WO2022254679A1 - Rotor and method for manufacturing rotor - Google Patents

Rotor and method for manufacturing rotor Download PDF

Info

Publication number
WO2022254679A1
WO2022254679A1 PCT/JP2021/021301 JP2021021301W WO2022254679A1 WO 2022254679 A1 WO2022254679 A1 WO 2022254679A1 JP 2021021301 W JP2021021301 W JP 2021021301W WO 2022254679 A1 WO2022254679 A1 WO 2022254679A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
shaft
rotor core
core assembly
hole
Prior art date
Application number
PCT/JP2021/021301
Other languages
French (fr)
Japanese (ja)
Inventor
一輝 藤本
遼 並河
太一 徳久
竜児 内村
慎太郎 穴井
純 鶴羽
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/021301 priority Critical patent/WO2022254679A1/en
Priority to JP2023525300A priority patent/JP7418663B2/en
Publication of WO2022254679A1 publication Critical patent/WO2022254679A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets

Definitions

  • the present disclosure relates to a rotor containing magnets, and a method for manufacturing the rotor, which is used, for example, in a rotating electric machine.
  • IPM Interior Permanent Magnet
  • a rotor In order to suppress eddy current loss, for example, there is a rotor provided with a plurality of rotor cores in which a plurality of electromagnetic steel sheets are laminated.
  • a non-magnetic intermediate plate is provided between two rotor cores in which magnets are inserted, and non-magnetic end plates are provided at both ends of the two rotor cores sandwiching the intermediate plate.
  • Patent Document 1 By providing the non-magnetic end plate and intermediate plate, it is possible to prevent the magnet from jumping out of the insertion hole of the rotor core, and to divide the magnet to reduce the eddy current flowing between the rotor cores during motor operation.
  • the end plates and intermediate plates are fixed to the shaft, respectively, and the rotor core is fixed to the end plates and intermediate plates with screws and spring pins and held by the end plates and intermediate plates.
  • the rotor is manufactured by a process of arranging the rotor core on both sides of the intermediate plate, shrink-fitting the end plates to the shaft, and cooling. Therefore, in the rotor of Patent Document 1, when the rotor core is attached to the shaft, it is necessary to perform the process of shrink fitting and cooling two or more times, so there is a problem in productivity, and the second shrink fitting involves inserting a magnet. It is also difficult to suppress the deterioration of the characteristics of the magnet because it is performed in a state in which the magnet is held.
  • the present disclosure has been made to solve the problems described above, and in a rotor in which magnets are housed in a rotor core, it is possible to improve productivity and to suppress the deterioration of magnet characteristics more than before. It is an object of the present invention to provide a rotor and a method for manufacturing the rotor.
  • a rotor according to the present disclosure includes a shaft and two rotor cores arranged in the axial direction of the shaft, a rotor core assembly attached to the outer peripheral surface of the shaft, and magnets housed in each of the two rotor cores. and end plates disposed on both sides of the rotor core assembly in the axial direction, the two rotor cores each being provided with an insertion hole for the magnet, and the rotor core assembly comprising the two rotor cores.
  • the end plate is provided with a deflecting hole having a diameter smaller than the diameter of the projection portion of the first fastening component and larger than the diameter of the projection portion of the first fastening component, and the end plate is formed in the insertion hole formed in the rotor core.
  • the protrusion of the first fastening part is arranged in the dodge hole of the end plate, and the rotor core assembly is such that the two rotor cores are directly sintered to the shaft. It is attached to the shaft by being fitted.
  • two rotor cores arranged in the axial direction of a shaft and an intermediate plate disposed between the two rotor cores and made of a non-magnetic material are arranged in the intermediate plate. and a first step of obtaining a rotor core assembly by inserting first fastening parts into first holes provided in the two rotor cores and fastening them with the first fastening parts; and directly attaching the two rotor cores to the shaft.
  • a second step of attaching the rotor core assembly to the outer peripheral surface of the shaft by shrink fitting and a third step of accommodating magnets in each of the two rotor cores through insertion holes provided in the two rotor cores.
  • end plates are arranged on both sides of the rotor core assembly in the axial direction so as to block part or all of the insertion holes, and portions of the first fastening component protruding from the two rotor cores, and a fourth step of arranging a projection having a diameter larger than that of the first hole in step 4 in a deflecting hole having a diameter larger than that of the projection provided in the end plate.
  • the rotor core assembly has a first fastening part that fastens two rotor cores and an intermediate plate, and the two rotor cores are shrink-fitted directly onto the shaft without interposing the end plate and the intermediate plate.
  • the end plate is provided with a bypass hole having a diameter larger than the diameter of the protrusion of the first fastener, and the protrusion of the first fastener is disposed in the bypass hole of the end plate. be. Therefore, after shrink-fitting the intermediate plate and the two rotor cores in an integrated state, the magnets are inserted through the insertion holes of the respective rotor cores.
  • the end plate can be placed without interfering with the part. Therefore, since only one shrink-fitting step is required when attaching the rotor core assembly to the shaft, the productivity is high, and deterioration of the magnet characteristics due to heat can be suppressed more than before.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a rotor according to Embodiment 1;
  • FIG. FIG. 2 is a cross-sectional view of the rotor cut along the AA cross section passing through the central axis shown in FIG. 1;
  • 2 is a schematic view of the end plate of FIG. 1;
  • FIG. 3 is an enlarged view of a Q1 portion shown in FIG. 2;
  • FIG. 3 is an enlarged view of a Q2 portion shown in FIG. 2;
  • FIG. 3 is an enlarged view of a Q3 portion shown in FIG. 2;
  • 3 is an enlarged view of a Q4 portion shown in FIG. 2;
  • FIG. FIG. 2 is a cross-sectional view of the rotor taken along section BB through the insertion hole shown in FIG.
  • FIG. 2 is an explanatory diagram for explaining a first step of the manufacturing process of the rotor shown in FIG. 1;
  • FIG. 2 is an explanatory view explaining a second step of the manufacturing process of the rotor shown in FIG. 1;
  • FIG. 3 is an explanatory view explaining a third step of the manufacturing process of the rotor shown in FIG. 1;
  • FIG. 11 is an explanatory view explaining a fourth step of the manufacturing process of the rotor shown in FIG. 1;
  • FIG. 5 is a schematic diagram of an end plate of a rotor according to Embodiment 2;
  • FIG. 11 is a schematic diagram showing a schematic configuration of a rotor according to Embodiment 3;
  • FIG. 1 is a schematic diagram showing a schematic configuration of a rotor 100 according to Embodiment 1.
  • FIG. FIG. 2 is a cross-sectional view of the rotor 100 cut along the AA cross section passing through the central axis Ax shown in FIG.
  • the direction in which the central axis Ax of the rotor 100 extends is called the axial direction (direction of arrow X in FIG. 2)
  • the direction perpendicular to the central axis Ax is called the radial direction
  • the direction around the central axis Ax is called the circumferential direction.
  • the right side in the axial direction and the right side in the plane of FIG. 2 will be referred to as the right side, and the other side in the axial direction and the left side in the plane of FIG.
  • the rotor 100 includes a rotor section 20 having two axially arranged rotor cores 2a and 2b, and a shaft 1 extending along a central axis Ax and serving as a rotation axis of the rotor section 20. , two bearings 3 supporting the shaft 1 .
  • the rotor part 20 and the two bearings 3 are each attached to the shaft 1 .
  • the bearing 3 has a cylindrical shape with a central shaft hole 3a. As shown in FIG. 20 are spaced apart. In the example shown in FIG. 2 , one bearing 3 is fixed to the axial right end of the shaft 1 , and the other bearing 3 is fixed near the axial center of the shaft 1 .
  • the rotor 100 constitutes a part of a rotating electric machine such as a motor, and is rotatably installed around the central axis Ax via two bearings 3 in the housing of the rotating electric machine.
  • the rotor section 20 is a so-called IPM (Interior Permanent Magnet) rotor in which a permanent magnet is inserted.
  • the rotor section 20 has a cylindrical shape with a shaft hole 14a in the center into which the shaft 1 is inserted.
  • the rotor portion 20 includes a rotor core assembly 14 having a cylindrical shape attached to the outer peripheral surface of the shaft 1, and magnets 12 (described later) housed in the rotor cores 2a and 2b of the rotor core assembly 14. 8), and end plates 5a and 5b arranged on both sides of the rotor core assembly 14 in the axial direction (arrow X direction).
  • the rotor portion 20 also includes a fastening component (hereinafter referred to as a second fastening component 8) that fastens the rotor core assembly 14 and the two end plates 5a and 5b.
  • the left side of the rotor core assembly 14 and the right side of the end plate 5a are in contact, and the right side of the rotor core assembly 14 and the left side of the end plate 5b are in contact.
  • the end plate 5a, the rotor core assembly 14 and the end plate 5b are arranged in this order.
  • the end plate 5a and the end plate 5b may be simply referred to as the end plate 5 when there is no particular need to distinguish between the end plate 5a and the end plate 5b.
  • the rotor core assembly 14 includes two rotor cores 2a and 2b arranged in the axial direction (direction of arrow X), an intermediate plate 4 arranged between the two rotor cores 2a and 2b, have.
  • the rotor cores are arranged from left to right so that the left side surface of the intermediate plate 4 and the right side surface of the rotor core 2a are in contact, and the right side surface of the intermediate plate 4 is in contact with the left side surface of the rotor core 2b.
  • 2a, intermediate plate 4 and rotor core 2b may be simply referred to as rotor cores 2 when there is no particular need to distinguish between the rotor cores 2a and 2b.
  • the rotor core 2 is composed of a plurality of electromagnetic steel sheets laminated in the axial direction (direction of arrow X).
  • the rotor core 2 is formed with insertion holes 13a (see FIG. 1) in which magnets 12 (see FIG. 8 to be described later) are accommodated so as to penetrate in the axial direction (direction of arrow X).
  • the intermediate plate 4 is made of a non-magnetic plate-like member, and has, for example, a disc shape with a hole in the center for inserting the shaft 1 .
  • the intermediate plate 4 is provided so as to block at least a portion of the insertion hole 13a (see FIG. 1) provided in each rotor core 2a, 2b.
  • the magnitude of the eddy currents generated in the rotor cores 2a, 2b is proportional to the square of the plate thickness of the rotor cores 2a, 2b. Therefore, as described above, the rotor section 20 is configured such that the magnets 12 and the rotor core 2 are divided into a plurality of parts by the non-magnetic intermediate plate 4, thereby reducing the thickness of each rotor core 2 and reducing the eddy current. can be made smaller. Therefore, eddy current loss generated in the rotor portion 20 during operation of the rotating electric machine can be suppressed.
  • the rotor core assembly 14 also has a fastening component (hereinafter referred to as a first fastening component 7) for fastening the two rotor cores 2a, 2b and the intermediate plate 4 together.
  • the first fastening component 7 is composed of, for example, a threaded bolt 71 and a nut 72, and fixes the rotor core 2a, the intermediate plate 4, and the rotor core 2b by sandwiching them from both sides in the axial direction.
  • a rotor core assembly 14 having a cylindrical shape is fixed by shrink fitting to the shaft 1 inserted into the shaft hole 14a.
  • Shrink fitting is a type of fitting method between a shaft (e.g., shaft 1) and a hole (e.g., shaft hole 14a). At room temperature, a hole that is smaller than the shaft is heated and expanded to fit and firmly join. The method. When the shaft 1 and the rotor core assembly 14 are shrink-fitted and then cooled, the two become fixed and firmly fixed to each other and cannot be disassembled.
  • a second fastening part 8 for fastening the rotor core assembly 14 and the two end plates 5a and 5b is composed of, for example, a threaded bolt 81 and a nut 82, and connects the end plate 5a, the rotor core assembly 14 and the end plate 5b to Fix by pinching from both sides in the axial direction.
  • the rotor core assembly 14 is formed with a plurality of holes in addition to the insertion hole 13a (see FIG. 1). Specifically, as shown in FIG. 2, the rotor core assembly 14 has a first hole 14b in which the first fastening component 7 is arranged and a second hole 14c in which the second fastening component 8 is arranged. It is formed so as to penetrate in the axial direction (direction of arrow X). In the example shown in FIGS. 1 and 2, three first fastening components 7 and three second fastening components 8 are alternately provided in the circumferential direction of the rotor portion 20, and the rotor core assembly 14 includes each first fastening component.
  • a first hole 14 b is provided corresponding to the component 7
  • a second hole 14 c is provided corresponding to each second fastening component 8 .
  • the three first fastening components 7 and the three second fastening components 8 are arranged on the same circle around the central axis Ax.
  • the rotor core 2 is provided with the A lightening hole 17 is formed.
  • FIG. 3 is a schematic diagram of the end plate 5.
  • FIG. 3 The structure of the end plates 5a and 5b will be described below based on FIG. 2 and with reference to FIGS. 1 and 3.
  • FIG. 3 is a schematic diagram of the end plate 5.
  • each of the end plates 5a and 5b is made of a non-magnetic plate-like member, and has a disc shape with a shaft hole 51 (see FIG. 3) in the center for inserting the shaft 1.
  • the end plate 5a is attached to the left side of the rotor core assembly 14 by the second fastening part 8, and is attached to the left side surface of the rotor core 2a so as to block at least a portion of the insertion hole 13a (see FIG. 1) formed in the rotor core 2a. provided in contact.
  • the end plate 5b is attached to the right side of the rotor core assembly 14 by a second fastening part 8, and is fitted to the right side of the rotor core 2b so as to block at least a portion of the insertion hole 13a (see FIG. 1) formed in the rotor core 2b. provided in contact.
  • the inner diameter Dsi (see FIG. 3) of the end plate 5 is preferably larger than the outer diameter Dbo of the bearing 3 (see FIG. 2). In this case, the end plate 5 can be attached to the rotor core assembly 14 fixed to the shaft 1 even after the bearing 3 is attached to the shaft 1 .
  • the end plate 5 is formed with a dodging hole 52 in which the first fastening component 7 is arranged and a fastening hole 53 in which the second fastening component 8 is arranged so as to penetrate in the axial direction (arrow X direction). .
  • the fastening hole 53 is provided separately from the dodging hole 52 .
  • a dodging hole 52 is provided at a position facing the first hole 14 b of the opposing rotor core assembly 14 .
  • a hole 53 is provided.
  • the end plate 5 is provided with three alternate holes 52 and three fastening holes 53 in the circumferential direction.
  • each end plate 5 also has the same number of three bypass holes 52 and fastening holes 52 .
  • the hole 53 is provided in the description, the present invention is not particularly limited to this.
  • the number of fastening points by the first fastening part 7 and the number of fastening points by the second fastening part 8 may be two or four or more. It does not have to be the same number as the number of points.
  • the number of bypass holes 52 provided in each end plate 5 should be equal to or greater than the number of fastening locations by the first fastening parts 7, and the number of fastening holes 53 provided in each end plate 5 may be 2 It is sufficient if the number is equal to or greater than the number of fastening points by the fastening parts 8 .
  • FIG. 4 is an enlarged view of the Q1 section shown in FIG.
  • FIG. 5 is an enlarged view of the Q2 section shown in FIG. 4 and 5, the relationship between the bypass hole 52 of the end plate 5 and the first fastening part 7 that fastens the two rotor cores 2a and 2b and the intermediate plate 4 will be described.
  • the first fastening component 7 includes a shaft portion 7b inserted into the first hole 14b of the rotor core assembly 14, and provided at both ends of the shaft portion 7b. and a protrusion 7a having a diameter D7a larger than D7b. Projections 7 a that form the ends of the first fastening component 7 protrude axially from the rotor cores 2 a and 2 b of the rotor core assembly 14 and are arranged in the bypass holes 52 of the end plate 5 .
  • the first fastening component 7 is composed of a screw bolt 71 and a nut 72
  • the right projection 7a of the first fastening component 7 is the screw head of the screw bolt 71
  • the first fastening component 7 is a nut 72 .
  • the diameter D7a of the protrusion 7a of the first fastening component 7 is larger than the diameter D14b of the first hole 14b of the rotor core 2 in the rotor core assembly 14, and the protrusions 7a on both sides allow the rotor core 2a to extend in the axial direction (arrow X direction). , the intermediate plate 4 and the rotor core 2b are sandwiched.
  • the clearance hole 52 of the end plate 5 is larger than the first hole 14b of the rotor core assembly 14 provided opposite thereto. That is, the diameter D52 of the replacement hole 52 in the end plate 5 is larger than the diameter D14b of the first hole 14b in the rotor core 2. As shown in FIG. Also, the diameter D52 of the bypass hole 52 of the end plate 5 is larger than the diameter D7a of the protrusion 7a of the first fastening component 7 . As a result, in the end plate 5 , the screw head of the screw bolt 71 and the nut 72 of the first fastening part 7 are deflected by the projections 7 a such as the nut 72 , and are not brought into contact with the end plate 5 .
  • the projections 7 a of the first fastening component 7 fasten the components of the rotor core assembly 14 by coming into contact with the rotor core 2 , but the projections 7 a do not interfere with the end plates 5 . Therefore, the end plate 5 can be attached to the rotor core assembly 14 even after the rotor core assembly 14 is fastened by the first fastening component 7 .
  • the center of the circular bypass hole 52 in the end plate 5 and the center of the protrusion 7a in the first fastening part 7 are substantially aligned.
  • the shape, size and position of 52 are not particularly limited to this. It is sufficient that the first fastening part 7 is formed with the evasion hole 52 so that the end plate 5 is not pinched by the protrusion 7a protruding from the rotor core assembly 14 .
  • FIG. 6 is an enlarged view of Q3 shown in FIG.
  • FIG. 7 is an enlarged view of Q4 shown in FIG. 6 and 7, the relationship between the fastening hole 53 of the end plate 5 and the second fastening part 8 that fastens the two end plates 5a and the rotor core assembly 14 will be described.
  • the second fastening component 8 includes a shaft portion 8b inserted into the second hole 14c of the rotor core assembly 14 and the fastening hole 53 of the end plate 5, and a shaft portion 8b at both ends of the shaft portion 8b. and an end portion 8a having a diameter D8a larger than the diameter D8b of the shaft portion 8b.
  • An end portion 8 a of the second fastening component 8 protrudes axially from the end plate 5 .
  • the second fastening component 8 is composed of a screw bolt 81 and a nut 82
  • the right end 8a of the second fastening component 8 is the screw head of the screw bolt 81
  • the second fastening component 8 is a nut 82 at the left end 8a.
  • the diameter D8a of the end portion 8a of the second fastening component 8 is larger than the diameter D53 of the second hole 14c of the rotor core 2 and the fastening hole 53 of the end plate 5 in the rotor core assembly 14 .
  • the end plate 5a, the rotor core assembly 14, and the end plate 5b are sandwiched between the ends 8a on both sides in the axial direction (direction of arrow X). That is, the end plate 5 is fixed to the rotor core assembly 14 by the second fastening component 8 through the fastening hole 53 .
  • the size of the second hole 14c in the rotor core 2 and the size of the fastening hole 53 in the end plate 5 are the same, and the diameter of the second hole 14c is not shown.
  • each of the first fastening component 7 and the second fastening component 8 is not limited to a fastening component in which a threaded bolt and a nut are combined as described above, and the first fastening component 7 and the second fastening component 8 may consist of different fasteners.
  • Each of the first fastening part 7 and the second fastening part 8 can be composed of other fastening parts such as rivets, for example.
  • the diameter D52 of the deflecting hole 52 formed in the end plate 5 is larger than the diameter D53 of the rivet head of the rivet forming the first fastening component 7, and the diameter D53 of the fastening hole 53 formed in the end plate 5 is smaller than the diameter of the rivet head of the rivet forming the second fastening component 8 .
  • the fastening hole 53 in the end plate 5a is used instead of the nut 82 as a threaded hole, and the tip of the threaded bolt 81 is screwed into this threaded hole, whereby the end plate 5a and the rotor core assembly 14 are connected. and the end plate 5b may be fastened.
  • the diameter D14b of the first hole 14b formed in the rotor core assembly 14 does not have to be the same size in the axial direction (arrow X direction).
  • the first hole 14b in the intermediate plate 4 may be configured to have a larger diameter than the diameter D14b of the first hole 14b in the rotor core 2.
  • the end plates 5a, 5b and the intermediate plate 4 may be the same parts of the same shape and material. With such a configuration, the types of components of the rotor 100 can be reduced.
  • first fastening part 7 and the second fastening part 8 are same part having the same shape and made of the same material, it is possible to reduce the types of components of the rotor 100 . Further, by using a non-magnetic material for these fastening parts, eddy current loss generated in the fastening parts can be reduced.
  • FIG. 8 is a sectional view of the rotor 100 taken along the line BB passing through the insertion hole 13a shown in FIG.
  • each of the rotor cores 2a and 2b is formed with an insertion hole 13a penetrating therethrough in the axial direction (the direction of the arrow X), and the magnet 12 is housed in each insertion hole 13a.
  • both ends of each insertion hole 13a are partially or wholly closed so that the magnets 12 do not protrude out of the rotor section 20. As shown in FIG.
  • the left side of the insertion hole 13a is partially or entirely covered with the end plate 5a, and the right side of the insertion hole 13a is partially or entirely covered with the intermediate plate 4.
  • the left side of the insertion hole 13a is partially or wholly covered by the intermediate plate 4, and the right side of the insertion hole 13a is partially or wholly covered by the end plate 5b.
  • a key 15 is provided on a part of the outer peripheral surface of the shaft 1 .
  • the key 15 is provided at a position where the rotor core assembly 14 of the rotor portion 20 is fixed by shrink fitting in the axial direction of the shaft 1 (direction of arrow X).
  • the key 15 serves to reinforce the rotor cores 2a, 2b of the rotor core assembly 14 and the shaft 1 from slipping due to torque generated during operation of the rotating electric machine.
  • the two rotor cores 2a and 2b of the rotor core assembly 14 are directly fixed to the shaft 1 by shrink fitting without the end plate 5 and the intermediate plate 4 interposed therebetween.
  • FIG. 9 is an explanatory diagram explaining the first step of the manufacturing process of the rotor 100 shown in FIG. 10A and 10B are explanatory diagrams for explaining the second step of the manufacturing process of the rotor 100 shown in FIG. 11A and 11B are explanatory diagrams for explaining the third step of the manufacturing process of the rotor 100 shown in FIG. 12A and 12B are explanatory diagrams for explaining the fourth step of the manufacturing process of the rotor 100 shown in FIG.
  • a method for manufacturing the rotor 100 will be described below with reference to FIGS. 9 to 12.
  • FIG. 9 is an explanatory diagram explaining the first step of the manufacturing process of the rotor 100 shown in FIG. 10A and 10B are explanatory diagrams for explaining the second step of the manufacturing process of the rotor 100 shown in FIG. 11A and 11B are explanatory diagrams for explaining the third step of the manufacturing process of the rotor 100 shown in FIG. 12A and 12B are explanatory diagrams for explaining the fourth step of the manufacturing process of the rot
  • the method of manufacturing rotor 100 includes a first step ( FIG. 9 ) of obtaining rotor core assembly 14 by fastening two rotor cores 2 a and 2 b and intermediate plate 4 , and a second step of attaching rotor core assembly 14 to the outer peripheral surface of shaft 1 .
  • 2 step (FIG. 10) a third step (FIG. 11) of housing the magnets 12 in the two rotor cores 2a and 2b respectively
  • It implements in order of a 1st process, a 2nd process, a 3rd process, and a 4th process.
  • the plurality of magnetic steel sheets forming the rotor core 2 are crimped in advance by V crimping or round crimping in order to prevent the magnetic steel sheets from separating during assembly of the rotor 100 .
  • the plurality of electromagnetic steel sheets forming the rotor core 2 are also integrated, there is no need to combine a plurality of electromagnetic steel sheets in advance. Therefore, in the present disclosure, a plurality of electromagnetic steel sheets can be crimpless, which is not crimped to each other, and the conventional crimping process becomes unnecessary, improving productivity.
  • the shaft 1 is inserted into the shaft hole 14a of the rotor core assembly 14 obtained in the first step, and the outer peripheral surface of the shaft 1 and the shaft hole 14a of the rotor core assembly 14 are shrink-fitted.
  • the two rotor cores 2a and 2b of the rotor core assembly 14 are fixed directly to the shaft 1 without the end plate 5 and the intermediate plate 4 interposed therebetween.
  • cooling takes place after shrink fitting.
  • the shaft 1 is inserted into the shaft hole 14a of the rotor core assembly 14
  • the shaft 1 is further inserted into the shaft hole 3a of the bearing 3, and then the bearing 3 and the rotor core assembly 14 are respectively , may be fixed to the shaft 1 by shrink fitting.
  • both the rotor core assembly 14 and the bearing 3 can be attached to the shaft 1 in a single shrink fitting and cooling process.
  • the magnets 12 are inserted into the insertion holes 13a of the rotor cores 2 after cooling in the second step.
  • One end of the inserted magnet 12 contacts the intermediate plate 4 .
  • a fourth step shown in FIG. 12 the end plates 5a and 5b are arranged on both sides of the rotor core assembly 14 in the axial direction (the direction of the arrow X), and the rotor core assembly 14 and the end plates 5a and 5b are connected by the second fastening parts 8. is concluded.
  • the projecting portion 7a of the first fastening part 7 is arranged in the dodge hole 52 of the end plates 5a, 5b.
  • the insertion hole 13a is partially or wholly closed by the end plates 5a, 5b on both sides in the axial direction (arrow X direction) of the rotor core assembly 14. As shown in FIG.
  • the shaft 1 is inserted into the shaft holes 51 of the end plates 5a and 5b, and the end plate 5a is formed into the rotor core.
  • the end plate 5b is attached to the rotor core assembly 14 from the right side, while the assembly 14 is attached from the left side.
  • rotor 100 of Embodiment 1 has shaft 1 and two rotor cores 2a and 2b arranged in the axial direction (arrow X direction) of shaft 1, and is attached to the outer peripheral surface of shaft 1. and a rotor core assembly 14 .
  • the rotor 100 also includes magnets 12 housed in the two rotor cores 2a and 2b, respectively, and end plates 5a and 5b arranged on both sides of the rotor core assembly 14 in the axial direction (the arrow X direction).
  • An insertion hole 13a for the magnet 12 is provided in each of the two rotor cores 2a and 2b.
  • the rotor core assembly 14 is arranged between the two rotor cores 2a and 2b and includes an intermediate plate 4 made of a non-magnetic material and a first fastening part 7 that fastens the intermediate plate 4 to the two rotor cores 2a and 2b.
  • the first fastening component 7 has projections 7a projecting in the axial direction (direction of arrow X) from the two rotor cores 2a and 2b.
  • the intermediate plate 4 and the two rotor cores 2a and 2b are provided with first holes 14b into which the first fastening parts 7 are inserted.
  • a bypass hole 52 having a diameter D52 smaller than D7a and larger than the diameter D7a of the protrusion 7a of the first fastening component 7 is provided in the end plates 5a, 5b.
  • the end plates 5a and 5b are provided so as to block part or all of the insertion holes 13a formed in the rotor cores 2a and 2b. is placed.
  • the rotor core assembly 14 is attached to the shaft 1 by shrink fitting the two rotor cores 2a, 2b directly onto the shaft 1. As shown in FIG.
  • the two rotor cores 2a, 2b and the intermediate plate 4 are connected directly to the shaft 1 without the end plates 5a, 5b and the intermediate plate 4 interposed therebetween.
  • the rotor core assembly 14 is attached to the shaft 1 by shrink fitting.
  • the end plates 5a and 5b are provided with bypass holes 52 having a diameter D52 larger than the diameter D7a of the protrusion 7a of the first fastening component 7, and the bypass holes 52 of the end plates 5a and 5b are used for the first fastening.
  • a projecting portion 7a of the component 7 is arranged.
  • the magnets 12 can be inserted through the insertion holes 13a of the rotor cores 2a and 2b after the intermediate plate 4 and the two rotor cores 2a and 2b are integrated and shrink-fitted.
  • the end plates 5 a and 5 b can be arranged on both sides of the rotor core assembly 14 without interfering with the protrusion 7 a of the first fastening component 7 . Therefore, the rotor core assembly 14 can be attached to the shaft 1 only by one shrink-fitting process, so the productivity of the rotor 100 is high. Deterioration can be suppressed.
  • the rotor core assembly 14 can be fixed to the shaft 1 by shrink fitting, it is possible to avoid an increase in the size of fixing equipment regardless of the size of the rotor 100 compared to the case where it is fixed by press fitting.
  • the rotor cores 2a, 2b are directly shrink-fitted onto the shaft 1 instead of being held by the end plates 5a, 5b and the intermediate plate 4 as in the conventional art.
  • 5b and intermediate plate 4 are not required to be strong. Therefore, the plate thickness of the end plates 5a, 5b and the intermediate plate 4 can be made thinner than before, and the material cost can be reduced.
  • the intermediate plate 4 and the rotor cores 2a and 2b are screw-fixed before being fixed to the shaft 1, a sufficient fastening force is applied to the rotor cores 2a and 2b.
  • the intermediate plate 4 and the end plates 5a and 5b are composed of one or a plurality of plate-like members having the same shape and the same material. As a result, the types of component parts of the rotor 100 can be reduced.
  • the rotor 100 further includes a second fastening component 8 that fastens the rotor core assembly 14 and the end plates 5a, 5b.
  • the intermediate plate 4 and the two rotor cores 2a and 2b are provided with second holes 14c into which the second fastening parts 8 are inserted, and the end plates 5a and 5b are provided with fastening holes 53 separate from the bypass holes 52. It is The end plates 5 a and 5 b are fixed to the rotor core assembly 14 by the second fastening parts 8 through fastening holes 53 .
  • first fastening part 7 and the second fastening part 8 are configured with the same shape and the same material. As a result, the types of components of the rotor 100 can be further reduced.
  • the rotor 100 also includes a bearing 3 mounted on the shaft 1, the rotor core assembly 14 has a cylindrical shape, and the end plates 5a, 5b are circular with an inner diameter Dsi larger than the outer diameter Dbo of the bearing 3. It has a plate shape. As a result, the end plates 5 a and 5 b can be attached to the rotor core assembly 14 from both sides of the shaft 1 even after the bearings 3 are fixed to the shaft 1 .
  • Each of the two rotor cores 2a and 2b is composed of a plurality of electromagnetic steel sheets laminated in the axial direction (the direction of the arrow X), and the plurality of electromagnetic steel sheets forming the rotor cores 2a and 2b are integrated by a first fastening part 7.
  • a first fastening part 7 has been made.
  • the first fastening component 7 is composed of a screw (for example, a screw bolt 71) and a nut 72, or a rivet.
  • a screw for example, a screw bolt 71
  • a nut 72 for example, a rivet
  • the rotor 100 can be configured with more general-purpose and simple parts than in the past.
  • the rotor manufacturing method of Embodiment 1 has a first step, a second step, a third step, and a fourth step.
  • first step two rotor cores 2a and 2b arranged in the axial direction of the shaft 1 and an intermediate plate 4 which is arranged between the two rotor cores 2a and 2b and made of a non-magnetic material are inserted into the intermediate plate 4.
  • the rotor core assembly 14 is obtained by inserting the first fastening parts 7 into the first holes 14b provided in the two rotor cores 2a and 2b and fastening them with the first fastening parts 7. As shown in FIG.
  • the rotor core assembly 14 is attached to the outer peripheral surface of the shaft 1 by directly shrink-fitting the two rotor cores 2 a and 2 b onto the shaft 1 .
  • the magnets 12 are accommodated in the two rotor cores 2a and 2b through the insertion holes 13a provided in the two rotor cores 2a and 2b.
  • end plates 5a and 5b are arranged on both sides of the rotor core assembly 14 in the axial direction so as to block part or all of the insertion hole 13a.
  • a protruding portion 7a which is a projecting portion and has a diameter D7a larger than the diameter D14b of the first hole 14b in the rotor core, and a diameter D52 larger than the diameter D7a of the protruding portion 7a provided on the end plates 5a and 5b. It is placed in the dodge hole 52 .
  • the rotor cores 2a, 2b are fixed directly to the shaft 1 without the end plates 5a, 5b and the intermediate plate 4, and then the magnets 12 are accommodated in the third step.
  • the end plates 5a and 5b can be attached to block part or all of the insertion hole 13a. Therefore, the rotor core assembly 14 can be attached to the shaft 1 only by one shrink-fitting process, so the productivity of the rotor 100 is good.
  • the rotor core assembly 14 can be fixed to the shaft 1 by shrink fitting, it is possible to avoid an increase in the size of fixing equipment regardless of the size of the rotor 100 compared to the case where it is fixed by press fitting.
  • FIG. 13 is a schematic diagram of the end plate 5 of the rotor 100 according to the second embodiment.
  • the second embodiment differs from the first embodiment in that each of the end plates 5a and 5b is divided into a plurality of pieces in the circumferential direction.
  • the end plate 5 is composed of a plurality of fan-shaped plate members.
  • the end plate 5 is divided into two in the circumferential direction, and is composed of a fan-shaped first end plate portion 50a and a second end plate portion 50b.
  • the end plate 5 may be divided into three or more end plate portions in the circumferential direction.
  • the intermediate plate 4 may be divided into a plurality of pieces like the end plate 5 .
  • the inner diameter Dsi of the end plate 5 can be made slightly larger than the axial diameter of the shaft 1, for example. Note that the inner diameter Dsi of the end plate 5 is not particularly limited to this. As shown in FIG. 1, the end plate 5 can cover at least a portion of the insertion hole 13a in the rotor core assembly 14 so that the magnet 12 (FIG. 8) does not protrude from the insertion hole 13a. It is only necessary to have an inner diameter Dsi (FIG. 13) that is larger than the shaft diameter.
  • the rotor 100 of Embodiment 2 includes the bearing 3 attached to the shaft 1, the rotor core assembly 14 has a cylindrical shape, and the end plates 5a, 5b are a plurality of fan-shaped end plates. It is composed of a plate-like member.
  • FIG. 14 is a schematic diagram showing a schematic configuration of rotor 100 according to the third embodiment.
  • the end plate 5 is formed with one bypass hole 52 for each of the plurality of first fastening components 7 , and the same number of bypass holes 52 as the first fastening components 7 are formed in the end plate 5 .
  • the number of bypass holes 52 in the end plate 5 differs from the number of the first fastening components 7 .
  • Three first fastening components 7 and three second fastening components 8 are alternately provided in the rotor portion 20 in the circumferential direction. As shown in FIG. 14, when viewed from the left end plate 5a side, the three first fastening components 7 are arranged on a first circle C1 around the central axis Ax, , on a second circle C2 concentric with the first circle C1 and smaller than the first circle C1.
  • the end plate 5 has a disc shape with a shaft hole 51 in the center for inserting the shaft 1 as in the case of the first embodiment. At least a part of the insertion hole 13a is covered so that the projection 12 does not protrude.
  • the shaft hole 51 of the end plate 5, that is, the inner diameter Dsi is larger than in the first embodiment, and the three first fastening parts 7 are arranged inside the shaft hole 51. It has become. That is, in the third embodiment, the shaft hole 51 also functions as a dodging hole 52 for dodging the projection 7a of the first fastening component 7. As shown in FIG.
  • the outer peripheral edge 5o of the end plate 5 is positioned radially outside the second circle C2 on which the three second fastening components 8 are arranged, and the three first fastening components 7 are arranged.
  • the inner peripheral end 5i of the end plate 5 is located radially outside the first circle C1 and radially inside the second circle C2, and the end plate 5 covers at least a portion of the insertion hole 13a.
  • a plate 5 is formed.
  • first fastening components 7 is not limited to the above case, and may be, for example, two or four or more.
  • the dodging hole 52 may be provided separately from the shaft hole 51 as long as it is large enough to dodge the plurality of first fastening components 7 .
  • the end plate 5 is formed so that the inner peripheral end 5i is positioned radially inward of the first circle C1 when viewed from the end plate 5a side, and two or more dodge holes are provided. may be formed in an arc shape having an arc length that encloses the first fastening component 7 of .
  • the end plate 5 has the shaft hole 51 including the dodge hole 52 and into which the shaft 1 is inserted. can be reduced.

Abstract

This rotor comprises: a shaft; a rotor core assembly body having two rotor cores arranged in the axial direction of the shaft and attached to the outer circumferential surface of the shaft; magnets housed in the respective two rotors; and end plates disposed on both sides of the rotor core assembly body in the axial direction. The two rotor cores are respectively provided with insertion holes for the magnets. The rotor core assembly body has: an intermediate plate disposed between the two rotor cores and formed of a non-magnetic material; and a first fastening component fastening the two rotor cores and the intermediate plate to each other and having a projection portion projecting from the two rotor cores in the axial direction. The intermediate plate and the two rotor cores are provided with a first hole into which the first fastening component is inserted, wherein the diameter of the first hole of the two rotor cores is smaller than the diameter of the projection portion. The end plate is provided with a sidestep hole having a larger diameter than the diameter of the projection portion of the first fastening component. The end plate is provided so as to partially or entirely cover the insertion holes formed in the rotor cores. The projection portion of the first fastening component is disposed in the sidestep hole of the end plate. The rotor core assembly body is attached to the shaft in such a way that the two rotor cores are directly shrink-fitted to the shaft.

Description

ロータ及びロータの製造方法Rotor and rotor manufacturing method
 本開示は、例えば回転電機に用いられる、磁石が収納されたロータ、及びロータの製造方法に関する。 The present disclosure relates to a rotor containing magnets, and a method for manufacturing the rotor, which is used, for example, in a rotating electric machine.
 モータ等の回転電機に用いられるロータにおいて、ロータコアの内側に永久磁石が埋め込まれたIPM(Interior Permanent Magnet)ロータがある。このようなロータでは、運転時にロータコアに渦電流が発生し、渦電流が発生するとロータコアの電気抵抗によりエネルギーの損失すなわち渦電流損が生ずる。渦電流損を抑制するため、例えば、複数の電磁鋼板が積層されたロータコアを複数備えたロータがある。このようなロータにおいて、磁石が挿入された2つのロータコアの間に非磁性体の中間板を設け、且つ、中間板を挟んだ2つのロータコアの両側の端部に非磁性体の端板を設けたものがある(例えば、特許文献1参照)。非磁性体の端板及び中間板を設けることにより、磁石がロータコアの挿入穴から飛び出してしまうことを回避しつつ、磁石を分割してモータ運転時にロータコア間に流れる渦電流を小さくすることができる。特許文献1のロータでは、端板及び中間板それぞれがシャフトに固定され、ロータコアは、ねじ及びスプリングピンで端板及び中間板に固定され、端板及び中間板により保持されている。 Among rotors used in rotating electric machines such as motors, there is an IPM (Interior Permanent Magnet) rotor in which permanent magnets are embedded inside the rotor core. In such a rotor, eddy currents are generated in the rotor core during operation, and when the eddy currents are generated, energy loss, that is, eddy current loss occurs due to the electrical resistance of the rotor core. In order to suppress eddy current loss, for example, there is a rotor provided with a plurality of rotor cores in which a plurality of electromagnetic steel sheets are laminated. In such a rotor, a non-magnetic intermediate plate is provided between two rotor cores in which magnets are inserted, and non-magnetic end plates are provided at both ends of the two rotor cores sandwiching the intermediate plate. There are some (for example, see Patent Document 1). By providing the non-magnetic end plate and intermediate plate, it is possible to prevent the magnet from jumping out of the insertion hole of the rotor core, and to divide the magnet to reduce the eddy current flowing between the rotor cores during motor operation. . In the rotor of Patent Document 1, the end plates and intermediate plates are fixed to the shaft, respectively, and the rotor core is fixed to the end plates and intermediate plates with screws and spring pins and held by the end plates and intermediate plates.
特開平04-364335号公報JP-A-04-364335
 特許文献1のロータにおいて、端板及び中間板をシャフトと固定する方法としては圧入又は焼嵌めがあるが、圧入を採用する場合、ロータのサイズに比例して固定のための設備が大型化し費用が掛かるので、大型のモータでは焼嵌めが選択される。そして、特許文献1のように、端板及び中間板がシャフトに固定され、ロータコアが端板及び中間板により保持されるロータにおいて、仮に、中間板、ロータコア及び端板を一体化した状態で焼嵌めが行われると、熱により磁石の特性が劣化してしまう。したがって、特許文献1のロータにおいて焼嵌め時の熱による磁石の特性劣化を最小限に抑えるためには、まず、中間板をシャフトに焼嵌めして冷却し、その後、磁石が収納された状態のロータコアを中間板の両側に配置し、端板をシャフトに焼嵌めして冷却する、といった工程でロータが製造されることになる。よって、特許文献1のロータでは、ロータコアをシャフトに取り付ける際に、焼嵌めして冷却する工程を2回以上行う必要があるので生産性に課題があり、且つ2回目の焼嵌めは磁石を入れた状態で行われるので、磁石の特性劣化を抑制することも難しい。 In the rotor of Patent Document 1, press-fitting or shrink-fitting is available as a method of fixing the end plates and the intermediate plate to the shaft. Therefore, shrink fitting is selected for large motors. As in Patent Document 1, in a rotor in which the end plates and intermediate plates are fixed to the shaft and the rotor core is held by the end plates and intermediate plates, it is assumed that the intermediate plates, the rotor core, and the end plates are sintered in an integrated state. Once fitted, the heat will degrade the properties of the magnet. Therefore, in order to minimize the deterioration of the characteristics of the magnet due to the heat generated during shrink fitting in the rotor of Patent Document 1, first, the intermediate plate is shrink fitted to the shaft and cooled, and then the magnet is placed in the shaft. The rotor is manufactured by a process of arranging the rotor core on both sides of the intermediate plate, shrink-fitting the end plates to the shaft, and cooling. Therefore, in the rotor of Patent Document 1, when the rotor core is attached to the shaft, it is necessary to perform the process of shrink fitting and cooling two or more times, so there is a problem in productivity, and the second shrink fitting involves inserting a magnet. It is also difficult to suppress the deterioration of the characteristics of the magnet because it is performed in a state in which the magnet is held.
 本開示は、上記のような課題を解決するためになされたもので、ロータコア内に磁石が収納されたロータにおいて、生産性がよく、且つ、従来よりも磁石の特性劣化を抑制することができるロータ及びロータの製造方法を提供することを目的とする。 The present disclosure has been made to solve the problems described above, and in a rotor in which magnets are housed in a rotor core, it is possible to improve productivity and to suppress the deterioration of magnet characteristics more than before. It is an object of the present invention to provide a rotor and a method for manufacturing the rotor.
 本開示に係るロータは、シャフトと、前記シャフトの軸方向に配列された2つのロータコアを有し、前記シャフトの外周面に取り付けられたロータコア組立体と、2つの前記ロータコアそれぞれに収納された磁石と、前記ロータコア組立体の前記軸方向の両側に配置された端板と、を備え、2つの前記ロータコアそれぞれには、前記磁石の挿入穴が設けられ、前記ロータコア組立体は、2つの前記ロータコアの間に配置され、非磁性体で構成された中間板と、2つの前記ロータコアと前記中間板とを締結するものであって、2つの前記ロータコアから前記軸方向に突出した突起部を有する第1締結部品と、を有し、前記中間板及び2つの前記ロータコアには、前記第1締結部品が挿入される第1穴が設けられ、2つの前記ロータコアにおける前記第1穴の径は前記突起部の径よりも小さく、前記端板には、前記第1締結部品の前記突起部の径よりも大きい径を有するかわし穴が設けられ、前記端板は、前記ロータコアに形成された前記挿入穴の一部又は全部を塞ぐように設けられ、前記端板の前記かわし穴に、前記第1締結部品の前記突起部が配置され、前記ロータコア組立体は、2つの前記ロータコアが直接前記シャフトに焼嵌めされることにより前記シャフトに取り付けられている。
 また、本開示に係るロータの製造方法は、シャフトの軸方向に配列された2つのロータコアと、2つの前記ロータコアの間に配置され、非磁性体で構成された中間板とを、前記中間板及び2つの前記ロータコアに設けられた第1穴に第1締結部品を挿入して前記第1締結部品により締結することでロータコア組立体を得る第1工程と、2つの前記ロータコアを直接前記シャフトに焼嵌めすることで前記ロータコア組立体を前記シャフトの外周面に取り付ける第2工程と、2つの前記ロータコアに設けられた挿入穴を介して、2つの前記ロータコアそれぞれに磁石を収納する第3工程と、前記ロータコア組立体の前記軸方向の両側に、前記挿入穴の一部又は全部を塞ぐように端板を配置し、前記第1締結部品において2つの前記ロータコアから突出した部分であって前記ロータコアにおける前記第1穴の径よりも大きい径を有する突起部を、前記端板に設けられた、前記突起部の径よりも大きい径を有するかわし穴に配置する第4工程と、を有する。
A rotor according to the present disclosure includes a shaft and two rotor cores arranged in the axial direction of the shaft, a rotor core assembly attached to the outer peripheral surface of the shaft, and magnets housed in each of the two rotor cores. and end plates disposed on both sides of the rotor core assembly in the axial direction, the two rotor cores each being provided with an insertion hole for the magnet, and the rotor core assembly comprising the two rotor cores. and an intermediate plate made of a non-magnetic material, which is arranged between the 1 fastening component, wherein the intermediate plate and the two rotor cores are provided with a first hole into which the first fastening component is inserted, and the diameter of the first hole in the two rotor cores is equal to the projection The end plate is provided with a deflecting hole having a diameter smaller than the diameter of the projection portion of the first fastening component and larger than the diameter of the projection portion of the first fastening component, and the end plate is formed in the insertion hole formed in the rotor core. The protrusion of the first fastening part is arranged in the dodge hole of the end plate, and the rotor core assembly is such that the two rotor cores are directly sintered to the shaft. It is attached to the shaft by being fitted.
Further, in a method for manufacturing a rotor according to the present disclosure, two rotor cores arranged in the axial direction of a shaft and an intermediate plate disposed between the two rotor cores and made of a non-magnetic material are arranged in the intermediate plate. and a first step of obtaining a rotor core assembly by inserting first fastening parts into first holes provided in the two rotor cores and fastening them with the first fastening parts; and directly attaching the two rotor cores to the shaft. a second step of attaching the rotor core assembly to the outer peripheral surface of the shaft by shrink fitting; and a third step of accommodating magnets in each of the two rotor cores through insertion holes provided in the two rotor cores. , end plates are arranged on both sides of the rotor core assembly in the axial direction so as to block part or all of the insertion holes, and portions of the first fastening component protruding from the two rotor cores, and a fourth step of arranging a projection having a diameter larger than that of the first hole in step 4 in a deflecting hole having a diameter larger than that of the projection provided in the end plate.
 本開示によれば、2つのロータコアと中間板とを締結する第1締結部品を有し、2つのロータコアが端板及び中間板を介さずに直接シャフトに焼嵌めされることによりロータコア組立体がシャフトに取り付けられており、端板には、第1締結部品の突起部の径よりも大きい径を有するかわし穴が設けられ、端板のかわし穴に、第1締結部品の突起部が配置される。したがって、中間板と2つのロータコアとを一体化した状態で焼嵌めを行った後、各ロータコアの挿入穴を介して磁石を挿入し、その後、ロータコア組立体の両側に、第1締結部品の突起部と干渉させずに端板を配置することができる。よって、ロータコア組立体をシャフトに取り付ける際における焼嵌め工程が一度で済むので生産性がよく、且つ、熱による磁石の特性劣化を従来よりも抑制できる。 According to the present disclosure, the rotor core assembly has a first fastening part that fastens two rotor cores and an intermediate plate, and the two rotor cores are shrink-fitted directly onto the shaft without interposing the end plate and the intermediate plate. The end plate is provided with a bypass hole having a diameter larger than the diameter of the protrusion of the first fastener, and the protrusion of the first fastener is disposed in the bypass hole of the end plate. be. Therefore, after shrink-fitting the intermediate plate and the two rotor cores in an integrated state, the magnets are inserted through the insertion holes of the respective rotor cores. The end plate can be placed without interfering with the part. Therefore, since only one shrink-fitting step is required when attaching the rotor core assembly to the shaft, the productivity is high, and deterioration of the magnet characteristics due to heat can be suppressed more than before.
実施の形態1に係るロータの概略構成を示す概略図である。1 is a schematic diagram showing a schematic configuration of a rotor according to Embodiment 1; FIG. 図1に記載の中心軸を通るA-A断面で切ったロータの断面図である。FIG. 2 is a cross-sectional view of the rotor cut along the AA cross section passing through the central axis shown in FIG. 1; 図1に記載の端板の概略図である。2 is a schematic view of the end plate of FIG. 1; FIG. 図2に記載のQ1部の拡大図である。3 is an enlarged view of a Q1 portion shown in FIG. 2; FIG. 図2に記載のQ2部の拡大図である。FIG. 3 is an enlarged view of a Q2 portion shown in FIG. 2; 図2に記載のQ3部の拡大図である。FIG. 3 is an enlarged view of a Q3 portion shown in FIG. 2; 図2に記載のQ4部の拡大図である。3 is an enlarged view of a Q4 portion shown in FIG. 2; FIG. 図1に記載の挿入穴を通るB-B断面で切ったロータの断面図である。FIG. 2 is a cross-sectional view of the rotor taken along section BB through the insertion hole shown in FIG. 1; 図1に記載されたロータの製造工程の第1工程を説明する説明図である。FIG. 2 is an explanatory diagram for explaining a first step of the manufacturing process of the rotor shown in FIG. 1; 図1に記載されたロータの製造工程の第2工程を説明する説明図である。FIG. 2 is an explanatory view explaining a second step of the manufacturing process of the rotor shown in FIG. 1; 図1に記載されたロータの製造工程の第3工程を説明する説明図である。FIG. 3 is an explanatory view explaining a third step of the manufacturing process of the rotor shown in FIG. 1; 図1に記載されたロータの製造工程の第4工程を説明する説明図である。FIG. 11 is an explanatory view explaining a fourth step of the manufacturing process of the rotor shown in FIG. 1; 実施の形態2に係るロータの端板の概略図である。FIG. 5 is a schematic diagram of an end plate of a rotor according to Embodiment 2; 実施の形態3に係るロータの概略構成を示す概略図である。FIG. 11 is a schematic diagram showing a schematic configuration of a rotor according to Embodiment 3;
 以下、本開示に係るロータ100の実施の形態を、図面を参照して説明する。なお、以下に示す図面の形態によって本開示が限定されるものではない。また、各図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。 An embodiment of the rotor 100 according to the present disclosure will be described below with reference to the drawings. It should be noted that the present disclosure is not limited by the forms of the drawings shown below. Also, in each figure, the same reference numerals denote the same or corresponding parts, which are common throughout the specification.
実施の形態1.
 図1は、実施の形態1に係るロータ100の概略構成を示す概略図である。図2は、図1に記載の中心軸Axを通るA-A断面で切ったロータ100の断面図である。以下の説明では、ロータ100の中心軸Axが延びる方向を軸方向(図2の矢印X方向)、中心軸Axに垂直な方向を径方向、及び、中心軸Ax周りの方向を周方向という。また、以下の説明において、理解を容易にするために、軸方向の一方側であって図2の紙面右側を右側といい、軸方向の他方側であって図2の紙面左側を左側という場合がある。
Embodiment 1.
FIG. 1 is a schematic diagram showing a schematic configuration of a rotor 100 according to Embodiment 1. FIG. FIG. 2 is a cross-sectional view of the rotor 100 cut along the AA cross section passing through the central axis Ax shown in FIG. In the following description, the direction in which the central axis Ax of the rotor 100 extends is called the axial direction (direction of arrow X in FIG. 2), the direction perpendicular to the central axis Ax is called the radial direction, and the direction around the central axis Ax is called the circumferential direction. Further, in the following description, for ease of understanding, the right side in the axial direction and the right side in the plane of FIG. 2 will be referred to as the right side, and the other side in the axial direction and the left side in the plane of FIG. There is
 図2に示されるように、ロータ100は、軸方向に配列された2つのロータコア2a、2bを有するロータ部20と、中心軸Axに沿って延び、ロータ部20の回転軸であるシャフト1と、シャフト1を支持する2つのベアリング3と、を備えている。ロータ部20及び2つのベアリング3は、それぞれシャフト1に取り付けられている。 As shown in FIG. 2, the rotor 100 includes a rotor section 20 having two axially arranged rotor cores 2a and 2b, and a shaft 1 extending along a central axis Ax and serving as a rotation axis of the rotor section 20. , two bearings 3 supporting the shaft 1 . The rotor part 20 and the two bearings 3 are each attached to the shaft 1 .
 ベアリング3は、図1に示されるように中央に軸穴3aが設けられた円筒形状を有し、図2に示されるように、ロータ部20の軸方向(矢印X方向)両側に、ロータ部20とは離間して配置されている。図2に示される例では、一方のベアリング3は、シャフト1における軸方向の右端部に固定され、他方のベアリング3は、シャフト1における軸方向の中央付近に固定されている。 As shown in FIG. 1, the bearing 3 has a cylindrical shape with a central shaft hole 3a. As shown in FIG. 20 are spaced apart. In the example shown in FIG. 2 , one bearing 3 is fixed to the axial right end of the shaft 1 , and the other bearing 3 is fixed near the axial center of the shaft 1 .
 ロータ100は、例えばモータ等の回転電機の一部を構成するものであり、回転電機の筐体に、2つのベアリング3を介して中心軸Ax周りに回転自在に設置されている。ロータ部20は、内部に永久磁石が挿入された、いわゆるIPM(Interior Permanent Magnet)ロータである。 The rotor 100 constitutes a part of a rotating electric machine such as a motor, and is rotatably installed around the central axis Ax via two bearings 3 in the housing of the rotating electric machine. The rotor section 20 is a so-called IPM (Interior Permanent Magnet) rotor in which a permanent magnet is inserted.
 ロータ部20は、図1及び図2に示されるように、中央にシャフト1が挿入される軸穴14aが形成された円筒形状を有する。図2に示されるように、ロータ部20は、シャフト1の外周面に取り付けられた円筒形状を有するロータコア組立体14と、ロータコア組立体14の各ロータコア2a、2bに収納された磁石12(後述の図8参照)と、ロータコア組立体14の軸方向(矢印X方向)の両側に配置された端板5a、5bと、を備えている。また、ロータ部20は、ロータコア組立体14と2つの端板5a、5bを締結する締結部品(以下、第2締結部品8という)を備えている。 As shown in FIGS. 1 and 2, the rotor section 20 has a cylindrical shape with a shaft hole 14a in the center into which the shaft 1 is inserted. As shown in FIG. 2, the rotor portion 20 includes a rotor core assembly 14 having a cylindrical shape attached to the outer peripheral surface of the shaft 1, and magnets 12 (described later) housed in the rotor cores 2a and 2b of the rotor core assembly 14. 8), and end plates 5a and 5b arranged on both sides of the rotor core assembly 14 in the axial direction (arrow X direction). The rotor portion 20 also includes a fastening component (hereinafter referred to as a second fastening component 8) that fastens the rotor core assembly 14 and the two end plates 5a and 5b.
 図2に示される例では、ロータコア組立体14の左側面と端板5aの右側面とが接触し、ロータコア組立体14の右側面と端板5bの左側面とが接触するように、左から右へ、端板5a、ロータコア組立体14及び端板5bの順に配置されている。以下、端板5aと端板5bとを特に区別する必要がない場合には、端板5a及び端板5bそれぞれを、単に端板5と称する場合がある。 In the example shown in FIG. 2, from the left, the left side of the rotor core assembly 14 and the right side of the end plate 5a are in contact, and the right side of the rotor core assembly 14 and the left side of the end plate 5b are in contact. To the right, the end plate 5a, the rotor core assembly 14 and the end plate 5b are arranged in this order. Hereinafter, the end plate 5a and the end plate 5b may be simply referred to as the end plate 5 when there is no particular need to distinguish between the end plate 5a and the end plate 5b.
 図2に示されるように、ロータコア組立体14は、軸方向(矢印X方向)に配列された2つのロータコア2a、2bと、2つのロータコア2a、2bの間に配置された中間板4と、を有している。図2に示される例では、中間板4の左側面とロータコア2aの右側面とが接触し、中間板4の右側面とロータコア2bの左側面とが接触するように、左から右へ、ロータコア2a、中間板4及びロータコア2bの順に配置されている。以下、ロータコア2aとロータコア2bとを特に区別する必要がない場合には、ロータコア2a及びロータコア2bそれぞれを、単にロータコア2と称する場合がある。 As shown in FIG. 2, the rotor core assembly 14 includes two rotor cores 2a and 2b arranged in the axial direction (direction of arrow X), an intermediate plate 4 arranged between the two rotor cores 2a and 2b, have. In the example shown in FIG. 2, the rotor cores are arranged from left to right so that the left side surface of the intermediate plate 4 and the right side surface of the rotor core 2a are in contact, and the right side surface of the intermediate plate 4 is in contact with the left side surface of the rotor core 2b. 2a, intermediate plate 4 and rotor core 2b. Hereinafter, the rotor cores 2a and 2b may be simply referred to as rotor cores 2 when there is no particular need to distinguish between the rotor cores 2a and 2b.
 ロータコア2は、軸方向(矢印X方向)に積層された複数の電磁鋼板で構成されている。ロータコア2には、磁石12(後述の図8参照)が収納される挿入穴13a(図1参照)が、軸方向(矢印X方向)に貫通するように形成されている。 The rotor core 2 is composed of a plurality of electromagnetic steel sheets laminated in the axial direction (direction of arrow X). The rotor core 2 is formed with insertion holes 13a (see FIG. 1) in which magnets 12 (see FIG. 8 to be described later) are accommodated so as to penetrate in the axial direction (direction of arrow X).
 中間板4は、非磁性体の板状部材で構成され、例えば、シャフト1が挿入される穴が中央に設けられた円板形状を有している。中間板4は、各ロータコア2a、2bに設けられた挿入穴13a(図1参照)の少なくとも一部を塞ぐように設けられる。 The intermediate plate 4 is made of a non-magnetic plate-like member, and has, for example, a disc shape with a hole in the center for inserting the shaft 1 . The intermediate plate 4 is provided so as to block at least a portion of the insertion hole 13a (see FIG. 1) provided in each rotor core 2a, 2b.
 一般に、ロータコア2a、2bで生じる渦電流の大きさは、ロータコア2a、2bの板厚の二乗に比例する。そのため、上記のように、ロータ部20を、非磁性体の中間板4により磁石12及びロータコア2が複数に分割された構成とすることにより、各ロータコア2の厚さを薄くし、渦電流を小さくすることができる。よって、回転電機の運転時にロータ部20に発生する渦電流損を抑制できる。 Generally, the magnitude of the eddy currents generated in the rotor cores 2a, 2b is proportional to the square of the plate thickness of the rotor cores 2a, 2b. Therefore, as described above, the rotor section 20 is configured such that the magnets 12 and the rotor core 2 are divided into a plurality of parts by the non-magnetic intermediate plate 4, thereby reducing the thickness of each rotor core 2 and reducing the eddy current. can be made smaller. Therefore, eddy current loss generated in the rotor portion 20 during operation of the rotating electric machine can be suppressed.
 また、ロータコア組立体14は、2つのロータコア2a、2bと中間板4とを締結する締結部品(以下、第1締結部品7)を有している。第1締結部品7は、例えば、ねじボルト71及びナット72で構成され、ロータコア2a、中間板4及びロータコア2bを、軸方向両側から挟み込むようにして固定する。円筒形状を有するロータコア組立体14は、軸穴14aに挿入されたシャフト1に、焼嵌めにより固定されている。 The rotor core assembly 14 also has a fastening component (hereinafter referred to as a first fastening component 7) for fastening the two rotor cores 2a, 2b and the intermediate plate 4 together. The first fastening component 7 is composed of, for example, a threaded bolt 71 and a nut 72, and fixes the rotor core 2a, the intermediate plate 4, and the rotor core 2b by sandwiching them from both sides in the axial direction. A rotor core assembly 14 having a cylindrical shape is fixed by shrink fitting to the shaft 1 inserted into the shaft hole 14a.
 焼嵌めとは、軸(例えば、シャフト1)と穴(例えば、軸穴14a)との嵌め合い方法の一種であり、常温では軸よりも小さい穴を加熱膨張させることで嵌め合わせ、堅く結合させる方法である。シャフト1とロータコア組立体14とが焼嵌めされた後に冷却されると両者は固着状態になり、相互でしっかりと固定され、分解できなくなる。 Shrink fitting is a type of fitting method between a shaft (e.g., shaft 1) and a hole (e.g., shaft hole 14a). At room temperature, a hole that is smaller than the shaft is heated and expanded to fit and firmly join. The method. When the shaft 1 and the rotor core assembly 14 are shrink-fitted and then cooled, the two become fixed and firmly fixed to each other and cannot be disassembled.
 また、ロータコア組立体14と2つの端板5a、5bを締結する第2締結部品8は、例えば、ねじボルト81及びナット82で構成され、端板5a、ロータコア組立体14及び端板5bを、軸方向両側から挟み込むようにして固定する。 A second fastening part 8 for fastening the rotor core assembly 14 and the two end plates 5a and 5b is composed of, for example, a threaded bolt 81 and a nut 82, and connects the end plate 5a, the rotor core assembly 14 and the end plate 5b to Fix by pinching from both sides in the axial direction.
 図1~図2に示されるように、ロータコア組立体14には、挿入穴13a(図1参照)以外にも、複数の穴が形成されている。具体的には、図2に示されるように、ロータコア組立体14には、第1締結部品7が配置される第1穴14b、及び第2締結部品8が配置される第2穴14cが、軸方向(矢印X方向)に貫通するように形成されている。図1~図2に示される例では、ロータ部20の周方向に、第1締結部品7と第2締結部品8とが交互に3つ設けられ、ロータコア組立体14には、各第1締結部品7に対応して第1穴14bが、各第2締結部品8に対応して第2穴14cが設けられている。図1に示される例では、3つの第1締結部品7及び3つの第2締結部品8は、中心軸Axを中心とした同一円に配置されている。 As shown in FIGS. 1 and 2, the rotor core assembly 14 is formed with a plurality of holes in addition to the insertion hole 13a (see FIG. 1). Specifically, as shown in FIG. 2, the rotor core assembly 14 has a first hole 14b in which the first fastening component 7 is arranged and a second hole 14c in which the second fastening component 8 is arranged. It is formed so as to penetrate in the axial direction (direction of arrow X). In the example shown in FIGS. 1 and 2, three first fastening components 7 and three second fastening components 8 are alternately provided in the circumferential direction of the rotor portion 20, and the rotor core assembly 14 includes each first fastening component. A first hole 14 b is provided corresponding to the component 7 , and a second hole 14 c is provided corresponding to each second fastening component 8 . In the example shown in FIG. 1, the three first fastening components 7 and the three second fastening components 8 are arranged on the same circle around the central axis Ax.
 また、図1に示されるように、ロータコア2には、軽量化及び、ロータコア組立体14がシャフト1に焼嵌めにより固定される際の加熱及び冷却における吸熱性及び放熱性の向上のために、肉抜き穴17が形成されている。 Further, as shown in FIG. 1, the rotor core 2 is provided with the A lightening hole 17 is formed.
 図3は、端板5の概略図である。以下、図2に基づき、図1及び図3を参照しつつ、端板5a、5bの構造について説明する。 FIG. 3 is a schematic diagram of the end plate 5. FIG. The structure of the end plates 5a and 5b will be described below based on FIG. 2 and with reference to FIGS. 1 and 3. FIG.
 図2に示されるように、各端板5a、5bは、非磁性体の板状部材で構成され、シャフト1が挿入される軸穴51(図3参照)が中央に設けられた円板形状を有している。端板5aは、第2締結部品8によってロータコア組立体14の左側に取り付けられ、ロータコア2aに形成された挿入穴13a(図1参照)の少なくとも一部を塞ぐように、ロータコア2aの左側面と接触して設けられる。端板5bは、第2締結部品8によってロータコア組立体14の右側に取り付けられ、ロータコア2bに形成された挿入穴13a(図1参照)の少なくとも一部を塞ぐように、ロータコア2bの右側面と接触して設けられる。 As shown in FIG. 2, each of the end plates 5a and 5b is made of a non-magnetic plate-like member, and has a disc shape with a shaft hole 51 (see FIG. 3) in the center for inserting the shaft 1. have. The end plate 5a is attached to the left side of the rotor core assembly 14 by the second fastening part 8, and is attached to the left side surface of the rotor core 2a so as to block at least a portion of the insertion hole 13a (see FIG. 1) formed in the rotor core 2a. provided in contact. The end plate 5b is attached to the right side of the rotor core assembly 14 by a second fastening part 8, and is fitted to the right side of the rotor core 2b so as to block at least a portion of the insertion hole 13a (see FIG. 1) formed in the rotor core 2b. provided in contact.
 端板5の内径Dsi(図3参照)は、ベアリング3の外径Dbo(図2参照)よりも大きいことが好ましい。この場合、ベアリング3がシャフト1に取り付けられた後でも、シャフト1に固定されたロータコア組立体14に、端板5を取り付けることができる。 The inner diameter Dsi (see FIG. 3) of the end plate 5 is preferably larger than the outer diameter Dbo of the bearing 3 (see FIG. 2). In this case, the end plate 5 can be attached to the rotor core assembly 14 fixed to the shaft 1 even after the bearing 3 is attached to the shaft 1 .
 端板5には、第1締結部品7が配置されるかわし穴52、及び第2締結部品8が配置される締結穴53が、軸方向(矢印X方向)に貫通するように形成されている。締結穴53は、かわし穴52とは別に設けられている。端板5において、対向するロータコア組立体14の第1穴14bと対向する位置にかわし穴52が設けられ、また、端板5において、ロータコア組立体14における第2穴14cと対向する位置に締結穴53が設けられている。図3に示される例では、端板5において周方向に、かわし穴52と締結穴53とが交互にそれぞれ3つ設けられている。 The end plate 5 is formed with a dodging hole 52 in which the first fastening component 7 is arranged and a fastening hole 53 in which the second fastening component 8 is arranged so as to penetrate in the axial direction (arrow X direction). . The fastening hole 53 is provided separately from the dodging hole 52 . In the end plate 5 , a dodging hole 52 is provided at a position facing the first hole 14 b of the opposing rotor core assembly 14 . A hole 53 is provided. In the example shown in FIG. 3, the end plate 5 is provided with three alternate holes 52 and three fastening holes 53 in the circumferential direction.
 なお、図1に示される例では、第1締結部品7による締結箇所、及び第2締結部品8による締結箇所がそれぞれ3箇所あり、各端板5にも同数である3つのかわし穴52及び締結穴53が設けられているものとして説明したが、特にこれに限定されない。例えば、第1締結部品7による締結箇所、及び第2締結部品8による締結箇所はそれぞれ、2箇所又は4箇所以上でも良く、第1締結部品7による締結箇所の数と第2締結部品8による締結箇所の数とは同数でなくてもよい。また例えば、各端板5に設けられるかわし穴52の数は、第1締結部品7による締結箇所の数以上であればよく、また、各端板5に設けられる締結穴53の数は、第2締結部品8による締結箇所の数以上であればよい。 In the example shown in FIG. 1 , there are three fastening locations by the first fastening component 7 and three fastening locations by the second fastening component 8 , and each end plate 5 also has the same number of three bypass holes 52 and fastening holes 52 . Although the hole 53 is provided in the description, the present invention is not particularly limited to this. For example, the number of fastening points by the first fastening part 7 and the number of fastening points by the second fastening part 8 may be two or four or more. It does not have to be the same number as the number of points. Further, for example, the number of bypass holes 52 provided in each end plate 5 should be equal to or greater than the number of fastening locations by the first fastening parts 7, and the number of fastening holes 53 provided in each end plate 5 may be 2 It is sufficient if the number is equal to or greater than the number of fastening points by the fastening parts 8 .
 図4は、図2に記載のQ1部の拡大図である。図5は、図2に記載のQ2部の拡大図である。以下、図4~図5に基づき、端板5のかわし穴52と、2つのロータコア2a、2b及び中間板4を締結する第1締結部品7との関係について説明する。 FIG. 4 is an enlarged view of the Q1 section shown in FIG. FIG. 5 is an enlarged view of the Q2 section shown in FIG. 4 and 5, the relationship between the bypass hole 52 of the end plate 5 and the first fastening part 7 that fastens the two rotor cores 2a and 2b and the intermediate plate 4 will be described.
 図4~図5に示されるように、第1締結部品7は、ロータコア組立体14の第1穴14bに挿入される軸部7bと、軸部7bの両端に設けられ、軸部7bの径D7bよりも大きい径D7aをもつ突起部7aと、を有する。第1締結部品7の端部を構成する突起部7aは、ロータコア組立体14のロータコア2a、2bから軸方向に突出し、端板5のかわし穴52に配置される。第1締結部品7がねじボルト71及びナット72で構成された図4~図5の例では、第1締結部品7における右側の突起部7aはねじボルト71のねじ頭であり、第1締結部品7における左側の突起部7aはナット72である。 As shown in FIGS. 4 and 5, the first fastening component 7 includes a shaft portion 7b inserted into the first hole 14b of the rotor core assembly 14, and provided at both ends of the shaft portion 7b. and a protrusion 7a having a diameter D7a larger than D7b. Projections 7 a that form the ends of the first fastening component 7 protrude axially from the rotor cores 2 a and 2 b of the rotor core assembly 14 and are arranged in the bypass holes 52 of the end plate 5 . In the example of FIGS. 4 and 5 in which the first fastening component 7 is composed of a screw bolt 71 and a nut 72, the right projection 7a of the first fastening component 7 is the screw head of the screw bolt 71, and the first fastening component 7 is a nut 72 .
 第1締結部品7の突起部7aの径D7aは、ロータコア組立体14におけるロータコア2の第1穴14bの径D14bよりも大きく、両側の突起部7aにより、軸方向(矢印X方向)においてロータコア2a、中間板4及びロータコア2bが挟み込まれている。 The diameter D7a of the protrusion 7a of the first fastening component 7 is larger than the diameter D14b of the first hole 14b of the rotor core 2 in the rotor core assembly 14, and the protrusions 7a on both sides allow the rotor core 2a to extend in the axial direction (arrow X direction). , the intermediate plate 4 and the rotor core 2b are sandwiched.
 図4及び図5に示されるように、端板5のかわし穴52は、対向して設けられたロータコア組立体14の第1穴14bよりも大きい。すなわち、端板5のかわし穴52の径D52は、ロータコア2における第1穴14bの径D14bよりも大きい。また、端板5のかわし穴52の径D52は、第1締結部品7の突起部7aの径D7aよりも大きい。これにより、端板5では、第1締結部品7のねじボルト71のねじ頭及びナット72といった突起部7aを、かわし穴52によってかわし、端板5と接触しない。すなわち、第1締結部品7は、突起部7aがロータコア2と接することでロータコア組立体14の構成部材を締結するが、突起部7aが端板5とは干渉しない。したがって、ロータコア組立体14が第1締結部品7により締結された後でも、ロータコア組立体14に端板5を取り付けることができる。  As shown in Figures 4 and 5, the clearance hole 52 of the end plate 5 is larger than the first hole 14b of the rotor core assembly 14 provided opposite thereto. That is, the diameter D52 of the replacement hole 52 in the end plate 5 is larger than the diameter D14b of the first hole 14b in the rotor core 2. As shown in FIG. Also, the diameter D52 of the bypass hole 52 of the end plate 5 is larger than the diameter D7a of the protrusion 7a of the first fastening component 7 . As a result, in the end plate 5 , the screw head of the screw bolt 71 and the nut 72 of the first fastening part 7 are deflected by the projections 7 a such as the nut 72 , and are not brought into contact with the end plate 5 . That is, the projections 7 a of the first fastening component 7 fasten the components of the rotor core assembly 14 by coming into contact with the rotor core 2 , but the projections 7 a do not interfere with the end plates 5 . Therefore, the end plate 5 can be attached to the rotor core assembly 14 even after the rotor core assembly 14 is fastened by the first fastening component 7 .
 なお、図4及び図5に示される例では、端板5における円形状のかわし穴52の中心と第1締結部品7における突起部7aの中心とが略一致するものとして説明したが、かわし穴52の形状、大きさ及び位置は、特にこれに限定されない。第1締結部品7においてロータコア組立体14から突出した突起部7aが端板5を挟み込まないようにかわし穴52が形成されていればよい。 In the examples shown in FIGS. 4 and 5, the center of the circular bypass hole 52 in the end plate 5 and the center of the protrusion 7a in the first fastening part 7 are substantially aligned. The shape, size and position of 52 are not particularly limited to this. It is sufficient that the first fastening part 7 is formed with the evasion hole 52 so that the end plate 5 is not pinched by the protrusion 7a protruding from the rotor core assembly 14 .
 図6は、図2に記載のQ3の拡大図である。図7は、図2に記載のQ4の拡大図である。以下、図6~図7に基づき、端板5の締結穴53と、2つの端板5a及びロータコア組立体14を締結する第2締結部品8との関係について説明する。 FIG. 6 is an enlarged view of Q3 shown in FIG. FIG. 7 is an enlarged view of Q4 shown in FIG. 6 and 7, the relationship between the fastening hole 53 of the end plate 5 and the second fastening part 8 that fastens the two end plates 5a and the rotor core assembly 14 will be described.
 図6及び図7に示されるように、第2締結部品8は、ロータコア組立体14の第2穴14c及び端板5の締結穴53に挿入される軸部8bと、軸部8bの両端に設けられ、軸部8bの径D8bよりも大きい径D8aをもつ端部8aと、を有する。第2締結部品8の端部8aは、端板5から軸方向に突出している。第2締結部品8がねじボルト81及びナット82で構成された図6~図7の例では、第2締結部品8における右側の端部8aはねじボルト81のねじ頭であり、第2締結部品8における左側の端部8aはナット82である。 As shown in FIGS. 6 and 7, the second fastening component 8 includes a shaft portion 8b inserted into the second hole 14c of the rotor core assembly 14 and the fastening hole 53 of the end plate 5, and a shaft portion 8b at both ends of the shaft portion 8b. and an end portion 8a having a diameter D8a larger than the diameter D8b of the shaft portion 8b. An end portion 8 a of the second fastening component 8 protrudes axially from the end plate 5 . In the example of FIGS. 6 and 7 in which the second fastening component 8 is composed of a screw bolt 81 and a nut 82, the right end 8a of the second fastening component 8 is the screw head of the screw bolt 81, and the second fastening component 8 is a nut 82 at the left end 8a.
 第2締結部品8の端部8aの径D8aは、ロータコア組立体14におけるロータコア2の第2穴14cの径及び端板5の締結穴53の径D53よりも大きい。両側の端部8aにより、軸方向(矢印X方向)において端板5a、ロータコア組立体14及び端板5bが挟み込まれている。つまり、端板5は、締結穴53を介して第2締結部品8によりロータコア組立体14と固定されている。図6及び図7に示される例では、ロータコア2における第2穴14cの大きさと端板5の締結穴53の大きさとは同一であるものとし、第2穴14cの径は図示を省略している。 The diameter D8a of the end portion 8a of the second fastening component 8 is larger than the diameter D53 of the second hole 14c of the rotor core 2 and the fastening hole 53 of the end plate 5 in the rotor core assembly 14 . The end plate 5a, the rotor core assembly 14, and the end plate 5b are sandwiched between the ends 8a on both sides in the axial direction (direction of arrow X). That is, the end plate 5 is fixed to the rotor core assembly 14 by the second fastening component 8 through the fastening hole 53 . In the examples shown in FIGS. 6 and 7, the size of the second hole 14c in the rotor core 2 and the size of the fastening hole 53 in the end plate 5 are the same, and the diameter of the second hole 14c is not shown. there is
 なお、第1締結部品7及び第2締結部品8それぞれは、上記のように、ねじボルトとナットとを組み合わせた締結部品に限定されず、また、第1締結部品7と第2締結部品8とは異なる締結部品で構成されてもよい。第1締結部品7及び第2締結部品8のそれぞれは、例えば、リベット等の他の締結部品で構成することができる。この場合において、端板5に形成されたかわし穴52の径D52は、第1締結部品7を構成するリベットのリベット頭の径よりも大きく、端板5に形成された締結穴53の径D53は、第2締結部品8を構成するリベットのリベット頭の径よりも小さいものとされる。また、第2締結部品8においてナット82の代わりに端板5aにおける締結穴53をねじ穴とし、このねじ穴にねじボルト81の先端がねじ固定されることで、端板5a、ロータコア組立体14及び端板5bを締結する構成としてもよい。 It should be noted that each of the first fastening component 7 and the second fastening component 8 is not limited to a fastening component in which a threaded bolt and a nut are combined as described above, and the first fastening component 7 and the second fastening component 8 may consist of different fasteners. Each of the first fastening part 7 and the second fastening part 8 can be composed of other fastening parts such as rivets, for example. In this case, the diameter D52 of the deflecting hole 52 formed in the end plate 5 is larger than the diameter D53 of the rivet head of the rivet forming the first fastening component 7, and the diameter D53 of the fastening hole 53 formed in the end plate 5 is smaller than the diameter of the rivet head of the rivet forming the second fastening component 8 . Further, in the second fastening part 8, the fastening hole 53 in the end plate 5a is used instead of the nut 82 as a threaded hole, and the tip of the threaded bolt 81 is screwed into this threaded hole, whereby the end plate 5a and the rotor core assembly 14 are connected. and the end plate 5b may be fastened.
 また、ロータコア組立体14に形成された第1穴14bの径D14bは、軸方向(矢印X方向)において同じ大きさでなくともよい。例えば、ロータコア組立体14において、中間板4における第1穴14bは、ロータコア2における第1穴14bの径D14bよりも大きい径をもつ構成とされてもよい。この場合において、各端板5a、5bと中間板4とは、同じ形状及び同じ材質の同一部品であってもよい。このような構成により、ロータ100の構成部品の種類を削減することができる。 Also, the diameter D14b of the first hole 14b formed in the rotor core assembly 14 does not have to be the same size in the axial direction (arrow X direction). For example, in the rotor core assembly 14, the first hole 14b in the intermediate plate 4 may be configured to have a larger diameter than the diameter D14b of the first hole 14b in the rotor core 2. In this case, the end plates 5a, 5b and the intermediate plate 4 may be the same parts of the same shape and material. With such a configuration, the types of components of the rotor 100 can be reduced.
 また、第1締結部品7と第2締結部品8とを、同じ形状且つ同じ材質で構成された同一部品とすることによっても、ロータ100の構成部品の種類を削減することができる。また、これらの締結部品の材質を非磁性材とすることで、締結部品に発生する渦電流損を低減することもできる。 Also, by making the first fastening part 7 and the second fastening part 8 the same part having the same shape and made of the same material, it is possible to reduce the types of components of the rotor 100 . Further, by using a non-magnetic material for these fastening parts, eddy current loss generated in the fastening parts can be reduced.
 図8は、図1に記載の挿入穴13aを通るB-B断面で切ったロータ100の断面図である。上述したように、各ロータコア2a、2bには軸方向(矢印X方向)に貫通した挿入穴13aが形成されており、各挿入穴13aに、磁石12が収納されている。各ロータコア2a、2bにおいて、各挿入穴13aの両端は、磁石12がロータ部20の外へ飛び出さないように一部又は全部が塞がれている。具体的には、左側のロータコア2aにおいて、挿入穴13aの左側は端板5aにより一部又は全部が覆われ、挿入穴13aの右側は中間板4により一部又は全部が覆われている。また、右側のロータコア2bにおいて、挿入穴13aの左側は中間板4により一部又は全部が覆われ、挿入穴13aの右側は端板5bにおり一部又は全部が覆われている。 FIG. 8 is a sectional view of the rotor 100 taken along the line BB passing through the insertion hole 13a shown in FIG. As described above, each of the rotor cores 2a and 2b is formed with an insertion hole 13a penetrating therethrough in the axial direction (the direction of the arrow X), and the magnet 12 is housed in each insertion hole 13a. In each rotor core 2a, 2b, both ends of each insertion hole 13a are partially or wholly closed so that the magnets 12 do not protrude out of the rotor section 20. As shown in FIG. Specifically, in the left rotor core 2a, the left side of the insertion hole 13a is partially or entirely covered with the end plate 5a, and the right side of the insertion hole 13a is partially or entirely covered with the intermediate plate 4. In the rotor core 2b on the right side, the left side of the insertion hole 13a is partially or wholly covered by the intermediate plate 4, and the right side of the insertion hole 13a is partially or wholly covered by the end plate 5b.
 また、シャフト1における外周面の一部には、キー15が設けられている。キー15は、シャフト1の軸方向(矢印X方向)においてロータ部20のロータコア組立体14が焼嵌めにより固定される位置に設けられている。キー15は、回転電機の運転時に生じるトルクによってロータコア組立体14のロータコア2a、2bとシャフト1とが滑らないように補強するものである。ロータコア組立体14の2つのロータコア2a、2bは、端板5及び中間板4を介さずに、直接シャフト1に焼嵌めにより固定されている。 A key 15 is provided on a part of the outer peripheral surface of the shaft 1 . The key 15 is provided at a position where the rotor core assembly 14 of the rotor portion 20 is fixed by shrink fitting in the axial direction of the shaft 1 (direction of arrow X). The key 15 serves to reinforce the rotor cores 2a, 2b of the rotor core assembly 14 and the shaft 1 from slipping due to torque generated during operation of the rotating electric machine. The two rotor cores 2a and 2b of the rotor core assembly 14 are directly fixed to the shaft 1 by shrink fitting without the end plate 5 and the intermediate plate 4 interposed therebetween.
 図9は、図1に記載されたロータ100の製造工程の第1工程を説明する説明図である。図10は、図1に記載されたロータ100の製造工程の第2工程を説明する説明図である。図11は、図1に記載されたロータ100の製造工程の第3工程を説明する説明図である。図12は、図1に記載されたロータ100の製造工程の第4工程を説明する説明図である。以下、図9~図12に基づき、ロータ100の製造方法について説明する。 FIG. 9 is an explanatory diagram explaining the first step of the manufacturing process of the rotor 100 shown in FIG. 10A and 10B are explanatory diagrams for explaining the second step of the manufacturing process of the rotor 100 shown in FIG. 11A and 11B are explanatory diagrams for explaining the third step of the manufacturing process of the rotor 100 shown in FIG. 12A and 12B are explanatory diagrams for explaining the fourth step of the manufacturing process of the rotor 100 shown in FIG. A method for manufacturing the rotor 100 will be described below with reference to FIGS. 9 to 12. FIG.
 ロータ100の製造方法は、2つのロータコア2a、2bと中間板4とを締結してロータコア組立体14を得る第1工程(図9)と、ロータコア組立体14をシャフト1の外周面に取り付ける第2工程(図10)と、2つのロータコア2a、2bそれぞれに磁石12を収納する第3工程(図11)と、ロータコア組立体14に端板5a、5bを取り付ける第4工程(図12)と、を有している。第1工程、第2工程、第3工程、及び第4工程の順に実施される。 The method of manufacturing rotor 100 includes a first step ( FIG. 9 ) of obtaining rotor core assembly 14 by fastening two rotor cores 2 a and 2 b and intermediate plate 4 , and a second step of attaching rotor core assembly 14 to the outer peripheral surface of shaft 1 . 2 step (FIG. 10), a third step (FIG. 11) of housing the magnets 12 in the two rotor cores 2a and 2b respectively, and a fourth step (FIG. 12) of attaching the end plates 5a and 5b to the rotor core assembly 14. ,have. It implements in order of a 1st process, a 2nd process, a 3rd process, and a 4th process.
 図9に示される第1工程では、シャフト1の軸方向(矢印X方向)に配列された2つのロータコア2a、2bと、2つのロータコア2a、2bの間に配置された非磁性体の中間板4と、が第1締結部品7により締結される。第1工程により、2つのロータコア2a、2bと中間板4とが一体化したロータコア組立体14が得られる。 In the first step shown in FIG. 9, two rotor cores 2a and 2b arranged in the axial direction (arrow X direction) of the shaft 1 and a non-magnetic intermediate plate disposed between the two rotor cores 2a and 2b 4 and are fastened by the first fastening component 7 . Through the first step, a rotor core assembly 14 in which the two rotor cores 2a, 2b and the intermediate plate 4 are integrated is obtained.
 ところで、一般に、ロータコア2を構成する複数の電磁鋼板は、ロータ100の組立中に各電磁鋼板が分離するのを防止するためにVカシメ又は丸カシメにより予めかしめられている。本開示では、シャフト1へ取り付ける第2工程よりも前の第1工程において、ロータコア組立体14の各構成部材を第1締結部品7によりねじ締結される際、ロータコア2を構成する複数の電磁鋼板も一体化されるので、事前に複数の電磁鋼板を結合する必要がない。よって、本開示では、複数の電磁鋼板を、互いにカシメていないカシメレスとすることができ、従来のカシメ工程が不要となり、生産性が良くなる。 By the way, generally, the plurality of magnetic steel sheets forming the rotor core 2 are crimped in advance by V crimping or round crimping in order to prevent the magnetic steel sheets from separating during assembly of the rotor 100 . In the present disclosure, in the first step prior to the second step of attaching to the shaft 1, when each constituent member of the rotor core assembly 14 is screw-fastened by the first fastening parts 7, the plurality of electromagnetic steel sheets forming the rotor core 2 are are also integrated, there is no need to combine a plurality of electromagnetic steel sheets in advance. Therefore, in the present disclosure, a plurality of electromagnetic steel sheets can be crimpless, which is not crimped to each other, and the conventional crimping process becomes unnecessary, improving productivity.
 図10に示される第2工程では、第1工程で得られたロータコア組立体14の軸穴14aにシャフト1が挿入され、シャフト1の外周面とロータコア組立体14の軸穴14aとが焼嵌めにより固定される。第2工程により、ロータコア組立体14の2つのロータコア2a、2bが、端板5及び中間板4を介さずに直接シャフト1に固定される。第2工程において、焼嵌めの後、冷却が行われる。 In the second step shown in FIG. 10, the shaft 1 is inserted into the shaft hole 14a of the rotor core assembly 14 obtained in the first step, and the outer peripheral surface of the shaft 1 and the shaft hole 14a of the rotor core assembly 14 are shrink-fitted. fixed by By the second step, the two rotor cores 2a and 2b of the rotor core assembly 14 are fixed directly to the shaft 1 without the end plate 5 and the intermediate plate 4 interposed therebetween. In a second step, cooling takes place after shrink fitting.
 なお、第2工程では、ロータコア組立体14の軸穴14aにシャフト1が挿入された後、さらにベアリング3の軸穴3aにシャフト1が挿入され、その後、ベアリング3及びロータコア組立体14のそれぞれが、シャフト1と焼嵌めにより固定されてもよい。これにより、一度の焼嵌め及び冷却の工程で、シャフト1に、ロータコア組立体14及びベアリング3の双方を取り付けることができる。 In the second step, after the shaft 1 is inserted into the shaft hole 14a of the rotor core assembly 14, the shaft 1 is further inserted into the shaft hole 3a of the bearing 3, and then the bearing 3 and the rotor core assembly 14 are respectively , may be fixed to the shaft 1 by shrink fitting. As a result, both the rotor core assembly 14 and the bearing 3 can be attached to the shaft 1 in a single shrink fitting and cooling process.
 図11に示される第3工程では、第2工程で冷却が行われた後、各ロータコア2の挿入穴13aに、磁石12が挿入される。挿入された磁石12の一端は、中間板4に当接する。 In the third step shown in FIG. 11, the magnets 12 are inserted into the insertion holes 13a of the rotor cores 2 after cooling in the second step. One end of the inserted magnet 12 contacts the intermediate plate 4 .
 図12に示される第4工程では、ロータコア組立体14における軸方向(矢印X方向)の両側に端板5a、5bが配置され、第2締結部品8によりロータコア組立体14と端板5a、5bとが締結される。このとき、第1締結部品7の突起部7aは、端板5a、5bのかわし穴52に配置される。第4工程により、ロータコア組立体14における軸方向(矢印X方向)の両側において、端板5a、5bにより、挿入穴13aの一部又は全部が塞がれる。 In a fourth step shown in FIG. 12, the end plates 5a and 5b are arranged on both sides of the rotor core assembly 14 in the axial direction (the direction of the arrow X), and the rotor core assembly 14 and the end plates 5a and 5b are connected by the second fastening parts 8. is concluded. At this time, the projecting portion 7a of the first fastening part 7 is arranged in the dodge hole 52 of the end plates 5a, 5b. In the fourth step, the insertion hole 13a is partially or wholly closed by the end plates 5a, 5b on both sides in the axial direction (arrow X direction) of the rotor core assembly 14. As shown in FIG.
 図3に示されるように各端板5a、5bが一部材で形成されている場合、第4工程では、各端板5a、5bの軸穴51にシャフト1が挿入され、端板5aはロータコア組立体14に左側から、端板5bはロータコア組立体14に右側から取り付けられる。端板5a、5bの内径Dsi(図3)がベアリング3の外径Dbo(図2)よりも大きい構成とすることで、第2工程でシャフト1にベアリング3が固定された後でも、第4工程において端板5a、5bをロータコア組立体14に取り付けることができる。 When the end plates 5a and 5b are formed of one member as shown in FIG. 3, in the fourth step, the shaft 1 is inserted into the shaft holes 51 of the end plates 5a and 5b, and the end plate 5a is formed into the rotor core. The end plate 5b is attached to the rotor core assembly 14 from the right side, while the assembly 14 is attached from the left side. By making the inner diameter Dsi (FIG. 3) of the end plates 5a and 5b larger than the outer diameter Dbo (FIG. 2) of the bearing 3, even after the bearing 3 is fixed to the shaft 1 in the second step, the fourth The end plates 5a, 5b can be attached to the rotor core assembly 14 in a process.
 以上のように、実施の形態1のロータ100は、シャフト1と、シャフト1の軸方向(矢印X方向)に配列された2つのロータコア2a、2bを有し、シャフト1の外周面に取り付けられたロータコア組立体14と、を備える。また、ロータ100は、2つのロータコア2a、2bそれぞれに収納された磁石12と、ロータコア組立体14の軸方向(矢印X方向)の両側に配置された端板5a、5bと、を備える。2つのロータコア2a、2bそれぞれには、磁石12の挿入穴13aが設けられる。ロータコア組立体14は、2つのロータコア2a、2bの間に配置され、非磁性体で構成された中間板4と、2つのロータコア2a、2bと中間板4とを締結する第1締結部品7と、を有する。第1締結部品7は、2つのロータコア2a、2bから軸方向(矢印X方向)に突出した突起部7aを有する。中間板4及び2つのロータコア2a、2bには、第1締結部品7が挿入される第1穴14bが設けられ、2つのロータコア2a、2bにおける第1穴14bの径D14bは突起部7aの径D7aよりも小さく、端板5a、5bには、第1締結部品7の突起部7aの径D7aよりも大きい径D52を有するかわし穴52が設けられる。端板5a、5bは、ロータコア2a、2bに形成された挿入穴13aの一部又は全部を塞ぐように設けられ、端板5a、5bのかわし穴52に、第1締結部品7の突起部7aが配置される。ロータコア組立体14は、2つのロータコア2a、2bが直接シャフト1に焼嵌めされることによりシャフト1に取り付けられている。 As described above, rotor 100 of Embodiment 1 has shaft 1 and two rotor cores 2a and 2b arranged in the axial direction (arrow X direction) of shaft 1, and is attached to the outer peripheral surface of shaft 1. and a rotor core assembly 14 . The rotor 100 also includes magnets 12 housed in the two rotor cores 2a and 2b, respectively, and end plates 5a and 5b arranged on both sides of the rotor core assembly 14 in the axial direction (the arrow X direction). An insertion hole 13a for the magnet 12 is provided in each of the two rotor cores 2a and 2b. The rotor core assembly 14 is arranged between the two rotor cores 2a and 2b and includes an intermediate plate 4 made of a non-magnetic material and a first fastening part 7 that fastens the intermediate plate 4 to the two rotor cores 2a and 2b. , have The first fastening component 7 has projections 7a projecting in the axial direction (direction of arrow X) from the two rotor cores 2a and 2b. The intermediate plate 4 and the two rotor cores 2a and 2b are provided with first holes 14b into which the first fastening parts 7 are inserted. A bypass hole 52 having a diameter D52 smaller than D7a and larger than the diameter D7a of the protrusion 7a of the first fastening component 7 is provided in the end plates 5a, 5b. The end plates 5a and 5b are provided so as to block part or all of the insertion holes 13a formed in the rotor cores 2a and 2b. is placed. The rotor core assembly 14 is attached to the shaft 1 by shrink fitting the two rotor cores 2a, 2b directly onto the shaft 1. As shown in FIG.
 これにより、2つのロータコア2a、2bと中間板4とを締結する第1締結部品7を有し、2つのロータコア2a、2bが端板5a、5b及び中間板4を介さずに直接シャフト1に焼嵌めされることによりロータコア組立体14がシャフト1に取り付けられる。そして、端板5a、5bには、第1締結部品7の突起部7aの径D7aよりも大きい径D52を有するかわし穴52が設けられ、端板5a、5bのかわし穴52に、第1締結部品7の突起部7aが配置される。したがって、中間板4と2つのロータコア2a、2bとを一体化した状態で焼嵌めを行った後、各ロータコア2a、2bの挿入穴13aを介して磁石12を挿入できる。また、その後、ロータコア組立体14の両側に、第1締結部品7の突起部7aと干渉させずに端板5a、5bを配置することができる。よって、ロータコア組立体14をシャフト1に取り付ける際における焼嵌め工程が一度で済むのでロータ100の生産性がよく、且つ、この焼嵌め工程の後に磁石12が挿入されるので熱による磁石12の特性劣化を抑制できる。また、焼嵌めでロータコア組立体14をシャフト1に固定できるので圧入で固定される場合と比べて固定設備の大型化をロータ100のサイズによらずに回避できる。 As a result, the two rotor cores 2a, 2b and the intermediate plate 4 are connected directly to the shaft 1 without the end plates 5a, 5b and the intermediate plate 4 interposed therebetween. The rotor core assembly 14 is attached to the shaft 1 by shrink fitting. The end plates 5a and 5b are provided with bypass holes 52 having a diameter D52 larger than the diameter D7a of the protrusion 7a of the first fastening component 7, and the bypass holes 52 of the end plates 5a and 5b are used for the first fastening. A projecting portion 7a of the component 7 is arranged. Therefore, the magnets 12 can be inserted through the insertion holes 13a of the rotor cores 2a and 2b after the intermediate plate 4 and the two rotor cores 2a and 2b are integrated and shrink-fitted. Moreover, after that, the end plates 5 a and 5 b can be arranged on both sides of the rotor core assembly 14 without interfering with the protrusion 7 a of the first fastening component 7 . Therefore, the rotor core assembly 14 can be attached to the shaft 1 only by one shrink-fitting process, so the productivity of the rotor 100 is high. Deterioration can be suppressed. In addition, since the rotor core assembly 14 can be fixed to the shaft 1 by shrink fitting, it is possible to avoid an increase in the size of fixing equipment regardless of the size of the rotor 100 compared to the case where it is fixed by press fitting.
 さらには、本開示では、従来のように端板5a、5b及び中間板4でロータコア2a、2bを保持するのではなく、ロータコア2a、2bを直接シャフト1に焼嵌めするので、端板5a、5b及び中間板4に強度が要求されない。よって、端板5a、5b及び中間板4の板厚を従来よりも薄くして材料費を削減することができる。 Furthermore, in the present disclosure, the rotor cores 2a, 2b are directly shrink-fitted onto the shaft 1 instead of being held by the end plates 5a, 5b and the intermediate plate 4 as in the conventional art. 5b and intermediate plate 4 are not required to be strong. Therefore, the plate thickness of the end plates 5a, 5b and the intermediate plate 4 can be made thinner than before, and the material cost can be reduced.
 さらには、本開示では、シャフト1への固定前に中間板4とロータコア2a、2bとがねじ固定される構成であるので、ロータコア2a、2bに対して十分な締結力がかかり、従来のようなスプリングピン等の補強部品が不要となる。よって、部品の種類を従来よりも削減できる。 Furthermore, in the present disclosure, since the intermediate plate 4 and the rotor cores 2a and 2b are screw-fixed before being fixed to the shaft 1, a sufficient fastening force is applied to the rotor cores 2a and 2b. This eliminates the need for reinforcing parts such as spring pins. Therefore, the types of parts can be reduced more than before.
 また、中間板4と端板5a、5bとは、同じ形状且つ同じ材質の一又は複数の板状部材で構成されている。これにより、ロータ100の構成部品の種類を削減することができる。 In addition, the intermediate plate 4 and the end plates 5a and 5b are composed of one or a plurality of plate-like members having the same shape and the same material. As a result, the types of component parts of the rotor 100 can be reduced.
 また、ロータ100は、ロータコア組立体14と端板5a、5bとを締結する第2締結部品8をさらに備える。中間板4及び2つのロータコア2a、2bには、第2締結部品8が挿入される第2穴14cが設けられ、端板5a、5bには、かわし穴52とは別の締結穴53が設けられている。そして、端板5a、5bは、締結穴53を介して第2締結部品8によりロータコア組立体14と固定されている。 Further, the rotor 100 further includes a second fastening component 8 that fastens the rotor core assembly 14 and the end plates 5a, 5b. The intermediate plate 4 and the two rotor cores 2a and 2b are provided with second holes 14c into which the second fastening parts 8 are inserted, and the end plates 5a and 5b are provided with fastening holes 53 separate from the bypass holes 52. It is The end plates 5 a and 5 b are fixed to the rotor core assembly 14 by the second fastening parts 8 through fastening holes 53 .
 これにより、ロータコア組立体14に磁石12が挿入された後で端板5a、5bが後付けされる構成であっても、第2締結部品8により、ロータコア組立体14に端板5a、5bを固定することができ、端板5a、5bが外れることを防止できる。 As a result, even if the end plates 5a and 5b are retrofitted after the magnets 12 are inserted into the rotor core assembly 14, the end plates 5a and 5b are fixed to the rotor core assembly 14 by the second fastening parts 8. It is possible to prevent the end plates 5a and 5b from coming off.
 また、第1締結部品7と第2締結部品8とは、同じ形状且つ同じ材質で構成されている。これにより、ロータ100の構成部品の種類を更に削減することができる。 Also, the first fastening part 7 and the second fastening part 8 are configured with the same shape and the same material. As a result, the types of components of the rotor 100 can be further reduced.
 また、ロータ100は、シャフト1に取り付けられたベアリング3を備え、ロータコア組立体14は、円筒形状を有し、端板5a、5bは、ベアリング3の外径Dboよりも大きい内径Dsiをもつ円板形状を有する。これにより、シャフト1にベアリング3が固定された後でも、シャフト1の両側から端板5a、5bをロータコア組立体14に取り付けることができる。 The rotor 100 also includes a bearing 3 mounted on the shaft 1, the rotor core assembly 14 has a cylindrical shape, and the end plates 5a, 5b are circular with an inner diameter Dsi larger than the outer diameter Dbo of the bearing 3. It has a plate shape. As a result, the end plates 5 a and 5 b can be attached to the rotor core assembly 14 from both sides of the shaft 1 even after the bearings 3 are fixed to the shaft 1 .
 また、2つのロータコア2a、2bそれぞれは、軸方向(矢印X方向)に積層された複数の電磁鋼板で構成され、ロータコア2a、2bを構成する複数の電磁鋼板は、第1締結部品7により一体化されている。これにより、ロータコア組立体14の各構成部材が第1締結部品7によりねじ締結される際、複数の電磁鋼板も一体化されるので、事前に複数の電磁鋼板を結合する従来のカシメ工程が不要となり、生産性が更に良くなる。 Each of the two rotor cores 2a and 2b is composed of a plurality of electromagnetic steel sheets laminated in the axial direction (the direction of the arrow X), and the plurality of electromagnetic steel sheets forming the rotor cores 2a and 2b are integrated by a first fastening part 7. has been made As a result, when the components of the rotor core assembly 14 are screw-fastened by the first fastening part 7, the plurality of electromagnetic steel sheets are also integrated, so the conventional caulking process for joining the plurality of electromagnetic steel sheets in advance is unnecessary. and the productivity is further improved.
 また、第1締結部品7は、ねじ(例えば、ねじボルト71)及びナット72、あるいはリベットで構成されている。これにより、従来よりも汎用性のある簡易な部品で、ロータ100を構成することができる。 Also, the first fastening component 7 is composed of a screw (for example, a screw bolt 71) and a nut 72, or a rivet. As a result, the rotor 100 can be configured with more general-purpose and simple parts than in the past.
 また、実施の形態1のロータの製造方法は、第1工程と、第2工程と、第3工程と、第4工程と、を有する。第1工程では、シャフト1の軸方向に配列された2つのロータコア2a、2bと、2つのロータコア2a、2bの間に配置され、非磁性体で構成された中間板4と、を中間板4及び2つのロータコア2a、2bに設けられた第1穴14bに第1締結部品7を挿入して第1締結部品7により締結することでロータコア組立体14を得る。第2工程では、2つのロータコア2a、2bを直接シャフト1に焼嵌めすることでロータコア組立体14をシャフト1の外周面に取り付ける。第3工程では、2つのロータコア2a、2bに設けられた挿入穴13aを介して、2つのロータコア2a、2bそれぞれに磁石12を収納する。第4工程では、ロータコア組立体14の軸方向の両側に、挿入穴13aの一部又は全部を塞ぐように端板5a、5bを配置し、第1締結部品7において2つのロータコア2a、2bから突出した部分であってロータコアにおける第1穴14bの径D14bよりも大きい径D7aを有する突起部7aを、端板5a、5bに設けられた、突起部7aの径D7aよりも大きい径D52を有するかわし穴52に配置する。 Further, the rotor manufacturing method of Embodiment 1 has a first step, a second step, a third step, and a fourth step. In the first step, two rotor cores 2a and 2b arranged in the axial direction of the shaft 1 and an intermediate plate 4 which is arranged between the two rotor cores 2a and 2b and made of a non-magnetic material are inserted into the intermediate plate 4. The rotor core assembly 14 is obtained by inserting the first fastening parts 7 into the first holes 14b provided in the two rotor cores 2a and 2b and fastening them with the first fastening parts 7. As shown in FIG. In the second step, the rotor core assembly 14 is attached to the outer peripheral surface of the shaft 1 by directly shrink-fitting the two rotor cores 2 a and 2 b onto the shaft 1 . In the third step, the magnets 12 are accommodated in the two rotor cores 2a and 2b through the insertion holes 13a provided in the two rotor cores 2a and 2b. In the fourth step, end plates 5a and 5b are arranged on both sides of the rotor core assembly 14 in the axial direction so as to block part or all of the insertion hole 13a. A protruding portion 7a which is a projecting portion and has a diameter D7a larger than the diameter D14b of the first hole 14b in the rotor core, and a diameter D52 larger than the diameter D7a of the protruding portion 7a provided on the end plates 5a and 5b. It is placed in the dodge hole 52 .
 これにより、第2工程で、ロータコア2a、2bを端板5a、5b及び中間板4を介さずに直接シャフト1に固定した後、第3工程で磁石12を収納し、その後、第4工程で端板5a、5bを取り付けて挿入穴13aの一部又は全部を塞ぐことができる。よって、ロータコア組立体14をシャフト1に取り付ける際における焼嵌め工程が一度で済むのでロータ100の生産性がよい。且つ、焼嵌めでロータコア組立体14をシャフト1に固定できるので圧入で固定される場合と比べて固定設備の大型化をロータ100のサイズによらずに回避できる。 Thus, in the second step, the rotor cores 2a, 2b are fixed directly to the shaft 1 without the end plates 5a, 5b and the intermediate plate 4, and then the magnets 12 are accommodated in the third step. The end plates 5a and 5b can be attached to block part or all of the insertion hole 13a. Therefore, the rotor core assembly 14 can be attached to the shaft 1 only by one shrink-fitting process, so the productivity of the rotor 100 is good. In addition, since the rotor core assembly 14 can be fixed to the shaft 1 by shrink fitting, it is possible to avoid an increase in the size of fixing equipment regardless of the size of the rotor 100 compared to the case where it is fixed by press fitting.
実施の形態2.
 図13は、実施の形態2に係るロータ100の端板5の概略図である。実施の形態2では、各端板5a、5bが、周方向において複数枚に分割されている点で、実施の形態1の場合とは異なる。
Embodiment 2.
FIG. 13 is a schematic diagram of the end plate 5 of the rotor 100 according to the second embodiment. The second embodiment differs from the first embodiment in that each of the end plates 5a and 5b is divided into a plurality of pieces in the circumferential direction.
 実施の形態2では、端板5は、複数枚の扇形形状の板状部材で構成されている。図13に示される例では、端板5は周方向に2分割され、扇形形状の第1端板部50a及び第2端板部50bで構成されている。なお、端板5は、周方向において3つ以上の端板部に分割されてもよい。また、中間板4は、端板5と同様に、複数に分割された構成としてもよい。 In Embodiment 2, the end plate 5 is composed of a plurality of fan-shaped plate members. In the example shown in FIG. 13, the end plate 5 is divided into two in the circumferential direction, and is composed of a fan-shaped first end plate portion 50a and a second end plate portion 50b. Note that the end plate 5 may be divided into three or more end plate portions in the circumferential direction. Further, the intermediate plate 4 may be divided into a plurality of pieces like the end plate 5 .
 端板5の内径Dsiは、例えば、シャフト1の軸径よりも若干大きい程度とすることができる。なお、端板5の内径Dsiは特にこれに限定されない。図1に示されるように、ロータコア組立体14における挿入穴13aから磁石12(図8)が飛び出ないように挿入穴13aの少なくとも一部を端板5が覆うことができ、且つ、シャフト1の軸径よりも大きい内径Dsi(図13)を有していればよい。 The inner diameter Dsi of the end plate 5 can be made slightly larger than the axial diameter of the shaft 1, for example. Note that the inner diameter Dsi of the end plate 5 is not particularly limited to this. As shown in FIG. 1, the end plate 5 can cover at least a portion of the insertion hole 13a in the rotor core assembly 14 so that the magnet 12 (FIG. 8) does not protrude from the insertion hole 13a. It is only necessary to have an inner diameter Dsi (FIG. 13) that is larger than the shaft diameter.
 以上のように、実施の形態2のロータ100は、シャフト1に取り付けられたベアリング3を備え、ロータコア組立体14は、円筒形状を有し、端板5a、5bは、複数枚の扇形形状の板状部材で構成されている。 As described above, the rotor 100 of Embodiment 2 includes the bearing 3 attached to the shaft 1, the rotor core assembly 14 has a cylindrical shape, and the end plates 5a, 5b are a plurality of fan-shaped end plates. It is composed of a plate-like member.
 これにより、端板5a、5bがロータコア組立体14に取り付けられる際、シャフト1に通す必要がない。したがって、実施の形態2のロータ100においても、実施の形態1において端板5の内径Dsiをベアリング3の外径Dboよりも大きい構成とした場合と同様の効果が得られる。すなわち、製造工程において、ベアリング3がシャフト1に固定された後でも、端板5a、5bをロータコア組立体14に取り付けることができるので、生産性が良くなる。 Therefore, when the end plates 5a and 5b are attached to the rotor core assembly 14, it is not necessary to pass them through the shaft 1. Therefore, in the rotor 100 of the second embodiment as well, the same effect as in the first embodiment in which the inner diameter Dsi of the end plate 5 is larger than the outer diameter Dbo of the bearing 3 can be obtained. That is, in the manufacturing process, the end plates 5a and 5b can be attached to the rotor core assembly 14 even after the bearing 3 is fixed to the shaft 1, so productivity is improved.
実施の形態3.
 図14は、実施の形態3に係るロータ100の概略構成を示す概略図である。実施の形態1では、複数の第1締結部品7の各々に対して1つのかわし穴52が端板5に形成され、第1締結部品7と同数のかわし穴52が端板5に形成されていたが、実施の形態3では、端板5のかわし穴52の数が第1締結部品7の数と異なる。
Embodiment 3.
FIG. 14 is a schematic diagram showing a schematic configuration of rotor 100 according to the third embodiment. In the first embodiment, the end plate 5 is formed with one bypass hole 52 for each of the plurality of first fastening components 7 , and the same number of bypass holes 52 as the first fastening components 7 are formed in the end plate 5 . However, in Embodiment 3, the number of bypass holes 52 in the end plate 5 differs from the number of the first fastening components 7 .
 ロータ部20において周方向に、第1締結部品7と第2締結部品8とが交互にそれぞれ3つ設けられている。図14に示されるように左側の端板5a側から見て、3つの第1締結部品7は、中心軸Axを中心とした第1円C1上に配置され、3つの第2締結部品8は、第1円C1と同心円且つ第1円C1よりも小さい第2円C2上に配置されている。 Three first fastening components 7 and three second fastening components 8 are alternately provided in the rotor portion 20 in the circumferential direction. As shown in FIG. 14, when viewed from the left end plate 5a side, the three first fastening components 7 are arranged on a first circle C1 around the central axis Ax, , on a second circle C2 concentric with the first circle C1 and smaller than the first circle C1.
 実施の形態3においても、端板5は、実施の形態1の場合と同様に、シャフト1が挿入される軸穴51が中央に設けられた円板形状を有し、ロータコア組立体14から磁石12が飛び出ないように挿入穴13aの少なくとも一部を覆う構成とされている。ただし、実施の形態3では、端板5の軸穴51すなわち内径Dsiが、実施の形態1の場合と比べて大きく、この軸穴51の内側に3つの第1締結部品7が配置される構成となっている。すなわち、実施の形態3では、軸穴51が、第1締結部品7の突起部7aをかわすためのかわし穴52としても機能する。 In the third embodiment as well, the end plate 5 has a disc shape with a shaft hole 51 in the center for inserting the shaft 1 as in the case of the first embodiment. At least a part of the insertion hole 13a is covered so that the projection 12 does not protrude. However, in the third embodiment, the shaft hole 51 of the end plate 5, that is, the inner diameter Dsi is larger than in the first embodiment, and the three first fastening parts 7 are arranged inside the shaft hole 51. It has become. That is, in the third embodiment, the shaft hole 51 also functions as a dodging hole 52 for dodging the projection 7a of the first fastening component 7. As shown in FIG.
 つまり、実施の形態3では、3つの第2締結部品8が配置される第2円C2よりも径方向外側に端板5の外周端5oが位置し、3つの第1締結部品7が配置される第1円C1よりも径方向外側且つ第2円C2よりも径方向内側に端板5の内周端5iが位置し、端板5が挿入穴13aの少なくとも一部を覆うように、端板5が形成されている。 That is, in the third embodiment, the outer peripheral edge 5o of the end plate 5 is positioned radially outside the second circle C2 on which the three second fastening components 8 are arranged, and the three first fastening components 7 are arranged. The inner peripheral end 5i of the end plate 5 is located radially outside the first circle C1 and radially inside the second circle C2, and the end plate 5 covers at least a portion of the insertion hole 13a. A plate 5 is formed.
 なお、第1締結部品7の数は、上記の場合に限定されず、例えば、2つ、又は4つ以上であってもよい。また、端板5において、かわし穴52は、複数の第1締結部品7をかわす大きさであれば、軸穴51とは別に設けられてもよい。例えば、端板5は、図14に示されるように端板5a側から見て、第1円C1よりも径方向内側に内周端5iが位置するように形成され、かわし穴は、2以上の第1締結部品7を内包するような円弧の長さを有した円弧状にしてもよい。 The number of first fastening components 7 is not limited to the above case, and may be, for example, two or four or more. Also, in the end plate 5 , the dodging hole 52 may be provided separately from the shaft hole 51 as long as it is large enough to dodge the plurality of first fastening components 7 . For example, as shown in FIG. 14, the end plate 5 is formed so that the inner peripheral end 5i is positioned radially inward of the first circle C1 when viewed from the end plate 5a side, and two or more dodge holes are provided. may be formed in an arc shape having an arc length that encloses the first fastening component 7 of .
 以上のように、実施の形態3のロータ100において、端板5は、かわし穴52を包含し且つシャフト1が挿入される軸穴51を有し、これにより、端板5に設ける穴の数を削減できる。 As described above, in the rotor 100 of the third embodiment, the end plate 5 has the shaft hole 51 including the dodge hole 52 and into which the shaft 1 is inserted. can be reduced.
 なお、各実施の形態を組み合わせたり、各実施の形態を適宜、変形、及び省略したりすることができる。 It should be noted that each embodiment can be combined, modified, or omitted as appropriate.
 1 シャフト、2、2a、2b ロータコア、3 ベアリング、3a 軸穴、4 中間板、5、5a、5b 端板、5i 内周端、5o 外周端、7 第1締結部品、7a 突起部、7b 軸部、8 第2締結部品、8a 端部、8b 軸部、12 磁石、13a 挿入穴、14 ロータコア組立体、14a 軸穴、14b 第1穴、14c 第2穴、15 キー、17 肉抜き穴、20 ロータ部、50a 第1端板部、50b 第2端板部、51 軸穴、52 かわし穴、53 締結穴、71 ねじボルト、72 ナット、81 ねじボルト、82 ナット、100 ロータ、Ax 中心軸、C1 第1円、C2 第2円、D7a、D7b、D8a、D8b、D14b、D52、D53 径、Dbo 外径、Dsi 内径。 1 shaft, 2, 2a, 2b rotor core, 3 bearing, 3a shaft hole, 4 intermediate plate, 5, 5a, 5b end plate, 5i inner peripheral end, 5o outer peripheral end, 7 first fastening part, 7a projection, 7b shaft part, 8 second fastening part, 8a end part, 8b shaft part, 12 magnet, 13a insertion hole, 14 rotor core assembly, 14a shaft hole, 14b first hole, 14c second hole, 15 key, 17 lightening hole, 20 rotor part, 50a first end plate part, 50b second end plate part, 51 shaft hole, 52 dodging hole, 53 fastening hole, 71 screw bolt, 72 nut, 81 screw bolt, 82 nut, 100 rotor, Ax central axis , C1 1st circle, C2 2nd circle, D7a, D7b, D8a, D8b, D14b, D52, D53 diameter, Dbo outer diameter, Dsi inner diameter.

Claims (10)

  1.  シャフトと、
     前記シャフトの軸方向に配列された2つのロータコアを有し、前記シャフトの外周面に取り付けられたロータコア組立体と、
     2つの前記ロータコアそれぞれに収納された磁石と、
     前記ロータコア組立体の前記軸方向の両側に配置された端板と、を備え、
     2つの前記ロータコアそれぞれには、前記磁石の挿入穴が設けられ、
     前記ロータコア組立体は、
     2つの前記ロータコアの間に配置され、非磁性体で構成された中間板と、
     2つの前記ロータコアと前記中間板とを締結するものであって、2つの前記ロータコアから前記軸方向に突出した突起部を有する第1締結部品と、を有し、
     前記中間板及び2つの前記ロータコアには、前記第1締結部品が挿入される第1穴が設けられ、2つの前記ロータコアにおける前記第1穴の径は前記突起部の径よりも小さく、
     前記端板には、前記第1締結部品の前記突起部の径よりも大きい径を有するかわし穴が設けられ、
     前記端板は、前記ロータコアに形成された前記挿入穴の一部又は全部を塞ぐように設けられ、前記端板の前記かわし穴に、前記第1締結部品の前記突起部が配置され、
     前記ロータコア組立体は、2つの前記ロータコアが直接前記シャフトに焼嵌めされることにより前記シャフトに取り付けられている
     ロータ。
    a shaft;
    a rotor core assembly having two rotor cores arranged in the axial direction of the shaft and attached to the outer peripheral surface of the shaft;
    magnets housed in each of the two rotor cores;
    end plates arranged on both sides of the rotor core assembly in the axial direction,
    Each of the two rotor cores is provided with an insertion hole for the magnet,
    The rotor core assembly is
    an intermediate plate disposed between the two rotor cores and made of a non-magnetic material;
    a first fastening part that fastens the two rotor cores and the intermediate plate and has projections projecting from the two rotor cores in the axial direction;
    The intermediate plate and the two rotor cores are provided with first holes into which the first fastening parts are inserted, the diameter of the first holes in the two rotor cores being smaller than the diameter of the protrusions,
    The end plate is provided with a deflecting hole having a diameter larger than the diameter of the protrusion of the first fastening component,
    The end plate is provided so as to block part or all of the insertion hole formed in the rotor core, and the projecting portion of the first fastening component is arranged in the dodge hole of the end plate,
    The rotor core assembly is attached to the shaft by shrink fitting the two rotor cores directly to the shaft.
  2.  前記中間板と前記端板とは、同じ形状且つ同じ材質の一又は複数の板状部材で構成されている
     請求項1に記載のロータ。
    2. The rotor according to claim 1, wherein the intermediate plate and the end plate are composed of one or a plurality of plate-like members having the same shape and the same material.
  3.  前記ロータコア組立体と前記端板とを締結する第2締結部品をさらに備え、
     前記中間板及び2つの前記ロータコアには、前記第2締結部品が挿入される第2穴が設けられ、
     前記端板には、前記かわし穴とは別の締結穴が設けられ、
     前記端板は、前記締結穴を介して前記第2締結部品により前記ロータコア組立体と固定されている
     請求項1又は2に記載のロータ。
    further comprising a second fastening component that fastens the rotor core assembly and the end plate;
    The intermediate plate and the two rotor cores are provided with second holes into which the second fastening parts are inserted,
    The end plate is provided with a fastening hole separate from the dodge hole,
    3. The rotor according to claim 1, wherein the end plate is fixed to the rotor core assembly by the second fastening component through the fastening hole.
  4.  前記第1締結部品と前記第2締結部品とは、同じ形状且つ同じ材質で構成されている
     請求項3に記載のロータ。
    The rotor according to claim 3, wherein the first fastening component and the second fastening component are configured with the same shape and the same material.
  5.  前記シャフトに取り付けられたベアリングを備え、
     前記ロータコア組立体は、円筒形状を有し、
     前記端板は、前記ベアリングの外径よりも大きい内径をもつ円板形状を有する
     請求項1~4のいずれか一項に記載のロータ。
    a bearing attached to the shaft;
    The rotor core assembly has a cylindrical shape,
    The rotor according to any one of claims 1 to 4, wherein the end plate has a disk shape with an inner diameter larger than the outer diameter of the bearing.
  6.  前記シャフトに取り付けられたベアリングを備え、
     前記ロータコア組立体は、円筒形状を有し、
     前記端板は、複数枚の扇形形状の板状部材で構成されている
     請求項1~4のいずれか一項に記載のロータ。
    a bearing attached to the shaft;
    The rotor core assembly has a cylindrical shape,
    The rotor according to any one of claims 1 to 4, wherein the end plate is composed of a plurality of fan-shaped plate members.
  7.  前記端板は、前記かわし穴を包含し、且つ前記シャフトが挿入される軸穴を有し、
     請求項1~6のいずれか一項に記載のロータ。
    the end plate has a shaft hole that includes the dodge hole and into which the shaft is inserted;
    A rotor according to any one of claims 1-6.
  8.  2つの前記ロータコアそれぞれは、前記軸方向に積層された複数の電磁鋼板で構成され、
     前記ロータコアを構成する前記複数の電磁鋼板は、前記第1締結部品により一体化されている
     請求項1~7のいずれか一項に記載のロータ。
    each of the two rotor cores is composed of a plurality of electromagnetic steel sheets laminated in the axial direction,
    The rotor according to any one of Claims 1 to 7, wherein the plurality of electromagnetic steel sheets forming the rotor core are integrated by the first fastening component.
  9.  前記第1締結部品は、ねじ及びナット、あるいはリベットで構成されている
     請求項1~8のいずれか一項に記載のロータ。
    The rotor according to any one of Claims 1 to 8, wherein the first fastening component comprises a screw and nut or a rivet.
  10.  シャフトの軸方向に配列された2つのロータコアと、2つの前記ロータコアの間に配置され、非磁性体で構成された中間板とを、前記中間板及び2つの前記ロータコアに設けられた第1穴に第1締結部品を挿入して前記第1締結部品により締結することでロータコア組立体を得る第1工程と、
     2つの前記ロータコアを直接前記シャフトに焼嵌めすることで前記ロータコア組立体を前記シャフトの外周面に取り付ける第2工程と、
     2つの前記ロータコアに設けられた挿入穴を介して、2つの前記ロータコアそれぞれに磁石を収納する第3工程と、
     前記ロータコア組立体の前記軸方向の両側に、前記挿入穴の一部又は全部を塞ぐように端板を配置し、前記第1締結部品において2つの前記ロータコアから突出した部分であって前記ロータコアにおける前記第1穴の径よりも大きい径を有する突起部を、前記端板に設けられた、前記突起部の径よりも大きい径を有するかわし穴に配置する第4工程と、を有する
     ロータの製造方法。
    Two rotor cores arranged in the axial direction of the shaft, and an intermediate plate disposed between the two rotor cores and made of a non-magnetic material are inserted into first holes provided in the intermediate plate and the two rotor cores. a first step of obtaining a rotor core assembly by inserting a first fastening component into and fastening with the first fastening component;
    a second step of attaching the rotor core assembly to the outer peripheral surface of the shaft by directly shrink-fitting the two rotor cores onto the shaft;
    a third step of housing magnets in each of the two rotor cores through insertion holes provided in the two rotor cores;
    End plates are arranged on both sides of the rotor core assembly in the axial direction so as to block part or all of the insertion holes, and portions of the first fastening component protruding from the two rotor cores, a fourth step of disposing a protrusion having a diameter larger than that of the first hole in a deflecting hole having a diameter larger than that of the protrusion provided in the end plate. Method.
PCT/JP2021/021301 2021-06-04 2021-06-04 Rotor and method for manufacturing rotor WO2022254679A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/021301 WO2022254679A1 (en) 2021-06-04 2021-06-04 Rotor and method for manufacturing rotor
JP2023525300A JP7418663B2 (en) 2021-06-04 2021-06-04 Rotor and rotor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/021301 WO2022254679A1 (en) 2021-06-04 2021-06-04 Rotor and method for manufacturing rotor

Publications (1)

Publication Number Publication Date
WO2022254679A1 true WO2022254679A1 (en) 2022-12-08

Family

ID=84322919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021301 WO2022254679A1 (en) 2021-06-04 2021-06-04 Rotor and method for manufacturing rotor

Country Status (2)

Country Link
JP (1) JP7418663B2 (en)
WO (1) WO2022254679A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04118747U (en) * 1991-04-01 1992-10-23 国産電機株式会社 Armature core for rotating electrical machines
JPH04364335A (en) * 1991-06-10 1992-12-16 Fanuc Ltd Radial rotor structure for synchronous motor
JP2013005595A (en) * 2011-06-16 2013-01-07 Mitsubishi Electric Corp Rotary electric machine
JP2021069186A (en) * 2019-10-23 2021-04-30 株式会社東芝 Rotary electric machine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4364335B2 (en) 1999-02-01 2009-11-18 キヤノンアネルバ株式会社 Sputtering equipment
JP4118747B2 (en) 2003-05-30 2008-07-16 株式会社フジクラ Optical module, optical transceiver system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04118747U (en) * 1991-04-01 1992-10-23 国産電機株式会社 Armature core for rotating electrical machines
JPH04364335A (en) * 1991-06-10 1992-12-16 Fanuc Ltd Radial rotor structure for synchronous motor
JP2013005595A (en) * 2011-06-16 2013-01-07 Mitsubishi Electric Corp Rotary electric machine
JP2021069186A (en) * 2019-10-23 2021-04-30 株式会社東芝 Rotary electric machine

Also Published As

Publication number Publication date
JPWO2022254679A1 (en) 2022-12-08
JP7418663B2 (en) 2024-01-19

Similar Documents

Publication Publication Date Title
US7378774B2 (en) Laminated core of rotary electric machine
GB2520657A (en) Electric motor having embedded permanent magnets
JP3716808B2 (en) Rotating electric machine
KR20040008090A (en) Induction motor
JPH04344137A (en) Stator for motor and manufacture of the stator
US11855484B2 (en) Rotor assemblies for axial flux machines
EP0552378A1 (en) Stator/housing assembly of an electric motor
WO2022254679A1 (en) Rotor and method for manufacturing rotor
JPH10322942A (en) Rotating machine
JP2019129638A (en) Stator, rotary electric machine, and vehicle
JPH0736459Y2 (en) Permanent magnet field type rotor
JPH11262206A (en) Rotor for electric motor for compressor
JP2006211846A (en) Rotating electric machine
JP2005269831A (en) Brushless dc motor
EP0778650B1 (en) Electric motor
US11303168B2 (en) Rotor of rotary electric machine
US5969452A (en) Magnetic bearing construction
JPH08116635A (en) Rotor for multipole cylindrical synchronous machine and its assembling method
JPH10336972A (en) Electric rotating machine
JP2006254651A (en) Rotating electric machine
JP2020096445A (en) Rotor for IPM motor
JP7012801B1 (en) Rotor of rotary electric machine
JP2019115217A (en) Rotor core mounting structure
JPH11215750A (en) Motor rotor
WO2021131298A1 (en) Rotary electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21944175

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023525300

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE