WO2022252441A1 - 基于 mct 切片图像的皮革纤维束的三维重构方法及应用 - Google Patents

基于 mct 切片图像的皮革纤维束的三维重构方法及应用 Download PDF

Info

Publication number
WO2022252441A1
WO2022252441A1 PCT/CN2021/120000 CN2021120000W WO2022252441A1 WO 2022252441 A1 WO2022252441 A1 WO 2022252441A1 CN 2021120000 W CN2021120000 W CN 2021120000W WO 2022252441 A1 WO2022252441 A1 WO 2022252441A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
frame image
mct
fiber bundle
leather
Prior art date
Application number
PCT/CN2021/120000
Other languages
English (en)
French (fr)
Inventor
李天铎
华玉爱
芦建梅
张华勇
许静
Original Assignee
齐鲁工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 齐鲁工业大学 filed Critical 齐鲁工业大学
Publication of WO2022252441A1 publication Critical patent/WO2022252441A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image
    • G06T2207/10012Stereo images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30124Fabrics; Textile; Paper

Definitions

  • the invention discloses a three-dimensional reconstruction method and application of leather fiber bundles based on MCT slice images, and belongs to the technical field of leather image reconstruction.
  • the weaving structure of leather fibers has always been a concern in the industry. So far, people's understanding of the weaving structure of leather fibers is still very superficial. Studying the weaving structure of leather fibers has important theoretical and practical values.
  • Some researchers used CT technology and metallographic method to obtain sequential cross-sectional images of leather fibers, and performed image processing and analysis such as denoising, registration and segmentation on the acquired images, and obtained 3D reconstruction of leather fiber bundles and information about leather fiber bundles. Results of some geometric morphology studies.
  • the small island method is optimized to calculate the fractal dimension of the leather fiber bundle section, using the data of the perimeter and area of the fiber bundle section in the sequence image, and the surface area and area of the fiber bundle in the three-dimensional digital model.
  • the fractal dimension of the surface of the fiber bundle in the reconstructed body is obtained by calculating the relationship between the fractal surface and the space area it encloses.
  • 3D-Doctor software is an image processing software developed by Able Software Company in the United States that can be used for three-dimensional reconstruction of serial cross-sectional images such as MRI, CT, PET, etc., and has been widely recognized and used. But 3D-Doctor's 3D reconstruction process is based on pre-segmentation and labeling. For some organizational structures that are easier to segment and label, the 3D reconstruction effect of 3D-Doctor is very good, but for some organizational structures that are difficult to segment and label, 3D-Doctor is powerless. Because it is difficult to distinguish between different fiber bundles of leather, before using 3D-Doctor for 3D reconstruction, the fiber bundles must be marked first, and the cross-sectional areas belonging to the same fiber bundle should be marked as the same logo.
  • the images obtained by metallographic method can display finer parts, but the number of images is small, and the difficulty and workload of image preprocessing are very large.
  • Micro-X-ray tomography (MCT) technology can obtain sliced images of the internal structure of the sample without destroying the sample, and the image can show the fiber weaving structure with a size ranging from tens to hundreds of microns.
  • the 3D reconstruction of leather fibers can be carried out by using the MCT slice images of leather fibers, so as to show the weaving structure and rules of leather fibers.
  • the 3D reconstruction algorithm and technology based on leather fiber MCT sequence images have important application value for the study of leather fiber weaving structure.
  • the present invention discloses a three-dimensional reconstruction method and application of leather fiber bundles based on MCT slice images, that is, the forward tracking method and the reverse tracking method are used to track the cross-sectional area belonging to the same fiber bundle, and finally The fiber regions belonging to the same fiber bundle are obtained to reconstruct the three-dimensional tissue morphology of the leather fiber bundle.
  • a method for three-dimensional reconstruction of leather fiber bundles based on MCT slice images characterized in that: a fiber bundle region is selected as a seed region in one frame of MCT slice images of leather fibers;
  • the tracking method tracks the extension of fiber bundles in different longitudinal cross-sectional areas belonging to the same fiber bundle as the selected seed area, and finally obtains the cross-sectional area belonging to the same fiber bundle, and the fiber bundle reconstructed from the same root area is called the same root Fiber bundle;
  • the forward tracing method refers to:
  • the reverse tracing method refers to:
  • the fiber bundle area of the last frame image obtained by the forward tracking method is used as the seed area, and the area that has a common part with the seed area of the previous frame image in the adjacent second frame image is searched in reverse order, and the The area is segmented from the original image and merged with the area of the same frame image obtained by the forward tracking method as the seed area of the second frame image, which must be the same as the first frame image selected by the forward tracking method.
  • the root zone is the same as the root zone;
  • the forward tracking algorithm will lose some backward branches of the fiber bundle, while the reverse tracking algorithm can search for some of the same backward branches.
  • the fiber bundle represented by the dotted line in Figure 1 contains some fibers that have not been traced Bunch of Falling Twigs.
  • backward branches can be traced by performing reverse tracing after the forward tracing process is completed, as shown in the solid line part in Fig. 2 which is more than that in Fig. 1 .
  • said method for three-dimensional reconstruction of leather fiber bundles based on MCT slice images further includes performing forward tracking and reverse tracking on the MCT slice images of leather fibers for multiple times in turn until no new model can be tracked. up to the cross-sectional area of the fiber bundle.
  • This algorithm means that the fiber bundle area of the first frame of cross-sectional image segmented by the above process is used as the seed area to perform forward tracking, and then perform reverse tracking. In this way, forward tracking and reverse tracking are performed on the MCT slice images of leather fibers in turn for multiple times until no new fiber bundle cross-sectional area can be tracked. As shown in Figure 3 and 4.
  • the MCT slice image of the leather fiber is a denoised MCT slice image of the leather fiber.
  • the method disclosed in the present invention is applicable to the three-dimensional reconstruction of in-situ MCT slice images of leather fibers and embedded MCT slice images of leather fibers.
  • a kind of three-dimensional reconstruction method of the leather fiber bundle based on the MCT slice image of the present invention can reconstruct the leather fiber rapidly by forward tracking the same root region by frame image to a certain fiber bundle in the leather fiber MCT slice image
  • the present invention introduces a reverse tracking method on the basis of the forward tracking, and reversely tracks the same root area in frame-by-frame images.
  • the combination of forward tracking method and reverse tracking method is called two-way tracking method.
  • the two-way tracking algorithm is repeatedly implemented on the MCT slice image of the leather fiber to be reconstructed until no new same-root region appears, so that the three-dimensional shape of the leather fiber is more complete, clear and precise.
  • Figure 1- Figure 4 is a schematic diagram of forward tracking and reverse tracking in the same root area
  • Figure 1 is a schematic diagram of the same root region obtained by the first forward tracing starting from the root region, where the solid line part is the same root fiber bundle obtained by the first forward tracing, and the dotted line part is the same root fiber bundle that was not traced by the first forward tracing
  • the same root fiber bundle area, the rightward arrow is the forward tracking indicator arrow;
  • Figure 2 is a schematic diagram of the same root area obtained by reverse tracing after the first forward tracing, where the solid line part is the same root fiber bundle traced after the first forward tracing and the first reverse tracing, and the dotted line part is the first forward tracing and
  • the right arrow is the forward tracking indicator arrow
  • the left arrow is the reverse tracking indicator arrow;
  • Figure 3 is a schematic diagram of the same root area obtained by forward tracing again, wherein the solid line part is the fiber bundle in the same root area, the dotted line part is the same root fiber bundle area that has not been traced, and the rightward arrow is the forward tracking indicator arrow, The left arrow is the reverse tracking indicator arrow;
  • Figure 4 is a schematic diagram of the same root area obtained by reverse tracing again, in which the solid line part is the same root fiber bundle, the dotted line part is the same root fiber bundle area that has not been traced, the rightward arrow is the forward tracking indicator arrow, and the leftward The arrow is a reverse tracking indicator arrow;
  • Figure 5 and Example 6 are several bundles of leather fiber bundles reconstructed by using the in-situ MCT slice images of leather fibers obtained after forward tracking and reverse tracking according to the present invention.
  • the forward tracking method is used to track the extension of fiber bundles in different longitudinal cross-sectional areas belonging to the same fiber bundle, and finally obtain the cross-sectional areas belonging to the same fiber bundle.
  • the forward tracing method includes:
  • the fiber bundle area of the last frame image obtained by the forward tracking method is used as the seed area, and the area that has a common part with the seed area of the previous frame image in the adjacent second frame image is searched in reverse order, and the The area is segmented from the original image and merged with the area of the same frame image obtained by the forward tracking method as the seed area of the second frame image, which must be the same as the first frame image selected by the forward tracking method.
  • the root zone is the same as the root zone;
  • the combination of forward tracking method and reverse tracking method is called two-way tracking method.
  • the new homogenous region of each frame image must contain the homogenous region obtained by the forward tracing search process. Repeatedly implement the two-way tracking algorithm until no new same root area appears.
  • MCT tomography scanner SkyScan2211; camera lens: MX11002;
  • the 2357 frames of MCT slice images obtained are denoised (the MCT slice images of the leather fibers are the MCT slice images of the leather fibers after denoising), and the two-way tracking algorithm is used to carry out three-dimensional reconstruction of some of the fiber bundles. As shown in Figure 5.
  • MCT tomography scanner SkyScan2211; camera lens: MX11002;
  • Pixel 4032 ⁇ 4032; layer thickness: 0.31 ⁇ m; frame number: 1578;
  • the 1578 frames of MCT slice images obtained are denoised (the MCT slice images of the leather fibers are the MCT slice images of the leather fibers after denoising), and the two-way tracking algorithm is used to carry out three-dimensional reconstruction of some of the fiber bundles. As shown in Figure 6.
  • Examples 1 and 2 are also applicable to the three-dimensional reconstruction of in-situ MCT slice images of leather fibers and embedded MCT slice images of leather fibers.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Graphics (AREA)
  • Geometry (AREA)
  • Software Systems (AREA)
  • Synthetic Leather, Interior Materials Or Flexible Sheet Materials (AREA)

Abstract

一种基于MCT切片图像的皮革纤维束的三维重构方法,在皮革纤维的MCT切片图像的一帧图像中选定一个纤维束区域作为种子区域,采用正向追踪法和逆向追踪法对与所选定的种子区域属于同一纤维束的纵向不同截面区域内的纤维束延展进行追踪,最终得到属于同一纤维束的截面区域。该方法采用正向追踪法和逆向追踪法对属于同一纤维束的截面区域进行追踪,最终得到属于同一纤维束的纤维区域,用于重构皮革纤维束的三维组织形态。

Description

[根据细则37.2由ISA制定的发明名称] 基于 MCT 切片图像的皮革纤维束的三维重构方法及应用 技术领域
本发明公开一种基于MCT切片图像的皮革纤维束的三维重构方法及应用,属于皮革图像重构的技术领域。
背景技术
皮革纤维的编织结构一直是业界关注的问题。到目前为止,人们对皮革纤维编织结构的认识还很肤浅。研究皮革纤维的编织结构具有重要的理论价值和应用价值。
有研究人员分别采用CT技术和金相法获取皮革纤维的序列截面图像,对所获取的图像进行去噪、配准和分割等图像处理与分析,获得皮革纤维束的三维重构以及关于皮革纤维束的一些几何形态学研究结果。
作者张华勇于2015年12月16日公开了《皮革纤维编织网络三维重构研究》,分别采用显微CT和金相法获取皮革纤维的序列切片图像,借鉴生物、医学、材料等领域的三维图像重构技术,建立了铬鞣牛革中胶原纤维编织结构的三维数字模型,借助3D-Doctor软件,对所获取的皮革纤维的序列切片图像进行了三维重构,奠定了皮革结构与性能关联性研究的关键基础。并进一步通过三维数字模型,对胶原纤维束形貌、编织方式、弯曲角度等规律进行了研究,发现其具有分形规律。通过对分形维数计算方法进行比较研究,优选了小岛法计算皮革纤维束截面的分形维数,运用序列图像中纤维束截面周长与面积数据,还利用三维数字模型中纤维束的表面积与体积数据,通过分形曲面与其围成的空间区域关系计算得到了重构体中纤维束表面的分形维数。
作者苗长坤于2017年5月20日公开了《铬鞣羊皮纤维网络三维重构研究》,其中记载了依据铬鞣山羊皮革坯(简称铬鞣羊皮,下同)的特殊结构特点,通过金相法获取铬鞣羊皮的序列截面图像,以此构筑起了铬鞣羊皮纤维网络的三维数字化模型,为初步探究其结构与性能的关系奠定了基础。文献中明确记载是选用合适图像预处理软件对获取的序列图像进行去噪、增强等处理;通过自己开发的配准软件实现序列二维图像的配准;使用3D-Doctor软件对皮革纤维束进行三维重构。通过将每根单独的纤维束标记为不同的颜色并编号,实现了纤维束单独或者整体的分别显示。
但是,基于金相法皮革纤维束的三维重构的一个明显缺陷是,用于获取图像的皮革制样需要经过树脂溶液浸泡和固化过程,而这一过程会导致皮革纤维的变 形,从而影响三维重构的效果。金相法的另外一个缺陷是,通过金相法所获取的序列截面图像之间的间距(即层厚)较大、图像数量不多、连续性较差。而如此获取的序列图像的图像配准也是一项艰难的工作,有时比较耗费人力,目前尚无令人满意的解决方案。
3D-Doctor软件是一款由美国Able Software公司开发可用于MRI、CT、PET等类型序列截面图像的三维重构的图像处理软件,获得了广泛的认可和使用。但3D-Doctor的三维重构过程建立在预先分割和标注的基础上。对于某些分割和标注比较容易的组织结构来说,3D-Doctor的三维重构效果是很好的,但对于某些分割和标注比较困难的组织结构来说,3D-Doctor也是无能为力的。由于皮革的不同纤维束之间的区分难度较大,采用3D-Doctor进行三维重构之前首先要对纤维束进行标注,把属于同一纤维束的截面区域标注为同一标识,这一工作通常需要人工手动完成。因此,用3D-Doctor对皮革纤维的单束纤维束进行三维重构的效率较低。针对基于皮革纤维序列截面图像的三维重构,快捷有效的算法设计至为重要。
金相法所获取的图像能够显示更加精细的部分,但其图像数量少,图像预处理的难度和工作量很大。而显微X射线断层扫描(MCT)技术可在不破坏样本的情况下,获取样本内部结构的切片图像,其图像能够显示尺寸在几十到几百微米的纤维编织结构。利用皮革纤维的MCT切片图像可以进行皮革纤维的三维重构,从而展示皮革纤维的编织结构及其规律。基于皮革纤维MCT序列图像的三维重构算法和技术对研究皮革纤维编制结构具有重要的应用价值。
发明内容
针对现有技术的不足,本发明公开一种基于MCT切片图像的皮革纤维束的三维重构方法及应用,即采用正向追踪法和逆向追踪法对属于同一纤维束的截面区域进行追踪,最终得到属于同一纤维束的纤维区域,用于重构皮革纤维束的三维组织形态。
本发明详细的技术方案
一种基于MCT切片图像的皮革纤维束的三维重构方法,其特征在于:在皮革纤维的MCT切片图像中的一帧图像中选定一个纤维束区域作为种子区域;采用正向追踪法和逆向追踪法对与所选定的种子区域属于同一纤维束的纵向不同截面区域内的纤维束延展进行追踪,最终得到属于同一纤维束的截面区域,由同根区 域重构而成的纤维束称为同根纤维束;
所述的正向追踪法是指:
1)在第一帧图像中选定一个种子区域,即为根区域,按正向顺序搜寻第二帧图像中与前一帧图像的种子区域有公共部分的区域:
如果第二帧图像中存在与前一帧图像的种子区域有公共部分的区域,则分割出该区域,并将该区域作为第二帧图像的种子区域,该区域也是与前一帧图像的根区域的同根的区域;否则,正向追踪过程结束;
2)以第二帧图像中的同根区域作为新的种子区域,搜寻下一帧图像中的同根区域;
3)如此下去,直到没有新的同根区域为止;
所述的逆向追踪法是指:
1)以正向追踪法所获得的最后一帧图像的纤维束区域为种子区域,按逆向顺序搜寻相邻的第二帧图像中与前一帧图像的种子区域有公共部分的区域,将该区域从原始图像中分割出来且与正向追踪法所获得的同一帧图像的区域合并作为第二帧图像的种子区域,该区域必然是与正向追踪法所选定的第一帧图像中的根区域同根的区域;
2)以获得的第二帧图像的种子区域作为新的种子区域,按逆序搜寻下一帧图像中的同根区域;
3)如此下去,直至正向追踪法所指定的第一帧图像结束。
正向追踪算法会丢掉纤维束的某些倒向枝杈,而逆向追踪法则可以搜寻到部分同根倒向枝杈,如图1中虚线所表示的纤维束中就包含这样的一些尚未被追踪到的纤维束的倒向枝杈。为追踪到这类纤维束,在正向追踪过程结束之后再进行逆向追踪可以追踪到这样的倒向枝杈,如图2中比图1中多出来的实线部分。
根据本发明优选的,所述的一种基于MCT切片图像的皮革纤维束的三维重构方法,还包括对皮革纤维的MCT切片图像轮流进行正向追踪和逆向追踪多次,直至不能追踪到新的纤维束截面区域为止。该算法是指,以上述过程所分割出来的第一帧截面图像的纤维束区域为种子区域进行正向追踪、然后进行逆向追踪。这样对皮革纤维的MCT切片图像轮流进行正向追踪和逆向追踪多次,直至不能追踪到新的纤维束截面区域为止。如图3、4所示。
根据本发明优选的,所述皮革纤维的MCT切片图像为去噪后的皮革纤维的MCT切片图像。
本发明所公开的方法适用于皮革纤维原位MCT切片图像和皮革纤维包埋MCT切片图像的三维重构。
本发明的技术优势:
1、本发明所述一种基于MCT切片图像的皮革纤维束的三维重构方法,通过对皮革纤维MCT切片图像中某一纤维束按帧图像正向追踪同根区域,可以迅速重构皮革纤维的三维束的组织结构,展现皮革纤维束的三维形态。
2、由于正向追踪算法会丢掉纤维束的某些倒向枝杈,因此本发明在正向追踪的基础上,引入了逆向追踪的方法,对按帧图像逆向追踪同根区域。
3、正向追踪法和逆向追踪法的结合称为双向追踪法。对要重构的皮革纤维MCT切片图像反复施行双向追踪算法,直至不再有新的同根区域出现为止,使皮革纤维的三维形态更加完整和清晰精确。
附图说明
图1-图4是同根区域的正向追踪和逆向追踪示意图;
图1是由根区域开始的首次正向追踪所得到的同根区域示意图,其中,实线部分为第一次正向追踪得到的同根纤维束,虚线部分为第一次正向追踪未能追踪到的同根纤维束区域,向右的箭头为正向追踪指示箭头;
图2是首次正向追踪之后再进行逆向追踪所得到的同根区域示意图,其中,实线部分为首次正向追踪和首次逆向追踪后所追踪到的同根纤维束,虚线部分为首次正向追踪和首次逆向追踪后尚未追踪到的同根纤维束区域,向右的箭头为正向追踪指示箭头,向左的箭头为逆向追踪指示箭头;
图3是再次进行正向追踪所得到的同根区域示意图,其中,实线部分为同根区域的纤维束,虚线部分为尚未追踪到的同根纤维束区域,向右的箭头为正向追踪指示箭头,向左的箭头为逆向追踪指示箭头;
图4是再次进行逆向追踪所得到的同根区域示意图,其中,实线部分为同根纤维束,虚线部分为尚未追踪到的同根纤维束区域,向右的箭头为正向追踪指示箭头,向左的箭头为逆向追踪指示箭头;
图5和例6是利用本发明所述正向追踪和逆向追踪后所得到的皮革纤维原位MCT切片图像重构的几束皮革纤维束。
具体实施方式
下面结合实施例和说明书附图对本发明做详细的说明,但不限于此。
实施例1
一种基于MCT切片图像的皮革纤维束的三维重构方法,在皮革纤维的MCT切片图像中的一帧图像中选定一个纤维束区域作为种子区域;
采用正向追踪法对属于同一纤维束的纵向不同截面区域内的纤维束延展进行追踪,最终得到属于同一纤维束的截面区域。
所述正向追踪法包括:
1)在第一帧图像中选定一个种子区域,即为根区域,按正向顺序搜寻第二帧图像中与前一帧图像的种子区域有公共部分的区域:
如果第二帧图像中存在与前一帧图像的种子区域有公共部分的区域,则分割出该区域,并将该区域作为第二帧图像的种子区域,该区域也是与前一帧图像的根区域的同根区域;否则,正向追踪过程结束;
2)以第二帧图像中的同根区域作为新的种子区域,搜寻下一帧图像中的同根区域;
3)如此下去,直到没有新的同根区域为止,如图1所示。
再采用逆向追踪法对属于同一纤维束的纵向不同截面区域内的纤维束延展进行追踪,最终得到属于同一纤维束的纤维三维区域,具体为:
1)以正向追踪法所获得的最后一帧图像的纤维束区域为种子区域,按逆向顺序搜寻相邻的第二帧图像中与前一帧图像的种子区域有公共部分的区域,将该区域从原始图像中分割出来且与正向追踪法所获得的同一帧图像的区域合并作为第二帧图像的种子区域,该区域必然是与正向追踪法所选定的第一帧图像中的根区域同根的区域;
2)以获得的第二帧图像的种子区域作为新的种子区域,按逆序搜寻下一帧图像中的同根区域;
3)如此下去,直至正向追踪法所指定的第一帧图像结束;如图2。
实施例2
如实施例1所述的一种基于MCT切片图像的皮革纤维束的三维重构方法,还包括对皮革纤维的MCT切片图像轮流进行正向追踪和逆向追踪多次,直至不能追踪到新的纤维束截面区域为止。如图3、4所示。正向追踪法和逆向追踪法的结 合称为双向追踪法。在这一过程中,每一帧图像的新同根区域必须包含正向追踪搜寻过程所得到的同根区域。反复施行双向追踪算法,直至不再有新的同根区域出现为止。
应用例1
利用实施例1所述的方法按以下步骤进行图像采集和处理:
1)皮样材料:从美国牛臀干蓝皮上剥离出来的一小撮纤维组织;
2)MCT取像设备:
MCT断层扫描仪:SkyScan2211;摄像镜头:MX11002;
3)MCT断层扫描图像参数:
分辨率:150纳米;像素:4032×4032;层厚:0.31μm;帧数:2357;
对获取的2357帧MCT切片图像进行去噪处理(所述皮革纤维的MCT切片图像为去噪后的皮革纤维的MCT切片图像),应用双向追踪算法对其中的部分纤维束进行了三维重构,如图5所示。
应用例2
利用实施例2所述的方法按以下步骤进行图像采集和处理:
1)皮样材料:牛头干蓝皮;
2)MCT取像设备
MCT断层扫描仪:SkyScan2211;摄像镜头:MX11002;
3)MCT断层扫描图像特征
像素:4032×4032;层厚:0.31μm;帧数:1578;
对获取的1578帧MCT切片图像进行去噪处理(所述皮革纤维的MCT切片图像为去噪后的皮革纤维的MCT切片图像),应用双向追踪算法对其中的部分纤维束进行了三维重构,如图6所示。
实施例3
实施例1、2所述方法还适用于皮革纤维原位MCT切片图像和皮革纤维包埋MCT切片图像的三维重构。

Claims (4)

  1. 一种基于MCT切片图像的皮革纤维束的三维重构方法,其特征在于:在皮革纤维的MCT切片图像中的一帧图像中选定一个纤维束区域作为种子区域,采用正向追踪法和逆向追踪法对与所选定的种子区域属于同一纤维束的纵向不同截面区域内的纤维束延展进行追踪,最终得到属于同一纤维束的截面区域;
    所述的正向追踪法是指:
    1)在第一帧图像中选定一个种子区域,即为根区域,按正向顺序搜寻第二帧图像中与前一帧图像的种子区域有公共部分的区域:
    如果第二帧图像中存在与前一帧图像的种子区域有公共部分的区域,则分割出该区域,并将该区域作为第二帧图像的种子区域,该区域也是与前一帧图像的根区域同根的区域;否则,正向追踪过程结束;
    2)以第二帧图像中的同根区域作为新的种子区域,搜寻下一帧图像中的同根区域;
    3)如此下去,直到没有新的同根区域为止;
    所述的逆向追踪法是指:
    1)以正向追踪法所获得的最后一帧图像的纤维束区域为种子区域,按逆向顺序搜寻相邻的第二帧图像中与前一帧图像的种子区域有公共部分的区域,将该区域从原始图像中分割出来且与正向追踪法所获得的第二帧图像的区域合并作为第二帧图像的种子区域,该区域必然是与正向追踪法所选定的第一帧图像中的根区域同根的区域;
    2)以获得的第二帧图像的种子区域作为新的种子区域,按逆序搜寻下一帧图像中的同根区域;
    3)如此下去,直至正向追踪法所指定的第一帧图像结束。
  2. 根据权利要求1所述一种基于MCT切片图像的皮革纤维束的三维重构方法,其特征在于,包括对皮革纤维的MCT切片图像轮流进行正向追踪和逆向追踪多次,直至不能追踪到新的纤维束截面区域为止。
  3. 根据权利要求1所述一种基于MCT切片图像的皮革纤维束的三维重构方法,其特征在于,所述皮革纤维的MCT切片图像为去噪后的皮革纤维的MCT切片图像。
  4. 如权利要求1-3任意一项所述方法的应用:适用于皮革纤维原位MCT切片图像和皮革纤维包埋MCT切片图像的三维重构。
PCT/CN2021/120000 2021-05-31 2021-09-23 基于 mct 切片图像的皮革纤维束的三维重构方法及应用 WO2022252441A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110602179.8A CN113313817B (zh) 2021-05-31 2021-05-31 一种基于mct切片图像的皮革纤维束的三维重构方法及应用
CN202110602179.8 2021-05-31

Publications (1)

Publication Number Publication Date
WO2022252441A1 true WO2022252441A1 (zh) 2022-12-08

Family

ID=77376655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/120000 WO2022252441A1 (zh) 2021-05-31 2021-09-23 基于 mct 切片图像的皮革纤维束的三维重构方法及应用

Country Status (2)

Country Link
CN (1) CN113313817B (zh)
WO (1) WO2022252441A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113313817B (zh) * 2021-05-31 2022-10-11 齐鲁工业大学 一种基于mct切片图像的皮革纤维束的三维重构方法及应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102305736A (zh) * 2011-06-29 2012-01-04 山东轻工业学院 一种适用于金相显微镜观察的皮革样品制备方法
WO2012156402A1 (en) * 2011-05-16 2012-11-22 Universite Libre De Bruxelles Device for visualization and three-dimensional reconstruction in endoscopy
US20150332110A1 (en) * 2014-05-16 2015-11-19 Here Global B.V. Methods and Apparatus for Three-Dimensional Image Reconstruction
CN105741299A (zh) * 2016-02-02 2016-07-06 河北大学 一种冠状动脉ct血管造影图像分割方法
CN106202728A (zh) * 2016-07-12 2016-12-07 哈尔滨工业大学 基于Micro‑CT三维编织复合材料非均匀Voxel网格离散方法
CN106446360A (zh) * 2016-09-08 2017-02-22 天津大学 基于显微ct测量的缺损颅骨组织工程血管支架参数化设计方法
CN106885811A (zh) * 2017-02-28 2017-06-23 海南瑞泽新型建材股份有限公司 一种纤维增强聚合物筋与混凝土粘结性能的表征方法
CN107427274A (zh) * 2014-02-21 2017-12-01 三星电子株式会社 断层扫描设备及其用于重构断层扫描图像的方法
CN108898667A (zh) * 2018-06-22 2018-11-27 同济大学 一种基于X-ray CT三维重构的碳纸形态参数提取方法
CN109993773A (zh) * 2019-03-28 2019-07-09 北京科技大学 一种系列截面图像多目标追踪方法及装置
CN113313817A (zh) * 2021-05-31 2021-08-27 齐鲁工业大学 一种基于mct切片图像的皮革纤维束的三维重构方法及应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11978146B2 (en) * 2018-09-18 2024-05-07 Seoul National University R&Db Foundation Apparatus and method for reconstructing three-dimensional image
CN110992439B (zh) * 2019-12-02 2023-09-26 上海联影智能医疗科技有限公司 纤维束追踪方法、计算机设备和存储介质

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012156402A1 (en) * 2011-05-16 2012-11-22 Universite Libre De Bruxelles Device for visualization and three-dimensional reconstruction in endoscopy
CN102305736A (zh) * 2011-06-29 2012-01-04 山东轻工业学院 一种适用于金相显微镜观察的皮革样品制备方法
CN107427274A (zh) * 2014-02-21 2017-12-01 三星电子株式会社 断层扫描设备及其用于重构断层扫描图像的方法
US20150332110A1 (en) * 2014-05-16 2015-11-19 Here Global B.V. Methods and Apparatus for Three-Dimensional Image Reconstruction
CN105741299A (zh) * 2016-02-02 2016-07-06 河北大学 一种冠状动脉ct血管造影图像分割方法
CN106202728A (zh) * 2016-07-12 2016-12-07 哈尔滨工业大学 基于Micro‑CT三维编织复合材料非均匀Voxel网格离散方法
CN106446360A (zh) * 2016-09-08 2017-02-22 天津大学 基于显微ct测量的缺损颅骨组织工程血管支架参数化设计方法
CN106885811A (zh) * 2017-02-28 2017-06-23 海南瑞泽新型建材股份有限公司 一种纤维增强聚合物筋与混凝土粘结性能的表征方法
CN108898667A (zh) * 2018-06-22 2018-11-27 同济大学 一种基于X-ray CT三维重构的碳纸形态参数提取方法
CN109993773A (zh) * 2019-03-28 2019-07-09 北京科技大学 一种系列截面图像多目标追踪方法及装置
CN113313817A (zh) * 2021-05-31 2021-08-27 齐鲁工业大学 一种基于mct切片图像的皮革纤维束的三维重构方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG HUAYONG: "Three-dimensional Reconstruction of Leather Fibers Woven Structure", CHINESE DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, 1 December 2015 (2015-12-01), pages 1 - 111, XP093012003 *

Also Published As

Publication number Publication date
CN113313817A (zh) 2021-08-27
CN113313817B (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
Kaymak et al. Deep learning for two-step classification of malignant pigmented skin lesions
DE102015226400A1 (de) Automatisierte Ermittlung von Konturen auf Basis einer iterativen Rekonstruktion
WO2022252441A1 (zh) 基于 mct 切片图像的皮革纤维束的三维重构方法及应用
Beaudet et al. Morphoarchitectural variation in South African fossil cercopithecoid endocasts
CN103761750B (zh) 一种心肌质点运动图像与心肌纤维走向图像配准方法
WO2022252442A1 (zh) 一种针对皮革纤维mct断层扫描图像的智能去噪方法及应用
US20110157177A1 (en) Automatic tracing algorithm for quantitative analysis of continuous structures
CN111340780B (zh) 一种基于三维超声图像的病灶检测方法
Ghahremani et al. NeuroConstruct: 3D reconstruction and visualization of neurites in optical microscopy brain images
Zhao et al. Medical images super resolution reconstruction based on residual network
CN105678711B (zh) 一种基于图像分割的衰减校正方法
CN107076857B (zh) 核医学图像解析技术
Shao et al. A segmentation method of airway from chest CT image based on VGG-Unet neural network
JP6827786B2 (ja) 輪郭抽出装置、輪郭抽出方法およびプログラム
Du et al. 3D image stack reconstruction in live cell microscopy of Drosophila muscles and its validation
Hati et al. Weakly Supervised Geodesic Segmentation of Egyptian Mummy CT Scans
CN109829871B (zh) 一种动物脑组织切片显微图像增强方法
Liu et al. Solving Low-Dose CT Reconstruction via GAN with Local Coherence
DE102020211945A1 (de) Verfahren und Anordnung zur automatischen Lokalisierung von Organsegmenten in einem dreidimensionalen Bild
Wang et al. Simulation analysis of 3D medical image reconstruction based on ant colony optimization algorithm
Helwing et al. Cycle-consistent generative adversarial networks for damage evolution analysis in fiber-reinforced polymers based on synthetic damage states
Allain et al. Use of a 3D imaging device to model the complete shape of dairy cattle and measure new morphological phenotypes
Shinde Breast Tumour Segmentation Using Advanced UNet with Saliency, Channel, and Spatial Attention Models
CN118172366B (zh) 一种基于图形识别的肿瘤ct图像处理方法及系统
Shi et al. Enhanced CT Image Generation by GAN for Improving Thyroid Anatomy Detection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21943795

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21943795

Country of ref document: EP

Kind code of ref document: A1