WO2022254481A1 - Placental cell culture device, three-dimensional culture model, method for making three-dimensional culture model, and method for evaluating placental cell - Google Patents

Placental cell culture device, three-dimensional culture model, method for making three-dimensional culture model, and method for evaluating placental cell Download PDF

Info

Publication number
WO2022254481A1
WO2022254481A1 PCT/JP2021/020598 JP2021020598W WO2022254481A1 WO 2022254481 A1 WO2022254481 A1 WO 2022254481A1 JP 2021020598 W JP2021020598 W JP 2021020598W WO 2022254481 A1 WO2022254481 A1 WO 2022254481A1
Authority
WO
WIPO (PCT)
Prior art keywords
placental
cells
cell culture
channel
substrate
Prior art date
Application number
PCT/JP2021/020598
Other languages
French (fr)
Japanese (ja)
Inventor
武志 堀
弘和 梶
大成 天野倉
寛明 岡江
隆博 有馬
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to JP2023525132A priority Critical patent/JPWO2022254481A1/ja
Priority to PCT/JP2021/020598 priority patent/WO2022254481A1/en
Publication of WO2022254481A1 publication Critical patent/WO2022254481A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/14Apparatus for enzymology or microbiology with means providing thin layers or with multi-level trays
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus
    • C12M3/04Tissue, human, animal or plant cell, or virus culture apparatus with means providing thin layers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues

Definitions

  • the present invention relates to a placental cell culture device, a three-dimensional culture model, a method for producing a three-dimensional culture model, and a method for evaluating placental cells.
  • Organ chip devices that have been developed so far include the Lung-on-a-chip for pulmonary edema model (Non-Patent Document 1) and the Intestine-on-a-chip for small intestine model (Non-Patent Document 2).
  • a culture model of the outer blood-retinal barrier using a microchannel chip with a two-layer structure partitioned by a porous membrane has been reported (Patent Document 1).
  • the placenta is one such organ.
  • the placenta is an organ that differs in structure and function between humans and animals.
  • it is an organ that is difficult to obtain before childbirth. Therefore, the development of a human placental chip device is extremely important for understanding the molecular and cellular biological phenomena in the human placenta, the mechanism of placenta formation, and the mechanism of pathogenesis.
  • Gestational hypertension is a disease in which hypertension occurs between the 20th week of pregnancy and the 12th week of postpartum. Pregnancy hypertension is said to occur in about 1 out of 20 women, and is a major cause of maternal death and perinatal death.
  • the pathogenesis of this disease is complex, but hypoplasia of the spiral arteries in the uterus occurs and blood supply to the placenta is blocked. thought to occur. In other words, it can be interpreted that the maternal body, sensing insufficient blood supply to the placenta, raises blood pressure in order to supply nutrients to the placenta (fetal side).
  • EVT cells extravillous trophoblast cells
  • EVT cells extravillous trophoblast cells
  • vascular remodeling is incomplete in patients with pregnancy-induced hypertension, but a causal relationship with the onset of pregnancy-induced hypertension has not been clarified (Non-Patent Document 3).
  • Non-Patent Document 3 When conducting research on vascular remodeling by EVT cells using living tissue, not only placental tissue but also endometrial vascular tissue must be analyzed. Therefore, there is an ethical problem of harming the mother's body, and the number of studies is limited.
  • Gestational hypertension is a disease peculiar to humans, and almost no cases of spontaneous onset have been reported even in non-human primates. Therefore, information on pregnancy-induced hypertension from animal studies is limited. Against this background, in order to elucidate the onset mechanism of pregnancy-induced hypertension, it is desired to develop a human placenta chip device that enables detailed examination of the dynamics of human EVT cells and factors that control human EVT cells.
  • the present invention provides a placental cell culture device, a three-dimensional culture model using the placental cell culture device, and a three-dimensional culture model that can evaluate the interaction between placental cells and factors that can act on placental cells.
  • An object of the present invention is to provide a production method and a placental cell evaluation method using the placental cell culture device.
  • [5] A three-dimensional culture model produced using the placental cell culture device according to [2], wherein the placental cells are cultured in the placental cell culture unit, and the factor channel is three-dimensionally A three-dimensional culture model in which a vascular system is formed.
  • a three-dimensional culture model produced using the placental cell culture device according to [3], wherein the cell aggregate of the placental cells is cultured in the placental cell culture unit, and the factor flow A three-dimensional culture model in which vascular walls are formed in tracts.
  • a placental cell culture device a three-dimensional culture model using the placental cell culture device, and the three-dimensional culture model that can evaluate the interaction between placental cells and factors that can act on placental cells.
  • Methods of making and evaluating placental cells using the placental cell culture device are provided.
  • FIG. 1 is a perspective view of an embodiment of a placental cell culture device;
  • FIG. 1B is a cross-sectional view of the placental cell culture device shown in FIG. 1A taken along line BB.
  • FIG. 1B is a cross-sectional view of the placental cell culture device shown in FIG. 1A taken along line CC.
  • 1B is an exploded view of the placental cell culture device shown in FIG. 1A.
  • FIG. 1 is a schematic diagram of a mesh sheet used for a placental cell culture device of one embodiment.
  • FIG. 1B is a top view of the first substrate used in the placental cell culture device shown in FIG. 1A;
  • FIG. 4B is an enlarged view of a portion B surrounded by a broken line in the top view of the first substrate of FIG. 4A;
  • FIG. 3 is a schematic diagram showing a formation state of a three-dimensional vascular system (E) when vascular endothelial cells are cultured by filling the placental cell culture portion 12 with medium M3 in the placental cell culture device 1.
  • FIG. E interaction evaluation factor (three-dimensional vasculature).
  • FIG. 4 is a schematic diagram showing the formation state of a three-dimensional vascular system (E) when vascular endothelial cells are cultured without filling the placental cell culture portion 12 with medium M in the placental cell culture device 1.
  • FIG. 1 is a schematic diagram showing an example of a three-dimensional culture model including a three-dimensional vascular system; FIG. An example of a three-dimensional culture model for functional evaluation of EVT cells is shown.
  • EVT EVT cells.
  • 1 is a schematic diagram showing an example of a three-dimensional culture model including a three-dimensional vascular system; FIG. An example of a three-dimensional culture model for evaluating the permeability of placental cell membranes to chemical substances is shown.
  • ST ST cells
  • UD undifferentiated cells.
  • 1 is a schematic diagram showing an example of a three-dimensional culture model including a three-dimensional vascular system; FIG. An example of a three-dimensional culture model simulating the process of placental development is shown.
  • FIG. 7B is an enlarged view of portion B surrounded by a dashed line in the three-dimensional culture model shown in FIG. 7A.
  • FB fibroblast.
  • 1 is a perspective view of an embodiment of a placental cell culture device
  • FIG. 8B is a cross-sectional view of the placental cell culture device shown in FIG. 8A taken along line BB.
  • 8B is an exploded view of the placental cell culture device shown in FIG. 8A.
  • FIG. 8B is a top view of the first substrate used in the placental cell culture device shown in FIG. 8A
  • FIG. 10B is an enlarged view of a portion B surrounded by a broken line in the top view of the first substrate of FIG. 10A;
  • FIG. 8B is a top view of the placental cell culture device shown in FIG. 8A.
  • FIG. FIG. 11B is an enlarged view of portion B surrounded by a dashed line in the top view of the placental cell culture device shown in FIG. 11A.
  • C Placental cells.
  • FIG. 8B is a schematic diagram showing an example of a three-dimensional culture model for evaluating migration of EVT cells using the placental cell culture device shown in FIG. 8A.
  • FIG. 8B is a schematic diagram showing an example of a three-dimensional culture model for evaluating migration of EVT cells using the placental cell culture device shown in FIG. 8A.
  • 2 is a schematic diagram of a second substrate produced in Example 1.
  • FIG. 1 is a microscope image of a mesh sheet used in a placental cell culture device produced in Example 1.
  • FIG. 1 is a placental cell culture device produced in Example 1.
  • FIG. 4 is a microscopic image when colored water is allowed to flow through the central channel of the placental cell culture device provided with the mesh sheet produced in Example 1.
  • FIG. (+) indicates that the placental cell culture device contains a mesh sheet.
  • 1 is a microscope image when colored water is allowed to flow through the central channel of the placental cell culture device without a mesh sheet produced in Example 1.
  • FIG. (-) indicates that the placental cell culture device does not contain a mesh sheet.
  • FIG. 1 is a fluorescence microscope image of EVT cells and HUVEC (Human Umbilical Vein Endothelial Cells) cultured using the placenta-cultured cell device prepared in Example 1.
  • (A) is a fluorescence microscope image taken from the second substrate side of the placental cell device.
  • (B) is a fluorescence microscope image taken from the side of the placental cell device.
  • 1 is a fluorescence microscope image of EVT cells and HUVEC cultured using the placenta-cultured cell device produced in Example 1.
  • FIG. 1 is a schematic diagram of part of a placenta in vivo.
  • FIG. (A) is a schematic diagram of the placenta before CT cells (CT) differentiate into EVT cells (EVT), and (B) shows a part of the CT cells (CT) after differentiation into EVT cells (EVT).
  • CT CT cells
  • EVT EVT cells
  • FIG. 1 is a schematic diagram of a placenta; FIG.
  • FIG. 4 is a microscopic image of EVT cell-containing cell aggregates prepared in Example 2.
  • FIG. 4 is a fluorescence microscope image of EVT cell-containing cell aggregates prepared in Example 2.
  • FIG. 10 is a schematic diagram of a first substrate produced in Example 3; 3 is a placenta culture device produced in Example 3.
  • FIG. 4 is a microscopic image of EVT cell-containing cell aggregates cultured using the placenta-cultured cell device prepared in Example 3.
  • FIG. 10 is a graph showing migration directions of EVT cell-containing cell aggregates cultured using the placenta-cultured cell device prepared in Example 3.
  • FIG. 10 is a graph showing migration directions of EVT cell-containing cell aggregates cultured using the placenta-cultured cell device prepared in Example 3.
  • the horizontal axis indicates the number of days elapsed after introduction of the EVT cell-containing aggregates into the placental cell culture device.
  • FIG. EVT cell-containing cell aggregates were co-cultured with HUVEC cells.
  • FIG. 10 is a graph showing migration directions of EVT cell-containing cell aggregates co-cultured with HUVECs using the placenta-cultured cell device prepared in Example 3.
  • FIG. The horizontal axis indicates the number of days elapsed after introduction of the EVT cell-containing aggregates into the placental cell culture device.
  • the vertical axis indicates the ratio of the area on the right side (Right) or the area on the left side (Left) based on the dividing line drawn at the start of culture to the total area of the planar image of the cell aggregate.
  • N 4, mean ⁇ SE. *p ⁇ 0.05 (t-test)
  • the present invention comprises a placental cell culturing unit for culturing placental cells, and a factor channel in which a factor capable of interacting with the placental cells is present, wherein the placental cell culturing unit and the factor A placental cell culture device is provided in which the flow path and the channel are adjacent to each other via a partition member in which the shielding portions and the communication portions are alternately arranged, and the minimum width of the communication portion is 30 to 500 ⁇ m.
  • a placental cell culture device is a device for culturing placental cells.
  • the placental cell culture device includes a placental cell culture section and a factor channel.
  • the placental cell culture section and the factor channel are adjacent to each other via a partition member.
  • the partition member has a structure in which shielding portions and communication portions are alternately arranged, and the minimum width of the communication portion is 30 to 500 ⁇ m. Therefore, the placental cells cultured in the placental cell part can interact with the factor present in the factor channel.
  • the placental cells cultured in the placental cell culture section can pass through the communication section of the partition member and move to the channel for the factor.
  • the maximum width of the communicating portion is 50 to 500 ⁇ m. When the maximum width of the communication portion is within the above range, leakage of medium or the like between the placental cell culture portion and the factor channel can be appropriately controlled.
  • the placental cell culture department is a culture vessel for culturing placental cells.
  • "Placental cells” refer to cells that constitute the placenta and their progenitor cells. Examples of placental cells include trophoblast stem cells (TS cells), cytotrophoblast cells (CT cells), syncytiotrophoblast cells (ST cells), and EVT cells. is mentioned.
  • the organism from which placental cells are derived is not particularly limited as long as it is an animal with a placenta.
  • Animals from which placental cells are derived include, for example, mammals such as primates, rodents, and carnivores. Mammals are preferably primates. Primates include, for example, humans, chimpanzees, rhesus monkeys, marmosets, and the like. More preferably, the placental cells are human cells.
  • Placental cells may be those isolated from the placenta or may be derived from undifferentiated cells.
  • TS cells may be derived from blastocysts, CT cells, or pluripotent stem cells. Induction of TS cells from blastocysts can be performed by known methods. For example, mechanical and/or enzymatic treatments are optionally used on placental tissue to separate cells. Then, after culturing the cells in a medium that induces TS cells, TS cells are established using the expression of TS cell markers (GATA2-positive, GATA3-positive, TFAP2-positive, ELF5-positive, ZNF750-positive, CDX2-negative, etc.) as indicators. can be done.
  • TS cell markers GATA2-positive, GATA3-positive, TFAP2-positive, ELF5-positive, ZNF750-positive, CDX2-negative, etc.
  • a method for inducing TS cells from CT cells for example, the method described in Japanese Patent No. 6400832 can be used.
  • a method for inducing TS cells from pluripotent stem cells for example, the method described in International Publication No. 2020/250438 and the like can be used.
  • CT cells isolated from the placenta can be used. Isolation of CT cells from the placenta can be achieved, for example, by appropriately using mechanical and/or enzymatic treatments on the placental tissue to separate the cells and determine the expression of CT cell markers (CD49f-positive, E-cadherin-positive, etc.). As an indicator, CT cells can be isolated (Patent No. 6400832, Haider, S., et al., Stem Cell Reports 11, 537-551 (2016).)
  • ST cells may be isolated from the placenta or derived from TS cells. Isolation of ST cells from the placenta, for example, is performed by appropriately using mechanical and/or enzymatic treatments on the placental tissue to separate the cells and detect ST cell markers (Syndecan 1 (SCD1) positive, human chorionic gonadotropin (hCG ) positive, etc.) can be used as an index to isolate ST cells.
  • ST cell markers Syndecan 1 (SCD1) positive, human chorionic gonadotropin (hCG ) positive, etc.
  • Methods for inducing ST cells from TS cells include, for example, the methods described in International Publication No. 2020/250438 and the like.
  • EVT cells may be isolated from placenta or may be derived from TS cells. Isolation of EVT cells from the placenta can be achieved, for example, by appropriately using mechanical and/or enzymatic treatment on the placental tissue to separate the cells, and using the expression of an EVT cell marker (such as HLA-G positive) as an index, EVT cells can be isolated. Methods for inducing EVT cells from TS cells include, for example, the methods described in International Publication No. 2020/250438.
  • the factor channel is a channel for the presence of factors that can interact with placental cells.
  • a "factor capable of interacting with placental cells” refers to a factor whose interaction with placental cells is evaluated.
  • Factors that can interact with placental cells may be factors that are known to interact with placental cells, or factors that are unknown to interact with placental cells. It can be a factor.
  • the interaction evaluation factor may be a cell, a biological substance, or an ex vivo substance. Examples of interaction evaluation factors include vascular endothelial cells (eg, human umbilical vein endothelial cells (HUVEC)), various hormones, various cytokines, various drugs, immune cells, and the like.
  • FIG. 1A to 4B show an example of the placental cell culture device 1 of the first embodiment.
  • a mesh sheet with a porosity of 50 to 90% is used as a partition member between the placental cell culture portion and the factor channel.
  • FIG. 1A is a perspective view of placental cell culture device 1.
  • FIG. 1B is a cross-sectional view of the placental cell culture device 1 taken along line BB.
  • FIG. 1C is a cross-sectional view of the placental cell culture device 1 taken along line CC.
  • FIG. 2 is an exploded view of the placental cell culture device 1.
  • FIG. 1A is a perspective view of placental cell culture device 1.
  • FIG. 1B is a cross-sectional view of the placental cell culture device 1 taken along line BB.
  • FIG. 1C is a cross-sectional view of the placental cell culture device 1 taken along line CC.
  • FIG. 2 is an exploded view of the placental cell culture device 1.
  • the placental cell culture device 1 is composed of a first substrate 10, a second substrate 20, a mesh sheet 30, and a thin film sheet 40. Placental cell culture device 1 is formed by laminating second substrate 20, thin film sheet 40, mesh sheet 30, and first substrate 10 in this order.
  • the placental cell culture device 1 includes a central channel 21, a first side channel 22a, and a second side channel 22b.
  • the placental cell culture device 1 is provided with a first port P1, a second port P2, a third port P3, a fourth port P4, a fifth port P5, and a sixth port P6 as introduction/exhaust ports for culture medium or the like.
  • the first port P1 is connected to the first side flow path 22a through the first port flow path p1.
  • the second port P2 is connected to the first side flow path 22a through a second port flow path p2.
  • the third port P3 is connected to the second side flow path 22b through a third port flow path p3.
  • the fourth port P4 is connected to the second side flow path 22b through a fourth port flow path p4.
  • the fifth port P5 and sixth port P6 are connected to the central channel 21 .
  • the fifth port P5 is provided at one end of the central flow passage 21, and the sixth port P6 is provided at the other end of the central flow passage 21. As shown in FIG.
  • the first port P1 is composed of a through hole P1a provided in the first substrate 10 and a recess P1b provided in the second substrate 20.
  • the second port P2 is composed of a through hole P2a provided in the first substrate 10 and a recess P2b provided in the second substrate 20.
  • the third port P3 is composed of a through hole P3a provided in the first substrate 10 and a recess P3b provided in the second substrate 20.
  • the fourth port P4 is composed of a through hole P4a provided in the first substrate 10 and a recess P4b provided in the second substrate 20. As shown in FIG.
  • the fifth port P5 is composed of a through hole P5a provided in the first substrate 10 and a recess P5b provided in the second substrate 20.
  • the sixth port P6 is composed of a through hole P6a provided in the first substrate 10 and a recess P6b provided in the second substrate 20.
  • the central channel 21 , the first port channel p ⁇ b>1 , the second port channel p ⁇ b>2 , the third port channel p ⁇ b>3 , and the fourth port channel p ⁇ b>4 are provided on the second substrate 20 .
  • the central channel 21 functions as a factor channel.
  • Placental cell culture section 12 is provided above central channel 21, which is a channel for factors.
  • the placental cell culture portion 12 has a side portion formed by the central hole 11 provided in the first substrate 10 , and a bottom portion formed by the mesh sheet 30 and the thin film sheet 40 .
  • Placental cell culture section 12 and central channel 21 are adjacent to each other with mesh sheet 30 interposed therebetween.
  • the mesh sheet 30 functions as a partition member that separates the placental cell culture section 12 and the channel for factor (central channel 21).
  • the first substrate 10 is provided with through holes P1a to P6a and a central hole 11. As shown in FIG. The through holes P1a to P6a are formed at positions that overlap with the recessed portions P1b to P6b of the second substrate 20, respectively, when stacked on the second substrate 20. As shown in FIG.
  • the central hole 11 is a through hole provided substantially in the center of the second substrate 20 .
  • central hole 11 forms placental cell culture part 12 together with mesh sheet 30 and thin film sheet 40 .
  • the shape of the central hole 11 is not particularly limited.
  • the planar shape of the central hole includes, for example, a circular shape, an elliptical shape, a polygonal shape (square shape, pentagonal shape, hexagonal shape, etc.), and the like.
  • the size of the central hole 11 is not particularly limited, for example, both the minimum diameter and the maximum diameter are 1 to 20 mm.
  • the size of the central hole 11 is preferably 2 mm or more, more preferably 3 mm or more, even more preferably 4 mm or more, and particularly preferably 5 mm or more, for both the minimum diameter and the maximum diameter.
  • the size of the central hole 11 is preferably 18 mm or less, more preferably 15 mm or less, still more preferably 12 mm or less, and particularly preferably 10 mm or less, for each of the minimum diameter, b, and maximum diameter, for example.
  • the thickness of the first substrate 10 is not particularly limited, it may be 1 to 50 mm, for example.
  • the thickness of the first substrate 10 is preferably 2 mm or more, more preferably 3 mm or more, still more preferably 4 mm or more, and particularly preferably 5 mm or more.
  • the thickness of the first substrate 10 is preferably 40 mm or less, more preferably 30 mm or less, even more preferably 20 mm or less, and particularly preferably 15 mm or less.
  • FIG. 4A is a top view of the second substrate 20.
  • FIG. 4B is an enlarged view of a portion B surrounded by a dashed line in the top view of the second substrate 20 shown in FIG. 4A.
  • the second substrate 20 is formed with recesses P1b to P6b, a first port channel p1 to a fourth port channel p4, a central channel 21, a first side channel 22a, and a second side channel 22b. .
  • the recesses P1b to P6b are formed at positions overlapping the through holes P1a to P6a of the first substrate 10 when the first substrates 10 are stacked.
  • the central channel 21 is formed substantially in the center of the second substrate 20 . In the placental cell culture device 1 , the central channel 21 functions as a factor channel for allowing interaction evaluation factors to exist.
  • the central flow path 21 is formed at a position at least partially overlapping with the central hole 11 of the first substrate 10 when the first substrates 10 are laminated. Both ends of the central flow path 21 are provided with recesses P5b and P6b.
  • a first side channel 22a and a second side channel 22b are formed on both sides of the central channel 21, respectively.
  • a first port flow path p1 is connected to one end of the first side flow path 22a, and a second port flow path p2 is connected to the other end of the first side flow path 22a.
  • a third port flow path p3 is connected to one end of the second side flow path 22b, and a fourth port flow path p4 is connected to the other end of the second side flow path 22b.
  • the first side flow channel 22a and the second side flow channel 22b may be formed on both sides over the entire length of the central flow channel 21, or may be formed on both sides of a portion of the central flow channel 21. .
  • first side flow channel 22a and the second side flow channel 22b are formed on both sides of a part of the central flow channel 21, at least on both sides of the part where the central flow channel 21 contacts the placental cell culture section 12, It is preferable that the first side flow path 22a and the second side flow path 22b are formed respectively.
  • the width of the central channel 21 is not particularly limited, it may be, for example, 500 to 5000 ⁇ m.
  • the width of the central channel 21 is preferably 700 ⁇ m or more, more preferably 800 ⁇ m or more, still more preferably 1000 ⁇ m or more, and particularly preferably 1200 ⁇ m or more.
  • the width of the central channel 21 is preferably 4000 ⁇ m or less, more preferably 3000 ⁇ m or less, even more preferably 2000 ⁇ m or less, and particularly preferably 1800 ⁇ m or less.
  • the widths of the first side flow channel 22a and the second side flow channel 22b are not particularly limited, but may be 500 to 3000 ⁇ m, for example.
  • the width of the first side flow channel 22a and the second side flow channel 22b is preferably 600 ⁇ m or more, more preferably 700 ⁇ m or more, even more preferably 800 ⁇ m or more, and particularly preferably 900 ⁇ m or more.
  • the width of the first side flow channel 22a and the second side flow channel 22b is preferably 2500 ⁇ m or less, more preferably 2000 ⁇ m or less, still more preferably 1500 ⁇ m or less, and particularly preferably 1200 ⁇ m or less.
  • the first side flow channel 22a and the second side flow channel 22b may have the same width or different widths.
  • the height (depth) of the central flow channel 21, the first side flow channel 22a, and the second side flow channel 22b is not particularly limited, but is, for example, 50 to 1000 ⁇ m.
  • the height (depth) of the central flow channel 21, the first side flow channel 22a, and the second side flow channel 22b is preferably 60 ⁇ m or more, more preferably 80 ⁇ m or more, even more preferably 100 ⁇ m or more, and 150 ⁇ m or more. is particularly preferred.
  • the height (depth) of the central flow channel 21, the first side flow channel 22a, and the second side flow channel 22b is preferably 800 ⁇ m or less, more preferably 600 ⁇ m or less, even more preferably 500 ⁇ m or less, and 300 ⁇ m or less. is particularly preferred.
  • the height (depth) of the central flow channel 21, the first side flow channel 22a, and the second side flow channel 22b are preferably substantially the same.
  • the length of the portion where the first side flow path 22a and the second side flow path 22b are adjacent is not particularly limited, but for example, it is 500 to 30000 ⁇ m.
  • the length is preferably 600 ⁇ m or more, more preferably 700 ⁇ m or more, still more preferably 800 ⁇ m or more, and particularly preferably 900 ⁇ m or more.
  • the length is preferably 25000 ⁇ m or less, more preferably 200000 ⁇ m or less, even more preferably 15000 ⁇ m or less, and particularly preferably 10000 ⁇ m or less.
  • the central channel 21 and the first side channel 22a are partitioned by a partition member 23a.
  • the central channel 21 and the second side channel 22b are partitioned by a partition member 23b.
  • the partitioning member 23a and the partitioning member 23b are composed of a plurality of microposts 24. As shown in FIG. A plurality of microposts 24 constituting the partition member 23a and the partition member 23b are arranged at predetermined intervals. In the partitioning member 23a and the partitioning member 23b, the microposts 24 constitute shielding portions, and the gaps between the microposts 24 constitute communicating portions.
  • the shape of the microposts 24 is not particularly limited.
  • the microposts 24 may have a polygonal prism shape (triangular prism, square prism, etc.) or a cylindrical shape.
  • the micropost 24 has, for example, a trapezoidal prism shape. It is preferable that the width w2 of the microposts 24 on the first side channel 22a side or the second side channel 22b side is larger than the width w1 on the central channel 21 side. As a result, the liquid filled in the central flow path 21 can be prevented from leaking into the first side flow path 22a and the second side flow path 22b.
  • the size of the microposts 24 is not particularly limited, but the width w1 on the side of the central channel 21 is, for example, 20 to 300 ⁇ m.
  • the width w1 is preferably 25 ⁇ m or more, more preferably 30 ⁇ m or more, still more preferably 35 ⁇ m or more, and particularly preferably 40 ⁇ m or more.
  • the width w1 is, for example, preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less, still more preferably 100 ⁇ m or less, and particularly preferably 80 ⁇ m or less.
  • the width w2 on the side of the first side flow path 22a or the side of the second side flow path 22b is, for example, 50 to 500 ⁇ m.
  • the width w2 is, for example, preferably 60 ⁇ m or more, more preferably 70 ⁇ m or more, even more preferably 80 ⁇ m or more, and particularly preferably 90 ⁇ m or more.
  • the width w2 is, for example, preferably 400 ⁇ m or less, more preferably 300 ⁇ m or less, still more preferably 200 ⁇ m or less, and particularly preferably 180 ⁇ m or less.
  • the length l of the microposts 24 may be 50-800 ⁇ m.
  • the length l is preferably 60 ⁇ m or more, more preferably 65 ⁇ m or more, still more preferably 70 ⁇ m or more, and particularly preferably 75 ⁇ m or more.
  • the length l is preferably 600 ⁇ m or less, more preferably 500 ⁇ m or less, even more preferably 400 ⁇ m or less, and particularly preferably 300 ⁇ m or less.
  • the height of the microposts 24 is preferably the same as the height (depth) of the central channel 21 .
  • the shortest distance d between two microposts 24 corresponds to the minimum width of the communicating portion of the partition member.
  • the shortest distance d is, for example, 30 to 500 ⁇ m.
  • the shortest distance d is, for example, preferably 40 ⁇ m or longer, more preferably 50 ⁇ m or longer, still more preferably 60 ⁇ m or longer, and particularly preferably 70 ⁇ m or longer.
  • the shortest distance d is, for example, preferably 400 ⁇ m or less, more preferably 350 ⁇ m or less, still more preferably 300 ⁇ m or less, and particularly preferably 250 ⁇ m or less.
  • the longest distance between two microposts 24 corresponds to the maximum width of the communicating portion of the partition member.
  • Examples of the longest distance include 50 to 500 ⁇ m.
  • the longest distance is, for example, preferably 60 ⁇ m or longer, more preferably 70 ⁇ m or longer, still more preferably 80 ⁇ m or longer, and particularly preferably 90 ⁇ m or longer.
  • the longest distance is, for example, preferably 400 ⁇ m or less, more preferably 350 ⁇ m or less, even more preferably 300 ⁇ m or less, and particularly preferably 250 ⁇ m or less.
  • the channel surfaces of the central channel 21, the first side channel 22a, and the second side channel 22b are preferably hydrophobic. If the surface of the channel is hydrophobic, surface tension of the liquid is generated between the microposts 24 when any one of the channels is filled with liquid. This prevents liquid from leaking into the adjacent channel when there is no liquid in the adjacent channel.
  • the thickness of the second substrate 20 is not particularly limited, it may be 0.1 to 50 mm, for example.
  • the thickness of the second substrate 20 is preferably 0.3 mm or more, more preferably 0.5 mm or more, still more preferably 0.6 mm or more, and particularly preferably 0.8 mm or more.
  • the thickness of the second substrate 20 is preferably 40 mm or less, more preferably 20 mm or less, even more preferably 10 mm or less, and particularly preferably 5 mm or less.
  • Materials for the first substrate 10 and the second substrate 20 are not particularly limited, but materials having high biocompatibility and high oxygen permeability are preferable.
  • Oxygen permeability means the property of being permeable to molecular oxygen. By using an oxygen-permeable material for the first substrate 10 and the second substrate 20, oxygen can reach the inside of each channel.
  • the oxygen permeability is, for example, about 100 to 5000 cm 3 /m 2 ⁇ 24 h ⁇ atm.
  • the oxygen permeability is preferably about 1100-3000 cm 3 /m 2 ⁇ 24 h ⁇ atm, or about 1250-2750 cm 3 /m 2 ⁇ 24 h ⁇ atm.
  • Oxygen permeable materials include oxygen permeable polymers.
  • oxygen-permeable polymers include fluororesins and silicones (eg, polydimethylsiloxane (PDMS), etc.). Among them, the oxygen-permeable polymer is preferably PDMS.
  • the first substrate 10 and the second substrate 20 can be produced using known methods such as photolithography, soft lithography, microcontact printing, microfluidic, and stencil methods.
  • a mold for the first substrate 10 and the second substrate 20 can be produced using a photolithography method, and the first substrate 10 and the second substrate 20 can be produced using the mold using a soft lithography method.
  • a photoresist film is formed by coating a wafer such as a silicon wafer with a photoresist by spin coating or the like.
  • the photoresist film is exposed through a photomask for the first substrate 10 or the second substrate 20 .
  • the unexposed portion of the photoresist film is removed with a developer to obtain the mold for the first substrate 10 or the mold for the second substrate 20 .
  • the curable composition is poured into the prepared mold for the first substrate 10 or the mold for the second substrate 20 and cured.
  • the first substrate 10 or the second substrate 20 can be obtained by removing the cured product from the mold and processing it appropriately.
  • the placental cell culture portion 12 and the central channel 21 as a channel for factors are at least partially separated by the mesh sheet 30 .
  • the mesh sheet 30 functions as a partition member that separates the placental cell culture portion 12 and the central channel 21, which is the channel for factors.
  • the partition member that separates the placental cell culture section 12 and the factor channel has a structure in which shielding sections and communicating sections are alternately arranged.
  • the minimum width of the communicating portion is 30 to 500 ⁇ m.
  • the maximum width of the communicating portion is, for example, 50 to 500 ⁇ m.
  • FIG. 3 shows a mesh sheet 30.
  • the mesh sheet 30 is configured by arranging linear members 31 in a mesh pattern.
  • the linear member 31 constitutes the shielding portion of the partition member
  • the opening 32 constitutes the communicating portion of the partition member.
  • the opening 32 has a rectangular shape.
  • the length of the diagonals of the rectangles forming the openings 32 corresponds to the maximum width of the communicating portion of the partition member.
  • the maximum width of the communicating portion is preferably 120 ⁇ m or more, more preferably 130 ⁇ m or more, still more preferably 140 ⁇ m or more, and particularly preferably 150 ⁇ m or more.
  • the maximum width of the communicating portion is preferably 400 ⁇ m or less, more preferably 300 ⁇ m or less, still more preferably 250 ⁇ m or less, and particularly preferably 200 ⁇ m or less.
  • the length W1 of the short sides of the rectangles forming the openings 32 corresponds to the minimum width of the communicating portion of the partition member.
  • the minimum width of the communicating portion is not particularly limited as long as it is in the range of 30-500 ⁇ m. When the minimum width of the communicating portion is within the above range, the placental cell migration efficiency is favorably maintained.
  • the minimum width of the communicating portion is, for example, preferably 40 ⁇ m or more, more preferably 50 ⁇ m or more, still more preferably 60 ⁇ m or more, and particularly preferably 70 ⁇ m or more.
  • the upper limit of the minimum width of the communicating portion is 500 ⁇ m or less.
  • the minimum width of the communicating portion is preferably 400 ⁇ m or less, more preferably 300 ⁇ m or less, still more preferably 200 ⁇ m or less, and particularly preferably 150 ⁇ m or less.
  • the length W2 of the long side of the rectangle forming the opening 32 is, for example, preferably 80 ⁇ m or longer, more preferably 100 ⁇ m or longer, even more preferably 120 ⁇ m or longer, and particularly preferably 150 ⁇ m or longer.
  • the upper limit of the length W2 of the long side is 500 ⁇ m or less.
  • the long side W2 is preferably 400 ⁇ m or less, more preferably 300 ⁇ m or less, still more preferably 250 ⁇ m or less, and particularly preferably 200 ⁇ m or less.
  • the shape of the opening of the mesh sheet, which is the partition member is not limited to a rectangular shape like the opening 32 .
  • the shape of the openings of the mesh sheet may be, for example, a square shape, a rhombus shape, a parallelogram shape, or the like.
  • the mesh sheet 30 has a porosity (opening ratio) of 50 to 90%.
  • “Porosity (opening ratio)” refers to the ratio of the area of the openings to the area of the entire mesh sheet 30 .
  • the porosity (%) is expressed by the formula: "short side W1 of opening 32 x long side W2 of opening 32 x number of openings 32)/area of mesh sheet 30 x 100". can ask. Since the mesh sheet 30 has a high porosity as described above, placental cells can easily pass through the openings 32 . Therefore, the transfer efficiency of placental cells from the placental cell culture section to the central channel 21 is high.
  • the porosity (opening ratio) of the mesh sheet 30 is preferably 60% or more, more preferably 70% or more, and even more preferably 80% or more.
  • the material of the mesh sheet is not particularly limited, but a material with high biocompatibility is preferable.
  • materials for the mesh sheet include synthetic resins, natural fibers, glass fibers, carbon fibers, ceramics, and metals.
  • synthetic resins include water-insoluble resins such as polyethylene, polypropylene, polyester, fluororesin, and polyamide.
  • natural fibers include vegetable fibers such as cotton, hemp, bamboo and paper; animal fibers such as wool and silk.
  • the mesh sheet may be a blend of synthetic resin fibers and natural fibers.
  • Ceramics include alumina (Al 2 O 3 ) and the like.
  • Metals include stainless steel, steel, aluminum, gold, platinum and the like. Also, these materials may be modified. Examples of such modifications include hydrophilic treatment, coating with extracellular matrix (eg, collagen, fibronectin, etc.), and the like.
  • the mesh sheet is not particularly limited as long as the linear members are formed in a mesh shape.
  • the mesh sheet is formed into a mesh shape by woven fabric (single raschel or double raschel), knitting, cross-point welding type, extruded sheet (trical net, netron sheet, etc.), punching processing, or the like. good.
  • the thin film sheet 40 In the placental cell culture device 1, the thin film sheet 40 separates the placental cell culture section 12 from the first side channel 22a and the second side channel 22b.
  • the thin film sheet 40 has thin film openings 41 .
  • thin film sheet 40 In placental cell culture device 1 , thin film sheet 40 is arranged such that thin film opening 41 overlaps central channel 21 .
  • the central hole 11 and the central channel 21 are adjacent to each other with only the mesh sheet 30 interposed therebetween without the thin film sheet 40 interposed therebetween.
  • the membrane opening 41 can be sized according to the central channel 21 in the second substrate 20 .
  • the width of the membrane opening 41 is preferably slightly smaller than the width of the central channel 21 .
  • the width of the thin film opening 41 is, for example, 100 to 3000 ⁇ m.
  • the width of the thin film opening 41 is preferably 200 ⁇ m or more, more preferably 300 ⁇ m or more, still more preferably 4000 ⁇ m or more, and particularly preferably 450 ⁇ m or more.
  • the width of the thin film opening 41 is preferably 2000 ⁇ m or less, more preferably 1800 ⁇ m or less, still more preferably 1600 ⁇ m or less, and particularly preferably 1400 ⁇ m or less.
  • the length of membrane opening 41 is preferably shorter than the length of central channel 21 .
  • the length of the thin film opening 41 is, for example, 500 to 10000 ⁇ m.
  • the length of the thin film opening 41 is, for example, preferably 1000 ⁇ m or longer, more preferably 1500 ⁇ m or longer, even more preferably 2000 ⁇ m or longer, and particularly preferably 2500 ⁇ m or longer.
  • the length of the thin film opening 41 is preferably 8000 ⁇ m or less, more preferably 7000 ⁇ m or less, even more preferably 6000 ⁇ m or less, and particularly preferably 5000 ⁇ m or less.
  • the material of the thin film sheet 40 is not particularly limited, but a material with high biocompatibility is preferable.
  • materials for the thin film sheet 40 include polyimide, polyethylene terephthalate (PET), polystyrene, polyethylene, polypropylene, nylon, polytetrafluoroethylene (PTFE), ethylene-tetrafluoroethylene copolymer (ETFE), tetrafluoroethylene- Hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), polydimethylsiloxane (PDMS), and the like, but are not limited to these.
  • a resin film made of the above materials can be used.
  • the placental cell culture device 1 can be produced by laminating and bonding the second substrate 20, the thin film sheet 40, the mesh sheet 30, and the first substrate 10 in this order.
  • the through holes P1a to Pa6 of the first substrate 10 and the recesses P1b to P6b of the second substrate 20 are aligned with each other.
  • the central channel 21 of the second substrate 20 and the thin film opening 41 of the thin film sheet 40 are at least partially aligned. At least part of the central hole 11 of the first substrate 10 and the central channel 21 of the second substrate 20 are arranged to be adjacent to each other with the mesh sheet 30 interposed therebetween.
  • the surfaces of the first substrate 10 and the second substrate 20 may be activated to enhance adhesiveness.
  • the surfaces can be activated by oxygen plasma treatment to enhance adhesion.
  • the substrate surface including the channel surface can be hydrophobized by heat treatment (for example, 80° C. overnight).
  • the placental cell culture device of this embodiment can be used to produce a three-dimensional culture model containing placental cells.
  • placental cells are cultured in the placental cell culture section, and interaction evaluation factors are present in the factor channel.
  • the central channel 21 functions as a factor channel.
  • the interaction evaluation factor is not particularly limited, and any factor can be selected according to the purpose.
  • the interaction evaluation factors present in the central channel 21 may be of one type or a combination of two or more types.
  • the interaction evaluation factor can be dissolved or suspended in a buffer solution (PBS, medium, etc.) and introduced into the central flow channel 21 by injecting it from the fifth port P5 or the sixth port P6.
  • a gelling agent may be added to a buffer solution or the like for dissolving or suspending the interaction evaluation factor, and gelation may be performed after filling the central channel 21 .
  • the central channel 21 is filled with the gel containing the interaction evaluation factor.
  • the central channel 21 and the placental cell culture section 12 are separated by the mesh sheet 30, so that the solution or suspension introduced into the central channel 21 is transferred to the placental cell culture section 12. No leakage.
  • the gelling agent is not particularly limited, it is preferable to use one with high biocompatibility.
  • examples of gelling agents include collagen (type I, type II, type III, type V, type XI, etc.), gelatin, elastin, proteoglycan, glycosaminoglycan, fibronectin, vitronectin, laminin, pectin, hyaluronic acid, chitin. , and extracellular matrices such as chitosan; polysaccharides such as alginic acid and starch; and amino acid polymers such as polylysine and polyarginine; fibrous proteins such as fibrin; A commercially available scaffold such as Matrigel® (CORNING) may also be used.
  • fibrin When fibrin is used as a gelling agent, it may be prepared as a mixture of fibrinogen and thrombin. In this case, thrombin converts fibrinogen into fibrin and gels.
  • the culture medium into the first side channel 22a and the second side channel 22b.
  • the medium can be introduced into the first side channel 22a by injecting the medium from the first port P1 or the second port P2.
  • the medium can be introduced into the second side channel 22b by injecting the medium from the third port P3 or the fourth port P4.
  • the gel filled in the central channel 21 can be prevented from drying out.
  • the interaction evaluation factor is a cell, a component necessary for the survival of the interaction evaluation factor present in the central channel 21, a component controlling the interaction evaluation factor, etc. are supplied to the interaction evaluation factor. can be done.
  • the placental cell culture section 12 may be filled with medium.
  • the interaction-evaluating factor is a cell
  • the growth of the interaction-evaluating factor can be controlled by filling the placental cell culture section 12 with medium.
  • the interaction evaluation factor is vascular endothelial cells such as HUVEC
  • the formation of a three-dimensional vascular system in the central channel 21 can be controlled by filling or not filling the placental cell culture section 12 with medium.
  • FIG. 5A shows that after filling gel G containing vascular endothelial cells (HUVEC, etc.) in central channel 21, media M1 to M3 are added to first side channel 22a, second side channel 22b, and placental cell culture section 12. are respectively filled to form a three-dimensional vascular system (E).
  • E three-dimensional vascular system
  • FIG. 5B shows that after the central channel 21 is filled with a gel G containing vascular endothelial cells (HUVEC, etc.), the first side channel 22a and the second side channel 22b are filled with media M1 and M2, respectively, and placenta
  • FIG. 10 is a schematic diagram when a three-dimensional vascular system (E) is formed without filling the cell culture section 12 with a culture medium. If no culture medium exists in the placental cell culture section 12 , a vascular system is formed in the direction of both side channels, but no vascular system is formed in the direction of the placental cell culture section 12 .
  • E three-dimensional vascular system
  • Fig. 18 is a schematic diagram of EVT cells and maternal blood vessels.
  • EVT cells are thought to arise from CT cells (CT) in contact with the decidua (DM) and are found on and within the decidua (HA).
  • CT CT cells
  • DM decidua
  • HA blood vessels
  • BL blood
  • V villus
  • HA spiral arteries
  • EVT cells infiltrate the inner wall of blood vessels from the outlet of spiral arteries (HA) and reconstruct thick blood vessels.
  • EVT cells that have infiltrated the decidua (DM) are thought to migrate toward the spiral artery (HA) and infiltrate from the outside of the spiral artery (HA) into the inside of the blood vessel.
  • the three-dimensional vascular system in FIG. 5A can be used to create a three-dimensional culture model in which EVT cells invade blood vessels from the arterial exit side.
  • the three-dimensional vasculature of FIG. 5B can be used to create a three-dimensional culture model in which EVT cells that have invaded the decidua invade blood vessels.
  • the three-dimensional vascular system is formed by filling gel G containing vascular endothelial cells (HUVEC, etc.) in central channel 21, and then adding medium M1 and medium M2 to first side channel 22a and second side channel 22b. It can be performed by filling each and culturing.
  • a three-dimensional vascular system as shown in FIG. 5A can be formed.
  • a three-dimensional vascular system as shown in FIG. 5B can be formed.
  • the culture period is not particularly limited, and the culture may be continued until the three-dimensional vascular system reaches a desired state.
  • the culture period can be, for example, 1 day or longer, 2 days or longer, or 3 days or longer.
  • the upper limit of the culture period is not particularly limited, but can be, for example, 10 days or less, 8 days or less, or 5 days or less.
  • the culture conditions can be those generally used for culturing animal cells.
  • the culture temperature can be 32-40° C. (preferably 35-38° C.) and the CO 2 concentration can be 2-5% (preferably 5%).
  • the medium M1 introduced into the first side flow channel 22a, the medium M2 introduced into the second side flow channel 22b, and the medium M3 introduced into the placental cell culture unit 12 are appropriately selected according to the type of interaction evaluation factor. can be done.
  • the media M1 to M3 may be the same media or different media.
  • the interaction evaluation factor is a vascular endothelial cell such as HUVEC
  • the media M1 to M3 include a medium containing a vascular endothelial growth factor (VEGF) and the like, a culture supernatant of fibroblasts (described later).
  • VEGF vascular endothelial growth factor
  • the three-dimensional blood vessel culture medium used in the example of 1) and the like can be used.
  • Placental cells are cultured in the placental cell culture unit 12 .
  • the type of placental cells to be cultured is not particularly limited, and any placental cells can be used depending on the purpose.
  • Placental cells cultured in the placental cell culture unit 12 may be of one type, or may be of two or more types. Placental cells may or may not form cell aggregates.
  • the placental cells may be cells attached to the bottom of the placental cell culture unit 12 (mesh sheet 30 or thin film sheet 40), or planar cell aggregates (eg, sheet-like cell aggregates). It may well be a three-dimensional cell aggregate (eg, spherical cell aggregate, cell aggregate forming an organoid).
  • a cell aggregate may be composed of one type of cell, or may be composed of two or more types of cells.
  • the medium used for culturing placental cells can be appropriately selected depending on the purpose.
  • a basal medium generally used for culturing animal cells can be used.
  • the medium used for culturing placental cells may be a basal medium supplemented with growth factors, various enzyme inhibitors, and the like.
  • basal media examples include Doulbecco's modified Eagle's Medium (DMEM) medium, DMEM/F12 medium, IMDM medium, Medium 199 medium, Eagle's Minimum Essential Medium (EMEM) medium, ⁇ MEM medium, Ham's F12 medium, Examples include RPMI1640 medium, Fischer's medium, and mixed medium thereof.
  • DMEM/F12 Doulbecco's modified Eagle's Medium
  • DMEM/F12 DMEM/F12 medium
  • IMDM medium Medium 199 medium
  • EMEM Eagle's Minimum Essential Medium
  • ⁇ MEM medium Ham's F12 medium
  • Examples include RPMI1640 medium, Fischer's medium, and mixed medium thereof.
  • Preferred basal media include, for example, DMEM/F12.
  • the basal medium may contain serum (such as fetal bovine serum (FBS)) or a serum substitute, if necessary.
  • Serum replacements include, for example, albumin, transferrin, sodium selenite, ITS-X (Invitrogen), knockout serum replacement (KSR), N2 supplement (Invitrogen), B27 supplement (Invitrogen), fatty acids, Insulin, collagen precursors, trace elements, 2-mercaptoethanol, 3′-thiolglycerol, etc.
  • the basal medium optionally contains lipids, amino acids, L-glutamine, Glutamax, non-essential amino acids, vitamins, growth It may contain components such as factors, antibiotics, antioxidants, pyruvic acid, buffers, inorganic salts, etc. These can be used in combination as appropriate.
  • basal medium for example, bovine serum albumin (BSA), ITS-X, L-ascorbic acid, and antibiotics (penicillin, streptomycin, etc.) are added to the above basal medium (eg, DMEM/F12).
  • BSA bovine serum albumin
  • ITS-X ITS-X
  • L-ascorbic acid e.g., DMEM/F12
  • antibiotics penicillin, streptomycin, etc.
  • the basal medium include the TS basal medium and 2D-EVT basal medium used in Examples described later.
  • the growth factor is not particularly limited, but examples include epidermal growth factor (EGF), fibroblast growth factor (FGF), bone morphogenic protein (BMP), neuregulin ( Neuregulin: NGR) and the like.
  • EGF epidermal growth factor
  • FGF fibroblast growth factor
  • BMP bone morphogenic protein
  • NGR neuregulin
  • the medium may contain heparin. Heparin has the effect of promoting the activity of FGF. Heparin is preferably in the form of a salt.
  • enzyme inhibitors examples include ROCK inhibitors (Y27632, etc.), GSK3 ⁇ inhibitors (CHIR99021, etc.), p38 MAPK inhibitors (SB202190, etc.), HDAC inhibitors (valproic acid: VPA, etc.), ALK inhibitors (A83- 01 etc.).
  • TS medium when the placental cells are TS cells, TS medium can be used.
  • TS cells are differentiated into EVT cells, 2D-EVT medium can be used.
  • Culture conditions for placental cells can be those generally used for culturing animal cells.
  • the culture temperature can be 32-40° C. (preferably 35-38° C.) and the CO 2 concentration can be 2-5% (preferably 5%).
  • the central channel 21 and the placental cell culture section 12 are separated by the mesh sheet 30. Therefore, the placental cells of the placental cell culture section 12 and the interaction evaluation factor of the central channel 21 can interact via the openings 32 of the mesh sheet 30 . Also, the placental cells in the placental cell culture unit 12 can easily move to the central channel 21 through the openings 32 of the mesh sheet 30 . Therefore, the three-dimensional culture model of this embodiment can be used to evaluate interactions between placental cells and interaction evaluation factors.
  • FIG. 6A is an example of a three-dimensional culture model for functional evaluation of EVT cells.
  • a three-dimensional vascular system (E) is formed in the central channel 21 and EVT cells (EVT) are cultured in the placental cell culture section 12 .
  • EVT cells (EVT) cultured in the placental cell culture unit 12 can move to the central channel 21 through the openings 32 of the mesh sheet 30 .
  • the infiltration of EVT cells into spiral arteries can be evaluated.
  • undifferentiated cells such as TS cells or CT cells may be cultured using a differentiation-inducing medium for EVT cells to induce differentiation into EVT cells.
  • FIG. 6B shows an example of a three-dimensional culture model for evaluating chemical substance permeability to ST cell membranes.
  • a three-dimensional vascular system (E) is formed in the central channel 21 and placental cell membranes are cultured in the placental cell culture section 12 .
  • Placental cell membranes have a structure that mimics in vivo villi, and are composed of upper layer ST cells (ST) and lower layer undifferentiated cells (UD) (TS cells, CT cells, etc.).
  • ST upper layer ST cells
  • UD lower layer undifferentiated cells
  • placental cell membranes are cultured so as to cover the mesh sheet 30 exposed to the placental cell culture section 12 .
  • Placental cell membranes can be prepared, for example, by attaching undifferentiated cells (TS cells, CT cells, etc.) to a scaffold material such as a cell matrix, and perfusion culturing them using an ST cell induction medium.
  • TS cells undifferentiated cells
  • CT cells CT cells
  • ST cell induction medium an ST cell induction medium
  • ST cell induction media examples include basal media for animal cells (e.g., TS basal medium, etc.), ROCK inhibitors (Y27632, etc.), GSK3 ⁇ inhibitors (CHIR99021, etc.), p38 MAPK inhibitors (SB202190, etc.), and media supplemented with growth factors (EGF, BMP4, bFGF, etc.) and the like.
  • basal media for animal cells e.g., TS basal medium, etc.
  • ROCK inhibitors Y27632, etc.
  • GSK3 ⁇ inhibitors CHIR99021, etc.
  • p38 MAPK inhibitors SB202190, etc.
  • media supplemented with growth factors EGF, BMP4, bFGF, etc.
  • FIG. 7A shows an example of a three-dimensional culture model simulating the process of placental development.
  • FIG. 7B is an enlarged view of portion B surrounded by a dashed line in the three-dimensional culture model shown in FIG. 7A.
  • a three-dimensional vascular system (E) is formed in the central channel 21 and placental cell aggregates are cultured in the placental cell culture section 12 .
  • Placental cell aggregates have a structure that mimics in vivo villi, and are composed of outer layer ST cells (ST) and inner undifferentiated cells (UD) (TS cells, CT cells, etc.).
  • ST outer layer ST cells
  • UD inner undifferentiated cells
  • fibroblasts are cultured together with placental cell aggregates in the placental cell culture section 12 .
  • a phenomenon occurs in which the villi come into contact with the maternal decidua. This contact causes undifferentiated cells such as CT cells to emerge from within the villi and migrate onto and/or into the decidua to contact the decidua. Undifferentiated cells that come into contact with the decidua differentiate into EVT cells and remodel maternal blood vessels within the decidua. Therefore, by co-cultivating placental cell aggregates and fibroblasts in the placental cell culture section, a placental development process model can be constructed.
  • Placental cell aggregates can be prepared, for example, by culturing undifferentiated cells (TS cells, CT cells, etc.) using an ST cell-inducing medium in wells having cell-non-adhesive inner walls.
  • the ST cell induction medium the same medium as described above can be used.
  • the method for producing a three-dimensional culture model of the present embodiment comprises a step of introducing an interaction evaluation factor into the central channel 21, which is a factor channel, and allowing the interaction evaluation factor to exist in the central channel 21, placental cells and culturing the placental cells in the culture unit 12 .
  • Methods for introducing interaction evaluation factors into the central channel 21 include the methods described above.
  • Methods for culturing placental cells in the placental cell culture unit 12 include the methods described above.
  • the three-dimensional culture model cultures vascular endothelial cells in the central channel 21, which is the factor channel, to form a three-dimensional vascular system. and culturing the three-dimensional vascular system in the central channel 21 and culturing the placental cells in the placental cell culturing section 12 .
  • Methods for forming a three-dimensional vascular system in the central channel 21 include the methods described above.
  • the culture conditions can be those generally used for culturing animal cells.
  • a culture temperature of 32-40° C. (preferably 35-38° C.) and a CO 2 concentration of 2-5% (preferably 5%) can be used.
  • ⁇ Second embodiment> 8A-11B show an example of the placental cell culture device of the second embodiment.
  • a micropost is used as a partition member between the placental cell culture section and the factor channel.
  • 8A is a perspective view of placental cell culture device 100.
  • FIG. 8B is a cross-sectional view of the placental cell culture device 100 taken along line BB.
  • FIG. 9 is an exploded view of the placental cell culture device 100.
  • the placental cell culture device 100 is composed of a first substrate 110, a second substrate 120, and a ring member 130. Placental cell culture device 100 is formed by stacking second substrate 120, first substrate 110, and ring member 130 in this order.
  • the placental cell culture device 100 includes a central channel 111, a first side channel 112a, and a second side channel 112b.
  • the placental cell culture device 100 has a first port P1, a second port P2, a third port P3, a fourth port P4, a fifth port P5, and a sixth port P6 as inlet/outlet ports for the culture solution or the like.
  • the first port P1 is connected to the first side flow path 112a through the first port flow path p1.
  • the second port P2 is connected to the first side flow path 112a by a second port flow path p2.
  • the third port P3 is connected to the second side flow path 112b by a third port flow path p3.
  • the fourth port P4 is connected to the second side flow path 112b through a fourth port flow path p4.
  • the fifth port P5 and sixth port P6 are connected to the central channel 111 .
  • the fifth port P5 is provided at one end of the central flow passage 111
  • the sixth port P6 is provided at the other end of the central flow passage 111. As shown in FIG.
  • the central channel 111 functions as a placental cell culture section.
  • a communication hole 115 is provided in the upper part of the central channel 111, which is the placental cell culture part.
  • the ring member 130 is stacked on the first substrate 110 such that the communication hole 115 is positioned within the ring hole.
  • the first side channel 112a and/or the second side channel 112b function as channel for factors.
  • FIG. 10A is a top view of the first substrate 110.
  • FIG. FIG. 10B is an enlarged view of a portion B surrounded by a dashed line in the top view of the first substrate 110 shown in FIG. 10A.
  • the first substrate 110 includes a central flow channel 111, a first side flow channel 112a, a second side flow channel 112b, a first port P1 to a sixth port P6, and a first port flow channel p1 to a fourth port flow channel p4. is provided.
  • the central flow channel 111, the first side flow channel 112a, the second side flow channel 112b, and the first port flow channel p1 to the fourth port flow channel p4 are closed on the first surface side of the first substrate 110,
  • the second surface side of the first substrate 110 is open.
  • the first substrate 110 is stacked on the second substrate 120 such that the second surface faces the second substrate 120 .
  • the second substrate 120 forms the bottom surface of each channel of the first substrate 110 .
  • the central channel 111 is formed substantially in the center of the first substrate 110 .
  • the central channel 111 functions as a placental cell culture section.
  • a first side channel 112a and a second side channel 112b are formed on both sides of the central channel 111, respectively.
  • a first port flow path p1 is connected to one end of the first side flow path 112a, and a second port flow path p2 is connected to the other end of the first side flow path 112a.
  • a third port flow path p3 is connected to one end of the second side flow path 112b, and a fourth port flow path p4 is connected to the other end of the second side flow path 112b.
  • the first side flow channel 112a and the second side flow channel 112b may be formed on both sides over the entire length of the central flow channel 111, or may be formed on both sides of a portion of the central flow channel 111. .
  • first side flow channel 112a and the second side flow channel 112b are formed on both sides of a part of the central flow channel 111, at least the first side flow channel is formed on both sides of the position where the communication hole 115 is formed.
  • 112a and the second side channel 112b are preferably formed respectively.
  • a communication hole 115 is provided in the upper part of the central flow path 111 .
  • the communication hole 115 is a through hole penetrating from the first surface side of the first substrate 10 to the central flow path 111 .
  • the central channel 111 communicates with the external region on the first surface side of the first substrate 110 through a communication hole 115 .
  • the size of the communication hole 115 is not particularly limited, it is preferably smaller than the width of the central channel 111 .
  • the communication hole 115 has a diameter of 0.05 to 20 mm, for example.
  • the size of the communication hole 115 is preferably, for example, a hole diameter of 0.1 mm or more, more preferably a hole diameter of 0.2 mm or more, even more preferably a hole diameter of 0.3 mm or more, and particularly preferably a hole diameter of 0.4 mm or more.
  • the size of the communication hole 115 is preferably, for example, a hole diameter of 15 mm or less, more preferably a hole diameter of 10 mm or less, even more preferably a hole diameter of 5 mm or less, and particularly preferably a hole diameter of 1 mm or less.
  • the width of the central channel 111 is not particularly limited, it may be 500 to 5000 ⁇ m, for example.
  • the width of the central channel 111 is preferably 600 ⁇ m or more, more preferably 700 ⁇ m or more, still more preferably 800 ⁇ m or more, and particularly preferably 900 ⁇ m or more.
  • the width of the central channel 111 is preferably 5000 ⁇ m or less, more preferably 4000 ⁇ m or less, still more preferably 3000 ⁇ m or less, and particularly preferably 2500 ⁇ m or less.
  • the widths of the first side flow channel 112a and the second side flow channel 112b are not particularly limited, but may be 500 to 3000 ⁇ m, for example.
  • the width of the first side flow channel 112a and the second side flow channel 112b is preferably 600 ⁇ m or more, more preferably 700 ⁇ m or more, even more preferably 800 ⁇ m or more, and particularly preferably 900 ⁇ m or more.
  • the width of the first side channel 112a and the second side channel 112b is preferably 2500 ⁇ m or less, more preferably 2000 ⁇ m or less, even more preferably 1500 ⁇ m or less, and particularly preferably 1200 ⁇ m or less.
  • the first side channel 112a and the second side channel 112b may have the same width or different widths.
  • the height (depth) of the central flow channel 111, the first side flow channel 112a, and the second side flow channel 112b is not particularly limited, but is, for example, 50 to 1000 ⁇ m.
  • the height (depth) of the central flow channel 111, the first side flow channel 112a, and the second side flow channel 112b is preferably 20 ⁇ m or more, more preferably 40 ⁇ m or more, even more preferably 50 ⁇ m or more, and 80 ⁇ m or more. is particularly preferred.
  • the height (depth) of the central flow channel 111, the first side flow channel 112a, and the second side flow channel 112b is preferably 700 ⁇ m or less, more preferably 500 ⁇ m or less, even more preferably 300 ⁇ m or less, and 200 ⁇ m or less. is particularly preferred. It is preferable that the heights (depths) of the central flow channel 111, the first side flow channel 112a, and the second side flow channel 112b are substantially the same.
  • the length of the portion where the first side channel 112a and the second side channel 112b are adjacent is not particularly limited, but may be 500 to 30000 ⁇ m, for example.
  • the length is preferably 600 ⁇ m or more, more preferably 700 ⁇ m or more, still more preferably 800 ⁇ m or more, and particularly preferably 900 ⁇ m or more.
  • the length is preferably 25000 ⁇ m or less, more preferably 20000 ⁇ m or less, even more preferably 15000 ⁇ m or less, and particularly preferably 10000 ⁇ m or less.
  • the central channel 111 and the first side channel 112a are separated by a partition member 113a.
  • the central channel 111 and the second side channel 112b are partitioned by a partition member 113b.
  • the partitioning member 113a and the partitioning member 113b are composed of a plurality of microposts 114. As shown in FIG. A plurality of microposts 114 constituting the partition member 113a and the partition member 113b are arranged at predetermined intervals.
  • the microposts 114 constitute shielding portions, and the gaps between the microposts 114 constitute communicating portions.
  • the central channel 111 functions as a placental cell culture part
  • the first side channel 112a or the second side channel 112b functions as a factor channel
  • the partition member 113a or the partition member 113b is a partition member that separates the central channel 111, which is the placental cell culture part, from the first side channel 112a or the second side channel 112b, which is the factor channel.
  • the shape of the microposts 114 is not particularly limited.
  • the microposts 114 may have a polygonal prism shape (triangular prism, square prism, etc.) or a cylindrical shape.
  • the micropost 114 has, for example, a trapezoidal prism shape. It is preferable that the width w2 of the microposts 114 on the first side channel 112a side or the second side channel 112b side is larger than the width w1 on the central channel 21 side. As a result, the liquid filled in the central flow path 111 can be prevented from leaking into the first side flow path 112a and the second side flow path 112b.
  • the size of the microposts 114 is not particularly limited, but the width w1 on the central channel 111 side is, for example, 10 to 300 ⁇ m.
  • the width w1 is, for example, preferably 20 ⁇ m or more, more preferably 30 ⁇ m or more, still more preferably 40 ⁇ m or more, and particularly preferably 45 ⁇ m or more.
  • the width w1 is, for example, preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less, still more preferably 100 ⁇ m or less, and particularly preferably 80 ⁇ m or less.
  • the width w2 on the side of the first side flow path 112a or the side of the second side flow path 112b is, for example, 30 to 500 ⁇ m.
  • the width w2 is, for example, preferably 50 ⁇ m or more, more preferably 60 ⁇ m or more, even more preferably 70 ⁇ m or more, and particularly preferably 80 ⁇ m or more.
  • the width w2 is, for example, preferably 400 ⁇ m or less, more preferably 300 ⁇ m or less, still more preferably 200 ⁇ m or less, and particularly preferably 150 ⁇ m or less.
  • the length l of the microposts 114 may be 40-500 ⁇ m.
  • the length l is preferably 50 ⁇ m or more, more preferably 60 ⁇ m or more, still more preferably 70 ⁇ m or more, and particularly preferably 80 ⁇ m or more.
  • the length l is, for example, preferably 400 ⁇ m or less, more preferably 300 ⁇ m or less, still more preferably 200 ⁇ m or less, and particularly preferably 100 ⁇ m or less.
  • the height of the microposts 114 is preferably the same as the height (depth) of the central channel 111 .
  • the shortest distance d between two microposts 114 corresponds to the minimum width of the communicating portion of the partition member.
  • the shortest distance d is 30-500 ⁇ m.
  • the shortest distance d is, for example, preferably 40 ⁇ m or longer, more preferably 50 ⁇ m or longer, still more preferably 60 ⁇ m or longer, and particularly preferably 70 ⁇ m or longer.
  • the shortest distance d is, for example, preferably 400 ⁇ m or less, more preferably 350 ⁇ m or less, still more preferably 300 ⁇ m or less, and particularly preferably 250 ⁇ m or less.
  • the longest distance between two microposts 114 corresponds to the maximum width of the communicating portion of the partition member.
  • Examples of the longest distance include 50 to 500 ⁇ m.
  • the longest distance is, for example, preferably 60 ⁇ m or longer, more preferably 70 ⁇ m or longer, still more preferably 80 ⁇ m or longer, and particularly preferably 90 ⁇ m or longer.
  • the longest distance is, for example, preferably 400 ⁇ m or less, more preferably 350 ⁇ m or less, even more preferably 300 ⁇ m or less, and particularly preferably 250 ⁇ m or less.
  • the channel surfaces of the central channel 111, the first side channel 112a, and the second side channel 112b are preferably hydrophobic. If the channel surface is hydrophobic, surface tension of the liquid is generated between the microposts 114 when any one of the channels is filled with liquid. This prevents liquid from leaking into the adjacent channel when there is no liquid in the adjacent channel.
  • the thickness of the first substrate 110 is not particularly limited, it may be 0.1 to 50 mm, for example.
  • the thickness of the first substrate 10 is preferably 0.3 mm or more, more preferably 0.5 mm or more, still more preferably 0.6 mm or more, and particularly preferably 0.8 mm or more.
  • the thickness of the second substrate 20 is preferably 40 mm or less, more preferably 20 mm or less, even more preferably 10 mm or less, and particularly preferably 5 mm or less.
  • the material of the first substrate 110 is not particularly limited, but a material with high biocompatibility and high oxygen permeability is preferable.
  • Oxygen permeable materials include oxygen permeable polymers. Examples of oxygen-permeable polymers include fluororesins, silicones (eg, PDMS, etc.), and the like. Among them, the oxygen-permeable polymer is preferably PDMS.
  • the first substrate 110 can be manufactured using known methods such as photolithography, soft lithography, microcontact printing, microfluidic, and stencil.
  • a mold for the first substrate 110 can be manufactured using a photolithography method, and the first substrate 110 can be manufactured using the mold using a soft lithography method. It can be manufactured in the same manner as the first substrate 10 and the second substrate 20 of the first embodiment, except that the shape of the mold is different.
  • a flat plate having substantially the same size as the first substrate 110 can be used for the second substrate 120 .
  • the material of the second substrate 120 is not particularly limited, but a material with high biocompatibility is preferable. Examples of materials for the second substrate 120 include glass, various synthetic resins, and metals.
  • the ring member 130 is stacked on the first surface of the first substrate 110 such that the communication hole 115 of the first substrate 110 is positioned within the ring hole.
  • the ring member 130 forms an upper well 131 together with the first substrate 110 .
  • the upper layer well 131 has a side surface formed by the ring inner wall of the ring member 130 and a bottom surface formed by the first surface of the first substrate 110 .
  • the upper layer well 131 communicates with the central channel 111 through a communication hole 115 .
  • the ring member 130 has a ring hole larger than the size of the communication hole 115 .
  • the size of the ring hole of the ring member 130 is, for example, 1 to 20 mm in diameter.
  • the size of the ring hole is preferably 2 mm or more in diameter, more preferably 3 mm or more in diameter, still more preferably 4 mm or more in diameter, and particularly preferably 5 mm or more in diameter.
  • the size of the ring hole is preferably 15 mm or less in diameter, more preferably 12 mm or less in diameter, even more preferably 10 mm or less in diameter, and particularly preferably 8 mm or less in diameter.
  • the size of the outer circumference of the ring member 130 is not particularly limited as long as it does not block the first port P1 to the sixth port P6 formed on the first substrate 110 when stacked on the first substrate 110.
  • the size of the outer circumference of the ring member 130 is, for example, 3 to 30 mm in diameter.
  • the size of the outer circumference is preferably 4 mm or more in diameter, more preferably 5 mm or more in diameter, still more preferably 6 mm or more in diameter, and particularly preferably 7 mm or more in diameter.
  • the size of the outer circumference is preferably 20 mm or less in diameter, more preferably 15 mm or less in diameter, even more preferably 12 mm or less in diameter, and particularly preferably 10 mm or less in diameter.
  • the material of the ring member 130 is not particularly limited, but a material with high biocompatibility is preferable.
  • materials for the ring member 130 include polyimide, polyethylene terephthalate (PET), polystyrene, polyethylene, polypropylene, nylon, polytetrafluoroethylene (PTFE), ethylene-tetrafluoroethylene copolymer (ETFE), tetrafluoroethylene- Hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), polydimethylsiloxane (PDMS), and the like, but are not limited to these.
  • the ring member 130 can be made of PDMS, for example.
  • the placental cell culture device 100 can be produced by laminating and bonding the second substrate 120, the first substrate 110, and the ring member 130 in this order.
  • the second surface of the first substrate 110 faces the second substrate 120 .
  • the communication hole 115 is positioned inside the ring hole of the ring member 130 .
  • the surfaces of the first substrate 110 and/or the second substrate 120 may be activated to enhance adhesiveness.
  • an oxygen plasma treatment can activate the surface to improve adhesion.
  • heat treatment eg, 80° C. overnight
  • the central channel 111 which is the placental cell culture part, may be filled with gel containing cell aggregates of placental cells.
  • the cell aggregate C of placental cells may be composed of one type of placental cells, or may be composed of two or more types of placental cells.
  • the cell aggregate C of placental cells preferably contains EVT cells.
  • a cell aggregate containing EVT cells can be prepared, for example, by culturing TS cells in wells of an agarose microwell plate using an EVT cell induction medium.
  • EVT cell induction media include, for example, animal cell basal media (e.g., TS basal medium, etc.), ROCK inhibitors (Y27632, etc.), p38 MAPK inhibitors (SB202190, etc.), and growth factors (EGF, NGR1, etc.). ) and the like.
  • the EVT cell induction medium may be supplemented with an extracellular matrix such as Matrigel® (CORNING).
  • CORNING Matrigel®
  • Specific examples of the EVT cell induction medium include 3D-EVT medium and 3D-EVT-Dox medium used in Examples.
  • the culture conditions can be those generally used for culturing animal cells.
  • a culture temperature of 32-40° C. (preferably 35-38° C.) and a CO 2 concentration of 2-5% (preferably 5%) can be used.
  • the placental cell aggregates are suspended in a gelling solution containing a gelling agent and injected from the communication hole 115, the fifth port P5 or the sixth port P6, thereby forming the placental cell aggregates in the central channel 111.
  • body can be introduced.
  • the number of placental cell aggregates to be introduced into the central channel 111 may be one, or two or more.
  • one cell aggregate can be introduced into the central channel 111 through the communication hole 115 .
  • the cell aggregate introduced into the central channel 111 can exist below the communicating hole 115 .
  • the central flow path 111 and the first side flow path 112a and the second side flow path 112b are separated by partition members 113a and 113b, respectively.
  • the gelling solution introduced into the central channel 111 does not leak into the first side channel 112a and the second side channel 112b.
  • the gelling solution is gelled.
  • the placental cell culture device 100 can be obtained in which the central channel 111, which is the placental cell culture portion, is filled with the gel containing the cell aggregates of placental cells.
  • the gelling agent used in the gelling solution is not particularly limited, and the same gelling agent as described above can be used.
  • a specific example of the gelling solution is a mixed solution of Matrigel (registered trademark) (CORNING) and collagen I.
  • the first side channel 112a, the second side channel 112b, and the upper well 131 may be filled with medium to prevent the gel from drying. good.
  • the medium can be appropriately selected according to the type of placental cells introduced into central channel 111 . Specific examples of the medium include the TS basal medium used in Examples.
  • the placental cell culture device of this embodiment can be used to produce a three-dimensional culture model containing placental cells.
  • placental cells are cultured in the placental cell culture section, and interaction evaluation factors are present in the factor channel.
  • 11A-12B show an example of the three-dimensional culture model of this embodiment.
  • the central channel 111 is filled with gel G containing cell aggregates C of placental cells.
  • Medium M1 containing interaction evaluation factor E is introduced into first side channel 112a.
  • a culture medium M2 is introduced into the second side channel 112b.
  • Medium M3 is introduced into the upper layer well 131 .
  • the media M1 to M3 may be the same media or different media.
  • the central channel 111 functions as a placental cell culture section.
  • the placental cells cultured in the central channel 111 are preferably cell aggregates. Cell aggregates of placental cells can be introduced into the central channel 111 as described above.
  • the cell aggregates C are allowed to exist at the positions where the communicating holes 115 are provided in the central channel 111. be able to.
  • Migration of placental cells can be accurately evaluated by using cell aggregates of placental cells. For example, when the shape of the cell aggregate C extends to the side of the factor channel where the interaction evaluation factor E is present, it can be evaluated that the interaction evaluation factor E causes positive migration of placental cells ( For example, FIG. 12B). Conversely, in the cell aggregate C, when the distribution area on the side of the factor channel where the interaction evaluation factor E is present is reduced, it can be evaluated that the interaction evaluation factor E causes negative migration of placental cells.
  • the first side channel 112a and/or the second side channel 112b function as channel for factors.
  • the interaction evaluation factor is not particularly limited, and any factor can be selected according to the purpose.
  • the interaction evaluation factors present in the central channel 21 may be of one type or a combination of two or more types.
  • the interaction evaluation factor can be introduced into the first side channel 112a by dissolving or suspending it in a medium or the like and injecting it from the first port P1 or the second port P2. Also, the solution or suspension of the interaction evaluation factor can be introduced into the second side channel 112b by injecting it from the third port P3 or the fourth port P4.
  • the medium used for dissolving or suspending the interaction-evaluating factors can be appropriately selected according to the types of placental cells cultured in the central channel 111 and the interaction-evaluating factors. Specific examples of the medium include the assay medium used in Examples.
  • the interaction evaluation factor is a vascular endothelial cell such as HUVEC
  • the vascular endothelial cell is suspended in a medium, filled in the first side channel 112a or the second side channel 112b and cultured to obtain partition member 113a or A vessel wall can be formed along the partition member 113b (eg, FIG. 11B).
  • placental cell culture device 100 was left standing with first side channel 112a facing up. , can be formed by culturing for an arbitrary time (for example, about 10 to 60 minutes).
  • the interaction evaluation factor may be introduced into either the first side channel 112a or the second side channel 112b, or may be introduced into both.
  • the interaction evaluation factor is preferably introduced into either one of the first side channel 112a and the second side channel 112b. In this case, only the culture medium may be introduced into the side channel into which the interaction evaluation factor has not been introduced. Alternatively, different interaction evaluation factors may be introduced into the first side channel 112a and the second side channel 112b.
  • the upper well 131 it is preferable to fill the upper well 131 with medium. By filling the upper layer well 131 with medium, the placental cells introduced into the central channel 111 can be well maintained.
  • the method for producing a three-dimensional culture model includes a step of filling a gel containing a cell aggregate of placental cells in the central channel 111, which is a placental cell culture part, and a first side channel, which is a channel for factors. culturing cell aggregates of placental cells in central channel 111 with an interaction evaluator present in 112a and/or second side channel 112b. Examples of the method for filling the central channel 111 with the gel containing the cell aggregates of placental cells include the methods described above. Methods for causing the interaction evaluation factor to exist in the first side channel 112a and/or the second side channel 112b include the methods described above.
  • the three-dimensional culture model includes a step of filling gel containing placental cell aggregates in the central channel 111, which is the placental cell culture part; a step of culturing vascular endothelial cells in the first side channel 112a and/or the second side channel 112b, which are channels for factors, to form a vascular wall; culturing the vessel wall in channel 112 b and culturing a cell aggregate of placental cells in central channel 111 .
  • Methods for forming a blood vessel wall in the first side channel 112a and/or the second side channel 112b include the above-described methods.
  • the culture conditions can be those generally used for culturing animal cells.
  • a culture temperature of 32-40° C. (preferably 35-38° C.) and a CO 2 concentration of 2-5% (preferably 5%) can be used.
  • the present invention provides a placental cell evaluation method comprising co-culturing placental cells with a factor capable of interacting with placental cells using the placental cell culture device described above.
  • the placental cell culture device may be the placental cell culture device of the first embodiment or the placental cell culture device of the second embodiment.
  • the placental cell culture device of the first embodiment can be used to evaluate various functions of placental cells. For example, by culturing cell structures (placental organoids) of placental cells that mimic in vivo villous structures and the like in a placental cell culture unit, responses of placental cells to various interaction evaluation factors can be evaluated. .
  • the placental cell device of the second embodiment is suitable for evaluating migration of placental cells.
  • the central channel is filled with a gel containing placental cell aggregates, and the side channels are used as factor channels. Accordingly, by observing changes in the shape of cell aggregates of placental cells, it is possible to accurately evaluate the effects of various interaction evaluation factors on the migration of placental cells.
  • Example 1 In Example 1, a three-dimensional culture model containing HUVEC vascular networks and EVT cells was produced using the placental cell culture device of the first embodiment (see FIGS. 1A to 4B).
  • Photolithography was used to create templates for the first and second substrates of the placental cell culture device.
  • a high-purity silicon wafer AS ONE
  • permanent film epoxy negative photoresist SU-8 2100 KAYAKU Advanced Materials
  • the photoresist spin-coated silicon wafer was heated on a hot plate at 65° C. for 5 minutes and then on a hot plate at 95° C. for 45 minutes.
  • an SU-8 membrane with a thickness of 200 ⁇ m was produced.
  • Two SU-8 films were prepared, one for the first substrate and the other for the second substrate.
  • a photomask for each substrate was produced using a laser lithography apparatus DWL200 (Heidelberg Instruments).
  • a photomask for the first substrate was placed on the SU-8 film for the first substrate mold, and UV irradiation was performed (27 seconds).
  • a photomask for the second substrate was placed on the SU-8 film for the second substrate mold, and UV irradiation was performed (27 seconds). After that, it was heated on a 65° C. hot plate for 5 minutes and on a 95° C. hot plate for 15 minutes. It was then cooled at room temperature for 5 minutes.
  • Each cooled mold was placed in agitated SU-8 developer (KAYAKU Advanced Materials) and allowed to react for 1.5 to 2 hours to remove uncured SU-8.
  • Each template was then washed with 86% ethanol-IP (denatured) (FUJIFILM Wako).
  • Each mold was then heat treated at 65° C. for 2-3 minutes and then at 150° C. for 10 minutes.
  • a first substrate and a second substrate were produced by soft lithography using a template produced by photolithography.
  • a PDMS solution was prepared by mixing the main agent and the curing agent at a ratio of 10:1, and poured into the prepared mold. After degassing, the PDMS solution was cured by overnight treatment at 80°C. The PDMS solution was poured so that the second substrate had a thickness of about 1 mm and the first substrate had a thickness of about 1 cm. Using a disposable scalpel (Kai Industries) and tweezers, each board component was cut out from the mold.
  • FIG. 13A shows a schematic diagram of the manufactured second substrate.
  • a placental cell culture device was assembled using the first and second substrates produced as described above (see FIG. 2).
  • FIG. 13B shows a photograph of the mesh sheet used.
  • a PET thin film sheet (thickness 25 ⁇ m, AS ONE) was processed to 10 mm x 5 mm.
  • a 5% 3-aminopropyltriethoxysilane solution (Sigma) was prepared in purified water.
  • the processed polyethylene terephthalate (PET) sheet was silanized by placing it in a 3-aminopropyltriethoxysilane solution and treating at 80° C. for 30 minutes. The silanization treatment was performed to enhance adhesion to the PDMS member.
  • a 0.5 mm x 4.5 mm opening was made in the center of the silanized PET sheet using a biopsy trepan with a modified tip.
  • a PDMS solution was applied thinly around the opening, and a mesh sheet was attached so as to cover the opening.
  • the PET sheet to which the mesh sheet is adhered is referred to as "meshed sheet”.
  • each substrate was treated with oxygen plasma for 20 seconds using a small plasma device (PM100) (Yamato Scientific Co., Ltd.) to activate the surface of each substrate.
  • the surface activation treatment was performed to improve the adhesiveness between the first substrate and the second substrate and the adhesiveness between each substrate and the sheet with mesh.
  • a sheet with a mesh was sandwiched and adhered between the first and second substrates whose surfaces were activated.
  • Adhesion was performed by heat treatment on a hot plate at 150° C. for 10 minutes.
  • the opening provided in the PET sheet was made to overlap with the vicinity of the center of the central channel of the second substrate. Also, the central hole of the first substrate was made to overlap the opening provided in the PET sheet.
  • FIG. 14 shows a photograph of the fabricated placental cell culture device.
  • ⁇ Culture medium> Human umbilical vein endothelial cells (RFP-HUVEC) (Angio Proteomie) were maintained using EGM-2 Endothelial Cell Growth Medium-2 Bullet Kit (LONZA).
  • NHLF was maintained and managed in 10% FBS-containing DMEM medium (Thermo Fisher). When NHLF reached 70-100% of the dish area, the medium was replaced with EGM-2 medium, and the supernatant obtained after culturing for 3 days was used as a conditioned medium. This conditioned medium was used as a three-dimensional vascular medium.
  • TS basal medium A TS basal medium was prepared by adding the following components to DMEM/F12 medium (FUJIFILM Wako). The concentrations given below are the final concentrations of each component in TS basal medium.
  • Bovine serum albumin (BSA) (FUJIFILM Wako) 0.15% Penicillin 5,000 units/mL Streptomycin (Thermo Fisher Scientific) 5,000 ⁇ g/mL ITS-X (FUJI FILM Wako) 1% KSR (Thermo Fisher Scientific) 1% L-ascorbic acid (FUJIFILM Wako) 0.2mM
  • TS medium A TS medium was prepared by adding the following components to a TS basal medium. The concentrations shown below are the final concentrations of each component in TS medium.
  • Y27632 (FUJIFILM Wako) 2.5 ⁇ M EGF (FUJIFILM Wako) 25ng/mL VPA (FUJI FILM Wako) 0.8 mM A83-01 (FUJIFILM Wako) 5 ⁇ M CHIR99021 (FUJIFILM Wako) 2 ⁇ M
  • (2D-EVT basal medium) A 2D-EVT basal medium was prepared by adding the following components to DMEM/F12 medium (FUJIFILM Wako). The concentrations shown below are the final concentrations of each component in 2D-EVT basal medium.
  • Bovine serum albumin (BSA) (FUJIFILM Wako) 0.3% ITS-X (FUJI FILM Wako) 1% Penicillin 5,000 units/mL Streptomycin (Thermo Fisher Scientific) 5,000 ⁇ g/mL
  • (2D-EVT medium) A 2D-EVT medium was prepared by adding the following components to a 2D-EVT basal medium. The concentrations shown below are the final concentrations of each component in the 2D-EVT medium.
  • Y27632 (FUJI FILM Wako) 2.5 ⁇ M KSR (Thermo Fisher Scientific) 4% A83-01 (FUJIFILM Wako) 7.5 ⁇ M NRG1 (Cell Signaling) 50ng/mL
  • EGFP-TS cells Genetically modified TS cells (EGFP-TS cells) were used. EGFT-TS cells express EGFP by doxycycline hyclate (Sigma-Aldrich) treatment. EGFP-TS cells were prepared as follows. According to the method previously reported (Takahashi et al., PNAS, 2019, 116 (52) 26606-26613), the EGFP gene was inserted into the pCS-3G vector to prepare a lentivirus. After infecting TS cells with the prepared lentivirus, single-cell cloning was performed to select EGFP-TS cells that highly express EGFP in a doxycycline-dependent manner. EGFP-TS cells were maintained and managed with TS medium.
  • the placental cell culture device of Example 1 must have a structure that allows cells to move across the boundary between the first substrate and the second substrate. On the other hand, it is necessary that the liquid filled in the central channel of the second substrate does not leak to the first substrate side.
  • a mesh sheet (openings: long side 160-170 ⁇ m, short side 110-115 ⁇ m; porosity 50% or more; FIG. 13B) was used as the partition member having the above performance.
  • FIG. 15A shows the results of a placental cell culture device using a sheet with mesh.
  • FIG. 15B shows the results of a placental cell culture device using a PET sheet (without mesh sheet attached).
  • FIG. 15A shows the results of a placental cell culture device using a sheet with mesh.
  • FIG. 15B shows the results of a placental cell culture device using a PET sheet (without mesh sheet attached).
  • a porous membrane is provided at the boundary between the lower layer and the upper layer.
  • the presence of the porous membrane prevents the liquid introduced into the lower layer from leaking to the upper layer.
  • cells in the upper layer can migrate to the lower layer through the porous membrane.
  • porous membranes there are problems associated with the use of porous membranes. For example, since the porous polycarbonate membrane has poor light transmission, it is difficult to observe the morphology of cells in the upper layer with a microscope from the bottom of the device. Even when a PET porous membrane with relatively high light transmittance is used, it is difficult to clearly observe the contours of cells.
  • the pore size of commercially available porous membranes is generally about 0.4 to 8 ⁇ m, and the ratio of the total pore area to the membrane area (porosity) is about 15% at maximum. Therefore, although cells can pass through, for example, 8 ⁇ m pores, their migration efficiency is poor.
  • the mesh sheet used in Example 1 has large openings and a high porosity, so cells can easily pass through the mesh sheet.
  • the light transmittance is high, the cells present in the central hole of the first substrate can be microscopically observed from the second substrate side through the mesh sheet. Furthermore, leakage of liquid from the second substrate to the first substrate can be prevented. Therefore, the mesh sheet is effective as a partition member between the first substrate and the second substrate.
  • HUVEC vascular network and EVT cells using placental cell culture device (1)> A HUVEC suspension of 1.0 ⁇ 10 7 cells/mL was prepared. Next, fibrinogen from bovine plasma (SIGMA) was dissolved in PBS( ⁇ ) and filtered to prepare a 10 mg/mL fibrinogen solution. HUVEC suspension and fibrinogen solution were mixed at a ratio of 1:3. Thrombin (Sigma) (50 U/mL) was added to this mixture to a final concentration of 1 U/mL and quickly introduced into the central channel of the second substrate. Fibrinogen turns into fibrin by the action of thrombin and gels. Placed in a CO 2 incubator at 37° C. for 5 minutes to gel the fibrin gel in the central channel.
  • SIGMA bovine plasma
  • the first and second side channels (approximately 250 ⁇ L/channel) and the central hole (approximately 200 ⁇ L/hole) were filled with three-dimensional vascular medium.
  • TS cells were seeded in the central hole of the first substrate according to the following procedure.
  • Matrigel In order to coat the inside of the central hole with Matrigel (Corning), about 200 ⁇ L of Matrigel diluted 40-fold with PBS( ⁇ ) was placed in the central hole and allowed to stand in an incubator at 37° C. for 1 hour.
  • EGFP-TS cells (5.0 ⁇ 10 5 cells/mL) suspended in EVT basal medium were prepared.
  • 10 ⁇ L of cell suspension, 200 ⁇ L of 2D-EVT medium and 5 ⁇ L of about 10 mg/mL Matrigel were mixed and added to the central hole of the first substrate (5 ⁇ 10 3 cells/hole).
  • a media change in the central hall was performed.
  • the medium used for medium replacement was 2D-EVT medium containing 400-fold diluted Matrigel (final concentration: about 0.025 mg/mL) and 1 ⁇ g/mL doxycycline hyclate. Cultures were terminated 9 days after HUVEC seeding. Regarding the first side channel and the second side channel, the medium was replaced with a three-dimensional vascular medium (conditioned medium) 3 days, 5 days, and 7 days after HUVEC seeding.
  • FIG. 16 shows fluorescence microscope images 9 days after HUVEC seeding (6 days after EGFP-TS cell seeding). From the fluorescence microscope image (B) taken from the side of the placental cell device, it was confirmed that EGFP-TS cells were present at the height of the mesh sheet of the placental cell culture device. It was also confirmed that HUVEC existed in the area under the mesh sheet. From the fluorescence microscope image (A) taken from the second substrate side of the placental cell device, it was confirmed that HUVEC had a three-dimensional vascular network structure. EGFP-TS cells in the placental cell culture device were thought to be differentiated into EVT cells because a medium that differentiates into EVT cells was used. Some EGFP-TS cells (EVT cells) descended to the position where the HUVEC vascular network exists, suggesting the possibility of interacting with the HUVEC cells.
  • EVT cells EGFP-TS cells
  • FIG. 17 shows fluorescence microscope images 9 days after HUVEC seeding (6 days after EGFP-TS cell seeding).
  • the HUVEC vascular network was formed more planar than the fluorescence microscope image shown in FIG. That is, the HUVEC vascular network had a structure in which the vessels did not extend to the central hole.
  • Fig. 18 is a schematic diagram of EVT cells and maternal blood vessels in vivo.
  • EVT cells are thought to arise from CT cells (CT) that contact the decidua (DM) and are found on and within the decidua (DM).
  • CT CT cells
  • DM decidua
  • HA blood vessels
  • BL blood
  • V villus
  • EVT cells can infiltrate the inner wall of the blood vessel from the outlet of the blood vessel and reconstruct the blood vessel thicker.
  • EVT cells that have infiltrated the decidua (DM) are thought to migrate toward the spiral artery (HA) and infiltrate from the outside of this blood vessel into the inside of the blood vessel. It is believed that EVT cells that have infiltrated blood vessels through two routes in this way reconstruct thicker blood vessels. Vascular invasion of EVT cells via these two pathways can be modeled by using the placental cell culture device of Example 1.
  • the placental cell culture device of Example 1 can control the formation of HUVEC blood vessels in the central hole side of the first substrate only by inserting or not inserting the medium in the central hole of the first substrate at the initial stage of culture.
  • the control of extending HUVEC blood vessels toward the central hall can be used to create a model in which EVT cells invade blood vessels from the artery exit side. Controlling HUVEC vessels not to extend toward the central hole can be used to create a model in which EVT cells that have entered the decidua invade blood vessels.
  • Example 2 In Example 2, a production test of an EVT cell-containing cell structure to be cultured in the placental cell culture device of the second embodiment (see FIGS. 8A to 10B) was conducted.
  • ⁇ Culture medium> The same TS basal medium and TS medium as above were used.
  • 3D-EVT medium A 3D-EVT medium was prepared by adding the following components to a TS basal medium. The concentrations shown below are the final concentrations of each component in the 3D-EVT medium.
  • Y27632 (FUJIFILM Wako) 2.5 ⁇ M EGF (FUJIFILM Wako) 25ng/mL NRG1 (cell signaling) 100 ng/mL SB202190 (FUJIFILM Wako) 2 ⁇ M Matrigel (Corning) 0.2 mg/mL
  • 3D-EVT-Dox medium A 3D-EVT medium was prepared by adding the following components to a TS basal medium. The concentrations shown below are the final concentrations of each component in the 3D-EVT medium.
  • Y27632 (FUJIFILM Wako) 2.5 ⁇ M EGF (FUJIFILM Wako) 25ng/mL NRG1 (cell signaling) 100 ng/mL SB202190 (FUJIFILM Wako) 2 ⁇ M Matrigel (Corning) 0.2 mg/mL Doxycycline hyclate (Sigma-Aldrich) 2 ⁇ g/mL
  • test medium An assay medium was prepared by adding the following components to TS basal medium. The concentrations given below are the final concentrations in the assay medium. Doxycycline hyclate (Sigma-Aldrich) 2 ⁇ g/mL
  • EGFP-TS cells were maintained and managed with TS medium.
  • EGFP-TS cells were collected from the dish for maintenance culture and suspended in TS basal medium to prepare a cell suspension.
  • 10 ⁇ L of cell suspension (0.5 ⁇ 10 5 cells/mL) was placed in each well of PrimeSurface 96U plate (Sumitomo Bakelite) containing 90 ⁇ L of 3D-EVT medium.
  • 50 ⁇ L of 3D-EVT-Dox medium was added.
  • the produced cell aggregates were moved into a 3.5 cm dish together with the medium.
  • Anti-HLA-G antibody with PE [MEM-G/9] (ab24384) (x1/200 dilution) was added to the antibody diluent (PBS [-] containing 0.1% Tween 20 and 2% FBS) to prepare the primary antibody solution.
  • 500 ⁇ L of the primary antibody solution was added to the wells and allowed to stand at 4° C. overnight. The next day, the primary antibody solution was removed from the wells, and the cell aggregates were washed with PBS(-) (3 times with 500 ⁇ L). Cell aggregates were analyzed using an all-in-one fluorescence microscope BZ-X800 (Keyence).
  • FIG. 19A shows a microscopic image of cell aggregates after migration into the mixed gel.
  • EVT cells can assume a spindle-shaped elongated form in the gel, almost no spindle-shaped cells were observed around the cell aggregates immediately after migration (Day 0).
  • Day 1 One day (Day 1) and two days (Day 2) after migration into the mixed gel, spindle-shaped cells were observed around the cell aggregates.
  • FIG. 19B shows the results of immunocytostaining of Day 2 cell aggregates.
  • Cell aggregates expressed HLA-G, a marker for EVT cells.
  • HLA-G a marker for EVT cells.
  • doxycycline treatment EGFP expression in the cells of the cell aggregate could be confirmed. From these results, it was confirmed that the above method can produce cell aggregates surrounded by EVT cells.
  • Example 3 a three-dimensional culture model containing an EVT cell-containing cell structure was produced using the placental cell culture device of the second embodiment (see FIGS. 8A to 10B).
  • ⁇ Production of placental cell culture device> (Preparation of template by photolithography)
  • a template for the first substrate of the placental cell culture device was made using a photolithography method.
  • a high-purity silicon wafer AS ONE
  • was spin-coated with permanent epoxy negative photoresist SU-8 2100 (KAYAKU Advanced Materials) (500 rpm for 10 seconds, then 3000 rpm for 30 seconds).
  • the photoresist spin-coated silicon wafer was heated on a 65° C.
  • a photomask was produced for the first substrate using a laser lithography apparatus DWL200 (Heidelberg Instruments). A photomask for the first substrate was placed on the SU-8 film for the first substrate mold, and UV irradiation was performed (20 seconds). After that, it was heated on a 65° C. hot plate for 5 minutes and on a 95° C. hot plate for 10 minutes. It was then cooled at room temperature for 5 minutes. The cooled mold was placed in agitated SU-8 developer (KAYAKU Advanced Materials) and allowed to react for 30 minutes to remove uncured SU-8. The templates were then washed with 86% ethanol-IP (denatured) (FUJIFILM Wako). The mold was then treated at 65°C for 3 minutes and 150°C for 6 minutes.
  • a first substrate was produced by soft lithography using a first substrate mold produced by photolithography.
  • a PDMS solution was prepared by mixing a main agent and a curing agent at a ratio of 10:1, and poured into the prepared mold. After degassing, the PDMS solution was cured by overnight treatment at 65°C. Using a disposable scalpel or the like, the first board component was removed from the mold. Holes for fluid introduction/exhaust into the channel were made with biopsy trepans ( ⁇ 2 mm and ⁇ 6 mm).
  • FIG. 20A shows a schematic diagram of the manufactured first substrate.
  • a PDMS ring attached to the first substrate was produced by punching out a PDMS sheet with two types of biopsy trepans ( ⁇ 8 mm and ⁇ 6 mm).
  • a placental cell culture device was assembled using the first and second substrates produced as described above (see FIG. 9).
  • a cover glass (Matsunami Glass) was used as the second substrate.
  • FIG. 20B shows a photograph of the fabricated placental cell culture device.
  • EVT cell-containing cell structure and migration of EVT cells were prepared from EGFP-TS cells in the same manner as in Example 2.
  • EGFP-TS cells were collected from a dish for maintenance culture and suspended in TS basal medium to prepare a cell suspension.
  • 10 ⁇ L of cell suspension (0.8 ⁇ 10 5 cells/mL) was placed in each well of PrimeSurface 96U plate containing 90 ⁇ L of 3D-EVT medium.
  • 50 ⁇ L of 3D-EVT-Dox medium was added.
  • the produced cell aggregates were moved into a 3.5 cm dish together with the medium.
  • the cell aggregate was sucked up together with about 7 ⁇ L of the mixed gel solution, and the cell aggregate was introduced through a communicating hole of ⁇ 0.5 mm provided in the placental cell culture device.
  • Placental cell culture devices were then placed in 6 cm dishes.
  • the device/dish was placed in a 37° C., 5% CO 2 incubator, taking care not to dry out the gel inside the device using gauze or the like moistened with ultrapure water.
  • a PDMS ring was placed on the first substrate to form an upper layer well. 60 ⁇ L of assay medium was placed in the upper wells.
  • the central channel of the placental cell culture device contained a mixed gel and one cell aggregate.
  • FIG. 21A the cell aggregates were introduced into the placental cell culture device on day 1 (day 5 from the start of culture), day 2 (day 6 from the start of culture), and day 3 (day 7 from the start of culture). Fluorescence microscopy images of eyes) are shown. Doxycycline confirmed that the cells in the cell aggregate expressed EGFP. Some of the cells had an EVT cell-like spindle shape on day 2 (day 6 from the start of culture). Figure 21A confirmed that EVT cells migrated to the left or right to similar extents.
  • the dividing line dividing the area of the planar view image of the cell aggregates observed from the second substrate side substantially evenly to the left and right. pulled.
  • this dividing line was analyzed using ImageJ 1.52a (National Institutes of Health). The results are shown in FIG. 21B.
  • Each plot is the area of the cell aggregate on the left or right side of the dividing line when the total area of the image of the cell aggregate observed from the second substrate side is set to 1.
  • the result of FIG. 21B also confirmed that the EVT cells spread evenly to the left and right.
  • EGFP-TS cells were prepared from EGFP-TS cells in the same manner as above.
  • EGFP-TS cells were collected from a dish for maintenance culture and suspended in TS basal medium to prepare a cell suspension.
  • 10 ⁇ L of cell suspension (0.65 ⁇ 10 5 cells/mL) was placed in each well of PrimeSurface 96U plate containing 90 ⁇ L of 3D-EVT medium.
  • the produced cell aggregates were moved into a 3.5 cm dish together with the medium.
  • the cell aggregates were introduced into the placental cell culture device and the first side channel and the second side channel were filled with medium. Cultivation of the cell aggregates in the placental cell culture device was started under an environment of 37° C. and 5% CO 2 .
  • HUVEC cells were introduced into the first side channel of the device.
  • a suspension of RFP-HUVEC (5 ⁇ 10 6 cells/mL) was prepared in EGM-2 medium.
  • 7 ⁇ L of RFP-HUVEC suspension was introduced through the second port P2 of the placental cell culture device (see FIG. 8A).
  • 7 ⁇ L of EGM-2 was added through the fourth port P4.
  • the placental cell culture device was set upright so that the first side channel into which HUVECs were introduced faced up, fixed with a large clip, and placed in a 5% CO 2 incubator at 37°C in this vertical state. After 25 minutes, the placental cell culture device was leveled and culture started. On the 1st day (5th day of cell seeding) and 2nd day (6th day of cell seeding) after starting the culture of the cell aggregates in the placental cell culture device, 50 ⁇ L of the assay medium was used. exchanged (upper well, first side channel, second side channel).
  • FIG. 22A shows a fluorescence microscope image.
  • the results in FIG. 22A confirm that EVT cells migrate toward the first side channel where HUVEC reside.
  • a dividing line is drawn on the planar view image of the cell aggregate observed from the second substrate side of the placental cell culture device, and the left side (HUVEC ( ⁇ )) and the right side (HUVEC (+)) of the dividing line are drawn.
  • the area of cell aggregates was measured. The results are shown in FIG. 22B. Two days after co-culturing EVT cells and HUVECs (day 6 from the start of culture), it was confirmed that EVT cells migrated significantly toward HUVECs.
  • a placental cell culture device a three-dimensional culture model using the placental cell culture device, and the three-dimensional culture model that can evaluate the interaction between placental cells and factors that can act on placental cells.
  • Methods of making and evaluating placental cells using the placental cell culture device are provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

This placental cell culture device comprises a placental cell culture section for culturing placental cells and a channel for a factor in which a factor capable of interacting with the placental cells is located, wherein the placental cell culture section is adjacent to the channel for a factor via a partition member in which a shield part is alternately arranged with a communication part, and the minimum width of the communication part is 30 to 500 μm.

Description

胎盤細胞培養デバイス、3次元培養モデル、3次元培養モデルの作製方法および胎盤細胞の評価方法Placental cell culture device, three-dimensional culture model, method for producing three-dimensional culture model, and method for evaluating placental cells
 本発明は、胎盤細胞培養デバイス、3次元培養モデル、3次元培養モデルの作製方法および胎盤細胞の評価方法に関する。 The present invention relates to a placental cell culture device, a three-dimensional culture model, a method for producing a three-dimensional culture model, and a method for evaluating placental cells.
 近年、創薬または生命現象の解明のために、ヒトの組織もしくは臓器の機能もしくは構造を模倣した3次元細胞培養モデル(オーガンチップデバイス;Organ-on-a-chip)の研究開発が活発に行われている。活発な開発の背景には、従来のシャーレ内での細胞培養または動物実験では、解析および解明することのできないヒトの生命現象が多数存在することが明らかになってきたことがある。これまでに開発されたオーガンチップデバイスとしては、肺水腫モデルのLung-on-a-chip(非特許文献1)、および小腸モデルのIntestine-on-a-chip(非特許文献2)がある。また、多孔質膜で仕切られた二層構造のマイクロ流路チップを用いた、外側血液網膜関門の培養モデルが報告されている(特許文献1)。 In recent years, research and development of three-dimensional cell culture models (organ-on-a-chip devices) that mimic the functions or structures of human tissues or organs have been actively carried out for drug discovery or elucidation of life phenomena. It is In the background of active development, it has become clear that there are many human life phenomena that cannot be analyzed and elucidated by conventional cell culture in petri dishes or animal experiments. Organ chip devices that have been developed so far include the Lung-on-a-chip for pulmonary edema model (Non-Patent Document 1) and the Intestine-on-a-chip for small intestine model (Non-Patent Document 2). In addition, a culture model of the outer blood-retinal barrier using a microchannel chip with a two-layer structure partitioned by a porous membrane has been reported (Patent Document 1).
 しかしながら、オーガンチップデバイスの開発が十分ではない臓器も存在する。胎盤はそのような臓器の1つである。胎盤は、ヒトと動物とで構造および機能が異なる臓器である。また、出産前の入手が困難な臓器である。そのため、ヒトの胎盤における分子細胞生物学的現象、胎盤形成のメカニズム、および病態発生のメカニズムを理解するためには、ヒト胎盤チップデバイスの開発が極めて重要となる。 However, there are organs for which the development of organ chip devices is insufficient. The placenta is one such organ. The placenta is an organ that differs in structure and function between humans and animals. In addition, it is an organ that is difficult to obtain before childbirth. Therefore, the development of a human placental chip device is extremely important for understanding the molecular and cellular biological phenomena in the human placenta, the mechanism of placenta formation, and the mechanism of pathogenesis.
 胎盤と関係のある疾患としては、妊娠高血圧症候群がある。妊娠高血圧症候群は、妊娠20週から産後12週の間に高血圧となる疾患である。妊娠高血圧症候群は、約20人に1人の割合で起こるとされており、妊婦死亡や周産期死亡の主要な原因である。この病気の発生機序は複雑であるが、子宮内のらせん動脈の形成不全が起こり、胎盤への血液供給が阻害された結果、胎盤より血管新生を阻害する因子が過剰に分泌され、高血圧が発症すると考えられている。すなわち、胎盤への血液供給の不足を感知した母体が、胎盤(胎児側)に栄養を送る目的で血圧を高くすると解釈することもできる。正常な状態では、胎盤細胞の1種である絨毛外栄養膜細胞(extravillous trophoblast cell:EVT細胞)が母体のらせん動脈に入り込み、その動脈を拡大させる「血管リモデリング」が起き、これによりらせん動脈が太くなり多量の血液が胎盤へ送られる。妊娠高血圧症候群の患者では、この血管リモデリングが不完全になっていることが知られているが、妊娠高血圧症候群の発症との因果関係は明らかにされていない(非特許文献3)。EVT細胞による血管リモデリングに関する研究を、生体組織を用いて行う場合、胎盤組織のみならず子宮内膜の血管組織も解析しなければならない。そのため、母体を傷つけるという倫理的な問題があり、研究数が限られている。妊娠高血圧症候群は、ほぼヒトに特異的な疾患であり、非ヒト霊長類でも自然発症例の報告はほとんどない。そのため、妊娠高血圧症候群について、動物実験から得られる情報は限られている。
 このような背景から、妊娠高血圧症候群の発症メカニズムを解明するために、ヒトEVT細胞の動態およびヒトEVT細胞を制御する因子を詳細に調べることのできるヒト胎盤チップデバイスの開発が望まれている。
Diseases associated with the placenta include gestational hypertension. Gestational hypertension is a disease in which hypertension occurs between the 20th week of pregnancy and the 12th week of postpartum. Pregnancy hypertension is said to occur in about 1 out of 20 women, and is a major cause of maternal death and perinatal death. The pathogenesis of this disease is complex, but hypoplasia of the spiral arteries in the uterus occurs and blood supply to the placenta is blocked. thought to occur. In other words, it can be interpreted that the maternal body, sensing insufficient blood supply to the placenta, raises blood pressure in order to supply nutrients to the placenta (fetal side). Under normal conditions, extravillous trophoblast cells (EVT cells), which are a type of placental cell, enter maternal spiral arteries and cause 'vascular remodeling' to enlarge the arteries. becomes thicker and more blood is pumped to the placenta. It is known that this vascular remodeling is incomplete in patients with pregnancy-induced hypertension, but a causal relationship with the onset of pregnancy-induced hypertension has not been clarified (Non-Patent Document 3). When conducting research on vascular remodeling by EVT cells using living tissue, not only placental tissue but also endometrial vascular tissue must be analyzed. Therefore, there is an ethical problem of harming the mother's body, and the number of studies is limited. Gestational hypertension is a disease peculiar to humans, and almost no cases of spontaneous onset have been reported even in non-human primates. Therefore, information on pregnancy-induced hypertension from animal studies is limited.
Against this background, in order to elucidate the onset mechanism of pregnancy-induced hypertension, it is desired to develop a human placenta chip device that enables detailed examination of the dynamics of human EVT cells and factors that control human EVT cells.
特開2020-188723号公報JP 2020-188723 A
 従来、細胞の動態は、例えば多孔膜上の細胞が孔を通過するかどうかで評価されてきた。しかしながら、この評価系では生体で起こる3次元の血管網に向かう細胞の移動(遊走)および血管網へ入り込み(浸潤)を評価することは困難である。また、多硬膜の孔径が小さく、細胞の遊走効率は低かった。 Conventionally, cell dynamics have been evaluated, for example, by whether cells on porous membranes pass through pores. However, with this evaluation system, it is difficult to evaluate the movement (migration) of cells toward the three-dimensional vascular network and the infiltration into the vascular network (invasion) that occur in vivo. In addition, the pore size of polydural membranes was small, and the efficiency of cell migration was low.
 そこで、本発明は、胎盤細胞と、胎盤細胞に作用し得る因子との相互作用を評価可能な、胎盤細胞培養デバイス、前記胎盤細胞培養デバイスを用いた3次元培養モデル、前記3次元培養モデルの作製方法、および前記胎盤細胞培養デバイスを用いた胎盤細胞の評価方法を提供することを目的とする。 Therefore, the present invention provides a placental cell culture device, a three-dimensional culture model using the placental cell culture device, and a three-dimensional culture model that can evaluate the interaction between placental cells and factors that can act on placental cells. An object of the present invention is to provide a production method and a placental cell evaluation method using the placental cell culture device.
 本発明は以下の態様を含む。
[1]胎盤細胞を培養する胎盤細胞培養部と、前記胎盤細胞と相互作用し得る因子を存在させる因子用流路と、を備え、前記胎盤細胞培養部と、前記因子用流路とが、遮蔽部と連通部とが交互に配置された仕切り部材を介して隣接しており、前記連通部の最小幅が30~500μmである胎盤細胞培養デバイス。
[2]前記仕切り部材が、空隙率50~90%のメッシュシートである、[1]に記載の胎盤細胞培養デバイス。
[3]前記胎盤細胞培養部に、前記胎盤細胞の細胞集合体を含むゲルが充填されている、[1]に記載の胎盤細胞培養デバイス。
[4][1]~[3]のいずれか1つに記載の胎盤細胞培養デバイスを用いて作製された3次元培養モデルであって、前記胎盤細胞培養部で前記胎盤細胞が培養されており、前記因子用流路に前記胎盤細胞と相互作用し得る因子が存在している、3次元培養モデル。
[5][2]に記載の胎盤細胞培養デバイスを用いて作製された3次元培養モデルであって、前記胎盤細胞培養部で前記胎盤細胞が培養されており、前記因子用流路に3次元血管系が形成されている、3次元培養モデル。
[6][3]に記載の胎盤細胞培養デバイスを用いて作製された3次元培養モデルであって、前記胎盤細胞培養部で前記胎盤細胞の細胞集合体が培養されており、前記因子用流路に血管壁が形成されている、3次元培養モデル。
[7][2]に記載の胎盤細胞培養デバイスを用いて、3次元培養モデルを作製する方法であって、前記因子用流路で血管内皮細胞を培養し、3次元血管系を形成させる工程と、前記因子用流路で前記3次元血管系を培養し、前記胎盤細胞培養部で胎盤細胞を培養する工程と、を含む、3次元培養モデルの作製方法。
[8][3]に記載の胎盤細胞培養デバイスを用いて、3次元培養モデルを作製する方法であって、前記因子用流路で血管内皮細胞を培養し、血管壁を形成させる工程と、前記因子用流路で前記血管壁を培養し、前記胎盤細胞培養部で前記胎盤細胞の細胞集合体を培養する工程と、を含む、3次元培養モデルの作製方法。
[9][1]~[3]のいずれか1つに記載の胎盤細胞培養デバイスを用いて、胎盤細胞を、胎盤細胞と相互作用し得る因子と共培養することを含む、胎盤細胞の評価方法。
The present invention includes the following aspects.
[1] A placental cell culturing unit for culturing placental cells, and a factor channel in which a factor capable of interacting with the placental cells is present, wherein the placental cell culturing unit and the factor channel are: A placental cell culture device, wherein a shielding portion and a communicating portion are adjacent to each other via alternately arranged partition members, and the communicating portion has a minimum width of 30 to 500 μm.
[2] The placental cell culture device according to [1], wherein the partition member is a mesh sheet with a porosity of 50 to 90%.
[3] The placental cell culture device according to [1], wherein the placental cell culture unit is filled with a gel containing a cell aggregate of the placental cells.
[4] A three-dimensional culture model produced using the placental cell culture device according to any one of [1] to [3], wherein the placental cells are cultured in the placental cell culture unit. , a three-dimensional culture model in which a factor capable of interacting with the placental cells is present in the factor channel;
[5] A three-dimensional culture model produced using the placental cell culture device according to [2], wherein the placental cells are cultured in the placental cell culture unit, and the factor channel is three-dimensionally A three-dimensional culture model in which a vascular system is formed.
[6] A three-dimensional culture model produced using the placental cell culture device according to [3], wherein the cell aggregate of the placental cells is cultured in the placental cell culture unit, and the factor flow A three-dimensional culture model in which vascular walls are formed in tracts.
[7] A method for producing a three-dimensional culture model using the placental cell culture device according to [2], comprising culturing vascular endothelial cells in the factor channel to form a three-dimensional vascular system. and a step of culturing the three-dimensional vascular system in the factor channel and culturing placental cells in the placental cell culture unit.
[8] A method for producing a three-dimensional culture model using the placental cell culture device according to [3], comprising a step of culturing vascular endothelial cells in the factor channel to form a vascular wall; A method for producing a three-dimensional culture model, comprising culturing the vascular wall in the factor channel and culturing a cell aggregate of the placental cells in the placental cell culture unit.
[9] Evaluation of placental cells, including co-culturing placental cells with a factor that can interact with placental cells using the placental cell culture device according to any one of [1] to [3] Method.
 本発明によれば、胎盤細胞と、胎盤細胞に作用し得る因子との相互作用を評価可能な、胎盤細胞培養デバイス、前記胎盤細胞培養デバイスを用いた3次元培養モデル、前記3次元培養モデルの作製方法、および前記胎盤細胞培養デバイスを用いた胎盤細胞の評価方法が提供される。 According to the present invention, a placental cell culture device, a three-dimensional culture model using the placental cell culture device, and the three-dimensional culture model that can evaluate the interaction between placental cells and factors that can act on placental cells. Methods of making and evaluating placental cells using the placental cell culture device are provided.
一実施形態の胎盤細胞培養デバイスの斜視図である。1 is a perspective view of an embodiment of a placental cell culture device; FIG. 図1Aに示す胎盤細胞培養デバイスのB-B切断線による断面図である。FIG. 1B is a cross-sectional view of the placental cell culture device shown in FIG. 1A taken along line BB. 図1Aに示す胎盤細胞培養デバイスのC-C切断線による断面図である。FIG. 1B is a cross-sectional view of the placental cell culture device shown in FIG. 1A taken along line CC. 図1Aに示す胎盤細胞培養デバイスの分解図である。1B is an exploded view of the placental cell culture device shown in FIG. 1A. FIG. 一実施形態の胎盤細胞培養デバイスに用いるメッシュシートの模式図である。1 is a schematic diagram of a mesh sheet used for a placental cell culture device of one embodiment. FIG. 図1Aに示す胎盤細胞培養デバイスに使用される第1基板の上面図である。1B is a top view of the first substrate used in the placental cell culture device shown in FIG. 1A; FIG. 図4Aの第1基板の上面図における破線で囲った部分Bの拡大図である。4B is an enlarged view of a portion B surrounded by a broken line in the top view of the first substrate of FIG. 4A; FIG. 胎盤細胞培養デバイス1において、胎盤細胞培養部12に培地M3を充填して血管内皮細胞を培養した場合の3次元血管系(E)の形成状態を示す模式図である。E:相互作用評価因子(3次元血管系)。FIG. 3 is a schematic diagram showing a formation state of a three-dimensional vascular system (E) when vascular endothelial cells are cultured by filling the placental cell culture portion 12 with medium M3 in the placental cell culture device 1. FIG. E: interaction evaluation factor (three-dimensional vasculature). 胎盤細胞培養デバイス1において、胎盤細胞培養部12に培地Mを充填しないで血管内皮細胞を培養した場合の3次元血管系(E)の形成状態を示す模式図である。FIG. 4 is a schematic diagram showing the formation state of a three-dimensional vascular system (E) when vascular endothelial cells are cultured without filling the placental cell culture portion 12 with medium M in the placental cell culture device 1. FIG. 3次元血管系を含む3次元培養モデルの一例を示す模式図である。EVT細胞の機能評価のための3次元培養モデルの一例を示す。EVT:EVT細胞。1 is a schematic diagram showing an example of a three-dimensional culture model including a three-dimensional vascular system; FIG. An example of a three-dimensional culture model for functional evaluation of EVT cells is shown. EVT: EVT cells. 3次元血管系を含む3次元培養モデルの一例を示す模式図である。胎盤細胞膜に対する化学物質透過性を評価するための3次元培養モデルの一例を示す。ST:ST細胞、UD:未分化細胞。1 is a schematic diagram showing an example of a three-dimensional culture model including a three-dimensional vascular system; FIG. An example of a three-dimensional culture model for evaluating the permeability of placental cell membranes to chemical substances is shown. ST: ST cells, UD: undifferentiated cells. 3次元血管系を含む3次元培養モデルの一例を示す模式図である。胎盤発生過程を模した3次元培養モデルの一例を示す。1 is a schematic diagram showing an example of a three-dimensional culture model including a three-dimensional vascular system; FIG. An example of a three-dimensional culture model simulating the process of placental development is shown. 図7Aに示す3次元培養モデルにおける破線で囲った部分Bの拡大図である。FB:線維芽細胞。FIG. 7B is an enlarged view of portion B surrounded by a dashed line in the three-dimensional culture model shown in FIG. 7A. FB: fibroblast. 一実施形態の胎盤細胞培養デバイスの斜視図である。1 is a perspective view of an embodiment of a placental cell culture device; FIG. 図8Aに示す胎盤細胞培養デバイスのB-B切断線による断面図である。FIG. 8B is a cross-sectional view of the placental cell culture device shown in FIG. 8A taken along line BB. 図8Aに示す胎盤細胞培養デバイスの分解図である。8B is an exploded view of the placental cell culture device shown in FIG. 8A. FIG. 図8Aに示す胎盤細胞培養デバイスに使用される第1基板の上面図である。8B is a top view of the first substrate used in the placental cell culture device shown in FIG. 8A; FIG. 図10Aの第1基板の上面図における破線で囲った部分Bの拡大図である。10B is an enlarged view of a portion B surrounded by a broken line in the top view of the first substrate of FIG. 10A; FIG. 図8Aに示す胎盤細胞培養デバイスの上面図である。8B is a top view of the placental cell culture device shown in FIG. 8A. FIG. 図11Aに示す胎盤細胞培養デバイスの上面図における破線で囲った部分Bの拡大図である。C:胎盤細胞。FIG. 11B is an enlarged view of portion B surrounded by a dashed line in the top view of the placental cell culture device shown in FIG. 11A. C: Placental cells. 図8Aに示す胎盤細胞培養デバイスを用いた、EVT細胞の遊走を評価するための3次元培養モデルの一例を示す模式図である。FIG. 8B is a schematic diagram showing an example of a three-dimensional culture model for evaluating migration of EVT cells using the placental cell culture device shown in FIG. 8A. 図8Aに示す胎盤細胞培養デバイスを用いた、EVT細胞の遊走を評価するための3次元培養モデルの一例を示す模式図である。FIG. 8B is a schematic diagram showing an example of a three-dimensional culture model for evaluating migration of EVT cells using the placental cell culture device shown in FIG. 8A. 実施例1で作製した第2基板の模式図である。2 is a schematic diagram of a second substrate produced in Example 1. FIG. 実施例1で作製した胎盤細胞培養デバイスで使用したメッシュシートの顕微鏡画像である。1 is a microscope image of a mesh sheet used in a placental cell culture device produced in Example 1. FIG. 実施例1で作製した胎盤細胞培養デバイスである。1 is a placental cell culture device produced in Example 1. FIG. 実施例1で作製した、メッシュシートを備えた胎盤細胞培養デバイスの中央流路に色水を流したときの顕微鏡画像である。(+)は胎盤細胞培養デバイスがメッシュシートを含むことを示す。4 is a microscopic image when colored water is allowed to flow through the central channel of the placental cell culture device provided with the mesh sheet produced in Example 1. FIG. (+) indicates that the placental cell culture device contains a mesh sheet. 実施例1で作製した、メッシュシートを備えない胎盤細胞培養デバイスの中央流路に色水を流したときの顕微鏡画像である。(-)は胎盤細胞培養デバイスがメッシュシートを含まないことを示す。1 is a microscope image when colored water is allowed to flow through the central channel of the placental cell culture device without a mesh sheet produced in Example 1. FIG. (-) indicates that the placental cell culture device does not contain a mesh sheet. 実施例1で作製した胎盤培養細胞デバイスを用いた培養したEVT細胞とHUVEC(ヒト臍帯静脈内皮細胞:Human Umbilical Vein Endothelial Cells)の蛍光顕微鏡画像である。HUVEC播種後0日目から、第1基板の中央ホールに培地を入れてHUVECを培養した。(A)は、胎盤細胞デバイスの第2基板側から撮像した蛍光顕微鏡画像である。(B)は、胎盤細胞デバイスの側面から撮像した蛍光顕微鏡画像である。1 is a fluorescence microscope image of EVT cells and HUVEC (Human Umbilical Vein Endothelial Cells) cultured using the placenta-cultured cell device prepared in Example 1. FIG. From the 0th day after HUVEC seeding, HUVEC was cultured by filling the central hole of the first substrate with medium. (A) is a fluorescence microscope image taken from the second substrate side of the placental cell device. (B) is a fluorescence microscope image taken from the side of the placental cell device. 実施例1で作製した胎盤培養細胞デバイスを用いて培養したEVT細胞とHUVECの蛍光顕微鏡画像である。HUVEC播種後0~3日間、中央ホールに培地を入れないで培養した。(A)は、胎盤細胞デバイスの第2基板側から撮像した蛍光顕微鏡画像である。(B)は、胎盤細胞デバイスの側面から撮像した蛍光顕微鏡画像である。1 is a fluorescence microscope image of EVT cells and HUVEC cultured using the placenta-cultured cell device produced in Example 1. FIG. HUVEC were cultured without medium in the central hole for 0-3 days after seeding. (A) is a fluorescence microscope image taken from the second substrate side of the placental cell device. (B) is a fluorescence microscope image taken from the side of the placental cell device. 生体内における胎盤の一部の模式図である。(A)はCT細胞(CT)がEVT細胞(EVT)に分化する前の胎盤の模式図であり、(B)はCT細胞(CT)の一部がEVT細胞(EVT)に分化した後の胎盤の模式図である。V:絨毛;DM:脱落膜;ML:子宮筋層;UA:子宮動脈;BL:血液;BF:血流;HA:らせん動脈;EVT:EVT細胞;ST:ST細胞;CT:CT細胞。1 is a schematic diagram of part of a placenta in vivo. FIG. (A) is a schematic diagram of the placenta before CT cells (CT) differentiate into EVT cells (EVT), and (B) shows a part of the CT cells (CT) after differentiation into EVT cells (EVT). 1 is a schematic diagram of a placenta; FIG. UA: uterine artery; BL: blood; BF: blood flow; HA: spiral artery; EVT: EVT cells; ST: ST cells; 実施例2で作製したEVT細胞含有細胞集合体の顕微鏡画像である。4 is a microscopic image of EVT cell-containing cell aggregates prepared in Example 2. FIG. 実施例2で作製したEVT細胞含有細胞集合体の蛍光顕微鏡画像である。4 is a fluorescence microscope image of EVT cell-containing cell aggregates prepared in Example 2. FIG. 実施例3で作製した第1基板の模式図である。FIG. 10 is a schematic diagram of a first substrate produced in Example 3; 実施例3で作製した胎盤培養デバイスである。3 is a placenta culture device produced in Example 3. FIG. 実施例3で作製した胎盤培養細胞デバイスを用いて培養したEVT細胞含有細胞集合体の顕微鏡画像である。4 is a microscopic image of EVT cell-containing cell aggregates cultured using the placenta-cultured cell device prepared in Example 3. FIG. 実施例3で作製した胎盤培養細胞デバイスを用いて培養したEVT細胞含有細胞集合体の遊走方向を示すグラフである。横軸は、胎盤細胞培養デバイスにEVT細胞含有集合体を導入した後の経過日数を示す。縦軸は、細胞集合体の平面視像の全面積に対する、培養開始時に引いた分割線を基準とした右側面積(Right)または左側面積(Left)の割合を示す。N=3、平均±SE。10 is a graph showing migration directions of EVT cell-containing cell aggregates cultured using the placenta-cultured cell device prepared in Example 3. FIG. The horizontal axis indicates the number of days elapsed after introduction of the EVT cell-containing aggregates into the placental cell culture device. The vertical axis indicates the ratio of the area on the right side (Right) or the area on the left side (Left) based on the dividing line drawn at the start of culture to the total area of the planar image of the cell aggregate. N=3, mean±SE. 実施例3で作製した胎盤培養細胞デバイスを用いてHUVECと共培養したEVT細胞含有細胞集合体の顕微鏡画像である。EVT細胞含有細胞集合体は、HUVEC細胞と共培養した。4 is a microscopic image of EVT cell-containing cell aggregates co-cultured with HUVEC using the placenta-cultured cell device prepared in Example 3. FIG. EVT cell-containing cell aggregates were co-cultured with HUVEC cells. 実施例3で作製した胎盤培養細胞デバイスを用いてHUVECと共培養したEVT細胞含有細胞集合体の遊走方向を示すグラフである。横軸は、胎盤細胞培養デバイスにEVT細胞含有集合体を導入した後の経過日数を示す。縦軸は、細胞集合体の平面視像の全面積に対する、培養開始時に引いた分割線を基準とした右側面積(Right)または左側面積(Left)の割合を示す。N=4、平均±SE。*p<0.05(t検定)10 is a graph showing migration directions of EVT cell-containing cell aggregates co-cultured with HUVECs using the placenta-cultured cell device prepared in Example 3. FIG. The horizontal axis indicates the number of days elapsed after introduction of the EVT cell-containing aggregates into the placental cell culture device. The vertical axis indicates the ratio of the area on the right side (Right) or the area on the left side (Left) based on the dividing line drawn at the start of culture to the total area of the planar image of the cell aggregate. N=4, mean±SE. *p<0.05 (t-test)
 以下、場合により図面を参照しつつ、本発明の実施形態について詳細に説明する。図面中、同一又は相当部分には同一又は対応する符号を付し、重複する説明は省略する。各図における寸法比は、説明のため誇張している部分があり、必ずしも実際の寸法比とは一致しない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as the case may be. In the drawings, the same or corresponding parts are denoted by the same or corresponding reference numerals, and overlapping descriptions are omitted. The dimensional ratios in each drawing are exaggerated for explanation and do not necessarily match the actual dimensional ratios.
[胎盤細胞培養デバイス]
 一態様において、本発明は、胎盤細胞を培養する胎盤細胞培養部と、前記胎盤細胞と相互作用し得る因子を存在させる因子用流路と、を備え、前記胎盤細胞培養部と、前記因子用流路とが、遮蔽部と連通部とが交互に配置された仕切り部材を介して隣接しており、前記連通部の最小幅が30~500μmである胎盤細胞培養デバイスを提供する。
[Placental cell culture device]
In one aspect, the present invention comprises a placental cell culturing unit for culturing placental cells, and a factor channel in which a factor capable of interacting with the placental cells is present, wherein the placental cell culturing unit and the factor A placental cell culture device is provided in which the flow path and the channel are adjacent to each other via a partition member in which the shielding portions and the communication portions are alternately arranged, and the minimum width of the communication portion is 30 to 500 μm.
 胎盤細胞培養デバイスとは、胎盤細胞を培養するためのデバイスである。胎盤細胞培養デバイスは、胎盤細胞培養部と、因子用流路とを備えている。前記胎盤細胞培養部と、前記因子用流路とは、仕切り部材を介して隣接している。仕切り部材は、遮蔽部と連通部とが交互に配置された構造をしており、連通部の最小幅が30~500μmである。そのため、胎盤細胞部で培養される胎盤細胞と、因子用流路に存在させる因子とが相互作用することができる。また、胎盤細胞培養部で培養される胎盤細胞が仕切り部材の連通部を通過して、因子用流路に移動することができる。
 連通部の最大幅としては、50~500μmが挙げられる。連通部の最大幅が前記範囲内であると、胎盤細胞培養部と因子用流路との間での培地等の漏出を適切に制御することができる。
A placental cell culture device is a device for culturing placental cells. The placental cell culture device includes a placental cell culture section and a factor channel. The placental cell culture section and the factor channel are adjacent to each other via a partition member. The partition member has a structure in which shielding portions and communication portions are alternately arranged, and the minimum width of the communication portion is 30 to 500 μm. Therefore, the placental cells cultured in the placental cell part can interact with the factor present in the factor channel. In addition, the placental cells cultured in the placental cell culture section can pass through the communication section of the partition member and move to the channel for the factor.
The maximum width of the communicating portion is 50 to 500 μm. When the maximum width of the communication portion is within the above range, leakage of medium or the like between the placental cell culture portion and the factor channel can be appropriately controlled.
 胎盤細胞培養部は、胎盤細胞を培養するための培養槽である。「胎盤細胞」とは、胎盤を構成する細胞およびその前駆細胞をいう。胎盤細胞としては、例えば、栄養膜幹細胞(trophoblast stem cell:TS細胞)、細胞性栄養膜細胞(cytotrophoblast cell:CT細胞)、合胞体性栄養膜細胞(syncytiotrophoblast cell:ST細胞)、およびEVT細胞等が挙げられる。 The placental cell culture department is a culture vessel for culturing placental cells. "Placental cells" refer to cells that constitute the placenta and their progenitor cells. Examples of placental cells include trophoblast stem cells (TS cells), cytotrophoblast cells (CT cells), syncytiotrophoblast cells (ST cells), and EVT cells. is mentioned.
 胎盤細胞が由来する生物は、胎盤を有する動物であれば特に限定されない。胎盤細胞が由来する動物としては、例えば、霊長類、げっ歯類、食肉類等の哺乳動物が挙げられる。哺乳動物は、好ましくは霊長類である。霊長類としては、例えば、ヒト、チンパンジー、アカゲザル、マーモセット等が挙げられる。胎盤細胞は、ヒト細胞であることがより好ましい。 The organism from which placental cells are derived is not particularly limited as long as it is an animal with a placenta. Animals from which placental cells are derived include, for example, mammals such as primates, rodents, and carnivores. Mammals are preferably primates. Primates include, for example, humans, chimpanzees, rhesus monkeys, marmosets, and the like. More preferably, the placental cells are human cells.
 胎盤細胞は、胎盤から単離したものであってもよく、未分化細胞から誘導されたものであってもよい。
 TS細胞は、胚盤胞から誘導したものであってもよく、CT細胞から誘導されたものであってもよく、多能性幹細胞から誘導されたものであってもよい。
 胚盤胞からのTS細胞の誘導は公知の方法により行うことができる。例えば、胎盤組織に機械的及び/又は酵素的処理を適宜使用して、細胞を分離する。その後、TS細胞に誘導する培地で細胞を培養した後、TS細胞マーカー(GATA2陽性、GATA3陽性、TFAP2陽性、ELF5陽性、ZNF750陽性、CDX2陰性等)の発現を指標として、TS細胞を樹立することができる。
 CT細胞からTS細胞を誘導する方法としては、例えば、特許第6400832号に記載の方法を用いることができる。
 多能性幹細胞からTS細胞を誘導する方法としては、例えば、国際公開第2020/250438号等に記載の方法等を用いることができる。
Placental cells may be those isolated from the placenta or may be derived from undifferentiated cells.
TS cells may be derived from blastocysts, CT cells, or pluripotent stem cells.
Induction of TS cells from blastocysts can be performed by known methods. For example, mechanical and/or enzymatic treatments are optionally used on placental tissue to separate cells. Then, after culturing the cells in a medium that induces TS cells, TS cells are established using the expression of TS cell markers (GATA2-positive, GATA3-positive, TFAP2-positive, ELF5-positive, ZNF750-positive, CDX2-negative, etc.) as indicators. can be done.
As a method for inducing TS cells from CT cells, for example, the method described in Japanese Patent No. 6400832 can be used.
As a method for inducing TS cells from pluripotent stem cells, for example, the method described in International Publication No. 2020/250438 and the like can be used.
 CT細胞は、例えば、胎盤から単離したものを用いることができる。胎盤からのCT細胞の単離は、例えば、胎盤組織に機械的及び/又は酵素的処理を適宜使用して、細胞を分離し、CT細胞マーカー(CD49f陽性、E-カドヘリン陽性等)の発現を指標として、CT細胞を単離することができる(特許第6400832号公報、Haider, S., et al., Stem Cell Reports 11, 537-551 (2018).) For example, CT cells isolated from the placenta can be used. Isolation of CT cells from the placenta can be achieved, for example, by appropriately using mechanical and/or enzymatic treatments on the placental tissue to separate the cells and determine the expression of CT cell markers (CD49f-positive, E-cadherin-positive, etc.). As an indicator, CT cells can be isolated (Patent No. 6400832, Haider, S., et al., Stem Cell Reports 11, 537-551 (2018).)
 ST細胞は、胎盤から単離したものであってもよく、TS細胞から誘導されたものであってもよい。胎盤からのST細胞の単離は、例えば、胎盤組織に機械的及び/又は酵素的処理を適宜使用して、細胞を分離し、ST細胞マーカー(Syndecan 1(SCD1)陽性、human chorionic gonadotropin(hCG)陽性等)の発現を指標として、ST細胞を単離することができる。
 TS細胞からST細胞を誘導する方法としては、例えば、国際公開第2020/250438号等に記載の方法等が挙げられる。
ST cells may be isolated from the placenta or derived from TS cells. Isolation of ST cells from the placenta, for example, is performed by appropriately using mechanical and/or enzymatic treatments on the placental tissue to separate the cells and detect ST cell markers (Syndecan 1 (SCD1) positive, human chorionic gonadotropin (hCG ) positive, etc.) can be used as an index to isolate ST cells.
Methods for inducing ST cells from TS cells include, for example, the methods described in International Publication No. 2020/250438 and the like.
 EVT細胞は、胎盤から単離したものであってもよく、TS細胞から誘導されたものであってもよい。胎盤からのEVT細胞の単離は、例えば、胎盤組織に機械的及び/又は酵素的処理を適宜使用して、細胞を分離し、EVT細胞マーカー(HLA-G陽性等)の発現を指標として、EVT細胞を単離することができる。
 TS細胞からEVT細胞を誘導する方法としては、例えば、国際公開第2020/250438号等に記載の方法等が挙げられる。
EVT cells may be isolated from placenta or may be derived from TS cells. Isolation of EVT cells from the placenta can be achieved, for example, by appropriately using mechanical and/or enzymatic treatment on the placental tissue to separate the cells, and using the expression of an EVT cell marker (such as HLA-G positive) as an index, EVT cells can be isolated.
Methods for inducing EVT cells from TS cells include, for example, the methods described in International Publication No. 2020/250438.
 因子用流路は、胎盤細胞と相互作用し得る因子を存在させるための流路である。「胎盤細胞と相互作用し得る因子」とは、胎盤細胞との相互作用が評価される因子をいう。胎盤細胞と相互作用し得る因子(以下、「相互作用評価因子」ともいう)は、胎盤細胞と相互作用することが既知である因子であってもよく、胎盤細胞と相互作用することが未知である因子であってもよい。相互作用評価因子は、細胞であってもよく、生体物質であってもよく、生体外物質であってもよい。相互作用評価因子としては、例えば、血管内皮細胞(例えば、ヒト臍帯静脈内皮細胞(Human Umbilical Vein Endothelial Cells:HUVEC))、各種ホルモン、各種サイトカイン、各種薬剤、免疫細胞等が挙げられる。 The factor channel is a channel for the presence of factors that can interact with placental cells. A "factor capable of interacting with placental cells" refers to a factor whose interaction with placental cells is evaluated. Factors that can interact with placental cells (hereinafter also referred to as "interaction evaluation factors") may be factors that are known to interact with placental cells, or factors that are unknown to interact with placental cells. It can be a factor. The interaction evaluation factor may be a cell, a biological substance, or an ex vivo substance. Examples of interaction evaluation factors include vascular endothelial cells (eg, human umbilical vein endothelial cells (HUVEC)), various hormones, various cytokines, various drugs, immune cells, and the like.
<第1実施形態>
 図1A~図4Bに、第1実施形態の胎盤細胞培養デバイス1の一例を示す。本実施形態では、胎盤細胞培養部と因子用流路との仕切り部材として、空隙率50~90%のメッシュシートが用いられる。図1Aは、胎盤細胞培養デバイス1の斜視図である。図1Bは、胎盤細胞培養デバイス1のB-B切断線による断面図である。図1Cは、胎盤細胞培養デバイス1のC-C切断線のる断面図である。図2は、胎盤細胞培養デバイス1の分解図である。
<First Embodiment>
1A to 4B show an example of the placental cell culture device 1 of the first embodiment. In this embodiment, a mesh sheet with a porosity of 50 to 90% is used as a partition member between the placental cell culture portion and the factor channel. FIG. 1A is a perspective view of placental cell culture device 1. FIG. FIG. 1B is a cross-sectional view of the placental cell culture device 1 taken along line BB. FIG. 1C is a cross-sectional view of the placental cell culture device 1 taken along line CC. FIG. 2 is an exploded view of the placental cell culture device 1. FIG.
 胎盤細胞培養デバイス1は、第1基板10、第2基板20、メッシュシート30、および薄膜シート40から構成されている。胎盤細胞培養デバイス1は、第2基板20、薄膜シート40、メッシュシート30、および第1基板10がこの順で積層されて、形成されている。 The placental cell culture device 1 is composed of a first substrate 10, a second substrate 20, a mesh sheet 30, and a thin film sheet 40. Placental cell culture device 1 is formed by laminating second substrate 20, thin film sheet 40, mesh sheet 30, and first substrate 10 in this order.
 胎盤細胞培養デバイス1は、中央流路21、第1サイド流路22a、第2サイド流路22bの各流路を備えている。胎盤細胞培養デバイス1は、培養液等の導入/排出ポートとして、第1ポートP1、第2ポートP2、第3ポートP3、第4ポートP4、第5ポートP5、および第6ポートP6を備えている。第1ポートP1は、第1ポート流路p1により第1サイド流路22aに接続している。第2ポートP2は、第2ポート流路p2により第1サイド流路22aに接続している。第3ポートP3は、第3ポート流路p3により第2サイド流路22bに接続している。第4ポートP4は、第4ポート流路p4により第2サイド流路22bに接続している。第5ポートP5および第6ポートP6は、中央流路21に接続している。第5ポートP5は中央流路21の一端に設けられており、第6ポートP6は中央流路21の他端に設けられている。 The placental cell culture device 1 includes a central channel 21, a first side channel 22a, and a second side channel 22b. The placental cell culture device 1 is provided with a first port P1, a second port P2, a third port P3, a fourth port P4, a fifth port P5, and a sixth port P6 as introduction/exhaust ports for culture medium or the like. there is The first port P1 is connected to the first side flow path 22a through the first port flow path p1. The second port P2 is connected to the first side flow path 22a through a second port flow path p2. The third port P3 is connected to the second side flow path 22b through a third port flow path p3. The fourth port P4 is connected to the second side flow path 22b through a fourth port flow path p4. The fifth port P5 and sixth port P6 are connected to the central channel 21 . The fifth port P5 is provided at one end of the central flow passage 21, and the sixth port P6 is provided at the other end of the central flow passage 21. As shown in FIG.
 第1ポートP1は、第1基板10に設けられた貫通孔P1aと第2基板20に設けられた凹部P1bとから構成される。第2ポートP2は、第1基板10に設けられた貫通孔P2aと第2基板20に設けられた凹部P2bとから構成される。第3ポートP3は、第1基板10に設けられた貫通孔P3aと第2基板20に設けられた凹部P3bとから構成される。第4ポートP4は、第1基板10に設けられた貫通孔P4aと第2基板20に設けられた凹部P4bとから構成される。第5ポートP5は、第1基板10に設けられた貫通孔P5aと第2基板20に設けられた凹部P5bとから構成される。第6ポートP6は、第1基板10に設けられた貫通孔P6aと第2基板20に設けられた凹部P6bとから構成される。
 中央流路21、第1ポート流路p1、第2ポート流路p2、第3ポート流路p3、および第4ポート流路p4は、第2基板20に設けられている。
The first port P1 is composed of a through hole P1a provided in the first substrate 10 and a recess P1b provided in the second substrate 20. As shown in FIG. The second port P2 is composed of a through hole P2a provided in the first substrate 10 and a recess P2b provided in the second substrate 20. As shown in FIG. The third port P3 is composed of a through hole P3a provided in the first substrate 10 and a recess P3b provided in the second substrate 20. As shown in FIG. The fourth port P4 is composed of a through hole P4a provided in the first substrate 10 and a recess P4b provided in the second substrate 20. As shown in FIG. The fifth port P5 is composed of a through hole P5a provided in the first substrate 10 and a recess P5b provided in the second substrate 20. As shown in FIG. The sixth port P6 is composed of a through hole P6a provided in the first substrate 10 and a recess P6b provided in the second substrate 20. As shown in FIG.
The central channel 21 , the first port channel p<b>1 , the second port channel p<b>2 , the third port channel p<b>3 , and the fourth port channel p<b>4 are provided on the second substrate 20 .
 胎盤細胞培養デバイス1においては、中央流路21は、因子用流路として機能する。因子用流路である中央流路21の上部には、胎盤細胞培養部12が設けられている。胎盤細胞培養部12は、第1基板10に設けられた中央ホール11により側面部が形成されており、メッシュシート30および薄膜シート40により底面部が形成されている。胎盤細胞培養部12と中央流路21とは、メッシュシート30を介して隣接している。胎盤細胞培養デバイス1において、メッシュシート30は、胎盤細胞培養部12と因子用流路(中央流路21)とを仕切る仕切り部材として機能する。 In the placental cell culture device 1, the central channel 21 functions as a factor channel. Placental cell culture section 12 is provided above central channel 21, which is a channel for factors. The placental cell culture portion 12 has a side portion formed by the central hole 11 provided in the first substrate 10 , and a bottom portion formed by the mesh sheet 30 and the thin film sheet 40 . Placental cell culture section 12 and central channel 21 are adjacent to each other with mesh sheet 30 interposed therebetween. In the placental cell culture device 1, the mesh sheet 30 functions as a partition member that separates the placental cell culture section 12 and the channel for factor (central channel 21).
(第1基板)
 第1基板10には、貫通孔P1a~P6a、および中央ホール11が設けられている。貫通孔P1a~P6aは、第2基板20に積層した際に、第2基板20の凹部P1b~P6bとそれぞれ重なる位置に形成されている。
(First substrate)
The first substrate 10 is provided with through holes P1a to P6a and a central hole 11. As shown in FIG. The through holes P1a to P6a are formed at positions that overlap with the recessed portions P1b to P6b of the second substrate 20, respectively, when stacked on the second substrate 20. As shown in FIG.
 中央ホール11は、第2基板20の略中央に設けられた貫通孔である。胎盤細胞培養デバイス1において、中央ホール11は、メッシュシート30および薄膜シート40とともに、胎盤細胞培養部12を形成する。中央ホール11の形状は特に限定されない。中央ホールの平面形状としては、例えば、円形状、楕円形状、多角形状(四角形状、五角形状、六角形状等)等が挙げられる。中央ホール11の大きさは、特に限定されないが、例えば、最小径および最大径のいずれも、1~20mmが挙げられる。中央ホール11の大きさは、例えば、最小径および最大径のいずれも、2mm以上が好ましく、3mm以上がより好ましく、4mm以上がさらに好ましく、5mm以上が特に好ましい。中央ホール11の大きさは、例えば、最小径およbび最大径のいずれも、18mm以下が好ましく、15mm以下がより好ましく、12mm以下がさらに好ましく、10mm以下が特に好ましい。 The central hole 11 is a through hole provided substantially in the center of the second substrate 20 . In placental cell culture device 1 , central hole 11 forms placental cell culture part 12 together with mesh sheet 30 and thin film sheet 40 . The shape of the central hole 11 is not particularly limited. The planar shape of the central hole includes, for example, a circular shape, an elliptical shape, a polygonal shape (square shape, pentagonal shape, hexagonal shape, etc.), and the like. Although the size of the central hole 11 is not particularly limited, for example, both the minimum diameter and the maximum diameter are 1 to 20 mm. The size of the central hole 11 is preferably 2 mm or more, more preferably 3 mm or more, even more preferably 4 mm or more, and particularly preferably 5 mm or more, for both the minimum diameter and the maximum diameter. The size of the central hole 11 is preferably 18 mm or less, more preferably 15 mm or less, still more preferably 12 mm or less, and particularly preferably 10 mm or less, for each of the minimum diameter, b, and maximum diameter, for example.
 第1基板10の厚みは、特に限定されないが、例えば、1~50mmが挙げられる。第1基板10の厚みは、例えば、2mm以上が好ましく、3mm以上がより好ましく、4mm以上がさらに好ましく、5mm以上が特に好ましい。第1基板10の厚みは、例えば、40mm以下が好ましく、30mm以下がより好ましく、20mm以下がさらに好ましく、15mm以下が特に好ましい。 Although the thickness of the first substrate 10 is not particularly limited, it may be 1 to 50 mm, for example. For example, the thickness of the first substrate 10 is preferably 2 mm or more, more preferably 3 mm or more, still more preferably 4 mm or more, and particularly preferably 5 mm or more. For example, the thickness of the first substrate 10 is preferably 40 mm or less, more preferably 30 mm or less, even more preferably 20 mm or less, and particularly preferably 15 mm or less.
(第2基板)
 図4Aは、第2基板20の上面図である。図4Bは、図4Aに示す第2基板20の上面図における破線で囲まれた部分Bの拡大図である。
(Second substrate)
4A is a top view of the second substrate 20. FIG. FIG. 4B is an enlarged view of a portion B surrounded by a dashed line in the top view of the second substrate 20 shown in FIG. 4A.
 第2基板20には、凹部P1b~P6b、第1ポート流路p1~第4ポート流路p4、中央流路21、第1サイド流路22a、および第2サイド流路22bが形成されている。
 凹部P1b~P6bは、第1基板10を積層した際に、第1基板10の貫通孔P1a~P6aとそれぞれ重なる位置に形成されている。
The second substrate 20 is formed with recesses P1b to P6b, a first port channel p1 to a fourth port channel p4, a central channel 21, a first side channel 22a, and a second side channel 22b. .
The recesses P1b to P6b are formed at positions overlapping the through holes P1a to P6a of the first substrate 10 when the first substrates 10 are stacked.
 中央流路21は、第2基板20の略中央部に形成されている。胎盤細胞培養デバイス1において、中央流路21は、相互作用評価因子を存在させる因子用流路として機能する。中央流路21は、第1基板10を積層した際に、第1基板10の中央ホール11と少なくとも一部が重なる位置に形成されている。中央流路21の両端には、凹部P5bおよびP6bが設けられている。 The central channel 21 is formed substantially in the center of the second substrate 20 . In the placental cell culture device 1 , the central channel 21 functions as a factor channel for allowing interaction evaluation factors to exist. The central flow path 21 is formed at a position at least partially overlapping with the central hole 11 of the first substrate 10 when the first substrates 10 are laminated. Both ends of the central flow path 21 are provided with recesses P5b and P6b.
 中央流路21の両サイドには、第1サイド流路22aおよび第2サイド流路22bがそれぞれ形成されている。第1サイド流路22aの一端には第1ポート流路p1が接続し、第1サイド流路22aの他端には第2ポート流路p2が接続している。第2サイド流路22bの一端には第3ポート流路p3が接続し、第2サイド流路22bの他端には第4ポート流路p4が接続している。第1サイド流路22a及び第2サイド流路22bは、中央流路21の全長に渡って両サイドに形成されていてもよく、中央流路21の一部の両サイドに形成されてもよい。第1サイド流路22a及び第2サイド流路22bが、中央流路21の一部の両サイドに形成される場合、少なくとも中央流路21が胎盤細胞培養部12と接する部分の両サイドに、第1サイド流路22a及び第2サイド流路22bがそれぞれ形成されていることが好ましい。 A first side channel 22a and a second side channel 22b are formed on both sides of the central channel 21, respectively. A first port flow path p1 is connected to one end of the first side flow path 22a, and a second port flow path p2 is connected to the other end of the first side flow path 22a. A third port flow path p3 is connected to one end of the second side flow path 22b, and a fourth port flow path p4 is connected to the other end of the second side flow path 22b. The first side flow channel 22a and the second side flow channel 22b may be formed on both sides over the entire length of the central flow channel 21, or may be formed on both sides of a portion of the central flow channel 21. . When the first side flow channel 22a and the second side flow channel 22b are formed on both sides of a part of the central flow channel 21, at least on both sides of the part where the central flow channel 21 contacts the placental cell culture section 12, It is preferable that the first side flow path 22a and the second side flow path 22b are formed respectively.
 中央流路21の幅は、特に限定されないが、例えば、500~5000μmが挙げられる。中央流路21の幅は、700μm以上が好ましく、800μm以上がより好ましく、1000μm以上がさらに好ましく、1200μm以上が特に好ましい。中央流路21の幅は、4000μm以下が好ましく、3000μm以下がより好ましく、2000μm以下がさらに好ましく、1800μm以下が特に好ましい。 Although the width of the central channel 21 is not particularly limited, it may be, for example, 500 to 5000 μm. The width of the central channel 21 is preferably 700 μm or more, more preferably 800 μm or more, still more preferably 1000 μm or more, and particularly preferably 1200 μm or more. The width of the central channel 21 is preferably 4000 μm or less, more preferably 3000 μm or less, even more preferably 2000 μm or less, and particularly preferably 1800 μm or less.
 第1サイド流路22aおよび第2サイド流路22bの幅は、特に限定されないが、例えば、500~3000μmが挙げられる。第1サイド流路22aおよび第2サイド流路22bの幅は、600μm以上が好ましく、700μm以上がより好ましく、800μm以上がさらに好ましく、900μm以上が特に好ましい。第1サイド流路22aおよび第2サイド流路22bの幅は、2500μm以下が好ましく、2000μm以下がより好ましく、1500μm以下がさらに好ましく、1200μm以下が特に好ましい。第1サイド流路22aおよび第2サイド流路22bは、互いに同じ幅であってもよく、互いに異なる幅であってもよい。 The widths of the first side flow channel 22a and the second side flow channel 22b are not particularly limited, but may be 500 to 3000 μm, for example. The width of the first side flow channel 22a and the second side flow channel 22b is preferably 600 μm or more, more preferably 700 μm or more, even more preferably 800 μm or more, and particularly preferably 900 μm or more. The width of the first side flow channel 22a and the second side flow channel 22b is preferably 2500 μm or less, more preferably 2000 μm or less, still more preferably 1500 μm or less, and particularly preferably 1200 μm or less. The first side flow channel 22a and the second side flow channel 22b may have the same width or different widths.
 中央流路21、第1サイド流路22a、および第2サイド流路22bの流路の高さ(深さ)は、特に限定されないが、例えば、50~1000μmが挙げられる。中央流路21、第1サイド流路22a、および第2サイド流路22bの流路の高さ(深さ)は、60μm以上が好ましく、80μm以上がより好ましく、100μm以上がさらに好ましく、150μm以上が特に好ましい。中央流路21、第1サイド流路22a、および第2サイド流路22bの流路の高さ(深さ)は、800μm以下が好ましく、600μm以下がより好ましく、500μm以下がさらに好ましく、300μm以下が特に好ましい。
 中央流路21、第1サイド流路22a、および第2サイド流路22bの流路の高さ(深さ)は、互いに略同じであることが好ましい。
The height (depth) of the central flow channel 21, the first side flow channel 22a, and the second side flow channel 22b is not particularly limited, but is, for example, 50 to 1000 μm. The height (depth) of the central flow channel 21, the first side flow channel 22a, and the second side flow channel 22b is preferably 60 μm or more, more preferably 80 μm or more, even more preferably 100 μm or more, and 150 μm or more. is particularly preferred. The height (depth) of the central flow channel 21, the first side flow channel 22a, and the second side flow channel 22b is preferably 800 µm or less, more preferably 600 µm or less, even more preferably 500 µm or less, and 300 µm or less. is particularly preferred.
The height (depth) of the central flow channel 21, the first side flow channel 22a, and the second side flow channel 22b are preferably substantially the same.
 中央流路21において、第1サイド流路22aおよび第2サイド流路22bが隣接する部分の長さは、特に限定されないが、例えば、500~30000μmが挙げられる。前記長さは、例えば、600μ以上が好ましく、700μm以上がより好ましく、800μm以上がさらに好ましく、900μm以上が特に好ましい。前記長さは、例えば、25000μm以下が好ましく、200000μm以下がより好ましく、15000μm以下がさらに好ましく、10000μm以下が特に好ましい。 In the central flow path 21, the length of the portion where the first side flow path 22a and the second side flow path 22b are adjacent is not particularly limited, but for example, it is 500 to 30000 μm. For example, the length is preferably 600 μm or more, more preferably 700 μm or more, still more preferably 800 μm or more, and particularly preferably 900 μm or more. For example, the length is preferably 25000 μm or less, more preferably 200000 μm or less, even more preferably 15000 μm or less, and particularly preferably 10000 μm or less.
 中央流路21と第1サイド流路22aとは、仕切り部材23aにより仕切られている。中央流路21と第2サイド流路22bとは、仕切り部材23bにより仕切られている。仕切り部材23aおよび仕切り部材23bは、複数のマイクロポスト24により構成されている。仕切り部材23a及び仕切り部材23bを構成する複数のマイクロポスト24は、所定の間隔で配置されている。仕切り部材23a及び仕切り部材23bにおいて、マイクロポスト24が遮蔽部を構成し、マイクロポスト24間の間隙が連通部を構成している。
 マイクロポスト24の形状は特に限定されない。マイクロポスト24は、多角柱形状(三角柱、四角柱等)であってもよく、円柱形状であってもよい。マイクロポスト24は、例えば、台形柱形状である。マイクロポスト24は、第1サイド流路22a側または第2サイド流路22b側の幅w2の方が、中央流路21側の幅w1よりも大きいことが好ましい。これにより、中央流路21に充填された液体が、第1サイド流路22aおよび第2サイド流路22bに漏出することを抑制することができる。
The central channel 21 and the first side channel 22a are partitioned by a partition member 23a. The central channel 21 and the second side channel 22b are partitioned by a partition member 23b. The partitioning member 23a and the partitioning member 23b are composed of a plurality of microposts 24. As shown in FIG. A plurality of microposts 24 constituting the partition member 23a and the partition member 23b are arranged at predetermined intervals. In the partitioning member 23a and the partitioning member 23b, the microposts 24 constitute shielding portions, and the gaps between the microposts 24 constitute communicating portions.
The shape of the microposts 24 is not particularly limited. The microposts 24 may have a polygonal prism shape (triangular prism, square prism, etc.) or a cylindrical shape. The micropost 24 has, for example, a trapezoidal prism shape. It is preferable that the width w2 of the microposts 24 on the first side channel 22a side or the second side channel 22b side is larger than the width w1 on the central channel 21 side. As a result, the liquid filled in the central flow path 21 can be prevented from leaking into the first side flow path 22a and the second side flow path 22b.
 マイクロポスト24の大きさは、特に限定されないが、中央流路21側の幅w1としては、例えば、20~300μmが挙げられる。幅w1は、例えば、25μm以上が好ましく、30μm以上がより好ましく、35μm以上がさらに好ましく、40μm以上が特に好ましい。幅w1は、例えば、200μm以下が好ましく、150μm以下がより好ましく、100μm以下がさらに好ましく、80μm以下が特に好ましい。
 第1サイド流路22a側または第2サイド流路22b側の幅w2としては、例えば、50~500μmが挙げられる。幅w2は、例えば、60μm以上が好ましく、70μm以上がより好ましく、80μm以上がさらに好ましく、90μm以上が特に好ましい。幅w2は、例えば、400μm以下が好ましく、300μm以下がより好ましく、200μm以下がさらに好ましく、180μm以下が特に好ましい。
 マイクロポスト24の長さlとしては、50~800μmが挙げられる。長さlは、例えば、60μm以上が好ましく、65μm以上がより好ましく、70μm以上がさらに好ましく、75μm以上が特に好ましい。長さlは、例えば、600μm以下が好ましく、500μm以下がより好ましく、400μm以下がさらに好ましく、300μm以下が特に好ましい。
 マイクロポスト24の高さは、中央流路21の高さ(深さ)と同じであることが好ましい。
The size of the microposts 24 is not particularly limited, but the width w1 on the side of the central channel 21 is, for example, 20 to 300 μm. For example, the width w1 is preferably 25 μm or more, more preferably 30 μm or more, still more preferably 35 μm or more, and particularly preferably 40 μm or more. The width w1 is, for example, preferably 200 μm or less, more preferably 150 μm or less, still more preferably 100 μm or less, and particularly preferably 80 μm or less.
The width w2 on the side of the first side flow path 22a or the side of the second side flow path 22b is, for example, 50 to 500 μm. The width w2 is, for example, preferably 60 μm or more, more preferably 70 μm or more, even more preferably 80 μm or more, and particularly preferably 90 μm or more. The width w2 is, for example, preferably 400 μm or less, more preferably 300 μm or less, still more preferably 200 μm or less, and particularly preferably 180 μm or less.
The length l of the microposts 24 may be 50-800 μm. For example, the length l is preferably 60 μm or more, more preferably 65 μm or more, still more preferably 70 μm or more, and particularly preferably 75 μm or more. For example, the length l is preferably 600 μm or less, more preferably 500 μm or less, even more preferably 400 μm or less, and particularly preferably 300 μm or less.
The height of the microposts 24 is preferably the same as the height (depth) of the central channel 21 .
 2つのマイクロポスト24間の最短距離dは、仕切り部材における連通部の最小幅に該当する。最短距離dとしては、例えば、30~500μmが挙げられる。最短距離dは、例えば、40μm以上が好ましく、50μm以上がより好ましく、60μm以上がさらに好ましく、70μm以上が特に好ましい。最短距離dは、例えば、400μm以下が好ましく、350μm以下がより好ましく、300μm以下がさらに好ましく、250μm以下が特に好ましい。 The shortest distance d between two microposts 24 corresponds to the minimum width of the communicating portion of the partition member. The shortest distance d is, for example, 30 to 500 μm. The shortest distance d is, for example, preferably 40 μm or longer, more preferably 50 μm or longer, still more preferably 60 μm or longer, and particularly preferably 70 μm or longer. The shortest distance d is, for example, preferably 400 μm or less, more preferably 350 μm or less, still more preferably 300 μm or less, and particularly preferably 250 μm or less.
 2つのマイクロポスト24間の最長距離は、仕切り部材における連通部の最大幅に該当する。最長距離としては、例えば、50~500μmが挙げられる。最長距離は、例えば、60μm以上が好ましく、70μm以上がより好ましく、80μm以上がさらに好ましく、90μm以上が特に好ましい。最長距離は、例えば、400μm以下が好ましく、350μm以下がより好ましく、300μm以下がさらに好ましく、250μm以下が特に好ましい。 The longest distance between two microposts 24 corresponds to the maximum width of the communicating portion of the partition member. Examples of the longest distance include 50 to 500 μm. The longest distance is, for example, preferably 60 μm or longer, more preferably 70 μm or longer, still more preferably 80 μm or longer, and particularly preferably 90 μm or longer. The longest distance is, for example, preferably 400 μm or less, more preferably 350 μm or less, even more preferably 300 μm or less, and particularly preferably 250 μm or less.
 中央流路21、第1サイド流路22a、および第2サイド流路22bの流路表面は、疎水性であることが好ましい。流路表面が疎水性である場合、いずれか1つの流路に液体を充填したときに、マイクロポスト24間に液体の表面張力が発生する。これにより、隣接する流路に液体が存在しない場合、隣接する流路への液体の漏出が防止される。 The channel surfaces of the central channel 21, the first side channel 22a, and the second side channel 22b are preferably hydrophobic. If the surface of the channel is hydrophobic, surface tension of the liquid is generated between the microposts 24 when any one of the channels is filled with liquid. This prevents liquid from leaking into the adjacent channel when there is no liquid in the adjacent channel.
 第2基板20の厚みは、特に限定されないが、例えば、0.1~50mmが挙げられる。第2基板20の厚みは、例えば、0.3mm以上が好ましく、0.5mm以上がより好ましく、0.6mm以上がさらに好ましく、0.8mm以上が特に好ましい。第2基板20の厚みは、例えば、40mm以下が好ましく、20mm以下がより好ましく、10mm以下がさらに好ましく、5mm以下が特に好ましい。 Although the thickness of the second substrate 20 is not particularly limited, it may be 0.1 to 50 mm, for example. For example, the thickness of the second substrate 20 is preferably 0.3 mm or more, more preferably 0.5 mm or more, still more preferably 0.6 mm or more, and particularly preferably 0.8 mm or more. For example, the thickness of the second substrate 20 is preferably 40 mm or less, more preferably 20 mm or less, even more preferably 10 mm or less, and particularly preferably 5 mm or less.
 第1基板10および第2基板20の材質は、特に限定されないが、生体適合性が高く、且つ酸素透過性が高い材質が好ましい。「酸素透過性」とは、分子状の酸素を透過する性質を意味する。第1基板10及び第2基板20に酸素透過性の材質を用いることにより、各流路内まで酸素が到達し得る。酸素透過率としては、例えば、約100~5000cm/m・24h・atmが挙げられる。酸素透過率としては、約1100~3000cm/m・24h・atm、又は約1250~2750cm/m・24h・atmが好ましい。「cm/m・24h・atm」は、1気圧の環境下において、24時間で透過する酸素の1mあたりの容量(cm)を表している。
 酸素透過性の材料としては、酸素透過性ポリマーが挙げられる。酸素透過性ポリマーとしては、例えば、フッ素樹脂、シリコーン(例えば、ポリジメチルシロキサン(PDMS)等)等が挙げられる。中でも、酸素透過性ポリマーは、PDMSが好ましい。
Materials for the first substrate 10 and the second substrate 20 are not particularly limited, but materials having high biocompatibility and high oxygen permeability are preferable. "Oxygen permeability" means the property of being permeable to molecular oxygen. By using an oxygen-permeable material for the first substrate 10 and the second substrate 20, oxygen can reach the inside of each channel. The oxygen permeability is, for example, about 100 to 5000 cm 3 /m 2 ·24 h·atm. The oxygen permeability is preferably about 1100-3000 cm 3 /m 2 ·24 h·atm, or about 1250-2750 cm 3 /m 2 ·24 h·atm. "cm 3 /m 2 ·24 h·atm" represents the capacity (cm 3 ) of oxygen per 1 m 2 that permeates in 24 hours under an environment of 1 atmospheric pressure.
Oxygen permeable materials include oxygen permeable polymers. Examples of oxygen-permeable polymers include fluororesins and silicones (eg, polydimethylsiloxane (PDMS), etc.). Among them, the oxygen-permeable polymer is preferably PDMS.
 第1基板10および第2基板20は、フォトリソグラフィー法、ソフトリソグラフィー法、マイクロコンタクトプリンティング法、マイクロフルイディスク法、ステンシル法等の公知の方法を用いて作製することができる。例えば、フォトリソグラフィー法を用いて、第1基板10および第2基板20の鋳型を作製し、前記鋳型を用いてソフトリソグラフィー法により第1基板10および第2基板20を作製することができる。 The first substrate 10 and the second substrate 20 can be produced using known methods such as photolithography, soft lithography, microcontact printing, microfluidic, and stencil methods. For example, a mold for the first substrate 10 and the second substrate 20 can be produced using a photolithography method, and the first substrate 10 and the second substrate 20 can be produced using the mold using a soft lithography method.
 より具体的には、シリコンウェハー等のウェハー上に、スピンコート法等によりフォトレジストを塗布してフォトレジスト膜を形成する。次いで、第1基板10用または第2基板20用のフォトマスクを介して、フォトレジスト膜を露光する。次いで、現像液により、未露光部のフォトレジスト膜を除去し、第1基板10用鋳型または第2基板20用鋳型を得る。
 次に、作製した第1基板10用鋳型または第2基板20用鋳型に、硬化性組成物を流し込んで硬化させる。硬化物を鋳型から取り出し、適宜加工することにより、第1基板10または第2基板20を得ることができる。
More specifically, a photoresist film is formed by coating a wafer such as a silicon wafer with a photoresist by spin coating or the like. Next, the photoresist film is exposed through a photomask for the first substrate 10 or the second substrate 20 . Next, the unexposed portion of the photoresist film is removed with a developer to obtain the mold for the first substrate 10 or the mold for the second substrate 20 .
Next, the curable composition is poured into the prepared mold for the first substrate 10 or the mold for the second substrate 20 and cured. The first substrate 10 or the second substrate 20 can be obtained by removing the cured product from the mold and processing it appropriately.
(メッシュシート)
 胎盤細胞培養デバイス1において、胎盤細胞培養部12と、因子用流路である中央流路21とは、少なくとも一部がメッシュシート30により仕切られている。胎盤細胞培養デバイス1において、メッシュシート30は、胎盤細胞培養部12と因子用流路である中央流路21とを仕切る仕切り部材として機能する。
 胎盤細胞培養部12と因子用流路とを仕切る仕切り部材は、遮蔽部と連通部とが交互に配置された構成をしている。仕切り部材において、連通部の最小幅は、30~500μmである。仕切り部材において、連通部の最大幅は、例えば、50~500μmである。連通部の最小幅および最大幅が前記範囲内であることにより、胎盤細胞が容易に連通部を通過することができる。また、第2基板20の中央流路21に充填した液体が、胎盤細胞培養部12に漏出することを防止することができる。
(mesh sheet)
In the placental cell culture device 1 , the placental cell culture portion 12 and the central channel 21 as a channel for factors are at least partially separated by the mesh sheet 30 . In the placental cell culture device 1, the mesh sheet 30 functions as a partition member that separates the placental cell culture portion 12 and the central channel 21, which is the channel for factors.
The partition member that separates the placental cell culture section 12 and the factor channel has a structure in which shielding sections and communicating sections are alternately arranged. In the partition member, the minimum width of the communicating portion is 30 to 500 μm. In the partition member, the maximum width of the communicating portion is, for example, 50 to 500 μm. When the minimum width and the maximum width of the communicating portion are within the above range, placental cells can easily pass through the communicating portion. In addition, it is possible to prevent the liquid filled in the central channel 21 of the second substrate 20 from leaking into the placental cell culture section 12 .
 図3は、メッシュシート30を示す。メッシュシート30は、線状部材31が網目状に配置されて構成されている。メッシュシート30において、線状部材31が仕切り部材における遮蔽部を構成し、開口部32が仕切り部材における連通部を構成する。開口部32は、長方形状をしている。メッシュシート30では、開口部32を形成する長方形の対角線の長さが、仕切り部材における連通部の最大幅に該当する。連通部の最大幅は、120μm以上が好ましく、130μm以上がより好ましく、140μm以上がさらに好ましく、150μm以上が特に好ましい。連通部の最大幅は、400μm以下が好ましく、300μm以下がより好ましく、250μm以下がさらに好ましく、200μm以下が特に好ましい。
 メッシュシート30では、開口部32を形成する長方形の短辺の長さW1が、仕切り部材における連通部の最小幅に該当する。連通部の最小幅は、30~500μmの範囲であれば、特に限定されない。連通部の最小幅が前記範囲内であることにより、胎盤細胞の移動効率が良好に維持される。連通部の最小幅は、例えば、40μm以上が好ましく、50μm以上がより好ましく、60μm以上がさらに好ましく、70μm以上が特に好ましい。連通部の最小幅の上限値は、500μm以下である。連通部の最小幅は、400μm以下が好ましく、300μm以下がより好ましく、200μm以下がさらに好ましく、150μm以下が特に好ましい。
 開口部32を形成する長方形の長辺の長さW2は、例えば、80μm以上が好ましく、100μm以上がより好ましく、120μm以上がさらに好ましく、150μm以上が特に好ましい。長辺の長さW2の上限値は、500μm以下である。長辺W2は、400μm以下が好ましく、300μm以下がより好ましく、250μm以下がさらに好ましく、200μm以下が特に好ましい。
 仕切り部材であるメッシュシートの開口部の形状は、開口部32のような長方形状に限定されない。メッシュシートの開口部の形状は、例えば、正方形状、ひし形状、平行四辺形状等であってもよい。
FIG. 3 shows a mesh sheet 30. FIG. The mesh sheet 30 is configured by arranging linear members 31 in a mesh pattern. In the mesh sheet 30, the linear member 31 constitutes the shielding portion of the partition member, and the opening 32 constitutes the communicating portion of the partition member. The opening 32 has a rectangular shape. In the mesh sheet 30, the length of the diagonals of the rectangles forming the openings 32 corresponds to the maximum width of the communicating portion of the partition member. The maximum width of the communicating portion is preferably 120 μm or more, more preferably 130 μm or more, still more preferably 140 μm or more, and particularly preferably 150 μm or more. The maximum width of the communicating portion is preferably 400 μm or less, more preferably 300 μm or less, still more preferably 250 μm or less, and particularly preferably 200 μm or less.
In the mesh sheet 30, the length W1 of the short sides of the rectangles forming the openings 32 corresponds to the minimum width of the communicating portion of the partition member. The minimum width of the communicating portion is not particularly limited as long as it is in the range of 30-500 μm. When the minimum width of the communicating portion is within the above range, the placental cell migration efficiency is favorably maintained. The minimum width of the communicating portion is, for example, preferably 40 μm or more, more preferably 50 μm or more, still more preferably 60 μm or more, and particularly preferably 70 μm or more. The upper limit of the minimum width of the communicating portion is 500 μm or less. The minimum width of the communicating portion is preferably 400 μm or less, more preferably 300 μm or less, still more preferably 200 μm or less, and particularly preferably 150 μm or less.
The length W2 of the long side of the rectangle forming the opening 32 is, for example, preferably 80 μm or longer, more preferably 100 μm or longer, even more preferably 120 μm or longer, and particularly preferably 150 μm or longer. The upper limit of the length W2 of the long side is 500 μm or less. The long side W2 is preferably 400 μm or less, more preferably 300 μm or less, still more preferably 250 μm or less, and particularly preferably 200 μm or less.
The shape of the opening of the mesh sheet, which is the partition member, is not limited to a rectangular shape like the opening 32 . The shape of the openings of the mesh sheet may be, for example, a square shape, a rhombus shape, a parallelogram shape, or the like.
 メッシュシート30は、空隙率(開口率)が50~90%である。「空隙率(開口率)」とは、メッシュシート30全体の面積に対する開口部の面積の割合をいう。例えば、「空隙率(%)=(開口部32の短辺W1×開口部32の長辺W2×開口部32の数)/メッシュシート30の面積×100」で表される式により空隙率を求めることができる。メッシュシート30は、前記のような高い空隙率を有するため、胎盤細胞が、開口部32を容易に通過することができる。そのため、胎盤細胞培養部から中央流路21への胎盤細胞の移動効率が高い。メッシュシート30の空隙率(開口率)は、60%以上が好ましく、70%以上がより好ましく、80%以上がさらに好ましい。 The mesh sheet 30 has a porosity (opening ratio) of 50 to 90%. “Porosity (opening ratio)” refers to the ratio of the area of the openings to the area of the entire mesh sheet 30 . For example, the porosity (%) is expressed by the formula: "short side W1 of opening 32 x long side W2 of opening 32 x number of openings 32)/area of mesh sheet 30 x 100". can ask. Since the mesh sheet 30 has a high porosity as described above, placental cells can easily pass through the openings 32 . Therefore, the transfer efficiency of placental cells from the placental cell culture section to the central channel 21 is high. The porosity (opening ratio) of the mesh sheet 30 is preferably 60% or more, more preferably 70% or more, and even more preferably 80% or more.
 メッシュシートの材質は、特に限定されないが、生体適合性が高い材質が好ましい。メッシュシートの材質としては、例えば、合成樹脂、天然繊維、ガラス繊維、カーボン繊維、セラミックス、金属等が挙げられる。合成樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリエステル、フッ素系樹脂、ポリアミド等の水不溶性の樹脂が挙げられる。天然繊維としては、例えば、綿、麻、竹、紙などの植物性繊維;羊毛、絹などの動物性繊維等が挙げられる。メッシュシートは、合成樹脂製繊維と天然繊維とを混紡したものであってもよい。セラミックスとしては、アルミナ(Al)等が挙げられる。金属としては、ステンレス、鋼、アルミニウム、金、プラチナ等が挙げられる。また、これらの材質に修飾を加えたものであってもよい。そのような修飾としては、例えば、親水化処理、細胞外マトリクス(例えば、コラーゲン、フィブロネクチン等)等によるコーティング等が挙げられる。 The material of the mesh sheet is not particularly limited, but a material with high biocompatibility is preferable. Examples of materials for the mesh sheet include synthetic resins, natural fibers, glass fibers, carbon fibers, ceramics, and metals. Examples of synthetic resins include water-insoluble resins such as polyethylene, polypropylene, polyester, fluororesin, and polyamide. Examples of natural fibers include vegetable fibers such as cotton, hemp, bamboo and paper; animal fibers such as wool and silk. The mesh sheet may be a blend of synthetic resin fibers and natural fibers. Ceramics include alumina (Al 2 O 3 ) and the like. Metals include stainless steel, steel, aluminum, gold, platinum and the like. Also, these materials may be modified. Examples of such modifications include hydrophilic treatment, coating with extracellular matrix (eg, collagen, fibronectin, etc.), and the like.
 メッシュシートは、線状部材が網目状に成形されたものであれば、特に限定されない。メッシュシートは、織物(シングルラッセル、ダブルラッセルのいずれでもよい)、編み物、交点溶着タイプ、押出成形シート(トリカルネット、ネトロンシート等)、パンチング加工等によりメッシュ状に成形されたものであってよい。 The mesh sheet is not particularly limited as long as the linear members are formed in a mesh shape. The mesh sheet is formed into a mesh shape by woven fabric (single raschel or double raschel), knitting, cross-point welding type, extruded sheet (trical net, netron sheet, etc.), punching processing, or the like. good.
(薄膜シート)
 胎盤細胞培養デバイス1では、薄膜シート40により、胎盤細胞培養部12と、第1サイド流路22aおよび第2サイド流路22bとが隔てられている。薄膜シート40は、薄膜開口部41を有している。胎盤細胞培養デバイス1において、薄膜シート40は、薄膜開口部41が中央流路21と重なるように、配置される。薄膜開口部41では、薄膜シート40を介することなく、中央ホール11と中央流路21とがメッシュシート30のみを介して隣接している。薄膜開口部41は、第2基板20における中央流路21に応じたサイズとすることができる。薄膜開口部41の幅は、中央流路21の幅よりも若干小さいことが好ましい。薄膜開口部41の幅は、例えば、100~3000μmが挙げられる。薄膜開口部41の幅は、200μm以上が好ましく、300μm以上がより好ましく、4000μm以上がさらに好ましく、450μm以上が特に好ましい。薄膜開口部41の幅は、2000μm以下が好ましく、1800μm以下がより好ましく、1600μm以下がさらに好ましく、1400μm以下が特に好ましい。
 薄膜開口部41の長さは、中央流路21の長さよりも短いことが好ましい。薄膜開口部41の長さは、例えば、500~10000μmが挙げられる。薄膜開口部41の長さは、例えば、1000μ以上が好ましく、1500μm以上がより好ましく、2000μm以上がさらに好ましく、2500μm以上が特に好ましい。薄膜開口部41の長さは、例えば、8000μ以下が好ましく、7000μm以下がより好ましく、6000μm以下がさらに好ましく、5000μm以下が特に好ましい。
(thin film sheet)
In the placental cell culture device 1, the thin film sheet 40 separates the placental cell culture section 12 from the first side channel 22a and the second side channel 22b. The thin film sheet 40 has thin film openings 41 . In placental cell culture device 1 , thin film sheet 40 is arranged such that thin film opening 41 overlaps central channel 21 . In the thin film opening 41 , the central hole 11 and the central channel 21 are adjacent to each other with only the mesh sheet 30 interposed therebetween without the thin film sheet 40 interposed therebetween. The membrane opening 41 can be sized according to the central channel 21 in the second substrate 20 . The width of the membrane opening 41 is preferably slightly smaller than the width of the central channel 21 . The width of the thin film opening 41 is, for example, 100 to 3000 μm. The width of the thin film opening 41 is preferably 200 μm or more, more preferably 300 μm or more, still more preferably 4000 μm or more, and particularly preferably 450 μm or more. The width of the thin film opening 41 is preferably 2000 μm or less, more preferably 1800 μm or less, still more preferably 1600 μm or less, and particularly preferably 1400 μm or less.
The length of membrane opening 41 is preferably shorter than the length of central channel 21 . The length of the thin film opening 41 is, for example, 500 to 10000 μm. The length of the thin film opening 41 is, for example, preferably 1000 μm or longer, more preferably 1500 μm or longer, even more preferably 2000 μm or longer, and particularly preferably 2500 μm or longer. For example, the length of the thin film opening 41 is preferably 8000 μm or less, more preferably 7000 μm or less, even more preferably 6000 μm or less, and particularly preferably 5000 μm or less.
 薄膜シート40の材質は、特に限定されないが、生体適合性の高い材質が好ましい。薄膜シート40の材質としては、例えば、ポリイミド、ポリエチレンテレフタレート(PET)、ポリスチレン、ポリエチレン、ポリプロピレン、ナイロン、ポリテトラフルオロエチレン(PTFE)、エチレン-テトラフルオロエチレン共重合体(ETFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、ポリジメチルシロキサン(PDMS)等が挙げられるが、これらに限定されない。薄膜シート40は、例えば、前記のような材料により形成された樹脂フィルムを用いることができる。 The material of the thin film sheet 40 is not particularly limited, but a material with high biocompatibility is preferable. Examples of materials for the thin film sheet 40 include polyimide, polyethylene terephthalate (PET), polystyrene, polyethylene, polypropylene, nylon, polytetrafluoroethylene (PTFE), ethylene-tetrafluoroethylene copolymer (ETFE), tetrafluoroethylene- Hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), polydimethylsiloxane (PDMS), and the like, but are not limited to these. For the thin film sheet 40, for example, a resin film made of the above materials can be used.
 胎盤細胞培養デバイス1は、第2基板20、薄膜シート40、メッシュシート30、および第1基板10を、この順で積層し、接着することにより、作製することができる。胎盤細胞培養デバイス1の組み立ての際には、第1基板10の貫通孔P1a~Pa6と、第2基板20の凹部P1b~P6bとが、それぞれ一致するようにする。また、第2基板20の中央流路21と、薄膜シート40の薄膜開口部41とが少なくとも部分的に一致するようにする。第1基板10の中央ホール11と、第2基板20の中央流路21との少なくとも一部が、メッシュシート30を介して隣接するようにする。 The placental cell culture device 1 can be produced by laminating and bonding the second substrate 20, the thin film sheet 40, the mesh sheet 30, and the first substrate 10 in this order. When assembling the placental cell culture device 1, the through holes P1a to Pa6 of the first substrate 10 and the recesses P1b to P6b of the second substrate 20 are aligned with each other. Also, the central channel 21 of the second substrate 20 and the thin film opening 41 of the thin film sheet 40 are at least partially aligned. At least part of the central hole 11 of the first substrate 10 and the central channel 21 of the second substrate 20 are arranged to be adjacent to each other with the mesh sheet 30 interposed therebetween.
 胎盤細胞培養デバイス1の組み立てに際し、第1基板10および第2基板20の表面を活性化して接着性を高めてもよい。例えば、第1基板10および第2基板20がPDMS製である場合、酸素プラズマ処理により表面を活性化して、接着性を高めることができる。この場合、組み立て後に、流路表面の疎水化処理を行うことが好ましい。第1基板10および第2基板20がPDMS製である場合、加熱処理(例えば、80℃、一晩)により、流路表面を含む基板表面を疎水化することができる。 When assembling the placental cell culture device 1, the surfaces of the first substrate 10 and the second substrate 20 may be activated to enhance adhesiveness. For example, if the first substrate 10 and the second substrate 20 are made of PDMS, the surfaces can be activated by oxygen plasma treatment to enhance adhesion. In this case, it is preferable to perform a hydrophobizing treatment on the surface of the flow path after assembly. When the first substrate 10 and the second substrate 20 are made of PDMS, the substrate surface including the channel surface can be hydrophobized by heat treatment (for example, 80° C. overnight).
(3次元培養モデル)
 本実施形態の胎盤細胞培養デバイスは、胎盤細胞を含む3次元培養モデルを作製するために用いることができる。3次元培養モデルでは、胎盤細胞培養部で胎盤細胞が培養されており、因子用流路に相互作用評価因子が存在している。
(Three-dimensional culture model)
The placental cell culture device of this embodiment can be used to produce a three-dimensional culture model containing placental cells. In the three-dimensional culture model, placental cells are cultured in the placental cell culture section, and interaction evaluation factors are present in the factor channel.
≪相互作用評価因子≫
 胎盤細胞培養デバイス1において、中央流路21が因子用流路として機能する。相互作用評価因子は、特に限定されず、目的に応じて任意のものを選択することができる。中央流路21に存在させる相互作用評価因子は、1種であってもよく、2種以上の組合せであってもよい。
≪Interaction evaluation factor≫
In the placental cell culture device 1, the central channel 21 functions as a factor channel. The interaction evaluation factor is not particularly limited, and any factor can be selected according to the purpose. The interaction evaluation factors present in the central channel 21 may be of one type or a combination of two or more types.
 相互作用評価因子は緩衝液(PBS、培地等)に溶解または懸濁し、第5ポートP5または第6ポートP6から注入することにより、中央流路21に導入することができる。相互作用評価因子を溶解または懸濁する緩衝液等にゲル化剤を含ませておき、中央流路21に充填した後にゲル化してもよい。これにより、中央流路21に相互作用評価因子を含むゲルが充填される。胎盤細胞培養デバイス1では、中央流路21と胎盤細胞培養部12とがメッシュシート30により仕切られているため、中央流路21に導入された溶液または懸濁液が、胎盤細胞培養部12に漏出することがない。 The interaction evaluation factor can be dissolved or suspended in a buffer solution (PBS, medium, etc.) and introduced into the central flow channel 21 by injecting it from the fifth port P5 or the sixth port P6. A gelling agent may be added to a buffer solution or the like for dissolving or suspending the interaction evaluation factor, and gelation may be performed after filling the central channel 21 . As a result, the central channel 21 is filled with the gel containing the interaction evaluation factor. In the placental cell culture device 1, the central channel 21 and the placental cell culture section 12 are separated by the mesh sheet 30, so that the solution or suspension introduced into the central channel 21 is transferred to the placental cell culture section 12. No leakage.
 前記ゲル化剤は、特に限定されないが、生体適合性の高いものを用いることが好ましい。ゲル化剤としては、例えば、コラーゲン(I型、II型、III型、V型、XI型等)、ゼラチン、エラスチン、プロテオグリカン、グリコサミノグリカン、フィブロネクチン、ビトロネクチン、ラミニン、ペクチン、ヒアルロン酸、キチン、及びキトサン等の細胞外マトリクス;アルギン酸、及びデンプン等の多糖類;並びにポリリジン、ポリアルギニン等のアミノ酸ポリマー;フィブリン等の繊維状タンパク質等が挙げられるが、これらに限定されない。また、Matrigel(登録商標)(CORNING)等の市販の足場材を用いてもよい。ゲル化剤としてフィブリンを用いる場合、フィブリノーゲンとトロンビンとの混合液として調製してもよい。この場合、トロンビンの作用でフィブリノーゲンがフィブリンに変換されてゲル化する。 Although the gelling agent is not particularly limited, it is preferable to use one with high biocompatibility. Examples of gelling agents include collagen (type I, type II, type III, type V, type XI, etc.), gelatin, elastin, proteoglycan, glycosaminoglycan, fibronectin, vitronectin, laminin, pectin, hyaluronic acid, chitin. , and extracellular matrices such as chitosan; polysaccharides such as alginic acid and starch; and amino acid polymers such as polylysine and polyarginine; fibrous proteins such as fibrin; A commercially available scaffold such as Matrigel® (CORNING) may also be used. When fibrin is used as a gelling agent, it may be prepared as a mixture of fibrinogen and thrombin. In this case, thrombin converts fibrinogen into fibrin and gels.
 中央流路21に相互作用評価因子を導入後、第1サイド流路22aおよび第2サイド流路22bに、培地を導入することが好ましい。第1サイド流路22aへの培地の導入は、第1ポートP1または第2ポートP2から培地を注入することにより行うことができる。第2サイド流路22bへの培地の導入は、第3ポートP3または第4ポートP4から培地を注入することにより行うことができる。第1サイド流路22aおよび第2サイド流路22bに培地を充填することにより、中央流路21に充填されたゲルの乾燥を防止することができる。また、相互作用評価因子が細胞である場合、中央流路21に存在する相互作用評価因子の生存に必要な成分、および相互作用評価因子を制御する成分等を、相互作用評価因子に供給することができる。 After introducing the interaction evaluation factor into the central channel 21, it is preferable to introduce the culture medium into the first side channel 22a and the second side channel 22b. The medium can be introduced into the first side channel 22a by injecting the medium from the first port P1 or the second port P2. The medium can be introduced into the second side channel 22b by injecting the medium from the third port P3 or the fourth port P4. By filling the medium in the first side channel 22a and the second side channel 22b, the gel filled in the central channel 21 can be prevented from drying out. Further, when the interaction evaluation factor is a cell, a component necessary for the survival of the interaction evaluation factor present in the central channel 21, a component controlling the interaction evaluation factor, etc. are supplied to the interaction evaluation factor. can be done.
 中央流路21に相互作用評価因子を導入後、胎盤細胞培養部12に培地を充填してもよい。相互作用評価因子が細胞である場合、胎盤細胞培養部12に培地を充填することにより、相互作用評価因子の増殖を制御することができる。例えば、相互作用評価因子が、HUVEC等の血管内皮細胞である場合、胎盤細胞培養部12への培地の充填または非充填により、中央流路21における3次元血管系の形成を制御することができる。 After introducing the interaction evaluation factor into the central flow path 21, the placental cell culture section 12 may be filled with medium. When the interaction-evaluating factor is a cell, the growth of the interaction-evaluating factor can be controlled by filling the placental cell culture section 12 with medium. For example, when the interaction evaluation factor is vascular endothelial cells such as HUVEC, the formation of a three-dimensional vascular system in the central channel 21 can be controlled by filling or not filling the placental cell culture section 12 with medium. .
 図5Aは、中央流路21に血管内皮細胞(HUVEC等)を含むゲルGを充填した後、第1サイド流路22a、第2サイド流路22b、および胎盤細胞培養部12に培地M1~M3をそれぞれ充填して、3次元血管系(E)を形成させた場合の模式図である。胎盤細胞培養部12に培地M3が存在すると、両サイド流路の方向に加えて、胎盤細胞培養部12の方向にも血管系が形成される。3次元血管系は、相互作用評価因子として機能し、図中、Eで示される。 FIG. 5A shows that after filling gel G containing vascular endothelial cells (HUVEC, etc.) in central channel 21, media M1 to M3 are added to first side channel 22a, second side channel 22b, and placental cell culture section 12. are respectively filled to form a three-dimensional vascular system (E). When the medium M3 is present in the placental cell culture section 12, a vascular system is formed not only in the direction of both side channels but also in the direction of the placental cell culture section 12. The three-dimensional vasculature functions as an interaction evaluation factor and is indicated by E in the figure.
 図5Bは、中央流路21に血管内皮細胞(HUVEC等)を含むゲルGを充填した後、第1サイド流路22aおよび第2サイド流路22bに、培地M1およびM2をそれぞれ充填し、胎盤細胞培養部12に培地を充填しないで、3次元血管系(E)を形成させた場合の模式図である。胎盤細胞培養部12に培地が存在しないと、両サイド流路の方向には血管系が形成されるが、胎盤細胞培養部12の方向には血管系が形成されない。 FIG. 5B shows that after the central channel 21 is filled with a gel G containing vascular endothelial cells (HUVEC, etc.), the first side channel 22a and the second side channel 22b are filled with media M1 and M2, respectively, and placenta FIG. 10 is a schematic diagram when a three-dimensional vascular system (E) is formed without filling the cell culture section 12 with a culture medium. If no culture medium exists in the placental cell culture section 12 , a vascular system is formed in the direction of both side channels, but no vascular system is formed in the direction of the placental cell culture section 12 .
 図18は、EVT細胞と母体血管の模式図である。EVT細胞(EVT)は、脱落膜(DM)に接触したCT細胞(CT)から生じるものと考えられており、脱落膜(HA)の表面や内部において観察される。脱落膜(DM)内には絨毛(V)側へ血液(BL)を送るための血管(らせん動脈:HA)があり、脱落膜(DM)表面(血液と接している面)にらせん動脈(HA)の出口がある。EVT細胞(EVT)は、らせん動脈(HA)の出口から血管内壁に浸潤し、血管を太く再構築する。一方、脱落膜(DM)内に浸潤したEVT細胞(EVT)は、らせん動脈(HA)に向かって遊走し、らせん動脈(HA)の外側から血管内部に浸潤すると考えられている。図5Aの3次元血管系は、動脈出口側からEVT細胞が血管に浸潤する3次元培養モデルの作製に利用することができる。図5Bの3次元血管系は、脱落膜に侵入したEVT細胞が血管に浸潤する3次元培養モデルの作製に利用することができる。 Fig. 18 is a schematic diagram of EVT cells and maternal blood vessels. EVT cells (EVT) are thought to arise from CT cells (CT) in contact with the decidua (DM) and are found on and within the decidua (HA). In the decidua (DM), there are blood vessels (spiral arteries: HA) for sending blood (BL) to the villus (V) side, and spiral arteries ( HA) exit. EVT cells (EVT) infiltrate the inner wall of blood vessels from the outlet of spiral arteries (HA) and reconstruct thick blood vessels. On the other hand, EVT cells (EVT) that have infiltrated the decidua (DM) are thought to migrate toward the spiral artery (HA) and infiltrate from the outside of the spiral artery (HA) into the inside of the blood vessel. The three-dimensional vascular system in FIG. 5A can be used to create a three-dimensional culture model in which EVT cells invade blood vessels from the arterial exit side. The three-dimensional vasculature of FIG. 5B can be used to create a three-dimensional culture model in which EVT cells that have invaded the decidua invade blood vessels.
 3次元血管系の形成は、中央流路21に血管内皮細胞(HUVEC等)を含むゲルGを充填した後、第1サイド流路22a、および第2サイド流路22bに培地M1および培地M2をそれぞれ充填して、培養することにより、行うことができる。前記培養期間中、胎盤細胞培養部12に培地M3が充填されていると、図5Aのような3次元血管系を形成することができる。前記培養期間中、胎盤細胞培養部12に培地M3が充填されていないと、図5Bのような3次元血管系を形成することができる。培養期間は、特に限定されず、3次元血管系が所望の状態になるまで培養すればよい。培養期間は、例えば、1日以上、2日以上、または3日以上とすることができる。培養期間の上限は、特に限定されないが、例えば、10日以下、8日以下、又は5日以下とすることができる。 The three-dimensional vascular system is formed by filling gel G containing vascular endothelial cells (HUVEC, etc.) in central channel 21, and then adding medium M1 and medium M2 to first side channel 22a and second side channel 22b. It can be performed by filling each and culturing. When the placental cell culture section 12 is filled with medium M3 during the culture period, a three-dimensional vascular system as shown in FIG. 5A can be formed. If the placental cell culture section 12 is not filled with medium M3 during the culture period, a three-dimensional vascular system as shown in FIG. 5B can be formed. The culture period is not particularly limited, and the culture may be continued until the three-dimensional vascular system reaches a desired state. The culture period can be, for example, 1 day or longer, 2 days or longer, or 3 days or longer. The upper limit of the culture period is not particularly limited, but can be, for example, 10 days or less, 8 days or less, or 5 days or less.
 培養条件は、動物細胞の培養に一般的に用いられる条件とすることができる。例えば、培養温度32~40℃(好ましくは35~38℃)、CO濃度2~5%(好ましくは5%)とすることができる。 The culture conditions can be those generally used for culturing animal cells. For example, the culture temperature can be 32-40° C. (preferably 35-38° C.) and the CO 2 concentration can be 2-5% (preferably 5%).
 第1サイド流路22aに導入する培地M1、第2サイド流路22bに導入する培地M2、および胎盤細胞培養部12に導入する培地M3は、相互作用評価因子の種類に応じて適宜選択することができる。培地M1~M3は、同じ培地であってもよく、異なる培地であってもよい。相互作用評価因子がHUVEC等の血管内皮細胞である場合、培地M1~M3としては、血管内皮細胞増殖因子(vascular endothelial growth factor, VEGF)等を含有した培地、線維芽細胞の培養上清(後述の実施例で用いた3次元血管用培地等)等を用いることができる。 The medium M1 introduced into the first side flow channel 22a, the medium M2 introduced into the second side flow channel 22b, and the medium M3 introduced into the placental cell culture unit 12 are appropriately selected according to the type of interaction evaluation factor. can be done. The media M1 to M3 may be the same media or different media. When the interaction evaluation factor is a vascular endothelial cell such as HUVEC, the media M1 to M3 include a medium containing a vascular endothelial growth factor (VEGF) and the like, a culture supernatant of fibroblasts (described later). The three-dimensional blood vessel culture medium used in the example of 1) and the like can be used.
≪胎盤細胞≫
 胎盤細胞は、胎盤細胞培養部12で培養される。培養される胎盤細胞の種類は、特に限定されず、目的に応じて、任意の胎盤細胞を用いることができる。胎盤細胞培養部12で培養される胎盤細胞は、1種であってもよく、2種以上であってもよい。胎盤細胞は、細胞集合体を形成していてもよく、細胞集合体を形成していなくてもよい。胎盤細胞は、胎盤細胞培養部12の底部(メッシュシート30または薄膜シート40)に付着した細胞であってもよく、平面状の細胞集合体(例えば、シート状の細胞集合体)であってもよく、立体的な細胞集合体(例えば、球状の細胞集合体、オルガノイドを形成した細胞集合体)であってもよい。細胞集合体は、1種の細胞から構成されてもよく、2種以上の細胞から構成されてもよい。
≪Placental cells≫
Placental cells are cultured in the placental cell culture unit 12 . The type of placental cells to be cultured is not particularly limited, and any placental cells can be used depending on the purpose. Placental cells cultured in the placental cell culture unit 12 may be of one type, or may be of two or more types. Placental cells may or may not form cell aggregates. The placental cells may be cells attached to the bottom of the placental cell culture unit 12 (mesh sheet 30 or thin film sheet 40), or planar cell aggregates (eg, sheet-like cell aggregates). It may well be a three-dimensional cell aggregate (eg, spherical cell aggregate, cell aggregate forming an organoid). A cell aggregate may be composed of one type of cell, or may be composed of two or more types of cells.
・胎盤細胞の培養培地
 胎盤細胞の培養に用いる培地は、目的に応じて適宜選択することができる。培地は、例えば、動物細胞の培養に一般的に用いられる基礎培地を用いることができる。胎盤細胞の培養に用いる培地は、基礎培地に、成長因子、各種酵素阻害剤等を添加したものであってもよい。
• Culture medium for placental cells The medium used for culturing placental cells can be appropriately selected depending on the purpose. As the medium, for example, a basal medium generally used for culturing animal cells can be used. The medium used for culturing placental cells may be a basal medium supplemented with growth factors, various enzyme inhibitors, and the like.
 基礎培地としては、例えば、Doulbecco’s modified Eagle’s Medium(DMEM)培地、DMEM/F12培地、IMDM培地、Medium199培地、Eagle’sMinimum Essential Medium(EMEM)培地、αMEM培地、Ham’s F12培地、RPMI1640培地、Fischer’s培地、及びこれらの混合培地等が挙げられる。好ましい基礎培地としては、例えば、DMEM/F12が挙げられる。 Examples of basal media include Doulbecco's modified Eagle's Medium (DMEM) medium, DMEM/F12 medium, IMDM medium, Medium 199 medium, Eagle's Minimum Essential Medium (EMEM) medium, αMEM medium, Ham's F12 medium, Examples include RPMI1640 medium, Fischer's medium, and mixed medium thereof. Preferred basal media include, for example, DMEM/F12.
 基礎培地は、必要に応じて、血清(牛胎児血清(FBS)など)、又は血清代替物を含んでいてもよい。血清代替物としては、例えば、アルブミン、トランスフェリン、亜セレン酸ナトリウム、ITS-X(Invitrogen)、ノックアウト血清代替物(Knockout Serum Replacement(KSR)、N2サプリメント(Invitrogen)、B27サプリメント(Invitrogen)、脂肪酸、インスリン、コラーゲン前駆体、微量元素、2-メルカプトエタノール、3’-チオールグリセロール等が挙げられる。基礎培地は、必要に応じて、脂質、アミノ酸、L-グルタミン、Glutamax、非必須アミノ酸、ビタミン、増殖因子、抗生物質、抗酸化剤、ピルビン酸、緩衝剤、無機塩類等の成分を含んでいてもよい。これらは、適宜組み合わせて用いることができる。 The basal medium may contain serum (such as fetal bovine serum (FBS)) or a serum substitute, if necessary. Serum replacements include, for example, albumin, transferrin, sodium selenite, ITS-X (Invitrogen), knockout serum replacement (KSR), N2 supplement (Invitrogen), B27 supplement (Invitrogen), fatty acids, Insulin, collagen precursors, trace elements, 2-mercaptoethanol, 3′-thiolglycerol, etc. The basal medium optionally contains lipids, amino acids, L-glutamine, Glutamax, non-essential amino acids, vitamins, growth It may contain components such as factors, antibiotics, antioxidants, pyruvic acid, buffers, inorganic salts, etc. These can be used in combination as appropriate.
 基礎培地としては、例えば、上記のような基礎培地(例えば、DMEM/F12)に、ウシ血清アルブミン(BSA)、ITS-X、L-アスコルビン酸、及び抗生物質(ペニシリン、ストレプトマイシン等)を添加した培地が挙げられる。基礎培地の具体例としては、後述の実施例で用いられたTS basal培地、および2D-EVT basal培地等が挙げられる。 As a basal medium, for example, bovine serum albumin (BSA), ITS-X, L-ascorbic acid, and antibiotics (penicillin, streptomycin, etc.) are added to the above basal medium (eg, DMEM/F12). media. Specific examples of the basal medium include the TS basal medium and 2D-EVT basal medium used in Examples described later.
 成長因子としては、特に限定されないが、例えば、上皮成長因子(epidermal growth factor:EGF)、線維芽細胞増殖因子(fibroblast growth factor:FGF)、骨形成タンパク質(bone morphogenetic protein:BMP)、ニューレグリン(Neuregulin:NGR)等が挙げられる。培地がFGFを含む場合、培地はヘパリンを含んでいてもよい。ヘパリンは、FGFの活性を促進する作用を有する。ヘパリンは、塩の形態であることが好ましい。 The growth factor is not particularly limited, but examples include epidermal growth factor (EGF), fibroblast growth factor (FGF), bone morphogenic protein (BMP), neuregulin ( Neuregulin: NGR) and the like. When the medium contains FGF, the medium may contain heparin. Heparin has the effect of promoting the activity of FGF. Heparin is preferably in the form of a salt.
 酵素阻害剤としては、例えば、ROCK阻害剤(Y27632等)、GSK3β阻害剤(CHIR99021等)、p38 MAPK阻害剤(SB202190等)、HDAC阻害剤(バルプロ酸:VPA等)、ALK阻害剤(A83-01等)等が挙げられる。 Examples of enzyme inhibitors include ROCK inhibitors (Y27632, etc.), GSK3β inhibitors (CHIR99021, etc.), p38 MAPK inhibitors (SB202190, etc.), HDAC inhibitors (valproic acid: VPA, etc.), ALK inhibitors (A83- 01 etc.).
 例えば、胎盤細胞がTS細胞である場合、TS培地を用いることができる。TS細胞をEVT細胞に分化させる場合、2D-EVT培地を用いることができる。 For example, when the placental cells are TS cells, TS medium can be used. When TS cells are differentiated into EVT cells, 2D-EVT medium can be used.
 胎盤細胞の培養条件は、動物細胞の培養に一般的に用いられる条件とすることができる。例えば、培養温度32~40℃(好ましくは35~38℃)、CO濃度2~5%(好ましくは5%)とすることができる。 Culture conditions for placental cells can be those generally used for culturing animal cells. For example, the culture temperature can be 32-40° C. (preferably 35-38° C.) and the CO 2 concentration can be 2-5% (preferably 5%).
 胎盤細胞培養デバイス1を用いた3次元培養モデルでは、中央流路21と胎盤細胞培養部12とがメッシュシート30により仕切られている。そのため、メッシュシート30の開口部32を介して、胎盤細胞培養部12の胎盤細胞と、中央流路21の相互作用評価因子とが、相互作用することができる。また、胎盤細胞培養部12の胎盤細胞は、メッシュシート30の開口部32を介して、中央流路21に容易に移動することができる。そのため、本実施形態の3次元培養モデルは、胎盤細胞と相互作用評価因子との相互作用を評価するために用いることができる。 In the three-dimensional culture model using the placental cell culture device 1, the central channel 21 and the placental cell culture section 12 are separated by the mesh sheet 30. Therefore, the placental cells of the placental cell culture section 12 and the interaction evaluation factor of the central channel 21 can interact via the openings 32 of the mesh sheet 30 . Also, the placental cells in the placental cell culture unit 12 can easily move to the central channel 21 through the openings 32 of the mesh sheet 30 . Therefore, the three-dimensional culture model of this embodiment can be used to evaluate interactions between placental cells and interaction evaluation factors.
 図6A~図7Bは、3次元培養モデルの適用例を示す。
 図6Aは、EVT細胞の機能評価のための3次元培養モデルの一例である。図6Aの3次元培養モデルでは、中央流路21に3次元血管系(E)が形成されており、胎盤細胞培養部12でEVT細胞(EVT)が培養されている。胎盤細胞培養部12で培養されるEVT細胞(EVT)は、メッシュシート30の開口部32を介して、中央流路21に移動することができる。図6Aの3次元培養モデルでは、らせん動脈へのEVT細胞の浸潤を評価することができる。胎盤細胞培養部12では、EVT細胞の分化誘導培地を用いてTS細胞またはCT細胞等の未分化細胞を培養し、EVT細胞に分化誘導してもよい。
Figures 6A-7B show an application example of the three-dimensional culture model.
FIG. 6A is an example of a three-dimensional culture model for functional evaluation of EVT cells. In the three-dimensional culture model of FIG. 6A, a three-dimensional vascular system (E) is formed in the central channel 21 and EVT cells (EVT) are cultured in the placental cell culture section 12 . EVT cells (EVT) cultured in the placental cell culture unit 12 can move to the central channel 21 through the openings 32 of the mesh sheet 30 . In the three-dimensional culture model of FIG. 6A, the infiltration of EVT cells into spiral arteries can be evaluated. In the placental cell culture unit 12, undifferentiated cells such as TS cells or CT cells may be cultured using a differentiation-inducing medium for EVT cells to induce differentiation into EVT cells.
 図6Bは、ST細胞膜に対する化学物質透過性を評価するための3次元培養モデルの一例を示す。図6Bの3次元培養モデルでは、中央流路21に3次元血管系(E)が形成されており、胎盤細胞培養部12で胎盤細胞膜が培養されている。胎盤細胞膜は、生体内の絨毛を模した構造をしており、上層のST細胞(ST)と下層の未分化細胞(UD)(TS細胞、CT細胞等)とから構成される。図6Bの3次元培養モデルでは、胎盤細胞培養部12に露出するメッシュシート30を覆うように、胎盤細胞膜が培養されている。胎盤細胞培養部12の培地M3に任意の化学物質を添加することにより、前記化学物質が胎盤細胞膜を透過するか否かを評価することができる。胎盤細胞膜は、例えば、細胞マトリクス等の足場材に未分化細胞(TS細胞、CT細胞等)を付着させ、ST細胞誘導培地を用いて灌流培養することにより作製することができる。ST細胞誘導培地としては、例えば、動物細胞用の基礎培地(例えば、TS basal培地等)に、ROCK阻害剤(Y27632等)、GSK3β阻害剤(CHIR99021等)、p38 MAPK阻害剤(SB202190等)、及び成長因子(EGF、BMP4、bFGF等)等を添加した培地が挙げられる。 FIG. 6B shows an example of a three-dimensional culture model for evaluating chemical substance permeability to ST cell membranes. In the three-dimensional culture model of FIG. 6B, a three-dimensional vascular system (E) is formed in the central channel 21 and placental cell membranes are cultured in the placental cell culture section 12 . Placental cell membranes have a structure that mimics in vivo villi, and are composed of upper layer ST cells (ST) and lower layer undifferentiated cells (UD) (TS cells, CT cells, etc.). In the three-dimensional culture model of FIG. 6B, placental cell membranes are cultured so as to cover the mesh sheet 30 exposed to the placental cell culture section 12 . By adding an arbitrary chemical substance to the medium M3 of the placental cell culture unit 12, it is possible to evaluate whether or not the chemical substance permeates the placental cell membrane. Placental cell membranes can be prepared, for example, by attaching undifferentiated cells (TS cells, CT cells, etc.) to a scaffold material such as a cell matrix, and perfusion culturing them using an ST cell induction medium. Examples of ST cell induction media include basal media for animal cells (e.g., TS basal medium, etc.), ROCK inhibitors (Y27632, etc.), GSK3β inhibitors (CHIR99021, etc.), p38 MAPK inhibitors (SB202190, etc.), and media supplemented with growth factors (EGF, BMP4, bFGF, etc.) and the like.
 図7Aは、胎盤発生過程を模した3次元培養モデルの一例を示す。図7Bは、図7Aに示す3次元培養モデルにおける破線で囲った部分Bの拡大図である。図7Aの3次元培養モデルでは、中央流路21に3次元血管系(E)が形成されており、胎盤細胞培養部12で胎盤細胞集合体が培養されている。胎盤細胞集合体は、生体内の絨毛を模した構造をしており、外層のST細胞(ST)と内部の未分化細胞(UD)(TS細胞、CT細胞等)とから構成される。図7Aの3次元培養モデルでは、胎盤細胞培養部12において、胎盤細胞集合体とともに線維芽細胞(FB)が培養されている。生体内では、妊娠が進んで絨毛が成長すると、絨毛が母体の脱落膜に接触する現象が起きる。この接触により、絨毛内からCT細胞等の未分化細胞が出てきて、脱落膜上及び/又は脱落膜内に移動して脱落膜と接触する。脱落膜と接触した未分化細胞は、EVT細胞に分化し、脱落膜内にある母体血管の再構築を行う。したがって、胎盤細胞培養部で、胎盤細胞集合体と、線維芽細胞を共培養することにより、胎盤発生過程モデルを構築することができる。胎盤細胞集合体は、例えば、細胞非接着性の内壁を有するウェル内で、ST細胞誘導培地を用いて、未分化細胞(TS細胞、CT細胞等)を培養することにより作製することができる。ST細胞誘導培地としては、上記と同様のものを用いることができる。 Fig. 7A shows an example of a three-dimensional culture model simulating the process of placental development. FIG. 7B is an enlarged view of portion B surrounded by a dashed line in the three-dimensional culture model shown in FIG. 7A. In the three-dimensional culture model of FIG. 7A, a three-dimensional vascular system (E) is formed in the central channel 21 and placental cell aggregates are cultured in the placental cell culture section 12 . Placental cell aggregates have a structure that mimics in vivo villi, and are composed of outer layer ST cells (ST) and inner undifferentiated cells (UD) (TS cells, CT cells, etc.). In the three-dimensional culture model of FIG. 7A, fibroblasts (FB) are cultured together with placental cell aggregates in the placental cell culture section 12 . In vivo, as the pregnancy progresses and the villi grow, a phenomenon occurs in which the villi come into contact with the maternal decidua. This contact causes undifferentiated cells such as CT cells to emerge from within the villi and migrate onto and/or into the decidua to contact the decidua. Undifferentiated cells that come into contact with the decidua differentiate into EVT cells and remodel maternal blood vessels within the decidua. Therefore, by co-cultivating placental cell aggregates and fibroblasts in the placental cell culture section, a placental development process model can be constructed. Placental cell aggregates can be prepared, for example, by culturing undifferentiated cells (TS cells, CT cells, etc.) using an ST cell-inducing medium in wells having cell-non-adhesive inner walls. As the ST cell induction medium, the same medium as described above can be used.
(3次元培養モデルの作製方法)
 本実施形態の3次元培養モデルの作製方法は、因子用流路である中央流路21に相互作用評価因子を導入する工程と、中央流路21に相互作用評価因子を存在させて、胎盤細胞培養部12で胎盤細胞を培養する工程と、を含む。中央流路21に、相互作用評価因子を導入する方法としては、上述の方法が挙げられる。胎盤細胞培養部12で胎盤細胞を培養する方法としては、上述の方法が挙げられる。
(Method for producing three-dimensional culture model)
The method for producing a three-dimensional culture model of the present embodiment comprises a step of introducing an interaction evaluation factor into the central channel 21, which is a factor channel, and allowing the interaction evaluation factor to exist in the central channel 21, placental cells and culturing the placental cells in the culture unit 12 . Methods for introducing interaction evaluation factors into the central channel 21 include the methods described above. Methods for culturing placental cells in the placental cell culture unit 12 include the methods described above.
 因子用流路に存在する相互作用評価因子が3次元血管系である場合、3次元培養モデルは、因子用流路である中央流路21で血管内皮細胞を培養し、3次元血管系を形成させる工程と、中央流路21で前記3次元血管系を培養し、胎盤細胞培養部12で胎盤細胞を培養する工程と、を含む方法により作製することができる。中央流路21に3次元血管系を形成させる方法としては、上述の方法が挙げられる。 When the interaction evaluation factor present in the factor channel is a three-dimensional vascular system, the three-dimensional culture model cultures vascular endothelial cells in the central channel 21, which is the factor channel, to form a three-dimensional vascular system. and culturing the three-dimensional vascular system in the central channel 21 and culturing the placental cells in the placental cell culturing section 12 . Methods for forming a three-dimensional vascular system in the central channel 21 include the methods described above.
 培養条件は、動物細胞の培養に一般的に用いられる条件とすることができる。例えば、培養温度32~40℃(好ましくは35~38℃)、CO濃度2~5%(好ましくは5%)をとすることができる。 The culture conditions can be those generally used for culturing animal cells. For example, a culture temperature of 32-40° C. (preferably 35-38° C.) and a CO 2 concentration of 2-5% (preferably 5%) can be used.
<第2実施形態>
 図8A~図11Bに、第2実施形態の胎盤細胞培養デバイスの一例を示す。本実施形態では、胎盤細胞培養部と因子用流路との仕切り部材として、マイクロポストが用いられる。図8Aは、胎盤細胞培養デバイス100の斜視図である。図8Bは、胎盤細胞培養デバイス100のB-B切断線による断面図である。図9は、胎盤細胞培養デバイス100の分解図である。
<Second embodiment>
8A-11B show an example of the placental cell culture device of the second embodiment. In this embodiment, a micropost is used as a partition member between the placental cell culture section and the factor channel. 8A is a perspective view of placental cell culture device 100. FIG. FIG. 8B is a cross-sectional view of the placental cell culture device 100 taken along line BB. FIG. 9 is an exploded view of the placental cell culture device 100. FIG.
 胎盤細胞培養デバイス100は、第1基板110、第2基板120、およびリング部材130から構成されている。胎盤細胞培養デバイス100は、第2基板120、第1基板110、およびリング部材130がこの順で積層されて、形成されている。 The placental cell culture device 100 is composed of a first substrate 110, a second substrate 120, and a ring member 130. Placental cell culture device 100 is formed by stacking second substrate 120, first substrate 110, and ring member 130 in this order.
 胎盤細胞培養デバイス100は、中央流路111、第1サイド流路112a、第2サイド流路112bの各流路を備えている。胎盤細胞培養デバイス100は、培養液等の導入/排出ポートとして、第1ポートP1、第2ポートP2、第3ポートP3、第4ポートP4、第5ポートP5、および第6ポートP6を備えている。第1ポートP1は、第1ポート流路p1により第1サイド流路112aに接続している。第2ポートP2は、第2ポート流路p2により第1サイド流路112aに接続している。第3ポートP3は、第3ポート流路p3により第2サイド流路112bに接続している。第4ポートP4は、第4ポート流路p4により第2サイド流路112bに接続している。第5ポートP5および第6ポートP6は、中央流路111に接続している。第5ポートP5は中央流路111の一端に設けられており、第6ポートP6は中央流路111の他端に設けられている。 The placental cell culture device 100 includes a central channel 111, a first side channel 112a, and a second side channel 112b. The placental cell culture device 100 has a first port P1, a second port P2, a third port P3, a fourth port P4, a fifth port P5, and a sixth port P6 as inlet/outlet ports for the culture solution or the like. there is The first port P1 is connected to the first side flow path 112a through the first port flow path p1. The second port P2 is connected to the first side flow path 112a by a second port flow path p2. The third port P3 is connected to the second side flow path 112b by a third port flow path p3. The fourth port P4 is connected to the second side flow path 112b through a fourth port flow path p4. The fifth port P5 and sixth port P6 are connected to the central channel 111 . The fifth port P5 is provided at one end of the central flow passage 111, and the sixth port P6 is provided at the other end of the central flow passage 111. As shown in FIG.
 胎盤細胞培養デバイス100においては、中央流路111は、胎盤細胞培養部として機能する。胎盤細胞培養部である中央流路111の上部には、連通孔115が設けられている。リング部材130は、リング穴内に連通孔115が位置するように、第1基板110に積層される。胎盤細胞培養デバイス100においては、第1サイド流路112aおよび/または第2サイド流路112bが因子用流路として機能する。 In the placental cell culture device 100, the central channel 111 functions as a placental cell culture section. A communication hole 115 is provided in the upper part of the central channel 111, which is the placental cell culture part. The ring member 130 is stacked on the first substrate 110 such that the communication hole 115 is positioned within the ring hole. In the placental cell culture device 100, the first side channel 112a and/or the second side channel 112b function as channel for factors.
(第1基板)
 図10Aは、第1基板110の上面図である。図10Bは、図10Aに示す第1基板110の上面図における破線で囲まれた部分Bの拡大図である。
 第1基板110には、中央流路111、第1サイド流路112a、第2サイド流路112b、第1ポートP1~第6ポートP6、および第1ポート流路p1~第4ポート流路p4が設けられている。中央流路111、第1サイド流路112a、第2サイド流路112b、および第1ポート流路p1~第4ポート流路p4は、第1基板110の第1の面側が閉塞されており、第1基板110の第2の面側は開放されている。第1基板110は、第2の面が第2基板120に対向するように、第2基板120に積層される。これにより、第2基板120により、第1基板110の各流路の底面が形成される。
(First substrate)
10A is a top view of the first substrate 110. FIG. FIG. 10B is an enlarged view of a portion B surrounded by a dashed line in the top view of the first substrate 110 shown in FIG. 10A.
The first substrate 110 includes a central flow channel 111, a first side flow channel 112a, a second side flow channel 112b, a first port P1 to a sixth port P6, and a first port flow channel p1 to a fourth port flow channel p4. is provided. The central flow channel 111, the first side flow channel 112a, the second side flow channel 112b, and the first port flow channel p1 to the fourth port flow channel p4 are closed on the first surface side of the first substrate 110, The second surface side of the first substrate 110 is open. The first substrate 110 is stacked on the second substrate 120 such that the second surface faces the second substrate 120 . Thus, the second substrate 120 forms the bottom surface of each channel of the first substrate 110 .
 中央流路111は、第1基板110の略中央部に形成されている。胎盤細胞培養デバイス100において、中央流路111は、胎盤細胞培養部として機能する。 The central channel 111 is formed substantially in the center of the first substrate 110 . In the placental cell culture device 100, the central channel 111 functions as a placental cell culture section.
 中央流路111の両サイドには、第1サイド流路112aおよび第2サイド流路112bがそれぞれ形成されている。第1サイド流路112aの一端には第1ポート流路p1が接続し、第1サイド流路112aの他端には第2ポート流路p2が接続している。第2サイド流路112bの一端には第3ポート流路p3が接続し、第2サイド流路112bの他端には第4ポート流路p4が接続している。第1サイド流路112a及び第2サイド流路112bは、中央流路111の全長に渡って両サイドに形成されていてもよく、中央流路111の一部の両サイドに形成されてもよい。第1サイド流路112a及び第2サイド流路112bが、中央流路111の一部の両サイドに形成される場合、少なくとも連通孔115が形成される位置の両サイドに、第1サイド流路112a及び第2サイド流路112bがそれぞれ形成されていることが好ましい。 A first side channel 112a and a second side channel 112b are formed on both sides of the central channel 111, respectively. A first port flow path p1 is connected to one end of the first side flow path 112a, and a second port flow path p2 is connected to the other end of the first side flow path 112a. A third port flow path p3 is connected to one end of the second side flow path 112b, and a fourth port flow path p4 is connected to the other end of the second side flow path 112b. The first side flow channel 112a and the second side flow channel 112b may be formed on both sides over the entire length of the central flow channel 111, or may be formed on both sides of a portion of the central flow channel 111. . When the first side flow channel 112a and the second side flow channel 112b are formed on both sides of a part of the central flow channel 111, at least the first side flow channel is formed on both sides of the position where the communication hole 115 is formed. 112a and the second side channel 112b are preferably formed respectively.
 中央流路111の上部には、連通孔115が設けられている。連通孔115は、第1基板10の第1面側から中央流路111に貫通する貫通孔である。中央流路111は、連通孔115により、第1基板110の第1面側の外部領域と連通する。連通孔115の大きさは、特に限定されないが、中央流路111の幅よりも小さいことが好ましい。連通孔115は、例えば、直径0.05~20mmが挙げられる。連通孔115の大きさは、例えば、孔径0.1mm以上が好ましく、孔径0.2mm以上がより好ましく、孔径0.3mm以上がさらに好ましく、孔径0.4mm以上が特に好ましい。連通孔115の大きさは、例えば、孔径15mm以下が好ましく、孔径10mm以下がより好ましく、孔径5mm以下がさらに好ましく、孔径1mm以下が特に好ましい。 A communication hole 115 is provided in the upper part of the central flow path 111 . The communication hole 115 is a through hole penetrating from the first surface side of the first substrate 10 to the central flow path 111 . The central channel 111 communicates with the external region on the first surface side of the first substrate 110 through a communication hole 115 . Although the size of the communication hole 115 is not particularly limited, it is preferably smaller than the width of the central channel 111 . The communication hole 115 has a diameter of 0.05 to 20 mm, for example. The size of the communication hole 115 is preferably, for example, a hole diameter of 0.1 mm or more, more preferably a hole diameter of 0.2 mm or more, even more preferably a hole diameter of 0.3 mm or more, and particularly preferably a hole diameter of 0.4 mm or more. The size of the communication hole 115 is preferably, for example, a hole diameter of 15 mm or less, more preferably a hole diameter of 10 mm or less, even more preferably a hole diameter of 5 mm or less, and particularly preferably a hole diameter of 1 mm or less.
 中央流路111の幅は、特に限定されないが、例えば、500~5000μmが挙げられる。中央流路111の幅は、600μm以上が好ましく、700μm以上がより好ましく、800μm以上がさらに好ましく、900μm以上が特に好ましい。中央流路111の幅は、5000μm以下が好ましく、4000μm以下がより好ましく、3000μm以下がさらに好ましく、2500μm以下が特に好ましい。 Although the width of the central channel 111 is not particularly limited, it may be 500 to 5000 μm, for example. The width of the central channel 111 is preferably 600 μm or more, more preferably 700 μm or more, still more preferably 800 μm or more, and particularly preferably 900 μm or more. The width of the central channel 111 is preferably 5000 μm or less, more preferably 4000 μm or less, still more preferably 3000 μm or less, and particularly preferably 2500 μm or less.
 第1サイド流路112aおよび第2サイド流路112bの幅は、特に限定されないが、例えば、500~3000μmが挙げられる。第1サイド流路112aおよび第2サイド流路112bの幅は、600μm以上が好ましく、700μm以上がより好ましく、800μm以上がさらに好ましく、900μm以上が特に好ましい。第1サイド流路112aおよび第2サイド流路112bの幅は、2500μm以下が好ましく、2000μm以下がより好ましく、1500μm以下がさらに好ましく、1200μm以下が特に好ましい。第1サイド流路112aおよび第2サイド流路112bは、互いに同じ幅であってもよく、互いに異なる幅であってもよい。 The widths of the first side flow channel 112a and the second side flow channel 112b are not particularly limited, but may be 500 to 3000 μm, for example. The width of the first side flow channel 112a and the second side flow channel 112b is preferably 600 μm or more, more preferably 700 μm or more, even more preferably 800 μm or more, and particularly preferably 900 μm or more. The width of the first side channel 112a and the second side channel 112b is preferably 2500 μm or less, more preferably 2000 μm or less, even more preferably 1500 μm or less, and particularly preferably 1200 μm or less. The first side channel 112a and the second side channel 112b may have the same width or different widths.
 中央流路111、第1サイド流路112a、および第2サイド流路112bの流路の高さ(深さ)は、特に限定されないが、例えば、50~1000μmが挙げられる。中央流路111、第1サイド流路112a、および第2サイド流路112bの流路の高さ(深さ)は、20μm以上が好ましく、40μm以上がより好ましく、50μm以上がさらに好ましく、80μm以上が特に好ましい。中央流路111、第1サイド流路112a、および第2サイド流路112bの流路の高さ(深さ)は、700μm以下が好ましく、500μm以下がより好ましく、300μm以下がさらに好ましく、200μm以下が特に好ましい。
 中央流路111、第1サイド流路112a、および第2サイド流路112bの流路の高さ(深さ)は、互いに略同じであることが好ましい。
The height (depth) of the central flow channel 111, the first side flow channel 112a, and the second side flow channel 112b is not particularly limited, but is, for example, 50 to 1000 μm. The height (depth) of the central flow channel 111, the first side flow channel 112a, and the second side flow channel 112b is preferably 20 μm or more, more preferably 40 μm or more, even more preferably 50 μm or more, and 80 μm or more. is particularly preferred. The height (depth) of the central flow channel 111, the first side flow channel 112a, and the second side flow channel 112b is preferably 700 μm or less, more preferably 500 μm or less, even more preferably 300 μm or less, and 200 μm or less. is particularly preferred.
It is preferable that the heights (depths) of the central flow channel 111, the first side flow channel 112a, and the second side flow channel 112b are substantially the same.
 中央流路111において、第1サイド流路112aおよび第2サイド流路112bが隣接する部分の長さは、特に限定されないが、例えば、500~30000μmが挙げられる。前記長さは、例えば、600μ以上が好ましく、700μm以上がより好ましく、800μm以上がさらに好ましく、900μm以上が特に好ましい。前記長さは、例えば、25000μm以下が好ましく、20000μm以下がより好ましく、15000μm以下がさらに好ましく、10000μm以下が特に好ましい。 In the central channel 111, the length of the portion where the first side channel 112a and the second side channel 112b are adjacent is not particularly limited, but may be 500 to 30000 μm, for example. For example, the length is preferably 600 μm or more, more preferably 700 μm or more, still more preferably 800 μm or more, and particularly preferably 900 μm or more. For example, the length is preferably 25000 μm or less, more preferably 20000 μm or less, even more preferably 15000 μm or less, and particularly preferably 10000 μm or less.
 中央流路111と第1サイド流路112aとは、仕切り部材113aにより仕切られている。中央流路111と第2サイド流路112bとは、仕切り部材113bにより仕切られている。仕切り部材113aおよび仕切り部材113bは、複数のマイクロポスト114により構成されている。仕切り部材113a及び仕切り部材113bを構成する複数のマイクロポスト114は、所定の間隔で配置されている。仕切り部材113a及び仕切り部材113bにおいて、マイクロポスト114が遮蔽部を構成し、マイクロポスト114間の間隙が連通部を構成している。胎盤細胞培養デバイス100において、中央流路111は胎盤細胞培養部として機能し、第1サイド流路112aまたは第2サイド流路112bは因子用流路として機能する。仕切り部材113aまたは仕切り部材113bは、胎盤細胞培養部である中央流路111と、因子用流路である第1サイド流路112aまたは第2サイド流路112bとを仕切る仕切り部材である。 The central channel 111 and the first side channel 112a are separated by a partition member 113a. The central channel 111 and the second side channel 112b are partitioned by a partition member 113b. The partitioning member 113a and the partitioning member 113b are composed of a plurality of microposts 114. As shown in FIG. A plurality of microposts 114 constituting the partition member 113a and the partition member 113b are arranged at predetermined intervals. In the partitioning member 113a and the partitioning member 113b, the microposts 114 constitute shielding portions, and the gaps between the microposts 114 constitute communicating portions. In the placental cell culture device 100, the central channel 111 functions as a placental cell culture part, and the first side channel 112a or the second side channel 112b functions as a factor channel. The partition member 113a or the partition member 113b is a partition member that separates the central channel 111, which is the placental cell culture part, from the first side channel 112a or the second side channel 112b, which is the factor channel.
 マイクロポスト114の形状は特に限定されない。マイクロポスト114は、多角柱形状(三角柱、四角柱等)であってもよく、円柱形状であってもよい。マイクロポスト114は、例えば、台形柱形状である。マイクロポスト114は、第1サイド流路112a側または第2サイド流路112b側の幅w2の方が、中央流路21側の幅w1よりも大きいことが好ましい。これにより、中央流路111に充填された液体が、第1サイド流路112aおよび第2サイド流路112bに漏出することを抑制することができる。 The shape of the microposts 114 is not particularly limited. The microposts 114 may have a polygonal prism shape (triangular prism, square prism, etc.) or a cylindrical shape. The micropost 114 has, for example, a trapezoidal prism shape. It is preferable that the width w2 of the microposts 114 on the first side channel 112a side or the second side channel 112b side is larger than the width w1 on the central channel 21 side. As a result, the liquid filled in the central flow path 111 can be prevented from leaking into the first side flow path 112a and the second side flow path 112b.
 マイクロポスト114の大きさは、特に限定されないが、中央流路111側の幅w1としては、例えば、10~300μmが挙げられる。幅w1は、例えば、20μm以上が好ましく、30μm以上がより好ましく、40μm以上がさらに好ましく、45μm以上が特に好ましい。幅w1は、例えば、200μm以下が好ましく、150μm以下がより好ましく、100μm以下がさらに好ましく、80μm以下が特に好ましい。
 第1サイド流路112a側または第2サイド流路112b側の幅w2としては、例えば、30~500μmが挙げられる。幅w2は、例えば、50μm以上が好ましく、60μm以上がより好ましく、70μm以上がさらに好ましく、80μm以上が特に好ましい。幅w2は、例えば、400μm以下が好ましく、300μm以下がより好ましく、200μm以下がさらに好ましく、150μm以下が特に好ましい。
 マイクロポスト114の長さlとしては、40~500μmが挙げられる。長さlは、例えば、50μm以上が好ましく、60μm以上がより好ましく、70μm以上がさらに好ましく、80μm以上が特に好ましい。長さlは、例えば、400μm以下が好ましく、300μm以下がより好ましく、200μm以下がさらに好ましく、100μm以下が特に好ましい。
 マイクロポスト114の高さは、中央流路111の高さ(深さ)と同じであることが好ましい。
The size of the microposts 114 is not particularly limited, but the width w1 on the central channel 111 side is, for example, 10 to 300 μm. The width w1 is, for example, preferably 20 μm or more, more preferably 30 μm or more, still more preferably 40 μm or more, and particularly preferably 45 μm or more. The width w1 is, for example, preferably 200 μm or less, more preferably 150 μm or less, still more preferably 100 μm or less, and particularly preferably 80 μm or less.
The width w2 on the side of the first side flow path 112a or the side of the second side flow path 112b is, for example, 30 to 500 μm. The width w2 is, for example, preferably 50 μm or more, more preferably 60 μm or more, even more preferably 70 μm or more, and particularly preferably 80 μm or more. The width w2 is, for example, preferably 400 μm or less, more preferably 300 μm or less, still more preferably 200 μm or less, and particularly preferably 150 μm or less.
The length l of the microposts 114 may be 40-500 μm. For example, the length l is preferably 50 μm or more, more preferably 60 μm or more, still more preferably 70 μm or more, and particularly preferably 80 μm or more. The length l is, for example, preferably 400 μm or less, more preferably 300 μm or less, still more preferably 200 μm or less, and particularly preferably 100 μm or less.
The height of the microposts 114 is preferably the same as the height (depth) of the central channel 111 .
 2つのマイクロポスト114間の最短距離dは、仕切り部材における連通部の最小幅に該当する。最短距離dは、30~500μmである。連通部の最小幅が前記範囲内であることにより、胎盤細胞の移動効率が良好に維持される。最短距離dは、例えば、40μm以上が好ましく、50μm以上がより好ましく、60μm以上がさらに好ましく、70μm以上が特に好ましい。最短距離dは、例えば、400μm以下が好ましく、350μm以下がより好ましく、300μm以下がさらに好ましく、250μm以下が特に好ましい。 The shortest distance d between two microposts 114 corresponds to the minimum width of the communicating portion of the partition member. The shortest distance d is 30-500 μm. When the minimum width of the communicating portion is within the above range, the placental cell migration efficiency is favorably maintained. The shortest distance d is, for example, preferably 40 μm or longer, more preferably 50 μm or longer, still more preferably 60 μm or longer, and particularly preferably 70 μm or longer. The shortest distance d is, for example, preferably 400 μm or less, more preferably 350 μm or less, still more preferably 300 μm or less, and particularly preferably 250 μm or less.
 2つのマイクロポスト114間の最長距離は、仕切り部材における連通部の最大幅に該当する。最長距離としては、例えば、50~500μmが挙げられる。最長距離は、例えば、60μm以上が好ましく、70μm以上がより好ましく、80μm以上がさらに好ましく、90μm以上が特に好ましい。最長距離は、例えば、400μm以下が好ましく、350μm以下がより好ましく、300μm以下がさらに好ましく、250μm以下が特に好ましい。 The longest distance between two microposts 114 corresponds to the maximum width of the communicating portion of the partition member. Examples of the longest distance include 50 to 500 μm. The longest distance is, for example, preferably 60 μm or longer, more preferably 70 μm or longer, still more preferably 80 μm or longer, and particularly preferably 90 μm or longer. The longest distance is, for example, preferably 400 μm or less, more preferably 350 μm or less, even more preferably 300 μm or less, and particularly preferably 250 μm or less.
 中央流路111、第1サイド流路112a、および第2サイド流路112bの流路表面は、疎水性であることが好ましい。流路表面が疎水性である場合、いずれか1つの流路に液体を充填したときに、マイクロポスト114間に液体の表面張力が発生する。これにより、隣接する流路に液体が存在しない場合、隣接する流路への液体の漏出が防止される。 The channel surfaces of the central channel 111, the first side channel 112a, and the second side channel 112b are preferably hydrophobic. If the channel surface is hydrophobic, surface tension of the liquid is generated between the microposts 114 when any one of the channels is filled with liquid. This prevents liquid from leaking into the adjacent channel when there is no liquid in the adjacent channel.
 第1基板110の厚みは、特に限定されないが、例えば、0.1~50mmが挙げられる。第1基板10の厚みは、例えば、0.3mm以上が好ましく、0.5mm以上がより好ましく、0.6mm以上がさらに好ましく、0.8mm以上が特に好ましい。第2基板20の厚みは、例えば、40mm以下が好ましく、20mm以下がより好ましく、10mm以下がさらに好ましく、5mm以下が特に好ましい。 Although the thickness of the first substrate 110 is not particularly limited, it may be 0.1 to 50 mm, for example. For example, the thickness of the first substrate 10 is preferably 0.3 mm or more, more preferably 0.5 mm or more, still more preferably 0.6 mm or more, and particularly preferably 0.8 mm or more. For example, the thickness of the second substrate 20 is preferably 40 mm or less, more preferably 20 mm or less, even more preferably 10 mm or less, and particularly preferably 5 mm or less.
 第1基板110の材質は、特に限定されないが、生体適合性が高く、且つ酸素透過性が高い材質が好ましい。酸素透過性の材料としては、酸素透過性ポリマーが挙げられる。酸素透過性ポリマーとしては、例えば、フッ素樹脂、シリコーン(例えば、PDMS等)等が挙げられる。中でも、酸素透過性ポリマーは、PDMSが好ましい。 The material of the first substrate 110 is not particularly limited, but a material with high biocompatibility and high oxygen permeability is preferable. Oxygen permeable materials include oxygen permeable polymers. Examples of oxygen-permeable polymers include fluororesins, silicones (eg, PDMS, etc.), and the like. Among them, the oxygen-permeable polymer is preferably PDMS.
 第1基板110は、フォトリソグラフィー法、ソフトリソグラフィー法、マイクロコンタクトプリンティング法、マイクロフルイディスク法、ステンシル法等の公知の方法を用いて作製することができる。例えば、フォトリソグラフィー法を用いて、第1基板110の鋳型を作製し、前記鋳型を用いてソフトリソグラフィー法により第1基板110を作製することができる。鋳型の形状が異なること以外は、前記第1実施形態の第1基板10および第2基板20と同様に作製することができる。 The first substrate 110 can be manufactured using known methods such as photolithography, soft lithography, microcontact printing, microfluidic, and stencil. For example, a mold for the first substrate 110 can be manufactured using a photolithography method, and the first substrate 110 can be manufactured using the mold using a soft lithography method. It can be manufactured in the same manner as the first substrate 10 and the second substrate 20 of the first embodiment, except that the shape of the mold is different.
(第2基板)
 第2基板120は、第1基板110と略同じ大きさの平板プレートを用いることができる。第2基板120の材質は、特に限定されないが、生体適合性が高い材質が好ましい。第2基板120の材質としては、例えば、ガラス、各種合成樹脂、金属等が挙げられる。
(Second substrate)
A flat plate having substantially the same size as the first substrate 110 can be used for the second substrate 120 . The material of the second substrate 120 is not particularly limited, but a material with high biocompatibility is preferable. Examples of materials for the second substrate 120 include glass, various synthetic resins, and metals.
(リング部材)
 リング部材130は、第1基板110の連通孔115がリング穴内に位置するように、第1基板110の第1面に積層される。リング部材130は、第1基板110と共に、上層ウェル131を形成する。上層ウェル131は、リング部材130のリング内壁により側面部が形成されており、第1基板110の第1面により底面部が形成されている。上層ウェル131は、連通孔115により、中央流路111に連通している。
(Ring member)
The ring member 130 is stacked on the first surface of the first substrate 110 such that the communication hole 115 of the first substrate 110 is positioned within the ring hole. The ring member 130 forms an upper well 131 together with the first substrate 110 . The upper layer well 131 has a side surface formed by the ring inner wall of the ring member 130 and a bottom surface formed by the first surface of the first substrate 110 . The upper layer well 131 communicates with the central channel 111 through a communication hole 115 .
 リング部材130は、連通孔115のサイズよりも大きいリング穴を有する。リング部材130のリング穴のサイズは、例えば、直径1~20mmが挙げられる。リング穴のサイズは、直径2mm以上が好ましく、直径3mm以上がより好ましく、直径4mm以上がさらに好ましく、直径5mm以上が特に好ましい。リング穴のサイズは、直径15mm以下が好ましく、直径12mm以下がより好ましく、直径10mm以下がさらに好ましく、直径8mm以下が特に好ましい。リング部材130の外周のサイズは、第1基板110に積層した際に、第1基板110に形成された第1ポートP1~第6ポートP6を塞がない大きさであれば、特に限定されない。リング部材130の外周のサイズは、例えば、直径3~30mmが挙げられる。外周のサイズは、直径4mm以上が好ましく、直径5mm以上がより好ましく、直径6mm以上がさらに好ましく、直径7mm以上が特に好ましい。外周のサイズは、直径20mm以下が好ましく、直径15mm以下がより好ましく、直径12mm以下がさらに好ましく、直径10mm以下が特に好ましい。 The ring member 130 has a ring hole larger than the size of the communication hole 115 . The size of the ring hole of the ring member 130 is, for example, 1 to 20 mm in diameter. The size of the ring hole is preferably 2 mm or more in diameter, more preferably 3 mm or more in diameter, still more preferably 4 mm or more in diameter, and particularly preferably 5 mm or more in diameter. The size of the ring hole is preferably 15 mm or less in diameter, more preferably 12 mm or less in diameter, even more preferably 10 mm or less in diameter, and particularly preferably 8 mm or less in diameter. The size of the outer circumference of the ring member 130 is not particularly limited as long as it does not block the first port P1 to the sixth port P6 formed on the first substrate 110 when stacked on the first substrate 110. The size of the outer circumference of the ring member 130 is, for example, 3 to 30 mm in diameter. The size of the outer circumference is preferably 4 mm or more in diameter, more preferably 5 mm or more in diameter, still more preferably 6 mm or more in diameter, and particularly preferably 7 mm or more in diameter. The size of the outer circumference is preferably 20 mm or less in diameter, more preferably 15 mm or less in diameter, even more preferably 12 mm or less in diameter, and particularly preferably 10 mm or less in diameter.
 リング部材130の材質は、特に限定されないが、生体適合性の高い材質が好ましい。リング部材130の材質としては、例えば、ポリイミド、ポリエチレンテレフタレート(PET)、ポリスチレン、ポリエチレン、ポリプロピレン、ナイロン、ポリテトラフルオロエチレン(PTFE)、エチレン-テトラフルオロエチレン共重合体(ETFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、ポリジメチルシロキサン(PDMS)等が挙げられるが、これらに限定されない。リング部材130は、例えば、PDMSで形成することができる。 The material of the ring member 130 is not particularly limited, but a material with high biocompatibility is preferable. Examples of materials for the ring member 130 include polyimide, polyethylene terephthalate (PET), polystyrene, polyethylene, polypropylene, nylon, polytetrafluoroethylene (PTFE), ethylene-tetrafluoroethylene copolymer (ETFE), tetrafluoroethylene- Hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), polydimethylsiloxane (PDMS), and the like, but are not limited to these. The ring member 130 can be made of PDMS, for example.
 胎盤細胞培養デバイス100は、第2基板120、第1基板110、およびリング部材130を、この順で積層し、接着することにより、作製することができる。胎盤細胞培養デバイス1の組み立ての際には、第1基板110の第2面が、第2基板120と対向するようにする。リング部材130のリング穴内に、連通孔115が位置するようにする。 The placental cell culture device 100 can be produced by laminating and bonding the second substrate 120, the first substrate 110, and the ring member 130 in this order. When assembling the placental cell culture device 1 , the second surface of the first substrate 110 faces the second substrate 120 . The communication hole 115 is positioned inside the ring hole of the ring member 130 .
 胎盤細胞培養デバイス100の組み立てに際し、第1基板110および/または第2基板120の表面を活性化して接着性を高めてもよい。例えば、第1基板110および/または第2基板120がPDMS製である場合、酸素プラズマ処理により表面を活性化して、接着性を高めることができる。この場合、組み立て後に、流路表面の疎水化処理を行うことが好ましい。第1基板110および/または第2基板120がPDMS製である場合、加熱処理(例えば、80℃、一晩)により、流路表面を含む基板表面を疎水化することができる。 When assembling the placental cell culture device 100, the surfaces of the first substrate 110 and/or the second substrate 120 may be activated to enhance adhesiveness. For example, if the first substrate 110 and/or the second substrate 120 are made of PDMS, an oxygen plasma treatment can activate the surface to improve adhesion. In this case, it is preferable to perform a hydrophobizing treatment on the surface of the flow path after assembly. When the first substrate 110 and/or the second substrate 120 are made of PDMS, heat treatment (eg, 80° C. overnight) can hydrophobize the substrate surface including the channel surface.
 本実施形態の胎盤細胞培養デバイスは、胎盤細胞培養部である中央流路111に、胎盤細胞の細胞集合体を含むゲルが充填されていてもよい。胎盤細胞の細胞集合体Cは、1種の胎盤細胞から構成されていてもよく、2種以上の胎盤細胞から構成されていてもよい。胎盤細胞の細胞集合体Cは、EVT細胞を含むことが好ましい。EVT細胞を含む細胞集合体は、例えば、アガロースマイクロウェルプレートのウェル内で、EVT細胞誘導培地を用いて、TS細胞を培養することにより、作製することができる。 In the placental cell culture device of the present embodiment, the central channel 111, which is the placental cell culture part, may be filled with gel containing cell aggregates of placental cells. The cell aggregate C of placental cells may be composed of one type of placental cells, or may be composed of two or more types of placental cells. The cell aggregate C of placental cells preferably contains EVT cells. A cell aggregate containing EVT cells can be prepared, for example, by culturing TS cells in wells of an agarose microwell plate using an EVT cell induction medium.
 EVT細胞誘導培地としては、例えば、動物細胞用の基礎培地(例えば、TS basal培地等)に、ROCK阻害剤(Y27632等)、p38 MAPK阻害剤(SB202190等)、および成長因子(EGF、NGR1等)等を添加した培地が挙げられる。EVT細胞誘導培地には、Matrigel(登録商標)(CORNING)等の細胞外マトリクスを添加してもよい。EVT細胞誘導培地の具体例としては、実施例で用いた3D-EVT培地、3D-EVT-Dox培地等が挙げられる。 EVT cell induction media include, for example, animal cell basal media (e.g., TS basal medium, etc.), ROCK inhibitors (Y27632, etc.), p38 MAPK inhibitors (SB202190, etc.), and growth factors (EGF, NGR1, etc.). ) and the like. The EVT cell induction medium may be supplemented with an extracellular matrix such as Matrigel® (CORNING). Specific examples of the EVT cell induction medium include 3D-EVT medium and 3D-EVT-Dox medium used in Examples.
 培養条件は、動物細胞の培養に一般的に用いられる条件とすることができる。例えば、培養温度32~40℃(好ましくは35~38℃)、CO濃度2~5%(好ましくは5%)をとすることができる。 The culture conditions can be those generally used for culturing animal cells. For example, a culture temperature of 32-40° C. (preferably 35-38° C.) and a CO 2 concentration of 2-5% (preferably 5%) can be used.
 胎盤細胞の細胞集合体は、ゲル化剤を含むゲル化溶液に懸濁し、連通孔115、または第5ポートP5もしくは第6ポートP6から注入することにより、中央流路111に胎盤細胞の細胞集合体を導入することができる。中央流路111に導入する胎盤細胞の細胞集合体は、1個であってもよく、2個以上であってもよい。例えば、連通孔115から、1個の細胞集合体を中央流路111に導入することができる。この場合、中央流路111に導入された細胞集合体は、連通孔115の下方に存在させることができる。
 中央流路111と、第1サイド流路112aおよび第2サイド流路112bとは、それぞれ仕切り部材113aおよび仕切り部材113bにより仕切られている。そのため、中央流路111に導入されたゲル化溶液が、第1サイド流路112aおよび第2サイド流路112bに漏出することはない。胎盤細胞の細胞集合体を含むゲル化溶液を中央流路111に充填後、ゲル化溶液をゲル化する。これにより、胎盤細胞培養部である中央流路111に、胎盤細胞の細胞集合体を含むゲルが充填された、胎盤細胞培養デバイス100を得ることができる。
The placental cell aggregates are suspended in a gelling solution containing a gelling agent and injected from the communication hole 115, the fifth port P5 or the sixth port P6, thereby forming the placental cell aggregates in the central channel 111. body can be introduced. The number of placental cell aggregates to be introduced into the central channel 111 may be one, or two or more. For example, one cell aggregate can be introduced into the central channel 111 through the communication hole 115 . In this case, the cell aggregate introduced into the central channel 111 can exist below the communicating hole 115 .
The central flow path 111 and the first side flow path 112a and the second side flow path 112b are separated by partition members 113a and 113b, respectively. Therefore, the gelling solution introduced into the central channel 111 does not leak into the first side channel 112a and the second side channel 112b. After the central channel 111 is filled with a gelling solution containing cell aggregates of placental cells, the gelling solution is gelled. As a result, the placental cell culture device 100 can be obtained in which the central channel 111, which is the placental cell culture portion, is filled with the gel containing the cell aggregates of placental cells.
 ゲル化溶液に用いるゲル化剤は、特に限定されず、上記と同様のものを用いることができる。ゲル化溶液の具体例としては、Matrigel(登録商標)(CORNING)およびコラーゲン Iの混合溶液が挙げられる。 The gelling agent used in the gelling solution is not particularly limited, and the same gelling agent as described above can be used. A specific example of the gelling solution is a mixed solution of Matrigel (registered trademark) (CORNING) and collagen I.
 中央流路111に胎盤細胞を含むゲルが充填されている場合、ゲルの乾燥を防ぐために、第1サイド流路112a、第2サイド流路112b、および上層ウェル131に、培地を充填してもよい。培地は、中央流路111に導入した胎盤細胞の種類に応じて、適宜選択することができる。培地の具体例としては、例えば、実施例で用いたTS basal培地等が挙げられる。 When the center channel 111 is filled with a gel containing placental cells, the first side channel 112a, the second side channel 112b, and the upper well 131 may be filled with medium to prevent the gel from drying. good. The medium can be appropriately selected according to the type of placental cells introduced into central channel 111 . Specific examples of the medium include the TS basal medium used in Examples.
(3次元培養モデル)
 本実施形態の胎盤細胞培養デバイスは、胎盤細胞を含む3次元培養モデルを作製するために用いることができる。3次元培養モデルでは、胎盤細胞培養部で胎盤細胞が培養されており、因子用流路に相互作用評価因子が存在している。図11A~12Bは、本実施形態の3次元培養モデルの一例を示す。図11A~12Bの3次元培養モデルでは、胎盤細胞の細胞集合体Cを含むゲルGが、中央流路111に充填されている。第1サイド流路112aに、相互作用評価因子Eを含む培地M1が導入されている。第2サイド流路112bには、培地M2が導入されている。上層ウェル131には培地M3が導入されている。培地M1~M3は、同じ培地であってもよく、異なる培地であってもよい。
(Three-dimensional culture model)
The placental cell culture device of this embodiment can be used to produce a three-dimensional culture model containing placental cells. In the three-dimensional culture model, placental cells are cultured in the placental cell culture section, and interaction evaluation factors are present in the factor channel. 11A-12B show an example of the three-dimensional culture model of this embodiment. In the three-dimensional culture models of FIGS. 11A to 12B, the central channel 111 is filled with gel G containing cell aggregates C of placental cells. Medium M1 containing interaction evaluation factor E is introduced into first side channel 112a. A culture medium M2 is introduced into the second side channel 112b. Medium M3 is introduced into the upper layer well 131 . The media M1 to M3 may be the same media or different media.
≪胎盤細胞≫
 胎盤細胞培養デバイス100において、中央流路111が胎盤細胞培養部として機能する。中央流路111で培養する胎盤細胞は、細胞集合体であることが好ましい。胎盤細胞の細胞集合体は、上記のように、中央流路111に導入することができる。
≪Placental cells≫
In the placental cell culture device 100, the central channel 111 functions as a placental cell culture section. The placental cells cultured in the central channel 111 are preferably cell aggregates. Cell aggregates of placental cells can be introduced into the central channel 111 as described above.
 連通孔115から、胎盤細胞の細胞集合体Cを含むゲル化溶液を中央流路111に導入することにより、中央流路111において、連通孔115が設けられた位置に細胞集合体Cを存在させることができる。胎盤細胞の細胞集合体を用いることにより、胎盤細胞の遊走を適確に評価することができる。例えば、細胞集合体Cの形状が、相互作用評価因子Eが存在する因子用流路側に伸展した場合には、相互作用評価因子Eは胎盤細胞に正の遊走を引き起こすと評価することができる(例えば、図12B)。逆に、細胞集合体Cにおいて、相互作用評価因子Eが存在する因子用流路側の分布面積が低下した場合には、相互作用評価因子Eは胎盤細胞の負の遊走を引き起こすと評価することができる By introducing the gelling solution containing the cell aggregates C of placental cells into the central channel 111 through the communicating holes 115, the cell aggregates C are allowed to exist at the positions where the communicating holes 115 are provided in the central channel 111. be able to. Migration of placental cells can be accurately evaluated by using cell aggregates of placental cells. For example, when the shape of the cell aggregate C extends to the side of the factor channel where the interaction evaluation factor E is present, it can be evaluated that the interaction evaluation factor E causes positive migration of placental cells ( For example, FIG. 12B). Conversely, in the cell aggregate C, when the distribution area on the side of the factor channel where the interaction evaluation factor E is present is reduced, it can be evaluated that the interaction evaluation factor E causes negative migration of placental cells. can
≪相互作用評価因子≫
 胎盤細胞培養デバイス100において、第1サイド流路112aおよび/または第2サイド流路112bが因子用流路として機能する。相互作用評価因子は、特に限定されず、目的に応じて任意のものを選択することができる。中央流路21に存在させる相互作用評価因子は、1種であってもよく、2種以上の組合せであってもよい。
≪Interaction evaluation factor≫
In the placental cell culture device 100, the first side channel 112a and/or the second side channel 112b function as channel for factors. The interaction evaluation factor is not particularly limited, and any factor can be selected according to the purpose. The interaction evaluation factors present in the central channel 21 may be of one type or a combination of two or more types.
 相互作用評価因子は培地等に溶解または懸濁し、第1ポートP1または第2ポートP2から注入することにより、第1サイド流路112aに導入することができる。また、相互作用評価因子の溶液または懸濁液を、第3ポートP3または第4ポートP4から注入することにより、第2サイド流路112bに導入することができる。 The interaction evaluation factor can be introduced into the first side channel 112a by dissolving or suspending it in a medium or the like and injecting it from the first port P1 or the second port P2. Also, the solution or suspension of the interaction evaluation factor can be introduced into the second side channel 112b by injecting it from the third port P3 or the fourth port P4.
 相互作用評価因子の溶解または懸濁に用いる培地は、中央流路111で培養される胎盤細胞および相互作用評価因子の種類により、適宜選択することができる。培地の具体例としては、実施例で用いたアッセイ培地等が挙げられる。 The medium used for dissolving or suspending the interaction-evaluating factors can be appropriately selected according to the types of placental cells cultured in the central channel 111 and the interaction-evaluating factors. Specific examples of the medium include the assay medium used in Examples.
 相互作用評価因子がHUVEC等の血管内皮細胞である場合、血管内皮細胞を培地に懸濁し、第1サイド流路112aまたは第2サイド流路112bに充填して培養することにより、仕切り部材113aまたは仕切り部材113bに沿って、血管壁を形成することができる(例えば、図11B)。図11Bに示すような血管壁は、第1サイド流路112aに血管内皮細胞を含む培地を導入した後、第1サイド流路112aが上になるようにして胎盤細胞培養デバイス100を静置し、任意の時間(例えば、10~60分程度)培養することにより形成することができる。 When the interaction evaluation factor is a vascular endothelial cell such as HUVEC, the vascular endothelial cell is suspended in a medium, filled in the first side channel 112a or the second side channel 112b and cultured to obtain partition member 113a or A vessel wall can be formed along the partition member 113b (eg, FIG. 11B). After introducing a culture medium containing vascular endothelial cells into the first side channel 112a, placental cell culture device 100 was left standing with first side channel 112a facing up. , can be formed by culturing for an arbitrary time (for example, about 10 to 60 minutes).
 相互作用評価因子は、第1サイド流路112aおよび第2サイド流路112bのいずれに導入してもよく、両方に導入してもよい。3次元培養モデルにより胎盤細胞の遊走を評価する場合、相互作用評価因子は第1サイド流路112aおよび第2サイド流路112bのいずれか一方に導入することが好ましい。この場合、相互作用評価因子を導入していないサイド流路には、培地のみを導入してもよい。あるいは、第1サイド流路112aおよび第2サイド流路112bに、それぞれ異なる相互作用評価因子を導入してもよい。 The interaction evaluation factor may be introduced into either the first side channel 112a or the second side channel 112b, or may be introduced into both. When evaluating placental cell migration using a three-dimensional culture model, the interaction evaluation factor is preferably introduced into either one of the first side channel 112a and the second side channel 112b. In this case, only the culture medium may be introduced into the side channel into which the interaction evaluation factor has not been introduced. Alternatively, different interaction evaluation factors may be introduced into the first side channel 112a and the second side channel 112b.
 本実施形態の3次元培養モデルでは、上層ウェル131に培地を充填することが好ましい。上層ウェル131に培地を充填することにより、中央流路111に導入された胎盤細胞を良好に維持することができる。 In the three-dimensional culture model of this embodiment, it is preferable to fill the upper well 131 with medium. By filling the upper layer well 131 with medium, the placental cells introduced into the central channel 111 can be well maintained.
(3次元培養モデルの作製方法)
 本実施形態の3次元培養モデルの作製方法は、胎盤細胞培養部である中央流路111に胎盤細胞の細胞集合体を含むゲルを充填する工程と、因子用流路である第1サイド流路112aおよび/または第2サイド流路112bに相互作用評価因子を存在させて、中央流路111で胎盤細胞の細胞集合体を培養する工程と、を含む。中央流路111に、胎盤細胞の細胞集合体を含むゲルを充填する方法としては、上述の方法が挙げられる。第1サイド流路112aおよび/または第2サイド流路112bに相互作用評価因子を存在させる方法としては、上述の方法が挙げられる。
(Method for producing three-dimensional culture model)
The method for producing a three-dimensional culture model according to the present embodiment includes a step of filling a gel containing a cell aggregate of placental cells in the central channel 111, which is a placental cell culture part, and a first side channel, which is a channel for factors. culturing cell aggregates of placental cells in central channel 111 with an interaction evaluator present in 112a and/or second side channel 112b. Examples of the method for filling the central channel 111 with the gel containing the cell aggregates of placental cells include the methods described above. Methods for causing the interaction evaluation factor to exist in the first side channel 112a and/or the second side channel 112b include the methods described above.
 因子用流路に存在する相互作用評価因子が血管壁である場合、3次元培養モデルは、胎盤細胞培養部である中央流路111に胎盤細胞の細胞集合体を含むゲルを充填する工程と、因子用流路である第1サイド流路112aおよび/または第2サイド流路112bで血管内皮細胞を培養し、血管壁を形成させる工程と、第1サイド流路112aおよび/または第2サイド流路112bで前記血管壁を培養し、中央流路111で胎盤細胞の細胞集合体を培養する工程と、を含む方法により作製することができる。第1サイド流路112aおよび/または第2サイド流路112bに血管壁を形成させる方法としては、上述の方法が挙げられる。 When the interaction evaluation factor present in the factor channel is a vascular wall, the three-dimensional culture model includes a step of filling gel containing placental cell aggregates in the central channel 111, which is the placental cell culture part; a step of culturing vascular endothelial cells in the first side channel 112a and/or the second side channel 112b, which are channels for factors, to form a vascular wall; culturing the vessel wall in channel 112 b and culturing a cell aggregate of placental cells in central channel 111 . Methods for forming a blood vessel wall in the first side channel 112a and/or the second side channel 112b include the above-described methods.
 培養条件は、動物細胞の培養に一般的に用いられる条件とすることができる。例えば、培養温度32~40℃(好ましくは35~38℃)、CO濃度2~5%(好ましくは5%)をとすることができる。 The culture conditions can be those generally used for culturing animal cells. For example, a culture temperature of 32-40° C. (preferably 35-38° C.) and a CO 2 concentration of 2-5% (preferably 5%) can be used.
[胎盤細胞の評価方法]
 一態様において、本発明は、上述の胎盤細胞培養デバイスを用いて、胎盤細胞を、胎盤細胞と相互作用し得る因子と共培養することを含む胎盤細胞の評価方法を提供する。
 胎盤細胞培養デバイスは、第1実施形態の胎盤細胞培養デバイスであってもよく、第2実施形態の胎盤細胞培養デバイスであってもよい。
[Method for evaluating placental cells]
In one aspect, the present invention provides a placental cell evaluation method comprising co-culturing placental cells with a factor capable of interacting with placental cells using the placental cell culture device described above.
The placental cell culture device may be the placental cell culture device of the first embodiment or the placental cell culture device of the second embodiment.
 第1実施形態の胎盤細胞培養デバイスは、胎盤細胞の種々の機能を評価するために利用することができる。例えば、胎盤細胞培養部で、生体内の絨毛構造等を模した胎盤細胞の細胞構造体(胎盤オルガノイド)を培養することにより、種々の相互作用評価因子に対する胎盤細胞の応答を評価することができる。 The placental cell culture device of the first embodiment can be used to evaluate various functions of placental cells. For example, by culturing cell structures (placental organoids) of placental cells that mimic in vivo villous structures and the like in a placental cell culture unit, responses of placental cells to various interaction evaluation factors can be evaluated. .
 第2実施形態の胎盤細胞デバイスは、胎盤細胞の遊走の評価に適している。第2実施形態の胎盤細胞デバイスでは、胎盤細胞の細胞集合体を含むゲルを中央流路に充填し、サイド流路を因子用流路として使用する。これにより、胎盤細胞の細胞集合体の形状変化を観察することにより、胎盤細胞の遊走に及ぼす種々の相互作用評価因子の影響を適確に評価することができる。 The placental cell device of the second embodiment is suitable for evaluating migration of placental cells. In the placental cell device of the second embodiment, the central channel is filled with a gel containing placental cell aggregates, and the side channels are used as factor channels. Accordingly, by observing changes in the shape of cell aggregates of placental cells, it is possible to accurately evaluate the effects of various interaction evaluation factors on the migration of placental cells.
 以下、実施例により本発明を説明するが、本発明は以下の実施例に限定されるものではない。 The present invention will be described below with reference to examples, but the present invention is not limited to the following examples.
[実施例1]
 実施例1では、上述の第1実施形態の胎盤細胞培養デバイス(図1A~図4B参照)を用いて、HUVEC血管網とEVT細胞とを含む3次元培養モデルを作製した。
[Example 1]
In Example 1, a three-dimensional culture model containing HUVEC vascular networks and EVT cells was produced using the placental cell culture device of the first embodiment (see FIGS. 1A to 4B).
<胎盤細胞培養デバイスの作製>
(フォトリソグラフィーによる鋳型の作製)
 フォトリソグラフィーを用いて、胎盤細胞培養デバイスの第1基板および第2基板の鋳型を作製した。まず、高純度シリコンウェハー(アズワン)に、永久膜エポキシネガ型フォトレジストSU-8 2100(KAYAKU Advanced Materials)をスピンコートした(500rpmで10秒間、その後1500rpmで30秒間)。フォトレジストをスピンコートしたシリコンウェハーを65℃のホットプレート上で5分間加熱し、次いで95℃のホットプレート上で45分間加熱した。これにより、厚さ200μmのSU-8膜を作製した。SU-8膜は第1基板用と第2基板用との2枚を作製した。レーザー描画装置DWL200(Heidelberg Instruments)を用いて、各基板用のフォトマスクを作製した。第1基板鋳型用のSU-8膜上に第1基板用フォトマスクを置き、UV照射を行った(27秒間)。第2基板鋳型用のSU-8膜上に第2基板用フォトマスクを置き、UV照射を行った(27秒間)。その後、65℃のホットプレート上で5分間、95℃のホットプレート上で15分間加熱した。次いで、5分間室温で冷却した。攪拌したSU-8現像剤(KAYAKU Advanced Materials)の中に、前記冷却後の各鋳型を入れて、1.5~2時間反応させて、未硬化のSU-8を除去した。次いで、86%エタノール-IP(変性)(FUJIFILM Wako)で各鋳型を洗浄した。その後、各鋳型を、65℃で2~3分間、次いで150℃で10分間加熱処理した。
<Production of placental cell culture device>
(Preparation of template by photolithography)
Photolithography was used to create templates for the first and second substrates of the placental cell culture device. First, a high-purity silicon wafer (AS ONE) was spin-coated with permanent film epoxy negative photoresist SU-8 2100 (KAYAKU Advanced Materials) (500 rpm for 10 seconds, then 1500 rpm for 30 seconds). The photoresist spin-coated silicon wafer was heated on a hot plate at 65° C. for 5 minutes and then on a hot plate at 95° C. for 45 minutes. Thus, an SU-8 membrane with a thickness of 200 μm was produced. Two SU-8 films were prepared, one for the first substrate and the other for the second substrate. A photomask for each substrate was produced using a laser lithography apparatus DWL200 (Heidelberg Instruments). A photomask for the first substrate was placed on the SU-8 film for the first substrate mold, and UV irradiation was performed (27 seconds). A photomask for the second substrate was placed on the SU-8 film for the second substrate mold, and UV irradiation was performed (27 seconds). After that, it was heated on a 65° C. hot plate for 5 minutes and on a 95° C. hot plate for 15 minutes. It was then cooled at room temperature for 5 minutes. Each cooled mold was placed in agitated SU-8 developer (KAYAKU Advanced Materials) and allowed to react for 1.5 to 2 hours to remove uncured SU-8. Each template was then washed with 86% ethanol-IP (denatured) (FUJIFILM Wako). Each mold was then heat treated at 65° C. for 2-3 minutes and then at 150° C. for 10 minutes.
(ソフトリソグラフィーによる第1基板および第2基板の作製)
 フォトリソグラフィーにより作製した鋳型を用いて、第1基板および第2基板をソフトリソグラフィーにより作製した。主剤と硬化剤とを10:1の割合で混合したPDMS溶液を調製し、作製した鋳型に流し込んだ。脱気処理後、80℃で一晩処理することにより、PDMS溶液を硬化させた。第2基板は厚さ約1mm、第1基板は厚さ約1cmになるようにPDMS溶液を流し込んだ。ディスポーザブルメス(カイインダストリーズ)とピンセットとを用いて、鋳型から各基板用部品を切り取った。第1基板用PDMS部品にパターニングされた溝を参考にして、第2基板に形成される各流路への液体導入/排出用の穴を、生検トレパン(カイインダストリーズ)を用いて開けた。中央ホールはΦ6mmとした。第2基板の第1サイド流路に繋がる2個のポートはΦ6mm、第2基板の第2サイド流路に繋がる2個のポートはΦ4mmとした。第2基板の中央流路に繋がる2個のポートはΦ1.5mmとした。図13Aに、作製した第2基板の模式図を示す。
(Preparation of first substrate and second substrate by soft lithography)
A first substrate and a second substrate were produced by soft lithography using a template produced by photolithography. A PDMS solution was prepared by mixing the main agent and the curing agent at a ratio of 10:1, and poured into the prepared mold. After degassing, the PDMS solution was cured by overnight treatment at 80°C. The PDMS solution was poured so that the second substrate had a thickness of about 1 mm and the first substrate had a thickness of about 1 cm. Using a disposable scalpel (Kai Industries) and tweezers, each board component was cut out from the mold. With reference to the grooves patterned in the PDMS component for the first substrate, holes for liquid introduction/exhaust to each channel formed in the second substrate were made using a biopsy trepan (Kai Industries). The central hole was Φ6 mm. Two ports connected to the first side flow path of the second substrate were set to Φ6 mm, and two ports connected to the second side flow path of the second substrate were set to Φ4 mm. Two ports connected to the central channel of the second substrate were φ1.5 mm. FIG. 13A shows a schematic diagram of the manufactured second substrate.
(胎盤細胞培養デバイスの組み立て)
 上記のように作製した第1基板および第2基板を用いて、胎盤細胞培養デバイスを組み立てた(図2参照)。
(Assembly of placental cell culture device)
A placental cell culture device was assembled using the first and second substrates produced as described above (see FIG. 2).
 マイクロメッシュシート(8mm×8mm、開口部:長辺160~170μm、短辺110~115μm)(水田製作所)をメッシュシートとして準備した。図13Bに、使用したメッシュシートの写真を示す。 A micromesh sheet (8 mm x 8 mm, opening: long side 160-170 μm, short side 110-115 μm) (Mizuta Seisakusho) was prepared as a mesh sheet. FIG. 13B shows a photograph of the mesh sheet used.
 PETの薄膜シート(厚さ25μm,アズワン)を10mm×5mmに加工した。5%の3-アミノプロピルトリエトキシシラン溶液(Sigma)を精製水で調製した。加工したポリエチレンテレフタレート(PET)シートを3-アミノプロピルトリエトキシシラン溶液の中に入れ、80℃で30分間処理することにより、PETシートをシラン化処理した。シラン化処理は、PDMS部材に対する接着性を高めるために行った。先端を変形させた生検トレパンを用いて、シラン化処理済PETシートの中央に0.5mm×4.5mmの開口部を形成した。開口部の周囲にPDMS溶液を薄く塗り、開口部を覆う様にメッシュシートを貼り付けた。以下、メッシュシートを貼り付けたPETシートを「メッシュ付シート」と呼ぶ。 A PET thin film sheet (thickness 25 μm, AS ONE) was processed to 10 mm x 5 mm. A 5% 3-aminopropyltriethoxysilane solution (Sigma) was prepared in purified water. The processed polyethylene terephthalate (PET) sheet was silanized by placing it in a 3-aminopropyltriethoxysilane solution and treating at 80° C. for 30 minutes. The silanization treatment was performed to enhance adhesion to the PDMS member. A 0.5 mm x 4.5 mm opening was made in the center of the silanized PET sheet using a biopsy trepan with a modified tip. A PDMS solution was applied thinly around the opening, and a mesh sheet was attached so as to cover the opening. Hereinafter, the PET sheet to which the mesh sheet is adhered is referred to as "meshed sheet".
 各基板の表面を、小型プラズマ装置(PM100)(ヤマト科学株式会社)を用いて、20秒間、酸素プラズマ処理し、各基板の表面を活性化させた。表面活性化処理は、第1基板と第2基板との間の接着性の向上、および各基板とメッシュ付シートとの間の接着性の向上のために行った。表面を活性化させた第1基板と第2基板との間に、メッシュ付シートを挟み込み接着した。接着は、150℃のホットプレート上で10分間加熱処理することにより行った。組み立ての際には、PETシートに設けた開口部が、第2基板の中央流路の中心付近と重なるようにした。また、第1基板の中央ホールが、PETシートに設けた開口部に重なるようにした。 The surface of each substrate was treated with oxygen plasma for 20 seconds using a small plasma device (PM100) (Yamato Scientific Co., Ltd.) to activate the surface of each substrate. The surface activation treatment was performed to improve the adhesiveness between the first substrate and the second substrate and the adhesiveness between each substrate and the sheet with mesh. A sheet with a mesh was sandwiched and adhered between the first and second substrates whose surfaces were activated. Adhesion was performed by heat treatment on a hot plate at 150° C. for 10 minutes. During assembly, the opening provided in the PET sheet was made to overlap with the vicinity of the center of the central channel of the second substrate. Also, the central hole of the first substrate was made to overlap the opening provided in the PET sheet.
 酸素プラズマ処理により、第2基板に形成された流路表面は、親水性が高い状態になった。このままではPDMSの疎水性を利用した溶液の導入、すなわち特定の流路(中央流路)に対する溶液の選択的導入ができない。そのため、親水化されたPDMS表面を疎水的にするために、組み立てたデバイスを80℃で一晩処理した。デバイスを細胞培養に使用するため、UV処理を30分間行うことで、殺菌処理をした。図14に、作製した胎盤細胞培養デバイスの写真を示す。 Due to the oxygen plasma treatment, the surface of the channel formed on the second substrate became highly hydrophilic. In this state, introduction of a solution using the hydrophobicity of PDMS, that is, selective introduction of a solution into a specific channel (central channel) cannot be performed. Therefore, the assembled device was treated overnight at 80° C. to render the hydrophilized PDMS surface hydrophobic. In order to use the device for cell culture, it was sterilized by UV treatment for 30 minutes. FIG. 14 shows a photograph of the fabricated placental cell culture device.
<培地>
(3次元血管用培地)
 ヒト臍帯静脈内皮細胞(RFP-HUVEC)(Angio Proteomie)の維持・管理を、EGM-2 Endothelial Cell Growth Medium-2 BulletKit(LONZA)を用いて行った。
 RFP-HUVECからなる3次元血管網をフィブリンゲル内に効率的に作製するために、ヒト肺線維芽細胞(NHLF)(LONZA)に由来する馴化培地(conditioned medium)を使用した。NHLFは10%FBS含有DMEM培地(サーモフィッシャー)で維持・管理した。NHLFがディッシュ面積の70-100%に達している状態で、EGM-2培地に置換し、3日間培養した時の上清を馴化培地とした。この馴化培地を、3次元血管用培地として用いた。
<Culture medium>
(Three-dimensional blood vessel culture medium)
Human umbilical vein endothelial cells (RFP-HUVEC) (Angio Proteomie) were maintained using EGM-2 Endothelial Cell Growth Medium-2 Bullet Kit (LONZA).
A conditioned medium derived from human lung fibroblasts (NHLF) (LONZA) was used to efficiently fabricate three-dimensional vascular networks composed of RFP-HUVECs in fibrin gels. NHLF was maintained and managed in 10% FBS-containing DMEM medium (Thermo Fisher). When NHLF reached 70-100% of the dish area, the medium was replaced with EGM-2 medium, and the supernatant obtained after culturing for 3 days was used as a conditioned medium. This conditioned medium was used as a three-dimensional vascular medium.
(TS basal培地)
 DMEM/F12培地(FUJIFILM Wako)に、下記成分を添加してTS basal培地を作製した。下記に示す濃度は、TS basal培地中での各成分の最終濃度である。
 ウシ血清アルブミン(BSA)(FUJIFILM Wako) 0.15%
 ペニシリン 5,000 units/mL
 ストレプトマイシン(Thermo Fisher Scientific) 5,000μg/mL
 ITS-X(FUJIFILM Wako) 1%
 KSR(Thermo Fisher Scientific) 1%
 L-ascorbic acid(FUJIFILM Wako) 0.2mM
(TS basal medium)
A TS basal medium was prepared by adding the following components to DMEM/F12 medium (FUJIFILM Wako). The concentrations given below are the final concentrations of each component in TS basal medium.
Bovine serum albumin (BSA) (FUJIFILM Wako) 0.15%
Penicillin 5,000 units/mL
Streptomycin (Thermo Fisher Scientific) 5,000 μg/mL
ITS-X (FUJI FILM Wako) 1%
KSR (Thermo Fisher Scientific) 1%
L-ascorbic acid (FUJIFILM Wako) 0.2mM
(TS培地)
 TS basal培地に、下記成分を添加してTS培地を作製した。下記に示す濃度は、TS培地中での各成分の最終濃度である。
 Y27632(FUJIFILM Wako) 2.5μM
 EGF(FUJIFILM Wako) 25ng/mL
 VPA(FUJIFILM Wako) 0.8mM
 A83-01(FUJIFILM Wako) 5μM
 CHIR99021(FUJIFILM Wako) 2μM
(TS medium)
A TS medium was prepared by adding the following components to a TS basal medium. The concentrations shown below are the final concentrations of each component in TS medium.
Y27632 (FUJIFILM Wako) 2.5 μM
EGF (FUJIFILM Wako) 25ng/mL
VPA (FUJI FILM Wako) 0.8 mM
A83-01 (FUJIFILM Wako) 5 μM
CHIR99021 (FUJIFILM Wako) 2 μM
(2D-EVT basal培地)
 DMEM/F12培地(FUJIFILM Wako)に、下記成分を添加して2D-EVT basal培地を作製した。下記に示す濃度は、2D-EVT basal培地中での各成分の最終濃度である。
 ウシ血清アルブミン(BSA)(FUJIFILM Wako) 0.3%
 ITS-X(FUJIFILM Wako) 1%
 ペニシリン 5,000 units/mL
 ストレプトマイシン(Thermo Fisher Scientific) 5,000μg/mL
(2D-EVT basal medium)
A 2D-EVT basal medium was prepared by adding the following components to DMEM/F12 medium (FUJIFILM Wako). The concentrations shown below are the final concentrations of each component in 2D-EVT basal medium.
Bovine serum albumin (BSA) (FUJIFILM Wako) 0.3%
ITS-X (FUJI FILM Wako) 1%
Penicillin 5,000 units/mL
Streptomycin (Thermo Fisher Scientific) 5,000 μg/mL
(2D-EVT培地)
 2D-EVT basal培地に、下記成分を添加して2D-EVT培地を作製した。下記に示す濃度は、2D-EVT培地中での各成分の最終濃度である。
 Y27632 (FUJIFILM Wako) 2.5μM
 KSR(Thermo Fisher Scientific) 4%
 A83-01(FUJIFILM Wako) 7.5μM
 NRG1(Cell Signaling) 50ng/mL
(2D-EVT medium)
A 2D-EVT medium was prepared by adding the following components to a 2D-EVT basal medium. The concentrations shown below are the final concentrations of each component in the 2D-EVT medium.
Y27632 (FUJI FILM Wako) 2.5 μM
KSR (Thermo Fisher Scientific) 4%
A83-01 (FUJIFILM Wako) 7.5 μM
NRG1 (Cell Signaling) 50ng/mL
<EVT細胞の作製>
(EGFP-TS細胞の作製)
 遺伝子改変したTS細胞(EGFP-TS細胞)を用いた。EGFT-TS細胞は、doxycycline hyclate(Sigma-Aldrich)処理によりEGFPを発現する。EGFP-TS細胞の作製方法は以下の通りに行った。
 既報(Takahashi et al., PNAS, 2019, 116 (52) 26606-26613)の方法に従い、EGFP遺伝子をpCS-3Gベクターに挿入してレンチウイルスを作製した。作製したレンチウイルスをTS細胞に感染させた後、シングルセルクローニングを行い、doxycycline依存的にEGFPを高発現するEGFP-TS細胞を選択した。
 EGFP-TS細胞はTS培地により維持・管理した。
<Production of EVT cells>
(Preparation of EGFP-TS cells)
Genetically modified TS cells (EGFP-TS cells) were used. EGFT-TS cells express EGFP by doxycycline hyclate (Sigma-Aldrich) treatment. EGFP-TS cells were prepared as follows.
According to the method previously reported (Takahashi et al., PNAS, 2019, 116 (52) 26606-26613), the EGFP gene was inserted into the pCS-3G vector to prepare a lentivirus. After infecting TS cells with the prepared lentivirus, single-cell cloning was performed to select EGFP-TS cells that highly express EGFP in a doxycycline-dependent manner.
EGFP-TS cells were maintained and managed with TS medium.
(EGFP-TS細胞からEVT細胞への分化誘導)
 EGFP-TS細胞からEVT細胞へと分化誘導には、2D-EVT培地にMatrigel(Corning) 0.2mg/mLを加えたものを用いた。
(Induction of differentiation from EGFP-TS cells to EVT cells)
A 2D-EVT medium supplemented with 0.2 mg/mL of Matrigel (Corning) was used to induce differentiation from EGFP-TS cells to EVT cells.
<メッシュシートの有効性の確認>
 実施例1の胎盤細胞培養デバイスは、第1基板と第2基板との境界を細胞が移動できる構造である必要がある。一方、第2基板の中央流路に充填された液体が、第1基板側に漏出しないことが必要である。実施例1の胎盤細胞培養デバイスでは、前記性能を有する仕切り部材として、メッシュシート(開口部:長辺160~170μm、短辺110~115μm;空隙率50%以上;図13B)を採用した。
<Confirmation of effectiveness of mesh sheet>
The placental cell culture device of Example 1 must have a structure that allows cells to move across the boundary between the first substrate and the second substrate. On the other hand, it is necessary that the liquid filled in the central channel of the second substrate does not leak to the first substrate side. In the placental cell culture device of Example 1, a mesh sheet (openings: long side 160-170 μm, short side 110-115 μm; porosity 50% or more; FIG. 13B) was used as the partition member having the above performance.
 メッシュシートの有効性を確認するため、中央流路に充填した色液の漏出試験を行った。漏出試験には、メッシュ付シートを用いた胎盤細胞培養デバイスとPETシート(メッシュシート非貼付)を用いた胎盤細胞培養デバイスとを用いた。
 結果を図15Aおよび図15Bに示す。図15Aは、メッシュ付シートを用いた胎盤細胞培養デバイスによる結果である。図15Bは、PETシート(メッシュシート非貼付)を用いた胎盤細胞培養デバイスによる結果である。メッシュ付シートを用いた胎盤細胞培養デバイスでは、第2基板の中央流路から第1基板の中央ホールへの色液の漏出は確認されなかった(図15A)。一方、PETシート(メッシュシート非貼付)を用いた胎盤細胞培養デバイスでは、第2基板の中央流路から第1基板の中央ホールに色液が漏出した(図15B)。この結果から、第2基板の中央流路と第1基板の中央ホールとの間にメッシュシートを設置することにより、中央流路から中央ホールへの液体の漏出を防止できることが確認された。
In order to confirm the effectiveness of the mesh sheet, a leakage test of the color liquid filled in the central channel was conducted. For the leak test, a placental cell culture device using a sheet with mesh and a placental cell culture device using a PET sheet (without mesh sheet attached) were used.
The results are shown in Figures 15A and 15B. FIG. 15A shows the results of a placental cell culture device using a sheet with mesh. FIG. 15B shows the results of a placental cell culture device using a PET sheet (without mesh sheet attached). In the placental cell culture device using the sheet with mesh, leakage of the color liquid from the central channel of the second substrate to the central hole of the first substrate was not confirmed (Fig. 15A). On the other hand, in the placental cell culture device using the PET sheet (without mesh sheet attached), the color liquid leaked from the central channel of the second substrate to the central hole of the first substrate (Fig. 15B). From this result, it was confirmed that by installing the mesh sheet between the central flow path of the second substrate and the central hole of the first substrate, it was possible to prevent liquid from leaking from the central flow path to the central hole.
 特開2020-188723号公報に記載された細胞培養デバイスでは、下層と上層との境界に、多孔膜が設けられている。この場合、多孔膜があるため、下層に導入した液体が上層に漏れることはない。また、上層の細胞は多孔膜を通って下層に移動することが可能である。しかしながら、多孔膜の利用に関しては問題点がある。たとえば、ポリカーボネートの多孔膜は光の透過性が悪いため、上層にある細胞の形態をデバイスの下部から顕微鏡観察することが難しい。光の透過性が比較的良いPET製の多孔膜を使用した場合も、細胞の輪郭を綺麗に観察することが難しい。さらに、市販されている多孔膜の穴の大きさは一般的に0.4~8μmほどであり、膜面積に対する総孔面積の割合(空隙率)は最大で15%ほどである。そのため、細胞は例えば8μmの孔を通過することはできるものの移動効率がよくない。 In the cell culture device described in JP-A-2020-188723, a porous membrane is provided at the boundary between the lower layer and the upper layer. In this case, the presence of the porous membrane prevents the liquid introduced into the lower layer from leaking to the upper layer. Also, cells in the upper layer can migrate to the lower layer through the porous membrane. However, there are problems associated with the use of porous membranes. For example, since the porous polycarbonate membrane has poor light transmission, it is difficult to observe the morphology of cells in the upper layer with a microscope from the bottom of the device. Even when a PET porous membrane with relatively high light transmittance is used, it is difficult to clearly observe the contours of cells. Furthermore, the pore size of commercially available porous membranes is generally about 0.4 to 8 μm, and the ratio of the total pore area to the membrane area (porosity) is about 15% at maximum. Therefore, although cells can pass through, for example, 8 μm pores, their migration efficiency is poor.
 実施例1で用いたメッシュシートは、開口部のサイズが大きく、空隙率も高いため、細胞は容易にメッシュシートを通過することができる。また、光の透過性が高いため、第1基板の中央ホールに存在する細胞を、メッシュシートを介して第2基板側から顕微鏡観察することができる。さらに、第2基板から第1基板への液体の漏出を防止することができる。したがって、メッシュシートは、第1基板と第2基板との間の仕切り部材として有効である。 The mesh sheet used in Example 1 has large openings and a high porosity, so cells can easily pass through the mesh sheet. In addition, since the light transmittance is high, the cells present in the central hole of the first substrate can be microscopically observed from the second substrate side through the mesh sheet. Furthermore, leakage of liquid from the second substrate to the first substrate can be prevented. Therefore, the mesh sheet is effective as a partition member between the first substrate and the second substrate.
<胎盤細胞培養デバイスを用いたHUVEC血管網とEVT細胞の共培養(1)>
 1.0×10 cells/mLのHUVEC懸濁液を調製した。次に、fibrinogen from bovine plasma(SIGMA)をPBS(-)に溶解し、フィルターろ過し、10mg/mLのフィブリノーゲン溶液を調製した。HUVEC懸濁液とフィブリノーゲン溶液を1:3の割合で混合した。この混合液にトロンビン(Sigma)(50U/mL)を、最終濃度が1U/mLになるように加え、第2基板の中央流路に素早く導入した。トロンビンの作用でフィブリノーゲンがフィブリンとなりゲル化する。5分間、37℃のCOインキュベーター内で静置し、中央流路のフィブリンゲルをゲル化した。第1サイド流路および第2サイド流路(約250μL/流路)と中央ホール(約200μL/ホール)を3次元血管用培地で満たした。翌日、第1サイド流路、第2サイド流路および中央ホールを3次元血管用培地で培地交換した。
<Co-culture of HUVEC vascular network and EVT cells using placental cell culture device (1)>
A HUVEC suspension of 1.0×10 7 cells/mL was prepared. Next, fibrinogen from bovine plasma (SIGMA) was dissolved in PBS(−) and filtered to prepare a 10 mg/mL fibrinogen solution. HUVEC suspension and fibrinogen solution were mixed at a ratio of 1:3. Thrombin (Sigma) (50 U/mL) was added to this mixture to a final concentration of 1 U/mL and quickly introduced into the central channel of the second substrate. Fibrinogen turns into fibrin by the action of thrombin and gels. Placed in a CO 2 incubator at 37° C. for 5 minutes to gel the fibrin gel in the central channel. The first and second side channels (approximately 250 μL/channel) and the central hole (approximately 200 μL/hole) were filled with three-dimensional vascular medium. The next day, the media in the first side channel, the second side channel and the central hole were replaced with three-dimensional vascular media.
 HUVEC播種の3日後、以下の手順に従い第1基板の中央ホール内にTS細胞を播種した。中央ホール内をMatrigel(Corning)でコーティングするために、PBS(-)で40倍希釈した約200μLのMatrigelを中央ホール内に入れ、37℃のインキュベーター内で1時間静置した。EVT basal培地で懸濁したEGFP-TS細胞(5.0×10 cells/mL)を用意した。細胞懸濁液10μLと2D-EVT培地200μLと約10mg/mL Matrigel 5μLとを混合し、第1基板の中央ホールに添加した(5×10 cells/ホール)。HUVEC播種の6日後に、中央ホールの培地交換を行った。培地交換で使用した培地は、400倍希釈のマトリゲル(最終濃度 約0.025mg/mL)と1μg/mL doxycycline hyclateとを含む2D-EVT培地である。HUVEC播種の9日後に培養を終了した。第1サイド流路および第2サイド流路に関しては、HUVEC播種の3日後、5日後、7日後に3次元血管用培地(馴化培地)で培地交換した。 Three days after HUVEC seeding, TS cells were seeded in the central hole of the first substrate according to the following procedure. In order to coat the inside of the central hole with Matrigel (Corning), about 200 μL of Matrigel diluted 40-fold with PBS(−) was placed in the central hole and allowed to stand in an incubator at 37° C. for 1 hour. EGFP-TS cells (5.0×10 5 cells/mL) suspended in EVT basal medium were prepared. 10 μL of cell suspension, 200 μL of 2D-EVT medium and 5 μL of about 10 mg/mL Matrigel were mixed and added to the central hole of the first substrate (5×10 3 cells/hole). Six days after HUVEC seeding, a media change in the central hall was performed. The medium used for medium replacement was 2D-EVT medium containing 400-fold diluted Matrigel (final concentration: about 0.025 mg/mL) and 1 μg/mL doxycycline hyclate. Cultures were terminated 9 days after HUVEC seeding. Regarding the first side channel and the second side channel, the medium was replaced with a three-dimensional vascular medium (conditioned medium) 3 days, 5 days, and 7 days after HUVEC seeding.
(蛍光顕微鏡観察)
 4%パラホルムアルデヒド(PFA)(FUJIFILM Wako)溶液を胎盤細胞培養デバイス内に導入し、室温で10分間放置して細胞を固定した。その後、2% FBS/PBS(-)溶液で細胞を洗浄した。
 オールインワン蛍光顕微鏡 BZ-X810(KEYENCE)を用いて細胞を観察した。
(Fluorescence microscope observation)
A 4% paraformaldehyde (PFA) (FUJIFILM Wako) solution was introduced into the placental cell culture device and left at room temperature for 10 minutes to fix the cells. After that, the cells were washed with a 2% FBS/PBS(-) solution.
Cells were observed using an all-in-one fluorescence microscope BZ-X810 (KEYENCE).
(結果)
 図16に、HUVEC播種9日後(EGFP-TS細胞播種6日後)の蛍光顕微鏡画像を示す。胎盤細胞デバイスの側面から撮像した蛍光顕微鏡画像(B)から、胎盤細胞培養デバイスのメッシュシートがある高さのところにEGFP-TS細胞があることが確認できた。また、メッシュシート下の領域にHUVECが存在していることが確認できた。胎盤細胞デバイスの第2基板側から撮像した蛍光顕微鏡画像(A)から、HUVECは3次元血管網の構造をとっていることが確認できた。EVT細胞に分化させる培地を使用したことから、胎盤細胞培養デバイス内のEGFP-TS細胞は、EVT細胞に分化していると考えられた。一部のEGFP-TS細胞(EVT細胞)は、HUVEC血管網がある位置にまで下がっており、HUVEC細胞と相互作用をしている可能性が考えられた。
(result)
FIG. 16 shows fluorescence microscope images 9 days after HUVEC seeding (6 days after EGFP-TS cell seeding). From the fluorescence microscope image (B) taken from the side of the placental cell device, it was confirmed that EGFP-TS cells were present at the height of the mesh sheet of the placental cell culture device. It was also confirmed that HUVEC existed in the area under the mesh sheet. From the fluorescence microscope image (A) taken from the second substrate side of the placental cell device, it was confirmed that HUVEC had a three-dimensional vascular network structure. EGFP-TS cells in the placental cell culture device were thought to be differentiated into EVT cells because a medium that differentiates into EVT cells was used. Some EGFP-TS cells (EVT cells) descended to the position where the HUVEC vascular network exists, suggesting the possibility of interacting with the HUVEC cells.
<胎盤細胞培養デバイスを用いたHUVEC血管網とEVT細胞の共培養(2)>
 HUVEC播種後0日から播種後3日までの間、中央ホールに3次元血管用培地を添加しなかったこと以外は、<胎盤細胞培養デバイスを用いたHUVEC血管網とEVT細胞の共培養(1)>と同様の方法で培養を行った。
<Co-culture of HUVEC vascular network and EVT cells using placental cell culture device (2)>
From day 0 to day 3 after HUVEC seeding, except that no three-dimensional vascular medium was added to the central hole, <Co-culture of HUVEC vascular network and EVT cells using a placental cell culture device (1 )> was cultured in the same manner.
(結果)
 図17に、HUVEC播種9日後(EGFP-TS細胞播種6日後)の蛍光顕微鏡画像を示す。HUVEC血管網は図16に示す蛍光顕微鏡画像よりも平面状に形成されていた。すなわち、HUVEC血管網は中央ホールへと血管を伸ばしていない構造をしていた。これらの結果から、HUVEC播種後3日目までの血管網形成期間が、HUVEC血管網の向きを決定する上で重要である可能性が考えられた。中央ホールに培地が存在する場合、播種されたHUVECは、中央ホールの方向に血管網を伸ばすと考えられる(図5A参照)。一方、中央ホールに培地が存在しない場合、播種されたHUVECは、中央ホールの方向に血管網を伸ばさないと考えられる(図5B参照)。
(result)
FIG. 17 shows fluorescence microscope images 9 days after HUVEC seeding (6 days after EGFP-TS cell seeding). The HUVEC vascular network was formed more planar than the fluorescence microscope image shown in FIG. That is, the HUVEC vascular network had a structure in which the vessels did not extend to the central hole. These results suggested that the period of vascular network formation up to 3 days after HUVEC seeding may be important in determining the orientation of the HUVEC vascular network. When medium was present in the central hole, the seeded HUVEC would extend the vascular network towards the central hole (see Figure 5A). On the other hand, in the absence of medium in the central hole, the seeded HUVECs would not extend the vascular network towards the central hole (see FIG. 5B).
 図18は、生体内におけるEVT細胞と母体血管の模式図である。EVT細胞(EVT)は、脱落膜(DM)に接触したCT細胞(CT)から生じるものと考えられており、脱落膜(DM)の表面や内部において観察される。脱落膜(DM)内には絨毛(V)側へ血液(BL)を送るための血管(らせん動脈:HA)があり、脱落膜(DM)表面(血液と接している面)にこの血管の出口がある。EVT細胞(EVT)は、この血管の出口から血管内壁に浸潤し、血管を太く再構築することができる。一方、脱落膜(DM)内に浸潤したEVT細胞(EVT)は、らせん動脈(HA)に向かって遊走し、この血管の外側から血管内部に浸潤すると考えられている。この様に2つの経路から血管に浸潤したEVT細胞が、血管をより太く再構築するものと考えられている。この2つの経路を介したEVT細胞の血管浸潤を、実施例1の胎盤細胞培養デバイスを用いることによりモデル化することができる。実施例1の胎盤細胞培養デバイスは、培養初期に第1基板の中央ホール内に培地を入れるか入れないかの違いだけで、中央ホール側へのHUVEC血管の形成を制御できる。中央ホール側にHUVEC血管を伸ばす制御は、動脈出口側からEVT細胞が血管に浸潤するモデルの作製に利用できる。中央ホール側にHUVEC血管を伸ばさない制御は、脱落膜に侵入したEVT細胞が血管に浸潤するモデルの作製に利用できる。 Fig. 18 is a schematic diagram of EVT cells and maternal blood vessels in vivo. EVT cells (EVT) are thought to arise from CT cells (CT) that contact the decidua (DM) and are found on and within the decidua (DM). In the decidua (DM), there are blood vessels (spiral arteries: HA) for sending blood (BL) to the villus (V) side, and these blood vessels are located on the surface of the decidua (DM) (surface in contact with blood). There is an exit. EVT cells (EVT) can infiltrate the inner wall of the blood vessel from the outlet of the blood vessel and reconstruct the blood vessel thicker. On the other hand, EVT cells (EVT) that have infiltrated the decidua (DM) are thought to migrate toward the spiral artery (HA) and infiltrate from the outside of this blood vessel into the inside of the blood vessel. It is believed that EVT cells that have infiltrated blood vessels through two routes in this way reconstruct thicker blood vessels. Vascular invasion of EVT cells via these two pathways can be modeled by using the placental cell culture device of Example 1. The placental cell culture device of Example 1 can control the formation of HUVEC blood vessels in the central hole side of the first substrate only by inserting or not inserting the medium in the central hole of the first substrate at the initial stage of culture. The control of extending HUVEC blood vessels toward the central hall can be used to create a model in which EVT cells invade blood vessels from the artery exit side. Controlling HUVEC vessels not to extend toward the central hole can be used to create a model in which EVT cells that have entered the decidua invade blood vessels.
[実施例2]
 実施例2では、上述の第2実施形態の胎盤細胞培養デバイス(図8A~図10B参照)で培養するEVT細胞含有細胞構造体の作製試験を行った。
[Example 2]
In Example 2, a production test of an EVT cell-containing cell structure to be cultured in the placental cell culture device of the second embodiment (see FIGS. 8A to 10B) was conducted.
<培地>
 TS basal培地およびTS培地は、上記と同様のものを用いた。
<Culture medium>
The same TS basal medium and TS medium as above were used.
(3D-EVT培地)
 TS basal培地に、下記成分を添加して3D-EVT培地を作製した。下記に示す濃度は、3D-EVT培地中での各成分の最終濃度である。
 Y27632(FUJIFILM Wako) 2.5μM
 EGF(FUJIFILM Wako) 25ng/mL
 NRG1(Cell signaling) 100ng/mL
 SB202190(FUJIFILM Wako) 2μM
 Matrigel(Corning) 0.2mg/mL
(3D-EVT medium)
A 3D-EVT medium was prepared by adding the following components to a TS basal medium. The concentrations shown below are the final concentrations of each component in the 3D-EVT medium.
Y27632 (FUJIFILM Wako) 2.5 μM
EGF (FUJIFILM Wako) 25ng/mL
NRG1 (cell signaling) 100 ng/mL
SB202190 (FUJIFILM Wako) 2 μM
Matrigel (Corning) 0.2 mg/mL
(3D-EVT-Dox培地)
 TS basal培地に、下記成分を添加して3D-EVT培地を作製した。下記に示す濃度は、3D-EVT培地中での各成分の最終濃度である。
 Y27632(FUJIFILM Wako) 2.5μM
 EGF(FUJIFILM Wako) 25ng/mL
 NRG1(Cell signaling) 100ng/mL
 SB202190(FUJIFILM Wako) 2μM
 Matrigel (Corning) 0.2 mg/mL
 Doxycycline hyclate(Sigma-Aldrich) 2μg/mL
(3D-EVT-Dox medium)
A 3D-EVT medium was prepared by adding the following components to a TS basal medium. The concentrations shown below are the final concentrations of each component in the 3D-EVT medium.
Y27632 (FUJIFILM Wako) 2.5 μM
EGF (FUJIFILM Wako) 25ng/mL
NRG1 (cell signaling) 100 ng/mL
SB202190 (FUJIFILM Wako) 2 μM
Matrigel (Corning) 0.2 mg/mL
Doxycycline hyclate (Sigma-Aldrich) 2 μg/mL
(アッセイ培地)
 TS basal培地に、下記成分を添加してアッセイ培地を作製した。下記に示す濃度は、アッセイ培地中での最終濃度である。
 Doxycycline hyclate(Sigma-Aldrich) 2μg/mL
(assay medium)
An assay medium was prepared by adding the following components to TS basal medium. The concentrations given below are the final concentrations in the assay medium.
Doxycycline hyclate (Sigma-Aldrich) 2 μg/mL
<EVT細胞含有細胞構造体の作製>
 EGFP-TS細胞はTS培地により維持・管理した。EGFP-TS細胞を維持培養するディッシュから回収し、TS basal培地に懸濁し、細胞懸濁液を作製した。10μLの細胞懸濁液(0.5×10 cells/mL)を、90μLの3D-EVT培地が入ったPrimeSurface 96Uプレート(住友ベークライト)の各ウェルに入れた。培養3日目に、50μLの3D-EVT-Dox培地を入れた。培養4日目に、作製した細胞集合体を培地と共に3.5cmディッシュ内に移動した。一方、30μLのMatrigel-growth factor reduced(約10mg/mL, Corning)30μLと20μLのcollagen I(5mg/mL,AteloCell IAC-50,高研)とを氷上で混ぜ合わせ、混合ゲル溶液を調製した。ディッシュ内の細胞集合体をピペットマンチップで吸い上げ、細胞集合体のみを混合ゲル溶液の中へ移した。この際、混合ゲル溶液の中に培地が極力入らないように注意した。次に、ピペットマンを用いて、約7μLの混合ゲル溶液と共に細胞集合体を吸い上げ、4穴プレートのウェルの中へ移動した。その4穴プレートを37℃の5% COインキュベーター内で15分間ほど静置して、混合ゲル溶液をゲル化させた。次いで、200μLのアッセイ培地を入れた。37℃、5% CO環境下で、細胞集合体の培養を開始した。ゲル内で培養を開始してから1日目(細胞播種の5日目)に、200μLのアッセイ培地を用いて培地交換をした。
<Preparation of EVT cell-containing cell structure>
EGFP-TS cells were maintained and managed with TS medium. EGFP-TS cells were collected from the dish for maintenance culture and suspended in TS basal medium to prepare a cell suspension. 10 μL of cell suspension (0.5×10 5 cells/mL) was placed in each well of PrimeSurface 96U plate (Sumitomo Bakelite) containing 90 μL of 3D-EVT medium. On day 3 of culture, 50 μL of 3D-EVT-Dox medium was added. On day 4 of culture, the produced cell aggregates were moved into a 3.5 cm dish together with the medium. On the other hand, 30 μL of Matrigel-growth factor reduced (about 10 mg/mL, Corning) and 20 μL of collagen I (5 mg/mL, AteloCell IAC-50, Koken) were mixed on ice to prepare a mixed gel solution. The cell aggregates in the dish were sucked up with a pipetman tip, and only the cell aggregates were transferred into the mixed gel solution. At this time, care was taken not to allow the culture medium to enter the mixed gel solution as much as possible. Next, using a Pipetman, the cell aggregates were sucked up along with about 7 μL of the mixed gel solution and transferred into wells of a 4-well plate. The 4-well plate was placed in a 37° C. 5% CO 2 incubator for about 15 minutes to gel the mixed gel solution. 200 μL of assay medium was then added. Cultivation of cell aggregates was started under an environment of 37° C. and 5% CO 2 . One day after starting the culture in the gel (5th day after cell seeding), the medium was replaced with 200 μL of the assay medium.
(免疫細胞染色)
 ウェル中のアッセイ培地を除去し、4% パラホルムアルデヒド(PFA)(FUJIFILM Wako)を添加して、細胞集合体をパラホルムアルデヒドに40分間浸して固定した。その後、ウェル中のパラホルムアルデヒド溶液をリン酸緩衝液(PBS、phosphate buffered saline)(-)(FUJIFILM Wako)に置換した。透過処理を行うために、ウェル内のPBS(-)を、500μLのPBS(-)で希釈した0.3% Triton X-100(FUJIFILM Wako)に置換し、1時間、室温で細胞集合体を処理した。500μLのPBS(-)で細胞集合体を一度洗浄した。
(Immune cell staining)
The assay medium in the wells was removed, 4% paraformaldehyde (PFA) (FUJIFILM Wako) was added, and the cell aggregates were fixed by soaking in paraformaldehyde for 40 minutes. After that, the paraformaldehyde solution in the wells was replaced with phosphate buffered saline (PBS) (-) (FUJIFILM Wako). For permeabilization, the PBS (-) in the wells was replaced with 0.3% Triton X-100 (FUJIFILM Wako) diluted with 500 μL of PBS (-), and the cell aggregates were allowed to stand at room temperature for 1 hour. processed. The cell aggregates were washed once with 500 μL of PBS(-).
 抗体希釈液(0.1% Tween20と2% FBSとを含んだPBS[-])に、PE付anti-HLA-G抗体[MEM-G/9](ab24384)(x1/200希釈)を加えて、一次抗体溶液を調製した。ウェルに、500μLの一次抗体溶液を入れ、4℃で一晩静置した。翌日、一次抗体溶液をウェルから除去し、PBS(-)で細胞集合体を洗浄した(500μLで3回)。細胞集合体をオールインワン蛍光顕微鏡BZ-X800(キーエンス)を用いて解析した。 Anti-HLA-G antibody with PE [MEM-G/9] (ab24384) (x1/200 dilution) was added to the antibody diluent (PBS [-] containing 0.1 % Tween 20 and 2% FBS) to prepare the primary antibody solution. 500 μL of the primary antibody solution was added to the wells and allowed to stand at 4° C. overnight. The next day, the primary antibody solution was removed from the wells, and the cell aggregates were washed with PBS(-) (3 times with 500 μL). Cell aggregates were analyzed using an all-in-one fluorescence microscope BZ-X800 (Keyence).
(結果)
 図19Aに、混合ゲル内に移動後の細胞集合体の顕微鏡画像を示す。EVT細胞はゲル内で紡錘状に伸びた形態をとることができるが、移動直後(Day0)の細胞集合体の周辺には紡錘状の細胞はほとんど観察されなかった。混合ゲル内に移動後1日目(Day1)および2日目(Day2)には、細胞集合体の周囲に紡錘状の細胞が観察された。
(result)
FIG. 19A shows a microscopic image of cell aggregates after migration into the mixed gel. Although EVT cells can assume a spindle-shaped elongated form in the gel, almost no spindle-shaped cells were observed around the cell aggregates immediately after migration (Day 0). One day (Day 1) and two days (Day 2) after migration into the mixed gel, spindle-shaped cells were observed around the cell aggregates.
 Day2の細胞集合体を免疫細胞染色した結果を図19Bに示す。細胞集合体は、EVT細胞のマーカーであるHLA-Gを発現していた。細胞集合体の中心付近は、HLA-Gで染色されていなかった。この原因としては、(1)抗体が細胞集合体の中心付近まで到達できなかった可能性、および(2)細胞集合体の中心付近の細胞はHLA-Gを発現していない未分化な細胞が多い可能性、が考えられた。doxycycline処理により、細胞集合体の細胞のEGFP発現が確認できた。これらの結果から、上記の方法により、EVT細胞を周囲に纏った細胞集合体を作製できることが確認された。 FIG. 19B shows the results of immunocytostaining of Day 2 cell aggregates. Cell aggregates expressed HLA-G, a marker for EVT cells. There was no HLA-G staining near the center of the cell aggregate. The reasons for this are (1) the possibility that the antibody could not reach the vicinity of the center of the cell aggregate, and (2) the cells near the center of the cell aggregate were undifferentiated cells that do not express HLA-G. Many possibilities were considered. By doxycycline treatment, EGFP expression in the cells of the cell aggregate could be confirmed. From these results, it was confirmed that the above method can produce cell aggregates surrounded by EVT cells.
[実施例3]
 実施例3では、上述の第2実施形態の胎盤細胞培養デバイス(図8A~図10B参照)を用いて、EVT細胞含有細胞構造体を含む3次元培養モデルを作製した。
<胎盤細胞培養デバイスの作製>
(フォトリソグラフィーによる鋳型の作製)
 フォトリソグラフィー法を用いて、胎盤細胞培養デバイスの第1基板の鋳型を作製した。まず、高純度シリコンウェハー(アズワン)に、永久エポキシネガ型フォトレジストSU-8 2100(KAYAKU Advanced Materials)をスピンコートした(500rpmで10秒間、その後3000rpmで30秒間)。フォトレジストをスピンコートしたシリコンウェハーを65℃のホットプレート上で5分間加熱し、次いで95℃のホットプレート上で20分間加熱した。これにより、厚さ100μmのSU-8膜を作製した。レーザー描画装置DWL200(Heidelberg Instruments)を用いて、第1基板用にフォトマスクを作製した。第1基板鋳型用のSU-8膜上に第1基板用フォトマスクを置き、UV照射を行った(20秒間)。その後、65℃のホットプレート上で5分間、95℃のホットプレート上で10分間加熱した。次いで、5分間室温で冷却した。攪拌したSU-8現像剤(KAYAKU Advanced Materials)の中に、前記冷却後の鋳型を入れて、30分間反応させて、未硬化のSU-8を除去した。次いで、86%エタノール-IP(変性)(FUJIFILM Wako)で鋳型を洗浄した。その後、鋳型を、65℃で3分間、150℃で6分間処理した。
[Example 3]
In Example 3, a three-dimensional culture model containing an EVT cell-containing cell structure was produced using the placental cell culture device of the second embodiment (see FIGS. 8A to 10B).
<Production of placental cell culture device>
(Preparation of template by photolithography)
A template for the first substrate of the placental cell culture device was made using a photolithography method. First, a high-purity silicon wafer (AS ONE) was spin-coated with permanent epoxy negative photoresist SU-8 2100 (KAYAKU Advanced Materials) (500 rpm for 10 seconds, then 3000 rpm for 30 seconds). The photoresist spin-coated silicon wafer was heated on a 65° C. hotplate for 5 minutes and then on a 95° C. hotplate for 20 minutes. Thus, an SU-8 membrane with a thickness of 100 μm was produced. A photomask was produced for the first substrate using a laser lithography apparatus DWL200 (Heidelberg Instruments). A photomask for the first substrate was placed on the SU-8 film for the first substrate mold, and UV irradiation was performed (20 seconds). After that, it was heated on a 65° C. hot plate for 5 minutes and on a 95° C. hot plate for 10 minutes. It was then cooled at room temperature for 5 minutes. The cooled mold was placed in agitated SU-8 developer (KAYAKU Advanced Materials) and allowed to react for 30 minutes to remove uncured SU-8. The templates were then washed with 86% ethanol-IP (denatured) (FUJIFILM Wako). The mold was then treated at 65°C for 3 minutes and 150°C for 6 minutes.
(ソフトリソグラフィーによる第1基板の作製)
 フォトリソグラフィーにより作製した第1基板用鋳型を用いて、第1基板をソフトリソグラフィーにより作製した。主剤と硬化剤を10:1の割合で混合したPDMS溶液を調製し、作製した鋳型に流し込んだ。脱気処理後、65℃で一晩処理することにより、PDMS溶液を硬化させた。ディスポーザブルメス等を用いて、鋳型から第1基板用部品を取った。流路への液体導入/排出用の穴を生検トレパン(Φ2mmとΦ6mm)で開けた。図20Aに、作製した第1基板の模式図を示す。
(Preparation of first substrate by soft lithography)
A first substrate was produced by soft lithography using a first substrate mold produced by photolithography. A PDMS solution was prepared by mixing a main agent and a curing agent at a ratio of 10:1, and poured into the prepared mold. After degassing, the PDMS solution was cured by overnight treatment at 65°C. Using a disposable scalpel or the like, the first board component was removed from the mold. Holes for fluid introduction/exhaust into the channel were made with biopsy trepans (Φ2 mm and Φ6 mm). FIG. 20A shows a schematic diagram of the manufactured first substrate.
 第1基板に取り付けるPDMS製リングを、PDMSシートを2種類の生検トレパン(Φ8mmとΦ6mm)で打ち抜くことにより作製した。 A PDMS ring attached to the first substrate was produced by punching out a PDMS sheet with two types of biopsy trepans (Φ8 mm and Φ6 mm).
(胎盤細胞培養デバイスの組み立て)
 上記のように作製した第1基板および第2基板を用いて、胎盤細胞培養デバイスを組み立てた(図9参照)。
(Assembly of placental cell culture device)
A placental cell culture device was assembled using the first and second substrates produced as described above (see FIG. 9).
 第2基板として、カバーガラス(松浪硝子)を用いた。 A cover glass (Matsunami Glass) was used as the second substrate.
 第1基板の流路表面側と第2基板の表面を小型プラズマ装置(PM100)(ヤマト科学株式会社)を用いて2分間、酸素プラズマ処理した。第1基板と第2基板とを接着させて、80℃で一晩処理した。デバイスを細胞培養に使用するため、UV処理を30分間行うことで、殺菌処理をした。図20Bに、作製した胎盤細胞培養デバイスの写真を示す。 The flow path surface side of the first substrate and the surface of the second substrate were treated with oxygen plasma for 2 minutes using a small plasma device (PM100) (Yamato Scientific Co., Ltd.). The first and second substrates were bonded together and treated at 80° C. overnight. In order to use the device for cell culture, it was sterilized by UV treatment for 30 minutes. FIG. 20B shows a photograph of the fabricated placental cell culture device.
<EVT細胞含有細胞構造体の作製とEVT細胞の遊走(1)>
 実施例2と同様に、EGFP-TS細胞から細胞集合体を作製した。まず、EGFP-TS細胞を維持培養するディッシュから回収し、TS basal培地に懸濁し、細胞懸濁液を作製した。10μLの細胞懸濁液(0.8×10 cells/mL)を、90μLの3D-EVT培地が入ったPrimeSurface 96Uプレートの各ウェルに入れた。培養3日目に、50μLの3D-EVT-Dox培地を入れた。培養4日目に、作製した細胞集合体を培地と共に3.5cmディッシュ内に移動した。一方、30μLのGF-reduced Matrigel 30μLと20μLのcollagen Iとを氷上で混ぜ合わせ、混合ゲル溶液を調製した。ディッシュ内の細胞集合体をピペットマンチップで吸い上げ、細胞集合体のみを混合ゲル溶液の中へ移した。この際、混合ゲル溶液の中に培地が極力入らないように注意した。
<Preparation of EVT cell-containing cell structure and migration of EVT cells (1)>
Cell aggregates were prepared from EGFP-TS cells in the same manner as in Example 2. First, EGFP-TS cells were collected from a dish for maintenance culture and suspended in TS basal medium to prepare a cell suspension. 10 μL of cell suspension (0.8×10 5 cells/mL) was placed in each well of PrimeSurface 96U plate containing 90 μL of 3D-EVT medium. On day 3 of culture, 50 μL of 3D-EVT-Dox medium was added. On day 4 of culture, the produced cell aggregates were moved into a 3.5 cm dish together with the medium. On the other hand, 30 μL of GF-reduced Matrigel and 20 μL of collagen I were mixed on ice to prepare a mixed gel solution. The cell aggregates in the dish were sucked up with a pipetman tip, and only the cell aggregates were transferred into the mixed gel solution. At this time, care was taken not to allow the culture medium to enter the mixed gel solution as much as possible.
 次に、ピペットマンを用いて、約7μLの混合ゲル溶液と共に細胞集合体を吸い上げ、胎盤細胞培養デバイスに設けられたΦ0.5mmの連通孔から細胞集合体を導入した。次いで、胎盤細胞培養デバイスを6cmディッシュの中に入れた。超純水で湿らせたガーゼ等を用いてデバイス内のゲルが乾燥しないように注意しながら、デバイス/ディッシュを37℃、5%COインキュベーター内に入れた。15分間ほど静置し、混合ゲル溶液をゲル化させた後、第1基板上にPDMSリングを設置して、上層ウェルを形成した。上層ウェルに60μLのアッセイ培地を入れた。胎盤細胞培養デバイスの中央流路には混合ゲルと1つの細胞集合体が入っている状態であった。第1サイド流路および第2サイド流路には、それぞれ40μLのアッセイ培地を導入した。37℃、5%CO環境下で、胎盤細胞培養でデバイス内での細胞集合体の培養を開始した。胎盤細胞培養デバイス内での培養を開始してから1日目(細胞播種の5日目)と2日目(細胞播種の6日目)に、50μLのアッセイ培地を用いて培地交換した(上層ウェル、第1サイド流路、第2サイド流路)。 Next, using Pipetman, the cell aggregate was sucked up together with about 7 μL of the mixed gel solution, and the cell aggregate was introduced through a communicating hole of φ0.5 mm provided in the placental cell culture device. Placental cell culture devices were then placed in 6 cm dishes. The device/dish was placed in a 37° C., 5% CO 2 incubator, taking care not to dry out the gel inside the device using gauze or the like moistened with ultrapure water. After standing still for about 15 minutes to gel the mixed gel solution, a PDMS ring was placed on the first substrate to form an upper layer well. 60 μL of assay medium was placed in the upper wells. The central channel of the placental cell culture device contained a mixed gel and one cell aggregate. 40 μL of assay medium was introduced into each of the first side channel and the second side channel. Cultivation of cell aggregates in the device was started with placental cell culture under an environment of 37° C. and 5% CO 2 . On the 1st day (5th day of cell seeding) and 2nd day (6th day of cell seeding) after starting the culture in the placental cell culture device, the medium was replaced with 50 μL of the assay medium (upper layer well, first side channel, second side channel).
(結果)
 図21Aに、胎盤細胞培養デバイス内に細胞集合体を導入して1日目(培養開始から5日目)、2日目(培養開始から6日目)、3日目(培養開始から7日目)の蛍光顕微鏡画像を示す。Doxycyclineにより、細胞集合体の細胞がEGFPを発現していることが確認された。一部の細胞は、2日目(培養開始から6日目)、にはEVT細胞様の紡錘形をしていた。図21Aから、EVT細胞は左方向または右方向に、同様の程度で遊走することが確認された。
(result)
In FIG. 21A, the cell aggregates were introduced into the placental cell culture device on day 1 (day 5 from the start of culture), day 2 (day 6 from the start of culture), and day 3 (day 7 from the start of culture). Fluorescence microscopy images of eyes) are shown. Doxycycline confirmed that the cells in the cell aggregate expressed EGFP. Some of the cells had an EVT cell-like spindle shape on day 2 (day 6 from the start of culture). Figure 21A confirmed that EVT cells migrated to the left or right to similar extents.
 胎盤細胞培養デバイスに細胞集合体を導入した1日目に、細胞集合体を第2基板側から観察した平面視像に対して、その平面視像の面積を左右に略均等に分割する分割線を引いた。この分割線を基準として、培養開始から5日目(導入後1日目)、6日目(導入後2日目)、7日目(導入後3日目)の細胞集合体に対して、分割線の左側および右側の面積をImageJ 1.52a(National Institutes of Health)を用いて解析した。
 その結果を図21Bに示す。各プロットは、細胞集合体を第2基板側から観察した像の全面積を1とした時の、分割線の左側(Left)または右側(Right)の細胞集合体における面積である。図21Bの結果からも、EVT細胞が左右に均等に広がっていることが確認された。
On the first day after introducing the cell aggregates into the placental cell culture device, the dividing line dividing the area of the planar view image of the cell aggregates observed from the second substrate side substantially evenly to the left and right. pulled. Using this dividing line as a reference, for the cell aggregates on the 5th day (1st day after introduction), 6th day (2nd day after introduction), and 7th day (3rd day after introduction) from the start of culture, Areas to the left and right of the dividing line were analyzed using ImageJ 1.52a (National Institutes of Health).
The results are shown in FIG. 21B. Each plot is the area of the cell aggregate on the left or right side of the dividing line when the total area of the image of the cell aggregate observed from the second substrate side is set to 1. The result of FIG. 21B also confirmed that the EVT cells spread evenly to the left and right.
<EVT細胞含有細胞構造体の作製とEVT細胞の遊走(2)>
 上記と同様にEGFP-TS細胞から細胞集合体を作製した。まず、EGFP-TS細胞を維持培養するディッシュから回収し、TS basal培地に懸濁し、細胞懸濁液を作製した。10μLの細胞懸濁液(0.65×10 cells/mL)を、90μLの3D-EVT培地が入ったPrimeSurface 96Uプレートの各ウェルに入れた。培養4日目に、作製した細胞集合体を培地と共に3.5cmディッシュ内に移動した。上記と同様に、細胞集合体を胎盤細胞培養デバイス内に導入し、第1サイド流路および第2サイド流路を培地で満たした。37℃、5% CO環境下で、胎盤細胞培養デバイス内での細胞集合体の培養を開始した。
<Preparation of EVT cell-containing cell structure and migration of EVT cells (2)>
Cell aggregates were prepared from EGFP-TS cells in the same manner as above. First, EGFP-TS cells were collected from a dish for maintenance culture and suspended in TS basal medium to prepare a cell suspension. 10 μL of cell suspension (0.65×10 5 cells/mL) was placed in each well of PrimeSurface 96U plate containing 90 μL of 3D-EVT medium. On day 4 of culture, the produced cell aggregates were moved into a 3.5 cm dish together with the medium. Similar to the above, the cell aggregates were introduced into the placental cell culture device and the first side channel and the second side channel were filled with medium. Cultivation of the cell aggregates in the placental cell culture device was started under an environment of 37° C. and 5% CO 2 .
 胎盤細胞デバイス内に細胞集合体を導入してから1~2時間後、HUVEC細胞をデバイスの第1サイド流路に導入した。手順として、まず、RFP-HUVECの懸濁液(5×10 cells/mL)をEGM-2培地で調製した。先を切断したピペットマンチップ(2~20μL用)を用いて、7μLのRFP-HUVEC懸濁液を胎盤細胞培養デバイスの第2ポートP2から入れた(図8A参照)。コントロールとして、7μLのEGM-2を第4ポートP4から入れた。HUVECを導入した第1サイド流路が上になるように胎盤細胞培養デバイスを垂直に立てて、大型クリップで固定し、その垂直状態のまま37℃の5% COインキュベーター内へ入れた。25分後、胎盤細胞培養デバイスを水平にし、培養を開始した。胎盤細胞培養デバイス内での細胞集合体の培養を開始してから1日目(細胞播種の5日目)と2日目(細胞播種の6日目)に、50μLのアッセイ培地を用いて培地交換した(上層ウェル、第1サイド流路、第2サイド流路)。 One to two hours after introducing the cell aggregates into the placental cell device, HUVEC cells were introduced into the first side channel of the device. As a procedure, first, a suspension of RFP-HUVEC (5×10 6 cells/mL) was prepared in EGM-2 medium. Using a truncated Pipetman tip (for 2-20 μL), 7 μL of RFP-HUVEC suspension was introduced through the second port P2 of the placental cell culture device (see FIG. 8A). As a control, 7 μL of EGM-2 was added through the fourth port P4. The placental cell culture device was set upright so that the first side channel into which HUVECs were introduced faced up, fixed with a large clip, and placed in a 5% CO 2 incubator at 37°C in this vertical state. After 25 minutes, the placental cell culture device was leveled and culture started. On the 1st day (5th day of cell seeding) and 2nd day (6th day of cell seeding) after starting the culture of the cell aggregates in the placental cell culture device, 50 μL of the assay medium was used. exchanged (upper well, first side channel, second side channel).
(結果)
 図22Aに、胎盤細胞デバイス内に細胞集合体を導入して1日目(培養開始から5日目)、2日目(培養開始から6日目)、3日目(培養開始から7日目)の蛍光顕微鏡画像を示す。図22Aの結果から、EVT細胞が、HUVECが存在している第1サイド流路の方に移動していることが確認された。
(result)
In FIG. 22A, the cell aggregates were introduced into the placental cell device on day 1 (day 5 from the start of culture), day 2 (day 6 from the start of culture), and day 3 (day 7 from the start of culture). ) shows a fluorescence microscope image. The results in FIG. 22A confirm that EVT cells migrate toward the first side channel where HUVEC reside.
 上記と同様に、胎盤細胞培養デバイスの第2基板側から細胞集合体を観察した平面視像に対して分割線を引き、分割線の左側(HUVEC(-))および右側(HUVEC(+))の細胞集合体の面積を測定した。
 その結果を図22Bに示す。EVT細胞とHUVECとを共培養してから2日後(培養開始から6日目)に、有意にEVT細胞がHUVEC方向へ遊走していることが確認できた。
In the same manner as described above, a dividing line is drawn on the planar view image of the cell aggregate observed from the second substrate side of the placental cell culture device, and the left side (HUVEC (−)) and the right side (HUVEC (+)) of the dividing line are drawn. The area of cell aggregates was measured.
The results are shown in FIG. 22B. Two days after co-culturing EVT cells and HUVECs (day 6 from the start of culture), it was confirmed that EVT cells migrated significantly toward HUVECs.
 これらの結果から、実施例3の胎盤細胞培養デバイスを用いて、EVT細胞の遊走を評価できることが示された。 These results show that the placental cell culture device of Example 3 can be used to evaluate migration of EVT cells.
 以上、本発明の好ましい実施形態を説明および図示してきたが、これらは本発明を例示するものであり、限定的なものとみなされるべきではないことを理解すべきである。本発明の精神または範囲から逸脱することなく、追加、省略、置換、およびその他の変更を行うことができる。したがって、本発明は、前述の説明によって限定されるものとはみなされず、添付の請求項の範囲によってのみ限定される。 While the preferred embodiments of the invention have been described and illustrated above, it should be understood that they are intended to be illustrative of the invention and should not be taken as limiting. Additions, omissions, substitutions, and other changes can be made without departing from the spirit or scope of the invention. Accordingly, the present invention should not be viewed as limited by the foregoing description, but only by the scope of the appended claims.
 本発明によれば、胎盤細胞と、胎盤細胞に作用し得る因子との相互作用を評価可能な、胎盤細胞培養デバイス、前記胎盤細胞培養デバイスを用いた3次元培養モデル、前記3次元培養モデルの作製方法、および前記胎盤細胞培養デバイスを用いた胎盤細胞の評価方法が提供される。 According to the present invention, a placental cell culture device, a three-dimensional culture model using the placental cell culture device, and the three-dimensional culture model that can evaluate the interaction between placental cells and factors that can act on placental cells. Methods of making and evaluating placental cells using the placental cell culture device are provided.
 1,100 胎盤細胞培養デバイス
 10,110 第1基板
 11 中央ホール
 12 胎盤細胞培養部
 20,120 第2基板
 21,111 中央流路
 22a,112a 第1サイド流路
 22b,112b 第2サイド流路
 23a,23b,113a,113b 仕切り部材
 24,114 マイクロポスト
 30 メッシュシート
 31 線状部材
 32 開口部
 40 薄膜シート
 41 薄膜開口部
 115 連通孔
 130 リング部材
 131 上層ウェル
 P1~P6 第1ポート~第6ポート
 p1~p4 第1ポート流路~第4ポート流路
1,100 Placental cell culture device 10,110 First substrate 11 Central hole 12 Placental cell culture part 20,120 Second substrate 21,111 Central channel 22a, 112a First side channel 22b, 112b Second side channel 23a , 23b, 113a, 113b partition member 24, 114 micropost 30 mesh sheet 31 linear member 32 opening 40 thin film sheet 41 thin film opening 115 communicating hole 130 ring member 131 upper layer wells P1 to P6 first to sixth ports p1 ~ p4 1st port flow path ~ 4th port flow path

Claims (9)

  1.  胎盤細胞を培養する胎盤細胞培養部と、
     前記胎盤細胞と相互作用し得る因子を存在させる因子用流路と、を備え、
     前記胎盤細胞培養部と、前記因子用流路とが、遮蔽部と連通部とが交互に配置された仕切り部材を介して隣接しており、前記連通部の最小幅が30~500μmである
     胎盤細胞培養デバイス。
    a placental cell culture unit for culturing placental cells;
    a factor channel in which a factor capable of interacting with the placental cells is present;
    The placental cell culture part and the factor channel are adjacent to each other via a partition member in which shielding parts and communicating parts are alternately arranged, and the minimum width of the communicating part is 30 to 500 μm Placenta cell culture device.
  2.  前記仕切り部材が、空隙率50~90%のメッシュシートである、請求項1に記載の胎盤細胞培養デバイス。 The placental cell culture device according to claim 1, wherein the partition member is a mesh sheet with a porosity of 50 to 90%.
  3.  前記胎盤細胞培養部に、前記胎盤細胞の細胞集合体を含むゲルが充填されている、請求項1に記載の胎盤細胞培養デバイス。 The placental cell culture device according to claim 1, wherein the placental cell culture unit is filled with a gel containing the cell aggregates of the placental cells.
  4.  請求項1~3のいずれか一項に記載の胎盤細胞培養デバイスを用いて作製された3次元培養モデルであって、
     前記胎盤細胞培養部で前記胎盤細胞が培養されており、
     前記因子用流路に前記胎盤細胞と相互作用し得る因子が存在している、
     3次元培養モデル。
    A three-dimensional culture model produced using the placental cell culture device according to any one of claims 1 to 3,
    The placental cells are cultured in the placental cell culture unit,
    a factor capable of interacting with the placental cells is present in the factor channel;
    3D culture model.
  5.  請求項2に記載の胎盤細胞培養デバイスを用いて作製された3次元培養モデルであって、
     前記胎盤細胞培養部で前記胎盤細胞が培養されており、
     前記因子用流路に3次元血管系が形成されている、
     3次元培養モデル。
    A three-dimensional culture model produced using the placental cell culture device according to claim 2,
    The placental cells are cultured in the placental cell culture unit,
    A three-dimensional vascular system is formed in the factor channel,
    3D culture model.
  6.  請求項3に記載の胎盤細胞培養デバイスを用いて作製された3次元培養モデルであって、
     前記胎盤細胞培養部で前記胎盤細胞の細胞集合体が培養されており、
     前記因子用流路に血管壁が形成されている、
     3次元培養モデル。
    A three-dimensional culture model produced using the placental cell culture device according to claim 3,
    A cell aggregate of the placental cells is cultured in the placental cell culture unit,
    a blood vessel wall is formed in the factor channel;
    3D culture model.
  7.  請求項2に記載の胎盤細胞培養デバイスを用いて、3次元培養モデルを作製する方法であって、
     前記因子用流路で血管内皮細胞を培養し、3次元血管系を形成させる工程と、
     前記因子用流路で前記3次元血管系を培養し、前記胎盤細胞培養部で胎盤細胞を培養する工程と、
     を含む、3次元培養モデルの作製方法。
    A method for producing a three-dimensional culture model using the placental cell culture device according to claim 2,
    culturing vascular endothelial cells in the factor channel to form a three-dimensional vascular system;
    culturing the three-dimensional vascular system in the factor channel and culturing placental cells in the placental cell culture unit;
    A method for producing a three-dimensional culture model, comprising:
  8.  請求項3に記載の胎盤細胞培養デバイスを用いて、3次元培養モデルを作製する方法であって、
     前記因子用流路で血管内皮細胞を培養し、血管壁を形成させる工程と、
     前記因子用流路で前記血管壁を培養し、前記胎盤細胞培養部で前記胎盤細胞の細胞集合体を培養する工程と、
     を含む、3次元培養モデルの作製方法。
    A method for producing a three-dimensional culture model using the placental cell culture device according to claim 3,
    culturing vascular endothelial cells in the factor channel to form a vascular wall;
    a step of culturing the vascular wall in the factor channel and culturing a cell aggregate of the placental cells in the placental cell culture unit;
    A method for producing a three-dimensional culture model, comprising:
  9.  請求項1~3のいずれか一項に記載の胎盤細胞培養デバイスを用いて、胎盤細胞を、胎盤細胞と相互作用し得る因子と共培養することを含む、胎盤細胞の評価方法。 A method for evaluating placental cells, comprising co-culturing placental cells with a factor capable of interacting with placental cells using the placental cell culture device according to any one of claims 1 to 3.
PCT/JP2021/020598 2021-05-31 2021-05-31 Placental cell culture device, three-dimensional culture model, method for making three-dimensional culture model, and method for evaluating placental cell WO2022254481A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023525132A JPWO2022254481A1 (en) 2021-05-31 2021-05-31
PCT/JP2021/020598 WO2022254481A1 (en) 2021-05-31 2021-05-31 Placental cell culture device, three-dimensional culture model, method for making three-dimensional culture model, and method for evaluating placental cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/020598 WO2022254481A1 (en) 2021-05-31 2021-05-31 Placental cell culture device, three-dimensional culture model, method for making three-dimensional culture model, and method for evaluating placental cell

Publications (1)

Publication Number Publication Date
WO2022254481A1 true WO2022254481A1 (en) 2022-12-08

Family

ID=84323023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020598 WO2022254481A1 (en) 2021-05-31 2021-05-31 Placental cell culture device, three-dimensional culture model, method for making three-dimensional culture model, and method for evaluating placental cell

Country Status (2)

Country Link
JP (1) JPWO2022254481A1 (en)
WO (1) WO2022254481A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020188723A (en) * 2019-05-22 2020-11-26 国立大学法人東北大学 Three dimensional culture model

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020188723A (en) * 2019-05-22 2020-11-26 国立大学法人東北大学 Three dimensional culture model

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AMANOKURA, TAISEI ET AL.: "Development of microfluid device for building human placenta models.", THE 51ST SEMI-CONFERENCE, THE 33RD TOHOKU YOUTH ASSOCIATION MEETING ELECTROCHEMICAL SOCIETY OF JAPAN, TOHOKU BRANCH; DECEMBER 5-6, 2020, 5 December 2020 (2020-12-05) - 6 December 2020 (2020-12-06), JP, pages P01, XP009542833 *
CHEN LI-JIUN, RAUT BIBEK, NAGAI NOBUHIRO, ABE TOSHIAKI, KAJI HIROKAZU: "Prototyping a Versatile Two-Layer Multi-Channel Microfluidic Device for Direct-Contact Cell-Vessel Co-Culture", MICROMACHINES, vol. 11, no. 1, 10 January 2020 (2020-01-10), XP093012991, DOI: 10.3390/mi11010079 *

Also Published As

Publication number Publication date
JPWO2022254481A1 (en) 2022-12-08

Similar Documents

Publication Publication Date Title
JP7200328B2 (en) Organ-mimetic device with microchannels and methods of use and manufacture thereof
US9121847B2 (en) Three-dimensional microfluidic platforms and methods of use thereof
Kilic et al. Brain-on-a-chip model enables analysis of human neuronal differentiation and chemotaxis
Menon et al. Micro-engineered perfusable 3D vasculatures for cardiovascular diseases
Kim et al. Engineering of functional, perfusable 3D microvascular networks on a chip
Vickerman et al. Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging
Varone et al. A novel organ-chip system emulates three-dimensional architecture of the human epithelia and the mechanical forces acting on it
US8927282B2 (en) Method of producing organotypic cell cultures
US10900023B2 (en) Modular, microfluidic, mechanically active bioreactor for 3D, multi-tissue, tissue culture
Lugo-Cintrón et al. Matrix density drives 3D organotypic lymphatic vessel activation in a microfluidic model of the breast tumor microenvironment
US20060141617A1 (en) Multilayered microcultures
King et al. Functional microvascularization of human myocardium in vitro
JP6923204B2 (en) A method for producing a laminated cell sheet composition, a laminated cell sheet composition produced thereby, and an apparatus for producing the same.
JP5594658B2 (en) Substance distribution control method, device, cell culture method, cell differentiation control method
WO2022254481A1 (en) Placental cell culture device, three-dimensional culture model, method for making three-dimensional culture model, and method for evaluating placental cell
WO2018079866A1 (en) Microfluidic chip for co-culturing cells
JP6439115B2 (en) How to develop and maintain the function of tissue fragments
Varone et al. A novel Organ-Chip system emulates three-dimensional architecture of the human epithelia and allows fine control of mechanical forces acting on it.
US20240026261A1 (en) Engineering of organoid culture for enhanced organogenesis in a dish
US20220002646A1 (en) Organ-on-chips that mimic human pregnancy and parturition
Zhang Organ-on-a-chip design for the small intestine modeling
손경민 Microfluidic In Vitro Model of Lymphatic Metastasis
Licciardello et al. A miniaturized multicellular platform to mimic the 3D structure of the alveolar-capillary barrier
de Magalhães Development of an in vitro platform for a 3D microphysiological systems of human iPS-derived endothelial cells
CN114181833A (en) Bionic micro-fluidic chip for simulating pathological blood brain barrier based on fibrin gel and construction method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21943992

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023525132

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21943992

Country of ref document: EP

Kind code of ref document: A1