WO2022254531A1 - Wireless communication node and wireless communication method - Google Patents

Wireless communication node and wireless communication method Download PDF

Info

Publication number
WO2022254531A1
WO2022254531A1 PCT/JP2021/020712 JP2021020712W WO2022254531A1 WO 2022254531 A1 WO2022254531 A1 WO 2022254531A1 JP 2021020712 W JP2021020712 W JP 2021020712W WO 2022254531 A1 WO2022254531 A1 WO 2022254531A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
wireless communication
radio
transmission
synchronization
Prior art date
Application number
PCT/JP2021/020712
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 栗田
翔平 吉岡
慎也 熊谷
優元 ▲高▼橋
春陽 越後
聡 永田
浩樹 原田
悠貴 外園
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2021/020712 priority Critical patent/WO2022254531A1/en
Priority to JP2023525175A priority patent/JPWO2022254531A1/ja
Publication of WO2022254531A1 publication Critical patent/WO2022254531A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present disclosure relates to wireless communication nodes and wireless communication methods compatible with flexible networks and mesh networks.
  • the 3rd Generation Partnership Project (3GPP) has specified the 5th generation mobile communication system (also called 5G, New Radio (NR) or Next Generation (NG)), and the next generation specification called Beyond 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G
  • Non-Patent Document 1 Non-Patent Document 1
  • wireless communication nodes which may include terminals (User Equipment, UE), wireless base stations (gNB, etc., which may be also known as other names), and communication devices that constitute Integrated Access and Backhaul (IAB)), such A design that considers the characteristics of 6G is inevitable.
  • UE User Equipment
  • gNB wireless base stations
  • IAB Integrated Access and Backhaul
  • wireless communication nodes such as terminals need to quickly and reliably establish synchronization with various entities (which may be read as wireless communication nodes) that provide different functions.
  • the following disclosure is made in view of such circumstances, and aims to provide a wireless communication node and a wireless communication method that can quickly and reliably establish synchronization with various entities that provide different functions. do.
  • One aspect of the present disclosure is a transmitting unit (control signal/reference signal processing unit 140) that transmits a plurality of synchronization signals having different configurations, and based on the function or connection state of a wireless communication node, It is a wireless communication node (NW node 100) including a control unit (control unit 170) that sets at least one of them.
  • control signal/reference signal processing unit 140 that transmits a plurality of synchronization signals having different configurations, and based on the function or connection state of a wireless communication node, It is a wireless communication node (NW node 100) including a control unit (control unit 170) that sets at least one of them.
  • One aspect of the present disclosure includes a transmission/reception unit (radio signal transmission/reception unit 110) that transmits and receives a radio signal, and a control unit (control unit 170) that sets transmission timing and reception timing of the radio signal.
  • a transmission/reception unit radio signal transmission/reception unit 110
  • a control unit control unit 170
  • sets transmission timing and reception timing of the radio signal e.g., a wireless communication node (NW node 100) that assumes that the reception timings of all the wireless signals in the wireless communication nodes match, and sets the transmission timings according to the reception timings.
  • One aspect of the present disclosure includes transmitting a plurality of synchronization signals having different configurations, and setting at least one of the plurality of synchronization signals based on the function or connection state of a wireless communication node.
  • a wireless communication method comprising:
  • One aspect of the present disclosure includes the steps of transmitting and receiving radio signals, and setting transmission timings and reception timings of the radio signals, wherein the setting step includes receiving timings of all the radio signals in a radio communication node. match, and the transmission timing is set according to the reception timing.
  • FIG. 1 is an overall schematic configuration diagram of a radio communication system 10.
  • FIG. FIG. 2 is a functional block configuration diagram of NW node 100 and UE 200.
  • FIG. 3 is a diagram illustrating a timing example (option 1) of a transmission signal according to operation example 1;
  • FIG. 4 is a diagram illustrating a timing example (option 2) of a transmission signal according to operation example 1;
  • FIG. 5 is a diagram illustrating a timing example (option 3 (part 1)) of a transmission signal according to operation example 1.
  • FIG. FIG. 6 is a diagram illustrating a timing example (option 3 (part 1)) of a transmission signal according to operation example 1.
  • FIG. FIG. 1 is an overall schematic configuration diagram of a radio communication system 10.
  • FIG. FIG. 2 is a functional block configuration diagram of NW node 100 and UE 200.
  • FIG. 3 is a diagram illustrating a timing example (option 1) of a transmission signal according to operation example 1;
  • FIG. 4 is a diagram illustrating a timing example (option
  • FIG. 7 is a diagram illustrating a configuration example of a radio link between nodes including (a node corresponding to) a gNB according to operation example 1.
  • FIG. FIG. 8 is a diagram illustrating a timing example (including a propagation delay difference) of a transmission signal according to Operation Example 1.
  • FIG. 9 is a diagram illustrating an example (option 1) of transmission timings of radio signals according to operation example 2.
  • FIG. 10 is a diagram illustrating an example (option 2) of transmission timings of radio signals according to operation example 2.
  • FIG. FIG. 11 is a diagram illustrating an example (option 3) of transmission timings of radio signals according to operation example 2.
  • FIG. FIG. 12 is a diagram showing an example of the hardware configuration of the NW node 100 and UE200.
  • FIG. 1 is an overall schematic configuration diagram of a radio communication system 10 according to the present embodiment.
  • the radio communication system 10 is a radio communication system that follows a scheme called Beyond 5G, 5G Evolution, or 6G, which succeeds 5G New Radio (NR).
  • 5G, 5G Evolution, or 6G which succeeds 5G New Radio (NR).
  • the wireless communication system 10 may be composed of multiple wireless communication nodes.
  • the wireless communication system 10 may be configured by a plurality of network nodes 100 (hereinafter NW nodes 100) and terminals 200 (User Equipment 200, hereinafter UE 200).
  • NW nodes 100 network nodes 100
  • UE 200 User Equipment 200
  • the radio communication system 10 may include a core network (not shown) connected to an external network or the like, and part (or all) of the radio access network configured by the core network and/or radio communication nodes is It may simply be expressed as a "network".
  • the NW node 100 and UE 200 are a type of wireless communication node capable of wireless communication. Note that the NW node 100 and the UE 200 are both wireless communication nodes and need not be clearly distinguished. That is, NW node 100 and UE 200 may function as network nodes or UEs (or both) depending on the type of communication, applications being executed, state of communication, location, and the like.
  • a wireless communication node may be called by another name that means a device that performs wireless communication (mobile communication), such as a node, network entity, network device, or communication device, in addition to NW node and user device.
  • mobile communication such as a node, network entity, network device, or communication device, in addition to NW node and user device.
  • wireless communication nodes may be mounted on aircraft 40, drones 50, vehicles 60, and the like.
  • the aircraft 40 is a vehicle that flies through the air carrying people and objects, and may include balloons, airships, gliders, airplanes, helicopters, and the like.
  • the altitude at which the aircraft 40 can fly is not particularly limited, but an altitude of up to 10,000 m may be assumed.
  • the drone 50 flies in the air like the aircraft 40, but may be interpreted as an unmanned aircraft that flies remotely or automatically. However, the drone 50 does not necessarily have to be unmanned, remotely operated, or automatically controlled. Also, in general, the flying altitude of the drone 50 may be lower than that of the aircraft 40 . Drones 50 may also be referred to as Unmanned Aerial Vehicles (UAVs).
  • UAVs Unmanned Aerial Vehicles
  • the vehicle 60 may be interpreted as a vehicle that travels on land by power, such as an automobile. Vehicles 60 may include vehicles that run on tracks, such as trains. Note that the wireless communication node may be mounted not only on land but also on ships on the sea.
  • the wireless communication node may be mounted on a geostationary satellite (GEO: Geostationary Orbit), a low earth orbit satellite (LEO: Low Earth Orbit), or a high-altitude pseudosatellite (HAPS: High-Altitude Platform Station).
  • GEO Geostationary Orbit
  • LEO Low Earth Orbit
  • HAPS High-altitude pseudosatellite
  • the HAPS can reside in a fixed location at an altitude of about 20 km and may form a large cell radius (eg, 50 km or more) coverage area over land.
  • the wireless communication system 10 can support coverage extension including non-terrestrial networks.
  • the wireless communication node may function as a wireless relay device interposed between other wireless communication nodes.
  • a radio relay device may be called a relay or repeater, and integrates radio access to terminals (User Equipment, UE) and radio backhaul between radio communication nodes such as radio base stations (e.g., gNB). may be a component of an integrated access and backhaul (IAB).
  • UE User Equipment
  • gNB radio base stations
  • IAB integrated access and backhaul
  • the radio communication system 10 may support the same frequency band as NR, and may use the same bandwidth (BW) and subcarrier spacing (SCS). Additionally, the wireless communication system 10 may support even higher frequency bands. Specifically, the wireless communication system 10 may support high frequency bands such as millimeter waves above 10 GHz. Also, a bandwidth of about several 100 MHz may be applied.
  • BW bandwidth
  • SCS subcarrier spacing
  • the wireless communication system 10 may support functions related to eMBB (enhanced Mobile Broadband), URLLC (Ultra-Reliable and Low Latency Communications), and mass connections (mMTC: massive Machine Type Communication), similar to NR. Also, similar to NR, Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM)/Discrete Fourier Transform-Spread (DFT-S-OFDM) with larger Sub-Carrier Spacing (SCS) may be applied.
  • CP-OFDM Cyclic Prefix-Orthogonal Frequency Division Multiplexing
  • DFT-S-OFDM Discrete Fourier Transform-Spread
  • SCS Sub-Carrier Spacing
  • FTN Faster-than-Nyquist
  • time domain may also be referred to as the time direction, time component, time domain, symbol period, symbol time, or the like.
  • a symbol period may also be called a symbol length, a time direction, a time domain, or the like.
  • the frequency domain may also be called frequency direction, frequency component, frequency domain, resource block, resource block group, subcarrier, BWP (Bandwidth part), subchannel, common frequency resource, and so on.
  • the radio communication system 10 uses Massive MIMO (mMIMO), multiple component carriers (CC ), and dual connectivity (DC) in which communication is performed simultaneously between the UE and each of a plurality of wireless communication nodes.
  • mMIMO Massive MIMO
  • CC multiple component carriers
  • DC dual connectivity
  • each wireless communication node is connected to a plurality of wireless communication nodes at the same time to form a mesh network (mesh network) capable of forming various connection paths (communication paths).
  • a mesh network mesh network
  • each wireless communication node may be flexibly changed according to the situation, etc., and flexible network functions can be realized in combination with various network topologies. Arrangements may be implemented. Such networks may be referred to as flexible networks.
  • RAT radio access technology
  • distributed network advancement in the spatial domain that is, communication in the shortest possible distance and line-of-sight environment (path with little loss), and as many communications as possible It may be possible to create paths and allow more room for path selection (increase redundancy).
  • FIG. 2 is a functional block configuration diagram of NW node 100 and UE 200. As shown in FIG.
  • the NW node 100 includes a radio signal transmission/reception unit 110, an amplifier unit 120, a modulation/demodulation unit 130, a control signal/reference signal processing unit 140, an encoding/decoding unit 150, a data transmission/reception unit 160, and a control unit 170.
  • FIG. 2 only shows main functional blocks related to the description of the embodiment, and that the NW node 100 (UE 200) has other functional blocks (for example, a power supply unit, etc.).
  • FIG. 3 shows the functional block configuration of the NW node 100, and please refer to FIG. 12 for the hardware configuration.
  • the radio signal transmitting/receiving unit 110 transmits/receives radio signals according to the 6G RAT.
  • the radio signal transmitting/receiving unit 110 may constitute a transmitting/receiving unit.
  • the radio signal transmitting/receiving unit 110 controls radio (RF) signals transmitted from multiple antenna elements to generate beams with higher directivity.
  • RF radio
  • Aggregation (CA) and dual connectivity (DC) in which communication is performed simultaneously between two NW nodes 100 (or UE 200) may be supported.
  • the amplifier unit 120 is configured by a PA (Power Amplifier)/LNA (Low Noise Amplifier) or the like.
  • Amplifier section 120 amplifies the signal output from modem section 130 to a predetermined power level. Further, amplifier section 120 amplifies the RF signal output from radio signal transmission/reception section 110 .
  • the modulation/demodulation unit 130 executes data modulation/demodulation, transmission power setting, resource block allocation, etc. for each specific communication destination (UE 200).
  • the control signal/reference signal processing unit 140 executes processing related to various control signals that the NW node 100 transmits and receives. Specifically, the control signal/reference signal processing unit 140 receives various control signals transmitted from the UE 200 via the control channel, for example, radio resource control layer (RRC) control signals. Also, the control signal/reference signal processing unit 140 transmits various control signals to the UE 200 via the control channel.
  • RRC radio resource control layer
  • the control signal may include downlink control information (DCI) and uplink control information (UCI).
  • DCI downlink control information
  • UCI uplink control information
  • DCI is interpreted as control information transmitted in the downlink (DL) including at least one of scheduling information, data modulation and channel coding rate information necessary for each UE 200 (or NW node 100) to demodulate data.
  • DL downlink
  • scheduling information including at least one of scheduling information, data modulation and channel coding rate information necessary for each UE 200 (or NW node 100) to demodulate data.
  • UCI includes uplink (UL) including at least one of ACK/NACK of hybrid ARQ (HARQ: Hybrid automatic repeat request), scheduling request (SR) from UE 200 (or NW node 100) and Channel State Information (CSI) may be interpreted as control information to be sent in
  • UL uplink
  • HARQ Hybrid automatic repeat request
  • SR scheduling request
  • CSI Channel State Information
  • control signal/reference signal processing unit 140 can perform processing using reference signals (RS) such as Demodulation Reference Signal and Phase Tracking Reference Signal (PTRS).
  • RS reference signals
  • PTRS Phase Tracking Reference Signal
  • a DMRS is a known reference signal (pilot signal) between a terminal-specific base station and a terminal for estimating the fading channel used for data demodulation.
  • PTRS is a terminal-specific reference signal for estimating phase noise, which is a problem in high frequency bands.
  • reference signals may include Channel State Information-Reference Signal (CSI-RS), Sounding Reference Signal (SRS), Positioning Reference Signal (PRS) for position information, and the like.
  • CSI-RS Channel State Information-Reference Signal
  • SRS Sounding Reference Signal
  • PRS Positioning Reference Signal
  • Control channels include control channels and data channels.
  • Control channels include PDCCH (Physical Downlink Control Channel), PUCCH (Physical Uplink Control Channel), PRACH (Physical Random Access Channel), and PBCH (Physical Broadcast Channel).
  • Data channels include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel).
  • a signal may include a channel and a reference signal.
  • the names of the reference signals and channels are based on NR, they may be called by other names with the same meaning, and the names of the layers described later may also be called by other names with the same meaning. .
  • control signal may include a synchronization signal used for establishing synchronization between wireless communication nodes.
  • the control signal/reference signal processing unit 140 can transmit a plurality of synchronization signals having different configurations.
  • the control signal/reference signal processing unit 140 may constitute a transmitting unit.
  • different configurations (or types) of synchronization signals may be used according to the functions, roles, operating states, positions, usage environments, etc. of wireless communication nodes.
  • the synchronization signal may be the same regardless of the functions of the wireless communication node.
  • whether to use a plurality of synchronization signals properly or to use one synchronization signal may be instructed by the network.
  • a configuration example of the synchronization signal will be described later.
  • control signal/reference signal processing unit 140 can receive synchronization signal information regarding such multiple types of synchronization signals.
  • the control signal/reference signal processing unit 140 may constitute a receiving unit.
  • the control signal/reference signal processing unit 140 receives from a radio communication node equivalent to a radio base station (gNB) information necessary to establish synchronization with the radio communication node or other radio communication nodes. may receive.
  • the information may include, for example, the time and/or frequency domain to which the synchronization signal is assigned, the signal sequence (number of bits, etc.), modulation scheme, coding rule, and the like.
  • the encoding/decoding unit 150 performs data division/concatenation, channel coding/decoding, etc. for each specific communication destination (UE 200).
  • the encoding/decoding unit 150 divides the data output from the data transmission/reception unit 160 into pieces of a predetermined size, and performs channel coding on the divided data. In addition, encoding/decoding section 150 decodes the data output from modem section 130 and concatenates the decoded data.
  • the data transmission/reception unit 160 executes transmission/reception of Protocol Data Unit (PDU) and Service Data Unit (SDU). Specifically, the data transmission/reception unit 160 performs PDU/SDU in multiple layers (medium access control layer (MAC), radio link control layer (RLC), packet data convergence protocol layer (PDCP), etc.). Assemble/disassemble etc.
  • MAC medium access control layer
  • RLC radio link control layer
  • PDCP packet data convergence protocol layer
  • the control unit 170 controls each functional block that configures the NW node 100.
  • the control unit 170 executes control related to synchronization of the NW node 100.
  • control unit 170 can perform control necessary for the NW node 100 to establish synchronization with other wireless communication nodes.
  • Establishing synchronization may mean that communication can be performed with a wireless communication node as a connection destination (communication destination) via a specific control channel or data channel. In other words, it may be interpreted as a state in which control data or user data can be transmitted or received in a specific time domain and/or frequency domain.
  • the wireless communication system 10 uses a plurality of synchronization signals, and the control unit 170 sets at least one of the plurality of synchronization signals based on the function or connection state of the wireless communication node.
  • the function of the wireless communication node may be the function of the own node (may include the role) or the function of the wireless communication node of the connection destination (which may not be connected yet).
  • the connection state may mean whether or not a connection is possible with a radio communication node equivalent to a radio base station (gNB), the number of radio communication nodes to be connected, the configuration of communication paths, the speed (delay), and the like.
  • gNB radio base station
  • the control unit 170 may make the transmission timing of the synchronization signal different from the transmission timing of the synchronization signal in other wireless communication nodes. That is, the control unit 170 may apply individual synchronization signal transmission timing for each wireless communication node.
  • the control unit 170 sets at least one of a plurality of synchronization signals based on the synchronization signal information received via the control signal/reference signal processing unit 140, and determines the transmission timing of the synchronization signal from its own node.
  • synchronization signal information transmitted from a radio communication node or the like equivalent to a radio base station (gNB) includes information necessary for setting the synchronization signal.
  • the control unit 170 may set the synchronization signal based on the time domain and/or frequency domain information included in the synchronization signal information, and transmit the set synchronization signal at a predetermined transmission timing.
  • control unit 170 can set the transmission timing and reception timing of not only the synchronization signal but also the radio signal in which the control data or user data is coded and modulated. That is, the control unit 170 may set the transmission timing of the radio signal from its own node and the reception timing of the radio signal from the other node.
  • control unit 170 may assume that all wireless communication nodes in the wireless communication system 10 match (match) the transmission timings.
  • the reception timing may be determined according to the transmission timing (the timing may be determined according to the propagation delay difference between nodes).
  • control unit 170 may assume that all wireless communication nodes in the wireless communication system 10 match (match) the reception timings.
  • the transmission timing may be determined according to the reception timing.
  • control unit 170 assumes that the reception timings of all radio signals (which may be replaced with radio links, channels, etc.) in the radio communication node (the own node or another radio communication node that serves as a reference for establishing synchronization) are the same. Then, the transmission timing may be set according to the reception timing. The method of determining the transmission/reception timing of radio signals (radio link, channel) will be further described later.
  • the function related to synchronization of the NW node 100 described above may be provided in the UE 200 as well.
  • a wireless communication node may operate according to any of the following methods.
  • a radio communication node (hereinafter referred to as gNB) equivalent to a radio base station (gNB) notifies other radio communication nodes (which may include UE 200) of information on synchronization between nodes (each if the node has the means to communicate directly or indirectly with the NB-equivalent wireless communication node).
  • a synchronization source implemented in the node, such as a global positioning system (GNSS).
  • GNSS global positioning system
  • Radio communication node may operate according to any of the following methods.
  • All nodes match the transmission timing (they may be matched by the same method as for the synchronization signal). As for reception, it depends on the timing of transmission (the timing corresponds to the propagation delay difference between nodes).
  • ⁇ (ii)Regarding transmission it depends on the reception timing. As for reception, all nodes match the reception timing, or each node matches the reception timing.
  • the transmitting node determines the transmission timing (for example, the reception timing of the synchronization signal). As for reception, it depends on the timing of transmission (the timing corresponds to the propagation delay difference between nodes).
  • the configuration of the synchronization signal may be any of the following.
  • All nodes transmit synchronization signals with the same configuration.
  • all nodes may transmit synchronization signals composed of the same signal.
  • signals having the same frequency/time component, signal sequence/signal generation method, etc. as the synchronization signal may be used.
  • the synchronization signal may contain information and/or settings specific to the node on the transmitting side.
  • identification information (ID) of the node may be included.
  • ⁇ A wireless communication node transmits synchronization signals with different configurations depending on the role, function, type (wireless base station/relay device/terminal, etc.) of the node, connection status (connection to the wireless base station), etc. .
  • the frequency/time component of the synchronization signal, the signal sequence/signal generation method, etc. may be different.
  • the synchronization signals (Sync 1, Sync 2 in Fig. 1) with at least part of the configuration (the sequence number for management may not be included) are different depending on the role of the node. good.
  • the synchronization signal may contain information and/or settings specific to the node on the transmitting side. For example, identification information (ID), role, function, type, etc. of the node may be included.
  • ID identification information
  • role role
  • function function
  • type etc.
  • the type of synchronization signal may be determined by the own node according to the role/function/type of the node, the connection state, and the presence or absence of the synchronization source signal (for example, whether or not the GNSS function is installed, or whether or not there is a radio link with the gNB). and may be determined by another node (eg, the connected node or gNB).
  • radio signals (radio links) from nodes may be the same for all nodes, or may be different.
  • FIG. 3 shows a timing example (option 1) of a transmission signal according to operation example 1.
  • FIG. 4 shows a timing example (option 2) of a transmission signal according to operation example 1.
  • FIG. 3 shows a timing example (option 1) of a transmission signal according to operation example 1.
  • FIG. 4 shows a timing example (option 2) of a transmission signal according to operation example 1.
  • all nodes may transmit transmission signals at the same timing.
  • any of the following transmission timing synchronization methods may be applied.
  • TA Timing Advance
  • RTT Round-Trip Time
  • This information may be notified from a reference node such as a node related to a radio link to be synchronized (it may be a connection destination node) or a gNB.
  • a reference node such as a node related to a radio link to be synchronized (it may be a connection destination node) or a gNB.
  • GNSS GNSS
  • each node may transmit a transmission signal at individual timing for each node.
  • each node determines the transmission timing of its own synchronization signal based on the reception timing of the synchronization signal received from the upper node, and determines the timing of the transmission signal according to the transmission timing of the synchronization signal. good.
  • all nodes may transmit at the same temporal position (system frame number, slot or symbol, which may correspond to the same or (albeit with propagation delay) same) transmission timing will be delayed by the propagation delay between
  • each node may independently (individually) determine the transmission timing of the synchronization signal.
  • the transmission timing of the synchronization signal may be intentionally different (shifted) for each node.
  • FIG. 5 shows a timing example of a transmission signal (option 3 (1)) according to operation example 1.
  • FIG. 6 shows a timing example (option 3 (1)) of a transmission signal according to operation example 1.
  • FIG. 5 shows a timing example of a transmission signal (option 3 (1)) according to operation example 1.
  • FIG. 6 shows a timing example (option 3 (1)) of a transmission signal according to operation example 1.
  • FIG. 5 corresponds to option 1 shown in FIG. 3
  • FIG. 6 corresponds to option 2 shown in FIG.
  • an offset in the time direction is added.
  • each node may avoid transmitting a synchronization signal at the same time it receives a synchronization signal.
  • a different transmission timing may be set for each node. The setting of the transmission timing may be notified from the connection destination node of the radio link to be synchronized, the gNB, or the like.
  • multiple transmission timings may be set for a node. For example, both transmission timing common to all nodes and transmission timing individual to each node may be set.
  • each node may set multiple reception windows in order to monitor transmission timings of multiple synchronization signals.
  • the reception window for example, a configuration similar to a measurement window that can be set for each carrier (which may also be called a subcarrier) called NR SSB based RRM Measurement Timing Configuration (SMTC) may be applied.
  • SMTC Measurement Timing Configuration
  • the DL/UL frequencies may be switched according to the connection state of the node or the number of connection hops from the reference node (eg, gNB). .
  • frequency A is assigned to DL (node B reception) and frequency B is assigned to UL (node B transmission).
  • frequency B may be assigned to DL (Node B transmission) and frequency A may be assigned to UL (Node B reception).
  • each node may independently determine the timing and conditions for transmission of the synchronization signal, or the start and/or stop of transmission of the synchronization signal may be explicitly specified by another node (connection destination node, gNB, etc.). (or implicitly) may be dictated.
  • each node When each node makes an individual decision, it may be based on the timing at which it receives information on transmission of a synchronization signal (or a radio signal (or radio link)) and the transmission of the synchronization signal becomes possible.
  • conditions for transmitting the synchronization signal may be defined. For example, whether or not to transmit the synchronization signal may be determined according to the synchronization accuracy of the own node (whether or not it is synchronized with the gNB or GNSS).
  • the priority of the synchronization signal may be set.
  • synchronization signals transmitted by nodes that have a direct or indirect connection with a gNB or have a synchronization source such as GNSS may be set with high priority.
  • the local node may also transmit the synchronization signal.
  • the synchronization signal may contain information regarding the priority.
  • the node corresponding to the gNB may notify other nodes (which may include the UE 200) of information on synchronization between nodes (synchronization signal information).
  • the notification of the information may be broadcast by system information (SIB), or may be realized by signaling such as RRC.
  • FIG. 7 shows a configuration example of a radio link between nodes including (a node corresponding to) a gNB according to Operation Example 1. Note that Nodes 1 to 3 (wireless communication nodes) shown in FIG. 7 may correspond to the NW node 100 or may correspond to the UE 200.
  • Nodes 1 to 3 each have a radio link with gNB, that is, a means of communication
  • gNB notifies each node of information on propagation delay difference when synchronizing between nodes. You can Each node has a radio link with the gNB (see dotted line) and establishes synchronization between each node (see solid line).
  • FIG. 8 shows a timing example (including a propagation delay difference) of transmission signals according to Operation Example 1.
  • the gNB (which may be another node) may, for example, derive the propagation delay from the TA (eg, it may be the difference of TA/2 for each node).
  • the gNB may derive the propagation delay from the reception timing difference of signals to which TA is not applied (such as PRACH).
  • the information about the propagation delay difference to be notified can take both positive and negative values. For example, it could be a positive value for Node 1 and a negative value for Node 2.
  • either node may establish synchronization with the other node, or both nodes may establish synchronization.
  • the notification of information related to such communication may be triggered by the gNB (for example, the received power of the gNB is equal, nodes are close to each other, etc.), or may be triggered by each node (for example, in advance may also probe for the presence of other nodes and request notification upon detection).
  • each node may operate as follows.
  • Initial access may be interpreted as sending and receiving messages according to the random access (RA) procedure.
  • a node performing an initial access may transmit a PRACH or a PRACH-like channel or signal.
  • connection destination node may notify information regarding transmission timing and/or reception timing of the wireless link, identification information of the own node (for example, network identifier), and the like.
  • the connecting node may establish a connection in the RRC layer with the destination node or a higher node than the destination node.
  • connection node may notify the connection destination node of its own node information (eg, identification information, node type, etc.).
  • the connection destination node may add the identification information of the connection node to the list of nodes connected to the own node.
  • the connecting node may start monitoring specific resources (for example, control signals) transmitted by the connecting node.
  • the monitored information may be notified to the destination node and/or other nodes, for example, together with a signal regarding synchronization.
  • transmission timings for upper nodes e.g., gNB (or gNB-based nodes) and lower nodes (e.g., nodes that are not gNBs or gNB-based nodes, UEs, etc.) are determined according to one of the following: good.
  • FIG. 9 shows an example of radio signal transmission timing (option 1) according to operation example 2.
  • FIG. 10 shows an example (option 2) of transmission timings of radio signals according to operation example 2.
  • FIG. 11 shows an example (option 3) of transmission timing of radio signals according to operation example 2.
  • each node may have different transmission timings (timings may correspond to propagation delay differences between nodes).
  • the transmission may differ for each node according to the reception timing.
  • the information about the transmission timing may be notified from the upper node or the lower node.
  • the reception timing of all nodes may be matched, or the reception timing may be matched individually for each node.
  • the reception timings of all wireless links may be matched within the node. Alternatively, the reception timing may be changed for each wireless link.
  • the node on the transmitting side may determine the timing (for example, the reception timing of the synchronization signal).
  • each node may have different transmission timings (timings may correspond to propagation delay differences between nodes).
  • the timing of transmission and reception may be asynchronous without any coordination or control.
  • timing synchronization may be corrected for each communication without synchronizing the system and nodes.
  • resource collisions between transmission and reception signals may occur. may be notified and exchanged.
  • the radio communication node (the node corresponding to the gNB, NW node 100 or UE 200) sets at least one of the plurality of synchronization signals based on the function or connection state of the radio communication node. good.
  • the wireless communication nodes may assume that all wireless communication nodes in the wireless communication system 10 match (match) their transmission or reception timings.
  • the wireless communication node may make the transmission timing of the synchronization signal different from the transmission timing of the synchronization signal in other wireless communication nodes. As a result, collision of synchronization signals between nodes can be avoided, and synchronization between wireless communication nodes can be established more reliably.
  • the wireless communication node may set at least one of the plurality of synchronization signals based on the received synchronization signal information, and determine the transmission timing of the synchronization signal from its own node. Therefore, synchronization between wireless communication nodes can be established more reliably by a rational method in which a plurality of wireless communication nodes cooperate.
  • wireless communication node NW node
  • NW node wireless communication node
  • DL and UL downlink
  • forward ring reverse link
  • access link and backhaul
  • backhaul may be interchanged or associated.
  • first link, second link, first direction, second direction, etc. may simply be used.
  • configure, activate, update, indicate, enable, specify, and select may be read interchangeably. good.
  • link, associate, correspond, and map may be read interchangeably to allocate, assign, monitor. , map, may also be read interchangeably.
  • each functional block may be implemented using one device physically or logically coupled, or directly or indirectly using two or more physically or logically separate devices (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices.
  • a functional block may be implemented by combining software in the one device or the plurality of devices.
  • Functions include judging, determining, determining, calculating, calculating, processing, deriving, investigating, searching, checking, receiving, transmitting, outputting, accessing, resolving, selecting, choosing, establishing, comparing, assuming, expecting, assuming, Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. can't
  • a functional block (component) that performs transmission is called a transmitting unit or transmitter.
  • the implementation method is not particularly limited.
  • FIG. 12 is a diagram showing an example of the hardware configuration of the device. As shown in FIG. 12, the device may be configured as a computing device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the term "apparatus” can be read as a circuit, device, unit, or the like.
  • the hardware configuration of the device may be configured to include one or more of each device shown in the figure, or may be configured without some of the devices.
  • Each functional block of the device (see FIG. 2) is realized by any hardware element of the computer device or a combination of the hardware elements.
  • each function of the device is implemented by causing the processor 1001 to perform calculations, controlling communication by the communication device 1004, and controlling the It is realized by controlling at least one of data reading and writing in 1002 and storage 1003 .
  • a processor 1001 operates an operating system and controls the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including interfaces with peripheral devices, a control unit, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them.
  • programs program codes
  • software modules software modules
  • data etc.
  • the various processes described above may be executed by one processor 1001, or may be executed by two or more processors 1001 simultaneously or sequentially.
  • Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via an electric communication line.
  • the memory 1002 is a computer-readable recording medium, and is composed of at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), Random Access Memory (RAM), etc. may be
  • ROM Read Only Memory
  • EPROM Erasable Programmable ROM
  • EEPROM Electrically Erasable Programmable ROM
  • RAM Random Access Memory
  • the memory 1002 may also be called a register, cache, main memory (main storage device), or the like.
  • the memory 1002 can store programs (program code), software modules, etc. capable of executing a method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, an optical disc such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disc, a magneto-optical disc (for example, a compact disc, a digital versatile disc, a Blu-ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, and/or the like.
  • Storage 1003 may also be referred to as an auxiliary storage device.
  • the recording medium described above may be, for example, a database, server, or other suitable medium including at least one of memory 1002 and storage 1003 .
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes a high-frequency switch, duplexer, filter, frequency synthesizer, etc., for realizing at least one of frequency division duplex (FDD) and time division duplex (TDD).
  • FDD frequency division duplex
  • TDD time division duplex
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside.
  • the output device 1006 is an output device (eg, display, speaker, LED lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
  • the device includes hardware such as a microprocessor, digital signal processor (DSP), application specific integrated circuit (ASIC), programmable logic device (PLD), field programmable gate array (FPGA), etc.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • notification of information is not limited to the aspects/embodiments described in the present disclosure, and may be performed using other methods.
  • the notification of information may include physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI), higher layer signaling (e.g., RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), other signals, or combinations thereof, and RRC signaling may also be referred to as RRC messages, e.g., RRC Connection Setup ) message, RRC Connection Reconfiguration message, or the like.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC signaling e.g., RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), other signals, or combinations thereof
  • RRC signaling may also be referred to as RRC messages, e.g., RRC Connection Setup ) message, R
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • Future Radio Access FAA
  • New Radio NR
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX®
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth®, other suitable systems, and/or next-generation systems enhanced therefrom.
  • a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • a specific operation that is performed by a base station in the present disclosure may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal may be performed by the base station and other network nodes other than the base station (e.g. MME or S-GW, etc., but not limited to).
  • MME or S-GW network nodes
  • the case where there is one network node other than the base station is exemplified above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • Information, signals can be output from a higher layer (or a lower layer) to a lower layer (or a higher layer). It may be input and output via multiple network nodes.
  • Input/output information may be stored in a specific location (for example, memory) or managed using a management table. Input and output information may be overwritten, updated, or appended. The output information may be deleted. The entered information may be transmitted to other devices.
  • the determination may be made by a value represented by one bit (0 or 1), by a true/false value (Boolean: true or false), or by numerical comparison (for example, a predetermined value).
  • notification of predetermined information is not limited to being performed explicitly, but may be performed implicitly (for example, not notifying the predetermined information). good too.
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the Software uses wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to access websites, Wired and/or wireless technologies are included within the definition of transmission medium when sent from a server or other remote source.
  • wired technology coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
  • the channel and/or symbols may be signaling.
  • a signal may also be a message.
  • a component carrier may also be called a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” used in this disclosure are used interchangeably.
  • information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information.
  • radio resources may be indexed.
  • base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • a base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
  • a base station can accommodate one or more (eg, three) cells (also called sectors). When a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, each smaller area corresponding to a base station subsystem (e.g., a small indoor base station (Remote Radio)). Head: RRH) can also provide communication services.
  • a base station subsystem e.g., a small indoor base station (Remote Radio)
  • Head: RRH can also provide communication services.
  • cell refers to part or all of the coverage area of at least one of a base station and base station subsystem that provides communication services in this coverage.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, or the like.
  • the mobile body may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile body (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ).
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a mobile station (user terminal, hereinafter the same).
  • communication between a base station and a mobile station is replaced with communication between multiple mobile stations (for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.)
  • the mobile station may have the functions that the base station has.
  • words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
  • uplink channels, downlink channels, etc. may be read as side channels (or sidelinks).
  • a radio frame may consist of one or more frames in the time domain. Each frame or frames in the time domain may be referred to as a subframe. A subframe may also consist of one or more slots in the time domain. A subframe may be of a fixed length of time (eg, 1 ms) independent of numerology.
  • a numerology may be a communication parameter that applies to the transmission and/or reception of a signal or channel. Numerology, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame structure, transmission and reception specific filtering operations performed by the receiver in the frequency domain, specific windowing operations performed by the transceiver in the time domain, and/or the like.
  • SCS subcarrier spacing
  • TTI transmission time interval
  • number of symbols per TTI radio frame structure
  • transmission and reception specific filtering operations performed by the receiver in the frequency domain specific windowing operations performed by the transceiver in the time domain, and/or the like.
  • a slot may consist of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.) in the time domain.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may be a unit of time based on numerology.
  • a slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot.
  • a PDSCH (or PUSCH) that is transmitted in time units larger than a minislot may be referred to as PDSCH (or PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • multiple consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI. That is, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, may be a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms may be Note that the unit representing the TTI may be called a slot, minislot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum scheduling time unit in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • the TTI may be a transmission time unit for channel-encoded data packets (transport blocks), code blocks, codewords, etc., or may be a processing unit for scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum scheduling time unit.
  • the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI with a time length of 1 ms may be called a normal TTI (TTI in LTE Rel.8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI that is shorter than a regular TTI may also be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and so on.
  • long TTI for example, normal TTI, subframe, etc.
  • short TTI for example, shortened TTI, etc.
  • a TTI having a TTI length greater than or equal to this value may be read as a replacement.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of neurology, and may be 12, for example.
  • the number of subcarriers included in an RB may be determined based on neumerology.
  • the time domain of an RB may include one or more symbols and may be 1 slot, 1 minislot, 1 subframe, or 1 TTI long.
  • One TTI, one subframe, etc. may each consist of one or more resource blocks.
  • One or more RBs are physical resource blocks (Physical RB: PRB), sub-carrier groups (SCG), resource element groups (REG), PRB pairs, RB pairs, etc. may be called.
  • PRB Physical resource blocks
  • SCG sub-carrier groups
  • REG resource element groups
  • PRB pairs RB pairs, etc.
  • a resource block may be composed of one or more resource elements (Resource Element: RE).
  • RE resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • a Bandwidth Part (which may also be called a Bandwidth Part) represents a subset of contiguous common resource blocks (RBs) for a neumerology in a carrier. good.
  • the common RB may be identified by an RB index based on the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • One or more BWPs may be configured in one carrier for a UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
  • BWP bitmap
  • radio frames, subframes, slots, minislots and symbols described above are only examples.
  • the number of subframes included in a radio frame the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of Configurations such as the number of subcarriers and the number of symbols in a TTI, symbol length, cyclic prefix (CP) length, etc.
  • CP cyclic prefix
  • connection means any direct or indirect connection or coupling between two or more elements, It can include the presence of one or more intermediate elements between two elements being “connected” or “coupled.” Couplings or connections between elements may be physical, logical, or a combination thereof. For example, “connection” may be read as "access”.
  • two elements are defined using at least one of one or more wires, cables and printed electrical connections and, as some non-limiting and non-exhaustive examples, in the radio frequency domain. , electromagnetic energy having wavelengths in the microwave and light (both visible and invisible) regions, and the like.
  • the reference signal can also be abbreviated as Reference Signal (RS), and may also be called Pilot depending on the applicable standard.
  • RS Reference Signal
  • any reference to elements using the "first,” “second,” etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, references to first and second elements do not imply that only two elements may be employed therein or that the first element must precede the second element in any way.
  • determining and “determining” used in this disclosure may encompass a wide variety of actions.
  • “Judgement” and “determination” are, for example, judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiring (eg, lookup in a table, database, or other data structure), ascertaining as “judged” or “determined”, and the like.
  • "judgment” and “determination” are used for receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access (accessing) (for example, accessing data in memory) may include deeming that a "judgment” or “decision” has been made.
  • judgment and “decision” are considered to be “judgment” and “decision” by resolving, selecting, choosing, establishing, comparing, etc. can contain.
  • judgment and “decision” may include considering that some action is “judgment” and “decision”.
  • judgment (decision) may be read as “assuming”, “expecting”, “considering”, or the like.
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean that "A and B are different from C”.
  • Terms such as “separate,” “coupled,” etc. may also be interpreted in the same manner as “different.”
  • Wireless Communication System 40 Aircraft 50 Drone 60 Vehicle 100 NW Node 110 Radio Signal Transceiver 120 Amplifier 130 Modem 140 Control Signal/Reference Signal Processor 150 Coding/Decoding 160 Data Transceiver 170 Control 200 UE 1001 Processor 1002 Memory 1003 Storage 1004 Communication Device 1005 Input Device 1006 Output Device 1007 Bus

Abstract

This wireless communication node transmits a plurality of synchronization signals having different configurations, and sets at least one of the plurality of synchronization signals on the basis of the function or connection state of the wireless communication node.

Description

無線通信ノード及び無線通信方法Wireless communication node and wireless communication method
 本開示は、フレキシブルネットワーク及びメッシュネットワークに対応した無線通信ノード及び無線通信方法に関する。 The present disclosure relates to wireless communication nodes and wireless communication methods compatible with flexible networks and mesh networks.
 3rd Generation Partnership Project(3GPP)は、5th generation mobile communication system(5G、New Radio(NR)またはNext Generation(NG)とも呼ばれる)を仕様化し、さらに、Beyond 5G、5G Evolution或いは6Gと呼ばれる次世代の仕様化も進めている。 The 3rd Generation Partnership Project (3GPP) has specified the 5th generation mobile communication system (also called 5G, New Radio (NR) or Next Generation (NG)), and the next generation specification called Beyond 5G, 5G Evolution or 6G We are also proceeding with
 6Gでは、より高い要求性能、超カバレッジ拡張・超長距離通信、超大容量化、超信頼性通信、仮想セル(User centric no cell)、フレキシブルネットワーク、メッシュネットワーク/サイドリンクなどの多様なユースケースが想定されている(非特許文献1)。 In 6G, there are various use cases such as higher required performance, ultra-coverage extension/ultra-long-distance communication, super-large capacity, super-reliable communication, user centric no cell, flexible network, mesh network/sidelink, etc. It is assumed (Non-Patent Document 1).
 無線通信ノード(端末(User Equipment, UE)、無線基地局(gNBなど、別名でもよい)及びIntegrated Access and Backhaul(IAB)を構成する通信装置が含まれてよい)の初期アクセスに関しても、このような6Gの特性を考慮した設計が不可避である。 Regarding the initial access of wireless communication nodes (which may include terminals (User Equipment, UE), wireless base stations (gNB, etc., which may be also known as other names), and communication devices that constitute Integrated Access and Backhaul (IAB)), such A design that considers the characteristics of 6G is inevitable.
 フレキシブルネットワーク及びメッシュネットワークなどでは、多様なネットワーク・トポロジーと合わせて、フレキシブルなネットワーク機能の配置が想定される。 In flexible networks and mesh networks, flexible arrangement of network functions is expected along with various network topologies.
 このため、端末などの無線通信ノードは、提供する機能が異なる多様なエンティティ(無線通信ノードと読み替えてもよい)との同期を迅速かつ確実に確立する必要がある。 For this reason, wireless communication nodes such as terminals need to quickly and reliably establish synchronization with various entities (which may be read as wireless communication nodes) that provide different functions.
 そこで、以下の開示は、このような状況に鑑みてなされたものであり、提供する機能が異なる多様なエンティティと同期を迅速かつ確実に確立し得る無線通信ノード及び無線通信方法の提供を目的とする。 Therefore, the following disclosure is made in view of such circumstances, and aims to provide a wireless communication node and a wireless communication method that can quickly and reliably establish synchronization with various entities that provide different functions. do.
 本開示の一態様は、異なる構成を有する複数の同期信号を送信する送信部(制御信号・参照信号処理部140)と、無線通信ノードの機能または接続状態に基づいて、前記複数の同期信号のうち、少なくとも何れかを設定する制御部(制御部170)とを備える無線通信ノード(NWノード100)である。 One aspect of the present disclosure is a transmitting unit (control signal/reference signal processing unit 140) that transmits a plurality of synchronization signals having different configurations, and based on the function or connection state of a wireless communication node, It is a wireless communication node (NW node 100) including a control unit (control unit 170) that sets at least one of them.
 本開示の一態様は、無線信号を送受信する送受信部(無線信号送受信部110)と、前記無線信号の送信タイミング及び受信タイミングを設定する制御部(制御部170)とを備え、前記制御部は、無線通信ノードにおける全ての前記無線信号の受信タイミングが一致すると想定し、前記受信タイミングに応じて前記送信タイミングを設定する無線通信ノード(NWノード100)である。 One aspect of the present disclosure includes a transmission/reception unit (radio signal transmission/reception unit 110) that transmits and receives a radio signal, and a control unit (control unit 170) that sets transmission timing and reception timing of the radio signal. , a wireless communication node (NW node 100) that assumes that the reception timings of all the wireless signals in the wireless communication nodes match, and sets the transmission timings according to the reception timings.
 本開示の一態様は、異なる構成を有する複数の同期信号を送信するステップと、無線通信ノードの機能または接続状態に基づいて、前記複数の同期信号のうち、少なくとも何れかを設定するステップとを含む無線通信方法である。 One aspect of the present disclosure includes transmitting a plurality of synchronization signals having different configurations, and setting at least one of the plurality of synchronization signals based on the function or connection state of a wireless communication node. A wireless communication method comprising:
 本開示の一態様は、無線信号を送受信するステップと、前記無線信号の送信タイミング及び受信タイミングを設定するステップとを含み、前記設定するステップでは、無線通信ノードにおける全ての前記無線信号の受信タイミングが一致すると想定し、前記受信タイミングに応じて前記送信タイミングを設定する無線通信方法である。 One aspect of the present disclosure includes the steps of transmitting and receiving radio signals, and setting transmission timings and reception timings of the radio signals, wherein the setting step includes receiving timings of all the radio signals in a radio communication node. match, and the transmission timing is set according to the reception timing.
図1は、無線通信システム10の全体概略構成図である。FIG. 1 is an overall schematic configuration diagram of a radio communication system 10. As shown in FIG. 図2は、NWノード100及びUE200の機能ブロック構成図である。FIG. 2 is a functional block configuration diagram of NW node 100 and UE 200. As shown in FIG. 図3は、動作例1に係る送信信号のタイミング例(オプション1)を示す図である。FIG. 3 is a diagram illustrating a timing example (option 1) of a transmission signal according to operation example 1; 図4は、動作例1に係る送信信号のタイミング例(オプション2)を示す図である。FIG. 4 is a diagram illustrating a timing example (option 2) of a transmission signal according to operation example 1; 図5は、動作例1に係る送信信号のタイミング例(オプション3(その1))を示す図である。FIG. 5 is a diagram illustrating a timing example (option 3 (part 1)) of a transmission signal according to operation example 1. In FIG. 図6は、動作例1に係る送信信号のタイミング例(オプション3(その1))を示す図である。FIG. 6 is a diagram illustrating a timing example (option 3 (part 1)) of a transmission signal according to operation example 1. In FIG. 図7は、動作例1に係るgNB(に相当するノード)を含むノード間の無線リンクの構成例を示す図である。FIG. 7 is a diagram illustrating a configuration example of a radio link between nodes including (a node corresponding to) a gNB according to operation example 1. FIG. 図8は、動作例1に係る送信信号のタイミング例(伝搬遅延差を含む)を示す図である。FIG. 8 is a diagram illustrating a timing example (including a propagation delay difference) of a transmission signal according to Operation Example 1. FIG. 図9は、動作例2に係る無線信号の送信タイミングの例(オプション1)を示す図である。FIG. 9 is a diagram illustrating an example (option 1) of transmission timings of radio signals according to operation example 2. In FIG. 図10は、動作例2に係る無線信号の送信タイミングの例(オプション2)を示す図である。FIG. 10 is a diagram illustrating an example (option 2) of transmission timings of radio signals according to operation example 2. In FIG. 図11は、動作例2に係る無線信号の送信タイミングの例(オプション3)を示す図である。FIG. 11 is a diagram illustrating an example (option 3) of transmission timings of radio signals according to operation example 2. In FIG. 図12は、NWノード100及びUE200のハードウェア構成の一例を示す図である。FIG. 12 is a diagram showing an example of the hardware configuration of the NW node 100 and UE200.
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一または類似の符号を付して、その説明を適宜省略する。 Hereinafter, embodiments will be described based on the drawings. The same or similar reference numerals are given to the same functions and configurations, and the description thereof will be omitted as appropriate.
 (1)無線通信システムの全体概略構成
 図1は、本実施形態に係る無線通信システム10の全体概略構成図である。本実施形態では、無線通信システム10は、5G New Radio(NR)の後継となるBeyond 5G、5G Evolution或いは6Gと呼ばれる方式に従った無線通信システムである。
(1) Overall Schematic Configuration of Radio Communication System FIG. 1 is an overall schematic configuration diagram of a radio communication system 10 according to the present embodiment. In this embodiment, the radio communication system 10 is a radio communication system that follows a scheme called Beyond 5G, 5G Evolution, or 6G, which succeeds 5G New Radio (NR).
 図1に示すように、無線通信システム10は、複数の無線通信ノードによって構成されてよい。具体的には、無線通信システム10は、複数のネットワークノード100(以下、NWノード100)及び端末200(ユーザ装置(User Equipment)200、以下、UE200)によって構成されてよい。なお、無線通信システム10は、外部ネットワークなどと接続されたコアネットワーク(不図示)を含んでもよく、コアネットワーク及び/または無線通信ノードによって構成される無線アクセスネットワークの一部(または全部)は、単に「ネットワーク」と表現されてもよい。 As shown in FIG. 1, the wireless communication system 10 may be composed of multiple wireless communication nodes. Specifically, the wireless communication system 10 may be configured by a plurality of network nodes 100 (hereinafter NW nodes 100) and terminals 200 (User Equipment 200, hereinafter UE 200). Note that the radio communication system 10 may include a core network (not shown) connected to an external network or the like, and part (or all) of the radio access network configured by the core network and/or radio communication nodes is It may simply be expressed as a "network".
 NWノード100及びUE200は、無線通信を実行可能な無線通信ノードの一種である。なお、NWノード100及びUE200は、何れも無線通信ノードであり、明確に区別されなくてもよい。つまり、NWノード100及びUE200は、通信の種類、実行されるアプリケーション、通信の状態、位置などに応じて、ネットワークノードまたはUE(或いは両方)として機能してよい。 The NW node 100 and UE 200 are a type of wireless communication node capable of wireless communication. Note that the NW node 100 and the UE 200 are both wireless communication nodes and need not be clearly distinguished. That is, NW node 100 and UE 200 may function as network nodes or UEs (or both) depending on the type of communication, applications being executed, state of communication, location, and the like.
 無線通信ノードは、NWノード、ユーザ装置以外に、ノード、ネットワークエンティティ、ネットワーク装置、通信装置など、無線通信(移動体通信)を実行する装置を意味する別の名称で呼ばれてもよい。 A wireless communication node may be called by another name that means a device that performs wireless communication (mobile communication), such as a node, network entity, network device, or communication device, in addition to NW node and user device.
 また、このような無線通信ノードの機能は、様々な移動体に搭載された状態で提供されてもよい。例えば、図1に示すように、無線通信ノードは、航空機40、ドローン50及び車両60などに搭載されてよい。 Also, the function of such a wireless communication node may be provided while being mounted on various mobile objects. For example, as shown in FIG. 1, wireless communication nodes may be mounted on aircraft 40, drones 50, vehicles 60, and the like.
 航空機40は、人や物を乗せて空中を飛行する乗り物であり、気球、飛行船、グライダー、飛行機、ヘリコプターなどが含まれてよい。航空機40の飛行可能高度は、特に限定されないが、高度10,000mまでが想定されてよい。 The aircraft 40 is a vehicle that flies through the air carrying people and objects, and may include balloons, airships, gliders, airplanes, helicopters, and the like. The altitude at which the aircraft 40 can fly is not particularly limited, but an altitude of up to 10,000 m may be assumed.
 ドローン50は、航空機40と同様に空中を飛行するが、特に、無人で遠隔操作または自動制御によって飛行する航空機と解釈されてよい。但し、ドローン50は、必ずしも無人でなくてもよいし、遠隔操作、自動制御でなくてもよい。また、一般的には、ドローン50の飛行可能高度は、航空機40よりも低くてよい。ドローン50は、Unmanned Aerial Vehicles(UAV)などと呼ばれてもよい。 The drone 50 flies in the air like the aircraft 40, but may be interpreted as an unmanned aircraft that flies remotely or automatically. However, the drone 50 does not necessarily have to be unmanned, remotely operated, or automatically controlled. Also, in general, the flying altitude of the drone 50 may be lower than that of the aircraft 40 . Drones 50 may also be referred to as Unmanned Aerial Vehicles (UAVs).
 車両60は、自動車など、陸上を動力によって走行する車両と解釈されてよい。車両60には、電車など、軌道上を走行する車両が含まれてよい。なお、無線通信ノードは、陸上に限らず、海上の船舶に搭載されてもよい。 The vehicle 60 may be interpreted as a vehicle that travels on land by power, such as an automobile. Vehicles 60 may include vehicles that run on tracks, such as trains. Note that the wireless communication node may be mounted not only on land but also on ships on the sea.
 また、無線通信ノードは、静止衛星(GEO: Geostationary Orbit)、低軌道衛星(LEO: Low Earth Orbit)または高高度擬似衛星(HAPS: High-Altitude Platform Station)などに搭載されてもよい。なお、HAPSは、約20 kmの高度で一定の場所に常駐することができ,陸上に大きなセル半径(例えば、50 km以上)のカバレッジエリアを形成してよい。 Also, the wireless communication node may be mounted on a geostationary satellite (GEO: Geostationary Orbit), a low earth orbit satellite (LEO: Low Earth Orbit), or a high-altitude pseudosatellite (HAPS: High-Altitude Platform Station). It should be noted that the HAPS can reside in a fixed location at an altitude of about 20 km and may form a large cell radius (eg, 50 km or more) coverage area over land.
 このように、無線通信システム10は、非陸上(Non-Terrestrial Network)を含めたカバレッジ拡張に対応し得る。 In this way, the wireless communication system 10 can support coverage extension including non-terrestrial networks.
 また、無線通信ノードは、他の無線通信ノードとの間に介在する無線中継装置として機能してもよい。無線中継装置は、リレーまたはリピータなどと呼ばれてもよく、端末(User Equipment, UE)への無線アクセスと、無線基地局(例えば、gNB)などの無線通信ノード間の無線バックホールとが統合されたIntegrated Access and Backhaul(IAB)の構成要素であってもよい。 Also, the wireless communication node may function as a wireless relay device interposed between other wireless communication nodes. A radio relay device may be called a relay or repeater, and integrates radio access to terminals (User Equipment, UE) and radio backhaul between radio communication nodes such as radio base stations (e.g., gNB). may be a component of an integrated access and backhaul (IAB).
 無線通信システム10は、NRと同様の周波数帯に対応してよく、同様の帯域幅(BW)、サブキャリア間隔(SCS)を用いてもよい。さらに、無線通信システム10は、さらに高周波数帯域をサポートしてもよい。具体的には、無線通信システム10は、10 GHzを超えるミリ波のような高周波数帯をサポートしてよい。また、帯域幅は、数100 MHz程度が適用されてもよい。 The radio communication system 10 may support the same frequency band as NR, and may use the same bandwidth (BW) and subcarrier spacing (SCS). Additionally, the wireless communication system 10 may support even higher frequency bands. Specifically, the wireless communication system 10 may support high frequency bands such as millimeter waves above 10 GHz. Also, a bandwidth of about several 100 MHz may be applied.
 また、無線通信システム10は、NRと同様に、eMBB(enhanced Mobile Broadband)、URLLC(Ultra-Reliable and Low Latency Communications)、及び多数接続(mMTC: massive Machine Type Communication)に関する機能をサポートしてよい。また、NRと同様に、より大きなSub-Carrier Spacing(SCS)を有するCyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform - Spread(DFT-S-OFDM)が適用されてもよい。 Also, the wireless communication system 10 may support functions related to eMBB (enhanced Mobile Broadband), URLLC (Ultra-Reliable and Low Latency Communications), and mass connections (mMTC: massive Machine Type Communication), similar to NR. Also, similar to NR, Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM)/Discrete Fourier Transform-Spread (DFT-S-OFDM) with larger Sub-Carrier Spacing (SCS) may be applied.
 さらに、超高速・大容量通信を実現するため、時間領域で周波数帯域幅よりも大きいサンプリングレートを用いて信号を非直交に圧縮伝送するFTN(Faster-than-Nyquist)信号などが用いられてもよい。 Furthermore, in order to realize ultra-high-speed and large-capacity communication, FTN (Faster-than-Nyquist) signals, which compress and transmit signals in a non-orthogonal manner using a sampling rate larger than the frequency bandwidth in the time domain, may be used. good.
 なお、時間領域は、時間方向、時間成分、時間ドメイン、シンボル期間或いはシンボル時間などと呼ばれてもよい。また、シンボル期間は、シンボル長、時間方向或いは時間領域などと呼ばれてもよい。周波数領域は、周波数方向、周波数成分、周波数ドメイン、リソースブロック、リソースブロックグループ、サブキャリア、BWP (Bandwidth part)、サブチャネル、共通周波数リソースなどと呼ばれてもよい。 Note that the time domain may also be referred to as the time direction, time component, time domain, symbol period, symbol time, or the like. A symbol period may also be called a symbol length, a time direction, a time domain, or the like. The frequency domain may also be called frequency direction, frequency component, frequency domain, resource block, resource block group, subcarrier, BWP (Bandwidth part), subchannel, common frequency resource, and so on.
 また、無線通信システム10は、NRと同様に、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームを生成するMassive MIMO(mMIMO)、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、及びUEと複数の無線通信ノードそれぞれとの間において同時に通信を行うデュアルコネクティビティ(DC)などもサポートしてよい。 Also, like NR, the radio communication system 10 uses Massive MIMO (mMIMO), multiple component carriers (CC ), and dual connectivity (DC) in which communication is performed simultaneously between the UE and each of a plurality of wireless communication nodes.
 図1に示すように、無線通信システム10では、各無線通信ノードが複数の無線通信ノードと同時に接続され、多様な接続経路(通信経路)を形成し得るメッシュ型のネットワーク(メッシュネットワーク)が形成されてよい。 As shown in FIG. 1, in a wireless communication system 10, each wireless communication node is connected to a plurality of wireless communication nodes at the same time to form a mesh network (mesh network) capable of forming various connection paths (communication paths). may be
 また、上述したように、各無線通信ノードが提供する機能(役割でもよい)及び種別は、状況などに応じてフレキブルに変更されてよく、多様なネットワーク・トポロジーと合わせて、フレキシブルなネットワーク機能の配置が実現されてよい。このようなネットワークは、フレキシブルネットワークと呼ばれてもよい。 In addition, as described above, the functions (or roles) and types provided by each wireless communication node may be flexibly changed according to the situation, etc., and flexible network functions can be realized in combination with various network topologies. Arrangements may be implemented. Such networks may be referred to as flexible networks.
 例えば、無線通信システム10において採用される無線アクセス技術(RAT)では、空間領域の分散ネットワーク高度化、つまり、できるだけ近い距離や見通し環境(ロスの少ないパス)で通信すること、及びできるだけ多数の通信路をつくり、パス選択の余地を多くする(冗長性を増やす)ことが可能とされてよい。 For example, in the radio access technology (RAT) adopted in the wireless communication system 10, distributed network advancement in the spatial domain, that is, communication in the shortest possible distance and line-of-sight environment (path with little loss), and as many communications as possible It may be possible to create paths and allow more room for path selection (increase redundancy).
 このようなフレキシブルネットワークまたはメッシュネットワークを実現するため、多数のアンテナ装置を分散して展開する分散アンテナ展開、無線性能の改善などを目的とした反射板(RIS:Reconfigurable Intelligent Surface)の配置、端末(無線通信ノード)間協調送受信技術などが適用されてよい。 In order to realize such a flexible network or mesh network, distributed antenna deployment that deploys a large number of antenna devices in a distributed manner, placement of reflectors (RIS: Reconfigurable Intelligent Surface) for the purpose of improving wireless performance, terminal ( A cooperative transmission/reception technique among wireless communication nodes may be applied.
 (2)無線通信システムの機能ブロック構成
 次に、無線通信システム10の機能ブロック構成について説明する。具体的には、NWノード100の機能ブロック構成について説明する。図2は、NWノード100及びUE200の機能ブロック構成図である。
(2) Functional Block Configuration of Radio Communication System Next, the functional block configuration of the radio communication system 10 will be described. Specifically, the functional block configuration of the NW node 100 will be described. FIG. 2 is a functional block configuration diagram of NW node 100 and UE 200. As shown in FIG.
 図2に示すように、NWノード100は、無線信号送受信部110、アンプ部120、変復調部130、制御信号・参照信号処理部140、符号化/復号部150、データ送受信部160及び制御部170を備える。 As shown in FIG. 2, the NW node 100 includes a radio signal transmission/reception unit 110, an amplifier unit 120, a modulation/demodulation unit 130, a control signal/reference signal processing unit 140, an encoding/decoding unit 150, a data transmission/reception unit 160, and a control unit 170. Prepare.
 なお、図2では、実施形態の説明に関連する主な機能ブロックのみが示されており、NWノード100(UE200)は、他の機能ブロック(例えば、電源部など)を有することに留意されたい。また、図3は、NWノード100の機能的なブロック構成について示しており、ハードウェア構成については、図12を参照されたい。 Note that FIG. 2 only shows main functional blocks related to the description of the embodiment, and that the NW node 100 (UE 200) has other functional blocks (for example, a power supply unit, etc.). . Also, FIG. 3 shows the functional block configuration of the NW node 100, and please refer to FIG. 12 for the hardware configuration.
 無線信号送受信部110は、6GのRATに従った無線信号を送受信する。本実施形態において、無線信号送受信部110は、送受信部を構成してよい。 The radio signal transmitting/receiving unit 110 transmits/receives radio signals according to the 6G RAT. In this embodiment, the radio signal transmitting/receiving unit 110 may constitute a transmitting/receiving unit.
 無線信号送受信部110は、複数のアンテナ素子から送信される無線(RF)信号を制御することによって、より指向性の高いビームを生成するMassive MIMO、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、及び2つのNWノード100(またUE200)間において同時に通信を行うデュアルコネクティビティ(DC)などに対応してよい。 The radio signal transmitting/receiving unit 110 controls radio (RF) signals transmitted from multiple antenna elements to generate beams with higher directivity. Aggregation (CA) and dual connectivity (DC) in which communication is performed simultaneously between two NW nodes 100 (or UE 200) may be supported.
 アンプ部120は、PA(Power Amplifier)/LNA(Low Noise Amplifier)などによって構成される。アンプ部120は、変復調部130から出力された信号を所定の電力レベルに増幅する。また、アンプ部120は、無線信号送受信部110から出力されたRF信号を増幅する。 The amplifier unit 120 is configured by a PA (Power Amplifier)/LNA (Low Noise Amplifier) or the like. Amplifier section 120 amplifies the signal output from modem section 130 to a predetermined power level. Further, amplifier section 120 amplifies the RF signal output from radio signal transmission/reception section 110 .
 変復調部130は、特定の通信先(UE200)毎に、データ変調/復調、送信電力設定及びリソースブロック割当などを実行する。 The modulation/demodulation unit 130 executes data modulation/demodulation, transmission power setting, resource block allocation, etc. for each specific communication destination (UE 200).
 制御信号・参照信号処理部140は、NWノード100が送受信する各種の制御信号に関する処理を実行する。具体的には、制御信号・参照信号処理部140は、UE200から制御チャネルを介して送信される各種の制御信号、例えば、無線リソース制御レイヤ(RRC)の制御信号を受信する。また、制御信号・参照信号処理部140は、UE200に向けて、制御チャネルを介して各種の制御信号を送信する。 The control signal/reference signal processing unit 140 executes processing related to various control signals that the NW node 100 transmits and receives. Specifically, the control signal/reference signal processing unit 140 receives various control signals transmitted from the UE 200 via the control channel, for example, radio resource control layer (RRC) control signals. Also, the control signal/reference signal processing unit 140 transmits various control signals to the UE 200 via the control channel.
 制御信号には、下りリンク制御情報(DCI:Downlink Control Information)及び上りリンク制御情報(UCI:Uplink Control Information)が含まれてよい。 The control signal may include downlink control information (DCI) and uplink control information (UCI).
 DCIは、各UE200(またはNWノード100)がデータを復調するために必要なスケジューリング情報、データ変調及びチャネル符号化率の情報の少なくとも何れかを含む下りリンク(DL)で送信する制御情報と解釈されてよい。 DCI is interpreted as control information transmitted in the downlink (DL) including at least one of scheduling information, data modulation and channel coding rate information necessary for each UE 200 (or NW node 100) to demodulate data. may be
 UCIは、ハイブリッドARQ(HARQ:Hybrid automatic repeat request)のACK/NACK、UE200(またはNWノード100)からのスケジューリング要求(SR)及びChannel State Information(CSI)の少なくとも何れかを含む上りリンク(UL)で送信する制御情報と解釈されてよい。 UCI includes uplink (UL) including at least one of ACK/NACK of hybrid ARQ (HARQ: Hybrid automatic repeat request), scheduling request (SR) from UE 200 (or NW node 100) and Channel State Information (CSI) may be interpreted as control information to be sent in
 さらに、制御信号・参照信号処理部140は、Demodulation Reference Signal、及びPhase Tracking Reference Signal (PTRS)などの参照信号(RS)を用いた処理を実行できる。 Furthermore, the control signal/reference signal processing unit 140 can perform processing using reference signals (RS) such as Demodulation Reference Signal and Phase Tracking Reference Signal (PTRS).
 DMRSは、データ復調に用いるフェージングチャネルを推定するための端末個別の基地局~端末間において既知の参照信号(パイロット信号)である。PTRSは、高い周波数帯で課題となる位相雑音の推定を目的した端末個別の参照信号である。 A DMRS is a known reference signal (pilot signal) between a terminal-specific base station and a terminal for estimating the fading channel used for data demodulation. PTRS is a terminal-specific reference signal for estimating phase noise, which is a problem in high frequency bands.
 なお、参照信号には、DMRS及びPTRS以外に、Channel State Information-Reference Signal(CSI-RS)、Sounding Reference Signal(SRS)、及び位置情報用のPositioning Reference Signal(PRS)などが含まれてもよい。 In addition to DMRS and PTRS, reference signals may include Channel State Information-Reference Signal (CSI-RS), Sounding Reference Signal (SRS), Positioning Reference Signal (PRS) for position information, and the like. .
 チャネルには、制御チャネルとデータチャネルとが含まれる。制御チャネルには、PDCCH(Physical Downlink Control Channel)、PUCCH(Physical Uplink Control Channel)、PRACH(Physical Random Access Channel)、及びPBCH(Physical Broadcast Channel)などが含まれる。 Channels include control channels and data channels. Control channels include PDCCH (Physical Downlink Control Channel), PUCCH (Physical Uplink Control Channel), PRACH (Physical Random Access Channel), and PBCH (Physical Broadcast Channel).
 データチャネルには、PDSCH(Physical Downlink Shared Channel)、及びPUSCH(Physical Uplink Shared Channel)などが含まれる。信号には、チャネル及び参照信号が含まれてよい。 Data channels include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel). A signal may include a channel and a reference signal.
 なお、参照信号及びチャネルの名称は、NRに沿った名称としているが、同趣旨の別の名称で呼ばれてもよく、後述するレイヤの名称も同趣旨の別の名称で呼ばれてもよい。 Although the names of the reference signals and channels are based on NR, they may be called by other names with the same meaning, and the names of the layers described later may also be called by other names with the same meaning. .
 また、制御信号には、無線通信ノード間における同期の確立に用いられる同期信号が含まれてよい。制御信号・参照信号処理部140は、異なる構成を有する複数の同期信号を送信できる。本実施形態において、制御信号・参照信号処理部140は、送信部を構成してよい。 Also, the control signal may include a synchronization signal used for establishing synchronization between wireless communication nodes. The control signal/reference signal processing unit 140 can transmit a plurality of synchronization signals having different configurations. In this embodiment, the control signal/reference signal processing unit 140 may constitute a transmitting unit.
 無線通信システム10では、無線通信ノードの機能、役割、動作状態、位置、使用環境などに応じて、異なる構成(種類でもよい)の同期信号、つまり、複数種類の同期信号が用いられてよい。或いは、同期信号は、無線通信ノードの機能などに関わらず、同一としてもよい。また、複数の同期信号を使い分けるか、或いは1つの同期信号を使用するかは、ネットワークによって指示されてもよい。なお、同期信号の構成例については、後述する。 In the wireless communication system 10, different configurations (or types) of synchronization signals, that is, multiple types of synchronization signals may be used according to the functions, roles, operating states, positions, usage environments, etc. of wireless communication nodes. Alternatively, the synchronization signal may be the same regardless of the functions of the wireless communication node. Also, whether to use a plurality of synchronization signals properly or to use one synchronization signal may be instructed by the network. A configuration example of the synchronization signal will be described later.
 また、制御信号・参照信号処理部140は、このような複数種類の同期信号に関する同期信号情報を受信できる。本実施形態において、制御信号・参照信号処理部140は、受信部を構成してよい。 Also, the control signal/reference signal processing unit 140 can receive synchronization signal information regarding such multiple types of synchronization signals. In this embodiment, the control signal/reference signal processing unit 140 may constitute a receiving unit.
 具体的には、制御信号・参照信号処理部140は、無線基地局(gNB)相当の無線通信ノードから、当該無線通信ノードまたは他の無線通信ノードとの同期を確立するために必要な情報を受信してよい。当該情報には、例えば、同期信号が割り当てられる時間及び/または周波数領域、信号系列(ビット数など)、変調方式、符号化法則などが含まれてよい。 Specifically, the control signal/reference signal processing unit 140 receives from a radio communication node equivalent to a radio base station (gNB) information necessary to establish synchronization with the radio communication node or other radio communication nodes. may receive. The information may include, for example, the time and/or frequency domain to which the synchronization signal is assigned, the signal sequence (number of bits, etc.), modulation scheme, coding rule, and the like.
 符号化/復号部150は、特定の通信先(UE200)毎に、データの分割/連結及びチャネルコーディング/復号などを実行する。 The encoding/decoding unit 150 performs data division/concatenation, channel coding/decoding, etc. for each specific communication destination (UE 200).
 具体的には、符号化/復号部150は、データ送受信部160から出力されたデータを所定のサイズに分割し、分割されたデータに対してチャネルコーディングを実行する。また、符号化/復号部150は、変復調部130から出力されたデータを復号し、復号したデータを連結する。 Specifically, the encoding/decoding unit 150 divides the data output from the data transmission/reception unit 160 into pieces of a predetermined size, and performs channel coding on the divided data. In addition, encoding/decoding section 150 decodes the data output from modem section 130 and concatenates the decoded data.
 データ送受信部160は、Protocol Data Unit (PDU)ならびにService Data Unit (SDU)の送受信を実行する。具体的には、データ送受信部160は、複数のレイヤ(媒体アクセス制御レイヤ(MAC)、無線リンク制御レイヤ(RLC)、及びパケット・データ・コンバージェンス・プロトコル・レイヤ(PDCP)など)におけるPDU/SDUの組み立て/分解などを実行する。 The data transmission/reception unit 160 executes transmission/reception of Protocol Data Unit (PDU) and Service Data Unit (SDU). Specifically, the data transmission/reception unit 160 performs PDU/SDU in multiple layers (medium access control layer (MAC), radio link control layer (RLC), packet data convergence protocol layer (PDCP), etc.). Assemble/disassemble etc.
 制御部170は、NWノード100を構成する各機能ブロックを制御する。特に、本実施形態では、制御部170は、NWノード100の同期に関する制御を実行する。 The control unit 170 controls each functional block that configures the NW node 100. In particular, in this embodiment, the control unit 170 executes control related to synchronization of the NW node 100. FIG.
 具体的には、制御部170は、NWノード100が他の無線通信ノードとの同期を確立するために必要な制御を実行できる。同期確立とは、接続先(通信先)の無線通信ノードと特定の制御チャネルまたはデータチャネルを介して通信を実行できる状態になることを意味してよい。換言すると、特定の時間領域及び/または周波数領域において制御データまたはユーザデータを送信または受信できる状態と解釈されてもよい。 Specifically, the control unit 170 can perform control necessary for the NW node 100 to establish synchronization with other wireless communication nodes. Establishing synchronization may mean that communication can be performed with a wireless communication node as a connection destination (communication destination) via a specific control channel or data channel. In other words, it may be interpreted as a state in which control data or user data can be transmitted or received in a specific time domain and/or frequency domain.
 上述したように、無線通信システム10では、複数の同期信号が用いられるが、制御部170は、無線通信ノードの機能または接続状態に基づいて、当該複数の同期信号のうち、少なくとも何れかを設定してよい。ここで、無線通信ノードの機能とは、自ノードの機能(役割を含んでもよい)でもよいし、接続先(まだ接続されていなくてよい)の無線通信ノードの機能でもよい。また、接続状態とは、無線基地局(gNB)相当の無線通信ノードとの接続可否、接続先となる無線通信ノードの数、通信路の構成、速度(遅延)などを意味してよい。 As described above, the wireless communication system 10 uses a plurality of synchronization signals, and the control unit 170 sets at least one of the plurality of synchronization signals based on the function or connection state of the wireless communication node. You can Here, the function of the wireless communication node may be the function of the own node (may include the role) or the function of the wireless communication node of the connection destination (which may not be connected yet). Also, the connection state may mean whether or not a connection is possible with a radio communication node equivalent to a radio base station (gNB), the number of radio communication nodes to be connected, the configuration of communication paths, the speed (delay), and the like.
 制御部170は、無線通信システム10において、フレキシブルネットワーク及び/またはメッシュネットワークが構成されることを踏まえ、同期信号の送信タイミングを他の無線通信ノードにおける同期信号の送信タイミングと異ならせてもよい。つまり、制御部170は、無線通信ノード毎に、個別の同期信号の送信タイミングを適用してよい。 Considering that a flexible network and/or a mesh network are configured in the wireless communication system 10, the control unit 170 may make the transmission timing of the synchronization signal different from the transmission timing of the synchronization signal in other wireless communication nodes. That is, the control unit 170 may apply individual synchronization signal transmission timing for each wireless communication node.
 制御部170は、制御信号・参照信号処理部140を介して受信した同期信号情報に基づいて、複数の同期信号のうち、少なくとも何れかを設定し、自ノードからの同期信号の送信タイミングを決定してよい。上述したように、無線基地局(gNB)相当の無線通信ノードなどから送信される同期信号情報には、同期信号に設定に必要な情報が含まれる。制御部170は、同期信号情報に含まれる時間領域及び/または周波数領域などの情報に基づいて、同期信号を設定し、所定の送信タイミングにおいて、設定した同期信号を送信してよい。 The control unit 170 sets at least one of a plurality of synchronization signals based on the synchronization signal information received via the control signal/reference signal processing unit 140, and determines the transmission timing of the synchronization signal from its own node. You can As described above, synchronization signal information transmitted from a radio communication node or the like equivalent to a radio base station (gNB) includes information necessary for setting the synchronization signal. The control unit 170 may set the synchronization signal based on the time domain and/or frequency domain information included in the synchronization signal information, and transmit the set synchronization signal at a predetermined transmission timing.
 また、制御部170は、同期信号だけでなく、制御データまたはユーザデータが符号化及び変調された無線信号の送信タイミング及び受信タイミングを設定できる。つまり、制御部170は、自ノードからの無線信号の送信タイミング、及び他ノードからの無線信号の受信タイミングを設定してよい。 Also, the control unit 170 can set the transmission timing and reception timing of not only the synchronization signal but also the radio signal in which the control data or user data is coded and modulated. That is, the control unit 170 may set the transmission timing of the radio signal from its own node and the reception timing of the radio signal from the other node.
 具体的には、制御部170は、無線通信システム10における全ての無線通信ノードが送信タイミングを合わせる(一致させる)と想定してもよい。この場合、受信タイミングは、送信タイミングに応じて決定されてよい(ノード間の伝搬遅延差に応じたタイミングとしてよい)。 Specifically, the control unit 170 may assume that all wireless communication nodes in the wireless communication system 10 match (match) the transmission timings. In this case, the reception timing may be determined according to the transmission timing (the timing may be determined according to the propagation delay difference between nodes).
 或いは制御部170は、無線通信システム10における全ての無線通信ノードが受信タイミングを合わせる(一致させる)と想定してもよい。この場合、送信タイミングは、受信タイミングに応じて決定されてよい。 Alternatively, the control unit 170 may assume that all wireless communication nodes in the wireless communication system 10 match (match) the reception timings. In this case, the transmission timing may be determined according to the reception timing.
 また、制御部170は、無線通信ノード(自ノード或いは同期確立の基準となる他の無線通信ノード)における全ての無線信号(無線リンク、チャネルなどと読み替えてもよい)の受信タイミングが一致すると想定し、当該受信タイミングに応じて送信タイミングを設定してよい。なお、無線信号(無線リンク、チャネル)の送受信タイミングの決定方法については、さらに後述する。 In addition, the control unit 170 assumes that the reception timings of all radio signals (which may be replaced with radio links, channels, etc.) in the radio communication node (the own node or another radio communication node that serves as a reference for establishing synchronization) are the same. Then, the transmission timing may be set according to the reception timing. The method of determining the transmission/reception timing of radio signals (radio link, channel) will be further described later.
 また、上述したNWノード100の同期に関する機能は、UE200にも備えられてよい。 Also, the function related to synchronization of the NW node 100 described above may be provided in the UE 200 as well.
 (3)無線通信システムの動作
 次に、無線通信システム10の動作について説明する。具体的には、無線通信システム10における無線通信ノード間に同期に関する動作例について説明する。
(3) Operation of Radio Communication System Next, the operation of the radio communication system 10 will be described. Specifically, an operation example regarding synchronization between wireless communication nodes in the wireless communication system 10 will be described.
 (3.1)動作概要
 以下では、フレキシブルネットワークまたはメッシュネットワークなどにおいて、一つの端末(UE200)が、機能が異なる複数の無線通信ノード(以下、ノードと適宜省略する)と接続する場合におけるノード間の同期を可能とする動作例について説明する。
(3.1) Overview of operation Below, in a flexible network or a mesh network, etc., when one terminal (UE 200) is connected to a plurality of wireless communication nodes (hereinafter abbreviated as nodes as appropriate) with different functions, An example of operation that enables synchronization of
 具体的には、次の動作例について説明する。 Specifically, the following operation example will be explained.
  ・(動作例1):ノード間の同期を確立する方法
 無線通信ノードは、次の何れか方法に従って動作してよい。
(Operation example 1): Method for establishing synchronization between nodes A wireless communication node may operate according to any of the following methods.
   ・(i) 同期信号を用いる。    ・(i) Use a synchronous signal.
   ・(ii) 無線基地局(gNB)相当の無線通信ノード(以下、gNBと適宜表記する)が、ノード間の同期に関する情報を他の無線通信ノード(UE200を含んでよい)に通知する(各ノードがNB相当の無線通信ノードと直接または間接的に通信する手段を有する場合)。 ・(ii) A radio communication node (hereinafter referred to as gNB) equivalent to a radio base station (gNB) notifies other radio communication nodes (which may include UE 200) of information on synchronization between nodes (each if the node has the means to communicate directly or indirectly with the NB-equivalent wireless communication node).
   ・(iii) 衛星測位システム(GNSS)など、ノードに実装される同期ソースを用いる。    ・(iii)Use a synchronization source implemented in the node, such as a global positioning system (GNSS).
   ・(iv) 上記(i)~(iii)の組み合わせ。    ・(iv) A combination of (i) to (iii) above.
  ・(動作例2):各ノードにおける無線信号(無線リンク)送受信タイミングの決定方法
 無線通信ノードは、次の何れか方法に従って動作してよい。
(Operation example 2): Method for determining radio signal (radio link) transmission/reception timing in each node A radio communication node may operate according to any of the following methods.
   ・(i) 全ノードが送信タイミングを合わせる(同期信号と同様の方法によって合わせてよい)。受信については、送信のタイミングに応じる(ノード間の伝搬遅延差に応じたタイミングとなる)。    ・(i) All nodes match the transmission timing (they may be matched by the same method as for the synchronization signal). As for reception, it depends on the timing of transmission (the timing corresponds to the propagation delay difference between nodes).
   ・(ii) 送信については、受信タイミングに応じる。受信については、全ノードが受信タイミングを合わせる、またはノード毎に受信タイミングを合わせる。    ・(ii)Regarding transmission, it depends on the reception timing. As for reception, all nodes match the reception timing, or each node matches the reception timing.
   ・(iii) 送信側ノードが送信タイミングを決定する(例えば、同期信号の受信タイミングとする)。受信については、送信のタイミングに応じる(ノード間の伝搬遅延差に応じたタイミングとなる)。    ・(iii) The transmitting node determines the transmission timing (for example, the reception timing of the synchronization signal). As for reception, it depends on the timing of transmission (the timing corresponds to the propagation delay difference between nodes).
   ・(iv) 送受信ともに非同期とする。    ・(iv) Both sending and receiving are asynchronous.
 (3.2)動作例1
 本動作例では、同期信号の構成は、次の何れかとしてよい。
(3.2) Operation example 1
In this operation example, the configuration of the synchronization signal may be any of the following.
  ・全てのノードが同一構成の同期信号を送信する。 · All nodes transmit synchronization signals with the same configuration.
 つまり、全てのノードは、同じ信号から構成される同期信号を送信してよい。例えば、同期信号の周波数・時間成分、信号系列・信号生成方法などが同じとなる信号としてよい。 That is, all nodes may transmit synchronization signals composed of the same signal. For example, signals having the same frequency/time component, signal sequence/signal generation method, etc. as the synchronization signal may be used.
 また、同期信号は、送信側のノード固有の情報及び/または設定を含んでもよい。例えば、当該ノードの識別情報(ID)などが含まれてもよい。 Also, the synchronization signal may contain information and/or settings specific to the node on the transmitting side. For example, identification information (ID) of the node may be included.
  ・無線通信ノードは、当該ノードの役割・機能・種別(無線基地局/中継装置/端末など)、接続状態(無線基地局との接続可否)などに応じて、異なる構成の同期信号を送信する。 ・A wireless communication node transmits synchronization signals with different configurations depending on the role, function, type (wireless base station/relay device/terminal, etc.) of the node, connection status (connection to the wireless base station), etc. .
 例えば、同期信号の周波数・時間成分、信号系列・信号生成方法などの少なくとも何れかが異なる信号としてよい。つまり、当該ノードの役割などに違いに応じて、少なくとも構成の一部(管理用のシーケンス番号などは含まれなくてよい)が異なる同期信号(図1のSync 1, Sync 2)が送信されてよい。 For example, at least one of the frequency/time component of the synchronization signal, the signal sequence/signal generation method, etc. may be different. In other words, the synchronization signals (Sync 1, Sync 2 in Fig. 1) with at least part of the configuration (the sequence number for management may not be included) are different depending on the role of the node. good.
 また、同期信号は、送信側のノード固有の情報及び/または設定を含んでもよい。例えば、当該ノードの識別情報(ID)、役割、機能、種別などが含まれてもよい。 Also, the synchronization signal may contain information and/or settings specific to the node on the transmitting side. For example, identification information (ID), role, function, type, etc. of the node may be included.
 同期信号の種別は、ノードの役割・機能・種別、接続状態、同期ソース信号の有無(例えばGNSS機能の搭載可否、gNBとの無線リンクの有無)に応じて、自ノードによって決定されてもよいし、他のノード(例えば、接続先のノードまたはgNB)によって決定されてもよい。 The type of synchronization signal may be determined by the own node according to the role/function/type of the node, the connection state, and the presence or absence of the synchronization source signal (for example, whether or not the GNSS function is installed, or whether or not there is a radio link with the gNB). and may be determined by another node (eg, the connected node or gNB).
 また、ノードからの無線信号(無線リンク)の送信タイミングは、全てのノードで一致していてもよいし、異なっていてもよい。 In addition, the transmission timing of radio signals (radio links) from nodes may be the same for all nodes, or may be different.
 図3は、動作例1に係る送信信号のタイミング例(オプション1)を示す。図4は、動作例1に係る送信信号のタイミング例(オプション2)を示す。 FIG. 3 shows a timing example (option 1) of a transmission signal according to operation example 1. FIG. 4 shows a timing example (option 2) of a transmission signal according to operation example 1. FIG.
 (オプション1)の場合、全ノードが、同じタイミングにおいて送信信号を送信してよい。この場合、送信タイミングの同期方法は、次の何れかが適用されてよい。 In the case of (option 1), all nodes may transmit transmission signals at the same timing. In this case, any of the following transmission timing synchronization methods may be applied.
  ・送信タイミングに関する情報(例えば、伝搬遅延または伝搬遅延を算出するために必要な情報(Timing Advance(TA)、Round-Trip Time(RTT)など)が通知される。   · Information about transmission timing (for example, propagation delay or information necessary to calculate propagation delay (Timing Advance (TA), Round-Trip Time (RTT), etc.) is notified.
 同期する無線リンクに関連するノード(接続先のノードでもよい)、gNBなどの基準となるノードから当該情報が通知されてもよい。或いは、GNSSなど、ノードに実装される他の利用可能な手段が用いられてもよい。 This information may be notified from a reference node such as a node related to a radio link to be synchronized (it may be a connection destination node) or a gNB. Alternatively, other available means implemented in the node may be used, such as GNSS.
 (オプション2)の場合、各ノードは、ノード毎に個別のタイミングにおいて送信信号を送信してよい。 In the case of (option 2), each node may transmit a transmission signal at individual timing for each node.
 この場合、各ノードは、上位ノードから受信した同期信号の受信タイミングを基準として、自ノードの同期信号の送信タイミングを決定し、当該同期信号の送信タイミングに応じて送信信号のタイミングを決定してよい。 In this case, each node determines the transmission timing of its own synchronization signal based on the reception timing of the synchronization signal received from the upper node, and determines the timing of the transmission signal according to the transmission timing of the synchronization signal. good.
 例えば、全ノードが、同じ時間的な位置(同一或いは(伝搬遅延があるものの)同一に相当し得るシステムフレームナンバー、スロットまたはシンボル)において送信してもよい(受信タイミングにおいて送信する場合、上位ノードとの間の伝搬遅延だけ、送信タイミングが遅れることになる)。 For example, all nodes may transmit at the same temporal position (system frame number, slot or symbol, which may correspond to the same or (albeit with propagation delay) same) transmission timing will be delayed by the propagation delay between
 或いは、同期信号の送信タイミングは、各ノードが独自に(個別に)決定してもよい。 Alternatively, each node may independently (individually) determine the transmission timing of the synchronization signal.
 また、送信信号の送信タイミングについては、同期信号の送信タイミングをノード毎に意図的に異なる(ずらす)ようにしてもよい。 As for the transmission timing of the transmission signal, the transmission timing of the synchronization signal may be intentionally different (shifted) for each node.
 図5は、動作例1に係る送信信号のタイミング例(オプション3(その1))を示す。図6は、動作例1に係る送信信号のタイミング例(オプション3(その1))を示す。 FIG. 5 shows a timing example of a transmission signal (option 3 (1)) according to operation example 1. FIG. FIG. 6 shows a timing example (option 3 (1)) of a transmission signal according to operation example 1. FIG.
 具体的には、図5は、図3に示したオプション1と対応し、図6は、図4に示したオプション2と対応する。図5及び図6に示すタイミング例では、それぞれ時間方向のオフセットが加えられている。 Specifically, FIG. 5 corresponds to option 1 shown in FIG. 3, and FIG. 6 corresponds to option 2 shown in FIG. In the timing examples shown in FIGS. 5 and 6, an offset in the time direction is added.
 (オプション3)の場合、各ノードの半二重通信(Half duplex)を想定し、各ノードは、同期信号を受信するタイミングに、同時に同期信号を送信することを回避してよく、
ノード毎に異なる送信タイミングが設定されてよい。送信タイミングの設定は、同期対象の無線リンクの接続先ノード或いはgNBなどから通知されてよい。
In the case of (option 3), half duplex communication is assumed for each node, and each node may avoid transmitting a synchronization signal at the same time it receives a synchronization signal.
A different transmission timing may be set for each node. The setting of the transmission timing may be notified from the connection destination node of the radio link to be synchronized, the gNB, or the like.
 また、ノードには、複数の送信タイミングが設定されてもよい。例えば、全ノード共通の送信タイミングと、各ノード個別の送信タイミングとの両方が設定されてもよい。 Also, multiple transmission timings may be set for a node. For example, both transmission timing common to all nodes and transmission timing individual to each node may be set.
 さらに、各ノードは、複数の同期信号の送信タイミングをモニタリングするため、複数の受信ウィンドウを設定してもよい。受信ウィンドウとしては、例えば、NRのSSB based RRM Measurement Timing Configuration(SMTC)と呼ばれるキャリア(サブキャリアと呼ばれてもよい)毎に設定可能な測定窓と同様の構成が適用されてよい。 Furthermore, each node may set multiple reception windows in order to monitor transmission timings of multiple synchronization signals. As the reception window, for example, a configuration similar to a measurement window that can be set for each carrier (which may also be called a subcarrier) called NR SSB based RRM Measurement Timing Configuration (SMTC) may be applied.
 また、各ノードの送信及び受信タイミングを分散させる方法として、ノードの接続状態、または基準ノード(例えば、gNB)からの接続ホップ数などに応じて、DL/ULの周波数を入れ替えるようにしてもよい。 Also, as a method of dispersing the transmission and reception timings of each node, the DL/UL frequencies may be switched according to the connection state of the node or the number of connection hops from the reference node (eg, gNB). .
 例えば、ノードA~ノードB間では、周波数AをDL(ノードB受信)に割り当て、周波数BをUL(ノードB送信)に割り当てる。一方、ノードB~ノードC間では、周波数BをDL(ノードB送信)に割り当て、周波数AをUL(ノードB受信)に割り当ててよい。 For example, between node A and node B, frequency A is assigned to DL (node B reception) and frequency B is assigned to UL (node B transmission). On the other hand, between Node B and Node C, frequency B may be assigned to DL (Node B transmission) and frequency A may be assigned to UL (Node B reception).
 また、同期信号の送信契機及び条件に関しては、各ノードがそれぞれ独自に決定してもよいし、他のノード(接続先ノードまたはgNBなど)から同期信号の送信開始及び/または停止などが明示的(または暗黙的)に指示されてもよい。 In addition, each node may independently determine the timing and conditions for transmission of the synchronization signal, or the start and/or stop of transmission of the synchronization signal may be explicitly specified by another node (connection destination node, gNB, etc.). (or implicitly) may be dictated.
 各ノードが個別に決定する場合、同期信号(または無線信号(無線リンク)でもよい)の送信に関する情報を受信し、同期信号の送信が可能となったタイミングなどを基準としてよい。 When each node makes an individual decision, it may be based on the timing at which it receives information on transmission of a synchronization signal (or a radio signal (or radio link)) and the transmission of the synchronization signal becomes possible.
 或いは、同期信号を送信するための条件が規定されてもよい。例えば、自ノードの同期精度(gNBまたはGNSSと同期しているか否かなど)に応じて、同期信号の送信可否が決定されてもよい。 Alternatively, conditions for transmitting the synchronization signal may be defined. For example, whether or not to transmit the synchronization signal may be determined according to the synchronization accuracy of the own node (whether or not it is synchronized with the gNB or GNSS).
 また、同期信号の優先度が設定されてもよい。例えば、gNBとの直接的または間接的な接続手段がある、或いはGNSSなどの同期ソースを有するノードが送信する同期信号は、優先度が高く設定されてよい。例えば、優先度が高い同期信号を基準として自ノードが同期した場合、当該自ノードも同期信号を送信してもよい。このような場合、同期信号には、当該優先度に関わる情報が含まれてもよい。 Also, the priority of the synchronization signal may be set. For example, synchronization signals transmitted by nodes that have a direct or indirect connection with a gNB or have a synchronization source such as GNSS may be set with high priority. For example, when the local node synchronizes with a synchronization signal having a high priority as a reference, the local node may also transmit the synchronization signal. In such a case, the synchronization signal may contain information regarding the priority.
 また、同期信号を用いない場合、gNB(に相当するノード)は、ノード間の同期に関する情報(同期信号情報)を他のノード(UE200を含んでよい)に通知してよい。当該情報の通知は、システム情報(SIB)による報知でもよいし、RRCなどのシグナリングによって実現されてもよい。 Also, when a synchronization signal is not used, (the node corresponding to) the gNB may notify other nodes (which may include the UE 200) of information on synchronization between nodes (synchronization signal information). The notification of the information may be broadcast by system information (SIB), or may be realized by signaling such as RRC.
 図7は、動作例1に係るgNB(に相当するノード)を含むノード間の無線リンクの構成例を示す。なお、図7に示すNode 1~3(無線通信ノード)は、NWノード100相当でもよいし、UE200相当でもよい。 FIG. 7 shows a configuration example of a radio link between nodes including (a node corresponding to) a gNB according to Operation Example 1. Note that Nodes 1 to 3 (wireless communication nodes) shown in FIG. 7 may correspond to the NW node 100 or may correspond to the UE 200.
 図7に示すように、Node 1~3それぞれがgNBとの無線リンク、つまり、通信手段を有する場合、ノード間で同期する際に、gNBは、各ノードに対して伝搬遅延差に関する情報を通知してよい。各ノードは、gNBとの無線リンク(点線参照)を有し、各ノード間(実線参照)同期を確立する。 As shown in FIG. 7, when Nodes 1 to 3 each have a radio link with gNB, that is, a means of communication, gNB notifies each node of information on propagation delay difference when synchronizing between nodes. You can Each node has a radio link with the gNB (see dotted line) and establishes synchronization between each node (see solid line).
 図8は、動作例1に係る送信信号のタイミング例(伝搬遅延差を含む)を示す。gNB(他のノードでもよい)は、例えば、TAから伝搬遅延を導出してよい(例えば、各ノードのTA/2の差分としてよい)。 FIG. 8 shows a timing example (including a propagation delay difference) of transmission signals according to Operation Example 1. FIG. The gNB (which may be another node) may, for example, derive the propagation delay from the TA (eg, it may be the difference of TA/2 for each node).
 或いは、gNBは、TAが適用されない信号(PRACHなど)の受信タイミング差から伝搬遅延を導出してもよい。 Alternatively, the gNB may derive the propagation delay from the reception timing difference of signals to which TA is not applied (such as PRACH).
 通知される伝搬遅延差に関する情報は、正の値及び負の値の何れも取り得ると想定されてよい。例えば、Node 1に対しては正の値、Node 2に対しては負の値となる場合があってよい。 It may be assumed that the information about the propagation delay difference to be notified can take both positive and negative values. For example, it could be a positive value for Node 1 and a negative value for Node 2.
 また、何れかのノードが、他方のノードに対して同期を確立してもよいし、両方のノードがそれぞれ同期を確立してもよい。 Also, either node may establish synchronization with the other node, or both nodes may establish synchronization.
 なお、このような通信に関する情報の通知は、gNBがトリガしてもよいし、(例えば、gNBの受信電力が等しい、位置が近いノードなど)、各ノードがトリガしてもよい(例えば、事前に他ノードの存在を探査し、検出時に通知を要求してもよい)。 Note that the notification of information related to such communication may be triggered by the gNB (for example, the received power of the gNB is equal, nodes are close to each other, etc.), or may be triggered by each node (for example, in advance may also probe for the presence of other nodes and request notification upon detection).
 また、同期確立後については、各ノードは、次のように動作してもよい。 Also, after synchronization is established, each node may operate as follows.
  ・接続先ノードと初期アクセスの全部または一部を実行する。   · Execute all or part of the connection destination node and initial access.
 初期アクセスとは、例えば、ランダムアクセス(RA)手順に従ったメッセージの送受信と解釈されてもよい。初期アクセスを実行するノード(接続ノード)は、PRACH或いはPRACHに準じたチャネルまたは信号を送信してよい。  Initial access, for example, may be interpreted as sending and receiving messages according to the random access (RA) procedure. A node performing an initial access (connecting node) may transmit a PRACH or a PRACH-like channel or signal.
 また、接続先ノードは、無線リンクの送信タイミング及び/または受信タイミングに関する情報、自ノードの識別情報(例えば、ネットワーク識別子)などを通知してもよい。 In addition, the connection destination node may notify information regarding transmission timing and/or reception timing of the wireless link, identification information of the own node (for example, network identifier), and the like.
 接続ノードは、接続先ノード、または接続先ノードの上位のノードと、RRCレイヤのコネクションを確立してもよい。 The connecting node may establish a connection in the RRC layer with the destination node or a higher node than the destination node.
 また、接続ノードは、接続先ノードに自ノードの情報(例えば、識別情報、ノード種別など)を通知してもよい。接続先ノードは、自ノードと接続されるノードのリストに、接続ノードの識別情報を追加してよい。 Also, the connection node may notify the connection destination node of its own node information (eg, identification information, node type, etc.). The connection destination node may add the identification information of the connection node to the list of nodes connected to the own node.
 また、接続ノードは、接続先ノードが送信する特定のリソース(例えば、制御信号)のモニタリングを開始してよい。モニタリングした情報は、例えば、同期に関する信号と合わせて、接続先ノード及び/または他のノードに通知されてよい。 Also, the connecting node may start monitoring specific resources (for example, control signals) transmitted by the connecting node. The monitored information may be notified to the destination node and/or other nodes, for example, together with a signal regarding synchronization.
 (3.3)動作例2
 本動作例では、無線信号(無線リンク、チャネルでもよい、以下同)の送信タイミングについては、次のように動作してよい。
(3.3) Operation example 2
In this operation example, the transmission timing of the radio signal (which may be a radio link or channel; the same shall apply hereinafter) may be operated as follows.
 具体的には、上位ノード(例えば、gNB(またはgNBに準ずるノード)、及び下位ノード(例えば,gNBまたはgNBに準ずるノードでないノード、UEなど)対する送信タイミングは、次の何れかに従って決定されてよい。 Specifically, transmission timings for upper nodes (e.g., gNB (or gNB-based nodes) and lower nodes (e.g., nodes that are not gNBs or gNB-based nodes, UEs, etc.) are determined according to one of the following: good.
 図9は、動作例2に係る無線信号の送信タイミングの例(オプション1)を示す。図10は、動作例2に係る無線信号の送信タイミングの例(オプション2)を示す。図11は、動作例2に係る無線信号の送信タイミングの例(オプション3)を示す。 FIG. 9 shows an example of radio signal transmission timing (option 1) according to operation example 2. FIG. FIG. 10 shows an example (option 2) of transmission timings of radio signals according to operation example 2. FIG. FIG. 11 shows an example (option 3) of transmission timing of radio signals according to operation example 2. FIG.
 図9に示すように、(オプション1)では、全ノードが送信タイミングを合わせる(合わせる方法は、同期信号と同じでよい)。一方、受信については、送信タイミングに応じてノード毎に異なってよい(ノード間の伝搬遅延差に応じたタイミングとなってよい)。 As shown in FIG. 9, in (Option 1), all nodes match the transmission timing (the method of matching may be the same as for the synchronization signal). On the other hand, for reception, each node may have different transmission timings (timings may correspond to propagation delay differences between nodes).
 図10に示すように、(オプション2)では、オプション1と逆に、送信については、受信タイミングに応じてノード毎に異なってよい。この場合、上位ノードまたは下位ノードから送信タイミングに関する情報が通知されてよい。 As shown in FIG. 10, in (option 2), contrary to option 1, the transmission may differ for each node according to the reception timing. In this case, the information about the transmission timing may be notified from the upper node or the lower node.
 一方、受信については、全ノードの受信タイミングを合わせてもよいし、ノード毎に個別に受信タイミングを合わせてもよい。ノード毎に個別に受信タイミングを合わせる場合、ノード内において、全ての無線リンクの受信タイミングを一致させてもよい。或いは、無線リンク毎に受信タイミングが変更されてもよい。 On the other hand, for reception, the reception timing of all nodes may be matched, or the reception timing may be matched individually for each node. When the reception timing is adjusted individually for each node, the reception timings of all wireless links may be matched within the node. Alternatively, the reception timing may be changed for each wireless link.
 図11に示すように、(オプション3)では、送信については、送信側のノードがタイミングを決定(例えば、同期信号の受信タイミングとする)してよい。一方、受信については、送信タイミングに応じてノード毎に異なってよい(ノード間の伝搬遅延差に応じたタイミングとなってよい)。 As shown in FIG. 11, in (option 3), for transmission, the node on the transmitting side may determine the timing (for example, the reception timing of the synchronization signal). On the other hand, for reception, each node may have different transmission timings (timings may correspond to propagation delay differences between nodes).
 或いは、オプション4として、送受信のタイミングは、何ら調整、制御されず、非同期としてもよい。つまり、システム、ノード間の同期をとらず、例えば、通信毎にタイミング同期が補正されてよい。 Alternatively, as option 4, the timing of transmission and reception may be asynchronous without any coordination or control. In other words, timing synchronization may be corrected for each communication without synchronizing the system and nodes.
 また、接続ノード及び/または自ノードの機能・役割、接続方法・信号・チャネル種別などに応じて、上述したオプションの中から、異なるオプションが選択されてもよい。 Also, different options may be selected from the options described above according to the function/role of the connecting node and/or the own node, connection method/signal/channel type, and the like.
 なお、ノード内の送信及び受信タイミングに応じて、送信信号と受信信号とのリソースの衝突が発生し得るため、衝突回避のため、送信用リソースと受信用リソースの切り替えなどに必要となる情報が通知、交換されてもよい。 In addition, depending on the timing of transmission and reception within a node, resource collisions between transmission and reception signals may occur. may be notified and exchanged.
 (4)作用・効果
 上述した実施形態によれば、以下の作用効果が得られる。具体的には、無線通信ノード(gNBに相当するノード、NWノード100またはUE200)は、無線通信ノードの機能または接続状態に基づいて、当該複数の同期信号のうち、少なくとも何れかを設定してよい。
(4) Functions and Effects According to the above-described embodiment, the following functions and effects are obtained. Specifically, the radio communication node (the node corresponding to the gNB, NW node 100 or UE 200) sets at least one of the plurality of synchronization signals based on the function or connection state of the radio communication node. good.
 また、無線通信ノードは、無線通信システム10における全ての無線通信ノードが送信または受信タイミングを合わせる(一致させる)と想定してもよい。 Also, the wireless communication nodes may assume that all wireless communication nodes in the wireless communication system 10 match (match) their transmission or reception timings.
 このような無線通信ノードによれば、フレキシブルネットワーク及びメッシュネットワークなどでは、多様なネットワーク・トポロジーと合わせて、フレキシブルなネットワーク機能の配置が想定される場合でも、提供する機能が異なる多様な無線通信ノードとの同期を迅速かつ確実に確立できる。 According to such a wireless communication node, in a flexible network, a mesh network, etc., various wireless communication nodes with different functions are provided even when flexible network function arrangement is assumed in combination with various network topologies. can quickly and reliably establish synchronization with
 また、無線通信ノードは、同期信号の送信タイミングを他の無線通信ノードにおける同期信号の送信タイミングと異ならせてもよい。これにより、ノード間における同期信号の衝突を回避でき、より確実に無線通信ノード間の同期を確立し得る。 Also, the wireless communication node may make the transmission timing of the synchronization signal different from the transmission timing of the synchronization signal in other wireless communication nodes. As a result, collision of synchronization signals between nodes can be avoided, and synchronization between wireless communication nodes can be established more reliably.
 無線通信ノードは、受信した同期信号情報に基づいて、複数の同期信号のうち、少なくとも何れかを設定し、自ノードからの同期信号の送信タイミングを決定してよい。このため、複数の無線通信ノードが連携した合理的な方法によってより確実に無線通信ノード間の同期を確立し得る。 The wireless communication node may set at least one of the plurality of synchronization signals based on the received synchronization signal information, and determine the transmission timing of the synchronization signal from its own node. Therefore, synchronization between wireless communication nodes can be established more reliably by a rational method in which a plurality of wireless communication nodes cooperate.
 (5)その他の実施形態
 以上、実施形態について説明したが、当該実施形態の記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
(5) Other Embodiments Although the embodiments have been described above, it is obvious to those skilled in the art that the present invention is not limited to the description of the embodiments, and that various modifications and improvements are possible.
 例えば、上述した実施形態では、無線通信ノード(NWノード)の用語を用いたが、上述したように、ネットワーク装置などの他の類似した用語に置き換えられてよい。 For example, although the term "wireless communication node (NW node)" is used in the above-described embodiments, it may be replaced with other similar terms such as network device, as described above.
 上述した実施形態では、下りリンク(DL)及び上りリンク(UL)の用語が用いられていたが、他の用語で呼ばれてよい。例えば、フォワードリング、リバースリンク、アクセスリンク、バックホールなどの用語と置き換え、または対応付けられてもよい。或いは、単に第1リンク、第2リンク、第1方向、第2方向などの用語が用いられてもよい。 Although the terms of downlink (DL) and uplink (UL) were used in the above-described embodiment, they may be called by other terms. For example, terms such as forward ring, reverse link, access link, and backhaul may be interchanged or associated. Alternatively, terms such as first link, second link, first direction, second direction, etc. may simply be used.
 また、上述した記載において、設定(configure)、アクティブ化(activate)、更新(update)、指示(indicate)、有効化(enable)、指定(specify)、選択(select)、は互いに読み替えられてもよい。同様に、リンクする(link)、関連付ける(associate)、対応する(correspond)、マップする(map)、は互いに読み替えられてもよく、配置する(allocate)、割り当てる(assign)、モニタする(monitor)、マップする(map)、も互いに読み替えられてもよい。 Also, in the above description, configure, activate, update, indicate, enable, specify, and select may be read interchangeably. good. Similarly, link, associate, correspond, and map may be read interchangeably to allocate, assign, monitor. , map, may also be read interchangeably.
 さらに、固有(specific)、個別(dedicated)、UE固有、UE個別、は互いに読み替えられてもよい。同様に、共通(common)、共有(shared)、グループ共通(group-common)、UE共通、UE共有、は互いに読み替えられてもよい。 Furthermore, specific, dedicated, UE-specific, and UE-specific may be read interchangeably. Similarly, common, shared, group-common, UE common, and UE shared may be read interchangeably.
 また、上述した実施形態の説明に用いたブロック構成図(図2)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的または論理的に結合した1つの装置を用いて実現されてもよいし、物理的または論理的に分離した2つ以上の装置を直接的または間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置または上記複数の装置にソフトウェアを組み合わせて実現されてもよい。 Also, the block configuration diagram (FIG. 2) used to describe the above-described embodiment shows blocks for each function. These functional blocks (components) are realized by any combination of at least one of hardware and software. Also, the method of implementing each functional block is not particularly limited. That is, each functional block may be implemented using one device physically or logically coupled, or directly or indirectly using two or more physically or logically separate devices (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices. A functional block may be implemented by combining software in the one device or the plurality of devices.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。何れも、上述したとおり、実現方法は特に限定されない。 Functions include judging, determining, determining, calculating, calculating, processing, deriving, investigating, searching, checking, receiving, transmitting, outputting, accessing, resolving, selecting, choosing, establishing, comparing, assuming, expecting, assuming, Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. can't For example, a functional block (component) that performs transmission is called a transmitting unit or transmitter. In either case, as described above, the implementation method is not particularly limited.
 さらに、上述したNWノード100及びUE200(当該装置)は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図12は、当該装置のハードウェア構成の一例を示す図である。図12に示すように、当該装置は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。 Furthermore, the NW node 100 and the UE 200 (applicable device) described above may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 12 is a diagram showing an example of the hardware configuration of the device. As shown in FIG. 12, the device may be configured as a computing device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つまたは複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following explanation, the term "apparatus" can be read as a circuit, device, unit, or the like. The hardware configuration of the device may be configured to include one or more of each device shown in the figure, or may be configured without some of the devices.
 当該装置の各機能ブロック(図2照)は、当該コンピュータ装置の何れかのハードウェア要素、または当該ハードウェア要素の組み合わせによって実現される。 Each functional block of the device (see FIG. 2) is realized by any hardware element of the computer device or a combination of the hardware elements.
 また、当該装置における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 In addition, each function of the device is implemented by causing the processor 1001 to perform calculations, controlling communication by the communication device 1004, and controlling the It is realized by controlling at least one of data reading and writing in 1002 and storage 1003 .
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。 A processor 1001, for example, operates an operating system and controls the entire computer. The processor 1001 may be configured by a central processing unit (CPU) including interfaces with peripheral devices, a control unit, an arithmetic unit, registers, and the like.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時または逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 Also, the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them. As the program, a program that causes a computer to execute at least part of the operations described in the above embodiments is used. Further, the various processes described above may be executed by one processor 1001, or may be executed by two or more processors 1001 simultaneously or sequentially. Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via an electric communication line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, and is composed of at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), Random Access Memory (RAM), etc. may be The memory 1002 may also be called a register, cache, main memory (main storage device), or the like. The memory 1002 can store programs (program code), software modules, etc. capable of executing a method according to an embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The storage 1003 is a computer-readable recording medium, for example, an optical disc such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disc, a magneto-optical disc (for example, a compact disc, a digital versatile disc, a Blu-ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, and/or the like. Storage 1003 may also be referred to as an auxiliary storage device. The recording medium described above may be, for example, a database, server, or other suitable medium including at least one of memory 1002 and storage 1003 .
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。 The communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。 The communication device 1004 includes a high-frequency switch, duplexer, filter, frequency synthesizer, etc., for realizing at least one of frequency division duplex (FDD) and time division duplex (TDD). may consist of
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside. The output device 1006 is an output device (eg, display, speaker, LED lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Also, each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor: DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部または全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 In addition, the device includes hardware such as a microprocessor, digital signal processor (DSP), application specific integrated circuit (ASIC), programmable logic device (PLD), field programmable gate array (FPGA), etc. A part or all of each functional block may be implemented by the hardware. For example, processor 1001 may be implemented using at least one of these pieces of hardware.
 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号またはこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。 In addition, notification of information is not limited to the aspects/embodiments described in the present disclosure, and may be performed using other methods. For example, the notification of information may include physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI), higher layer signaling (e.g., RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), other signals, or combinations thereof, and RRC signaling may also be referred to as RRC messages, e.g., RRC Connection Setup ) message, RRC Connection Reconfiguration message, or the like.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。 Each aspect/embodiment described in this disclosure includes Long Term Evolution (LTE), LTE-Advanced (LTE-A), SUPER 3G, IMT-Advanced, 4th generation mobile communication system (4G), 5th generation mobile communication system ( 5G), Future Radio Access (FRA), New Radio (NR), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi (registered trademark)) , IEEE 802.16 (WiMAX®), IEEE 802.20, Ultra-WideBand (UWB), Bluetooth®, other suitable systems, and/or next-generation systems enhanced therefrom. may be applied to Also, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The order of the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in this disclosure present elements of the various steps using a sample order, and are not limited to the specific order presented.
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MMEまたはS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 A specific operation that is performed by a base station in the present disclosure may be performed by its upper node in some cases. In a network consisting of one or more network nodes with a base station, various operations performed for communication with a terminal may be performed by the base station and other network nodes other than the base station (e.g. MME or S-GW, etc., but not limited to). Although the case where there is one network node other than the base station is exemplified above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
 情報、信号(情報等)は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 Information, signals (information, etc.) can be output from a higher layer (or a lower layer) to a lower layer (or a higher layer). It may be input and output via multiple network nodes.
 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、または追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。 Input/output information may be stored in a specific location (for example, memory) or managed using a management table. Input and output information may be overwritten, updated, or appended. The output information may be deleted. The entered information may be transmitted to other devices.
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value represented by one bit (0 or 1), by a true/false value (Boolean: true or false), or by numerical comparison (for example, a predetermined value).
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect/embodiment described in the present disclosure may be used alone, may be used in combination, or may be used by switching along with execution. In addition, the notification of predetermined information (for example, notification of “being X”) is not limited to being performed explicitly, but may be performed implicitly (for example, not notifying the predetermined information). good too.
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、または他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 In addition, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, the Software uses wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to access websites, Wired and/or wireless technologies are included within the definition of transmission medium when sent from a server or other remote source.
 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、またはこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一のまたは類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 The terms explained in this disclosure and terms necessary for understanding this disclosure may be replaced with terms having the same or similar meanings. For example, the channel and/or symbols may be signaling. A signal may also be a message. A component carrier (CC) may also be called a carrier frequency, a cell, a frequency carrier, or the like.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 The terms "system" and "network" used in this disclosure are used interchangeably.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 In addition, the information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information. may be represented. For example, radio resources may be indexed.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the parameters described above are not restrictive names in any respect. Further, the formulas, etc., using these parameters may differ from those expressly disclosed in this disclosure. Since the various channels (e.g., PUCCH, PDCCH, etc.) and information elements can be identified by any suitable designation, the various designations assigned to these various channels and information elements are in no way restrictive designations. is not.
 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In the present disclosure, "base station (BS)", "radio base station", "fixed station", "NodeB", "eNodeB (eNB)", "gNodeB (gNB)", " "access point", "transmission point", "reception point", "transmission/reception point", "cell", "sector", "cell group", " Terms such as "carrier", "component carrier" may be used interchangeably. A base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
 基地局は、1つまたは複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。 A base station can accommodate one or more (eg, three) cells (also called sectors). When a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, each smaller area corresponding to a base station subsystem (e.g., a small indoor base station (Remote Radio)). Head: RRH) can also provide communication services.
 「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部または全体を指す。 The term "cell" or "sector" refers to part or all of the coverage area of at least one of a base station and base station subsystem that provides communication services in this coverage.
 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "Mobile Station (MS)", "user terminal", "User Equipment (UE)", "terminal" may be used interchangeably. .
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型または無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 At least one of the base station and mobile station may be called a transmitting device, a receiving device, a communication device, or the like. At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, or the like. The mobile body may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile body (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ). Note that at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations. For example, at least one of the base station and mobile station may be an Internet of Things (IoT) device such as a sensor.
 また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネル(またはサイドリンク)で読み替えられてもよい。 Also, the base station in the present disclosure may be read as a mobile station (user terminal, hereinafter the same). For example, communication between a base station and a mobile station is replaced with communication between multiple mobile stations (for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.) Regarding the configuration, each aspect/embodiment of the present disclosure may be applied. In this case, the mobile station may have the functions that the base station has. Also, words such as "up" and "down" may be replaced with words corresponding to inter-terminal communication (for example, "side"). For example, uplink channels, downlink channels, etc. may be read as side channels (or sidelinks).
 同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。
無線フレームは時間領域において1つまたは複数のフレームによって構成されてもよい。時間領域において1つまたは複数の各フレームはサブフレームと呼ばれてもよい。サブフレームはさらに時間領域において1つまたは複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
Similarly, mobile stations in the present disclosure may be read as base stations. In this case, the base station may have the functions that the mobile station has.
A radio frame may consist of one or more frames in the time domain. Each frame or frames in the time domain may be referred to as a subframe. A subframe may also consist of one or more slots in the time domain. A subframe may be of a fixed length of time (eg, 1 ms) independent of numerology.
 ニューメロロジーは、ある信号またはチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 A numerology may be a communication parameter that applies to the transmission and/or reception of a signal or channel. Numerology, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame structure, transmission and reception specific filtering operations performed by the receiver in the frequency domain, specific windowing operations performed by the transceiver in the time domain, and/or the like.
 スロットは、時間領域において1つまたは複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。 A slot may consist of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.) in the time domain. A slot may be a unit of time based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つまたは複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプBと呼ばれてもよい。 A slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot. A PDSCH (or PUSCH) that is transmitted in time units larger than a minislot may be referred to as PDSCH (or PUSCH) mapping type A. PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations.
 例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロットまたは1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a transmission time interval (TTI), multiple consecutive subframes may be called a TTI, and one slot or one minislot may be called a TTI. That is, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, may be a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms may be Note that the unit representing the TTI may be called a slot, minislot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum scheduling time unit in wireless communication. For example, in the LTE system, a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit for channel-encoded data packets (transport blocks), code blocks, codewords, etc., or may be a processing unit for scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
 なお、1スロットまたは1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロットまたは1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 If one slot or one minislot is called a TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum scheduling time unit. Also, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partialまたはfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI with a time length of 1 ms may be called a normal TTI (TTI in LTE Rel.8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc. A TTI that is shorter than a regular TTI may also be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and so on.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 In addition, long TTI (for example, normal TTI, subframe, etc.) may be read as TTI having a time length exceeding 1 ms, and short TTI (for example, shortened TTI, etc.) is less than the TTI length of long TTI and 1 ms. A TTI having a TTI length greater than or equal to this value may be read as a replacement.
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つまたは複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain. The number of subcarriers included in an RB may be the same regardless of neurology, and may be 12, for example. The number of subcarriers included in an RB may be determined based on neumerology.
 また、RBの時間領域は、1つまたは複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、または1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つまたは複数のリソースブロックで構成されてもよい。 Also, the time domain of an RB may include one or more symbols and may be 1 slot, 1 minislot, 1 subframe, or 1 TTI long. One TTI, one subframe, etc. may each consist of one or more resource blocks.
 なお、1つまたは複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:REG)、PRBペア、RBペアなどと呼ばれてもよい。 One or more RBs are physical resource blocks (Physical RB: PRB), sub-carrier groups (SCG), resource element groups (REG), PRB pairs, RB pairs, etc. may be called.
 また、リソースブロックは、1つまたは複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 In addition, a resource block may be composed of one or more resource elements (Resource Element: RE). For example, 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 A Bandwidth Part (BWP) (which may also be called a Bandwidth Part) represents a subset of contiguous common resource blocks (RBs) for a neumerology in a carrier. good. Here, the common RB may be identified by an RB index based on the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つまたは複数のBWPが設定されてもよい。 BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP). One or more BWPs may be configured in one carrier for a UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP. Note that "cell", "carrier", etc. in the present disclosure may be read as "BWP".
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレームまたは無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロットまたはミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。 The structures such as radio frames, subframes, slots, minislots and symbols described above are only examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of Configurations such as the number of subcarriers and the number of symbols in a TTI, symbol length, cyclic prefix (CP) length, etc. can be varied.
 「接続された(connected)」、「結合された(coupled)」という用語、またはこれらのあらゆる変形は、2またはそれ以上の要素間の直接的または間接的なあらゆる接続または結合を意味し、互いに「接続」または「結合」された2つの要素間に1またはそれ以上の中間要素が存在することを含むことができる。要素間の結合または接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1またはそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」または「結合」されると考えることができる。 The terms "connected," "coupled," or any variation thereof mean any direct or indirect connection or coupling between two or more elements, It can include the presence of one or more intermediate elements between two elements being "connected" or "coupled." Couplings or connections between elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access". As used in this disclosure, two elements are defined using at least one of one or more wires, cables and printed electrical connections and, as some non-limiting and non-exhaustive examples, in the radio frequency domain. , electromagnetic energy having wavelengths in the microwave and light (both visible and invisible) regions, and the like.
 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。 The reference signal can also be abbreviated as Reference Signal (RS), and may also be called Pilot depending on the applicable standard.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The term "based on" as used in this disclosure does not mean "based only on" unless otherwise specified. In other words, the phrase "based on" means both "based only on" and "based at least on."
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。 "Means" in the configuration of each device described above may be replaced with "unit", "circuit", "device", or the like.
 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量または順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、または何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using the "first," "second," etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, references to first and second elements do not imply that only two elements may be employed therein or that the first element must precede the second element in any way.
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。 Where "include," "including," and variations thereof are used in this disclosure, these terms are inclusive, as is the term "comprising." is intended. Furthermore, the term "or" as used in this disclosure is not intended to be an exclusive OR.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In this disclosure, if articles are added by translation, such as a, an, and the in English, the disclosure may include that the nouns following these articles are plural.
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 The terms "determining" and "determining" used in this disclosure may encompass a wide variety of actions. "Judgement" and "determination" are, for example, judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiring (eg, lookup in a table, database, or other data structure), ascertaining as "judged" or "determined", and the like. Also, "judgment" and "determination" are used for receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access (accessing) (for example, accessing data in memory) may include deeming that a "judgment" or "decision" has been made. In addition, "judgment" and "decision" are considered to be "judgment" and "decision" by resolving, selecting, choosing, establishing, comparing, etc. can contain. In other words, "judgment" and "decision" may include considering that some action is "judgment" and "decision". Also, "judgment (decision)" may be read as "assuming", "expecting", "considering", or the like.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other." The term may also mean that "A and B are different from C". Terms such as "separate," "coupled," etc. may also be interpreted in the same manner as "different."
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is clear to those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure can be practiced with modifications and variations without departing from the spirit and scope of the present disclosure as defined by the claims. Accordingly, the description of the present disclosure is for illustrative purposes and is not meant to be limiting in any way.
 10 無線通信システム
 40 航空機
 50 ドローン
 60 車両
 100 NWノード
 110 無線信号送受信部
 120 アンプ部
 130 変復調部
 140 制御信号・参照信号処理部
 150 符号化/復号部
 160 データ送受信部
 170 制御部
 200 UE
 1001 プロセッサ
 1002 メモリ
 1003 ストレージ
 1004 通信装置
 1005 入力装置
 1006 出力装置
 1007 バス
10 Wireless Communication System 40 Aircraft 50 Drone 60 Vehicle 100 NW Node 110 Radio Signal Transceiver 120 Amplifier 130 Modem 140 Control Signal/Reference Signal Processor 150 Coding/Decoding 160 Data Transceiver 170 Control 200 UE
1001 Processor 1002 Memory 1003 Storage 1004 Communication Device 1005 Input Device 1006 Output Device 1007 Bus

Claims (6)

  1.  異なる構成を有する複数の同期信号を送信する送信部と、
     無線通信ノードの機能または接続状態に基づいて、前記複数の同期信号のうち、少なくとも何れかを設定する制御部と
    を備える無線通信ノード。
    a transmission unit that transmits a plurality of synchronization signals having different configurations;
    A wireless communication node, comprising: a control unit that sets at least one of the plurality of synchronization signals based on the function or connection state of the wireless communication node.
  2.  前記制御部は、前記同期信号の送信タイミングを他の無線通信ノードにおける同期信号の送信タイミングと異ならせる請求項1に記載の無線通信ノード。 The wireless communication node according to claim 1, wherein the control unit makes the transmission timing of the synchronization signal different from the transmission timing of the synchronization signal in other wireless communication nodes.
  3.  前記同期信号に関する同期信号情報を受信する受信部を備え、
     前記制御部は、前記同期信号情報に基づいて、前記複数の同期信号のうち、少なくとも何れかを設定し、前記同期信号の送信タイミングを決定する請求項1に記載の無線通信ノード。
    A receiving unit for receiving synchronization signal information related to the synchronization signal,
    2. The wireless communication node according to claim 1, wherein the control unit sets at least one of the plurality of synchronization signals based on the synchronization signal information, and determines transmission timing of the synchronization signal.
  4.  無線信号を送受信する送受信部と、
     前記無線信号の送信タイミング及び受信タイミングを設定する制御部と
    を備え、
     前記制御部は、無線通信ノードにおける全ての前記無線信号の受信タイミングが一致すると想定し、前記受信タイミングに応じて前記送信タイミングを設定する無線通信ノード。
    a transmitting/receiving unit for transmitting/receiving radio signals;
    A control unit that sets transmission timing and reception timing of the radio signal,
    A radio communication node in which the control unit assumes that reception timings of all the radio signals in the radio communication node match, and sets the transmission timing according to the reception timings.
  5.  異なる構成を有する複数の同期信号を送信するステップと、
     無線通信ノードの機能または接続状態に基づいて、前記複数の同期信号のうち、少なくとも何れかを設定するステップと
    を含む無線通信方法。
    transmitting a plurality of synchronization signals having different configurations;
    setting at least one of the plurality of synchronization signals based on the function or connection state of a wireless communication node.
  6.  無線信号を送受信するステップと、
     前記無線信号の送信タイミング及び受信タイミングを設定するステップと
    を含み、
     前記設定するステップでは、無線通信ノードにおける全ての前記無線信号の受信タイミングが一致すると想定し、前記受信タイミングに応じて前記送信タイミングを設定する無線通信方法。
    transmitting and receiving radio signals;
    setting the transmission timing and reception timing of the radio signal;
    The wireless communication method, wherein, in the setting step, the transmission timing is set according to the reception timing on the assumption that the reception timings of all the wireless signals in wireless communication nodes are the same.
PCT/JP2021/020712 2021-05-31 2021-05-31 Wireless communication node and wireless communication method WO2022254531A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/020712 WO2022254531A1 (en) 2021-05-31 2021-05-31 Wireless communication node and wireless communication method
JP2023525175A JPWO2022254531A1 (en) 2021-05-31 2021-05-31

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/020712 WO2022254531A1 (en) 2021-05-31 2021-05-31 Wireless communication node and wireless communication method

Publications (1)

Publication Number Publication Date
WO2022254531A1 true WO2022254531A1 (en) 2022-12-08

Family

ID=84323965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020712 WO2022254531A1 (en) 2021-05-31 2021-05-31 Wireless communication node and wireless communication method

Country Status (2)

Country Link
JP (1) JPWO2022254531A1 (en)
WO (1) WO2022254531A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3487138A1 (en) * 2016-07-18 2019-05-22 ZTE Corporation Method and device for transmitting and receiving synchronous signal, and transmission system
US20210013959A1 (en) * 2018-02-12 2021-01-14 Huawei Technologies Co., Ltd. Method for Sending Synchronization Signal by Relay Node, and Apparatus
JP2021503845A (en) * 2017-11-17 2021-02-12 華為技術有限公司Huawei Technologies Co.,Ltd. Communication method and communication device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3487138A1 (en) * 2016-07-18 2019-05-22 ZTE Corporation Method and device for transmitting and receiving synchronous signal, and transmission system
JP2021503845A (en) * 2017-11-17 2021-02-12 華為技術有限公司Huawei Technologies Co.,Ltd. Communication method and communication device
US20210013959A1 (en) * 2018-02-12 2021-01-14 Huawei Technologies Co., Ltd. Method for Sending Synchronization Signal by Relay Node, and Apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Discussions on other enhancement for simultaneous operation", 3GPP DRAFT; R1-2105494, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), 12 May 2021 (2021-05-12), XP052011479 *

Also Published As

Publication number Publication date
JPWO2022254531A1 (en) 2022-12-08

Similar Documents

Publication Publication Date Title
JP7193549B2 (en) Terminal, wireless communication method and system
EP3860284A1 (en) User terminal
WO2020209282A1 (en) User terminal and wireless communication method
JP2023171931A (en) Terminal, radio communication method, base station, and system
WO2021224965A1 (en) Terminal, wireless communication method, and base station
US11943720B2 (en) User equipment and base station apparatus
US20210345271A1 (en) User equipment and base station apparatus
WO2020144871A1 (en) User terminal and wireless communication method
JPWO2020157962A1 (en) User terminal and wireless communication method
WO2021205572A1 (en) Terminal, wireless communication method and base station
WO2021224968A1 (en) Terminal, wireless communication method, and base station
WO2022254531A1 (en) Wireless communication node and wireless communication method
WO2022254530A1 (en) Wireless communication node and wireless communication method
JP2023156536A (en) Terminal, wireless communication method, and base station
WO2022254534A1 (en) Wireless communication node and wireless communication method
WO2022162743A1 (en) Terminal, base station, and wireless communication method
WO2022162748A1 (en) Terminal, base station, and wireless communication method
WO2022162744A1 (en) Terminal, base station, and wireless communication method
WO2022162747A1 (en) Terminal, base station, and wireless communication method
WO2022201900A1 (en) Terminal, base station, and communication method
WO2022162742A1 (en) Terminal, base station, and wireless communication method
WO2022162751A1 (en) Terminal, base station, and wireless communication method
WO2022162745A1 (en) Terminal, base station, and wireless communication method
WO2022162746A1 (en) Terminal, base station, and wireless communication method
WO2022162750A1 (en) Terminal, base station, and wireless communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21944039

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023525175

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE