WO2022254574A1 - 疲労推定装置、疲労推定方法及び記憶媒体 - Google Patents

疲労推定装置、疲労推定方法及び記憶媒体 Download PDF

Info

Publication number
WO2022254574A1
WO2022254574A1 PCT/JP2021/020836 JP2021020836W WO2022254574A1 WO 2022254574 A1 WO2022254574 A1 WO 2022254574A1 JP 2021020836 W JP2021020836 W JP 2021020836W WO 2022254574 A1 WO2022254574 A1 WO 2022254574A1
Authority
WO
WIPO (PCT)
Prior art keywords
fatigue
subject
normalization processing
fatigue estimation
estimation device
Prior art date
Application number
PCT/JP2021/020836
Other languages
English (en)
French (fr)
Inventor
驚文 盧
祐 北出
剛範 辻川
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2023525212A priority Critical patent/JPWO2022254574A5/ja
Priority to PCT/JP2021/020836 priority patent/WO2022254574A1/ja
Publication of WO2022254574A1 publication Critical patent/WO2022254574A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state

Definitions

  • the present disclosure relates to the technical field of fatigue estimation devices, fatigue estimation methods, and storage media for estimating fatigue.
  • a device or system for estimating the degree of fatigue of a subject is known.
  • Patent Document 1 based on a pulse wave signal output from a pulse wave detecting means, biological data including the user's pulse rate is calculated, and fatigue level management is performed based on the calculated biological data.
  • a system is disclosed.
  • An object of the present disclosure is to provide a fatigue estimation device, a fatigue estimation method, and a storage medium capable of suitably estimating fatigue in view of the above-described problems.
  • One aspect of the fatigue estimation device is normalization processing means for normalizing biometric data of a subject based on attributes of the subject; Fatigue estimating means for estimating the degree of fatigue of the subject based on the biological data after the normalization process; It is a fatigue estimation device comprising
  • One aspect of the fatigue estimation method is the computer performing normalization processing on biometric data of a subject based on the attribute of the subject; estimating the degree of fatigue of the subject based on the biological data after the normalization process; It is a fatigue estimation method.
  • the "computer” includes any electronic device (it may be a processor included in the electronic device), and may be composed of a plurality of electronic devices.
  • One aspect of the storage medium is performing normalization processing on biometric data of a subject based on the attribute of the subject;
  • a storage medium storing a program that causes a computer to execute a process of estimating the degree of fatigue of the subject based on the biometric data after the normalization process.
  • FIG. 1 shows a schematic configuration of a fatigue estimation system according to a first embodiment; The hardware configuration of the fatigue estimation device is shown. It is an example of a functional block of a fatigue estimation device. It is an example of the flowchart which a fatigue estimation apparatus performs in 1st Embodiment. 1 shows a schematic configuration of a fatigue estimation system according to a second embodiment; It is a block diagram of a fatigue estimation device in a 3rd embodiment. It is an example of the flowchart which a fatigue estimation apparatus performs in 3rd Embodiment.
  • FIG. 1 shows a schematic configuration of a fatigue estimation system 100 according to the first embodiment.
  • the fatigue estimation system 100 performs processing related to estimation of fatigue of the subject.
  • the fatigue estimation system 100 mainly includes a fatigue estimation device 1 , an input device 2 , an output device 3 , a storage device 4 and a sensor 5 .
  • the fatigue estimation device 1 performs data communication with the input device 2, the output device 3, and the sensor 5 via a communication network or by direct wireless or wired communication. Then, the fatigue estimation device 1, based on the input signal "S1" supplied from the input device 2, the sensor signal “S3” supplied from the sensor 5, and the information stored in the storage device 4, Determine fatigue status. The fatigue estimation device 1 also generates an output signal “S2” based on the fatigue determination result of the subject, and supplies the generated output signal S2 to the output device 3 .
  • the input device 2 is an interface that accepts manual input (external input) of information about each subject.
  • a user who inputs information using the input device 2 may be the subject himself/herself, or may be a person who manages or supervises the activity of the subject.
  • the input device 2 may be, for example, various user input interfaces such as a touch panel, buttons, keyboard, mouse, and voice input device.
  • the input device 2 supplies the generated input signal S1 to the fatigue estimation device 1 .
  • the output device 3 displays or outputs predetermined information based on the output signal S2 supplied from the fatigue estimation device 1 .
  • the output device 3 is, for example, a display, a projector, a speaker, or the like.
  • the sensor 5 measures the biological signal etc. of the subject and supplies the measured biological signal etc. to the fatigue estimation device 1 as a sensor signal S3.
  • the sensor signal S3 is any biological data (including vital information) such as the subject's heartbeat, electroencephalogram, perspiration, hormone secretion, cerebral blood flow, blood pressure, body temperature, myoelectricity, electrocardiogram, and respiratory rate.
  • the sensor 5 may be a device that analyzes blood collected from a subject and outputs a sensor signal S3 indicating the analysis result.
  • the sensor 5 may be a device that performs physical measurements such as jumping for measuring physical fatigue and the like.
  • the storage device 4 is a memory that stores various information necessary for calculating various degrees of fatigue.
  • the storage device 4 may be an external storage device such as a hard disk connected to or built into the fatigue estimation device 1, or may be a storage medium such as a flash memory.
  • the storage device 4 may be a server device that performs data communication with the fatigue estimation device 1 .
  • the storage device 4 may be composed of a plurality of devices.
  • the storage device 4 functionally has an attribute information storage unit 41 and a fatigue estimation model storage unit 42 .
  • the attribute information storage unit 41 stores attribute information regarding attributes of subjects.
  • the attribute information is, for example, the muscle mass of each subject (that is, the weight of the muscle tissue) or information related to the muscle mass (for example, if the subject is an athlete, the type of sport the subject performs or information about the position).
  • the muscle mass can be measured by a body composition meter that employs, for example, the bioimpedance method or the DXA (Dual Energy X-ray Absorptiometry) method.
  • the attribute information stored in the attribute information storage unit 41 is not limited to information on muscle mass, but also the subject's age, sex, occupation, medical history, past medical history, and type of sport when the subject is an athlete. Alternatively, it may be information representing other attributes of the subject, such as the position in the competition.
  • attribute information corresponding to a plurality of persons is stored in the attribute information storage unit 41, each piece of attribute information is stored in the attribute information storage unit 41 in association with the identification information of the corresponding person.
  • the attribute information stored in the attribute information storage unit 41 should be periodically updated according to the condition of the subject.
  • the update frequency of the attribute information stored in the attribute information storage unit 41 may be determined according to the type of attribute or the activity state of the subject. For example, when the muscle mass of an athlete is stored as attribute information in the attribute information storage unit 41, the update frequency of the attribute information may differ depending on whether it is during the season.
  • the attribute information stored in the attribute information storage unit 41 may be updated by the fatigue estimation device 1 or by a device other than the fatigue estimation device 1 .
  • the fatigue estimation model storage unit 42 stores information related to the fatigue estimation model, which is a model for calculating the degree of fatigue from the feature quantity of the biological data of the subject.
  • the fatigue estimation model is a linear model
  • the fatigue estimation model storage unit 42 stores information on the parameters (weights) of the linear model.
  • the fatigue estimation model is not limited to the linear model, and may be a regression model (statistical model) or a machine learning model other than the linear model. In these cases, the fatigue estimation model storage unit 42 stores information on parameters necessary for constructing the fatigue estimation model.
  • the fatigue estimation model storage unit 42 stores the layer structure, the neuron structure of each layer, the number and size of filters in each layer, and each element of each filter information of various parameters such as the weight of .
  • the configuration of the fatigue estimation system 100 shown in FIG. 1 is an example, and various modifications may be made to the configuration.
  • the input device 2 and the output device 3 may be integrally configured.
  • the input device 2 and the output device 3 may be configured as a tablet terminal integrated with or separate from the fatigue estimation device 1 .
  • the input device 2 and the sensor 5 may be configured integrally.
  • the fatigue estimation device 1 may be composed of a plurality of devices. In this case, the plurality of devices constituting the fatigue estimation device 1 exchange information necessary for executing pre-assigned processing among the plurality of devices.
  • FIG. 2 shows the hardware configuration of the fatigue estimating apparatus 1 .
  • the fatigue estimation device 1 includes a processor 11, a memory 12, and an interface 13 as hardware.
  • Processor 11 , memory 12 and interface 13 are connected via data bus 19 .
  • the processor 11 functions as a controller (arithmetic device) that controls the entire fatigue estimation device 1 by executing programs stored in the memory 6 .
  • the processor 11 is, for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), or a TPU (Tensor Processing Unit).
  • Processor 11 may be composed of a plurality of processors.
  • Processor 11 is an example of a computer.
  • the memory 12 is composed of various volatile and nonvolatile memories such as RAM (Random Access Memory), ROM (Read Only Memory), and flash memory. Further, the memory 12 stores a program for executing the process executed by the fatigue estimation device 1 . Note that part of the information stored in the memory 12 may be stored in one or more external storage devices that can communicate with the fatigue estimation device 1, or may be stored in a storage medium detachable from the fatigue estimation device 1. may
  • the interface 13 is an interface for electrically connecting the fatigue estimation device 1 and other devices.
  • These interfaces may be wireless interfaces such as network adapters for wirelessly transmitting and receiving data to and from other devices, or hardware interfaces for connecting to other devices via cables or the like.
  • the hardware configuration of the fatigue estimation device 1 is not limited to the configuration shown in FIG.
  • the fatigue estimation device 1 may include at least one of the input device 2 and the output device 3 .
  • the fatigue estimation device 1 may be connected to or built in a sound output device such as a speaker.
  • FIG. 3 is an example of functional blocks of the fatigue estimation device 1 .
  • the processor 11 of the fatigue estimation device 1 functionally includes a normalization processing unit 14 , a feature quantity extraction unit 15 , a fatigue estimation unit 16 , a fatigue determination unit 17 and an output control unit 18 .
  • the blocks that exchange data are connected by solid lines, but the combinations of blocks that exchange data are not limited to those shown in FIG. The same applies to other functional block diagrams to be described later.
  • the normalization processing unit 14 normalizes the biological data of the subject represented by the sensor signal S3 to absorb differences based on individual attributes based on the attribute information of the subject stored in the attribute information storage unit 41. process. In this case, the normalization processing unit 14 inputs the biometric data of the subject represented by the sensor signal S3 and the attribute information of the subject, and normalizes the biometric data so as to absorb differences based on individual attributes. Data (also referred to as “normalized biometric data Dn”) is output. The normalization processing unit 14 may perform normalization processing using any normalization method such as max-min normalization and z-score normalization.
  • the normalization processing unit 14 When the attribute information of the subject is acquired from the attribute information storage unit 41, the normalization processing unit 14 performs, for example, log-in information of the subject or arbitrary person recognition processing (for example, biometrics using a camera image or the like). authentication), and acquires attribute information associated with the identification information from the attribute information storage unit 41 .
  • the normalization processing unit 14 determines the heart rate interval (RRI: RR Interval) is normalized.
  • the feature quantity extraction unit 15 performs processing for extracting a feature quantity from the normalized biometric data Dn output from the normalization processing unit 14, and outputs the extracted feature quantity of the normalized biometric data Dn to the fatigue estimation unit 16. .
  • the feature amount extraction unit 15 may perform processing for extracting various feature amounts used for fatigue estimation.
  • the storage device 4 or memory 12 may store parameters of the feature extraction model.
  • the feature quantity extraction unit 15 constructs a feature extraction model based on the stored parameters, inputs the normalized biometric data Dn to the feature extraction model, and extracts the feature quantity of the normalized biometric data Dn. get.
  • the feature quantity extraction unit 15 calculates heart rate variability, which is an index of autonomic nervous tension, as a feature quantity.
  • Heart rate variability is, for example, a representative value of RRI (mean value, maximum value, minimum value, median value, etc.) or/and an index value of RRI variability (standard deviation, variance, etc.).
  • the fatigue estimation unit 16 uses the fatigue estimation model stored in the fatigue estimation model storage unit 42 based on the feature amount of the normalized biological data Dn supplied from the feature amount extraction unit 15 to estimate the degree of fatigue of the subject (" (also referred to as the subject's fatigue level Df)) is calculated. Specifically, the fatigue estimation unit 16 acquires the fatigue level of the subject output by the fatigue estimation model by inputting the feature amount of the normalized biological data Dn into the fatigue estimation model as the subject fatigue level Df. do.
  • the degree of fatigue Df of the subject may be a degree of physical fatigue, may be a degree of mental fatigue, may be a general degree of fatigue that combines these, and may be a combination of these There may be.
  • the fatigue estimating unit 16 inputs the feature amount of the normalized biological data Dn obtained by normalizing the biological data representing the jump height of the subject to the fatigue estimation model, and obtains the fatigue degree Df of the subject. The examiner's physical fatigue score is calculated.
  • the fatigue determination unit 17 determines the subject's fatigue based on the subject's fatigue level Df calculated by the fatigue estimation unit 16 . For example, the fatigue determination unit 17 compares the degree of fatigue Df of the subject with a threshold value stored in advance in the storage device 4 or the memory 12 to determine whether the subject is in a state of high fatigue that requires attention or countermeasures. Determine whether or not. For example, the fatigue determination unit 17 determines that the subject is in a highly fatigued state when the physical fatigue score calculated by the fatigue estimation unit 16 as the subject's fatigue level Df is 70 points or more out of 100 points. do. Note that a plurality of threshold values may be provided in order to classify the fatigue state in stages.
  • the output control unit 18 outputs the result of determination by the fatigue determination unit 17. For example, the output control unit 18 displays the determination result by the fatigue determination unit 17 on the display unit, or outputs the result by sound using the sound output unit. In another example, the output control section 18 stores the determination result by the fatigue determination section 17 in the storage device 4 . In this case, the output control unit 18 may output information about the subject's fatigue level Df calculated by the fatigue estimation unit 16 together with the determination result by the fatigue determination unit 17 .
  • FPGA Field-Programmable Gate Array
  • each component may be configured by an ASSP (Application Specific Standard Produce), an ASIC (Application Specific Integrated Circuit), or a quantum processor (quantum computer control chip).
  • ASSP Application Specific Standard Produce
  • ASIC Application Specific Integrated Circuit
  • quantum processor quantum computer control chip
  • the fatigue estimation device 1 calculates a vector "Y" (including the case of one element) representing the subject's fatigue level Df based on the following equation (1).
  • Y WTX (1)
  • a vector “X” (including the case of one element) represents an index of heart rate variability, which is a feature amount of the normalized biometric data Dn, and a matrix “W” (including the case of 1 ⁇ 1) is a linear model. represents the coefficient matrix.
  • the matrix W represents parameters obtained by learning in advance based on a plurality of pairs of vectors Y and X (that is, learning data sets), and is stored in the fatigue estimation model storage unit 42 in advance.
  • the vector Y of the learning data set for example, a relatively high-reliability physical fatigue score derived from jump height or questionnaire results is used.
  • RRI i represents the RRI of subject “i”
  • ⁇ i represents the muscle mass of subject i.
  • the normalization function g is, for example, max-min, z-score, etc.
  • the feature value calculation function ⁇ j corresponds to, for example, a Max function, a Min function, a Median function, etc., and outputs a vector having one or more elements.
  • a coefficient vector W j is a vector corresponding to the j-th column of the coefficient matrix W.
  • the fatigue estimation apparatus 1 normalizes the RRI, which is biological data, based on the muscle mass ⁇ of the subject. The degree of fatigue Df can be accurately calculated.
  • a first specific example of the normalization function g is a function that divides RRI, which is biological data, by muscle mass ⁇ , which is an attribute of the subject.
  • the normalization function g of Equation (2) is represented by Equation (3) below.
  • g(RRI i , ⁇ i ) RRI i / ⁇ i (3)
  • a second specific example of the normalization function g is the maximum value “ ⁇ max ” and the minimum value “ ⁇ min is a function for normalizing the RRI based on .
  • the normalization function g of Equation (2) is represented by Equation (4) below.
  • the muscle masses ⁇ max and ⁇ min for each group to be examined are stored in advance in the storage device 4 or memory 12 . Then, when estimating the fatigue of the subject, the fatigue estimation apparatus 1 uses the muscle mass ⁇ max and ⁇ min of the group to which the subject belongs, based on the equation (4), the subject's subject An examiner's fatigue level Df is calculated.
  • the fatigue estimation device 1 can normalize the RRI according to the muscle mass, which is an attribute of the subject, and accurately calculate the subject's fatigue level Df. Become.
  • the maximum muscle mass ⁇ max and the minimum muscle mass ⁇ min stored in the storage device 4 or memory 12 are preferably updated at regular intervals.
  • the update frequency may be determined by the activity state of the group to which the subject belongs. For example, when targeting a group of athletes, the update frequency may be changed depending on whether it is during the season or not, taking into account that muscle mass changes less during the off-season.
  • the muscle mass ⁇ stored in the attribute information storage unit 41 is preferably updated at regular intervals according to the subject's activity state and the like.
  • FIG. 4 is an example of a flow chart executed by the fatigue estimation device 1 in the first embodiment.
  • the fatigue estimation device 1 repeatedly executes the process of the flowchart shown in FIG.
  • the normalization processing unit 14 of the fatigue estimation device 1 receives the sensor signal S3 from the sensor 5 via the interface 13, thereby acquiring biological data to be normalized (step S11). Then, the normalization processing unit 14 acquires the subject's attribute information by referring to the attribute information storage unit 41 of the storage device 4 via the interface 13, and based on the acquired subject's attribute information, step The biometric data acquired in S11 is normalized (step S12). Thereby, the normalization processing unit 14 generates the normalized biometric data Dn.
  • the feature quantity extraction unit 15 performs processing for extracting the feature quantity of the normalized biometric data Dn (step S13).
  • the fatigue estimation unit 16 calculates the subject's fatigue level Df based on the feature amount extracted by the feature amount extraction unit 15 in step S13 (step S14).
  • the fatigue estimation unit 16 configures a fatigue estimation model by referring to the fatigue estimation model storage unit 42, and inputs the feature amount extracted in step S13 to the configured fatigue estimation model, so that the subject A fatigue level Df is calculated.
  • the fatigue determination unit 17 determines the fatigue state of the subject based on the subject fatigue degree Df calculated by the fatigue estimation unit 16 in step S14, and the output control unit 18 outputs the determination result of the fatigue determination unit 17 is output (step S15).
  • the output control unit 18 notifies the subject or the subject's manager of the fatigue state of the subject by, for example, displaying or sound-outputting the determination result of the fatigue determination unit 17 .
  • the fatigue estimation unit 16 may calculate the subject's fatigue level Df using the feature amount of the biometric data before normalization in addition to the feature amount of the normalized biometric data Dn.
  • the fatigue estimation model is a model that outputs the subject's fatigue level Df when the feature amount of the normalized biological data Dn and the feature amount of the biological data are input. Parameters are stored in advance in the fatigue estimation model storage unit 42 .
  • the fatigue estimation unit 16 preferably calculates the subject's fatigue level Df based on the feature amount of the normalized biometric data Dn and the feature amount of the biometric data before normalization. can be done.
  • the fatigue estimation device 1 does not have to have the feature quantity extraction unit 15 .
  • the fatigue estimation model stored in the fatigue estimation model storage unit 42 is a model that outputs the degree of fatigue Df of the subject when the normalized biological data Dn is input.
  • the subject's fatigue level Df is calculated from the normalized biometric data Dn output by the normalization processing unit 14 .
  • the normalization processing unit 14 further considers the user input information based on the input signal S1 (that is, the external input by the user), and converts the biometric data. Normalization may be performed.
  • the normalization processing unit 14 sets a coefficient “ ⁇ ” by which “ ⁇ i ” in Equation (3) is multiplied, and determines the coefficient ⁇ based on user input information.
  • the normalization processing unit 14 sets a coefficient “ ⁇ ” by which “( ⁇ max ⁇ i )/( ⁇ max ⁇ min )” in Equation (4) is multiplied, and the coefficient ⁇ is input by the user. Make an informed decision.
  • the user input information may be information that directly specifies the coefficient ⁇ or the coefficient ⁇ , or information that indirectly specifies the coefficient ⁇ or ⁇ . In the latter case, for example, the user input information is information indicating the degree of fatigue feeling of the subject.
  • the normalization processing unit 14 determines a predetermined A formula or a lookup table is referred to determine the coefficient ⁇ or the coefficient ⁇ . Note that the coefficient ⁇ and the coefficient ⁇ are set to 1, which is an initial value, when there is no user input information.
  • the normalization processing unit 14 adjusts the coefficients used for normalization based on the input signal S1, thereby generating the normalized biometric data Dn accurately normalized so as not to depend on the individual differences of the subject. It can be generated suitably.
  • the normalization processing unit 14 may adjust the parameters used for normalizing the biometric data based on environment information representing the environment at the time of biometric data measurement. .
  • the environmental information is, for example, one or more index values representing the environment such as temperature, humidity, illuminance, and weather when the subject is measured by the sensor 5.
  • the normalization processing unit 14 may acquire environmental information by receiving output signals from a thermometer, a hygrometer, an illuminance sensor, etc., provided at the location where the inspection is performed, and manage weather information and the like for each location.
  • the environment information corresponding to the inspection location may be received from the server device.
  • the normalization processing unit 14 refers to a predetermined formula, lookup table, or the like, and determines a coefficient (for example, the above-described coefficient ⁇ or coefficient ⁇ ) to be used for normalization. Even in this case, the normalization processing unit 14 can preferably generate the normalized biometric data Dn that does not depend on the individual differences of the subject and the examination environment.
  • FIG. 5 shows a schematic configuration of a fatigue estimation system 100A in the second embodiment.
  • a fatigue estimation system 100A according to the second embodiment is a server-client model system, and a fatigue estimation device 1A functioning as a server device performs the processing of the fatigue estimation device 1 according to the first embodiment.
  • symbol is attached suitably, and the description is abbreviate
  • the fatigue estimation system 100A mainly includes a fatigue estimation device 1A that functions as a server, a storage device 4 that stores data necessary for fatigue estimation processing, and a terminal device 8 that functions as a client. have.
  • the fatigue estimation device 1 ⁇ /b>A and the terminal device 8 perform data communication via the network 7 .
  • the terminal device 8 is a terminal having an input function, a display function, and a communication function, and functions as the input device 2 and the output device 3 shown in FIG.
  • the terminal device 8 may be, for example, a personal computer, a tablet terminal, a PDA (Personal Digital Assistant), or the like.
  • the terminal device 8 transmits the biological data of the subject output by the sensor 5 (that is, information corresponding to the sensor signal S3 in FIG. 1) or information based on user input to the fatigue estimation device 1A.
  • the fatigue estimation device 1A has the same hardware configuration as the fatigue estimation device 1 shown in FIG. 2, and the processor 11 of the fatigue estimation device 1A has the functional blocks shown in FIG. Then, the fatigue estimation device 1A receives from the terminal device 8 via the network 7 information obtained by the fatigue estimation device 1 shown in FIG. 1 from the input device 2 and the sensor 5 . Further, based on a request from the terminal device 8, the fatigue estimation device 1A transmits an output signal indicating information about the fatigue level of the subject whose biometric data is detected by the sensor 5 to the terminal device 8 via the network 7. do. Thereby, the fatigue estimation device 1A can suitably present the information about the degree of fatigue to the user of the terminal device 8 .
  • FIG. 6 is a block diagram of the fatigue estimation device 1X in the third embodiment.
  • the fatigue estimation device 1X mainly has normalization processing means 14X and fatigue estimation means 16X. Note that the fatigue estimation device 1X may be composed of a plurality of devices.
  • the normalization processing means 14X performs normalization processing on the subject's biometric data based on the subject's attribute.
  • the normalization processing means 14X can be the normalization processing section 14 in the first embodiment (including modifications, the same applies hereinafter) or the second embodiment.
  • the fatigue estimation means 16X estimates the degree of fatigue of the subject based on the normalized biological data.
  • the fatigue estimator 16X can be the fatigue estimator 16 in the first embodiment or the second embodiment.
  • FIG. 7 is an example of a flowchart executed by the fatigue estimation device 1X in the third embodiment.
  • the normalization processing means 14X performs normalization processing on the biometric data of the subject based on the attribute of the subject (step S21).
  • the fatigue estimating means 16X estimates the degree of fatigue of the subject based on the normalized biological data (step S22).
  • the fatigue estimation device 1X according to the third embodiment can accurately estimate the degree of fatigue of the subject.
  • Non-transitory computer readable media include various types of tangible storage media.
  • Examples of non-transitory computer-readable media include magnetic storage media (e.g., floppy disks, magnetic tapes, hard disk drives), magneto-optical storage media (e.g., magneto-optical discs), CD-ROMs (Read Only Memory), CD-Rs, CD-R/W, semiconductor memory (eg mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (Random Access Memory)).
  • the program may also be delivered to the computer on various types of transitory computer readable medium.
  • Examples of transitory computer-readable media include electrical signals, optical signals, and electromagnetic waves.
  • Transitory computer-readable media can deliver the program to the computer via wired channels, such as wires and optical fibers, or wireless channels.
  • the attributes are at least one of the subject's age, gender, occupation, the type of sport performed by the subject, or the position in the competition
  • the normalization processing means performs the normalization processing based on at least one of the subject's age, sex, the type of competition performed by the subject, or the position in the competition.
  • Fatigue estimator as described.
  • the fatigue estimating means is based on a fatigue estimating model learned to output the degree of fatigue estimated in the subject of the biological data when the biological data or the feature amount of the biological data is input. 5.
  • the fatigue estimation device according to any one of Appendices 1 to 4, which calculates the degree of fatigue.
  • the fatigue estimation device according to any one of Appendices 1 to 7, further comprising: [Appendix 9] the computer performing normalization processing on biometric data of a subject based on the attribute of the subject; estimating the degree of fatigue of the subject based on the biological data after the normalization process; Fatigue estimation method.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hospice & Palliative Care (AREA)
  • Pathology (AREA)
  • Developmental Disabilities (AREA)
  • Psychiatry (AREA)
  • Psychology (AREA)
  • Social Psychology (AREA)
  • Physics & Mathematics (AREA)
  • Child & Adolescent Psychology (AREA)
  • Biophysics (AREA)
  • Educational Technology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

疲労推定装置1Xは、主に、正規化処理手段14Xと、疲労推定手段16Xとを有する。正規化処理手段14Xは、被検者の生体データに対し、被検者の属性に基づいて、正規化処理を行う。疲労推定手段16Xは、正規化処理後の生体データに基づき、被検者の疲労度を推定する。

Description

疲労推定装置、疲労推定方法及び記憶媒体
 本開示は、疲労の推定を行う疲労推定装置、疲労推定方法及び記憶媒体の技術分野に関する。
 被検者の疲労度を推定する装置又はシステムが知られている。例えば、特許文献1には、脈波検出手段から出力される脈波信号に基づいて、ユーザの脈拍数を含む生体データを算出し、算出した生体データに基づいて疲労度を判定する疲労度管理システムが開示されている。
特開2017-086524号公報
 疲労度には被検者によって個人差があり、このような個人差は疲労推定に用いられる生体データのみでは考慮することができない。よって、このような個人差を考慮した疲労推定を行うことが必要となる。
 本開示の目的は、上述した課題を鑑み、疲労を好適に推定することが可能な疲労推定装置、疲労推定方法及び記憶媒体を提供することである。
 疲労推定装置の一の態様は、
 被検者の生体データに対し、前記被検者の属性に基づいて、正規化処理を行う正規化処理手段と、
 前記正規化処理後の生体データに基づき、前記被検者の疲労度を推定する疲労推定手段と、
を備える疲労推定装置である。
 疲労推定方法の一の態様は、
 コンピュータが、
 被検者の生体データに対し、前記被検者の属性に基づいて、正規化処理を行い、
 前記正規化処理後の生体データに基づき、前記被検者の疲労度を推定する、
疲労推定方法である。なお、「コンピュータ」は、あらゆる電子機器(電子機器に含まれるプロセッサであってもよい)を含み、かつ、複数の電子機器により構成されてもよい。
 記憶媒体の一の態様は、
 被検者の生体データに対し、前記被検者の属性に基づいて、正規化処理を行い、
 前記正規化処理後の生体データに基づき、前記被検者の疲労度を推定する処理をコンピュータに実行させるプログラムが格納された記憶媒体である。
 本開示によれば、被検者の疲労度を的確に推定することができる。
第1実施形態に係る疲労推定システムの概略構成を示す。 疲労推定装置のハードウェア構成を示す。 疲労推定装置の機能ブロックの一例である。 第1実施形態において疲労推定装置が実行するフローチャートの一例である。 第2実施形態に係る疲労推定システムの概略構成を示す。 第3実施形態における疲労推定装置のブロック図である。 第3実施形態において疲労推定装置が実行するフローチャートの一例である。
 以下、図面を参照しながら、疲労推定装置、疲労推定方法及び記憶媒体の実施形態について説明する。
 <第1実施形態>
 (1)システム構成
 図1は、第1実施形態に係る疲労推定システム100の概略構成を示す。疲労推定システム100は、被検者の疲労の推定に関する処理を行う。疲労推定システム100は、主に、疲労推定装置1と、入力装置2と、出力装置3と、記憶装置4と、センサ5とを備える。
 疲労推定装置1は、通信網を介し、又は、無線若しくは有線による直接通信により、入力装置2、出力装置3、及びセンサ5とデータ通信を行う。そして、疲労推定装置1は、入力装置2から供給される入力信号「S1」、センサ5から供給されるセンサ信号「S3」、及び記憶装置4に記憶された情報に基づいて、被検者の疲労状態の判定を行う。また、疲労推定装置1は、被検者の疲労判定結果に基づき出力信号「S2」を生成し、生成した出力信号S2を出力装置3に供給する。
 入力装置2は、各被検者に関する情報の手入力(外部入力)を受け付けるインターフェースである。なお、入力装置2を用いて情報の入力を行うユーザは、被検者本人であってもよく、被検者の活動を管理又は監督する者であってもよい。入力装置2は、例えば、タッチパネル、ボタン、キーボード、マウス、音声入力装置などの種々のユーザ入力用インターフェースであってもよい。入力装置2は、生成した入力信号S1を、疲労推定装置1へ供給する。出力装置3は、疲労推定装置1から供給される出力信号S2に基づき、所定の情報を表示又は音出力する。出力装置3は、例えば、ディスプレイ、プロジェクタ、スピーカ等である。
 センサ5は、被検者の生体信号等を測定し、測定した生体信号等を、センサ信号S3として疲労推定装置1へ供給する。この場合、センサ信号S3は、被検者の心拍、脳波、発汗量、ホルモン分泌量、脳血流、血圧、体温、筋電、心電、呼吸数などの任意の生体データ(バイタル情報を含む)であってもよい。また、センサ5は、被検者から採取された血液を分析し、その分析結果を示すセンサ信号S3を出力する装置であってもよい。また、センサ5は、身体疲労等を測定するためのジャンプなどの身体測定を行う装置であってもよい。
 記憶装置4は、各種疲労度の算出等に必要な各種情報を記憶するメモリである。記憶装置4は、疲労推定装置1に接続又は内蔵されたハードディスクなどの外部記憶装置であってもよく、フラッシュメモリなどの記憶媒体であってもよい。また、記憶装置4は、疲労推定装置1とデータ通信を行うサーバ装置であってもよい。また、記憶装置4は、複数の装置から構成されてもよい。
 記憶装置4は、機能的には、属性情報記憶部41と、疲労推定モデル記憶部42とを有している。
 属性情報記憶部41は、被検者の属性に関する属性情報を記憶する。属性情報は、例えば、各被検者の筋肉量(即ち、筋肉組織の重さ)又は当該筋肉量と関連する情報(例えば被検者がスポーツ選手である場合に被検者が行う競技種別又はそのポジションに関する情報)である。なお、筋肉量は、例えば、生体インピーダンス法又はDXA(Dual Energy X-ray Absorptiometry)法等を採用した体組成計により計測が可能である。
 なお、属性情報記憶部41に記憶される属性情報は、筋肉量に関する情報に限らず、被検者の年齢、性別、職業、病歴・既往歴、被検者が競技者である場合の競技種別又は当該競技におけるポジションなどの被検者の他の属性を表す情報であってもよい。また、属性情報記憶部41に複数の者に対応する属性情報が記憶される場合、各属性情報は、対応する者の識別情報と紐付けられて属性情報記憶部41に記憶される。
 好適には、属性情報記憶部41に記憶される属性情報は、被検者の状況によって定期的に更新されるとよい。例えば、属性情報記憶部41に記憶される属性情報は、属性の種類又は被検者の活動状態によって更新頻度が決定されてもよい。例えば、スポーツ選手の筋肉量が属性情報として属性情報記憶部41に記憶される場合、シーズン中か否かによって当該属性情報の更新頻度が異なってもよい。なお、属性情報記憶部41に記憶される属性情報の更新は、疲労推定装置1により行われてもよく、疲労推定装置1以外の装置により行われてもよい。
 疲労推定モデル記憶部42は、被検者の生体データの特徴量から疲労度を算出するモデルである疲労推定モデルに関する情報を記憶する。例えば疲労推定モデルが線形モデルである場合、疲労推定モデル記憶部42は、線形モデルのパラメータ(重み)の情報を記憶する。なお、疲労推定モデルは線形モデルに限らず、線形モデル以外の回帰モデル(統計モデル)又は機械学習モデルであってもよい。これらの場合、疲労推定モデル記憶部42は、疲労推定モデルを構成するために必要なパラメータの情報を記憶する。例えば、疲労推定モデルが畳み込みニューラルネットワークなどのニューラルネットワークに基づくモデルである場合、疲労推定モデル記憶部42は、層構造、各層のニューロン構造、各層におけるフィルタ数及びフィルタサイズ、並びに各フィルタの各要素の重みなどの各種パラメータの情報を記憶する。
 なお、図1に示す疲労推定システム100の構成は一例であり、当該構成に種々の変更が行われてもよい。例えば、入力装置2及び出力装置3は、一体となって構成されてもよい。この場合、入力装置2及び出力装置3は、疲労推定装置1と一体又は別体となるタブレット型端末として構成されてもよい。また、入力装置2とセンサ5とは、一体となって構成されてもよい。また、疲労推定装置1は、複数の装置から構成されてもよい。この場合、疲労推定装置1を構成する複数の装置は、予め割り当てられた処理を実行するために必要な情報の授受を、これらの複数の装置間において行う。
 (2)疲労推定装置のハードウェア構成
 図2は、疲労推定装置1のハードウェア構成を示す。疲労推定装置1は、ハードウェアとして、プロセッサ11と、メモリ12と、インターフェース13とを含む。プロセッサ11、メモリ12及びインターフェース13は、データバス19を介して接続されている。
 プロセッサ11は、メモリ6に記憶されているプログラムを実行することにより、疲労推定装置1の全体の制御を行うコントローラ(演算装置)として機能する。プロセッサ11は、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、TPU(Tensor Processing Unit)などのプロセッサである。プロセッサ11は、複数のプロセッサから構成されてもよい。プロセッサ11は、コンピュータの一例である。
 メモリ12は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリなどの各種の揮発性メモリ及び不揮発性メモリにより構成される。また、メモリ12には、疲労推定装置1が実行する処理を実行するためのプログラムが記憶される。なお、メモリ12が記憶する情報の一部は、疲労推定装置1と通信可能な1又は複数の外部記憶装置により記憶されてもよく、疲労推定装置1に対して着脱自在な記憶媒体により記憶されてもよい。
 インターフェース13は、疲労推定装置1と他の装置とを電気的に接続するためのインターフェースである。これらのインターフェースは、他の装置とデータの送受信を無線により行うためのネットワークアダプタなどのワイアレスインタフェースであってもよく、他の装置とケーブル等により接続するためのハードウェアインターフェースであってもよい。
 なお、疲労推定装置1のハードウェア構成は、図2に示す構成に限定されない。例えば、疲労推定装置1は、入力装置2又は出力装置3の少なくとも一方を含んでもよい。また、疲労推定装置1は、スピーカなどの音出力装置と接続又は内蔵してもよい。
 (3)機能ブロック
 図3は、疲労推定装置1の機能ブロックの一例である。疲労推定装置1のプロセッサ11は、機能的には、正規化処理部14と、特徴量抽出部15と、疲労推定部16と、疲労判定部17と、出力制御部18とを有する。なお、図3では、データの授受が行われるブロック同士を実線により結んでいるが、データの授受が行われるブロックの組合せは図3に限定されない。後述する他の機能ブロックの図においても同様である。
 正規化処理部14は、センサ信号S3が表す被検者の生体データに対し、属性情報記憶部41に記憶された被検者の属性情報に基づき、個人の属性に基づく差を吸収する正規化処理を行う。この場合、正規化処理部14は、センサ信号S3が表す被検者の生体データと、被検者の属性情報とを入力として、個人の属性に基づく差を吸収するように正規化された生体データ(「正規化生体データDn」とも呼ぶ。)を出力する。正規化処理部14は、max-min normalization、z-score normalizationなどの任意の正規化手法を用いて正規化処理を行ってもよい。なお、正規化処理部14は、被検者の属性情報を属性情報記憶部41から取得する場合、例えば、被検者のログイン情報又は任意の人物認識処理(例えば、カメラ画像等を用いた生体認証)により被検者の識別情報を取得し、当該識別情報と紐付いた属性情報を属性情報記憶部41から取得する。
 例えば、身体疲労を推定する場合、正規化処理部14は、属性情報記憶部41が記憶する被検者の筋肉量に基づき、センサ信号S3が表す被検者の心拍間隔(RRI:R-R Interval)を正規化する。
 特徴量抽出部15は、正規化処理部14が出力する正規化生体データDnに対して特徴量を抽出する処理を行い、抽出した正規化生体データDnの特徴量を疲労推定部16に出力する。この場合、特徴量抽出部15は、疲労推定に用いられる種々の特徴量を抽出する処理を行ってもよい。例えば、記憶装置4又はメモリ12には、特徴抽出モデルのパラメータが記憶されてもよい。この場合、特徴量抽出部15は、記憶されたパラメータに基づき特徴抽出モデルを構成し、当該特徴抽出モデルに対して正規化生体データDnを入力することで、正規化生体データDnの特徴量を取得する。
 例えば、特徴量抽出部15は、センサ信号S3が表す生体データが心拍間隔(RRI)の時系列データである場合に、自律神経緊張の指標となる心拍変動性を特徴量として算出する。心拍変動性は、例えば、RRIの代表値(平均値、最大値、最小値、中央値等)、又は/及び、RRIのばらつきの指標値(標準偏差、分散等)である。
 疲労推定部16は、特徴量抽出部15から供給される正規化生体データDnの特徴量に基づき、疲労推定モデル記憶部42が記憶する疲労推定モデルを用いて、被検者の疲労度(「被検者疲労度Df」とも呼ぶ。)を算出する。具体的には、疲労推定部16は、正規化生体データDnの特徴量を疲労推定モデルに入力することで疲労推定モデルが出力する被検者の疲労度を、被検者疲労度Dfとして取得する。なお、被検者疲労度Dfは、身体的な疲労度であってもよく、精神的な疲労度であってもよく、これらを総合した総合疲労度であってもよく、これらの組合わせであってもよい。例えば、疲労推定部16は、被検者のジャンプの高さを表す生体データを正規化した正規化生体データDnの特徴量を疲労推定モデルに入力することで、被検者疲労度Dfとして被検者の身体疲労スコアを算出する。
 疲労判定部17は、疲労推定部16が算出した被検者疲労度Dfから、被検者の疲労に関する判定を行う。例えば、疲労判定部17は、被検者疲労度Dfと、記憶装置4又はメモリ12に予め記憶した閾値とを比較することで、被検者が注意又は対処が必要な高疲労状態であるか否か判定する。例えば、疲労判定部17は、疲労推定部16が被検者疲労度Dfとして算出した身体疲労スコアが100点満点のうち70点以上である場合に、被検者が高疲労状態であると判定する。なお、疲労状態を段階的に分類するため、上記閾値が複数設けられてもよい。
 出力制御部18は、疲労判定部17による判定結果を出力する。例えば、出力制御部18は、疲労判定部17による判定結果を、表示部に表示する、又は、音出力部により音声出力する。他の例では、出力制御部18は、疲労判定部17による判定結果を、記憶装置4に記憶する。この場合、出力制御部18は、疲労判定部17による判定結果と共に、疲労推定部16が算出した被検者疲労度Dfに関する情報を出力してもよい。
 なお、図3において説明した正規化処理部14、特徴量抽出部15、疲労推定部16、疲労判定部17及び出力制御部18の各構成要素は、例えば、プロセッサ11がプログラムを実行することによって実現できる。また、必要なプログラムを任意の不揮発性記憶媒体に記録しておき、必要に応じてインストールすることで、各構成要素を実現するようにしてもよい。なお、これらの各構成要素の少なくとも一部は、プログラムによるソフトウェアで実現することに限ることなく、ハードウェア、ファームウェア、及びソフトウェアのうちのいずれかの組合せ等により実現してもよい。また、これらの各構成要素の少なくとも一部は、例えばFPGA(Field-Programmable Gate Array)又はマイクロコントローラ等の、ユーザがプログラミング可能な集積回路を用いて実現してもよい。この場合、この集積回路を用いて、上記の各構成要素から構成されるプログラムを実現してもよい。また、各構成要素の少なくとも一部は、ASSP(Application Specific Standard Produce)、ASIC(Application Specific Integrated Circuit)又は量子プロセッサ(量子コンピュータ制御チップ)により構成されてもよい。このように、各構成要素は、種々のハードウェアにより実現されてもよい。以上のことは、後述する他の実施の形態においても同様である。さらに、これらの各構成要素は、例えば、クラウドコンピューティング技術などを用いて、複数のコンピュータの協働によって実現されてもよい。以上のことは、後述する他の実施の形態においても同様である。
 (4)疲労度の算出例
 次に、被検者疲労度Dfの算出例について説明する。以下では、一例として、被検者のRRIを生体データとし、被検者の筋肉量を正規化処理に用いる属性とし、心拍変動の指標を正規化生体データDnの特徴量として抽出する被検者疲労度Dfの算出例について説明する。
 疲労推定装置1は、疲労推定モデルを線形モデルとした場合、被検者疲労度Dfを表すベクトル「Y」(要素1個の場合も含む)を、以下の式(1)に基づき算出する。
       Y=WX  (1)
 ベクトル「X」(要素1個の場合も含む)は、正規化生体データDnの特徴量である心拍変動の指標を表し、行列「W」(1×1の場合も含む)は、線形モデルの係数行列を表す。ここで、行列Wは、ベクトルYとベクトルXの複数の組(即ち学習用データセット)に基づき予め学習により求められたパラメータを表し、疲労推定モデル記憶部42に予め記憶されている。この場合、学習用データセットのベクトルYとして、例えば、ジャンプの高さ又はアンケート結果等から導出した比較的信頼度が高い身体疲労スコアが用いられる。
 式(1)において、正規化関数「g」及び正規化したRRIから特徴量を算出する特徴量算出関数「Φ」を用いてベクトルXを書き換えた場合、以下の式(2)が導出される。
       Y=ΣW Φ(g(RRI,ρ))  (2)
 式(2)において、「RRI」は、被検者「i」のRRIを表し、「ρ」は、被検者iの筋肉量を表す。なお、正規化関数gは、例えばmax-min、z-score等であり、特徴量算出関数Φは、例えばMax関数、Min関数、Median関数等に相当し、要素1個以上のベクトルを出力する。係数ベクトルWは、係数行列Wのj列目に相当するベクトルである。
 一般に、筋肉量は最大心拍数と関係しており、筋肉量が多いほど疲れにくい。従って、式(2)によれば、疲労推定装置1は、被検者の筋肉量ρに基づいて生体データであるRRIを正規化するため、被検者の個人差によらずに被検者疲労度Dfを的確に算出することができる。
 次に、式(2)における正規化関数gの具体例(第1具体例及び第2具体例)について説明する。
 正規化関数gの第1具体例は、生体データであるRRIを、被検者の属性である筋肉量ρで除算する関数である。この場合、式(2)の正規化関数gは、以下の式(3)により表される。
       g(RRI,ρ)=RRI/ρ  (3)
このような正規化関数gを用いることで、疲労推定装置1は、筋肉量ρが多いほど、正規化後のRRI(即ち正規化生体データDnの値)を小さくし、被検者疲労度Dfを的確に算出することが可能となる。
 正規化関数gの第2具体例は、共通の属性を有する被検者の集団が存在する場合に、当該集団を母集団とした筋肉量ρの最大値「ρmax」及び最小値「ρmin」に基づきRRIの正規化を行う関数である。例えば、20人のメンバが存在するスポーツチームを対象の集団とした場合に、20人の筋肉量のうち最大となる筋肉量をρmax、最小となる筋肉量をρminと定める。この場合、式(2)の正規化関数gは、以下の式(4)により表される。
 g(RRI,ρ)=RRI×{(ρmax-ρ)/(ρmax-ρmin)} (4)
 従って、第2具体例では、検査対象となる各集団に対する筋肉量ρmax、ρminが予め記憶装置4又はメモリ12に記憶されている。そして、疲労推定装置1は、被検者の疲労推定を行う場合に、当該被検者が属する集団の筋肉量ρmax、ρminを用いて、式(4)に基づき、被検者の被検者疲労度Dfを算出する。
 正規化関数gの第2具体例によっても、疲労推定装置1は、被検者の属性である筋肉量に応じてRRIを正規化し、被検者疲労度Dfを的確に算出することが可能となる。
 なお、第2具体例において記憶装置4又はメモリ12に記憶される最大筋肉量ρmax、最小筋肉量ρminは、好適には一定期間ごとに更新されるとよい。この場合、被検者が属する集団の活動状態によって更新頻度が決定されてもよい。例えば、スポーツ選手の集団を対象とする場合、シーズンオフでは筋肉量の変動が少ないことを勘案し、シーズン中か否かによって更新頻度を異ならせてもよい。属性情報記憶部41に記憶される筋肉量ρについても同様に、好適には、被検者の活動状態等に応じて一定期間ごとに更新されるとよい。
 (5)処理フロー
 図4は、第1実施形態において疲労推定装置1が実行するフローチャートの一例である。疲労推定装置1は、図4に示すフローチャートの処理を、繰り返し実行する。
 まず、疲労推定装置1の正規化処理部14は、インターフェース13を介してセンサ信号S3をセンサ5から受信することで、正規化処理の対象となる生体データを取得する(ステップS11)。そして、正規化処理部14は、インターフェース13を介して記憶装置4の属性情報記憶部41を参照することで被検者の属性情報を取得し、取得した被検者の属性情報に基づき、ステップS11で取得した生体データを正規化する(ステップS12)。これにより、正規化処理部14は、正規化生体データDnを生成する。
 そして、特徴量抽出部15は、正規化生体データDnの特徴量を抽出する処理を行う(ステップS13)。そして、疲労推定部16は、ステップS13で特徴量抽出部15が抽出した特徴量に基づき、被検者疲労度Dfを算出する(ステップS14)。この場合、疲労推定部16は、疲労推定モデル記憶部42を参照することで疲労推定モデルを構成し、構成した疲労推定モデルにステップS13で抽出された特徴量を入力することで、被検者疲労度Dfを算出する。
 そして、疲労判定部17は、ステップS14で疲労推定部16が算出した被検者疲労度Dfに基づき被検者の疲労状態に関する判定を行い、出力制御部18は、疲労判定部17による判定結果を出力する(ステップS15)。この場合、出力制御部18は、例えば、疲労判定部17による判定結果を表示又は音出力することで、被検者又は被検者の管理者に被検者の疲労状態を通知する。
 (6)変形例
 次に、第1実施形態に好適な変形例について説明する。以下の変形例は、組み合わせて適用してもよい。
 (第1変形例)
 疲労推定部16は、正規化生体データDnの特徴量に加えて、正規化前の生体データの特徴量を用いて被検者疲労度Dfを算出してもよい。
 この場合、疲労推定モデルは、正規化生体データDnの特徴量と、生体データの特徴量とが入力された場合に被検者疲労度Dfを出力するモデルであり、このような疲労推定モデルのパラメータが疲労推定モデル記憶部42に予め記憶されている。疲労推定部16は、この疲労推定モデルを用いることで、正規化生体データDnの特徴量と、正規化前の生体データの特徴量とに基づき、被検者疲労度Dfを好適に算出することができる。
 (第2変形例)
 疲労推定装置1は、特徴量抽出部15を有しなくともよい。この場合、疲労推定モデル記憶部42に記憶される疲労推定モデルは、正規化生体データDnが入力された場合に被検者疲労度Dfを出力するモデルであり、疲労推定部16は、この疲労推定モデルを用いて、正規化処理部14が出力する正規化生体データDnから被検者疲労度Dfを算出する。
 (第3変形例)
 正規化処理部14は、属性情報記憶部41に記憶された被検者の属性情報に加えて、入力信号S1に基づくユーザ入力情報(即ちユーザによる外部入力)をさらに勘案して、生体データの正規化を行ってもよい。
 例えば、正規化処理部14は、式(3)の「ρ」に乗じる係数「α」を設定し、当該係数αをユーザ入力情報に基づき決定する。他の例では、正規化処理部14は、式(4)の「(ρmax-ρ)/(ρmax-ρmin)」に乗じる係数「β」を設定し、当該係数βをユーザ入力情報に基づき決定する。ここで、ユーザ入力情報は、係数α又は係数βを直接的に指定する情報であってもよく、間接的に指定する情報であってもよい。後者の場合、例えば、ユーザ入力情報は、被検者が疲れの感じやすさに関する度合いを示す情報であり、この場合、正規化処理部14は、取得したユーザ入力情報が示す当該度合いから所定の式又はルックアップテーブルを参照して係数α又は係数βを決定する。なお、係数α及び係数βは、ユーザ入力情報がない場合には、初期値である1に設定される。
 このように、正規化処理部14は、入力信号S1に基づき正規化に用いる係数を調整することで、被検者の個人差によらないように的確に正規化された正規化生体データDnを好適に生成することができる。
 また、正規化処理部14は、入力信号S1に代えて、又はこれに加えて、生体データの計測時の環境を表す環境情報に基づき、生体データの正規化に用いるパラメータを調整してもよい。
 この場合、環境情報は、例えば、被検者がセンサ5により計測されるときの温度、湿度、照度、天候等の環境を表した1又は複数の指標値である。正規化処理部14は、検査が行われる場所に設けられた温度計、湿度計、照度センサ等の出力信号を受信することで環境情報を取得してもよく、各地点の天候情報等を管理するサーバ装置から検査場所に対応する環境情報を受信してもよい。そして、正規化処理部14は、取得した環境情報に基づき、所定の式又はルックアップテーブル等を参照し、正規化に用いる係数(例えば上述の係数α又は係数β)を決定する。この場合においても、正規化処理部14は、被検者の個人差及び検査環境によらない正規化生体データDnを好適に生成することができる。
 <第2実施形態>
 図5は、第2実施形態における疲労推定システム100Aの概略構成を示す。第2実施形態に係る疲労推定システム100Aは、サーバクライアントモデルのシステムであり、サーバ装置として機能する疲労推定装置1Aが第1実施形態における疲労推定装置1の処理を行う。以後では、第1実施形態と同一構成要素については、適宜同一符号を付し、その説明を省略する。
 図5に示すように、疲労推定システム100Aは、主に、サーバとして機能する疲労推定装置1Aと、疲労推定処理に必要なデータを記憶する記憶装置4と、クライアントとして機能する端末装置8とを有する。疲労推定装置1Aと端末装置8とは、ネットワーク7を介してデータ通信を行う。
 端末装置8は、入力機能、表示機能、及び通信機能を有する端末であり、図1に示される入力装置2及び出力装置3として機能する。端末装置8は、例えば、パーソナルコンピュータ、タブレット型端末、PDA(Personal Digital Assistant)などであってもよい。端末装置8は、センサ5が出力する被検者の生体データ(即ち、図1におけるセンサ信号S3に相当する情報)又はユーザ入力に基づく情報などを、疲労推定装置1Aに送信する。
 疲労推定装置1Aは、図2に示す疲労推定装置1のハードウェア構成と同一のハードウェア構成を有し、疲労推定装置1Aのプロセッサ11は、図3に示される機能ブロックを有する。そして、疲労推定装置1Aは、図1に示す疲労推定装置1が入力装置2及びセンサ5から取得する情報などを、ネットワーク7を介して端末装置8から受信する。また、疲労推定装置1Aは、端末装置8からの要求に基づき、センサ5により生体データが検出された被検者の疲労度に関する情報を示す出力信号を、ネットワーク7を介して端末装置8へ送信する。これにより、疲労推定装置1Aは、疲労度に関する情報を端末装置8のユーザに好適に提示することができる。
 <第3実施形態>
 図6は、第3実施形態における疲労推定装置1Xのブロック図である。疲労推定装置1Xは、主に、正規化処理手段14Xと、疲労推定手段16Xとを有する。なお、疲労推定装置1Xは、複数の装置により構成されてもよい。
 正規化処理手段14Xは、被検者の生体データに対し、被検者の属性に基づいて、正規化処理を行う。正規化処理手段14Xは、第1実施形態(変形例を含む、以下同じ。)又は第2実施形態における正規化処理部14とすることができる。
 疲労推定手段16Xは、正規化処理後の生体データに基づき、被検者の疲労度を推定する。疲労推定手段16Xは、第1実施形態又は第2実施形態における疲労推定部16とすることができる。
 図7は、第3実施形態において疲労推定装置1Xが実行するフローチャートの一例である。まず、正規化処理手段14Xは、被検者の生体データに対し、被検者の属性に基づいて、正規化処理を行う(ステップS21)。疲労推定手段16Xは、正規化処理後の生体データに基づき、被検者の疲労度を推定する(ステップS22)。
 第3実施形態に係る疲労推定装置1Xは、被検者の疲労度を的確に推定することができる。
 なお、上述した各実施形態において、プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータであるプロセッサ等に供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記憶媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記憶媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記憶媒体(例えば光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(Random Access Memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
 その他、上記の各実施形態の一部又は全部は、以下の付記のようにも記載され得るが以下には限られない。
[付記1]
 被検者の生体データに対し、前記被検者の属性に基づいて、正規化処理を行う正規化処理手段と、
 前記正規化処理後の生体データに基づき、前記被検者の疲労度を推定する疲労推定手段と、
を備える疲労推定装置。
[付記2]
 前記正規化処理後の生体データの特徴量を抽出する特徴量抽出手段をさらに有し、
 前記疲労推定手段は、前記特徴量に基づき、前記疲労度を推定する、付記1に記載の疲労推定装置。
[付記3]
 前記属性は、前記被検者の筋肉量であり、
 前記正規化処理手段は、前記被検者の筋肉量に基づいて、前記正規化処理を行う、付記1または2に記載の疲労推定装置。
[付記4]
 前記属性は、前記被検者の年齢、性別、職業、前記被検者が実行する競技種別又は競技におけるポジションの少なくともいずれかであり、
 前記正規化処理手段は、前記被検者の年齢、性別、前記被検者が実行する競技種別又は当該競技におけるポジションの少なくともいずれかに基づいて、前記正規化処理を行う、付記1または2に記載の疲労推定装置。
[付記5]
 前記疲労推定手段は、前記生体データ又は当該生体データの特徴量が入力された場合に当該生体データの被検者において推定される疲労度を出力するように学習された疲労推定モデルに基づき、前記疲労度を算出する、付記1~4のいずれか一項に記載の疲労推定装置。
[付記6]
 前記正規化処理手段は、外部入力に基づき、前記正規化処理に用いるパラメータを調整する、付記1~5のいずれか一項に記載の疲労推定装置。
[付記7]
 前記正規化処理手段は、前記生体データの計測時の環境を表す環境情報に基づき、前記正規化処理に用いるパラメータを調整する、付記1~6のいずれか一項に記載の疲労推定装置。
[付記8]
 前記疲労度に基づき、前記被検者の疲労に関する状態の判定を行う疲労判定手段と、
 前記判定の結果に関する出力を行う出力制御手段と、
をさらに有する、付記1~7のいずれか一項に記載の疲労推定装置。
[付記9]
 コンピュータが、
 被検者の生体データに対し、前記被検者の属性に基づいて、正規化処理を行い、
 前記正規化処理後の生体データに基づき、前記被検者の疲労度を推定する、
疲労推定方法。
[付記10]
 被検者の生体データに対し、前記被検者の属性に基づいて、正規化処理を行い、
 前記正規化処理後の生体データに基づき、前記被検者の疲労度を推定する処理をコンピュータに実行させるプログラムが格納された記憶媒体。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。すなわち、本願発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。また、引用した上記の特許文献等の各開示は、本書に引用をもって繰り込むものとする。
 1、1A、1X 疲労推定装置
 2 入力装置
 3 出力装置
 4 記憶装置
 5 センサ
 8 端末装置
 100、100A 疲労推定システム

Claims (10)

  1.  被検者の生体データに対し、前記被検者の属性に基づいて、正規化処理を行う正規化処理手段と、
     前記正規化処理後の生体データに基づき、前記被検者の疲労度を推定する疲労推定手段と、
    を備える疲労推定装置。
  2.  前記正規化処理後の生体データの特徴量を抽出する特徴量抽出手段をさらに有し、
     前記疲労推定手段は、前記特徴量に基づき、前記疲労度を推定する、請求項1に記載の疲労推定装置。
  3.  前記属性は、前記被検者の筋肉量であり、
     前記正規化処理手段は、前記被検者の筋肉量に基づいて、前記正規化処理を行う、請求項1または2に記載の疲労推定装置。
  4.  前記属性は、前記被検者の年齢、性別、職業、前記被検者が実行する競技種別又は当該競技におけるポジションの少なくともいずれかであり、
     前記正規化処理手段は、前記被検者の年齢、性別、前記被検者が実行する競技種別又は競技におけるポジションの少なくともいずれかに基づいて、前記正規化処理を行う、請求項1または2に記載の疲労推定装置。
  5.  前記疲労推定手段は、前記生体データ又は当該生体データの特徴量が入力された場合に当該生体データの被検者において推定される疲労度を出力するように学習された疲労推定モデルに基づき、前記疲労度を算出する、請求項1~4のいずれか一項に記載の疲労推定装置。
  6.  前記正規化処理手段は、外部入力に基づき、前記正規化処理に用いるパラメータを調整する、請求項1~5のいずれか一項に記載の疲労推定装置。
  7.  前記正規化処理手段は、前記生体データの計測時の環境を表す環境情報に基づき、前記正規化処理に用いるパラメータを調整する、請求項1~6のいずれか一項に記載の疲労推定装置。
  8.  前記疲労度に基づき、前記被検者の疲労に関する状態の判定を行う疲労判定手段と、
     前記判定の結果に関する出力を行う出力制御手段と、
    をさらに有する、請求項1~7のいずれか一項に記載の疲労推定装置。
  9.  コンピュータが、
     被検者の生体データに対し、前記被検者の属性に基づいて、正規化処理を行い、
     前記正規化処理後の生体データに基づき、前記被検者の疲労度を推定する、
    疲労推定方法。
  10.  被検者の生体データに対し、前記被検者の属性に基づいて、正規化処理を行い、
     前記正規化処理後の生体データに基づき、前記被検者の疲労度を推定する処理をコンピュータに実行させるプログラムが格納された記憶媒体。
PCT/JP2021/020836 2021-06-01 2021-06-01 疲労推定装置、疲労推定方法及び記憶媒体 WO2022254574A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023525212A JPWO2022254574A5 (ja) 2021-06-01 疲労推定装置、疲労推定方法及びプログラム
PCT/JP2021/020836 WO2022254574A1 (ja) 2021-06-01 2021-06-01 疲労推定装置、疲労推定方法及び記憶媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/020836 WO2022254574A1 (ja) 2021-06-01 2021-06-01 疲労推定装置、疲労推定方法及び記憶媒体

Publications (1)

Publication Number Publication Date
WO2022254574A1 true WO2022254574A1 (ja) 2022-12-08

Family

ID=84323995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020836 WO2022254574A1 (ja) 2021-06-01 2021-06-01 疲労推定装置、疲労推定方法及び記憶媒体

Country Status (1)

Country Link
WO (1) WO2022254574A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017023311A (ja) * 2015-07-21 2017-02-02 株式会社タニタ 疲労判定装置及びプログラム
JP2017086524A (ja) * 2015-11-11 2017-05-25 セイコーエプソン株式会社 疲労度管理装置、疲労度管理システムおよび疲労度判定方法
CN107590358A (zh) * 2017-07-24 2018-01-16 深圳市沃特沃德股份有限公司 运动指导方法和装置
JP2018023676A (ja) * 2016-08-12 2018-02-15 オムロンヘルスケア株式会社 疲労度判定装置、疲労度判定方法、疲労度判定プログラム、及び、生体情報測定装置
US20190343459A1 (en) * 2018-05-10 2019-11-14 MAD Apparel, Inc. Fatigue measurement in a sensor equipped garment
CN110448281A (zh) * 2019-07-29 2019-11-15 南京理工大学 一种基于多传感器的可穿戴作业疲劳检测系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017023311A (ja) * 2015-07-21 2017-02-02 株式会社タニタ 疲労判定装置及びプログラム
JP2017086524A (ja) * 2015-11-11 2017-05-25 セイコーエプソン株式会社 疲労度管理装置、疲労度管理システムおよび疲労度判定方法
JP2018023676A (ja) * 2016-08-12 2018-02-15 オムロンヘルスケア株式会社 疲労度判定装置、疲労度判定方法、疲労度判定プログラム、及び、生体情報測定装置
CN107590358A (zh) * 2017-07-24 2018-01-16 深圳市沃特沃德股份有限公司 运动指导方法和装置
US20190343459A1 (en) * 2018-05-10 2019-11-14 MAD Apparel, Inc. Fatigue measurement in a sensor equipped garment
CN110448281A (zh) * 2019-07-29 2019-11-15 南京理工大学 一种基于多传感器的可穿戴作业疲劳检测系统

Also Published As

Publication number Publication date
JPWO2022254574A1 (ja) 2022-12-08

Similar Documents

Publication Publication Date Title
US11642086B2 (en) Apparatus and method for correcting error of bio-information sensor, and apparatus and method for estimating bio-information
US20180310879A1 (en) Psychological acute stress measurement using a wireless sensor
US10971271B2 (en) Method and system for personalized blood flow modeling based on wearable sensor networks
US10362998B2 (en) Sensor-based detection of changes in health and ventilation threshold
KR20190008426A (ko) 자율신경 균형에 기반한 스트레스 검출
KR20180110100A (ko) 심부전을 평가하기 위한 장치 및 방법
EP2914171A1 (en) Measuring psychological stress from cardiovascular and activity signals
US20120150003A1 (en) System Non-invasive Cardiac Output Determination
CN111183424A (zh) 识别用户的系统和方法
US11075009B2 (en) System and method for sympathetic and parasympathetic activity monitoring by heartbeat
US11617545B2 (en) Methods and systems for adaptable presentation of sensor data
JP2022523631A (ja) 心拍数測定システム
US20210121117A1 (en) Systems and methods of qt interval analysis
US10420514B2 (en) Detection of chronotropic incompetence
CN111655126B (zh) 在移动设备上估计身体成分
CN115802931A (zh) 检测用户温度和评估呼吸系统病症的生理症状
WO2022254574A1 (ja) 疲労推定装置、疲労推定方法及び記憶媒体
WO2023058200A1 (ja) 疲労度算出装置、疲労度算出方法及び記憶媒体
WO2023053176A1 (ja) 学習装置、行動推薦装置、学習方法、行動推薦方法及び記憶媒体
US20240008813A1 (en) Smart wearable device and method for estimating traditional medicine system parameters
WO2022208873A1 (ja) ストレス推定装置、ストレス推定方法及び記憶媒体
US20240013877A1 (en) Method for calculating a degree of fatigue
WO2017180617A1 (en) Psychological acute stress measurement using a wireless sensor
WO2022144978A1 (ja) 情報処理装置、制御方法及び記憶媒体
US20220125376A1 (en) Sleep apnea syndrome determination apparatus, sleep apnea syndrome determination method, and sleep apnea syndrome determination program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21944080

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18564761

Country of ref document: US

Ref document number: 2023525212

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE