particles.
  • the method for pulverizing the crosslinked polymer (A) is not particularly limited, and a pulverizing device (e.g., hammer pulverizer, impact pulverizer, roll pulverizer, and jet stream pulverizer). etc. can be used.
  • the pulverized crosslinked polymer (A) can be adjusted in particle size by sieving or the like, if necessary.
  • the method for producing a water absorbent resin composition of the present embodiment has a surface cross-linking step of cross-linking the surface of the cross-linked polymer (A) obtained in the drying step with the surface cross-linking agent (d).
  • the amount (% by weight) of the surface cross-linking agent (d) used is not particularly limited because it can be varied depending on the type of the surface cross-linking agent, cross-linking conditions, target performance, etc., but is not particularly limited from the viewpoint of absorption characteristics and the like. Therefore, it is preferably 0.001 to 3, more preferably 0.005 to 2, and particularly preferably 0.01 to 1.5, based on the weight of the crosslinked polymer (A).
  • the surface cross-linking of the cross-linked polymer (A) can be performed by mixing the cross-linked polymer (A) and the surface cross-linking agent (d) and heating.
  • Examples of the method for mixing the crosslinked polymer (A) and the surface cross-linking agent (d) include a cylindrical mixer, a screw mixer, a screw extruder, a turbulizer, a Nauta mixer, a twin-arm kneader, a fluid
  • a crosslinked polymer ( A method of uniformly mixing A) and the surface cross-linking agent (d) can be mentioned.
  • the surface cross-linking agent (d) is preferably used after being diluted with water and/or any solvent.
  • the solvent used when mixing the crosslinked polymer (A) and the surface cross-linking agent (d) refers to a liquid substance that does not chemically react during surface cross-linking.
  • the solvent include organic solvents such as propylene glycol, 1,2-butanediol, 1,2-pentanediol, 1,2-hexanediol and glycerin.
  • the solvent may be used alone or in combination of two or more.
  • the solvent is preferably an organic solvent having a boiling point of 100° C. or higher, more preferably diethylene glycol, from the viewpoint of improving the reactivity of the surface cross-linking agent (d) and absorption performance. By using a solvent having a boiling point of 100° C.
  • volatilization is suppressed when the crosslinked polymer (A) and the surface cross-linking agent (d) are reacted under heating, uniformity of cross-linking is improved, and absorption performance is improved. quality can be more stable.
  • the carbon-neutrality of the water-absorbing resin composition itself can be improved.
  • a polar solvent as a solvent when mixing the crosslinked polymer (A) and the surface cross-linking agent (d), the monomer (A1) and/or the monomer ( When the carboxyl group derived from A2) reacts with the surface cross-linking agent (d), it is assumed that the polar solvent temporarily coordinates with the surface cross-linking agent (d), thereby promoting the reaction.
  • a polar solvent having a diol, triol, or the like in the structure of the polar solvent is coordinated to the unneutralized carboxy group site of the monomer (A2) to donate electrons, thereby easily releasing protons from the carboxy group.
  • This proton coordinates with a reactive group such as a glycidyl group in the surface cross-linking agent (d) to promote the reaction.
  • a reactive group such as a glycidyl group in the surface cross-linking agent (d) to promote the reaction.
  • the amount of the solvent used can be appropriately adjusted depending on the type of solvent. From the viewpoint of performance, it is preferably 0.1 to 10% by weight based on the crosslinked polymer (A) before surface crosslinking. Also, the ratio of solvent to water can be arbitrarily adjusted, but is preferably 1 to 70% by weight, more preferably 2 to 60% by weight. By setting the amount of the solvent used to be at least the above lower limit, the surface cross-linking agent (d) can be uniformly added to the crosslinked polymer (A), and the balance between the water retention amount and the absorption amount under load is further improved. .
  • the temperature at which the crosslinked polymer (A) and the surface cross-linking agent (d) are mixed is not particularly limited, but is preferably 10 to 150°C, more preferably 20 to 100°C, and particularly preferably 25 to 80°C. .
  • the heating temperature is preferably 100 to 180°C, more preferably 110 to 175°C, particularly preferably 120 to 170°C, from the viewpoint of breaking resistance of the water absorbent resin. Heating at 180° C. or less enables indirect heating using steam, which is advantageous in terms of facilities. Heating temperatures below 100° C. may result in poor absorption performance.
  • the heating time can be appropriately set depending on the heating temperature, but from the viewpoint of absorption performance, it is preferably 5 to 60 minutes, more preferably 10 to 40 minutes. It is also possible to further surface-crosslink the water-absorbing resin obtained by surface-crosslinking using a surface-crosslinking agent that is the same as or different from the surface-crosslinking agent used first.
  • the particle size is adjusted by sieving if necessary.
  • the average particle size of the obtained particles is preferably 100-600 ⁇ m, more preferably 200-500 ⁇ m.
  • the content of fine particles is preferably as small as possible, the content of particles of 100 ⁇ m or less is preferably 3% by weight or less, and the content of particles of 150 ⁇ m or less is more preferably 3% by weight or less.
  • the plant-derived raw material may be added after the polymerization step.
  • the method of adding the plant-derived raw material is not particularly limited, and includes a method of kneading with the hydrous gel, a method of shredding the hydrous gel by adding the plant-derived raw material in the shredding step, and a water-absorbing resin obtained in the drying step. and a method of kneading a plant-derived raw material, and a method of mixing a cross-linked polymer (A), a surface cross-linking agent (d), and a plant-derived raw material in the surface cross-linking step. From the viewpoint of absorption performance and productivity, it is preferable to add the water-containing gel particles obtained in the shredding step and/or the gel shredding step during the drying step.
  • Plant-derived raw materials include the water-soluble unsaturated dicarboxylic acid (a3) and salts thereof, as well as oils and fats, proteins, fibers, extracts, sugars, and the like.
  • fats and oils, fibers, and sugars are preferred from the viewpoint of water absorption performance, and fibers and sugars are more preferred, and the stable carbon isotope ratio ( ⁇ 13 C) is from ⁇ 60 ⁇ to ⁇ 5 ⁇ , And if the 14 C/C measured by the carbon radiocarbon dating method satisfies 1.2 ⁇ 10 ⁇ 12 to 1.0 ⁇ 10 ⁇ 16 , part or all of it is chemically modified or a mixture thereof.
  • Fats and oils include soybean oil, coconut oil, palm oil, palm kernel oil, corn oil, olive oil, safflower oil, safflower oil, cottonseed oil, rapeseed oil, castor oil, sesame oil, and the like.
  • Fibers include vegetable fibers, and vegetable fibers include kenaf, jute hemp, manila hemp, sisal hemp, ganpi, kozo, banana, pineapple, coconut palm, corn, sugar cane, bagasse, palm, papyrus, reed, Coniferous trees such as esparto, surviving grass, barley, rice, bamboo, cedar and cypress, broad-leaved trees, and fibers of various plants such as cotton.
  • Sugars include fructose, glucose, lactose, maltose, galactose, sucrose, starch, cellulose, and cellulose derivatives.
  • Methods for kneading the hydrous gel or water-absorbent resin composition and the plant-derived raw material include cylindrical mixers, screw mixers, screw extruders, turbulizers, Nauta mixers, double-arm kneaders, Mix uniformly using a mixing device such as a fluidized mixer, a V-shaped mixer, a mincing mixer, a ribbon mixer, a fluidized mixer, an airflow mixer, a rotating disk mixer, a conical blender, and a roll mixer.
  • a mixing device such as a fluidized mixer, a V-shaped mixer, a mincing mixer, a ribbon mixer, a fluidized mixer, an airflow mixer, a rotating disk mixer, a conical blender, and a roll mixer.
  • An organic fibrous material or the like can be added, and the amount thereof is usually 5% by weight or less based on the weight of the water absorbent resin composition.
  • it may have a foamed structure, and may be granulated or molded.
  • the content of the crosslinked polymer (A) in the water absorbent resin composition is preferably 50 to 99.5% by weight, more preferably 60 to 99% by weight. When the content of the crosslinked polymer is 50% or more, it is possible to obtain a water absorbent resin composition having sufficient water retention capacity.
  • the water retention capacity (g/g) of 0.9% by weight physiological saline of the water absorbent resin composition is 10-60.
  • the water retention capacity (g/g) of the water absorbent resin composition can be measured by the method described later, and is preferably 15 or more, more preferably 18 or more, and particularly preferably 20 or more from the viewpoint of absorption capacity. .
  • the upper limit is preferably 55 or less, more preferably 50 or less, and particularly preferably 45 or less.
  • the amount of water retention can be appropriately adjusted by the amount (% by weight) of the cross-linking agent (b) and the surface cross-linking agent (d) used.
  • the gel permeation rate (ml/min) of the water-absorbing resin composition can be measured by the method described later, and is preferably 3 to 300, more preferably 5 to 200, from the viewpoint of diaper absorption rate. Particularly preferably, it is 10-180. It is empirically known that the gel permeation rate conflicts with the water retention capacity, and there are cases where a high water retention capacity is required and there are cases where a high gel permeation rate is required depending on the configuration of the diaper.
  • the absorption amount (g/g) of 0.9% by weight of physiological saline under load of the water-absorbing resin composition can be measured by the method described later, and from the viewpoint of the absorption amount of diapers under load, it is preferably 12 to 25, more preferably 15 to 25, particularly preferably 18 to 23. It is empirically known that the absorbency under load conflicts with the water retention capacity, and there are cases where a high water retention capacity is required and cases where a high gel permeation rate is required depending on the configuration of the diaper.
  • An absorbent body can be obtained using the water absorbent resin composition.
  • the water absorbent resin composition may be used alone, or may be used together with other materials to form an absorbent.
  • Such other materials include fibrous materials and the like.
  • the structure and manufacturing method of the absorbent when used with fibrous materials are the same as those of known ones (Japanese Patent Laid-Open Nos. 2003-225565, 2006-131767 and 2005-097569). be.
  • Cellulose fibers, organic synthetic fibers, and mixtures of cellulosic fibers and organic synthetic fibers are preferable as the fibrous material.
  • cellulosic fibers include natural fibers such as fluff pulp, and cellulosic chemical fibers such as bicose rayon, acetate and cupra.
  • the raw material softwood, hardwood, etc.
  • manufacturing method chemical pulp, semi-chemical pulp, mechanical pulp, CTMP, etc.
  • bleaching method and the like of this cellulose-based natural fiber are not particularly limited.
  • organic synthetic fibers examples include polypropylene fibers, polyethylene fibers, polyamide fibers, polyacrylonitrile fibers, polyester fibers, polyvinyl alcohol fibers, polyurethane fibers, and heat-fusible composite fibers (the above fibers having different melting points). (sheath-and-core type, eccentric type, side-by-side type, etc.), fibers obtained by blending at least two of the above fibers, and fibers obtained by modifying the surface layer of the above fibers.
  • cellulosic natural fibers polypropylene fibers, polyethylene fibers, polyester fibers, heat-fusible conjugate fibers and mixed fibers thereof are preferred, and more preferred are fluff pulp, heat-fusible conjugate fibers and mixed fibers thereof in that they are excellent in shape retention after water absorption by the water absorbing agent.
  • the length and thickness of the above-mentioned fibrous material are not particularly limited, and if the length is in the range of 1 to 200 mm and the thickness is in the range of 0.1 to 100 denier, it can be suitably used.
  • the shape is not particularly limited as long as it is fibrous, and examples include a thin cylindrical shape, a split yarn shape, a staple shape, a filament shape, a web shape, and the like.
  • the weight ratio of the water absorbent resin particles and fibers is 40/60 to 90/10. It is preferably 70/30 to 80/20, more preferably 70/30 to 80/20.
  • An absorbent article can be obtained using the water absorbent resin composition. Specifically, the absorber described above is used.
  • Absorbent products include not only sanitary products such as paper diapers and sanitary napkins, but also anti-condensation agents, water retention agents for agriculture and gardening, soil solidification agents, disaster sandbags, waste blood solidification agents, disposable body warmers, refrigerants, and alkaline batteries. It can be used for various purposes such as absorption of various aqueous liquids, retention agent use, and gelling agent use in various industrial fields such as cosmetics, pet sheets, and cat litter.
  • the manufacturing method of the absorbent article and the like are the same as those known (described in JP-A-2003-225565, JP-A-2006-131767, JP-A-2005-097569, etc.).
  • ⁇ Method for measuring absorption under load In a cylindrical plastic tube (inner diameter: 25 mm, height: 34 mm) with a mesh opening of 63 ⁇ m (JIS Z8801-1: 2006) attached to the bottom, 250 to 500 ⁇ m using a 30 mesh sieve and a 60 mesh sieve. Weigh 0.16 g of the measurement sample sieved to the range, vertical the cylindrical plastic tube, arrange the measurement sample on the nylon mesh so that the thickness is almost uniform, and put a weight (weight: 306.2 g, outer diameter: 24.5 mm,) was placed.
  • ⁇ Radiocarbon dating method ( 14 C/C)> By measuring the concentration of carbon-14 in the sample and calculating backward using the content of carbon-14 in the atmosphere (107 pMC (percent modern carbon)) as an index, the ratio of carbon-14 in the carbon contained in the sample is obtained. rice field.
  • the sample water-absorbent resin
  • CO 2 is converted to CO 2 from the constituent carbon, or the obtained CO 2 is further converted to graphite (C), and then subjected to an accelerator mass spectrometer (AMS) and subjected to a standard substance (for example, US NIST Shu
  • AMS accelerator mass spectrometer
  • the content of carbon-14 relative to the acid was determined by comparative measurement, and evaluated according to the following criteria.
  • ⁇ criterion ⁇ ⁇ : 14 C/C is 1.2 ⁇ 10 -12 to 1.0 ⁇ 10 -16 ⁇ : 14 C/C is less than 1.0 ⁇ 10 ⁇ 16
  • Acrylic acid (a1-1) (manufactured by Mitsubishi Chemical) 279 parts, methylene succinic acid (manufactured by Fuso Chemical Industry) 31 parts, internal cross-linking agent (b-1) N, N'- ⁇ (2-acrylamide-2-[( 3-acrylamidopropoxy)methyl]propane-1,3-diyl)bis(propane-1,3-diyl) ⁇ diacrylamide (manufactured by Wako Pure Chemical Industries, product name FOM-03006) 0.3 parts and 680 parts of deionized water was kept at 3°C while stirring and mixing.
  • Example 2 In Example 1, 279 parts of acrylic acid (a1-1) and 31 parts of methylene succinic acid (manufactured by Fuso Chemical Industry) were replaced with 248 parts of acrylic acid (a1-1) (manufactured by Mitsubishi Chemical) and methylene succinic acid (manufactured by Fuso Chemical Industry ) to obtain water-absorbing resin particles (P-2) of the present invention in the same manner as in Example 1, except that the content was changed to 62 parts.
  • Example 3 In Example 1, 279 parts of acrylic acid (a1-1) and 31 parts of methylenesuccinic acid were added to 124 parts of acrylic acid (a1-1) and 186 parts of methylenesuccinic acid, and 129 parts of a 48.5% aqueous sodium hydroxide solution was added to 133 parts. Water-absorbent resin particles (P-3) of the present invention were obtained in the same manner as in Example 1, except that the content was changed.
  • Example 4 In Example 1, 279 parts of acrylic acid (a1-1) and 31 parts of methylenesuccinic acid were changed to 31 parts of acrylic acid (a1-1) and 279 parts of methylenesuccinic acid, and the temperature of the mixture was adjusted to 80 ° C. Water-absorbing resin particles (P-4) of the present invention were obtained in the same manner as in Example 1 except that heat treatment was performed and 129 parts of the 48.5% aqueous sodium hydroxide solution was changed to 140 parts.
  • Example 5 the internal cross-linking agent (b-1) N,N'- ⁇ (2-acrylamido-2-[(3-acrylamidopropoxy)methyl]propane-1,3-diyl)bis(propane-1,3 - diyl) ⁇ diacrylamide (manufactured by Wako Pure Chemical Industries, product name: FOM-03006) 0.3 parts of internal cross-linking agent (b-1) N,N',N''-triacryloyldiethylenetriamine (manufactured by Wako Pure Chemical Industries, product name) Water-absorbent resin particles (P-5) of the present invention were obtained in the same manner except that the name FOM-03007) was changed to 0.3 parts.
  • Example 6 the internal cross-linking agent (b-1) N,N'- ⁇ (2-acrylamido-2-[(3-acrylamidopropoxy)methyl]propane-1,3-diyl)bis(propane-1,3- Diyl) ⁇ diacrylamide (manufactured by Wako Pure Chemical Industries, Ltd., product name: FOM-03006) is added to 0.3 parts of an internal cross-linking agent (b-1) N,N'-diacryloyl-4,7,10-trioxa-1,13- Water-absorbent resin particles (P-6) of the present invention were obtained in the same manner except that tridecanediamine (manufactured by Wako Pure Chemical Industries, Ltd., product name: FOM-03008) was changed to 0.3 parts.
  • Example 7 In Example 1, the internal cross-linking agent (b-1) N,N'- ⁇ (2-acrylamido-2-[(3-acrylamidopropoxy)methyl]propane-1,3-diyl)bis(propane-1,3- diyl) ⁇ diacrylamide (manufactured by Wako Pure Chemical Industries, product name: FOM-03006) 0.3 parts of internal cross-linking agent (b-2) N,N',N'',N'''-tetraacryloylethylenetetramine (sum Kojunyaku Co., Ltd., product name FOM-03009) was changed to 0.3 parts to obtain water-absorbing resin particles (P-7) of the present invention.
  • Example 8 In Example 1, the internal cross-linking agent (b-1) N,N'- ⁇ (2-acrylamido-2-[(3-acrylamidopropoxy)methyl]propane-1,3-diyl)bis(propane-1,3- diyl) ⁇ diacrylamide (manufactured by Wako Pure Chemical Industries, product name: FOM-03006) was changed to 0.7 parts of the internal cross-linking agent (b-2) triallylpentaerythritol (manufactured by TCI) in the same manner. Inventive water absorbent resin particles (P-8) were obtained.
  • Plant-derived acrylic acid was obtained by performing the same operation except that petrified ethylene oxide was changed to plant-derived ethylene oxide.
  • Plant-derived ethylene oxide can be obtained, for example, by converting ethanol obtained by fermentation or the like into ethylene with an enzyme and then oxidizing the ethanol.
  • Example 9 In Example 1, 310 parts of acrylic acid (a1-1) (Mitsubishi Chemical) was changed to acrylic acid (a1-2) of Production Example 1. ).
  • Example 10 the internal cross-linking agent (b-1) N,N'- ⁇ (2-acrylamido-2-[(3-acrylamidopropoxy)methyl]propane-1,3-diyl)bis(propane-1,3 -diyl) ⁇ diacrylamide (manufactured by Wako Pure Chemical Industries, Ltd., product name: FOM-03006) was changed to 0.74 parts of polyethylene glycol diacrylate (manufactured by Tokyo Chemical Industry Co., Ltd.) in the same manner as the water absorbent of the present invention. Resin particles (P-10) were obtained.
  • Acrylic acid (a1-1) (manufactured by Mitsubishi Chemical) 279 parts, methylene succinic acid (manufactured by Fuso Chemical Industry) 31 parts, internal cross-linking agent (b-1) N, N'- ⁇ (2-acrylamide-2-[( 3-acrylamidopropoxy)methyl]propane-1,3-diyl)bis(propane-1,3-diyl) ⁇ diacrylamide (manufactured by Wako Pure Chemical Industries, product name FOM-03006) 0.3 parts and 680 parts of deionized water was kept at 3°C while stirring and mixing.
  • Example 12 In Example 1, 0.08 parts ethylene glycol diglycidyl ether, 0.8 parts propylene glycol, and 1.5 parts water were mixed with 0.15 parts ethylene glycol diglycidyl ether, 1.5 parts propylene glycol, and 1.5 parts water. Water absorbent resin particles (P-12) of the present invention were obtained in the same manner except that the amount was changed to 5 parts.
  • Example 13 Water absorbent resin particles (P-13) of the present invention were obtained in the same manner as in Example 1, except that 0.1 part of propylene glycol was not used.
  • ⁇ Comparative Example 1 310 parts of acrylic acid (a1-1) (manufactured by Mitsubishi Chemical), 1.0 part of triallyl pentaerythritol (manufactured by TCI) as a cross-linking agent (b-2), and 679 parts of deionized water are stirred and mixed at 3°C.
  • Table 1 shows the evaluation results.

Abstract

The present invention provides a water-absorbent resin composition that contains a cross-linked polymer (A) that has, as constituent units: at least one type of monomer (A1) selected from the group consisting of a water-soluble unsaturated monocarboxylic acid (a1), salts thereof, and so forth; at least one type of monomer (A2) selected from the group consisting of a water-soluble unsaturated dicarboxylic acid (a3), salts thereof, and so forth; and a cross-linking agent (b), wherein a surface of the cross-linked polymer (A) has a structure that is cross-linked by means of a surface cross-linking agent (d), and the 14C/C of at least one of the monomer (A1) and the monomer (A2) is 1.2×10-12 to 1.0×10-16. According to the present invention, it is possible to provide a water-absorbent resin composition: with which, while employing a plant-origin raw material that is useful in terms of environmental conservation from the viewpoint of carbon neutrality, it is not necessary to remove impurities contained in said raw material in the manufacturing processes; and that achieves absorption performance that is equivalent to 《MK1》a polyacrylic acid-based absorbent resin composition《/MK1》 in which a monomer serving as the principal component has a single composition.

Description

吸水性樹脂組成物、並びにこれを用いた吸収体及び吸収性物品、並びに吸水性樹脂組成物の製造方法Water-absorbent resin composition, absorbent body and absorbent article using the same, and method for producing water-absorbent resin composition
 本発明は吸水性樹脂組成物、並びにこれを用いた吸収体及び吸収性物品、並びに吸水性樹脂組成物の製造方法に関するものである。 The present invention relates to a water absorbent resin composition, absorbent bodies and absorbent articles using the same, and a method for producing a water absorbent resin composition.
 吸水性樹脂組成物は、自重の数十倍から数千倍の水を吸収できる樹脂であり、例えばポリアクリル酸系吸収性樹脂組成物等が知られている。これらの吸水性樹脂組成物は、その高い吸水性から広く使い捨て衛生用品に使用されている。しかし、これまでの吸水性樹脂組成物は、それを含む衛生用品の処理方法に環境負荷の観点から問題があり、焼却炉で処理する方法では、地球温暖化の原因となることが指摘されている。このような状況下、カーボンニュートラル等の観点から植物由来原料を用いた吸水性樹脂組成物が強く求められている。 A water-absorbing resin composition is a resin that can absorb water several tens to thousands times its own weight. For example, a polyacrylic acid-based absorbent resin composition is known. These water-absorbing resin compositions are widely used in disposable sanitary products due to their high water-absorbing properties. However, it has been pointed out that conventional water-absorbing resin compositions are problematic from the viewpoint of environmental load in the disposal method of sanitary goods containing them, and that the method of disposal in an incinerator causes global warming. there is Under such circumstances, there is a strong demand for a water-absorbing resin composition using a plant-derived raw material from the viewpoint of carbon neutrality and the like.
 植物由来原料を用いた吸水性樹脂組成物としては、例えばカルボキシメチルセルロース架橋体(特許文献1)、アルギン酸架橋体、澱粉架橋体(特許文献2)、ポリアミノ酸架橋体(特許文献3~7)、ガラクトマンナン-金属イオン架橋体(特許文献8~10)等が知られている。しかし、これらの植物由来原料を用いた吸水性樹脂組成物をポリアクリル酸系吸水性樹脂組成物と比較した場合、植物由来原料を用いた吸収性樹脂組成物の方が、生産性が悪い上、吸収性能が低い等の問題があり実用化には至っていない。 Examples of water absorbent resin compositions using plant-derived raw materials include carboxymethylcellulose crosslinked products (Patent Document 1), alginic acid crosslinked products, starch crosslinked products (Patent Document 2), polyamino acid crosslinked products (Patent Documents 3 to 7), Galactomannan-metal ion crosslinked products (Patent Documents 8 to 10) and the like are known. However, when comparing the water absorbent resin composition using these plant-derived raw materials with the polyacrylic acid-based water absorbent resin composition, the absorbent resin composition using the plant-derived raw material has poor productivity. However, it has not been put to practical use due to problems such as low absorption performance.
 また、ポリアクリル酸系吸水性樹脂組成物の例として、例えば、マーセル化したセルロースを重合時に石化由来のアクリル酸水溶液に溶解あるいは分散させ、これを重合する例がある(特許文献11)。しかし、当該特許文献11に記載の例では、事前に水酸化ナトリウム等の強塩基物質を使用したマーセル化処理を必須とするため、安全性や生産性効率の観点から好ましい形態ではない。 In addition, as an example of a polyacrylic acid-based water absorbent resin composition, for example, there is an example in which mercerized cellulose is dissolved or dispersed in an aqueous acrylic acid solution derived from petrification during polymerization, and this is polymerized (Patent Document 11). However, in the example described in Patent Literature 11, a mercerization treatment using a strong base substance such as sodium hydroxide is essential in advance, which is not a preferable form from the viewpoint of safety and productivity efficiency.
 更に、アクリル酸とメチレンコハク酸等を共重合させて得られる吸水性樹脂組成物も知られている(特許文献12、13)。しかし、当該特許文献12、13に記載の吸水性樹脂組成物は荷重下での吸水性が十分でなく、実使用に耐えない。他の考え方として、アクリル酸を石化アクリル酸から植物由来のアクリル酸に変更することで、バイオマス比率を向上させることも考えられる。しかし、植物由来のアクリル酸は、例えば、プロピオン酸、3-ヒドロキシプロピオン酸、ヒドロキシプロピオン酸誘導体、ギ酸、酢酸、乳酸、乳酸誘導体、アセトアルデヒド、アクロレイン、フルフラール、またはこれらの混合物等の不純物が含まれており、これら不純物が含まれると、植物由来のアクリル酸を重合等の化学的処理後、吸水性樹脂組成物とし、紙おむつやナプキンなどの衛生用品とした際の吸収性能低下や臭気発生の原因につながるため、使用者にとって好ましいものではない。そのため、例えば、植物由来のアクリル酸を製造する際に、蒸留操作や再結晶をすることでアクリル酸中に含まれる不純物を減量したり、アクリル酸を重合した後にゲル状態時に乾燥処理をする際に揮発させる等の処理をしたりすることが考えられる(特許文献14、15)。しかし、これらの方法では揮発した不純物を回収するための設備や加熱によってゲル状であってもポリマーが劣化する懸念があり、結果として吸水性樹脂組成物としての吸水性能の低下につながることもあるため、生産性の観点から好ましい方法ではない。 Furthermore, water absorbent resin compositions obtained by copolymerizing acrylic acid and methylenesuccinic acid are also known (Patent Documents 12 and 13). However, the water-absorbent resin compositions described in Patent Documents 12 and 13 do not have sufficient water absorbency under load and cannot withstand practical use. Another way of thinking is to improve the biomass ratio by changing acrylic acid from petrified acrylic acid to plant-derived acrylic acid. However, plant-derived acrylic acid contains impurities such as, for example, propionic acid, 3-hydroxypropionic acid, hydroxypropionic acid derivatives, formic acid, acetic acid, lactic acid, lactic acid derivatives, acetaldehyde, acrolein, furfural, or mixtures thereof. If these impurities are included, the plant-derived acrylic acid is made into a water-absorbing resin composition after chemical treatment such as polymerization, and sanitary products such as disposable diapers and napkins are the cause of reduced absorption performance and odor generation. This is not preferable for users because it leads to Therefore, for example, when producing plant-derived acrylic acid, the amount of impurities contained in acrylic acid is reduced by distillation or recrystallization, or when drying is performed in the gel state after polymerization of acrylic acid. (Patent Documents 14 and 15). However, in these methods, there is a concern that the polymer may deteriorate even in a gel state due to equipment for recovering volatilized impurities and heating, and as a result, it may lead to a decrease in water absorption performance as a water absorbent resin composition. Therefore, it is not a preferable method from the viewpoint of productivity.
 特許文献16、17には、炭素安定同位体比δ13Cを規定することで、トレーサビリティも可能であるとの報告もある。これらの特許文献では石化由来のアクリル酸と植物由来のアクリル酸の比率や架橋条件を種々検討している例がある。 Patent Documents 16 and 17 also report that traceability is possible by specifying the stable carbon isotope ratio δ 13 C. In these patent documents, there are examples in which the ratio of acrylic acid derived from petrification and acrylic acid derived from plants and cross-linking conditions are variously studied.
 しかしながら、前記特許文献16、17に記載の方法で得られる植物由来のアクリル酸にも多分の不純物が含まれることが想定されるため、先に例示した課題と同様のことがいえる。 However, since it is assumed that the plant-derived acrylic acid obtained by the methods described in Patent Documents 16 and 17 also contains many impurities, the same problems as those exemplified above can be said.
特開2004-010634号公報Japanese Patent Application Laid-Open No. 2004-010634 特開昭55-15634号公報JP-A-55-15634 特開平7-224163号公報JP-A-7-224163 特開平7-309943号公報JP-A-7-309943 特開平8-59820号公報JP-A-8-59820 特開平8-504219号公報JP-A-8-504219 特開平9-169840号公報JP-A-9-169840 特開平8-59891号公報JP-A-8-59891 特公平3-66321号公報Japanese Patent Publication No. 3-66321 特開昭56-97450号公報JP-A-56-97450 特開2009-185216号公報JP 2009-185216 A 中国特許出願公開第103183764号公報Chinese Patent Application Publication No. 103183764 米国特許出願公開第9109059号公報U.S. Patent Application Publication No. 9109059 特願2010-549538号Japanese Patent Application No. 2010-549538 特願2009-525070号Japanese Patent Application No. 2009-525070 特願2012-512867号Japanese Patent Application No. 2012-512867 特願2012-512868号Japanese Patent Application No. 2012-512868
 本発明の目的は、カーボンニュートラルの観点からの環境保全面にとって有用な植物由来の原料を用いながら、製造行程中で当該原料に含まれる不純物の除去を必要とせず、かつ、主成分のモノマーが単一組成であるポリアクリル酸系吸収性樹脂組成物と同程度の吸収性能を有する吸水性樹脂組成物、並びにこれを用いた吸収体及び吸収性物品、並びに吸水性樹脂組成物の製造方法を提供することである。 The object of the present invention is to use a plant-derived raw material that is useful for environmental conservation from the carbon-neutral viewpoint, does not require removal of impurities contained in the raw material during the manufacturing process, and has a main component monomer A water-absorbent resin composition having absorption performance comparable to that of a single-component polyacrylic acid-based absorbent resin composition, an absorbent body and absorbent articles using the same, and a method for producing a water-absorbent resin composition. to provide.
 本発明は、
 水溶性不飽和モノカルボン酸(a1)及びその塩、並びに加水分解により前記水溶性不飽和モノカルボン酸(a1)となるモノマー(a2)からなる群より選ばれる1種以上のモノマー(A1)と、水溶性不飽和ジカルボン酸(a3)及びその塩、並びに加水分解により前記水溶性不飽和ジカルボン酸(a3)となるモノマー(a4)からなる群より選ばれる1種以上のモノマー(A2)と、架橋剤(b)と、を構成単位として有する架橋重合体(A)を含有し、前記架橋重合体(A)の表面が表面架橋剤(d)により架橋された構造を有する吸水性樹脂組成物であって、
 前記モノマー(A1)と前記モノマー(A2)の少なくとも何れかが、炭素の放射性炭素年代測定法によって測定される14C/Cが1.2×10-12~1.0×10―16であり、
 0.9重量%生理食塩水の保水量(g/g)が10~60、かつ0.9重量%生理食塩水の荷重下吸収量(g/g)が12~25である、吸水性樹脂組成物である。
The present invention
one or more monomers (A1) selected from the group consisting of water-soluble unsaturated monocarboxylic acids (a1) and salts thereof, and monomers (a2) that become the water-soluble unsaturated monocarboxylic acids (a1) by hydrolysis; , one or more monomers (A2) selected from the group consisting of a water-soluble unsaturated dicarboxylic acid (a3) and a salt thereof, and a monomer (a4) that becomes the water-soluble unsaturated dicarboxylic acid (a3) by hydrolysis; A water-absorbing resin composition containing a cross-linked polymer (A) having a cross-linking agent (b) as a structural unit, and having a structure in which the surface of the cross-linked polymer (A) is cross-linked by the surface cross-linking agent (d). and
At least one of the monomer (A1) and the monomer (A2) has a 14 C/C measured by a carbon radiocarbon dating method of 1.2×10 −12 to 1.0×10 −16 . ,
A water-absorbing resin having a water retention capacity (g/g) of 0.9 wt% saline of 10 to 60 and an absorption capacity (g/g) of 0.9 wt% saline under load of 12 to 25. composition.
 本発明によれば、カーボンニュートラルの観点からの環境保全面にとって有用な植物由来の原料を用いながら、製造行程中で当該原料に含まれる不純物の除去を必要とせず、かつ、主成分のモノマーが単一組成であるポリアクリル酸系吸収性樹脂組成物と同程度の吸収性能を有する吸水性樹脂組成物、並びにこれを用いた吸収体及び吸収性物品、並びに吸水性樹脂組成物の製造方法を提供することができる。 According to the present invention, while using a plant-derived raw material that is useful for environmental conservation from the carbon-neutral viewpoint, it does not require removal of impurities contained in the raw material during the manufacturing process, and the main component monomer is A water-absorbent resin composition having absorption performance comparable to that of a single-component polyacrylic acid-based absorbent resin composition, an absorbent body and absorbent articles using the same, and a method for producing a water-absorbent resin composition. can provide.
吸水性樹脂組成物の通液性を測定するための濾過円筒管の断面を模式的に表した図。The figure which represented typically the cross section of the filtration cylindrical tube for measuring the liquid permeability of a water-absorbent-resin composition. 吸水性樹脂組成物の通液性を測定するための加圧軸及びおもりを模式的に表した斜視図。FIG. 3 is a perspective view schematically showing a pressurizing shaft and a weight for measuring the liquid permeability of the water absorbent resin composition.
<吸水性樹脂組成物>
 本実施形態の吸水性樹脂組成物は、
 水溶性不飽和モノカルボン酸(a1)及びその塩、並びに加水分解により前記水溶性不飽和モノカルボン酸(a1)となるモノマー(a2)からなる群より選ばれる1種以上のモノマー(A1)と、水溶性不飽和ジカルボン酸(a3)及びその塩、並びに加水分解により前記水溶性不飽和ジカルボン酸(a3)となるモノマー(a4)からなる群より選ばれる1種以上のモノマー(A2)と、架橋剤(b)と、を構成単位として有する架橋重合体(A)を含有し、前記架橋重合体(A)の表面が表面架橋剤(d)により架橋された構造を有する吸水性樹脂組成物であって、
 前記モノマー(A1)と前記モノマー(A2)の少なくとも何れかが、炭素の放射性炭素年代測定法によって測定される14C/Cが1.2×10-12~1.0×10―16であり、
 0.9重量%生理食塩水の保水量(g/g)が10~60、かつ0.9重量%生理食塩水の荷重下吸収量(g/g)が12~25である。
<Water absorbent resin composition>
The water absorbent resin composition of the present embodiment is
one or more monomers (A1) selected from the group consisting of water-soluble unsaturated monocarboxylic acids (a1) and salts thereof, and monomers (a2) that become the water-soluble unsaturated monocarboxylic acids (a1) by hydrolysis; , one or more monomers (A2) selected from the group consisting of a water-soluble unsaturated dicarboxylic acid (a3) and a salt thereof, and a monomer (a4) that becomes the water-soluble unsaturated dicarboxylic acid (a3) by hydrolysis; A water-absorbing resin composition containing a cross-linked polymer (A) having a cross-linking agent (b) as a structural unit, and having a structure in which the surface of the cross-linked polymer (A) is cross-linked by the surface cross-linking agent (d). and
At least one of the monomer (A1) and the monomer (A2) has a 14 C/C measured by a carbon radiocarbon dating method of 1.2×10 −12 to 1.0×10 −16 . ,
The water retention capacity (g/g) of 0.9% by weight saline is 10-60, and the absorption under load (g/g) of 0.9% by weight saline is 12-25.
 前記吸水性樹脂組成物は、カーボンニュートラルの観点からの環境保全面にとって有用な植物由来の原料を用いながら、製造行程中で当該原料に含まれる不純物の除去を必要とせず、かつ、主成分のモノマーが単一組成であるポリアクリル酸系吸収性樹脂組成物と同程度の吸収性能を有する。 The water absorbent resin composition uses plant-derived raw materials that are useful for environmental conservation from the viewpoint of carbon neutrality, does not require removal of impurities contained in the raw materials during the manufacturing process, and It has the same level of absorption performance as a polyacrylic acid-based absorbent resin composition having a single monomer composition.
〔架橋重合体(A)〕
[モノマー(A1)]
(水溶性不飽和モノカルボン酸(a1)及びその塩)
 前記水溶性不飽和モノカルボン酸(a1)は、水溶性を有する不飽和モノカルボン酸であれば特に限定されずに用いることができる。前記水溶性不飽和モノカルボン酸(a1)は、架橋体にした際の吸水性能や入手の容易さの観点から、アクリル酸、メタクリル酸、及びクロトン酸からなる郡より選ばれる少なくとも1種が好ましく、アクリル酸、メタクリル酸がより好ましい。
[Crosslinked polymer (A)]
[Monomer (A1)]
(Water-soluble unsaturated monocarboxylic acid (a1) and its salt)
The water-soluble unsaturated monocarboxylic acid (a1) can be used without particular limitation as long as it is a water-soluble unsaturated monocarboxylic acid. The water-soluble unsaturated monocarboxylic acid (a1) is preferably at least one selected from the group consisting of acrylic acid, methacrylic acid, and crotonic acid, from the viewpoint of water absorption performance when crosslinked and ease of availability. , acrylic acid, and methacrylic acid are more preferred.
 前記水溶性不飽和モノカルボン酸(a1)の塩としては、アルカリ金属(リチウム、ナトリウム及びカリウム等)塩、アルカリ土類金属(マグネシウム及びカルシウム等)塩及びアンモニウム(NH)塩等が挙げられる。これらの塩の内、吸収性能等の観点から、アルカリ金属塩及びアンモニウム塩が好ましく、更に好ましいのはアルカリ金属塩、特に好ましいのはナトリウム塩である。 Examples of the salt of the water-soluble unsaturated monocarboxylic acid (a1) include alkali metal (lithium, sodium, potassium, etc.) salts, alkaline earth metal (magnesium, calcium, etc.) salts and ammonium (NH 4 ) salts. . Among these salts, alkali metal salts and ammonium salts are preferable, alkali metal salts are more preferable, and sodium salts are particularly preferable, from the viewpoint of absorption performance and the like.
(モノマー(a2))
 加水分解により前記水溶性不飽和モノカルボン酸(a1)となるモノマー(a2)を前記水溶性不飽和モノカルボン酸(a1)とともに、あるいはその代わりに使用することができる。前記モノマー(a2)は特に限定はなく、加水分解によりカルボキシ基となる加水分解性置換基を1個有するモノマー等が例示できる。前記加水分解性置換基としては、酸無水物を含む基(1,3-オキソ-1-オキサプロピレン基、-COO-CO-)、エステル結合を含む基(アルキルオキシカルボニル、ビニルオキシカルボニル、アリルオキシカルボニル又はプロペニルオキシカルボニル、-COOR)及びシアノ基等が挙げられる。なお、Rは炭素数1~3のアルキル基(メチル、エチル及びプロピル)、ビニル、アリル及びプロペニルである。
(monomer (a2))
The monomer (a2) that becomes the water-soluble unsaturated monocarboxylic acid (a1) by hydrolysis can be used together with or instead of the water-soluble unsaturated monocarboxylic acid (a1). The monomer (a2) is not particularly limited, and a monomer having one hydrolyzable substituent that becomes a carboxy group by hydrolysis can be exemplified. Examples of the hydrolyzable substituent include acid anhydride-containing groups (1,3-oxo-1-oxapropylene group, -COO-CO-), ester bond-containing groups (alkyloxycarbonyl, vinyloxycarbonyl, allyl oxycarbonyl or propenyloxycarbonyl, —COOR), cyano group and the like. R is an alkyl group having 1 to 3 carbon atoms (methyl, ethyl and propyl), vinyl, allyl and propenyl.
 なお、本明細書において、水溶性とは、25℃の水100gに少なくとも100g溶解することを意味する。また、前記モノマー(a2)における加水分解性とは、水及び必要により触媒(酸又は塩基等)の作用により加水分解され、水溶性になる性質を意味する。前記モノマー(a2)の加水分解は、重合中、重合後及びこれらの両方のいずれで行っても良いが、得られる吸水性樹脂組成物の吸収性能の観点から、重合後が好ましい。 In this specification, "water-soluble" means that at least 100 g dissolves in 100 g of water at 25°C. Further, the hydrolyzability of the monomer (a2) means the property of being hydrolyzed by the action of water and, if necessary, a catalyst (acid, base, etc.) to become water-soluble. The hydrolysis of the monomer (a2) may be carried out during polymerization, after polymerization, or both of them, but from the viewpoint of the absorption performance of the resulting water-absorbent resin composition, it is preferably carried out after polymerization.
[モノマー(A2)]
(水溶性不飽和ジカルボン酸(a3)及びその塩)
 前記水溶性不飽和ジカルボン酸(a3)は、水溶性を有する不飽和ジカルボン酸であれば特に限定されずに用いることができる。前記水溶性不飽和ジカルボン酸(a3)は、前記水溶性不飽和モノカルボン酸(a1)との反応性や入手容易さの観点から、マレイン酸、フマル酸、メチレンコハク酸、及びシトラコン酸からなる群より選ばれる1種以上が好ましく、メチレンコハク酸がより好ましい。
[Monomer (A2)]
(Water-soluble unsaturated dicarboxylic acid (a3) and salts thereof)
The water-soluble unsaturated dicarboxylic acid (a3) can be used without particular limitation as long as it is a water-soluble unsaturated dicarboxylic acid. The water-soluble unsaturated dicarboxylic acid (a3) consists of maleic acid, fumaric acid, methylenesuccinic acid, and citraconic acid from the viewpoint of reactivity with the water-soluble unsaturated monocarboxylic acid (a1) and availability. One or more selected from the group is preferable, and methylenesuccinic acid is more preferable.
 前記水溶性不飽和ジカルボン酸(a3)の塩としては、アルカリ金属(リチウム、ナトリウム及びカリウム等)塩、アルカリ土類金属(マグネシウム及びカルシウム等)塩及びアンモニウム(NH)塩等が挙げられる。これらの塩の内、吸収性能等の観点から、アルカリ金属塩及びアンモニウム塩が好ましく、更に好ましいのはアルカリ金属塩、特に好ましいのはナトリウム塩である。 Examples of the salt of the water-soluble unsaturated dicarboxylic acid (a3) include alkali metal (lithium, sodium, potassium, etc.) salts, alkaline earth metal (magnesium, calcium, etc.) salts and ammonium (NH 4 ) salts. Among these salts, alkali metal salts and ammonium salts are preferable, alkali metal salts are more preferable, and sodium salts are particularly preferable, from the viewpoint of absorption performance and the like.
(モノマー(a4))
 加水分解により前記水溶性不飽和ジカルボン酸(a3)となるモノマー(a4)を前記水溶性不飽和ジカルボン酸(a3)とともに、あるいはその代わりに使用することができる。前記モノマー(a4)は特に限定はなく、前記加水分解性置換基を少なくとも1個有するモノマー等が例示できる。
(Monomer (a4))
The monomer (a4) that becomes the water-soluble unsaturated dicarboxylic acid (a3) by hydrolysis can be used together with or instead of the water-soluble unsaturated dicarboxylic acid (a3). The monomer (a4) is not particularly limited, and examples thereof include monomers having at least one hydrolyzable substituent.
 前記モノマー(a4)の加水分解は、重合中、重合後及びこれらの両方のいずれで行っても良いが、得られる吸水性樹脂組成物の吸収性能の観点から、重合後が好ましい。 The hydrolysis of the monomer (a4) may be performed during polymerization, after polymerization, or both of them, but from the viewpoint of the absorption performance of the resulting water-absorbent resin composition, it is preferably performed after polymerization.
 前記モノマー(A1)と前記モノマー(A2)の少なくとも何れかは、炭素の放射性炭素年代測定法によって測定される14C/Cが1.2×10-12~1.0×10-16、好ましくは1.5×10-12~1.2×10-14である。炭素の放射性炭素年代は、具体的には実施例に記載の方法によって測定する。 At least one of the monomer (A1) and the monomer (A2) has a 14 C/C measured by carbon radiocarbon dating of 1.2×10 −12 to 1.0×10 −16 , preferably is 1.5×10 −12 to 1.2×10 −14 . The radiocarbon age of carbon is specifically measured by the method described in Examples.
 炭素の放射性炭素年代測定法では、大気中に二酸化炭素として存在していた炭素が、植物中に取り込まれ、その植物を原料として合成された植物由来原料に存在する炭素である放射性炭素(即ち、炭素14)を測定する。そして、石油等の化石原料中には炭素14原子が殆ど残っていないため、対象となる試料中における炭素14の濃度を測定し、大気中の炭素14の含有割合(107pMC(percent modern carbon))を指標として逆算することで、試料中に含まれる炭素のうちのバイオマス由来炭素の割合を求めることができる。 In the radiocarbon dating method of carbon, the carbon that existed as carbon dioxide in the atmosphere is incorporated into plants, and radiocarbon, which is carbon present in plant-derived raw materials synthesized using the plants as raw materials (i.e., Carbon 14) is measured. Since almost no carbon-14 atoms remain in fossil raw materials such as petroleum, the concentration of carbon-14 in the target sample is measured, and the content of carbon-14 in the atmosphere (107 pMC (percent modern carbon)) By calculating back using as an index, the ratio of biomass-derived carbon in the carbon contained in the sample can be obtained.
 また、炭素安定同位体比(δ13C)を測定することで、原料の由来を同定することも可能である。炭素安定同位体比(δ13C)とは、自然界に存在する炭素原子の3種類の同位体(存在比12C:13C:14C=98.9:1.11:1.2×10-12 単位;%)のうち、12Cに対する13Cの割合をいい、炭素安定同位体比は、標準物質に対する偏差で表され、以下の式で定義される値(δ値)をいう。
 δ13C(‰)=[(δ13C/δ12C)sample/(13C/12C)PDB-1.0]×1000
It is also possible to identify the origin of the raw material by measuring the stable carbon isotope ratio (δ 13 C). The stable carbon isotope ratio (δ 13 C) refers to three types of isotopes of carbon atoms that exist in nature (abundance ratio 12 C: 13 C: 14 C = 98.9: 1.11: 1.2 x 10 −12 units; %), the ratio of 13 C to 12 C, and the stable carbon isotope ratio is expressed as a deviation from a standard substance and refers to a value (δ value) defined by the following formula.
δ 13 C (‰) = [(δ 13 C/δ 12 C) sample / ( 13 C/ 12 C) PDB −1.0] × 1000
 ここで、[(13C/12C)sample]は、測定サンプルの安定同位体比を表し、[(13C/12C)PDB]は標準物質の安定同位体比を表す。PDBは、「Pee Dee Belemnite」の略称であり、炭酸カルシウムからなる矢石類の化石(標準物質としては南カロリナ州のPeeDee層から出土した矢石類の化石)を意味し、13C/12C比の標準体として用いられる。又、「炭素安定同位体比(δ13C)」は、加速器質量分析法(AMS法;Accelerator Mass Spectrometry)によって測定される。尚、標準物質は希少なため、標準物質に対する安定同位体比が既知であるワーキングスタンダードを利用することもできる。 Here, [( 13 C/ 12 C) sample ] represents the stable isotope ratio of the measurement sample, and [( 13 C/ 12 C) PDB ] represents the stable isotope ratio of the standard substance. PDB is an abbreviation for "Pee Dee Belemnite" and means a fossil of a pilaster made of calcium carbonate (as a reference material, a fossil of a pilaster excavated from the PeeDee Formation in South Carolina), and has a 13 C/ 12 C ratio. used as a standard body for In addition, the "stable carbon isotope ratio (δ 13 C)" is measured by accelerator mass spectrometry (AMS method; Accelerator Mass Spectrometry). Since standard substances are scarce, a working standard with a known stable isotope ratio to the standard substance can also be used.
 前記モノマー(A1)と前記モノマー(A2)の少なくとも何れかは、炭素安定同位体比(δ13C)が-60‰~-5‰であることが環境保全面の観点から好ましく、さらに好ましくは-50‰~-10‰である。 At least one of the monomer (A1) and the monomer (A2) preferably has a stable carbon isotope ratio (δ 13 C) of −60‰ to −5‰ from the viewpoint of environmental conservation, more preferably -50‰ to -10‰.
 前記架橋重合体(A)中の前記モノマー(A1)の物質量と前記モノマー(A2)の物質量の比(前記モノマー(A1)の物質量/前記モノマー(A2)の物質量)は、荷重下での吸水性能向上、環境保全面の観点から、好ましくは99/1~1/99であり、より好ましくは99/1~10/90、更に好ましくは90/10~10/90である。 The ratio of the substance amount of the monomer (A1) to the substance amount of the monomer (A2) in the crosslinked polymer (A) (substance amount of the monomer (A1)/substance amount of the monomer (A2)) is the load From the standpoints of improving water absorption performance under conditions and protecting the environment, it is preferably from 99/1 to 1/99, more preferably from 99/1 to 10/90, still more preferably from 90/10 to 10/90.
 前記架橋重合体(A)の構成単位として、前記モノマー(A1)及び前記モノマー(A2)の他に、これらと共重合可能なその他のビニルモノマー(A3)を構成単位とすることができる。前記ビニルモノマー(A3)は1種を単独で用いても、2種以上を併用してもよい。 In addition to the monomer (A1) and the monomer (A2), other vinyl monomers (A3) copolymerizable therewith can be used as structural units of the crosslinked polymer (A). One of the vinyl monomers (A3) may be used alone, or two or more of them may be used in combination.
 前記ビニルモノマー(A3)としては特に限定はなく、公知(例えば、特許第3648553号公報の0028~0029段落に開示されている疎水性ビニルモノマー、特開2003-165883号公報の0025段落及び特開2005-75982号公報の0058段落に開示されているビニルモノマー等)の疎水性ビニルモノマー等が使用でき、具体的には例えば下記の(i)~(iii)のビニルモノマー等が使用できる。
(i)炭素数8~30の芳香族エチレン性モノマー
 スチレン、α-メチルスチレン、ビニルトルエン及びヒドロキシスチレン等のスチレン、並びにビニルナフタレン、並びにジクロルスチレン等のスチレンのハロゲン置換体等。
(ii)炭素数2~20の脂肪族エチレン性モノマー
 アルケン(エチレン、プロピレン、ブテン、イソブチレン、ペンテン、ヘプテン、ジイソブチレン、オクテン、ドデセン及びオクタデセン等);並びにアルカジエン(ブタジエン及びイソプレン等)等。
(iii)炭素数5~15の脂環式エチレン性モノマー
 モノエチレン性不飽和モノマー(ピネン、リモネン及びインデン等);並びにポリエチレン性ビニルモノマー[シクロペンタジエン、ビシクロペンタジエン及びエチリデンノルボルネン等]等。
The vinyl monomer (A3) is not particularly limited, and is known (for example, hydrophobic vinyl monomers disclosed in paragraphs 0028 to 0029 of Japanese Patent No. 3648553; 2005-75982, paragraph 0058) can be used, and specifically, vinyl monomers (i) to (iii) below can be used.
(i) Aromatic ethylenic monomer having 8 to 30 carbon atoms Styrene such as styrene, α-methylstyrene, vinyltoluene and hydroxystyrene, vinylnaphthalene, and halogen-substituted styrene such as dichlorostyrene.
(ii) Aliphatic ethylenic monomers having 2 to 20 carbon atoms Alkenes (ethylene, propylene, butene, isobutylene, pentene, heptene, diisobutylene, octene, dodecene, octadecene, etc.); and alkadienes (butadiene, isoprene, etc.).
(iii) C5-C15 alicyclic ethylenic monomers monoethylenically unsaturated monomers (pinene, limonene, indene, etc.); and polyethylene vinyl monomers [cyclopentadiene, bicyclopentadiene, ethylidenenorbornene, etc.], and the like.
 前記ビニルモノマー(A3)単位の含有量(モル%)は、吸収性能等の観点から、前記モノマー(A1)単位及び前記モノマー(A2)単位の合計モル数に基づいて、0~5が好ましく、更に好ましくは0~3、特に好ましくは0~2、とりわけ好ましくは0~1.5であり、吸収性能等の観点から、前記ビニルモノマー(A3)単位の含有量が0モル%であることが最も好ましい。 The content (mol%) of the vinyl monomer (A3) unit is preferably 0 to 5, based on the total number of moles of the monomer (A1) unit and the monomer (A2) unit, from the viewpoint of absorption performance and the like. It is more preferably 0 to 3, particularly preferably 0 to 2, and most preferably 0 to 1.5. From the viewpoint of absorption performance and the like, the content of the vinyl monomer (A3) unit is preferably 0 mol%. Most preferred.
〔架橋剤(b)〕
 前記架橋剤(b)としては特に限定はなく公知(例えば、特許第3648553号公報の0031~0034段落に開示されているエチレン性不飽和基を2個以上有する架橋剤、水溶性置換基と反応し得る官能基を少なくとも1個有してかつ少なくとも1個のエチレン性不飽和基を有する架橋剤及び水溶性置換基と反応し得る官能基を少なくとも2個有する架橋剤、特開2003-165883号公報の0028~0031段落に開示されているエチレン性不飽和基を2個以上有する架橋剤、エチレン性不飽和基と反応性官能基とを有する架橋剤及び反応性置換基を2個以上有する架橋剤、特開2005-75982号公報の0059段落に開示されている架橋性ビニルモノマー並びに特開2005-95759号公報の0015~0016段落に開示されている架橋性ビニルモノマー)の架橋剤等が使用できる。
[Crosslinking agent (b)]
The cross-linking agent (b) is not particularly limited and is known (for example, a cross-linking agent having two or more ethylenically unsaturated groups disclosed in paragraphs 0031 to 0034 of Japanese Patent No. 3648553, a water-soluble substituent and a A cross-linking agent having at least one functional group capable of reacting with at least one ethylenically unsaturated group and a cross-linking agent having at least two functional groups capable of reacting with a water-soluble substituent, JP-A-2003-165883 A cross-linking agent having two or more ethylenically unsaturated groups, a cross-linking agent having an ethylenically unsaturated group and a reactive functional group, and a cross-linking having two or more reactive substituents disclosed in paragraphs 0028 to 0031 of the publication crosslinkable vinyl monomers disclosed in paragraph 0059 of JP-A-2005-75982 and crosslinkable vinyl monomers disclosed in paragraphs 0015-0016 of JP-A-2005-95759). can.
 前記架橋剤(b)は、エチレン性不飽和基を2個以上有する架橋剤が好ましく、モノマーとの反応性および吸水特性の観点から、エチレン性不飽和基を2個以上有する多価(メタ)アリル化合物及びアクリルアミド化合物からなる群より選ばれる1種以上がより好ましく、アルキレングリコール、トリメチロールプロパン、グリセリン、ペンタエリスリトール及びソルビトール等の多価アルコールのポリ(メタ)アリルエーテル、テトラアリロキシエタン並びにトリアリルイソシアヌレート等の多価(メタ)アリル化合物、並びに下記一般式(1)で表される化合物からなる群より選ばれる1種以上が更に好ましい。前記架橋剤(b)は1種を単独で用いても、2種以上を併用してもよい。反応性および、保水量および荷重下吸収量のバランスの観点から、多価アルコールのポリ(メタ)アリルエーテルと下記一般式(1)で表される化合物を併用して用いるのが更に好ましい。 The cross-linking agent (b) is preferably a cross-linking agent having two or more ethylenically unsaturated groups, and from the viewpoint of reactivity with monomers and water absorption properties, polyvalent (meta) having two or more ethylenically unsaturated groups More preferably one or more selected from the group consisting of allyl compounds and acrylamide compounds, poly (meth) allyl ethers of polyhydric alcohols such as alkylene glycol, trimethylolpropane, glycerin, pentaerythritol and sorbitol, tetraallyloxyethane and tri One or more selected from the group consisting of polyvalent (meth)allyl compounds such as allyl isocyanurate and compounds represented by the following general formula (1) are more preferred. The said crosslinking agent (b) may be used individually by 1 type, or may use 2 or more types together. From the viewpoint of reactivity and balance between water retention capacity and absorption capacity under load, it is more preferable to use poly(meth)allyl ether of polyhydric alcohol and a compound represented by the following general formula (1) in combination.
Figure JPOXMLDOC01-appb-C000001
[一般式(1)中、RおよびRはそれぞれ独立に水素原子又はメチル基である。Xは、炭素数2以上の脂肪族基を有し、窒素原子、酸素原子、又は硫黄原子を含んでもよいn価の有機基であり、前記脂肪族基は直鎖であっても分岐を有していてもよい。nは2から6の整数である。]
Figure JPOXMLDOC01-appb-C000001
[In general formula (1), R 1 and R 2 are each independently a hydrogen atom or a methyl group. X 1 is an n-valent organic group having an aliphatic group having 2 or more carbon atoms and optionally containing a nitrogen atom, an oxygen atom, or a sulfur atom, and the aliphatic group may be linear or branched. may have. n is an integer from 2 to 6; ]
 前記一般式(1)中、RおよびRはそれぞれ独立に水素原子又はメチル基である。RおよびRは、重合反応性が良好である観点から、水素原子が好ましい。 In general formula (1), R 1 and R 2 are each independently a hydrogen atom or a methyl group. R 1 and R 2 are preferably hydrogen atoms from the viewpoint of good polymerization reactivity.
 Xは、炭素数2以上の脂肪族基を有し、窒素原子、酸素原子、又は硫黄原子を含んでもよいn価の有機基である。前記脂肪族基は直鎖であっても分岐を有していてもよい。 X 1 is an n-valent organic group having an aliphatic group having 2 or more carbon atoms and optionally containing a nitrogen atom, an oxygen atom or a sulfur atom. The aliphatic group may be linear or branched.
 前記脂肪族基の炭素数は、2以上であり、吸収性能等の観点から、30以下が好ましく、15以下がより好ましい。 The number of carbon atoms in the aliphatic group is 2 or more, preferably 30 or less, more preferably 15 or less, from the viewpoint of absorption performance and the like.
 前記有機基において、前記脂肪族基は、吸収性能等の観点から、-O-及び-NX-(ただし、Xは、水素原子、アルキル基、又は(メタ)アクリロイル基である。)から選ばれる少なくとも1種の2価の連結基を介して連結しているのが好ましい。当該連結基は、吸収性能等の観点から、-O-及び-NX-(ただし、Xは、(メタ)アクリロイル基である。)から選ばれる1種以上が好ましい。当該連結基の数は、吸収性能等の観点から、1~4が好ましく、1~3がより好ましい。 In the organic group, from the viewpoint of absorption performance, etc., the aliphatic group is from —O— and —NX 2 — (wherein X 2 is a hydrogen atom, an alkyl group, or a (meth)acryloyl group). It is preferable to connect via at least one selected divalent linking group. The linking group is preferably one or more selected from —O— and —NX 2 — (where X 2 is a (meth)acryloyl group) from the viewpoint of absorption performance and the like. The number of linking groups is preferably 1 to 4, more preferably 1 to 3, from the viewpoint of absorption performance and the like.
 前記一般式(1)において、nは2から6の整数であり吸収性能等の観点から、2から4の整数が好ましい。 In the general formula (1), n is an integer of 2 to 6, and preferably an integer of 2 to 4 from the viewpoint of absorption performance and the like.
 前記一般式(1)においてnが2の場合、前記Xは、吸収性能等の観点から、下記一般式(b1)、又は下記一般式(b2)で表される有機基が好ましい。 When n is 2 in the general formula (1), X 1 is preferably an organic group represented by the following general formula (b1) or the following general formula (b2) from the viewpoint of absorption performance and the like.
Figure JPOXMLDOC01-appb-C000002
[一般式(b1)において、Rは炭素数1~6のアルキレン基であり、Rは水素原子又はメチル基であり、xは2~4の整数であり、rは1~6の整数であり、Rは単結合または炭素数1~6のアルキレン基である。]
Figure JPOXMLDOC01-appb-C000002
[In general formula (b1), R 3 is an alkylene group having 1 to 6 carbon atoms, R 4 is a hydrogen atom or a methyl group, x is an integer of 2 to 4, and r is an integer of 1 to 6 and R 5 is a single bond or an alkylene group having 1 to 6 carbon atoms. ]
Figure JPOXMLDOC01-appb-C000003
[Rは炭素数1~3のアルキレン基であり、yは2~4の整数であり、sは1~6の整数であり、Rは単結合または炭素数1~3のアルキレン基である。]
Figure JPOXMLDOC01-appb-C000003
[R 6 is an alkylene group having 1 to 3 carbon atoms, y is an integer of 2 to 4, s is an integer of 1 to 6, and R 7 is a single bond or an alkylene group having 1 to 3 carbon atoms. be. ]
 前記一般式(b1)において、Rは、原料の入手容易性の観点から、炭素数1~6のアルキレン基であり、炭素数1~3のアルキレン基が好ましく、エチレン基がより好ましい。 In general formula (b1), R 3 is an alkylene group having 1 to 6 carbon atoms, preferably an alkylene group having 1 to 3 carbon atoms, and more preferably an ethylene group, from the viewpoint of availability of raw materials.
 前記一般式(b1)において、Rは、重合反応性が良好である観点から、水素原子又はメチル基であり、水素原子が好ましい。 In the general formula (b1), R 4 is a hydrogen atom or a methyl group, preferably a hydrogen atom, from the viewpoint of good polymerization reactivity.
 前記一般式(b1)において、xは、原料の入手容易性の観点から、2~4の整数であり、2又は3が好ましく、2がより好ましい。 In the general formula (b1), x is an integer of 2 to 4, preferably 2 or 3, more preferably 2, from the viewpoint of availability of raw materials.
 前記一般式(b1)において、rは、原料の入手容易性の観点から、1~6の整数であり、1又は2が好ましい。 In the general formula (b1), r is an integer of 1 to 6, preferably 1 or 2, from the viewpoint of availability of raw materials.
 前記一般式(b1)において、Rは、原料の入手容易性の観点から、単結合または炭素数1~6のアルキレン基であり、単結合が好ましい。 In general formula (b1), R 5 is a single bond or an alkylene group having 1 to 6 carbon atoms, preferably a single bond, from the viewpoint of availability of raw materials.
 前記一般式(b2)において、Rは、原料の入手容易性の観点から、炭素数1~3のアルキレン基であり、炭素数2又は3のアルキレン基が好ましく、プロピレン基がより好ましい。 In general formula (b2), R 6 is an alkylene group having 1 to 3 carbon atoms, preferably an alkylene group having 2 or 3 carbon atoms, and more preferably a propylene group, from the viewpoint of availability of raw materials.
 前記一般式(b2)において、yは、原料の入手容易性の観点から、2~4の整数であり、2が好ましい。 In the general formula (b2), y is an integer of 2 to 4, preferably 2, from the viewpoint of raw material availability.
 前記一般式(b2)において、sは、原料の入手容易性の観点から、1~6の整数であり、2~5が好ましく、3又は4がより好ましい。 In the general formula (b2), s is an integer of 1 to 6, preferably 2 to 5, more preferably 3 or 4, from the viewpoint of availability of raw materials.
 前記一般式(b2)において、Rは、原料の入手容易性の観点から、単結合または炭素数1~3のアルキレン基であり、メチレン基が好ましい。 In general formula (b2), R 7 is a single bond or an alkylene group having 1 to 3 carbon atoms, preferably a methylene group, from the viewpoint of availability of raw materials.
 前記一般式(1)において、前記Xが前記一般式(b1)で表される有機基である場合の架橋剤(b)の具体例としては、下記一般式(b1-1)で示される架橋剤(b1-1)、及び下記一般式(b1-2)で示される架橋剤(b1-2)等が挙げられる。 In the general formula (1), when X 1 is an organic group represented by the general formula (b1), a specific example of the cross-linking agent (b) is represented by the following general formula (b1-1) Cross-linking agents (b1-1), cross-linking agents (b1-2) represented by the following general formula (b1-2), and the like.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 前記一般式(1)において、前記Xが前記一般式(b2)で表される有機基である場合の架橋剤(b)の具体例としては、下記一般式(b2-1)で示される架橋剤(b2-1)、及び下記一般式(b2-2)で示される架橋剤(b2-2)、下記一般式(b2-3)で示される架橋剤(b2-3)、及び下記一般式(b2-4)で示される架橋剤(b2-4)、下記一般式(b2-5)で示される架橋剤(b2-5)、及び下記一般式(b2-6)で示される架橋剤(b2-6)等が挙げられる。 In the general formula (1), when X 1 is an organic group represented by the general formula (b2), a specific example of the cross-linking agent (b) is represented by the following general formula (b2-1). A cross-linking agent (b2-1), a cross-linking agent (b2-2) represented by the following general formula (b2-2), a cross-linking agent (b2-3) represented by the following general formula (b2-3), and the following general A cross-linking agent (b2-4) represented by the formula (b2-4), a cross-linking agent (b2-5) represented by the following general formula (b2-5), and a cross-linking agent represented by the following general formula (b2-6) (b2-6) and the like.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 前記一般式(1)においてnが4の場合、前記Xは、吸収性能等の観点から、下記一般式(b3)で表される有機基が好ましい。 When n is 4 in the general formula (1), X 1 is preferably an organic group represented by the following general formula (b3) from the viewpoint of absorption performance and the like.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 前記一般式(b3)において、Rは、原料の入手容易性の観点から、単結合または炭素数1~3のアルキレン基であり、炭素数1又は2のアルキレン基が好ましく、メチレン基がより好ましい。 In the general formula (b3), R 8 is a single bond or an alkylene group having 1 to 3 carbon atoms, preferably an alkylene group having 1 or 2 carbon atoms, more preferably a methylene group, from the viewpoint of availability of raw materials. preferable.
 前記一般式(b3)において、zは、原料の入手容易性の観点から、2~4の整数であり、2又は3が好ましく、2がより好ましい。 In the general formula (b3), z is an integer of 2 to 4, preferably 2 or 3, more preferably 2, from the viewpoint of raw material availability.
 前記一般式(b3)において、tは、原料の入手容易性の観点から、1~6の整数であり、1~4の整数が好ましく、1がより好ましい。 In the general formula (b3), t is an integer of 1 to 6, preferably an integer of 1 to 4, more preferably 1, from the viewpoint of availability of raw materials.
 前記一般式(b3)において、Rは、原料の入手容易性の観点から、単結合または炭素数1~3のアルキレン基であり、炭素数1又は2のアルキレン基が好ましく、メチレン基がより好ましい。 In the general formula (b3), R 9 is a single bond or an alkylene group having 1 to 3 carbon atoms, preferably an alkylene group having 1 or 2 carbon atoms, more preferably a methylene group, from the viewpoint of availability of raw materials. preferable.
 前記一般式(1)において、前記Xが前記一般式(b3)で表される有機基である場合の架橋剤(b)の具体例としては、下記一般式(b3-1)で示される架橋剤(b3-1)、及び下記一般式(b3-2)で示される架橋剤(b3-2)が挙げられる。 In the general formula (1), when X 1 is an organic group represented by the general formula (b3), a specific example of the cross-linking agent (b) is represented by the following general formula (b3-1). Examples thereof include a cross-linking agent (b3-1) and a cross-linking agent (b3-2) represented by the following general formula (b3-2).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 前記架橋剤(b)の市販品としては、FOM-03006、FOM-03007、FOM-03008、FOM-03009(何れも富士フイルム株式会社製)が例示できる。 Examples of commercially available products of the cross-linking agent (b) include FOM-03006, FOM-03007, FOM-03008, and FOM-03009 (all manufactured by FUJIFILM Corporation).
 前記架橋重合体(A)における前記架橋剤(b)の含有量(モル%)は、吸収性能等の観点から、前記モノマー(A1)単位及び前記モノマー(A2)単位の合計モル数、その他のビニルモノマー(A3)を用いる場合は(A1)~(A3)の、合計モル数に基づいて、0.001~5が好ましく、更に好ましくは0.005~3、特に好ましくは0.005~1である。 The content (mol%) of the cross-linking agent (b) in the cross-linked polymer (A) is, from the viewpoint of absorption performance, etc., the total number of moles of the monomer (A1) units and the monomer (A2) units, other When the vinyl monomer (A3) is used, it is preferably 0.001 to 5, more preferably 0.005 to 3, particularly preferably 0.005 to 1, based on the total number of moles of (A1) to (A3). is.
 前記架橋重合体(A)の0.9重量%生理食塩水の保水量は、好ましくは20g/g以上であり、より好ましくは25g/g以上である。 The water retention capacity of 0.9% by weight physiological saline of the crosslinked polymer (A) is preferably 20 g/g or more, more preferably 25 g/g or more.
 前記吸水性樹脂組成物は、架橋重合体(A)の表面が表面架橋剤(d)により架橋された構造を有する。前記モノマー(A1)と前記モノマー(A2)を共重合させる場合、前記モノマー(A2)から誘導されるジカルボン酸部位が、前記モノマー(A1)から誘導されるモノカルボン酸単独重合体に比べて規則的に配列せず、共重合体が低分子量体となりやすく、架橋重合体のゲル弾性が低くなることが想定できる。架橋重合体(A)の表面を架橋することにより前記吸水性樹脂組成物のゲル強度を向上させることができ、前記吸水性樹脂組成物の望ましい保水量と荷重下における吸収量とを満足させることができる。表面架橋剤(d)は、無機物でも有機物でも用いることができる。表面架橋剤(d)としては、公知(特開昭59-189103号公報に記載の多価グリシジル化合物、多価アミン、多価アジリジン化合物及び多価イソシアネート化合物等、特開昭58-180233号公報及び特開昭61-16903号公報の多価アルコール、特開昭61-211305号公報及び特開昭61-252212号公報に記載のシランカップリング剤、特表平5-508425号公報に記載のアルキレンカーボネート、特開平11-240959号公報に記載の多価オキサゾリン化合物等)の有機表面架橋剤等が使用できる。これらの表面架橋剤のうち、経済性及び吸収特性の観点から、多価グリシジル化合物、多価アルコール及び多価アミンからなる群より選ばれる1種以上が好ましく、多価グリシジル化合物及び多価アルコールからなる群より選ばれる1種以上がより好ましく、多価グリシジル化合物が更に好ましく、エチレングリコールジグリシジルエーテルが更に好ましい。表面架橋剤(d)は1種を単独で用いても良いし、2種以上を併用しても良い。 The water absorbent resin composition has a structure in which the surface of the crosslinked polymer (A) is crosslinked by the surface crosslinking agent (d). When the monomer (A1) and the monomer (A2) are copolymerized, the dicarboxylic acid moiety derived from the monomer (A2) is more ordered than the monocarboxylic acid homopolymer derived from the monomer (A1). It can be assumed that the copolymer is likely to have a low molecular weight and the gel elasticity of the crosslinked polymer is low. By cross-linking the surface of the crosslinked polymer (A), the gel strength of the water-absorbing resin composition can be improved, and the water-absorbing resin composition satisfies the desired water retention capacity and absorption capacity under load. can be done. The surface cross-linking agent (d) can be inorganic or organic. As the surface cross-linking agent (d), known (polyvalent glycidyl compounds, polyvalent amines, polyvalent aziridine compounds and polyvalent isocyanate compounds described in JP-A-59-189103, etc., JP-A-58-180233 And the polyhydric alcohol of JP-A-61-16903, the silane coupling agent described in JP-A-61-211305 and JP-A-61-252212, the JP-A-5-508425 described Organic surface cross-linking agents such as alkylene carbonates and polyvalent oxazoline compounds described in JP-A-11-240959 can be used. Among these surface cross-linking agents, one or more selected from the group consisting of polyhydric glycidyl compounds, polyhydric alcohols and polyhydric amines is preferable from the viewpoint of economic efficiency and absorption characteristics. More preferably, one or more selected from the group consisting of, more preferably polyhydric glycidyl compounds, and still more preferably ethylene glycol diglycidyl ether. The surface cross-linking agent (d) may be used alone or in combination of two or more.
 前記吸水性樹脂組成物は、その性能を損なわない範囲で残留溶媒や残存架橋成分等の他の成分を多少含んでも良い。 The water-absorbing resin composition may contain some other components such as residual solvent and residual cross-linking components within a range that does not impair its performance.
 また、後述の吸水性樹脂組成物の製造方法が有する表面架橋工程で用いることができる有機溶媒が前記架橋重合体(A)中に含有されていることで、前記架橋重合体(A)の壊れ防止や経時変化に対する安定性にも寄与する利点がある。これは、溶媒中のジオールやトリオール部位が、架橋重合体(A)中のモノマー(A2)由来のジカルボン酸部位と表面架橋剤(d)とで形成したエステル部位、即ち、二重結合を形成する炭素-酸素における酸素部位に配位することによって求核的攻撃に対する安定性が向上すると推測する。 In addition, since the crosslinked polymer (A) contains an organic solvent that can be used in the surface cross-linking step of the method for producing a water-absorbent resin composition described later, the crosslinked polymer (A) is broken. It also has the advantage of contributing to prevention and stability against aging. This is because the diol or triol site in the solvent forms an ester site, i.e., a double bond, formed by the dicarboxylic acid site derived from the monomer (A2) in the crosslinked polymer (A) and the surface cross-linking agent (d). We speculate that the coordination to the oxygen site in the carbon-oxygen group increases the stability against nucleophilic attack.
 前記吸水性樹脂組成物中の、有機溶媒の含有量は、前記架橋重合体(A)の壊れ防止や経時変化に対する安定性向上の観点から、好ましくは0.1重量%以上であり、吸水性能およびハンドリング性の観点から、好ましくは3.0重量%以下である。前記吸水性樹脂組成物の有機溶媒の含有量は後述の方法で測定することができる。 The content of the organic solvent in the water absorbent resin composition is preferably 0.1% by weight or more from the viewpoint of preventing breakage of the crosslinked polymer (A) and improving stability against changes over time. And from the viewpoint of handleability, it is preferably 3.0% by weight or less. The content of the organic solvent in the water absorbent resin composition can be measured by the method described below.
 前記吸水性樹脂組成物は、吸水時のゲル強度、荷重下吸収量及びゲル通液速度を向上させる観点から、前記他の成分として、好ましくはヨウ素、テルル、アンチモン及びビスマスからなる群から選ばれる少なくとも1種の典型元素を含む。前記吸水性樹脂組成物が当該典型元素を含む場合、前記吸水性樹脂組成物中の当該典型元素の含有量は、吸水時のゲル強度、荷重下吸収量及びゲル通液速度を向上させる観点から、0.0005~0.1重量%が好ましく、0.001~0.05重量%がより好ましい。当該典型元素を含む前記吸水性樹脂組成物は、前記モノマー(A1)及びモノマー(A2)並びに前記架橋剤(b)を含む単量体組成物を、後述の前記有機典型元素化合物の存在下で重合し、得られた含水ゲルを乾燥させることにより得ることができる。 In the water-absorbent resin composition, the other component is preferably selected from the group consisting of iodine, tellurium, antimony, and bismuth, from the viewpoint of improving gel strength, absorption under load, and gel flow rate at the time of water absorption. It contains at least one type of typical element. When the water-absorbent resin composition contains the typical element, the content of the typical element in the water-absorbent resin composition is adjusted from the viewpoint of improving the gel strength, the absorption amount under load, and the gel liquid permeation rate at the time of water absorption. , preferably 0.0005 to 0.1% by weight, more preferably 0.001 to 0.05% by weight. The water-absorbing resin composition containing the main group element is prepared by adding a monomer composition containing the monomer (A1) and the monomer (A2) and the cross-linking agent (b) in the presence of the organic main group element compound described later. It can be obtained by polymerizing and drying the resulting hydrous gel.
 前記他の成分のその他の例としては、防腐剤、防かび剤、抗菌剤、酸化防止剤、紫外線吸収剤、酸化防止剤、着色剤、芳香剤、消臭剤、通液性向上剤、無機質粉末及び有機質繊維状物等が挙げられる。その量は前記吸水性樹脂組成物の重量に基づいて、通常、5重量%以下である。 Other examples of the other ingredients include preservatives, antifungal agents, antibacterial agents, antioxidants, ultraviolet absorbers, antioxidants, colorants, fragrances, deodorants, liquid permeability improvers, and inorganic substances. Examples include powders and organic fibrous materials. The amount is usually 5% by weight or less based on the weight of the water absorbent resin composition.
 前記吸水性樹脂組成物の形状は特に限定されないが、吸収性能を向上させる観点から、粒子状が好ましい。粒子状の前記吸水性樹脂組成物(以下、吸水性樹脂粒子ともいう)重量平均粒子径(μm)は、250~600であり、好ましくは300~500、より好ましくは340~460である。重量平均粒子径が250μmを下回ると通液性能が悪化し、600μmを上回ると吸収速度が悪化するため、この範囲であると、吸収性能がさらに良好となる。 Although the shape of the water-absorbing resin composition is not particularly limited, it is preferably particulate from the viewpoint of improving absorption performance. The particulate water absorbent resin composition (hereinafter also referred to as water absorbent resin particles) has a weight average particle diameter (μm) of 250-600, preferably 300-500, more preferably 340-460. When the weight-average particle size is less than 250 µm, the liquid permeability deteriorates, and when it exceeds 600 µm, the absorption speed deteriorates.
 なお、重量平均粒子径は、ロータップ試験篩振とう機及び標準ふるい(JISZ8801-1:2006)を用いて、ペリーズ・ケミカル・エンジニアーズ・ハンドブック第6版(マックグローヒル・ブック・カンバニー、1984、21頁)に記載の方法で測定される。すなわち、JIS標準ふるいを、上から1000μm、850μm、710μm、500μm、425μm、355μm、250μm、150μm、125μm、75μm及び45μm、並びに受け皿、の順等に組み合わせる。最上段のふるいに測定粒子の約50gを入れ、ロータップ試験篩振とう機で5分間振とうさせる。各ふるい及び受け皿上の測定粒子の重量を秤量し、その合計を100重量%として各ふるい上の粒子の重量分率を求め、この値を対数確率紙[横軸がふるいの目開き(粒子径)、縦軸が重量分率]にプロットした後、各点を結ぶ線を引き、重量分率が50重量%に対応する粒子径を求め、これを重量平均粒子径とする。 In addition, the weight average particle size was measured using a low-tap test sieve shaker and a standard sieve (JISZ8801-1:2006), Perry's Chemical Engineers Handbook 6th Edition (McGraw-Hill Book Company, 1984, page 21). That is, JIS standard sieves of 1000 μm, 850 μm, 710 μm, 500 μm, 425 μm, 355 μm, 250 μm, 150 μm, 125 μm, 75 μm and 45 μm and a saucer are combined in this order from the top. About 50 g of the particles to be measured are placed in the top sieve and shaken for 5 minutes with a Rotap test sieve shaker. The weight of the particles to be measured on each sieve and the tray is weighed, the total is 100% by weight, and the weight fraction of the particles on each sieve is obtained. ) and the weight fraction on the vertical axis], draw a line connecting the points, determine the particle diameter corresponding to a weight fraction of 50% by weight, and take this as the weight average particle diameter.
 前記吸水性樹脂粒子に含まれる微粉の含有量は少ないほど通液性能が良好となるため、全吸水性樹脂粒子の合計重量に占める150μm未満の粒子径を有する吸水性樹脂粒子の重量割合(重量%)は3以下であり、好ましくは1以下である。150μm未満の粒子径を有する吸水性樹脂粒子の重量割合は、上記の重量平均粒子径を求める際に作成するグラフを用いて求めることができる。 Since the smaller the content of the fine powder contained in the water absorbent resin particles, the better the liquid permeability, the weight ratio (weight %) is 3 or less, preferably 1 or less. The weight ratio of the water-absorbing resin particles having a particle size of less than 150 μm can be determined using the graph created when determining the weight average particle size.
 吸水性樹脂粒子の形状については特に限定はなく、不定形破砕状、リン片状、パール状及び米粒状等が挙げられる。これらのうち、紙おむつ用途等での繊維状物とのからみが良く、繊維状物からの脱落の心配がないという観点から、不定形破砕状が好ましい。 The shape of the water-absorbent resin particles is not particularly limited, and examples thereof include irregular crushed shapes, scale-like shapes, pearl-like shapes, and grain-like shapes. Of these, irregularly crushed forms are preferred from the viewpoints of good entanglement with fibrous materials for use in paper diapers and the like, and no fear of falling off from fibrous materials.
<吸水性樹脂組成物の製造方法>
 本実施形態の吸水性樹脂組成物の製造方法は、前記吸水性樹脂組成物の製造方法であって、
 前記架橋重合体(A)を含む含水ゲルを得る重合工程と、
 前記含水ゲルを乾燥する乾燥工程と、
 前記乾燥工程後の前記架橋重合体(A)の表面を表面架橋剤(d)によって架橋する表面架橋工程と、を有する。
<Method for producing water absorbent resin composition>
The method for producing the water absorbent resin composition of the present embodiment is a method for producing the water absorbent resin composition,
A polymerization step of obtaining a hydrous gel containing the crosslinked polymer (A);
A drying step of drying the hydrous gel;
and a surface cross-linking step of cross-linking the surface of the cross-linked polymer (A) after the drying step with a surface cross-linking agent (d).
〔重合工程〕
 前記重合工程は、前記モノマー(A1)及び前記モノマー(A2)並びに前記架橋剤(b)を含む単量体組成物を重合して前記架橋重合体(A)を含む含水ゲルを得る工程である。前記単量体組成物の重合方法としては、公知の溶液重合や、公知の逆相懸濁重合が挙げられる。
[Polymerization process]
The polymerization step is a step of obtaining a hydrous gel containing the crosslinked polymer (A) by polymerizing a monomer composition containing the monomer (A1), the monomer (A2), and the crosslinking agent (b). . Examples of the method for polymerizing the monomer composition include known solution polymerization and known reversed-phase suspension polymerization.
 前記単量体組成物の重合方法の内、好ましいのは溶液重合法であり、有機溶媒等を使用する必要がなく生産コスト面で有利で有利であり、また荷重下での吸水性能の観点から、特に好ましいのは水溶液重合法であり、保水量が大きく、且つ水可溶性成分量の少ない吸水性樹脂組成物が得られ、重合時の温度コントロールが不要である点から、水溶液断熱重合法が最も好ましい。 Of the methods for polymerizing the monomer composition, preferred is the solution polymerization method, which does not require the use of an organic solvent and is advantageous in terms of production cost, and from the viewpoint of water absorption performance under load. The aqueous solution polymerization method is particularly preferable, and the aqueous solution adiabatic polymerization method is the most preferable in that a water-absorbent resin composition having a large water retention capacity and a small amount of water-soluble components can be obtained, and temperature control during polymerization is unnecessary. preferable.
 前記単量体組成物を水溶液重合で重合する場合、水と有機溶媒とを含む混合溶媒を使用することができ、有機溶媒としては、メタノール、エタノール、アセトン、メチルエチルケトン、N,N-ジメチルホルムアミド、ジメチルスルホキシド及びこれらの2種以上の混合物が挙げられる。前記単量体組成物を水溶液重合で重合する場合、有機溶媒の使用量(重量%)は、水の重量を基準として40以下が好ましく、更に好ましくは30以下である。 When the monomer composition is polymerized by aqueous solution polymerization, a mixed solvent containing water and an organic solvent can be used, and the organic solvent includes methanol, ethanol, acetone, methyl ethyl ketone, N,N-dimethylformamide, Dimethylsulfoxide and mixtures of two or more thereof are included. When the monomer composition is polymerized by aqueous solution polymerization, the amount (% by weight) of the organic solvent used is preferably 40 or less, more preferably 30 or less based on the weight of water.
 重合に触媒を用いる場合、従来公知のラジカル重合用触媒が使用可能であり、例えば、アゾ化合物[アゾビスイソブチロニトリル、アゾビスシアノ吉草酸及び2,2’-アゾビス(2-アミジノプロパン)ハイドロクロライド等]、無機過酸化物(過酸化水素、過硫酸アンモニウム、過硫酸カリウム及び過硫酸ナトリウム等)、有機過酸化物[過酸化ベンゾイル、ジ-t-ブチルパーオキサイド、クメンヒドロパーオキサイド、コハク酸パーオキサイド及びジ(2-エトキシエチル)パーオキシジカーボネート等]及びレドックス触媒(アルカリ金属の亜硫酸塩又は重亜硫酸塩、亜硫酸アンモニウム、重亜硫酸アンモニウム及びアスコルビン酸等の還元剤とアルカリ金属の過硫酸塩、過硫酸アンモニウム、過酸化水素及び有機過酸化物等の酸化剤との組み合わせよりなるもの)等が挙げられる。これらの触媒は、単独で使用してもよく、これらの2種以上を併用しても良い。 When a catalyst is used for polymerization, conventionally known radical polymerization catalysts can be used, for example, azo compounds [azobisisobutyronitrile, azobiscyanovaleric acid and 2,2′-azobis(2-amidinopropane) hydrochloride etc.], inorganic peroxides (hydrogen peroxide, ammonium persulfate, potassium persulfate and sodium persulfate, etc.), organic peroxides [benzoyl peroxide, di-t-butyl peroxide, cumene hydroperoxide, persuccinic acid oxide and di(2-ethoxyethyl) peroxydicarbonate, etc.] and redox catalysts (alkali metal sulfites or bisulfites, ammonium sulfite, ammonium bisulfite and reducing agents such as ascorbic acid and alkali metal persulfates, A combination with an oxidizing agent such as ammonium persulfate, hydrogen peroxide and organic peroxide). These catalysts may be used alone, or two or more of them may be used in combination.
 ラジカル重合触媒の使用量(重量%)は、モノマー(A1)及びモノマー(A2)の、その他のビニルモノマー(A3)を用いる場合は(A1)~(A3)の、合計重量に基づいて、0.0005~5が好ましく、更に好ましくは0.001~2である。 The amount (% by weight) of the radical polymerization catalyst used is 0 based on the total weight of the monomers (A1) and (A2), and (A1) to (A3) when another vinyl monomer (A3) is used. 0.0005 to 5 is preferred, and 0.001 to 2 is more preferred.
 重合時には、必要に応じて連鎖移動剤等の重合コントロール剤を併用しても良く、これらの具体例としては、次亜リン酸ナトリウム、亜リン酸ナトリウム、アルキルメルカプタン、ハロゲン化アルキル、チオカルボニル化合物等が挙げられる。これらの重合コントロール剤は、単独で使用してもよく、これらの2種以上を併用しても良い。 At the time of polymerization, a polymerization control agent such as a chain transfer agent may be used in combination as necessary. Specific examples thereof include sodium hypophosphite, sodium phosphite, alkyl mercaptan, alkyl halide, thiocarbonyl compound etc. These polymerization control agents may be used alone, or two or more of them may be used in combination.
 重合コントロール剤の使用量(重量%)は、モノマー(A1)及びモノマー(A2)の、その他のビニルモノマー(A3)を用いる場合は(A1)~(A3)の、合計重量に基づいて、0.0005~5が好ましく、更に好ましくは0.001~2である。 The amount (% by weight) of the polymerization control agent used is 0, based on the total weight of the monomers (A1) and (A2), and (A1) to (A3) when another vinyl monomer (A3) is used. 0.0005 to 5 is preferred, and 0.001 to 2 is more preferred.
 前記架橋重合体(A)は、前記モノマー(A1)及び前記モノマー(A2)並びに前記架橋剤(b)を含む単量体組成物を、有機ヨウ素化合物、有機テルル化合物、有機アンチモン化合物及び有機ビスマス化合物からなる群から選ばれる少なくとも1種の有機典型元素化合物の存在下で重合することにより、吸水時のゲル強度、荷重下吸収量及びゲル通液速度を向上させることができる。 The crosslinked polymer (A) is a monomer composition containing the monomers (A1) and (A2) and the crosslinking agent (b), and By polymerizing in the presence of at least one organic main group element compound selected from the group consisting of compounds, gel strength, absorption under load and gel permeation rate upon water absorption can be improved.
 前記有機ヨウ素化合物、前記有機テルル化合物、前記有機アンチモン化合物、及び前記有機ビスマス化合物としては、ラジカル重合のドーマント種として働く有機典型元素化合物であれば制限はなく、WO2011/016166にドーマント種として記載の有機ヨウ素化合物、WO2004/014848に記載の有機テルル化合物、WO2006/001496に記載の有機アンチモン化合物及びWO2006/062255に記載の有機ビスマス化合物等を用いることができる。なかでも反応性の観点から、下記一般式(2)で表される有機典型元素化合物が好ましい。これら有機典型元素化合物は単独で使用してもよく、2種以上を併用してもよい。 The organic iodine compound, the organic tellurium compound, the organic antimony compound, and the organic bismuth compound are not limited as long as they are organic main group element compounds that act as dormant species for radical polymerization, and are described as dormant species in WO2011/016166. Organic iodine compounds, organic tellurium compounds described in WO2004/014848, organic antimony compounds described in WO2006/001496, organic bismuth compounds described in WO2006/062255, and the like can be used. Among them, from the viewpoint of reactivity, an organic main group element compound represented by the following general formula (2) is preferable. These organic main group element compounds may be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 前記一般式(2)中、R10及びR11はそれぞれ独立に水素原子、炭素数1~7の飽和炭化水素基又は少なくとも1つの非付加重合性二重結合若しくは少なくとも1つの非付加重合性三重結合を有する、炭素数1~7である1価の基であり、R12は炭素数1~6のm価の飽和炭化水素基又は少なくとも1つの非付加重合性二重結合若しくは少なくとも1つの非付加重合性三重結合を有する炭素数2~12であるm価の基であり、ただし、1分子中、R10~R12のうち少なくとも一つは、前記の、対応する、非付加重合性二重結合又は少なくとも1つの非付加重合性三重結合を有する基であり、mは1~3の整数であり、mが1である場合にR10及びR11は互いに結合していてもよく、Xはテルル元素、アンチモン元素若しくはビスマス元素を有する1価の有機典型元素基又はヨード基である。本明細書中、非付加重合性二重結合(以下、単に非重合性二重結合ともいう)及び非付加重合性三重結合(以下、単に非重合性三重結合ともいう)とは、不飽和結合のうち、付加重合性不飽和結合(それぞれ、付加重合性炭素-炭素二重結合及び付加重合性炭素-炭素三重結合)を除いた結合であり、非付加重合性二重結合及び非付加重合性三重結合としては、カルボニル基に含まれる炭素-酸素二重結合、ニトリル基に含まれる炭素-窒素三重結合、芳香族炭化水素を構成する炭素-炭素二重結合及び複素芳香族化合物を構成する酸素-窒素二重結合並びに炭素-窒素二重結合等が挙げられ、なかでもカルボニル基に含まれる炭素-酸素二重結合、ニトリル基に含まれる炭素-窒素三重結合及び芳香族炭化水素を構成する炭素-炭素二重結合が好ましい。 In the general formula (2), R 10 and R 11 are each independently a hydrogen atom, a saturated hydrocarbon group having 1 to 7 carbon atoms, or at least one non-addition polymerizable double bond or at least one non-addition polymerizable triple is a monovalent group having 1 to 7 carbon atoms and having a bond, and R 12 is an m-valent saturated hydrocarbon group having 1 to 6 carbon atoms or at least one non-addition polymerizable double bond or at least one non- an m-valent group having 2 to 12 carbon atoms and an addition-polymerizable triple bond, provided that at least one of R 10 to R 12 in one molecule is the corresponding non-addition-polymerizable divalent a group having a double bond or at least one non-addition polymerizable triple bond, m is an integer of 1 to 3, and when m is 1, R 10 and R 11 may be bonded to each other; 3 is a monovalent organic main group element group containing tellurium, antimony or bismuth or an iodine group. In the present specification, non-addition polymerizable double bond (hereinafter also simply referred to as non-polymerizable double bond) and non-addition polymerizable triple bond (hereinafter simply referred to as non-polymerizable triple bond) means an unsaturated bond Of these, the bonds excluding addition-polymerizable unsaturated bonds (addition-polymerizable carbon-carbon double bonds and addition-polymerizable carbon-carbon triple bonds, respectively), non-addition-polymerizable double bonds and non-addition-polymerizable As the triple bond, the carbon-oxygen double bond contained in the carbonyl group, the carbon-nitrogen triple bond contained in the nitrile group, the carbon-carbon double bond that constitutes the aromatic hydrocarbon, and the oxygen that constitutes the heteroaromatic compound -Nitrogen double bonds and carbon-nitrogen double bonds, among others, carbon-oxygen double bonds contained in carbonyl groups, carbon-nitrogen triple bonds contained in nitrile groups and carbons constituting aromatic hydrocarbons - Carbon double bonds are preferred.
 R10及びR11が炭素数1~7の飽和炭化水素基である場合、炭素数1~7の飽和炭化水素基としては、炭素数1~7の直鎖飽和炭化水素基(メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基及びn-ヘキシル基等)及び炭素数1~7の分岐飽和炭化水素基(i-プロピル基、イソブチル基、s-ブチル基、t-ブチル基、イソペンチル基、ネオペンチル基、t-ペンチル基、1-メチルブチル基、イソヘキシル基、s-ヘキシル基、t-ヘキシル基、ネオヘキシル基、ヘプチル基等)が挙げられる。なかでも溶解性と重合性の観点等から好ましくは炭素数1~5の直鎖飽和炭化水素基であり、更に好ましくは炭素数1~3の直鎖飽和炭化水素基である。 When R 10 and R 11 are saturated hydrocarbon groups having 1 to 7 carbon atoms, the saturated hydrocarbon groups having 1 to 7 carbon atoms include linear saturated hydrocarbon groups having 1 to 7 carbon atoms (methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group and n-hexyl group) and branched saturated hydrocarbon groups having 1 to 7 carbon atoms (i-propyl group, isobutyl group, s-butyl group, t -butyl group, isopentyl group, neopentyl group, t-pentyl group, 1-methylbutyl group, isohexyl group, s-hexyl group, t-hexyl group, neohexyl group, heptyl group, etc.). Among them, straight-chain saturated hydrocarbon groups having 1 to 5 carbon atoms are preferable, and straight-chain saturated hydrocarbon groups having 1 to 3 carbon atoms are more preferable from the viewpoint of solubility and polymerizability.
 R10及びR11が少なくとも1つの非重合性二重結合又は少なくとも1つの非重合性三重結合を有する炭素数1~7である1価の基である場合、好ましい基としてはカルボキシ(塩)基(炭素数1、炭素-酸素二重結合)、フェニル基(炭素数6、非重合性炭素-炭素二重結合)、シアノ基(炭素数1、炭素-窒素三重結合)、シアノメチル基(炭素数2、炭素-窒素三重結合)、シアノエチル基(炭素数3、炭素-窒素三重結合)、シアノプロピル基(炭素数4、炭素-窒素三重結合)、シアノブチル基(炭素数5、炭素-窒素三重結合)、シアノペンチル基(炭素数6、炭素-窒素三重結合)、シアノヘキシル基(炭素数7、炭素-窒素三重結合)、カルボキシメチル基(炭素数2、炭素-酸素二重結合)、カルボキシエチル基(炭素数3、炭素-酸素二重結合)、カルボキシプロピル基(炭素数4、炭素-酸素二重結合)、カルボキシブチル基(炭素数5、炭素-酸素二重結合)、カルボキシペンチル基(炭素数6、炭素-酸素二重結合)、カルボキシヘキシル基(炭素数7、炭素-酸素二重結合)、ベンジル基(炭素数7、非重合性炭素-炭素二重結合)、メトキシカルボニル基(炭素数2、炭素-酸素二重結合)、エトキシカルボニル基(炭素数3、炭素-酸素二重結合)、プロピルオキシカルボニル基(炭素数4、炭素-酸素二重結合)、ブチルオキシカルボニル基(炭素数5、炭素-酸素二重結合)、ペンチルオキシカルボニル基(炭素数6、炭素-酸素二重結合)、ヘキシルオキシカルボニル基(炭素数7、炭素-酸素二重結合)、ヒドロキシエトキシカルボニル基(炭素数3、炭素-酸素二重結合)、ヒドロキシプロピルオキシカルボニル基(炭素数4、炭素-酸素二重結合)、ヒドロキシブチルオキシカルボニル基(炭素数5、炭素-酸素二重結合)、ヒドロキシペンチルオキシカルボニル基(炭素数6、炭素-酸素二重結合)及びヒドロキシヘキシルオキシカルボニル基(炭素数7、炭素-酸素二重結合)等が挙げられ、さらに好ましくは、カルボキシ(塩)基、シアノ基、カルボキシメチル基、カルボキシエチル基が挙げられる。また、塩としては、アルカリ金属(リチウム、ナトリウム及びカリウム等)塩、アルカリ土類金属(マグネシウム及びカルシウム等)塩及びアンモニウム(NH)塩等が挙げられる。これらの塩の内、吸収性能等の観点から、アルカリ金属塩及びアンモニウム塩が好ましく、更に好ましいのはアルカリ金属塩、特に好ましいのはナトリウム塩である。 When R 10 and R 11 are C 1-7 monovalent groups having at least one non-polymerizable double bond or at least one non-polymerizable triple bond, preferred groups are carboxy (salt) groups. (carbon number 1, carbon-oxygen double bond), phenyl group (carbon number 6, non-polymerizable carbon-carbon double bond), cyano group (carbon number 1, carbon-nitrogen triple bond), cyanomethyl group (carbon number 2, carbon-nitrogen triple bond), cyanoethyl group (3 carbon atoms, carbon-nitrogen triple bond), cyanopropyl group (4 carbon atoms, carbon-nitrogen triple bond), cyanobutyl group (5 carbon atoms, carbon-nitrogen triple bond ), cyanopentyl group (6 carbon atoms, carbon-nitrogen triple bond), cyanohexyl group (7 carbon atoms, carbon-nitrogen triple bond), carboxymethyl group (2 carbon atoms, carbon-oxygen double bond), carboxyethyl group (3 carbon atoms, carbon-oxygen double bond), carboxypropyl group (4 carbon atoms, carbon-oxygen double bond), carboxybutyl group (5 carbon atoms, carbon-oxygen double bond), carboxypentyl group ( 6 carbon atoms, carbon-oxygen double bond), carboxyhexyl group (7 carbon atoms, carbon-oxygen double bond), benzyl group (7 carbon atoms, non-polymerizable carbon-carbon double bond), methoxycarbonyl group ( 2 carbon atoms, carbon-oxygen double bond), ethoxycarbonyl group (3 carbon atoms, carbon-oxygen double bond), propyloxycarbonyl group (4 carbon atoms, carbon-oxygen double bond), butyloxycarbonyl group ( 5 carbon atoms, carbon-oxygen double bond), pentyloxycarbonyl group (6 carbon atoms, carbon-oxygen double bond), hexyloxycarbonyl group (7 carbon atoms, carbon-oxygen double bond), hydroxyethoxycarbonyl group (C3, carbon-oxygen double bond), hydroxypropyloxycarbonyl group (4 carbons, carbon-oxygen double bond), hydroxybutyloxycarbonyl group (5 carbons, carbon-oxygen double bond), hydroxy Examples include a pentyloxycarbonyl group (6 carbon atoms, carbon-oxygen double bond) and a hydroxyhexyloxycarbonyl group (7 carbon atoms, carbon-oxygen double bond), and more preferably a carboxy (salt) group, cyano group, carboxymethyl group, and carboxyethyl group. Examples of salts include alkali metal (lithium, sodium, potassium, etc.) salts, alkaline earth metal (magnesium, calcium, etc.) salts, ammonium (NH 4 ) salts, and the like. Among these salts, alkali metal salts and ammonium salts are preferable, alkali metal salts are more preferable, and sodium salts are particularly preferable, from the viewpoint of absorption performance and the like.
 R12は炭素数1~7のm価の飽和炭化水素基又は少なくとも1つの非重合性二重結合若しくは少なくとも1つの非重合性三重結合を有する炭素数2~12であるm価の基であり、mは1~3の整数である。 R 12 is an m-valent saturated hydrocarbon group having 1 to 7 carbon atoms or an m-valent group having 2 to 12 carbon atoms and having at least one non-polymerizable double bond or at least one non-polymerizable triple bond; , m is an integer from 1 to 3.
 R12で表される炭素数1~7のm価の飽和炭化水素基のうち、炭素数1~7の1価の飽和炭化水素基としては、炭素数1~7の直鎖飽和炭化水素基(メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、ヘプチル基等)及び炭素数1~7の分岐飽和炭化水素基(i-プロピル基、イソブチル基、s-ブチル基、t-ブチル基、イソペンチル基、ネオペンチル基、t-ペンチル基、1-メチルブチル基、イソヘキシル基、s-ヘキシル基、t-ヘキシル基、ネオヘキシル基、イソヘプチル基等)が挙げられる。R12で表される炭素数1~7のm価の飽和炭化水素基のうち、炭素数1~7の2価の飽和炭化水素基としては、炭素数1~7の2価の直鎖飽和炭化水素基(メチレン基、エチレン基、プロピレン基、ブチレン基、ペンテン基、ヘキセン基、ヘプテン基等)及び炭素数1~7の2価の分岐飽和炭化水素基(イソプロピレン基、イソブチレン基、s-ブチレン基、t-ブチレン基、イソペンチレン基、ネオペンチレン基、t-ペンチレン基、1-メチルブチレン基、イソヘキシレン基、s-ヘキシレン基、t-ヘキシレン基、ネオヘキシレン基、イソヘプチレン基等)が挙げられる。R12で表される炭素数1~7のm価の飽和炭化水素基のうち、炭素数1~7の3価の飽和炭化水素基としては、メチン基等が挙げられる。R12で表される炭素数1~7のm価の飽和炭化水素基のうち、メチル基、メチレン基、メチン基が好ましく、更に好ましくはメチル基、メチレン基である。 Among the m-valent saturated hydrocarbon groups having 1 to 7 carbon atoms represented by R 12 , the monovalent saturated hydrocarbon group having 1 to 7 carbon atoms is a linear saturated hydrocarbon group having 1 to 7 carbon atoms. (methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, heptyl group, etc.) and branched saturated hydrocarbon groups having 1 to 7 carbon atoms (i-propyl group, isobutyl group, etc.) group, s-butyl group, t-butyl group, isopentyl group, neopentyl group, t-pentyl group, 1-methylbutyl group, isohexyl group, s-hexyl group, t-hexyl group, neohexyl group, isoheptyl group, etc.). be done. Among the m-valent saturated hydrocarbon groups having 1 to 7 carbon atoms represented by R 12 , the divalent saturated hydrocarbon group having 1 to 7 carbon atoms is a linear saturated divalent hydrocarbon group having 1 to 7 carbon atoms. Hydrocarbon groups (methylene group, ethylene group, propylene group, butylene group, pentene group, hexene group, heptene group, etc.) and divalent branched saturated hydrocarbon groups having 1 to 7 carbon atoms (isopropylene group, isobutylene group, s -butylene group, t-butylene group, isopentylene group, neopentylene group, t-pentylene group, 1-methylbutylene group, isohexylene group, s-hexylene group, t-hexylene group, neohexylene group, isoheptylene group, etc.). Among the m-valent saturated hydrocarbon groups having 1 to 7 carbon atoms represented by R 12 , trivalent saturated hydrocarbon groups having 1 to 7 carbon atoms include a methine group and the like. Of the m-valent saturated hydrocarbon groups having 1 to 7 carbon atoms represented by R 12 , methyl group, methylene group and methine group are preferred, and methyl group and methylene group are more preferred.
 R12が少なくとも1つの非重合性二重結合又は少なくとも1つの非重合性三重結合を有する炭素数2~12であるm価の基のうち、1価の基としては、R10及びR11で例示した基と同じ基が挙げられ、好ましいものも同じである。R12が少なくとも1つの非重合性二重結合又は少なくとも1つの非重合性三重結合を有する炭素数2~12である2価の基である場合、好ましい基としては、ベンゼンジイル基(炭素数6、非重合性炭素-炭素二重結合)、1-メトキシカルボニル-カルボニルオキシエチレンオキシカルボニル基(炭素数6、酸素-酸素二重結合)及びカルボニルオキシエチレンカルボニル基(炭素数4、酸素-酸素二重結合)等が挙げられる。R12が少なくとも1つの非重合性二重結合又は少なくとも1つの非重合性三重結合を有する炭素数2~12である3価の基である場合、好ましいものとしては、ベンゼントリイル基(炭素数6、非重合性炭素-炭素二重結合)及び2-カルボニルオキシ-カルボニルオキシプロピレンカルボニル基(炭素数5、酸素-酸素二重結合)等が挙げられる。 Among m-valent groups in which R 12 has 2 to 12 carbon atoms and at least one non-polymerizable double bond or at least one non-polymerizable triple bond, the monovalent groups include R 10 and R 11 Examples include the same groups as the exemplified groups, and preferred ones are also the same. When R 12 is a divalent group having 2 to 12 carbon atoms and having at least one non-polymerizable double bond or at least one non-polymerizable triple bond, preferred groups include a benzenediyl group (6 carbon atoms , non-polymerizable carbon-carbon double bond), 1-methoxycarbonyl-carbonyloxyethyleneoxycarbonyl group (6 carbon atoms, oxygen-oxygen double bond) and carbonyloxyethylenecarbonyl group (4 carbon atoms, oxygen-oxygen two double bond) and the like. When R 12 is a trivalent group having 2 to 12 carbon atoms having at least one non-polymerizable double bond or at least one non-polymerizable triple bond, it is preferably a benzenetriyl group (having 6, non-polymerizable carbon-carbon double bond) and 2-carbonyloxy-carbonyloxypropylenecarbonyl group (5 carbon atoms, oxygen-oxygen double bond).
 mが1である場合にR10及びR11は互いに結合していてもよく、R10及びR11が互いに結合して形成される環構造を有する基として好ましいものとしては、γ-ブチロラクトニル基及びフルオレニル基等が挙げられる。なお、R10及びR11が互いに結合して環構造を形成する基は、R10及びR11が結合した炭素原子を環構造中に含む。 When m is 1, R 10 and R 11 may be bonded to each other, and preferred groups having a ring structure formed by bonding R 10 and R 11 are γ-butyrolactonyl and A fluorenyl group and the like can be mentioned. The group in which R 10 and R 11 are bonded together to form a ring structure includes the carbon atom to which R 10 and R 11 are bonded in the ring structure.
 Xはテルル元素、アンチモン元素若しくはビスマス元素を有する1価の有機典型元素基又はヨード基であり、好ましいものとしてはメチルテラニル基、ジメチルスチバニル基、ジメチルビスムタニル基及びヨード基が挙げられる。なかでもメチルテラニル基及びヨード基が更に好ましく、最も好ましくはヨード基である。 X3 is a monovalent organic main group element group containing tellurium, antimony or bismuth or an iodine group, preferably methyltheranyl, dimethylstivanyl, dimethylbismutanyl and iodine. Among them, a methylteranyl group and an iodo group are more preferred, and an iodo group is most preferred.
 前記一般式(2)で表される有機典型元素化合物としては、2-ヨードプロピオニトリル、2-メチル-2-ヨードプロピオニトリル、α-ヨードベンジルシアニド、2-ヨードプロピオン酸アミド、エチル-2-メチル-2-ヨード-プロピネート、2-メチル-ヨードプロピオン酸メチル、2-メチル-ヨードプロピオン酸プロピル、2-メチル-ヨードプロピオン酸ブチル、2-メチル-ヨードプロピオン酸ペンチル、2-メチル-ヨードプロピオン酸ヒドロキシエチル、2-メチル-2-ヨード-プロピオン酸(塩)、2-ヨードプロピオン酸(塩)、2-ヨード酢酸(塩)、2-ヨード酢酸メチル、2-ヨード酢酸エチル、2-ヨードペンタン酸エチル、2-ヨードペンタン酸メチル、2-ヨードペンタン酸(塩)、2-ヨードヘキサン酸(塩)、2-ヨードヘプタン酸(塩)、2,5-ジヨードアジピン酸ジエチル、2,5-ジヨードアジピン酸(塩)、2,6-ジヨード-ヘプタン二酸ジメチル、2,6-ジヨード-ヘプタン二酸(塩)、α-ヨード-γ-ブチロラクトン、2-ヨードアセトフェノン、ベンジルヨージド、2-ヨード-2-フェニル酢酸(塩)、2-ヨード-2-フェニル酢酸メチル、2-ヨード-2-フェニル酢酸エチル、1,4-ビス(1’-ヨードエチル)ベンゼン、エチレングリコールビス(2-メチル-2-ヨード-プロピネート)、トリス(2-メチル-ヨードプロピオン酸)グリセロール、1,3,5-トリス(1’-ヨードエチルベンゼン)、エチレングリコールビス(2-ヨード-2フェニルアセテート)等が挙げられ、なかでも好ましいものとしては、2-メチル-2-ヨードプロピオニトリル、エチル-2-メチル-2-ヨード-プロピネート、2-メチル-2-ヨード-プロピオン酸(塩)、2-ヨード酢酸(塩)、2-ヨード酢酸メチル、2,5-ジヨードアジピン酸ジエチル、2,5-ジヨードアジピン酸、エチレングリコールビス(2-メチル-2-ヨード-プロピネート)、エチレングリコールビス(2-ヨード-2フェニルアセテート)が挙げられる。 Examples of the organic main element compound represented by the general formula (2) include 2-iodopropionitrile, 2-methyl-2-iodopropionitrile, α-iodobenzyl cyanide, 2-iodopropionamide, ethyl -2-methyl-2-iodo-propionate, methyl 2-methyl-iodopropionate, 2-methyl-propyl iodopropionate, butyl 2-methyl-iodopropionate, 2-methyl-pentyl iodopropionate, 2-methyl - hydroxyethyl iodopropionate, 2-methyl-2-iodo-propionic acid (salt), 2-iodopropionic acid (salt), 2-iodoacetic acid (salt), methyl 2-iodoacetate, ethyl 2-iodoacetate, Ethyl 2-iodopentanoate, Methyl 2-iodopentanoate, 2-iodopentanoic acid (salt), 2-iodohexanoic acid (salt), 2-iodoheptanoic acid (salt), diethyl 2,5-diiodoadipate , 2,5-diiodoadipate (salt), dimethyl 2,6-diiodo-heptanedioate, 2,6-diiodo-heptanedioic acid (salt), α-iodo-γ-butyrolactone, 2-iodoacetophenone, Benzyl iodide, 2-iodo-2-phenylacetic acid (salt), methyl 2-iodo-2-phenylacetate, ethyl 2-iodo-2-phenylacetate, 1,4-bis(1'-iodoethyl)benzene, ethylene Glycol bis(2-methyl-2-iodopropionate), tris(2-methyl-iodopropionate) glycerol, 1,3,5-tris(1′-iodoethylbenzene), ethylene glycol bis(2-iodo-2 phenyl acetate), etc. Among them, 2-methyl-2-iodopropionitrile, ethyl-2-methyl-2-iodo-propionate, 2-methyl-2-iodo-propionic acid (salt ), 2-iodoacetic acid (salt), methyl 2-iodoacetate, diethyl 2,5-diiodoadipate, 2,5-diiodoadipate, ethylene glycol bis(2-methyl-2-iodo-propinate), Ethylene glycol bis(2-iodo-2phenylacetate) can be mentioned.
 前記有機典型元素化合物の使用量は、吸水時のゲル強度、荷重下吸収量及びゲル通液速度を向上させる観点から、前記モノマー(A1)及び前記モノマー(A2)の重量に基づいて、好ましくは0.0005~0.1重量%、更に好ましくは0.005~0.05重量%である。 The amount of the organic main group element compound used is preferably 0.0005 to 0.1% by weight, more preferably 0.005 to 0.05% by weight.
 重合方法として懸濁重合法又は逆相懸濁重合法をとる場合は、必要に応じて、従来公知の分散剤又は界面活性剤の存在下に重合を行っても良い。また、逆相懸濁重合法の場合、従来公知のキシレン、ノルマルヘキサン及びノルマルヘプタン等の炭化水素系溶媒を使用して重合を行うことができる。 When suspension polymerization or reverse-phase suspension polymerization is used as the polymerization method, polymerization may be carried out in the presence of a conventionally known dispersant or surfactant, if necessary. In the case of the reversed-phase suspension polymerization method, the polymerization can be carried out using conventionally known hydrocarbon solvents such as xylene, normal hexane and normal heptane.
 重合開始温度は、使用する触媒の種類によって適宜調整することができるが、0~100℃が好ましく、更に好ましくは2~80℃である。 The polymerization initiation temperature can be appropriately adjusted depending on the type of catalyst used, but is preferably 0 to 100°C, more preferably 2 to 80°C.
 重合に溶媒(有機溶媒及び水等)を使用する場合、重合後に溶媒を留去することが好ましい。溶媒に有機溶媒を含む場合、留去後の有機溶媒の含有量(重量%)は、架橋重合体(A)の重量に基づいて、0~10が好ましく、更に好ましくは0~5、特に好ましくは0~3、最も好ましくは0~1である。この範囲であると、吸水性樹脂組成物の吸収性能が更に良好となる。 When using a solvent (organic solvent, water, etc.) for polymerization, it is preferable to distill off the solvent after polymerization. When the solvent contains an organic solvent, the content (% by weight) of the organic solvent after distillation is preferably 0 to 10, more preferably 0 to 5, particularly preferably 0 to 5, based on the weight of the crosslinked polymer (A). is 0-3, most preferably 0-1. Within this range, the absorption performance of the water absorbent resin composition is further improved.
 溶媒に水を含む場合、留去後の水分(重量%)は、架橋重合体(A)の重量に基づいて、0~20が好ましく、更に好ましくは1~10、特に好ましくは2~9、最も好ましくは3~8である。この範囲であると、吸収性能が更に良好となる。 When the solvent contains water, the water content (% by weight) after distillation is preferably 0 to 20, more preferably 1 to 10, particularly preferably 2 to 9, based on the weight of the crosslinked polymer (A). Most preferably 3-8. Within this range, the absorption performance is further improved.
 前記の重合方法により架橋重合体(A)が水を含んだ含水ゲル状物(以下、含水ゲルともいう)を得ることができる。 A water-containing gel-like substance (hereinafter also referred to as a water-containing gel) in which the crosslinked polymer (A) contains water can be obtained by the polymerization method described above.
 前記含水ゲルは塩基で中和しても良い。酸基の中和度は、50~80モル%であることが好ましい。中和度が50モル%未満の場合、得られる含水ゲル重合体の粘着性が高くなり、製造時及び使用時の作業性が悪化する場合がある。更に得られる吸水性樹脂組成物の保水量が低下する場合がある。一方、中和度が80%を超える場合、得られた樹脂のpHが高くなり人体の皮膚に対する安全性が懸念される場合がある。 The hydrous gel may be neutralized with a base. The degree of neutralization of acid groups is preferably 50 to 80 mol %. If the degree of neutralization is less than 50 mol %, the resulting hydrous gel polymer will have high adhesiveness, and workability during production and use may deteriorate. Furthermore, the water-retaining capacity of the obtained water-absorbent resin composition may decrease. On the other hand, if the degree of neutralization exceeds 80%, the resulting resin will have a high pH and may be unsafe for human skin.
 なお、中和は、吸水性樹脂組成物の製造において、架橋重合体(A)の重合以降のいずれの段階で行ってもよく、例えば、含水ゲルの状態で中和する等の方法が好ましい例として例示される。 The neutralization may be performed at any stage after the polymerization of the crosslinked polymer (A) in the production of the water-absorbent resin composition. exemplified as
 中和する塩基としては、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物や、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩を通常使用できる。 As the neutralizing base, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, and alkali metal carbonates such as sodium carbonate, sodium hydrogencarbonate and potassium carbonate can usually be used.
 なお、有機溶媒の含有量及び水分は、赤外水分測定器[(株)KETT社製JE400等:120±5℃、30分、加熱前の雰囲気湿度50±10%RH、ランプ仕様100V、40W]により加熱したときの測定試料の重量減量から求められる。 The content and water content of the organic solvent were measured using an infrared moisture meter [JE400 manufactured by KETT Co., Ltd., etc.: 120 ± 5 ° C., 30 minutes, atmospheric humidity before heating 50 ± 10% RH, lamp specifications 100 V, 40 W ] is obtained from the weight loss of the measurement sample when heated by
〔細断工程〕
 本実施形態の吸水性樹脂組成物の製造方法は、必要に応じて、前記含水ゲルを細断する細断工程を有してもよい。細断後のゲルの大きさ(最長径)は50μm~10cmが好ましく、更に好ましくは100μm~2cm、特に好ましくは1mm~1cmである。この範囲であると、乾燥工程での乾燥性が更に良好となる。
[Shredding process]
The method for producing the water-absorbing resin composition of the present embodiment may have a shredding step of shredding the hydrous gel, if necessary. The size (maximum diameter) of the gel after shredding is preferably 50 μm to 10 cm, more preferably 100 μm to 2 cm, particularly preferably 1 mm to 1 cm. Within this range, the drying property in the drying step is further improved.
 細断は、公知の方法で行うことができ、細断装置(例えば、ベックスミル、ラバーチョッパ、ファーマミル、ミンチ機、衝撃式粉砕機及びロール式粉砕機)等を使用して細断できる。 Shredding can be performed by a known method, and can be performed using a shredding device (eg, Vex mill, rubber chopper, farmer mill, mincing machine, impact pulverizer, and roll pulverizer).
〔乾燥工程〕
 本実施形態の吸水性樹脂組成物の製造方法は、前記含水ゲルを乾燥し、含水ゲル中の溶媒(水を含む)を留去し、前記架橋重合体(A)を得る乾燥工程を有する。
[Drying process]
The method for producing a water-absorbent resin composition of the present embodiment has a drying step of drying the water-containing gel and distilling off the solvent (including water) in the water-containing gel to obtain the crosslinked polymer (A).
 前記乾燥工程において、含水ゲル中の溶媒を留去する方法としては、80~230℃の温度の熱風で留去(乾燥)する方法、100~230℃に加熱されたドラムドライヤー等による薄膜乾燥法、(加熱)減圧乾燥法、凍結乾燥法、赤外線による乾燥法、デカンテーション及び濾過等が適用できる。 In the drying step, the method of distilling off the solvent in the hydrous gel includes a method of distilling (drying) with hot air at a temperature of 80 to 230 ° C., and a thin film drying method using a drum dryer or the like heated to 100 to 230 ° C. , (heating) vacuum drying method, freeze drying method, infrared drying method, decantation, filtration, and the like can be applied.
〔粉砕工程〕
 本実施形態の吸水性樹脂組成物の製造方法は、前記乾燥工程で得られた前記架橋重合体(A)を粉砕し、粒子状の前記架橋重合体(A)を得る粉砕工程を有していてもよい。
[Pulverization process]
The method for producing a water absorbent resin composition of the present embodiment includes a pulverizing step of pulverizing the crosslinked polymer (A) obtained in the drying step to obtain the crosslinked polymer (A) in the form of particles. may
 前記粉砕工程において、前記架橋重合体(A)を粉砕する方法については、特に限定はなく、粉砕装置(例えば、ハンマー式粉砕機、衝撃式粉砕機、ロール式粉砕機及びシェット気流式粉砕機)等が使用できる。粉砕された架橋重合体(A)は、必要によりふるい分け等により粒度調整できる。 In the pulverization step, the method for pulverizing the crosslinked polymer (A) is not particularly limited, and a pulverizing device (e.g., hammer pulverizer, impact pulverizer, roll pulverizer, and jet stream pulverizer). etc. can be used. The pulverized crosslinked polymer (A) can be adjusted in particle size by sieving or the like, if necessary.
〔表面架橋工程〕
 本実施形態の吸水性樹脂組成物の製造方法は、前記乾燥工程で得られた前記架橋重合体(A)の表面を前記表面架橋剤(d)によって架橋する表面架橋工程を有する。
[Surface cross-linking step]
The method for producing a water absorbent resin composition of the present embodiment has a surface cross-linking step of cross-linking the surface of the cross-linked polymer (A) obtained in the drying step with the surface cross-linking agent (d).
 前記表面架橋剤(d)の使用量(重量%)は、表面架橋剤の種類、架橋させる条件、目標とする性能等により種々変化させることができるため特に限定はないが、吸収特性の観点等から、架橋重合体(A)の重量に基づいて、0.001~3が好ましく、更に好ましくは0.005~2、特に好ましくは0.01~1.5である。 The amount (% by weight) of the surface cross-linking agent (d) used is not particularly limited because it can be varied depending on the type of the surface cross-linking agent, cross-linking conditions, target performance, etc., but is not particularly limited from the viewpoint of absorption characteristics and the like. Therefore, it is preferably 0.001 to 3, more preferably 0.005 to 2, and particularly preferably 0.01 to 1.5, based on the weight of the crosslinked polymer (A).
 架橋重合体(A)の表面架橋は、架橋重合体(A)と表面架橋剤(d)とを混合し、加熱することで行うことができる。架橋重合体(A)と表面架橋剤(d)との混合方法としては、円筒型混合機、スクリュー型混合機、スクリュー型押出機、タービュライザー、ナウター型混合機、双腕型ニーダー、流動式混合機、V型混合機、ミンチ混合機、リボン型混合機、流動式混合機、気流型混合機、回転円盤型混合機、コニカルブレンダー及びロールミキサー等の混合装置を用いて架橋重合体(A)と表面架橋剤(d)とを均一混合する方法が挙げられる。 The surface cross-linking of the cross-linked polymer (A) can be performed by mixing the cross-linked polymer (A) and the surface cross-linking agent (d) and heating. Examples of the method for mixing the crosslinked polymer (A) and the surface cross-linking agent (d) include a cylindrical mixer, a screw mixer, a screw extruder, a turbulizer, a Nauta mixer, a twin-arm kneader, a fluid A crosslinked polymer ( A method of uniformly mixing A) and the surface cross-linking agent (d) can be mentioned.
 前記架橋重合体(A)と前記表面架橋剤(d)を混合する際、前記架橋重合体(A)と前記表面架橋剤(d)を均一に混合する観点から、前記表面架橋剤(d)は、水及び/又は任意の溶媒で希釈して使用するのが好ましい。 When mixing the crosslinked polymer (A) and the surface cross-linking agent (d), from the viewpoint of uniformly mixing the crosslinked polymer (A) and the surface cross-linking agent (d), the surface cross-linking agent (d) is preferably used after being diluted with water and/or any solvent.
 前記架橋重合体(A)と前記表面架橋剤(d)を混合する際に使用する溶媒とは、表面架橋時に化学反応しない液体物質を指す。当該溶媒としては、プロピレングリコール、1,2-ブタンジオール、1,2-ペンタンジオール、1,2-ヘキサンジオール、グリセリン等の有機溶媒が挙げられる。当該溶媒は単独で使用してもよいし、2種以上を併用してもよい。当該溶媒は、前記表面架橋剤(d)の反応性、吸収性能向上の観点から好ましくは、沸点が100℃以上の有機溶媒であり、ジエチレングリコールであることが更に好ましい。沸点が100℃以上の溶媒を用いることで、前記架橋重合体(A)と前記表面架橋剤(d)を加熱下で反応させる際の揮発を抑制して架橋の均一性を向上させ、吸収性能の品質をより安定させることができる。また、溶媒の原料をカーボンニュートラルなものにすることで、吸水性樹脂組成物自体のカーボンニュートラル性を向上させることもできる。 The solvent used when mixing the crosslinked polymer (A) and the surface cross-linking agent (d) refers to a liquid substance that does not chemically react during surface cross-linking. Examples of the solvent include organic solvents such as propylene glycol, 1,2-butanediol, 1,2-pentanediol, 1,2-hexanediol and glycerin. The solvent may be used alone or in combination of two or more. The solvent is preferably an organic solvent having a boiling point of 100° C. or higher, more preferably diethylene glycol, from the viewpoint of improving the reactivity of the surface cross-linking agent (d) and absorption performance. By using a solvent having a boiling point of 100° C. or higher, volatilization is suppressed when the crosslinked polymer (A) and the surface cross-linking agent (d) are reacted under heating, uniformity of cross-linking is improved, and absorption performance is improved. quality can be more stable. In addition, by using a carbon-neutral raw material for the solvent, the carbon-neutrality of the water-absorbing resin composition itself can be improved.
 前記架橋重合体(A)と前記表面架橋剤(d)を混合する際に溶媒として極性溶媒を使用することで、前記架橋重合体(A)が有する前記モノマー(A1)及び/または前記モノマー(A2)由来のカルボキシル基と前記表面架橋剤(d)が反応する際に、極性溶媒が前記表面架橋剤(d)に一時的に配位することで、反応が促進されると想定される。特に、極性溶媒の構造中にジオールやトリオールなどを有する極性溶媒は、前記モノマー(A2)の未中和カルボキシ基部位に配位し電子供与することで、カルボキシ基からプロトンを放出しやすくなり、このプロトンが前記表面架橋剤(d)中のグリシジル基等の反応基に配位することで反応を促進することなる。その結果、均一な表面架橋を実現でき、アクリル酸単独重合体に比べてゲル強度の劣るジカルボン酸を有する架橋共重合体であっても優れた吸収性能を実現することができると推察できる。 By using a polar solvent as a solvent when mixing the crosslinked polymer (A) and the surface cross-linking agent (d), the monomer (A1) and/or the monomer ( When the carboxyl group derived from A2) reacts with the surface cross-linking agent (d), it is assumed that the polar solvent temporarily coordinates with the surface cross-linking agent (d), thereby promoting the reaction. In particular, a polar solvent having a diol, triol, or the like in the structure of the polar solvent is coordinated to the unneutralized carboxy group site of the monomer (A2) to donate electrons, thereby easily releasing protons from the carboxy group. This proton coordinates with a reactive group such as a glycidyl group in the surface cross-linking agent (d) to promote the reaction. As a result, it can be inferred that uniform surface cross-linking can be achieved, and excellent absorption performance can be achieved even with a cross-linked copolymer having a dicarboxylic acid, which is inferior in gel strength to an acrylic acid homopolymer.
 前記架橋重合体(A)を前記表面架橋剤(d)で表面架橋する際には水と併用して溶媒を使用する場合、当該溶媒の使用量は、溶媒の種類により適宜調整できるが、吸収性能の観点から表面架橋前の前記架橋重合体(A)に基づいて、好ましくは0.1~10重量%である。また、水に対する溶媒の比率についても任意に調整することができるが、好ましくは重量基準で1~70重量%、更に好ましくは2~60重量%である。溶媒の使用量を上記下限値以上にすることにより、表面架橋剤(d)を架橋重合体(A)に均一的に添加することができ、保水量と荷重下吸収量のバランスがより向上する。 When a solvent is used in combination with water when the crosslinked polymer (A) is surface-crosslinked with the surface-crosslinking agent (d), the amount of the solvent used can be appropriately adjusted depending on the type of solvent. From the viewpoint of performance, it is preferably 0.1 to 10% by weight based on the crosslinked polymer (A) before surface crosslinking. Also, the ratio of solvent to water can be arbitrarily adjusted, but is preferably 1 to 70% by weight, more preferably 2 to 60% by weight. By setting the amount of the solvent used to be at least the above lower limit, the surface cross-linking agent (d) can be uniformly added to the crosslinked polymer (A), and the balance between the water retention amount and the absorption amount under load is further improved. .
 架橋重合体(A)と表面架橋剤(d)とを混合する際の温度は特に限定されないが、10~150℃が好ましく、更に好ましくは20~100℃、特に好ましくは25~80℃である。 The temperature at which the crosslinked polymer (A) and the surface cross-linking agent (d) are mixed is not particularly limited, but is preferably 10 to 150°C, more preferably 20 to 100°C, and particularly preferably 25 to 80°C. .
 架橋重合体(A)と表面架橋剤(d)とを混合した後、通常、加熱処理を行う。加熱温度は、吸水性樹脂の耐壊れ性の観点から好ましくは100~180℃、更に好ましくは110~175℃、特に好ましくは120~170℃である。180℃以下の加熱であれば蒸気を利用した間接加熱が可能であり設備上有利であり、100℃未満の加熱温度では吸収性能が悪くなる場合がある。また、加熱時間は加熱温度により適宜設定することができるが、吸収性能の観点から、好ましくは5~60分、更に好ましくは10~40分である。表面架橋して得られる吸水性樹脂を、最初に用いた表面架橋剤と同種又は異種の表面架橋剤を用いて、更に表面架橋することも可能である。 After mixing the crosslinked polymer (A) and the surface cross-linking agent (d), heat treatment is usually performed. The heating temperature is preferably 100 to 180°C, more preferably 110 to 175°C, particularly preferably 120 to 170°C, from the viewpoint of breaking resistance of the water absorbent resin. Heating at 180° C. or less enables indirect heating using steam, which is advantageous in terms of facilities. Heating temperatures below 100° C. may result in poor absorption performance. The heating time can be appropriately set depending on the heating temperature, but from the viewpoint of absorption performance, it is preferably 5 to 60 minutes, more preferably 10 to 40 minutes. It is also possible to further surface-crosslink the water-absorbing resin obtained by surface-crosslinking using a surface-crosslinking agent that is the same as or different from the surface-crosslinking agent used first.
 架橋重合体(A)の表面を表面架橋剤(d)により架橋した後、必要により篩別して粒度調整する。得られた粒子の平均粒経は、好ましくは100~600μm、更に好ましくは200~500μmである。微粒子の含有量は少ない方が好ましく、100μm以下の粒子の含有量は3重量%以下であることが好ましく、150μm以下の粒子の含有量が3重量%以下であることが更に好ましい。 After cross-linking the surface of the cross-linked polymer (A) with the surface cross-linking agent (d), the particle size is adjusted by sieving if necessary. The average particle size of the obtained particles is preferably 100-600 μm, more preferably 200-500 μm. The content of fine particles is preferably as small as possible, the content of particles of 100 μm or less is preferably 3% by weight or less, and the content of particles of 150 μm or less is more preferably 3% by weight or less.
 本実施形態の吸水性樹脂組成物の製造方法においては、植物由来原料を前記重合工程より後に添加してもよい。植物由来原料の添加方法としては特に限定はなく、前記含水ゲルと混練する方法、細断工程で、植物由来原料を添加して含水ゲルを細断する方法、乾燥工程で得られた吸水性樹脂と植物由来原料を混練する方法、表面架橋工程で架橋重合体(A)と表面架橋剤(d)と植物由来原料とを混合する方法等が例示できる。吸収性能、生産性の観点から、細断工程及び/又はゲル細断工程で得られた含水ゲル粒子を乾燥する乾燥工程中に添加することが好ましい。 In the method for producing the water absorbent resin composition of the present embodiment, the plant-derived raw material may be added after the polymerization step. The method of adding the plant-derived raw material is not particularly limited, and includes a method of kneading with the hydrous gel, a method of shredding the hydrous gel by adding the plant-derived raw material in the shredding step, and a water-absorbing resin obtained in the drying step. and a method of kneading a plant-derived raw material, and a method of mixing a cross-linked polymer (A), a surface cross-linking agent (d), and a plant-derived raw material in the surface cross-linking step. From the viewpoint of absorption performance and productivity, it is preferable to add the water-containing gel particles obtained in the shredding step and/or the gel shredding step during the drying step.
 植物由来原料としては、前記水溶性不飽和ジカルボン酸(a3)及びその塩の他、油脂、タンパク質、繊維質、エキス類、糖類、等が挙げられる。これらのうち、吸水性能の観点から好ましくは、油脂、繊維質、糖類、更に好ましくは、繊維質、糖類であって、炭素安定同位体比(δ13C)が-60‰~-5‰、かつ炭素の放射性炭素年代測定法によって測定される14C/Cが1.2×10-12~1.0×10-16を満たすならば、その一部、あるいはその全部を化学的に変性処理してもよく、それらの混合物であってもよい。 Plant-derived raw materials include the water-soluble unsaturated dicarboxylic acid (a3) and salts thereof, as well as oils and fats, proteins, fibers, extracts, sugars, and the like. Among these, fats and oils, fibers, and sugars are preferred from the viewpoint of water absorption performance, and fibers and sugars are more preferred, and the stable carbon isotope ratio (δ 13 C) is from −60‰ to −5‰, And if the 14 C/C measured by the carbon radiocarbon dating method satisfies 1.2×10 −12 to 1.0×10 −16 , part or all of it is chemically modified or a mixture thereof.
 油脂としては、大豆油、ヤシ油、パーム油、パーム核油、トウモロコシ油、オリーブ油、サフラワー油、紅花油、綿実油、ナタネ油、ヒマシ油、ゴマ油、等が挙げられる。 Fats and oils include soybean oil, coconut oil, palm oil, palm kernel oil, corn oil, olive oil, safflower oil, safflower oil, cottonseed oil, rapeseed oil, castor oil, sesame oil, and the like.
 繊維質としては、植物性繊維が挙げられ、植物性繊維としては、ケナフ、ジュート麻、マニラ麻、サイザル麻、雁皮、楮、バナナ、パイナップル、ココヤシ、トウモロコシ、サトウキビ、バガス、ヤシ、パピルス、葦、エスパルト、サバイグラス、麦、稲、竹、スギ及びヒノキ等の針葉樹、広葉樹及び綿花などの各種の植物が有する繊維が挙げられる。 Fibers include vegetable fibers, and vegetable fibers include kenaf, jute hemp, manila hemp, sisal hemp, ganpi, kozo, banana, pineapple, coconut palm, corn, sugar cane, bagasse, palm, papyrus, reed, Coniferous trees such as esparto, surviving grass, barley, rice, bamboo, cedar and cypress, broad-leaved trees, and fibers of various plants such as cotton.
 糖類としては、フルクトース、グルコース、乳糖、マルトース、ガラクトース、スクロース、デンプン、セルロース、セルロース誘導体等が挙げられる。 Sugars include fructose, glucose, lactose, maltose, galactose, sucrose, starch, cellulose, and cellulose derivatives.
 前記含水ゲル又は吸水性樹脂組成物と植物由来原料とを混練する方法としては、円筒型混合機、スクリュー型混合機、スクリュー型押出機、タービュライザー、ナウター型混合機、双腕型ニーダー、流動式混合機、V型混合機、ミンチ混合機、リボン型混合機、流動式混合機、気流型混合機、回転円盤型混合機、コニカルブレンダー及びロールミキサー等の混合装置を用いて均一混合する方法が挙げられる。 Methods for kneading the hydrous gel or water-absorbent resin composition and the plant-derived raw material include cylindrical mixers, screw mixers, screw extruders, turbulizers, Nauta mixers, double-arm kneaders, Mix uniformly using a mixing device such as a fluidized mixer, a V-shaped mixer, a mincing mixer, a ribbon mixer, a fluidized mixer, an airflow mixer, a rotating disk mixer, a conical blender, and a roll mixer. method.
 さらに、任意の段階で、水、防腐剤、防かび剤、抗菌剤、酸化防止剤、紫外線吸収剤、酸化防止剤、着色剤、芳香剤、消臭剤、通液性向上剤、無機質粉末及び有機質繊維状物等を添加することができ、その量は吸水性樹脂組成物の重量に基づいて、通常、5重量%以下である。また、必要により発泡構造を有してもよいし、造粒や成型を行うこともできる。 Furthermore, at any stage, water, preservatives, antifungal agents, antibacterial agents, antioxidants, ultraviolet absorbers, antioxidants, coloring agents, fragrances, deodorants, liquid permeability improvers, inorganic powders and An organic fibrous material or the like can be added, and the amount thereof is usually 5% by weight or less based on the weight of the water absorbent resin composition. Moreover, if necessary, it may have a foamed structure, and may be granulated or molded.
 前記吸水性樹脂組成物中の架橋重合体(A)の含有量は、50~99.5重量%であることが好ましく、60~99重量%がより好ましい。架橋重合体の含有量が50%以上であることで十分な保水能を有する吸水性樹脂組成物を得ることができる。 The content of the crosslinked polymer (A) in the water absorbent resin composition is preferably 50 to 99.5% by weight, more preferably 60 to 99% by weight. When the content of the crosslinked polymer is 50% or more, it is possible to obtain a water absorbent resin composition having sufficient water retention capacity.
 前記吸水性樹脂組成物の0.9重量%生理食塩水の保水量(g/g)は、10~60である。前記吸水性樹脂組成物の保水量(g/g)は、後述する方法で測定することができ、吸収量の観点から15以上であることが好ましく、18以上が更に好ましく、20以上が特に好ましい。また、上限値は、べとつきの観点から、55以下が好ましく、50以下がさらに好ましく、45以下が特に好ましい。保水量は、架橋剤(b)、表面架橋剤(d)の使用量(重量%)で適宜調整することができる。 The water retention capacity (g/g) of 0.9% by weight physiological saline of the water absorbent resin composition is 10-60. The water retention capacity (g/g) of the water absorbent resin composition can be measured by the method described later, and is preferably 15 or more, more preferably 18 or more, and particularly preferably 20 or more from the viewpoint of absorption capacity. . From the viewpoint of stickiness, the upper limit is preferably 55 or less, more preferably 50 or less, and particularly preferably 45 or less. The amount of water retention can be appropriately adjusted by the amount (% by weight) of the cross-linking agent (b) and the surface cross-linking agent (d) used.
 前記吸水性樹脂組成物のゲル通液速度(ml/分)は、後述する方法で測定することができ、オムツの吸収速度の観点から好ましくは3~300であり、5~200が更に好ましく、特に好ましくは、10~180である。ゲル通液速度は保水量と相反することが経験的に知られており、オムツの構成により高保水量が求められる場合と高ゲル通液速度が求められる場合とがある。 The gel permeation rate (ml/min) of the water-absorbing resin composition can be measured by the method described later, and is preferably 3 to 300, more preferably 5 to 200, from the viewpoint of diaper absorption rate. Particularly preferably, it is 10-180. It is empirically known that the gel permeation rate conflicts with the water retention capacity, and there are cases where a high water retention capacity is required and there are cases where a high gel permeation rate is required depending on the configuration of the diaper.
 前記吸水性樹脂組成物の0.9重量%生理食塩水の荷重下吸収量(g/g)は、後述する方法で測定することができ、荷重下でのオムツの吸収量の観点から好ましくは12~25であり、15~25が更に好ましく、特に好ましくは、18~23である。荷重下吸収量は保水量と相反することが経験的に知られており、オムツの構成により高保水量が求められる場合と高ゲル通液速度が求められる場合とがある。 The absorption amount (g/g) of 0.9% by weight of physiological saline under load of the water-absorbing resin composition can be measured by the method described later, and from the viewpoint of the absorption amount of diapers under load, it is preferably 12 to 25, more preferably 15 to 25, particularly preferably 18 to 23. It is empirically known that the absorbency under load conflicts with the water retention capacity, and there are cases where a high water retention capacity is required and cases where a high gel permeation rate is required depending on the configuration of the diaper.
<吸収体>
 前記吸水性樹脂組成物を用いて吸収体を得ることができる。吸収体としては、前記吸水性樹脂組成物を単独で用いても良く、他の材料と共に用いて吸収体としても良い。当該他の材料としては繊維状物等が挙げられる。繊維状物と共に用いた場合の吸収体の構造及び製造方法等は、公知のもの(特開2003-225565号公報、特開2006-131767号公報及び特開2005-097569号公報等)と同様である。
<Absorber>
An absorbent body can be obtained using the water absorbent resin composition. As the absorbent, the water absorbent resin composition may be used alone, or may be used together with other materials to form an absorbent. Such other materials include fibrous materials and the like. The structure and manufacturing method of the absorbent when used with fibrous materials are the same as those of known ones (Japanese Patent Laid-Open Nos. 2003-225565, 2006-131767 and 2005-097569). be.
 上記繊維状物として好ましいのは、セルロース系繊維、有機系合成繊維及びセルロース系繊維と有機系合成繊維との混合物である。 Cellulose fibers, organic synthetic fibers, and mixtures of cellulosic fibers and organic synthetic fibers are preferable as the fibrous material.
 セルロース系繊維としては、例えばフラッフパルプ等の天然繊維、ビコースレーヨン、アセテート及びキュプラ等のセルロース系化学繊維が挙げられる。このセルロース系天然繊維の原料(針葉樹及び広葉樹等)、製造方法(ケミカルパルプ、セミケミカルパルプ、メカニカルパルプ及びCTMP等)及び漂白方法等は特に限定されない。 Examples of cellulosic fibers include natural fibers such as fluff pulp, and cellulosic chemical fibers such as bicose rayon, acetate and cupra. The raw material (softwood, hardwood, etc.), manufacturing method (chemical pulp, semi-chemical pulp, mechanical pulp, CTMP, etc.), bleaching method, and the like of this cellulose-based natural fiber are not particularly limited.
 有機系合成繊維としては、例えばポリプロピレン系繊維、ポリエチレン系繊維、ポリアミド系繊維、ポリアクリロニトリル系繊維、ポリエステル系繊維、ポリビニルアルコール系繊維、ポリウレタン系繊維及び熱融着性複合繊維(融点の異なる上記繊維の少なくとも2種を鞘芯型、偏芯型、並列型等に複合化された繊維、上記繊維の少なくとも2種をブレンドした繊維及び上記繊維の表層を改質した繊維等)が挙げられる。 Examples of organic synthetic fibers include polypropylene fibers, polyethylene fibers, polyamide fibers, polyacrylonitrile fibers, polyester fibers, polyvinyl alcohol fibers, polyurethane fibers, and heat-fusible composite fibers (the above fibers having different melting points). (sheath-and-core type, eccentric type, side-by-side type, etc.), fibers obtained by blending at least two of the above fibers, and fibers obtained by modifying the surface layer of the above fibers.
 これらの繊維状物の内で好ましいのは、セルロース系天然繊維、ポリプロピレン系繊維、ポリエチレン系繊維、ポリエステル系繊維、熱融着性複合繊維及びこれらの混合繊維であり、更に好ましいのは、得られた吸水剤の吸水後の形状保持性に優れるという点で、フラッフパルプ、熱融着性複合繊維及びこれらの混合繊維である。 Among these fibrous materials, cellulosic natural fibers, polypropylene fibers, polyethylene fibers, polyester fibers, heat-fusible conjugate fibers and mixed fibers thereof are preferred, and more preferred are fluff pulp, heat-fusible conjugate fibers and mixed fibers thereof in that they are excellent in shape retention after water absorption by the water absorbing agent.
 上記繊維状物の長さ、太さについては特に限定されず、長さは1~200mm、太さは0.1~100デニールの範囲であれば好適に使用することができる。形状についても繊維状であれば特に限定されず、細い円筒状、スプリットヤーン状、ステープル状、フィラメント状及びウェブ状等が例示される。 The length and thickness of the above-mentioned fibrous material are not particularly limited, and if the length is in the range of 1 to 200 mm and the thickness is in the range of 0.1 to 100 denier, it can be suitably used. The shape is not particularly limited as long as it is fibrous, and examples include a thin cylindrical shape, a split yarn shape, a staple shape, a filament shape, a web shape, and the like.
 前記吸水性樹脂粒子を、繊維状物と共に吸収体とする場合、前記吸水性樹脂粒子と繊維の重量比率(吸水性樹脂粒子の重量/繊維状物の重量)は40/60~90/10が好ましく、更に好ましくは70/30~80/20である。 When the water absorbent resin particles are used as an absorber together with fibrous materials, the weight ratio of the water absorbent resin particles and fibers (weight of water absorbent resin particles/weight of fibrous materials) is 40/60 to 90/10. It is preferably 70/30 to 80/20, more preferably 70/30 to 80/20.
<吸収性物品>
 前記吸水性樹脂組成物を用いて吸収性物品を得ることができる。具体的には、上記吸収体を用いる。吸収性物品としては、紙おむつや生理用ナプキン等の衛生用品のみならず、結露防止剤、農業・園芸用保水剤、残土固化材、災害土嚢、廃血液固化剤、使い捨てカイロ、保冷剤、アルカリ電池用、化粧品、ペットシート、猫砂等の各種産業分野用における各種水性液体の吸収や保持剤用途、ゲル化剤用途等の各種用途に使用されるものとして適用可能である。吸収性物品の製造方法等は、公知のもの(特開2003-225565号公報、特開2006-131767号公報及び特開2005-097569号公報等に記載のもの)と同様である。
<Absorbent article>
An absorbent article can be obtained using the water absorbent resin composition. Specifically, the absorber described above is used. Absorbent products include not only sanitary products such as paper diapers and sanitary napkins, but also anti-condensation agents, water retention agents for agriculture and gardening, soil solidification agents, disaster sandbags, waste blood solidification agents, disposable body warmers, refrigerants, and alkaline batteries. It can be used for various purposes such as absorption of various aqueous liquids, retention agent use, and gelling agent use in various industrial fields such as cosmetics, pet sheets, and cat litter. The manufacturing method of the absorbent article and the like are the same as those known (described in JP-A-2003-225565, JP-A-2006-131767, JP-A-2005-097569, etc.).
 以下、実施例及び比較例により本発明を更に説明するが、本発明はこれらに限定されるものではない。以下、特に定めない限り、部は重量部、%は重量%を示す。なお、吸水性樹脂の生理食塩水に対する保水量、荷重下吸収量、通液性、放射性炭素年代測定法(14C/C)は以下の方法により測定した。 EXAMPLES The present invention will be further described with reference to Examples and Comparative Examples below, but the present invention is not limited to these. Hereinafter, unless otherwise specified, parts indicate parts by weight and % indicates % by weight. The water retention capacity of the water-absorbing resin against physiological saline, absorption under load, liquid permeability, and radiocarbon dating ( 14 C/C) were measured by the following methods.
<保水量の測定方法>
 目開き63μm(JIS Z8801-1:2006)のナイロン網で作製したティーバッグ(縦20cm、横10cm)に測定試料1.00gを入れ、生理食塩水(食塩濃度0.9%)1,000ml中に無撹拌下、1時間浸漬した後引き上げて、15分間吊るして水切りした。その後、ティーバッグごと、遠心分離器にいれ、150Gで90秒間遠心脱水して余剰の生理食塩水を取り除き、ティーバックを含めた重量(h1)を測定し次式から保水量を求めた。なお、使用した生理食塩水及び測定雰囲気の温度は25℃±2℃であった。
保水量(g/g)=(h1)-(h2)
 なお、(h2)は、測定試料の無い場合について上記と同様の操作により計測したティーバックの重量である。
<Method for measuring water retention>
Put 1.00 g of the measurement sample in a tea bag (20 cm long, 10 cm wide) made of nylon mesh with an opening of 63 μm (JIS Z8801-1: 2006), and put it in 1,000 ml of physiological saline (salt concentration 0.9%). After being immersed for 1 hour without stirring, it was taken out and hung for 15 minutes to drain. After that, the whole tea bag was placed in a centrifuge and dehydrated by centrifugation at 150 G for 90 seconds to remove excess physiological saline. The physiological saline used and the temperature of the measurement atmosphere were 25°C ± 2°C.
Water retention amount (g/g) = (h1) - (h2)
In addition, (h2) is the weight of the tea bag measured by the same operation as above without the measurement sample.
<荷重下吸収量の測定方法>
 目開き63μm(JIS Z8801-1:2006)のナイロン網を底面に貼った円筒型プラスチックチューブ(内径:25mm、高さ:34mm)内に、30メッシュふるいと60メッシュふるいを用いて250~500μmの範囲にふるい分けした測定試料0.16gを秤量し、円筒型プラスチックチューブを垂直にしてナイロン網上に測定試料がほぼ均一厚さになるように整えた後、この測定試料の上に分銅(重量:306.2g、外径:24.5mm、)を乗せた。この円筒型プラスチックチューブ全体の重量(M1)を計量した後、生理食塩水(食塩濃度0.9%)60mlの入ったシャーレ(直径:12cm)の中に測定試料及び分銅の入った円筒型プラスチックチューブを垂直に立ててナイロン網側を下面にして浸し、60分静置した。60分後に、円筒型プラスチックチューブをシャーレから引き上げ、これを斜めに傾けて底部に付着した水を一箇所に集めて水滴として垂らすことで余分な水を除去した後、測定試料及び分銅の入った円筒型プラスチックチューブ全体の重量(M2)を計量し、次式から荷重下吸収量を求めた。なお、使用した生理食塩水及び測定雰囲気の温度は25℃±2℃であった。
荷重下吸収量(g/g)={(M2)-(M1)}/0.16
<Method for measuring absorption under load>
In a cylindrical plastic tube (inner diameter: 25 mm, height: 34 mm) with a mesh opening of 63 μm (JIS Z8801-1: 2006) attached to the bottom, 250 to 500 μm using a 30 mesh sieve and a 60 mesh sieve. Weigh 0.16 g of the measurement sample sieved to the range, vertical the cylindrical plastic tube, arrange the measurement sample on the nylon mesh so that the thickness is almost uniform, and put a weight (weight: 306.2 g, outer diameter: 24.5 mm,) was placed. After measuring the weight (M1) of the entire cylindrical plastic tube, a cylindrical plastic tube containing a measurement sample and a weight in a petri dish (diameter: 12 cm) containing 60 ml of physiological saline (salt concentration 0.9%) The tube was placed vertically, immersed with the nylon mesh side down, and allowed to stand for 60 minutes. After 60 minutes, the cylindrical plastic tube was pulled up from the petri dish, tilted to collect the water adhering to the bottom in one place, and dripped down to remove excess water. The weight (M2) of the entire cylindrical plastic tube was weighed, and the absorption under load was obtained from the following formula. The physiological saline used and the temperature of the measurement atmosphere were 25°C ± 2°C.
Absorption under load (g/g) = {(M2) - (M1)}/0.16
<通液性の測定方法>
 図1及び図2で示される器具を用いて以下の操作により測定した。
 測定試料0.32gを150ml生理食塩水1(食塩濃度0.9%)に30分間浸漬して膨潤ゲル粒子2を調製した。そして、垂直に立てた円筒3{直径(内径)25.4mm、長さ40cm、底部から60mlの位置及び40mlの位置にそれぞれ目盛り線4及び目盛り線5が設けてある。}の底部に、金網6(目開き106μm、JIS Z8801-1:2006)と、開閉自在のコック7(通液部の内径5mm)とを有する濾過円筒管内に、コック7を閉鎖した状態で、調製した膨潤ゲル粒子2を生理食塩水と共に移した後、この膨潤ゲル粒子2の上に円形金網8(目開き150μm、直径25mm)が金網面に対して垂直に結合する加圧軸9(重さ22g、長さ47cm)を金網と膨潤ゲル粒子とが接触するように載せ、更に加圧軸9におもり10(88.5g)を載せ、1分間静置した。引き続き、コック7を開き、濾過円筒管内の液面が60ml目盛り線4から40ml目盛り線5になるのに要する時間(T1;秒)を計測し、次式よりゲル通液速度(ml/分)を求めて通液性を評価した。
 ゲル通液速度(ml/分)=20ml×60/(T1-T2)
 なお、使用する生理食塩水及び測定雰囲気の温度は25℃±2℃で行い、T2は測定試料の無い場合について上記と同様の操作により計測した時間である。
<Method for measuring liquid permeability>
It was measured by the following operation using the instrument shown in FIGS.
Swollen gel particles 2 were prepared by immersing 0.32 g of the measurement sample in 150 ml of physiological saline 1 (salt concentration: 0.9%) for 30 minutes. A vertical cylinder 3 (diameter (inner diameter) 25.4 mm, length 40 cm) has scale lines 4 and 5 at positions 60 ml and 40 ml from the bottom, respectively. } at the bottom of the filtration cylindrical tube having a wire mesh 6 (opening 106 μm, JIS Z8801-1: 2006) and a freely openable and closable cock 7 (inner diameter of the liquid passing part 5 mm), with the cock 7 closed, After transferring the prepared swollen gel particles 2 together with a physiological saline solution, a circular wire mesh 8 (opening 150 μm, diameter 25 mm) was placed on the swollen gel particles 2, and a pressurizing shaft 9 (heavy weight) was attached perpendicularly to the surface of the wire mesh. 22 g in length and 47 cm in length) was placed so that the wire mesh and the swollen gel particles were in contact with each other, and a weight 10 (88.5 g) was placed on the pressure shaft 9 and allowed to stand for 1 minute. Subsequently, open the cock 7, measure the time (T1; seconds) required for the liquid level in the filtration cylindrical tube to change from the 60 ml scale line 4 to the 40 ml scale line 5, and use the following formula to obtain the gel flow rate (ml / min). was obtained to evaluate the liquid permeability.
Gel permeation rate (ml / min) = 20ml × 60 / (T1-T2)
The physiological saline used and the temperature of the measurement atmosphere were set at 25° C.±2° C., and T2 is the time measured by the same operation as above without the measurement sample.
<残留溶媒の測定方法>
 前記吸水性樹脂組成物を5.0gとり、液体窒素にて十分に冷却し、冷凍粉砕機(日本分析工業(株)製、型番:JFL-300型)で粉砕した。このうち、粉砕した吸水性樹脂組成物2.000gを50mlスクリュー管に入れ、更に80%メタノール水溶液を20ml、攪拌子を入れたのち、蓋をした。密閉下で1時間半、400rpmで撹拌後に10分間静置した。次いで、スクリュー管の上澄み液5mlを回収し、メンブレンフィルター(サンプル前処理フィルター GLクロマトディスク 孔径:0.2μm、ジーエルサイエンス株式会社製)にてろ過し、ろ過液をガスクロマトグラフにてシリンジで注入し、測定を行った。この測定値を検量線と比較することで、吸水性樹脂組成物中の有機溶媒量を求めた。
[測定条件]
(1)装置:ガスクロマトグラフ Nexis GC-2030、島津製作所社製
(2)カラム:「ZB-WAX 30m×0.25mmφ×0.25μm」
(3)溶離液:メタノール/水=80/20(容量比)
(4)注入条件:キャリアガス:窒素、カラム流量:1.47ml/min1.、カラム温度80℃
(5)検量線:20mlメスフラスコに測定対象の有機溶媒0.600gを入れ、60%メタノール水溶液でメスアップし、3重量%溶液となるようにサンプルを作成した。
次いで、3%重量溶液を使用し、0.3重量%、0.2重量%、0.1重量%の濃度検量線用サンプルを作成した。
<Method for measuring residual solvent>
5.0 g of the water-absorbent resin composition was taken, sufficiently cooled with liquid nitrogen, and pulverized with a freezer pulverizer (manufactured by Japan Analytical Industry Co., Ltd., model number: JFL-300). 2.000 g of the pulverized water absorbent resin composition was put into a 50 ml screw tube, 20 ml of 80% aqueous methanol solution and a stirrer were put thereinto, and then the tube was covered. After stirring at 400 rpm for 1.5 hours under airtight conditions, the mixture was allowed to stand for 10 minutes. Next, 5 ml of the supernatant of the screw tube was recovered, filtered through a membrane filter (sample pretreatment filter, GL chromatodisc, pore size: 0.2 μm, manufactured by GL Sciences Inc.), and the filtrate was injected into the gas chromatograph with a syringe. , was measured. By comparing this measured value with the calibration curve, the amount of organic solvent in the water absorbent resin composition was determined.
[Measurement condition]
(1) Apparatus: Gas Chromatograph Nexis GC-2030, manufactured by Shimadzu Corporation (2) Column: "ZB-WAX 30 m × 0.25 mmφ × 0.25 µm"
(3) Eluent: methanol/water = 80/20 (volume ratio)
(4) Injection conditions: carrier gas: nitrogen, column flow rate: 1.47 ml/min, column temperature: 80°C
(5) Calibration curve: 0.600 g of an organic solvent to be measured was placed in a 20 ml volumetric flask, and diluted with a 60% methanol aqueous solution to prepare a sample to give a 3% by weight solution.
Then, using the 3% weight solution, 0.3%, 0.2% and 0.1% by weight concentration calibration curves were prepared.
<放射性炭素年代測定法(14C/C)>
 試料中における炭素14の濃度を測定し、大気中の炭素14の含有割合(107pMC(percent modern carbon))を指標として逆算することで、試料中に含まれる炭素のうちの炭素14の割合を求めた。試料(吸水性樹脂)は、構成する炭素をCO化、或いは得られたCOを更にグラファイト(C)としたのち、加速機質量分光計(AMS)にかけて、標準物質(例えば、米国NISTシュウ酸)に対する炭素14の含有量を比較測定することにより求め、下記判定基準で評価した。
〔判定基準〕
〇:14C/Cが1.2×10-12~1.0×10-16
×:14C/Cが1.0×10-16未満
<Radiocarbon dating method ( 14 C/C)>
By measuring the concentration of carbon-14 in the sample and calculating backward using the content of carbon-14 in the atmosphere (107 pMC (percent modern carbon)) as an index, the ratio of carbon-14 in the carbon contained in the sample is obtained. rice field. The sample (water-absorbent resin) is converted to CO 2 from the constituent carbon, or the obtained CO 2 is further converted to graphite (C), and then subjected to an accelerator mass spectrometer (AMS) and subjected to a standard substance (for example, US NIST Shu The content of carbon-14 relative to the acid) was determined by comparative measurement, and evaluated according to the following criteria.
〔criterion〕
○: 14 C/C is 1.2×10 -12 to 1.0×10 -16
×: 14 C/C is less than 1.0×10 −16
<実施例1>
 アクリル酸(a1-1)(三菱化学製)279部、メチレンコハク酸(扶桑化学工業製)31部、内部架橋剤(b-1)N,N’-{(2-アクリルアミド-2-[(3-アクリルアミドプロポキシ)メチル]プロパン-1,3-ジイル)ビス(プロパン-1,3-ジイル)}ジアクリルアミド(和光純薬製、製品名FOM-03006)0.3部及び脱イオン水680部を攪拌・混合しながら3℃に保った。この混合物中に窒素を流入して溶存酸素量を1ppm以下とした後、2%の2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]水溶液4.6部、1%過酸化水素水溶液1.2部、2%アスコルビン酸水溶液2.3部及び0.03%硫酸鉄7水和物水溶液1.6部を添加・混合して重合を開始させた。混合物の温度が80℃に達した後、80±2℃で約12時間重合することにより含水ゲルを得た。
<Example 1>
Acrylic acid (a1-1) (manufactured by Mitsubishi Chemical) 279 parts, methylene succinic acid (manufactured by Fuso Chemical Industry) 31 parts, internal cross-linking agent (b-1) N, N'-{(2-acrylamide-2-[( 3-acrylamidopropoxy)methyl]propane-1,3-diyl)bis(propane-1,3-diyl)}diacrylamide (manufactured by Wako Pure Chemical Industries, product name FOM-03006) 0.3 parts and 680 parts of deionized water was kept at 3°C while stirring and mixing. After flowing nitrogen into this mixture to make the dissolved oxygen content 1 ppm or less, 4.6 parts of a 2% 2,2'-azobis[2-methyl-N-(2-hydroxyethyl)propionamide] aqueous solution, 1.2 parts of 1% aqueous hydrogen peroxide solution, 2.3 parts of 2% aqueous ascorbic acid solution and 1.6 parts of 0.03% iron sulfate heptahydrate aqueous solution were added and mixed to initiate polymerization. After the temperature of the mixture reached 80° C., polymerization was carried out at 80±2° C. for about 12 hours to obtain a hydrous gel.
 次にこの含水ゲル500部をミンチ機(ROYAL社製12VR-400K)で細断しながら、48.5%水酸化ナトリウム水溶液129部を添加して混合・中和し、中和ゲル(中和度:72%)を得た。更に、中和した含水ゲルを通気型乾燥機{150℃、風速2m/秒}で50分間乾燥し、乾燥体を得た。乾燥体をジューサーミキサー(Oster社製OSTERIZER BLENDER)にて粉砕した後、ふるい分けして、目開き710~150μmの粒子径範囲に調整して、架橋重合体(A-1)を得た。 Next, while chopping 500 parts of this hydrous gel with a mincing machine (12VR-400K manufactured by ROYAL), 129 parts of a 48.5% sodium hydroxide aqueous solution is added and mixed and neutralized, resulting in a neutralized gel (neutralized degree: 72%). Further, the neutralized water-containing gel was dried for 50 minutes in a ventilated dryer {150° C., wind speed 2 m/sec} to obtain a dry product. The dried product was pulverized with a juicer mixer (Osterizer Blender manufactured by Oster), sieved, and adjusted to a particle size range of 710 to 150 μm in opening to obtain a crosslinked polymer (A-1).
 ついで、得られた架橋重合体(A-1)100部を高速攪拌(細川ミクロン製高速攪拌タービュライザー:回転数2000rpm)しながら、有機表面架橋剤(d)としてのエチレングリコールジグリシジルエーテル0.08部、プロピレングリコール0.8部、及び水1.5部を混合した混合液を添加し、均一混合した後、140℃で40分間加熱して、本発明の吸水性樹脂粒子(P-1)を得た。 Then, 100 parts of the obtained crosslinked polymer (A-1) was stirred at high speed (high-speed stirring turbulizer manufactured by Hosokawa Micron: number of rotations: 2000 rpm), and ethylene glycol diglycidyl ether as an organic surface cross-linking agent (d) was added to 0. 0.8 parts of propylene glycol, and 1.5 parts of water are added and mixed uniformly, followed by heating at 140° C. for 40 minutes to obtain the water absorbent resin particles of the present invention (P- 1) was obtained.
<実施例2>
 実施例1において、アクリル酸(a1-1)279部、メチレンコハク酸(扶桑化学工業製)31部をアクリル酸(a1-1)(三菱化学製)248部、メチレンコハク酸(扶桑化学工業製)62部に変更した以外、実施例1と同様にして本発明の吸水性樹脂粒子(P-2)を得た。
<Example 2>
In Example 1, 279 parts of acrylic acid (a1-1) and 31 parts of methylene succinic acid (manufactured by Fuso Chemical Industry) were replaced with 248 parts of acrylic acid (a1-1) (manufactured by Mitsubishi Chemical) and methylene succinic acid (manufactured by Fuso Chemical Industry ) to obtain water-absorbing resin particles (P-2) of the present invention in the same manner as in Example 1, except that the content was changed to 62 parts.
<実施例3>
 実施例1において、アクリル酸(a1-1)279部、メチレンコハク酸31部をアクリル酸(a1-1)124部、メチレンコハク酸186部に、48.5%水酸化ナトリウム水溶液129部を133部に変更した以外、実施例1と同様にして本発明の吸水性樹脂粒子(P-3)を得た。
<Example 3>
In Example 1, 279 parts of acrylic acid (a1-1) and 31 parts of methylenesuccinic acid were added to 124 parts of acrylic acid (a1-1) and 186 parts of methylenesuccinic acid, and 129 parts of a 48.5% aqueous sodium hydroxide solution was added to 133 parts. Water-absorbent resin particles (P-3) of the present invention were obtained in the same manner as in Example 1, except that the content was changed.
<実施例4>
 実施例1において、アクリル酸(a1-1)279部、メチレンコハク酸31部をアクリル酸(a1-1)31部、メチレンコハク酸279部に変更し、混合物の温度が80℃になるように加熱処理し、48.5%水酸化ナトリウム水溶液129部を140部に変更した以外は、実施例1と同様にして本発明の吸水性樹脂粒子(P-4)を得た。
<Example 4>
In Example 1, 279 parts of acrylic acid (a1-1) and 31 parts of methylenesuccinic acid were changed to 31 parts of acrylic acid (a1-1) and 279 parts of methylenesuccinic acid, and the temperature of the mixture was adjusted to 80 ° C. Water-absorbing resin particles (P-4) of the present invention were obtained in the same manner as in Example 1 except that heat treatment was performed and 129 parts of the 48.5% aqueous sodium hydroxide solution was changed to 140 parts.
<実施例5>
 実施例1において、内部架橋剤(b-1)N,N’-{(2-アクリルアミド-2-[(3-アクリルアミドプロポキシ)メチル]プロパン-1,3-ジイル)ビス(プロパン-1,3-ジイル)}ジアクリルアミド(和光純薬製、製品名FOM-03006)0.3部を内部架橋剤(b-1)N,N’,N’’-トリアクリロイルジエチレントリアミン(和光純薬製、製品名FOM-03007)0.3部に変更した以外同様にして本発明の吸水性樹脂粒子(P-5)を得た。
<Example 5>
In Example 1, the internal cross-linking agent (b-1) N,N'-{(2-acrylamido-2-[(3-acrylamidopropoxy)methyl]propane-1,3-diyl)bis(propane-1,3 - diyl)} diacrylamide (manufactured by Wako Pure Chemical Industries, product name: FOM-03006) 0.3 parts of internal cross-linking agent (b-1) N,N',N''-triacryloyldiethylenetriamine (manufactured by Wako Pure Chemical Industries, product name) Water-absorbent resin particles (P-5) of the present invention were obtained in the same manner except that the name FOM-03007) was changed to 0.3 parts.
<実施例6>
 実施例1において内部架橋剤(b-1)N,N’-{(2-アクリルアミド-2-[(3-アクリルアミドプロポキシ)メチル]プロパン-1,3-ジイル)ビス(プロパン-1,3-ジイル)}ジアクリルアミド(和光純薬製、製品名FOM-03006)0.3部を内部架橋剤(b-1)N,N’-ジアクリロイル-4,7,10-トリオキサ-1,13-トリデカンジアミン(和光純薬製、製品名FOM-03008)0.3部に変更した以外同様にして本発明の吸水性樹脂粒子(P-6)を得た。
<Example 6>
In Example 1, the internal cross-linking agent (b-1) N,N'-{(2-acrylamido-2-[(3-acrylamidopropoxy)methyl]propane-1,3-diyl)bis(propane-1,3- Diyl)} diacrylamide (manufactured by Wako Pure Chemical Industries, Ltd., product name: FOM-03006) is added to 0.3 parts of an internal cross-linking agent (b-1) N,N'-diacryloyl-4,7,10-trioxa-1,13- Water-absorbent resin particles (P-6) of the present invention were obtained in the same manner except that tridecanediamine (manufactured by Wako Pure Chemical Industries, Ltd., product name: FOM-03008) was changed to 0.3 parts.
<実施例7>
 実施例1において内部架橋剤(b-1)N,N’-{(2-アクリルアミド-2-[(3-アクリルアミドプロポキシ)メチル]プロパン-1,3-ジイル)ビス(プロパン-1,3-ジイル)}ジアクリルアミド(和光純薬製、製品名FOM-03006)0.3部を内部架橋剤(b-2)N,N’,N’’,N’’’-テトラアクリロイルエチレンテトラミン(和光純薬製、製品名FOM-03009)0.3部に変更した以外同様にして本発明の吸水性樹脂粒子(P-7)を得た。
<Example 7>
In Example 1, the internal cross-linking agent (b-1) N,N'-{(2-acrylamido-2-[(3-acrylamidopropoxy)methyl]propane-1,3-diyl)bis(propane-1,3- diyl)} diacrylamide (manufactured by Wako Pure Chemical Industries, product name: FOM-03006) 0.3 parts of internal cross-linking agent (b-2) N,N',N'',N'''-tetraacryloylethylenetetramine (sum Kojunyaku Co., Ltd., product name FOM-03009) was changed to 0.3 parts to obtain water-absorbing resin particles (P-7) of the present invention.
<実施例8>
 実施例1において内部架橋剤(b-1)N,N’-{(2-アクリルアミド-2-[(3-アクリルアミドプロポキシ)メチル]プロパン-1,3-ジイル)ビス(プロパン-1,3-ジイル)}ジアクリルアミド(和光純薬製、製品名FOM-03006)0.3部を内部架橋剤(b-2)トリアリルペンタエリスリトール(TCI製)0.7部に変更した以外同様にして本発明の吸水性樹脂粒子(P-8)を得た。
<Example 8>
In Example 1, the internal cross-linking agent (b-1) N,N'-{(2-acrylamido-2-[(3-acrylamidopropoxy)methyl]propane-1,3-diyl)bis(propane-1,3- diyl)} diacrylamide (manufactured by Wako Pure Chemical Industries, product name: FOM-03006) was changed to 0.7 parts of the internal cross-linking agent (b-2) triallylpentaerythritol (manufactured by TCI) in the same manner. Inventive water absorbent resin particles (P-8) were obtained.
<製造例1>
 特開2018-52955にある段落0041~0043において、石化エチレンオキシドを植物由来のエチレンオキシドに変更した以外は、同様の操作を行い、植物由来のアクリル酸を得た。植物由来のエチレンオキシドは、例えば、発酵等により得たエタノールを酵素によってエチレンへと変換後に酸化することで得ることができる。
<Production Example 1>
In paragraphs 0041 to 0043 of JP-A-2018-52955, plant-derived acrylic acid was obtained by performing the same operation except that petrified ethylene oxide was changed to plant-derived ethylene oxide. Plant-derived ethylene oxide can be obtained, for example, by converting ethanol obtained by fermentation or the like into ethylene with an enzyme and then oxidizing the ethanol.
<実施例9>
 実施例1において、アクリル酸(a1-1)(三菱化学製)310部を、製造例1のアクリル酸(a1-2)に変更した以外同様にして本発明の吸水性樹脂粒子(P-9)を得た。
<Example 9>
In Example 1, 310 parts of acrylic acid (a1-1) (Mitsubishi Chemical) was changed to acrylic acid (a1-2) of Production Example 1. ).
<実施例10>
 実施例1において、内部架橋剤(b-1)N,N’-{(2-アクリルアミド-2-[(3-アクリルアミドプロポキシ)メチル]プロパン-1,3-ジイル)ビス(プロパン-1,3-ジイル)}ジアクリルアミド(和光純薬製、製品名FOM-03006)0.3部をポリエチレングリコールジアクリレート0.74部(東京化成工業社製)に変更した以外同様にして本発明の吸水性樹脂粒子(P-10)を得た。
<Example 10>
In Example 1, the internal cross-linking agent (b-1) N,N'-{(2-acrylamido-2-[(3-acrylamidopropoxy)methyl]propane-1,3-diyl)bis(propane-1,3 -diyl)} diacrylamide (manufactured by Wako Pure Chemical Industries, Ltd., product name: FOM-03006) was changed to 0.74 parts of polyethylene glycol diacrylate (manufactured by Tokyo Chemical Industry Co., Ltd.) in the same manner as the water absorbent of the present invention. Resin particles (P-10) were obtained.
<実施例11>
 アクリル酸(a1-1)(三菱化学製)279部、メチレンコハク酸(扶桑化学工業製)31部、内部架橋剤(b-1)N,N’-{(2-アクリルアミド-2-[(3-アクリルアミドプロポキシ)メチル]プロパン-1,3-ジイル)ビス(プロパン-1,3-ジイル)}ジアクリルアミド(和光純薬製、製品名FOM-03006)0.3部及び脱イオン水680部を攪拌・混合しながら3℃に保った。この混合物中に窒素を流入して溶存酸素量を1ppm以下とした後、2%の2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]水溶液4.6部、1%過酸化水素水溶液1.2部、2%アスコルビン酸水溶液2.3部及び0.03%硫酸鉄7水和物水溶液1.6部を添加・混合して重合を開始させた。混合物の温度が80℃に達した後、80±2℃で約12時間重合することにより含水ゲルを得た。
<Example 11>
Acrylic acid (a1-1) (manufactured by Mitsubishi Chemical) 279 parts, methylene succinic acid (manufactured by Fuso Chemical Industry) 31 parts, internal cross-linking agent (b-1) N, N'-{(2-acrylamide-2-[( 3-acrylamidopropoxy)methyl]propane-1,3-diyl)bis(propane-1,3-diyl)}diacrylamide (manufactured by Wako Pure Chemical Industries, product name FOM-03006) 0.3 parts and 680 parts of deionized water was kept at 3°C while stirring and mixing. After flowing nitrogen into this mixture to make the dissolved oxygen content 1 ppm or less, 4.6 parts of a 2% 2,2'-azobis[2-methyl-N-(2-hydroxyethyl)propionamide] aqueous solution, 1.2 parts of 1% aqueous hydrogen peroxide solution, 2.3 parts of 2% aqueous ascorbic acid solution and 1.6 parts of 0.03% iron sulfate heptahydrate aqueous solution were added and mixed to initiate polymerization. After the temperature of the mixture reached 80° C., polymerization was carried out at 80±2° C. for about 12 hours to obtain a hydrous gel.
 次にこの含水ゲルをミンチ機(ROYAL社製12VR-400K)で細断しながら、48.5%水酸化ナトリウム水溶液258部を添加し、更にトウモロコシ由来でんぷん(富士フィルム和光純薬株式会社製)31部を混合・中和し、中和ゲル(中和度:72%)を得た。更に、中和した含水ゲルを通気型乾燥機{150℃、風速2m/秒}で50分間乾燥し、乾燥体を得た。乾燥体をジューサーミキサー(Oster社製OSTERIZER BLENDER)にて粉砕した後、ふるい分けして、目開き710~150μmの粒子径範囲に調整して、架橋重合体(A-2)を得た。 Next, 258 parts of a 48.5% sodium hydroxide aqueous solution is added while shredding this hydrous gel with a mincing machine (12VR-400K manufactured by ROYAL), and further corn-derived starch (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.). 31 parts were mixed and neutralized to obtain a neutralized gel (degree of neutralization: 72%). Further, the neutralized water-containing gel was dried for 50 minutes in a ventilated dryer {150° C., wind speed 2 m/sec} to obtain a dry product. The dried product was pulverized with a juicer mixer (Osterizer Blender manufactured by Oster), sieved, and adjusted to a particle size range of 710 to 150 μm in opening to obtain a crosslinked polymer (A-2).
 ついで、得られた架橋重合体(A-2)100部を高速攪拌(細川ミクロン製高速攪拌タービュライザー:回転数2000rpm)しながら、有機表面架橋剤(d)としてのエチレングリコールジグリシジルエーテル0.08部、プロピレングリコール0.8部、及び水0.1部を混合した混合液を添加し、均一混合した後、140℃で40分間加熱して、本発明の吸水性樹脂粒子(P-11)を得た。 Then, 100 parts of the obtained crosslinked polymer (A-2) was stirred at high speed (high-speed stirring turbulizer manufactured by Hosokawa Micron: 2000 rpm), and ethylene glycol diglycidyl ether as the organic surface cross-linking agent (d) was added to 0. 0.8 parts of propylene glycol, and 0.1 parts of water are added and mixed uniformly, followed by heating at 140° C. for 40 minutes to obtain the water absorbent resin particles of the present invention (P- 11) was obtained.
<実施例12>
 実施例1において、チレングリコールジグリシジルエーテル0.08部、プロピレングリコール0.8部、及び水1.5部をエチレングリコールジグリシジルエーテル0.15部、プロピレングリコール1.5部、及び水1.5部に変更した以外同様にして本発明の吸水性樹脂粒子(P-12)を得た。
<Example 12>
In Example 1, 0.08 parts ethylene glycol diglycidyl ether, 0.8 parts propylene glycol, and 1.5 parts water were mixed with 0.15 parts ethylene glycol diglycidyl ether, 1.5 parts propylene glycol, and 1.5 parts water. Water absorbent resin particles (P-12) of the present invention were obtained in the same manner except that the amount was changed to 5 parts.
<実施例13>
 実施例1において、プロピレングリコール0.1部を使用しなかった以外同様にして本発明の吸水性樹脂粒子(P-13)を得た。
<Example 13>
Water absorbent resin particles (P-13) of the present invention were obtained in the same manner as in Example 1, except that 0.1 part of propylene glycol was not used.
<比較例1>
 アクリル酸(a1-1)(三菱化学製)310部、架内部架橋剤(b-2)トリアリルペンタエリスリトール(TCI製)1.0部及び脱イオン水679部を攪拌・混合しながら3℃に保った。この混合物中に窒素を流入して溶存酸素量を1ppm以下とした後、2%の2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]水溶液4.6部、1%過酸化水素水溶液1.2部、2%アスコルビン酸水溶液2.3部及び0.03%硫酸鉄7水和物水溶液1.6部を添加・混合して重合を開始させた。混合物の温度が90℃に達した後、90±2℃で約12時間重合することにより含水ゲルを得た。
<Comparative Example 1>
310 parts of acrylic acid (a1-1) (manufactured by Mitsubishi Chemical), 1.0 part of triallyl pentaerythritol (manufactured by TCI) as a cross-linking agent (b-2), and 679 parts of deionized water are stirred and mixed at 3°C. kept to After flowing nitrogen into this mixture to make the dissolved oxygen content 1 ppm or less, 4.6 parts of a 2% 2,2'-azobis[2-methyl-N-(2-hydroxyethyl)propionamide] aqueous solution, 1.2 parts of 1% aqueous hydrogen peroxide solution, 2.3 parts of 2% aqueous ascorbic acid solution and 1.6 parts of 0.03% iron sulfate heptahydrate aqueous solution were added and mixed to initiate polymerization. After the temperature of the mixture reached 90° C., polymerization was carried out at 90±2° C. for about 12 hours to obtain a hydrous gel.
 次にこの含水ゲルをミンチ機(ROYAL社製12VR-400K)で細断しながら、48.5%水酸化ナトリウム水溶液261部を添加して混合・中和し、中和ゲル(中和度:72%)を得た。更に、中和した含水ゲルを通気型乾燥機{150℃、風速2m/秒}で50分間乾燥し、乾燥体を得た。乾燥体をジューサーミキサー(Oster社製OSTERIZER BLENDER)にて粉砕した後、ふるい分けして、目開き710~150μmの粒子径範囲に調整して、架橋重合体(A-3)を得た。 Next, while shredding this hydrous gel with a mincing machine (12VR-400K manufactured by ROYAL), 261 parts of a 48.5% aqueous sodium hydroxide solution is added and mixed and neutralized, resulting in a neutralized gel (degree of neutralization: 72%) was obtained. Further, the neutralized water-containing gel was dried for 50 minutes in a ventilated dryer {150° C., wind speed 2 m/sec} to obtain a dry product. The dried product was pulverized with a juicer mixer (Osterizer Blender manufactured by Oster), sieved, and adjusted to a particle size range of 710 to 150 μm in opening to obtain a crosslinked polymer (A-3).
 ついで、得られた架橋重合体(A-3)100部を高速攪拌(細川ミクロン製高速攪拌タービュライザー:回転数2000rpm)しながら、有機表面架橋剤(d)としてのエチレングリコールジグリシジルエーテル0.08部、プロピレングリコール0.8部、及び水1.5部を混合した混合液を添加し、均一混合した後、140℃で40分間加熱して、比較用の吸水性樹脂粒子(R-1)を得た。 Then, 100 parts of the obtained crosslinked polymer (A-3) was stirred at high speed (high-speed stirring turbulizer manufactured by Hosokawa Micron: 2000 rpm), and ethylene glycol diglycidyl ether as the organic surface cross-linking agent (d) was added to 0. .08 parts, 0.8 parts of propylene glycol, and 1.5 parts of water were added to a mixed solution, mixed uniformly, and then heated at 140° C. for 40 minutes to obtain water absorbent resin particles for comparison (R- 1) was obtained.
<比較例2>
 窒素雰囲気下、2口1000mlフラスコにメチレンコハク酸90.0部、48.5%水酸化ナトリウム水溶液247部、アクリル酸120部、脱イオン水572部を攪拌・混合し、更に、N、N-メチレンビスアクリルアミド1.5部、エチレングリコール2.1部、4、4‘-アゾビス(4-シアノペンタン酸)4部を入れ、シリコン湯浴中で80℃、5時間加熱した。次いで、145℃まで昇温し、2時間後に含水ゲルをこのフラスコから取り出した。水で洗浄後に、SUS製バットに移し、85℃に設定した順風乾燥機で48時間乾燥させた。次いで、この乾燥体をジューサーミキサー(Oster社製OSTERIZER BLENDER)にて粉砕した後、ふるい分けして、目開き710~150μmの粒子径範囲に調整して、比較用の吸水性樹脂粒子(R-2)を得た。
<Comparative Example 2>
Under a nitrogen atmosphere, 90.0 parts of methylene succinic acid, 247 parts of 48.5% aqueous sodium hydroxide solution, 120 parts of acrylic acid, and 572 parts of deionized water are stirred and mixed in a two-necked 1000 ml flask, and further N, N- 1.5 parts of methylenebisacrylamide, 2.1 parts of ethylene glycol and 4 parts of 4,4'-azobis(4-cyanopentanoic acid) were added and heated in a silicon water bath at 80°C for 5 hours. Then, the temperature was raised to 145° C., and the hydrous gel was taken out from the flask after 2 hours. After washing with water, it was transferred to a SUS vat and dried for 48 hours in a smooth wind dryer set at 85°C. Next, after pulverizing this dried body with a juicer mixer (Osterizer Blender manufactured by Oster), it is sieved and adjusted to a particle size range of 710 to 150 μm in opening, and water absorbent resin particles for comparison (R-2 ).
 評価結果を表1に示す。 Table 1 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000016
 
Figure JPOXMLDOC01-appb-T000016
 

Claims (12)

  1.  水溶性不飽和モノカルボン酸(a1)及びその塩、並びに加水分解により前記水溶性不飽和モノカルボン酸(a1)となるモノマー(a2)からなる群より選ばれる1種以上のモノマー(A1)と、水溶性不飽和ジカルボン酸(a3)及びその塩、並びに加水分解により前記水溶性不飽和ジカルボン酸(a3)となるモノマー(a4)からなる群より選ばれる1種以上のモノマー(A2)と、架橋剤(b)と、を構成単位として有する架橋重合体(A)を含有し、前記架橋重合体(A)の表面が表面架橋剤(d)により架橋された構造を有する吸水性樹脂組成物であって、
     前記モノマー(A1)と前記モノマー(A2)の少なくとも何れかが、炭素の放射性炭素年代測定法によって測定される14C/Cが1.2×10-12~1.0×10―16であり、
     0.9重量%生理食塩水の保水量(g/g)が10~60、かつ0.9重量%生理食塩水の荷重下吸収量(g/g)が12~25である、吸水性樹脂組成物。
    one or more monomers (A1) selected from the group consisting of water-soluble unsaturated monocarboxylic acids (a1) and salts thereof, and monomers (a2) that become the water-soluble unsaturated monocarboxylic acids (a1) by hydrolysis; , one or more monomers (A2) selected from the group consisting of a water-soluble unsaturated dicarboxylic acid (a3) and a salt thereof, and a monomer (a4) that becomes the water-soluble unsaturated dicarboxylic acid (a3) by hydrolysis; A water-absorbing resin composition containing a cross-linked polymer (A) having a cross-linking agent (b) as a structural unit, and having a structure in which the surface of the cross-linked polymer (A) is cross-linked by the surface cross-linking agent (d). and
    At least one of the monomer (A1) and the monomer (A2) has a 14 C/C measured by a carbon radiocarbon dating method of 1.2×10 −12 to 1.0×10 −16 . ,
    A water-absorbing resin having a water retention capacity (g/g) of 0.9 wt% saline of 10 to 60 and an absorption capacity (g/g) of 0.9 wt% saline under load of 12 to 25. Composition.
  2.  前記架橋重合体(A)中の前記モノマー(A1)の物質量と前記モノマー(A2)の物質量の比(前記モノマー(A1)の物質量/前記モノマー(A2)の物質量)が、99/1~10/90である、請求項1に記載の吸水性樹脂組成物。 The ratio of the substance amount of the monomer (A1) to the substance amount of the monomer (A2) in the crosslinked polymer (A) (substance amount of the monomer (A1)/substance amount of the monomer (A2)) is 99. /1 to 10/90, the water absorbent resin composition according to claim 1.
  3.  前記水溶性不飽和ジカルボン酸(a3)が、マレイン酸、フマル酸、メチレンコハク酸及びシトラコン酸からなる群より選ばれる1種以上である、請求項1又は2に記載の吸水性樹脂組成物。 The water absorbent resin composition according to claim 1 or 2, wherein the water-soluble unsaturated dicarboxylic acid (a3) is one or more selected from the group consisting of maleic acid, fumaric acid, methylenesuccinic acid and citraconic acid.
  4.  前記架橋剤(b)がエチレン性不飽和基を2個以上有する多価(メタ)アリル化合物及びアクリルアミド化合物からなる群より選ばれる1種以上である、請求項1~3の何れか1項に記載の吸水性樹脂組成物。 The cross-linking agent (b) is one or more selected from the group consisting of polyvalent (meth)allyl compounds having two or more ethylenically unsaturated groups and acrylamide compounds, according to any one of claims 1 to 3. The water absorbent resin composition described.
  5.  前記吸水性樹脂組成物中の、有機溶媒の含有量が、0.1~3.0重量%である、請求項1~4の何れか1項に記載の吸水性樹脂組成物。 The water absorbent resin composition according to any one of claims 1 to 4, wherein the content of the organic solvent in the water absorbent resin composition is 0.1 to 3.0% by weight.
  6.  前記吸水性樹脂組成物が、粒子状である、請求項1~5の何れか1項に記載の吸水性樹脂組成物。 The water absorbent resin composition according to any one of claims 1 to 5, wherein the water absorbent resin composition is particulate.
  7.  請求項1~6の何れか1項に記載の吸水性樹脂組成物を含む吸収体。 An absorbent body containing the water absorbent resin composition according to any one of claims 1 to 6.
  8.  請求項7に記載の吸収体を含む吸収性物品。 An absorbent article comprising the absorbent body according to claim 7.
  9.  請求項1~6の何れか1項に記載の吸水性樹脂組成物の製造方法であって、
     前記架橋重合体(A)を含む含水ゲルを得る重合工程と、
     前記含水ゲルを乾燥する乾燥工程と、
     前記乾燥工程後の前記架橋重合体(A)の表面を前記表面架橋剤(d)によって架橋する表面架橋工程と、を有する、吸水性樹脂組成物の製造方法。
    A method for producing a water absorbent resin composition according to any one of claims 1 to 6,
    A polymerization step of obtaining a hydrous gel containing the crosslinked polymer (A);
    A drying step of drying the hydrous gel;
    and a surface cross-linking step of cross-linking the surface of the cross-linked polymer (A) after the drying step with the surface cross-linking agent (d).
  10.  前記重合工程で得られた含水ゲルを細断して含水ゲル粒子を得るゲル細断工程を有する、請求項9に記載の吸水性樹脂組成物の製造方法。 The method for producing a water absorbent resin composition according to claim 9, comprising a gel shredding step of shredding the hydrous gel obtained in the polymerization step to obtain hydrous gel particles.
  11.  前記ゲル細断工程で、前記含水ゲルに炭素の放射性炭素年代測定法によって測定される14C/Cが1.2×10-12~1.0×10―16である植物由来原料を添加する、請求項10に記載の吸水性樹脂組成物の製造方法。 In the gel shredding step, a plant-derived raw material having a 14 C/C measured by carbon radiocarbon dating of 1.2×10 −12 to 1.0×10 −16 is added to the hydrous gel. 11. The method for producing a water absorbent resin composition according to claim 10.
  12.  前記乾燥工程で、前記含水ゲルに炭素の放射性炭素年代測定法によって測定される14C/Cが1.2×10-12~1.0×10―16である植物由来原料を添加する、請求項10又は11に記載の吸水性樹脂組成物の製造方法。 In the drying step, a plant-derived raw material having a 14 C/C measured by a carbon radiocarbon dating method of 1.2×10 −12 to 1.0×10 −16 is added to the hydrous gel. Item 10. A method for producing a water absorbent resin composition according to Item 10 or 11.
PCT/JP2022/011302 2021-06-04 2022-03-14 Water-absorbent resin composition, absorber and absorbent article employing same, and method for manufacturing water-absorbent resin composition WO2022254874A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023525422A JPWO2022254874A1 (en) 2021-06-04 2022-03-14

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-094679 2021-06-04
JP2021094679 2021-06-04

Publications (1)

Publication Number Publication Date
WO2022254874A1 true WO2022254874A1 (en) 2022-12-08

Family

ID=84324272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011302 WO2022254874A1 (en) 2021-06-04 2022-03-14 Water-absorbent resin composition, absorber and absorbent article employing same, and method for manufacturing water-absorbent resin composition

Country Status (2)

Country Link
JP (1) JPWO2022254874A1 (en)
WO (1) WO2022254874A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023188633A1 (en) * 2022-03-30 2023-10-05 Sdpグローバル株式会社 Water-absorbable resin composition, absorber and absorbent article each using same, and method for producing water-absorbable resin composition

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006068731A (en) * 2004-08-06 2006-03-16 Nippon Shokubai Co Ltd Particulate water absorbent mainly composed of water absorbing resin, manufacturing method therefor, and absorptive article
JP2011231188A (en) * 2010-04-26 2011-11-17 Nippon Shokubai Co Ltd Polyacrylic acid (salt) based water-absorbing resin and its manufacturing method
CN103374094A (en) * 2012-04-16 2013-10-30 连宗旭 Amine oxide antibacterial super absorbent polymer (SAP)
CN104479074A (en) * 2014-11-13 2015-04-01 苏州威尔德工贸有限公司 High water-absorbing resin for diaper and preparation method thereof
JP2018083866A (en) * 2016-11-21 2018-05-31 株式会社日本触媒 Method for producing water-absorbing resin by regenerable raw material
JP2018203997A (en) * 2017-05-30 2018-12-27 Sdpグローバル株式会社 Water-absorbing resin particles and manufacturing method therefor
JP2019141754A (en) * 2018-02-16 2019-08-29 Sdpグローバル株式会社 Water-absorbing resin particle, absorber and absorbing article using the same, and production method of water-absorbing resin particle
CN113817185A (en) * 2021-08-04 2021-12-21 广东维芊科技有限公司 Super absorbent resin with strong water locking performance and preparation method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006068731A (en) * 2004-08-06 2006-03-16 Nippon Shokubai Co Ltd Particulate water absorbent mainly composed of water absorbing resin, manufacturing method therefor, and absorptive article
JP2011231188A (en) * 2010-04-26 2011-11-17 Nippon Shokubai Co Ltd Polyacrylic acid (salt) based water-absorbing resin and its manufacturing method
CN103374094A (en) * 2012-04-16 2013-10-30 连宗旭 Amine oxide antibacterial super absorbent polymer (SAP)
CN104479074A (en) * 2014-11-13 2015-04-01 苏州威尔德工贸有限公司 High water-absorbing resin for diaper and preparation method thereof
JP2018083866A (en) * 2016-11-21 2018-05-31 株式会社日本触媒 Method for producing water-absorbing resin by regenerable raw material
JP2018203997A (en) * 2017-05-30 2018-12-27 Sdpグローバル株式会社 Water-absorbing resin particles and manufacturing method therefor
JP2019141754A (en) * 2018-02-16 2019-08-29 Sdpグローバル株式会社 Water-absorbing resin particle, absorber and absorbing article using the same, and production method of water-absorbing resin particle
CN113817185A (en) * 2021-08-04 2021-12-21 广东维芊科技有限公司 Super absorbent resin with strong water locking performance and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023188633A1 (en) * 2022-03-30 2023-10-05 Sdpグローバル株式会社 Water-absorbable resin composition, absorber and absorbent article each using same, and method for producing water-absorbable resin composition

Also Published As

Publication number Publication date
JPWO2022254874A1 (en) 2022-12-08

Similar Documents

Publication Publication Date Title
JP6722654B2 (en) Aqueous liquid absorbent resin particle production method, aqueous liquid absorbent resin particle, absorbent body and absorbent article
KR102556589B1 (en) Water-absorbent resin particles and manufacturing method thereof
MXPA04008606A (en) Polymer mixtures with improved odor control.
KR20170127496A (en) Method for producing aqueous liquid absorbent resin particles, and absorbent body and absorbent article
CA2873361A1 (en) Compounded surface treated carboxyalkylated starch polycrylate composites
WO2022254874A1 (en) Water-absorbent resin composition, absorber and absorbent article employing same, and method for manufacturing water-absorbent resin composition
JP7139540B1 (en) Method for producing water absorbent resin composition, water absorbent resin composition, absorbent body using the same, and absorbent article
JP6861619B2 (en) Manufacturing method of water-absorbent resin particles
US20210039068A1 (en) Superabsorbent polymer and methods of making and using the same
JP7128978B1 (en) Method for producing water absorbent resin composition, water absorbent resin composition, absorbent body using the same, and absorbent article
JP2023147717A (en) Method for producing water absorbent resin composition, water absorbent resin composition, absorber and absorbent article using the same
JP7130887B1 (en) Method for producing water absorbent resin composition, water absorbent resin composition, absorbent body using the same, and absorbent article
JP6808391B2 (en) Water-absorbent resin particles and their manufacturing method
JP7128979B1 (en) Water-absorbent resin composition, absorbent body and absorbent article using the same, and method for producing water-absorbent resin composition
JP7120739B2 (en) Absorbent resin composition particles and method for producing the same
JP2019094444A (en) Water-absorbable resin particle and production method thereof
WO2023188633A1 (en) Water-absorbable resin composition, absorber and absorbent article each using same, and method for producing water-absorbable resin composition
JP7291686B2 (en) Water-absorbing resin particles and method for producing the same
JP7108422B2 (en) Water-absorbing resin particles, absorbent body and absorbent article using the same, and method for producing water-absorbing resin particles
WO2022255329A1 (en) Water-absorbing resin composition, and absorbent object and absorbent article both obtained using same
JP2023012278A (en) Water-absorbing resin composition, and absorber and absorptive article using the same, and method for producing water-absorbing resin composition
JP7453918B2 (en) Water-absorbing resin particles and their manufacturing method
WO2023276925A1 (en) Water-absorbing resin composition, absorber and absorbent article obtained using same, and method for producing water-absorbing resin composition
JP2011032442A (en) Absorptive resin particles, absorptive material and absorptive article
JP2024027100A (en) water absorbent resin particles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815631

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023525422

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE