WO2022252233A1 - 液冷式芯片封装结构、印刷线路板组件及方法、电子装置 - Google Patents

液冷式芯片封装结构、印刷线路板组件及方法、电子装置 Download PDF

Info

Publication number
WO2022252233A1
WO2022252233A1 PCT/CN2021/098470 CN2021098470W WO2022252233A1 WO 2022252233 A1 WO2022252233 A1 WO 2022252233A1 CN 2021098470 W CN2021098470 W CN 2021098470W WO 2022252233 A1 WO2022252233 A1 WO 2022252233A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
support
liquid
support member
cooled
Prior art date
Application number
PCT/CN2021/098470
Other languages
English (en)
French (fr)
Inventor
郑见涛
朱龙光
任亦纬
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/098470 priority Critical patent/WO2022252233A1/zh
Priority to CN202180097904.9A priority patent/CN117280464A/zh
Publication of WO2022252233A1 publication Critical patent/WO2022252233A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids

Definitions

  • the chip is an important part of the electronic device that affects the performance of the electronic device. With the continuous increase of the functions of the electronic device, the driving requirements for the chip are also increasing, which makes the power consumption of the chip continue to increase. As the power consumption of the chip continues to increase, the heating problem of the chip is gradually highlighted, and the overheating of the chip will cause the chip to be burned. Therefore, the heat dissipation problem of the chip has become one of the bottlenecks restricting the development of the chip.
  • liquid cooling Compared with chip air cooling, liquid cooling has two orders of magnitude higher heat dissipation capacity than air cooling.
  • chip liquid cooling technology As early as the 1960s and 1970s, the concept of chip liquid cooling technology was proposed. After 40 to 50 years of development, liquid cooling heat dissipation technology still remains in the non-chip level liquid cooling (cooling liquid outside the chip packaging structure) technology. At this stage, there is no commercialization of chip-level liquid cooling (directly passing the cooling liquid to the surface of the chip or inside the chip) technology, and after adopting non-chip-level liquid cooling technology, the heat dissipation capacity of the chip still cannot meet the demand.
  • a liquid-cooled chip packaging structure including: a substrate having a first surface; a bare chip assembly arranged on the first surface of the substrate, and the bare chip assembly is bonded to the substrate; a support member arranged on the substrate On the first surface of the support member, the support member is arranged around the bare chip assembly; the support member includes a second surface, a third surface and a fourth surface, the second surface and the third surface are located on the side of the support member close to the substrate, and the fourth surface is located on the On the side of the support away from the substrate, the second surface is connected to the substrate, and there is a gap between the third surface and the substrate; the flow channel module is arranged on the fourth surface of the support for transmitting cooling to the surface of the bare chip assembly Medium; connector, including a first clamping part, a second clamping part and a connecting part; the first clamping part is in contact with the surface of the channel module away from the substrate, and the second clamping part is in contact with the third surface of
  • a supporting member is provided on the surface of the substrate carrying the bare chip assembly.
  • the supporting member is used to provide a sealing application point, and a fastening force is locally applied to the flow channel module and the supporting member through the connecting member, so as to achieve the sealing effect.
  • the sealing action force and reaction force are applied to the flow channel module and the support, which will not introduce external force to the chip system, which reduces the impact of the sealing force on the chip system, thereby enhancing the reliability of the bare chip component for long-term operation.
  • connection part is located outside the ends of the runner module and the support; the contact point between the first clamping part and the runner module is close to the outer edge of the runner module, and the second clamping part and the support The contact point is near the outer edge of the support.
  • the connecting part in the connecting part connects the first clamping part and the second clamping part from the outside of the end of the runner module and the support part, so as to realize the connection between the runner module and the support part through the connecting part. Make a clamp tight seal.
  • the connecting part is located outside the ends of the runner module and the support, and does not need to pass through the runner module and the support. Therefore, there is no need to process the runner module and the support, and the structure is simple and easy to implement.
  • the liquid-cooled chip packaging structure includes a plurality of connectors.
  • a plurality of connecting pieces can make the sealing effect of the runner module and the supporting piece better.
  • the liquid-cooled chip packaging structure further includes a sealing ring; the sealing ring is arranged between the support member and the flow channel module.
  • the sealing ring can increase the sealing effect between the support member and the runner module.
  • the material of the supporting member is plastic.
  • the connecting piece of plastic material can be directly connected with the substrate, and the structure is simple.
  • the material of the support is metal.
  • the connecting piece of metal material has high support strength and reliable connection effect.
  • a cooling medium barrier layer is provided on the surface of the bare chip assembly away from the substrate.
  • the cooling medium barrier layer covers the surface of the bare chip assembly, and is used to block the direct contact between the cooling medium and the bare chip assembly, protect the bare chip assembly, and improve the life of the bare chip assembly.
  • a liquid-cooled printed circuit board assembly including the liquid-cooled chip packaging structure and the printed circuit board according to any one of the first aspect, the substrate includes a fifth surface, and the fifth surface is opposite to the first surface The printed circuit board is arranged on the fifth surface of the substrate, and the printed circuit board is bonded to the substrate.
  • the printed circuit board assembly provided by the embodiment of the present application includes the liquid-cooled chip packaging structure of the first aspect, and its beneficial effects are the same as those of the liquid-cooled chip packaging structure, and will not be repeated here.
  • the electronic device provided by the embodiment of the present application includes the liquid-cooled printed circuit board assembly according to any one of the second aspect, and its beneficial effect is the same as that of the liquid-cooled printed circuit board assembly, which will not be repeated here.
  • a method for preparing a liquid-cooled printed circuit board assembly comprising: bonding the bare chip assembly on the first surface of the substrate; forming a support on the first surface of the substrate; and surrounding the bare chip by the support
  • the assembly is set, the support includes a second surface, a third surface and a fourth surface, the second surface and the third surface are located on the side of the support close to the substrate, the fourth surface is located on the side of the support away from the substrate, and the support
  • the second surface is connected to the substrate, and there is a gap between the third surface of the support and the substrate; the flow channel module is placed on the fourth surface of the support; a connecting piece is provided, and the connecting piece is used to connect the flow channel module and the support pieces.
  • the preparation method of the liquid-cooled printed circuit board assembly provided in the embodiment of the present application can prepare the liquid-cooled printed circuit board assembly provided in the second aspect, and its beneficial effect is the same as that of the liquid-cooled printed circuit board assembly. Here No longer.
  • the connecting piece includes a first clamping part, a second clamping part, and a connecting part
  • the connecting piece is used to connect the flow channel module and the support specifically includes: separating the first clamping part and the flow channel module away from the substrate contacting the surface; contacting the second clamping part with the third surface of the support; connecting the first clamping part and the second clamping part with the connecting part.
  • connection part is located outside the ends of the runner module and the support; the contact point between the first clamping part and the runner module is close to the outer edge of the runner module, and the second clamping part and the support The contact point is near the outer edge of the support.
  • the connecting part in the connecting part connects the first clamping part and the second clamping part from the outside of the end of the runner module and the support part, so as to realize the connection between the runner module and the support part through the connecting part. Make a clamp tight seal.
  • the connecting part is located outside the ends of the runner module and the support, and does not need to pass through the runner module and the support. Therefore, there is no need to process the runner module and the support, and the structure is simple and easy to implement.
  • the manufacturing method further includes: forming a cooling medium barrier layer on a surface of the bare chip assembly away from the substrate.
  • the cooling medium barrier layer covers the surface of the bare chip assembly, and is used to block the direct contact between the cooling medium and the bare chip assembly, protect the bare chip assembly, and improve the life of the bare chip assembly.
  • the preparation method further includes: coupling the substrate with the printed circuit board.
  • FIG. 1 is a schematic structural diagram of a liquid-cooled printed circuit board assembly provided in an embodiment of the present application
  • FIG. 2A is a schematic structural diagram of another liquid-cooled printed circuit board assembly provided by an embodiment of the present application.
  • Fig. 2B is a schematic diagram of the preparation process of a liquid-cooled printed circuit board assembly provided in the embodiment of the present application;
  • 2C-2G are schematic diagrams of the preparation process of a liquid-cooled printed circuit board assembly provided in the embodiment of the present application.
  • FIG. 3A is a schematic structural diagram of another liquid-cooled printed circuit board assembly provided by an embodiment of the present application.
  • FIG. 3B is a schematic structural diagram of another liquid-cooled printed circuit board assembly provided by the embodiment of the present application.
  • FIG. 3C is a schematic structural diagram of another liquid-cooled printed circuit board assembly provided by an embodiment of the present application.
  • Fig. 4A is a perspective view of a support provided in the embodiment of the present application.
  • Fig. 4C is another cross-sectional view along the A-A' direction in Fig. 4A provided by the embodiment of the present application;
  • Fig. 4D is another cross-sectional view along the A-A' direction in Fig. 4A provided by the embodiment of the present application;
  • FIG. 6 is a perspective view of some components in a liquid-cooled printed circuit board assembly provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another liquid-cooled printed circuit board assembly provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another liquid-cooled printed circuit board assembly provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another liquid-cooled printed circuit board assembly provided by an embodiment of the present application.
  • first”, second, etc. are used for convenience of description only, and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features.
  • a feature defined as “first”, “second”, etc. may expressly or implicitly include one or more of that feature.
  • plural means two or more.
  • words such as “exemplary” or “for example” are used as examples, illustrations or illustrations. Any embodiment or design scheme described as “exemplary” or “for example” in the embodiments of the present application shall not be interpreted as being more preferred or more advantageous than other embodiments or design schemes. Rather, the use of words such as “exemplary” or “such as” is intended to present related concepts in a concrete manner.
  • At least one (item) refers to one or more, and “multiple” refers to two or more.
  • At least one of the following" or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • at least one item (piece) of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c ", where a, b, c can be single or multiple.
  • the direction indications such as up, down, left, right, front and back, etc. used to explain the structure and movement of different components in the present application are relative. These indications are pertinent when the parts are in the positions shown in the figures. However, should the description of component locations change, these directional indications will change accordingly.
  • the indoor temperature When the indoor temperature is high, it is necessary to cool down the indoor temperature based on the requirements of the working environment or equipment operating environment. Different indoor environments have different requirements for cooling.
  • Different indoor environments have different requirements for cooling.
  • the heat dissipation of the cabinet generally requires the use of a shunt pipeline and multiple equipment-side pipelines.
  • the multiple equipment-side pipelines are led from the shunt pipeline and distributed to various network devices in the cabinet. By circulating the cooling medium to each network device, the heat dissipation and cooling of the network device can be realized.
  • An embodiment of the present application provides an electronic device.
  • the electronic device provided in the embodiment of the present application may be, for example, the above-mentioned network device, user terminal, radio frequency device, and other devices that require chip heat dissipation.
  • a flow channel is arranged in the bare chip assembly, and the cooling medium inlet and outlet pipes are bonded to the bare chip assembly by curing glue, so as to realize direct liquid cooling of the bare chip assembly.
  • an embodiment of the present application provides a solution for realizing chip-level liquid cooling technology by clamping and sealing with a clamp, which is used to commercialize the chip-level liquid cooling technology.
  • the embodiment of the present application provides a liquid-cooled printed circuit board assembly.
  • the liquid-cooled printed circuit board assembly includes a substrate 10 , a bare chip assembly 20 , a support 30 , a flow channel module 40 , and a connector 50 and a printed circuit board (PCB) 60 .
  • PCB printed circuit board
  • the flow channel module 40 and the bare chip assembly 20 have a better sealing effect, but because the sealing method applies a fastening force to the flow channel module 40 and the PCB 60 through the connector 50, the flow channel module 40 , PCB 60 , and the substrate 10 and the bare chip assembly 20 between them will all be subjected to fastening force. That is to say, this sealing method will generate local stress on the chip system (the system composed of the substrate 10, the bare chip assembly 20, and the PCB 60), causing the chip system to be prone to problems such as bending, warping, deformation, and fracture under the action of stress, thereby Hard chip system long-term reliability.
  • an embodiment of the present application further provides a liquid-cooled chip packaging structure, which is used to commercialize the chip-level liquid cooling technology.
  • the liquid-cooled chip packaging structure can be bonded on a PCB to constitute a liquid-cooled printed circuit board assembly provided in an embodiment of the present application.
  • the liquid-cooled printed circuit board assembly can be applied to the above-mentioned network equipment, and placed in the housing of the network equipment, so as to improve the cooling effect of the chips inside the network equipment.
  • liquid-cooled chip package structure and the liquid-cooled printed circuit board assembly provided by the embodiments of the present application are schematically described.
  • the embodiment of the present application also provides a liquid-cooled printed circuit board assembly. As shown in FIG. 50 and PCB60.
  • the main difference between the liquid-cooled printed circuit board assembly shown in FIG. 2A and the liquid-cooled printed circuit board assembly shown in FIG. 1 is that the flow channel module 40 and the support member 30 are sealed and connected through the connecting member 50 .
  • the substrate 10, the bare chip assembly 20, the support member 30, the flow channel module 40 and the connector 50 constitute the liquid-cooled chip packaging structure provided in the embodiment of the present application, and the liquid-cooled chip packaging structure is bonded to the PCB 60 through the substrate 10 , forming a liquid-cooled printed circuit board assembly.
  • the substrate 10 is a carrier of semiconductor chip packaging, and serves as a connecting body between the bare chip assembly 20 and the PCB 60 , for realizing the connection between the bare chip assembly 20 and the PCB 60 .
  • the substrate 10 has a first surface a1 and a fifth surface a2 opposite to each other.
  • the first surface a1 and the fifth surface a2 are both provided with external pins (such as solder balls or pads).
  • the external pins located on the first surface a1 of the substrate 10 The pins are connected to the bare chip assembly 20 , and the substrate 10 is bonded to the bare chip assembly 20 .
  • the external pins located on the fifth surface a2 of the substrate 10 are connected to the PCB 60 , and the substrate 10 is bonded to the PCB 60 .
  • the bare chip assembly 20 is disposed on the first surface a1 of the substrate 10
  • the PCB 60 is disposed on the fifth surface a2 of the substrate 10 (or understood as the surface of the substrate 10 away from the bare chip assembly 20 ).
  • the “fifth” in the fifth surface a2 here is not limited to the number or order, but only to distinguish it from the first surface a1 , indicating two opposite surfaces of the substrate 10 .
  • the embodiment of the present application also provides a method for preparing a liquid-cooled printed circuit board assembly, including:
  • the die assembly 20 is a die.
  • the bare chip assembly 20 is a structure formed by stacking a plurality of bare chips along a direction perpendicular to the substrate 10 .
  • the bare chip assembly 20 is a structure in which a plurality of bare chips are arranged side by side along a direction parallel to the substrate 10 .
  • the bare chip assembly 20 may also have other structures, and the above is only an example without any limitation.
  • bonding refers to a process in which two homogeneous or heterogeneous materials are subjected to surface treatment and directly combined under certain conditions to achieve electrical interconnection (electrical or mechanical) between the two materials.
  • the bonding method of the bare chip assembly 20 and the substrate 10 can be through micro bump bonding (micro bump bonding), embedded micro bump bonding (embedded bump bonding), hybrid bonding (hybrid bonding, HB), Surface activated bonding (surface activated bonding, SAB), atomic diffusion bonding (atomic diffusion bonding, ADB), wire bonding (wire bonding, WB) and other processes to achieve bonding, the embodiment of the present application for the bare chip assembly 20 and the substrate
  • the bonding method of 10 is not limited, and the methods in the related art that can realize the bonding of both are applicable to this application.
  • the bare chip assembly 20 is soldered to the first surface a1 of the substrate 10 through a solder reflow process.
  • an underfill is also filled between the bare chip assembly 20 and the first surface a1 of the substrate 10 to reinforce the bare chip assembly 20 and the substrate 10 to improve The stability of the connection between the two.
  • a cooling medium barrier layer 70 is disposed on the surface of the bare chip assembly 20 away from the substrate 10 .
  • the method for preparing the liquid-cooled printed circuit board assembly when preparing a liquid-cooled printed circuit board assembly, after the bare chip assembly 20 is bonded to the substrate 10, and before the support member 30 is formed on the substrate 10, the method for preparing the liquid-cooled printed circuit board assembly also includes A cooling medium blocking layer 70 is formed on the surface (the first surface a1 ) of the bare chip assembly 20 away from the substrate 10 .
  • the material of the cooling medium barrier layer 70 can be, for example, metal, and the metal material can block water and oxygen, and has good heat transfer effect.
  • the material of the cooling medium barrier layer 70 may be titanium, for example.
  • the cooling medium blocking layer 70 covers the surface of the bare chip assembly 20 , and is used to block the direct contact between the cooling medium and the bare chip assembly 20 , protect the bare chip assembly 20 , and increase the life of the bare chip assembly 20 .
  • the support 30 includes a second surface b2, a third surface b3 and a fourth surface b4 , the second surface b2 and the third surface b3 are located on the side of the support 30 close to the substrate 10, the fourth surface b4 is located on the side of the support 30 away from the substrate 10, the second surface b2 is connected to the substrate 10, and the third There is a gap X between the surface b3 and the substrate 10 , and the fourth surface b4 is opposite to the second surface b2 .
  • the second surface b2 and the third surface b3 of the support member 30 refer to the surfaces facing the substrate 10
  • the fourth surface b4 of the support member 30 refers to the surface facing away from the substrate 10 .
  • the intersection surface of the support member 30 and the fourth surface b4 is a side surface of the support member 30 .
  • the supporting member 30 is arranged around the bare chip assembly 20 , that is, the supporting member 30 is arranged around the bare chip assembly 20 . That is, the supporting member 30 is an end-to-end structure, or it can be understood that the supporting member 30 is ring-shaped.
  • the track shape of the support member 30 is related to the shape of the bare chip assembly 20 , for example, as shown in FIG. 4A , the bare chip assembly 20 is rectangular, and the support member 30 is a rectangular ring.
  • the supporting member 30 may be in any ring shape, for example, the supporting member 30 may be in the shape of a circular ring, a rectangular ring or any polygonal ring.
  • the third surface b3 is a plane.
  • the third surface b3 is a slope.
  • FIG. 4D there is a recess on the third surface b3, and the recess is used to cooperate with the second clamping portion 52 of the connecting member 50, so that the connecting member 50 applies a deviation to the supporting member 30.
  • the support member 30 only includes the third surface b3 at some positions.
  • the supporting member 30 includes the third surface b3 only at the position where the connecting member 50 needs to be disposed.
  • the third surface b3 is disposed around the second surface b2 .
  • the material of the support member 30 is plastic material.
  • the material of the supporting member 30 is plastic. It can be understood that the greater the strength of the material of the support member 30, the stronger the compression resistance. Therefore, for example, the material of the supporting member 30 is high-strength plastic (eg, modulus ⁇ 10GPa). In this way, when the connecting member 50 exerts pressure on the supporting member 30 , the stability of the supporting member 30 is higher.
  • step 20 may include, for example, performing insert molding directly around the bare chip assembly 20 to form the support member 30 .
  • the support member 30 formed by injection molding process can be directly connected with the substrate 10 .
  • the material of the support member 30 is metal.
  • the material of the support member 30 is aluminum, steel, copper and the like.
  • step 20 may include, for example: firstly forming the support 30 , and then bonding the support 30 to the substrate 10 by means of glue.
  • the fourth surface b4 of the support member 30 (disposed on the side away from the substrate 10 ) has grooves 32 , and the grooves 32 are connected end to end and have a ring shape.
  • the shape of the groove 32 is not limited, the shape of the groove 32 can be a semicircular groove as shown in Figure 4B, the shape of the groove 32 can also be a rectangular groove, and the shape of the groove 32 can also be a trapezoidal groove. trough and so on.
  • step S20 further includes: as shown in FIG. 2B , forming a groove 32 on a side of the support 30 away from the substrate 10 .
  • the flow channel module 40 is disposed on the side of the support member 30 away from the substrate 10 , is matched with the support member 30 , and is used to transmit the cooling medium to the surface of the bare chip assembly 20 .
  • the cooling medium may be water, for example.
  • the flow channel module 40 includes a flow channel body, the flow channel body is provided with an inlet and an outlet, and the flow channel body is provided with The cooling medium flow channel, the inlet and outlet of the flow channel module 40 are respectively connected with the equipment end pipelines corresponding to the above-mentioned network equipment, the cooling medium enters the closed chamber Q from the inlet, and the cooling medium is transmitted to the bare chip through the cooling medium flow channel On the surface of the component 20, the cooling medium flows out of the closed chamber Q from the outlet, and the pipeline at the equipment end circulates the cooling medium to the closed chamber Q, so as to directly liquid-cool the bare chip component 20 through the cooling medium.
  • the flow channel module 40 in the embodiment of the present application can be understood as a component for circulating the cooling medium.
  • the distance between the surface of the flow channel module 40 facing the die assembly 20 and the surface of the die assembly 20 facing the flow channel module 40 is 0.1 mm-10 mm.
  • the side of the flow channel module facing the bare chip assembly 20 has a protrusion facing the bare chip assembly 20 .
  • the side of the flow channel module facing the bare chip assembly 20 is a plane.
  • the sealing ring 80 is placed on the fourth surface b4 of the support member 30 .
  • At least a portion of the sealing ring 80 is disposed within the groove 32 of the support member 30 .
  • a part of the sealing ring 80 is located in the groove 32 , and a part protrudes out of the groove 32 . That is, the surface of the sealing ring 80 is higher than the surface of the support member 30 .
  • the gap between the fourth surface b4 of the support member 30 and the channel module 40 can be reduced, thereby reducing the sealing pressure of the sealing ring 80 .
  • the sealing ring 80 is just placed in the groove on the fourth surface b4 of the support member 30 , and the surface of the sealing ring 80 and the fourth surface b4 of the support member 30 are on the same plane.
  • the sealing effect of the support member 30 and the flow channel module 40 on the fluid can be further improved, thereby preventing the cooling medium from flowing out of the closed chamber Q and greatly reducing leakage. risk.
  • a connecting piece 50 is provided, and the connecting piece 50 is used to connect the runner module 40 and the supporting piece 30 .
  • the connecting piece 50 is used to apply a stress towards the support 30 to the flow channel module 40, and the connecting piece 50 is also used to apply a stress towards the flow channel module 40 to the support 30, so that the flow channel module can be connected through the connecting piece 50.
  • 40 is in sealing connection with the support 30.
  • the connecting piece 50 includes a first clamping portion 51 , a second clamping portion 52 and a connecting portion 53 .
  • the first clamping portion 51 is in contact with the surface of the runner module 40 away from the substrate 10
  • the second clamping portion 52 is in contact with the third surface b3 of the support member 30
  • the first clamping portion 51 and the second clamping portion 52 pass through
  • the connection part 53 is connected so that the support member 30 is connected to the flow channel module 40 in a sealed manner.
  • the second clamping portion 52 of the connecting member 50 is in contact with the third surface b3 of the supporting member 30 , and the first clamping portion 51 and the second clamping portion 52 are connected by the connecting portion 53 .
  • the connecting portion 53 is located outside the ends of the runner module 40 and the support member 30 , and the contact point between the first clamping portion 51 and the runner module 40 is close to the runner mold. On the outer edge of the group 40 , the contact point between the second clamping portion 52 and the support member 30 is close to the outer edge of the support member 30 .
  • one end of the connecting portion 53 is connected to the first clamping portion 51 , and the opposite end is connected to the second clamping portion 52 .
  • the connecting portion 53 is connected to the first clamping portion 51 and the second clamping portion 52, but the end of the connecting portion 53 is not connected to the first clamping portion 51 and the second clamping portion.
  • the holding part 52 is connected.
  • the connecting member 50 further includes an elastic portion 54 disposed between the first clamping portion 51 and the runner module 40 .
  • the elastic portion 54 may be, for example, a spring.
  • the elastic part 54 can buffer the force between the first clamping part 51 and the flow channel module 40, so as to tolerate a certain degree of loose deformation between the flow channel module 40 and the support member 30, and the flow channel module 40 and the supporting member 30 can play a buffering role to prolong the service life of both.
  • the connecting portion 53 of the connecting member 50 is an elastic component.
  • the support member 30 is provided with a first through hole
  • the runner module 40 is provided with a second through hole.
  • the connecting portion 53 of the connecting piece 50 passes through the first through hole and the second through hole.
  • the first through hole is disposed near the edge of the support member 30
  • the second through hole is disposed near the edge of the runner module 40 .
  • the connecting portion 50 passes through the inside of the flow channel module 40 and the support member 30 , and under the clamping force of the first clamping portion 51 and the second clamping portion 52 , the connection between the flow channel module 40 and the support member 30 is realized. 30 sealed connections.
  • the connecting member 50 may be, for example, a locking screw, a clamping tool, a bolt, and the like.
  • the embodiment of the present application does not limit the structure of the connecting member 50 , and any structure capable of applying a fastening force around the periphery may be applicable to the present application.
  • step S40 and step S50 can be performed before step S30, that is, as shown in FIG. Sealed connection with support 30 .
  • the substrate 10 when the substrate 10 is coupled with the printed circuit board 60 , the substrate 10 carries the connector 50 .

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

本申请实施例提供一种液冷式芯片封装结构、印刷线路板组件及方法、电子装置,涉及半导体散热技术领域,用于解决如何将冷却液直接通入到芯片表面或芯片内部,而不影响芯片性能的问题。液冷式印刷线路板组件包括的裸芯片组件设置在基板的第一表面上、与基板键合。支撑件设置在第一表面上、围绕裸芯片组件设置,支撑件的第二表面和第三表面均位于支撑件靠近基板的一侧,第四表面位于支撑件远离基板的一侧,第二表面与基板连接,第三表面与基板之间具有间隙。流道模组设置在第四表面上,用于向裸芯片组件的表面传输冷却介质。连接件的第一夹持部与流道模组远离基板的表面接触,第二夹持部与第三表面接触,第一夹持部与第二夹持部通过连接部连接。

Description

液冷式芯片封装结构、印刷线路板组件及方法、电子装置 技术领域
本申请涉及半导体散热技术领域,尤其涉及一种液冷式芯片封装结构、印刷线路板组件及方法、电子装置。
背景技术
芯片是电子设备中影响电子设备性能的重要部件,而随着电子设备功能的不断增加,对芯片的驱动要求也不断增加,使得芯片的功耗不断增大。随着芯片的功耗不断增大,芯片发热问题逐步凸显,而芯片过热会导致芯片烧毁,因此芯片的散热问题成为当下限制芯片发展的瓶颈之一。
相对于芯片风冷散热,液冷具有比风冷高出两个量级的散热能力。早在上世纪六七十年代就提出过芯片液冷技术概念,液冷散热技术经过了四五十年的发展,然而却依然停留在非芯片级液冷(冷却液在芯片封装结构外)技术阶段,未见芯片级液冷(将冷却液直接通入到芯片表面或芯片内部)技术商品化,而采用非芯片级液冷技术后,芯片的散热能力依旧无法满足需求。
发明内容
本申请实施例提供一种液冷式芯片封装结构、印刷线路板组件及方法、电子装置,用于解决如何将冷却液直接通入到芯片表面或芯片内部,而不影响芯片性能的问题。
为达到上述目的,本申请采用如下技术方案:
第一方面,提供一种液冷式芯片封装结构,包括:基板,具有第一表面;裸芯片组件,设置在基板的第一表面上、裸芯片组件与基板键合;支撑件,设置在基板的第一表面上、支撑件围绕裸芯片组件设置;支撑件包括第二表面、第三表面以及第四表面,第二表面和第三表面均位于支撑件靠近基板的一侧,第四表面位于支撑件远离基板的一侧,第二表面与基板连接,第三表面与基板之间具有间隙;流道模组,设置在支撑件的第四表面上,用于向裸芯片组件的表面传输冷却介质;连接件,包括第一夹持部、第二夹持部以及连接部;第一夹持部与流道模组远离基板的表面接触,第二夹持部与支撑件的第三表面接触,第一夹持部与第二夹持部通过连接部连接。
本申请实施例通在基板的承载有裸芯片组件的表面设置支撑件,支撑件用于提供密封的施力点,通过连接件对流道模组与支撑件在局部施加紧固力,从而到达密封效果。而密封的作用力和反作用力施加在流道模组与支撑件上,不会对芯片系统引入外力,减小了密封作用力对芯片系统的影响,从而增强裸芯片组件长期工作的可靠性。
可选的,连接部位于流道模组和支撑件的端部的外侧;第一夹持部与流道模组的接触点靠近流道模组的外边缘,第二夹持部与支撑件的接触点靠近支撑件的外边缘。这样一来,连接件中的连接部从流道模组和支撑件的端部的外侧对第一夹持部和第二夹持部进行连接,以实现通过连接件对流道模组和支撑件进行夹持紧固密封。连接部位于流道模组和支撑件的端部的外侧,无需穿过流道模组和支撑件,因此,无需对流道模组和支撑件进行处理,结构简单,易于实现。
可选的,连接件还包括弹性部,弹性部设置在第一夹持部与流道模组之间。弹性部可以对第一夹持部与流道模组之间的力起到缓冲作用,从而容忍流道模组与支撑件之间存在一定程度的松弛变形,可以对流道模组和支撑件起到缓冲作用,延长二者的使用寿命。
可选的,支撑件上设置有第一通孔,流道模组上设置有第二通孔;连接部贯穿第一通孔和第二通孔。这样一来,连接件中的连接部贯穿支撑件和流道模组,不再位于流道模组和支撑件的端部的外侧。因此,通过连接部贯穿支撑件和流道模组的方式,对流道模组和支撑件进行夹持紧固密封,可减小连接件在支撑件和流道模组的侧面的占用面积。
可选的,液冷式芯片封装结构包括多个连接件。多个连接件可以使得流道模组和支撑件的密封效果更好。
可选的,液冷式芯片封装结构还包括密封圈;密封圈设置在支撑件与流道模组之间。密封圈可以增加支撑件与流道模组之间的密封效果。
可选的,支撑件的第四表面上具有朝向流道模组的一侧设置有凹槽,密封圈的至少部分设置在凹槽内。将密封圈设置在凹槽内,可减小支撑件的第四表面与流道模组之间的间隙,从而降低密封圈的密封压力。在密封圈全部设置在凹槽内时,密封圈朝向流道模组的表面与支撑件的第四表面平齐,使得连接后的支撑件与流道模组不仅依靠密封圈接触,在密封圈之外的区域二者也可以直接接触。也就是说,支撑件与流道模组直接接触密封连接,可增大密封接触的面积,进一步提高支撑件与流道模组的密封连接效果。
可选的,支撑件的材料为塑胶。塑胶材料的连接件可以直接与基板连接,结构简单。
可选的,支撑件的材料为金属。金属材料的连接件支撑强度大,连接效果可靠。
可选的,裸芯片组件远离基板的表面设置有冷却介质阻隔层。冷却介质阻隔层覆盖在裸芯片组件的表面,用于阻隔冷却介质与裸芯片组件的直接接触,对裸芯片组件起到保护作用,提高裸芯片组件的寿命。
第二方面,提供一种液冷式印刷线路板组件,包括第一方面任一项的液冷式芯片封装结构和印刷线路板,基板包括第五表面,第五表面为与第一表面相对的表面,印刷线路板设置在基板的第五表面,印刷线路板与基板键合。
本申请实施例提供的印刷线路板组件包括第一方面的液冷式芯片封装结构,其有益效果与液冷式芯片封装结构的有益效果相同,此处不再赘述。
第三方面,提供一种电子装置,包括第二方面任一项的液冷式印刷线路板组件和壳体;液冷式印刷线路板组件放置在壳体内。
本申请实施例提供的电子装置包括第二方面任一项的液冷式印刷线路板组件,其有益效果与液冷式印刷线路板组件的有益效果相同,此处不再赘述。
第四方面,提供一种液冷式印刷线路板组件的制备方法,包括:将裸芯片组件键合在基板的第一表面上;在基板的第一表面上形成支撑件;支撑件围绕裸芯片组件设置,支撑件包括第二表面、第三表面以及第四表面,第二表面和第三表面均位于支撑件靠近基板的一侧,第四表面位于支撑件远离基板的一侧,支撑件的第二表面与基板 连接,支撑件的第三表面与基板之间具有间隙;将流道模组放置在支撑件的第四表面上;设置连接件,连接件用于连接流道模组和支撑件。
本申请实施例提供的液冷式印刷线路板组件的制备方法可制备得到第二方面提供的液冷式印刷线路板组件,其有益效果与液冷式印刷线路板组件的有益效果相同,此处不再赘述。
可选的,连接件包括第一夹持部、第二夹持部以及连接部,连接件用于连接流道模组和支撑件具体包括:将第一夹持部与流道模组远离基板的表面接触;将第二夹持部与支撑件的第三表面接触;用连接部连接第一夹持部与第二夹持部。
可选的,连接部位于流道模组和支撑件的端部的外侧;第一夹持部与流道模组的接触点靠近流道模组的外边缘,第二夹持部与支撑件的接触点靠近支撑件的外边缘。这样一来,连接件中的连接部从流道模组和支撑件的端部的外侧对第一夹持部和第二夹持部进行连接,以实现通过连接件对流道模组和支撑件进行夹持紧固密封。连接部位于流道模组和支撑件的端部的外侧,无需穿过流道模组和支撑件,因此,无需对流道模组和支撑件进行处理,结构简单,易于实现。
可选的,连接部贯穿流道模组和支撑件。这样一来,连接件中的连接部贯穿支撑件和流道模组,不再位于流道模组和支撑件的端部的外侧。因此,通过连接部贯穿支撑件和流道模组的方式,对流道模组和支撑件进行夹持紧固密封,可减小连接件在支撑件和流道模组的侧面的占用面积。
可选的,将流道模组放置在支撑件的第四表面上之前,制备方法还包括:将密封圈放置在支撑件的第四表面上。密封圈可以增加支撑件与流道模组之间的密封效果。
可选的,在基板的第一表面上形成支撑件之前,制备方法还包括:在裸芯片组件远离基板的表面上形成冷却介质阻隔层。冷却介质阻隔层覆盖在裸芯片组件的表面,用于阻隔冷却介质与裸芯片组件的直接接触,对裸芯片组件起到保护作用,提高裸芯片组件的寿命。
可选的,将流道模组放置在支撑件的第四表面上之前,制备方法还包括:将基板与印刷线路板耦接。
附图说明
图1为本申请的实施例提供的一种液冷式印刷线路板组件的结构示意图;
图2A为本申请的实施例提供的另一种液冷式印刷线路板组件的结构示意图;
图2B为本申请实施例提供的一种液冷式印刷线路板组件的制备流程示意图;
图2C-图2G为本申请实施例提供的一种液冷式印刷线路板组件的制备过程示意图;
图3A为本申请的实施例提供的又一种液冷式印刷线路板组件的结构示意图;
图3B为本申请的实施例提供的又一种液冷式印刷线路板组件的结构示意图;
图3C为本申请的实施例提供的又一种液冷式印刷线路板组件的结构示意图;
图4A为本申请实施例提供的一种支撑件的立体图;
图4B为本申请实施例提供的一种沿图4A中A-A'向的剖视图;
图4C为本申请实施例提供的另一种沿图4A中A-A'向的剖视图;
图4D为本申请实施例提供的又一种沿图4A中A-A'向的剖视图;
图4E为本申请实施例提供的一种支撑件的结构示意图;
图4F为本申请实施例提供的另一种支撑件的结构示意图;
图5A为本申请的实施例提供的又一种液冷式印刷线路板组件的结构示意图;
图5B为本申请的实施例提供的又一种液冷式印刷线路板组件的结构示意图;
图6为本申请的实施例提供的一种液冷式印刷线路板组件中部分部件的立体图;
图7为本申请的实施例提供的又一种液冷式印刷线路板组件的结构示意图;
图8为本申请的实施例提供的又一种液冷式印刷线路板组件的结构示意图;
图9为本申请实施例提供的一种弹簧夹的结构示意图;
图10为本申请的实施例提供的又一种液冷式印刷线路板组件的结构示意图;
图11为本申请实施例提供的一种基板与印刷线路板耦接前基板上承载的部件的示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
以下,术语“第一”、“第二”等仅用于描述方便,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请实施例中,除非另有明确的规定和限定,术语“连接”可以是直接的连接,也可以通过中间媒介间接的连接。另外,本申请实施例中,“连接”可以是电性连接,也可以是非电性连接,两个部件固定连接即可。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或“例如”等词旨在以具体方式呈现相关概念。
在本申请实施例中,"至少一个(项)"是指一个或者多个,"多个"是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
在本申请实施例中,例如上、下、左、右、前和后等用于解释本申请中不同部件的结构和运动的方向指示是相对的。当部件处于图中所示的位置时,这些指示是恰当的。但是,如果元件位置的说明发生变化,那么这些方向指示也将会相应地发生变化。
在室内温度较高时,基于工作环境或者设备运行环境等要求,需要对室内进行降温。而不同的室内环境,对降温的要求不同。以数据中心为例,直接蒸发冷却在数据中心空调系统中应用时,需要将大量外界环境空气引入到数据中心的机房内,这会显著增加机房内环境污染以及湿度范围不受控制的风险,进而会对机柜内的网络设备的可靠运行造成严重的威胁。因此,大多数数据中心倾向于在数据中心采用间接蒸发冷 却的方式。基于此,机柜的散热一般需要使用分流管路和多条设备端管路,多条设备端管路从分流管路引出,分布在机柜内的各个网络设备处。通过向各个网络设备循环传输冷却介质,实现对网络设备的散热降温。
然而,这些冷却介质往往只能在网络设备的表面对设备进行冷却,对于网络设备内的芯片无法直接进行接触式冷却,导致芯片的散热能力依旧较差。
本申请实施例提供一种电子装置,本申请实施例提供的电子装置例如可以是上述网络设备、用户终端、射频设备等对芯片散热有需求的装置。
为了解决芯片无法直接进行接触式冷却,导致芯片的散热能力较差,无法满足电子装置对芯片散热需求的问题,本领域技术人员提出一种通过胶粘密封实现芯片级液冷技术的方案,在裸芯片组件内设置流道,通过固化胶将冷却介质进出管道粘结在裸芯片组件上,以实现直接对裸芯片组件进行液冷。
然而,由于芯片液冷的工作环境相对恶劣(高低温循环、一定的内部水压、长期浸泡冷却介质),而胶粘密封的耐温、耐压度低,使得采用胶粘的方式在该环境下容易出现脱胶、粘接界面断裂等问题,导致冷却介质发生泄漏,从而出现芯片烧毁等严重事故。而且,胶粘后流道模组与裸芯片组件无法二次拆装,重复利用率低。因此,该方案目前仅是在科研上大量被采用,主要用于短期热测试评估,并不适用长期使用的场景。
基于此,本申请实施例提供一种通过夹具夹持密封实现芯片级液冷技术的方案,用于实现芯片级液冷技术商品化。如图1所示,本申请实施例提供一种液冷式印刷线路板组件,液冷式印刷线路板组件包括基板10、裸芯片组件20、支撑件30、流道模组40、连接件50以及印刷线路板(printed circuit board,PCB)60。
裸芯片组件20键合于基板10上。支撑件30连接于基板10上,且绕裸芯片组件20一圈设置。流道模组40设置于支撑件30远离基板10一侧。流道模组40和PCB60通过连接件50连接,以构成上述液冷式印刷线路板组件。图1所示的液冷式印刷线路板组件,是将流道模组40扣在裸芯片组件20上,然后连接件50穿过PCB60将流道模组40和裸芯片组件20进行锁紧,从而达到密封的效果。通过这种方式使得流道模组40和裸芯片组件20有较好的密封效果,但由于该密封方式是通过连接件50对流道模组40和PCB60施加紧固力,导致流道模组40、PCB60、以及位于二者之间的基板10和裸芯片组件20均会受到紧固力作用。也就是说,该密封方式会对芯片系统(基板10、裸芯片组件20、PCB60构成的系统)产生局部应力,导致芯片系统在应力作用下容易出现弯曲、翘曲、变形、断裂等问题,从而硬性芯片系统长期可靠性。
基于此,本申请实施例还提供一种液冷式芯片封装结构,用于实现芯片级液冷技术商品化。该液冷式芯片封装结构可以键合在PCB上,构成本申请实施例提供的一种液冷式印刷线路板组件。该液冷式印刷线路板组件可以应用于上述网络设备中,放置在网络设备的壳体内,以提高网络设备内部芯片的散热效果。
下面,对本申请实施例提供的液冷式芯片封装结构和液冷式印刷线路板组件进行示意说明。
本申请实施例还提供一种液冷式印刷线路板组件,如图2A所示,液冷式印刷线路板组件包括基板10、裸芯片组件20、支撑件30、流道模组40、连接件50以及PCB60。
图2A所示的液冷式印刷线路板组件与图1所示的液冷式印刷线路板组件的主要不同之处在于:流道模组40和支撑件30通过连接件50密封连接。
其中,基板10、裸芯片组件20、支撑件30、流道模组40以及连接件50构成本申请实施例提供的液冷式芯片封装结构,液冷式芯片封装结构通过基板10与PCB60键合,构成液冷式印刷线路板组件。
基板10是半导体芯片封装的载体,作为裸芯片组件20和PCB60的连接体,用于实现裸芯片组件20和PCB60之间的连接。
基板10具有相对设置的第一表面a1和第五表面a2,第一表面a1和第五表面a2均设置有外部引脚(例如焊球或焊盘),位于基板10第一表面a1的外部引脚连接裸芯片组件20,基板10与裸芯片组件20键合。位于基板10第五表面a2的外部引脚连接PCB60,基板10与PCB60键合。也就是说,裸芯片组件20设置在基板10的第一表面a1上,PCB60设置在基板10的第五表面a2(或者理解为基板10的远离裸芯片组件20的表面)。
可以理解的是,此处的第五表面a2中的“第五”并非数量或者顺序的限定,仅是与第一表面a1进行区分,表示基板10相对的两个表面。
如图2B所示,本申请实施例还提供一种液冷式印刷线路板组件的制备方法,包括:
S10、如图2C所示,将裸芯片组件20键合在基板10的第一表面a1上。也就是说,裸芯片组件20设置在基板10的第一表面a1上。
关于裸芯片组件20的结构,在一些实施例中,如图2C所示,裸芯片组件20为裸芯片(die)。
在另一些实施例中,如图3A所示,裸芯片组件20为,沿垂直于基板10的方向,多个裸芯片堆叠设置所构成的结构。
在另一些实施例中,如图3B所示,裸芯片组件20为,沿平行于基板10的方向,多个裸芯片并列设置所构成的结构。
当然,裸芯片组件20也可以为其他结构,上述仅为一种示例,不做任何限定。
示例的,裸芯片组件20例如可以包括网络类高功耗裸芯片、人工智能(artificial intelligence,AI)裸芯片等。
其中,键合(bonding)是指,将两种同质或者异质材料进行表面处理,在一定条件下直接结合,使两者材料实现电气互连(电学或机械)的一种工艺。
裸芯片组件20与基板10的键合方式,例如可以是通过微凸点键合(micro bump bonding),埋入式微凸点键合(embedded bump bonding),混合键合(hybrid bonding,HB),表面激活键合(surface activated bonding,SAB),原子扩散键合(atomic diffusion bonding,ADB),引线键合(wire bonding,WB)等工艺实现键合,本申请实施例对裸芯片组件20与基板10的键合方式不做限定,相关技术中能实现二者键合的方式均可适用于本申请。
在一些实施例中,通过回流焊工艺,将裸芯片组件20焊接到基板10的第一表面a1上。
在一些实施例中,如图2A所示,裸芯片组件20与基板10的第一表面a1之间还 填充有底部填充胶(under fill),以对裸芯片组件20与基板10进行加固,提高二者的连接的稳定性。
也就是说,如图2D所示,在将裸芯片组件20焊接到基板10的第一表面a1上后,在裸芯片组件20与基板10的第一表面a1之间填充有底部填充胶。
在一些实施例中,如图3C所示,裸芯片组件20远离基板10的表面设置有冷却介质阻隔层70。
基于此,在制备液冷式印刷线路板组件时,将裸芯片组件20与基板10键合后,在基板10上形成支撑件30之前,制备液冷式印刷线路板组件的制备方法还包括在裸芯片组件20远离基板10的表面(第一表面a1)上形成冷却介质阻隔层70。
冷却介质阻隔层70的材料例如可以是金属,金属材料既能阻隔水氧,又有较好的传热效果。冷却介质阻隔层70的材料例如可以是钛。
冷却介质阻隔层70覆盖在裸芯片组件20的表面,用于阻隔冷却介质与裸芯片组件20直接接触,对裸芯片组件20起到保护作用,提高裸芯片组件20的寿命。
S20、如图2E所示,将裸芯片组件20与基板10键合后,在基板10的键合有裸芯片组件20的第一表面a1上形成支撑件30。
如图4A所示,支撑件30设置在基板10的第一表面a1上,支撑件30与基板10连接,支撑件30围绕裸芯片组件20设置。
也就是说,支撑件30和裸芯片组件20设置在基板10的同一侧,且,支撑件30与基板10连接。另外,支撑件30设置在裸芯片组件20的外围,与裸芯片组件20的外轮廓之间可以具有间隙,也可以没有间隙。
关于支撑件30的结构,在一些实施例中,如图2E和图4B(图4A沿A-A'方向的剖视图)所示,支撑件30包括第二表面b2、第三表面b3以及第四表面b4,第二表面b2和所述第三表面b3均位于支撑件30靠近基板10的一侧,第四表面b4位于支撑件30远离基板10的一侧,第二表面b2与基板10连接,第三表面b3与基板10之间具有间隙X,第四表面b4与第二表面b2相对设置。
其中,支撑件30的第二表面b2和第三表面b3是指朝向基板10的表面,支撑件30的第四表面b4是指背离基板10的表面。支撑件30与第四表面b4相交的面,为支撑件30的侧面。
第二表面b2与基板10连接,第三表面b3与基板10之间具有间隙X,也可以理解为,第二表面b2和第三表面b3构成阶梯面,二者没在同一平面上。
需要说明的是,支撑件30围绕裸芯片组件20设置,也就是支撑件30绕裸芯片组件20一周设置。即,支撑件30为首尾相接的结构,或者理解为,支撑件30为环状。支撑件30的轨迹形状与裸芯片组件20的形状相关,示例的,如图4A所示,裸芯片组件20为矩形,支撑件30为矩形环。当然,支撑件30可以为任意环状,例如支撑件30可以为圆环状、矩形环状或者任意多边形环状。
关于第三表面b3,在一些实施例中,如图4B所示,第三表面b3为平面。
在另一些实施例中,如图4C所示,第三表面b3为斜面。
在另一些实施例中,如图4D所示,第三表面b3上具有凹陷部,凹陷部用于与连接件50的第二夹持部52配合,以便于连接件50向支撑件30施加背离基板10的力。
本申请实施例不对第三表面b3的具体结构进行限定,第三表面b3用于为连接件50提供施力点,因此,第三表面b3的结构与连接件50的结构匹配即可。上述关于第三表面b3的示意仅为一种示意,不做任何限定。
在一些实施例中,如图4E所示,支撑件30仅在部分位置处包括第三表面b3。。例如,支撑件30仅在需要设置连接件50的位置处包括第三表面b3。
在另一些实施例中,如图4F所示,第三表面b3围绕第二表面b2设置。
这样一来,第三表面b3的位置不受限制,连接件50可根据需要合理设置,满足不同场景下的不同需求。
关于支撑件30的材料,示例的,在一些实施例中,支撑件30的材料为塑性材料。
例如,支撑件30的材料为塑胶。可以理解的是,支撑件30的材料的强度越大,抗压能力越强。因此,例如,支撑件30的材料为高强度塑胶(例如模量≥10Gpa)。这样一来,连接件50向支撑件30施加压力时,支撑件30的稳定性越高。
在支撑件30的材料为塑性材料的情况下,在一些实施例中,步骤20例如可以包括:直接在裸芯片组件20周围进行嵌入式注塑,形成包括支撑件30。
其中,通过注塑工艺形成的支撑件30可直接与基板10连接。
关于支撑件30的材料,示例的,在一些实施例中,支撑件30的材料为金属。
例如,支撑件30的材料为铝、钢、铜等。
在支撑件30的材料为金属的情况下,在一些实施例中,步骤20例如可以包括:先形成支撑件30,然后通过胶粘的方式将支撑件30粘结在基板10上。
在一些实施例中,如图4A所示,支撑件30的第四表面b4(远离基板10的一侧设置)具有凹槽32,凹槽32首尾相接,为环状。
不对凹槽32的形状进行限定,凹槽32的形状可以是如图4B所示的半圆形凹槽,凹槽32的形状也可以是矩形凹槽,凹槽32的形状还可以是梯形凹槽等等。
在支撑件30还包括凹槽32的情况下,步骤S20还包括:如图2B所示,在支撑件30远离基板10的一侧形成凹槽32。
在一些实施例中,例如可以通过激光刻蚀或者雕刻技术形成凹槽32。凹槽32例如可以为环状。
S30、如图2F所示,将基板10与印刷线路板60耦接。
其中,基板10与印刷线路板60的耦接方式可以与上述基板10与裸芯片组件20的耦接方式相同,此处不再赘述。
S40、将流道模组40放置在支撑件30的第四表面b4上。
如图2A所示,流道模组40设置在支撑件30远离基板10一侧,与支撑件30对合,用于向裸芯片组件20表面传输冷却介质。其中,冷却介质,例如可以是水。
流道模组40、支撑件30以及基板10围成封闭腔室Q,裸芯片组件20位于封闭腔室Q内。
本申请实施例不对流道模组40的结构进行限定,在一些实施例中,示例的,流道模组40包括流道本体,流道本体上设置有进口和出口,流道本体内设置有冷却介质流道,流道模组40的进口和出口例如分别与上述网络设备对应的设备端管路连通,冷却介质从进口进入封闭腔室Q,经冷却介质流道将冷却介质传输至裸芯片组件20的表面, 冷却介质从出口流出封闭腔室Q,设备端管路循环向封闭腔室Q中传输冷却介质,以实现通过冷却介质直接对裸芯片组件20进行液冷。
基于此,本申请实施例中的流道模组40可以理解为,供冷却介质循环传输的部件。
由于流道模组40与裸芯片组件20之间的间隙太小,冷却介质容量较小,冷却效果较差。流道模组40与裸芯片组件20之间的间隙太大,冷却介质容量太大,对裸芯片组件20浸泡太多,容易损坏裸芯片组件20。
在一些实施例中,流道模组40朝向裸芯片组件20的表面,与,裸芯片组件20朝向流道模组40的表面,之间的距离为0.1毫米-10毫米。
根据裸芯片组件20和支撑件30结构的不同,在一些实施例中,如图2A所示,流道模组朝向裸芯片组件20的一侧具有朝向裸芯片组件20的凸起。
在另一些实施例中,如图5A所示,流道模组朝向裸芯片组件20的一侧为平面。
在一些实施例中,如图5B所示,液冷式印刷线路板组件还包括密封圈(O-ring)80。密封圈80设置在支撑件30与流道模组40之间。
也就是说,在将支撑件30与流道模组40密封之前,先将密封圈80放置在支撑件30的第四表面b4上。
通过设置密封圈80可以增加支撑件30与流道模组40之间的密封效果。
在一些实施例中,密封圈80的至少部分设置在支撑件30的凹槽32内。
例如,密封圈80一部分位于凹槽32内,一部分凸出于凹槽32。即,密封圈80的表面高出支撑件30的表面。
这样一来,可减小支撑件30的第四表面b4与流道模组40之间的间隙,从而降低密封圈80的密封压力。
或者,如图6所示,密封圈80恰好放置在支撑件30的第四表面b4上的凹槽内,密封圈80的表面和支撑件30的第四表面b4在同一平面。
这样一来,密封圈80朝向流道模组40的表面与支撑件30的第四表面b4平齐,使得密封后支撑件30与流道模组40不仅依靠密封圈80接触,在密封圈80之外的区域也二者可以直接接触。也就是说,支撑件30与流道模组40直接接触密封连接,可增大密封接触的面积,进一步提高支撑件30与流道模组40的密封连接效果。
通过在支撑件30与流道模组40之间设置密封圈80,可以进一步提高支撑件30和流道模组40对流体的密封效果,从而避免冷却介质流出上述封闭腔室Q,大大降低泄露风险。
S50、如图2G所示,设置连接件50,连接件50用于连接流道模组40和支撑件30。
连接件50用于向流道模组40施加朝向支撑件30的应力,连接件50还用于向支撑件30施加朝向流道模组40的应力,以实现通过连接件50将流道模组40与支撑件30的密封连接。
关于连接件50的结构,如图2A所示,连接件50包括第一夹持部51、第二夹持部52以及连接部53。第一夹持部51与流道模组40远离基板10的表面接触,第二夹持部52与支撑件30的第三表面b3接触,第一夹持部51与第二夹持部52通过连接部53连接,以使得支撑件30与流道模组40密封连接。
关于连接件50连接流道模组40和支撑件30的方式,在一些实施例中,如图2G所示,将连接件50的第一夹持部51与流道模组40远离基板10的表面接触,将连接件50的第二夹持52部与支撑件30的第三表面b3接触,用连接部53连接第一夹持部51与第二夹持部52。
在一些实施例中,如图2A所示,连接部53位于流道模组40和支撑件30的端部的外侧,第一夹持部51与流道模组40的接触点靠近流道模组40的外边缘,第二夹持部52与支撑件30的接触点靠近支撑件30的外边缘。
也就是说,将第一夹持部51与第二夹持部52通过位于流道模组40和支撑件30的端部外侧的连接部53连接。
可选的,如图2A所示,连接部53的一端连接第一夹持部51,相对的另一端连接第二夹持部52。
或者,可选的,如图7所示,连接部53与第一夹持部51、第二夹持部52连接,但并非连接部53的端部与第一夹持部51和第二夹持部52连接。
在一些实施例中,如图8所示,连接件50还包括弹性部54,弹性部54设置在第一夹持部51与流道模组40之间。
弹性部54例如可以是弹簧。
弹性部54可以对第一夹持部51与流道模组40之间的力起到缓冲作用,从而容忍流道模组40与支撑件30之间一定程度的松弛变形,对流道模组40和支撑件30可起到缓冲作用,延长二者的使用寿命。
在另一些实施例中,连接件50的连接部53为弹性部件。
示例的,连接件50例如可以是弹簧夹,如图9所示,为弹簧夹的一种结构示意图,该弹簧夹的第一夹持部51夹持在流道模组40上,弹簧夹的第二夹持部52夹持在支撑件30上,连接部53连接第一夹持部51和第二夹持部52。
在另一些实施例中,如图10所示,支撑件30上设置有第一通孔,流道模组40上设置有第二通孔。连接件50的连接部53贯穿第一通孔和第二通孔。
也就是说,将第一夹持部51与第二夹持部52通过贯穿流道模组40和支撑件30的连接部53连接。
在一些实施例中,第一通孔靠近支撑件30的边缘设置,第二通孔靠近流道模组40的边缘设置。
也就是说,连接部50穿过流道模组40和支撑件30的内部,在第一夹持部51和第二夹持部52的夹持力下,实现流道模组40与支撑件30的密封连接。
示例的,连接件50例如可以是锁螺钉、夹持工装、螺栓等。
本申请实施例对连接件50的结构不做限定,可以进行周边施加紧固力的结构都可以适用于本申请。
在另一些实施例中,步骤S40和步骤S50可以在步骤S30之前进行,即,如图11所示,在将基板10与印刷线路板60耦接之前,通过连接件50将流道模组40与支撑件30密封连接。
这样一来,将基板10与印刷线路板60耦接时,基板10上承载有连接件50。
本申请实施例通在基板10的承载有裸芯片组件20的表面设置支撑件30,支撑件 30用于提供密封的施力点,通过连接件50对流道模组40与支撑件30在局部施加紧固力,从而到达密封效果。而密封的作用力和反作用力施加在流道模组40与支撑件30上,不会对芯片系统引入外力,减小了密封作用力对芯片系统的影响,从而增强裸芯片组件长期工作的可靠性。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (17)

  1. 一种液冷式芯片封装结构,其特征在于,包括:
    基板,具有第一表面;
    裸芯片组件,设置在所述基板的所述第一表面上、所述裸芯片组件与所述基板键合;所述裸芯片组件包括至少一个裸芯片;
    支撑件,设置在所述基板的所述第一表面上、所述支撑件围绕所述裸芯片组件设置;所述支撑件包括第二表面、第三表面以及第四表面,所述第二表面和所述第三表面均位于所述支撑件靠近所述基板的一侧,所述第四表面位于所述支撑件远离所述基板的一侧,所述第二表面与所述基板连接,所述第三表面与所述基板之间具有间隙;
    流道模组,设置在所述支撑件的所述第四表面上,用于向所述裸芯片组件的表面传输冷却介质;
    连接件,包括第一夹持部、第二夹持部以及连接部;所述第一夹持部与所述流道模组远离所述基板的表面接触,所述第二夹持部与所述支撑件的所述第三表面接触,所述第一夹持部与所述第二夹持部通过所述连接部连接。
  2. 根据权利要求1所述的液冷式芯片封装结构,其特征在于,所述连接部位于所述流道模组和所述支撑件的端部的外侧;
    所述第一夹持部与所述流道模组的接触点靠近所述流道模组的外边缘,所述第二夹持部与所述支撑件的接触点靠近所述支撑件的外边缘。
  3. 根据权利要求1或2所述的液冷式芯片封装结构,其特征在于,所述连接件还包括弹性部,所述弹性部设置在所述第一夹持部与所述流道模组之间;
    或者,
    所述连接部为弹性部件。
  4. 根据权利要求1所述的液冷式芯片封装结构,其特征在于,所述支撑件上设置有第一通孔,所述流道模组上设置有第二通孔;所述连接部贯穿所述第一通孔和所述第二通孔。
  5. 根据权利要求1-4任一项所述的液冷式芯片封装结构,其特征在于,所述液冷式芯片封装结构还包括密封圈;所述密封圈设置在所述支撑件与所述流道模组之间。
  6. 根据权利要求5所述的液冷式芯片封装结构,其特征在于,所述支撑件的所述第四表面上具有凹槽,所述密封圈的至少部分设置在所述凹槽内。
  7. 根据权利要求1-6任一项所述的液冷式芯片封装结构,其特征在于,所述支撑件的材料为塑胶或者金属。
  8. 根据权利要求1-7任一项所述的液冷式芯片封装结构,其特征在于,所述裸芯片组件远离所述基板的表面设置有冷却介质阻隔层。
  9. 一种液冷式印刷线路板组件,其特征在于,包括权利要求1-8任一项所述的液冷式芯片封装结构和印刷线路板;
    所述基板包括第五表面,所述第五表面为与所述第一表面相对的表面,所述印刷线路板设置在所述基板的第五表面,所述印刷线路板与所述基板键合。
  10. 一种电子装置,其特征在于,包括权利要求9所述的液冷式印刷线路板组件和壳体;所述液冷式印刷线路板组件放置在所述壳体内。
  11. 一种液冷式印刷线路板组件的制备方法,其特征在于,包括:
    将裸芯片组件键合在基板的第一表面上;
    在所述基板的所述第一表面上形成支撑件;所述支撑件围绕所述裸芯片组件设置,所述支撑件包括第二表面、第三表面以及第四表面,所述第二表面和所述第三表面均位于所述支撑件靠近所述基板的一侧,所述第四表面位于所述支撑件远离所述基板的一侧,所述支撑件的第二表面与所述基板连接,所述支撑件的第三表面与所述基板之间具有间隙;
    将流道模组放置在所述支撑件的所述第四表面上;
    设置连接件,所述连接件用于连接所述流道模组和所述支撑件。
  12. 根据权利要求11所述的方法,其特征在于,所述连接件包括第一夹持部、第二夹持部以及连接部,所述连接件用于连接所述流道模组和所述支撑件具体包括:
    将所述第一夹持部与所述流道模组远离所述基板的表面接触;
    将所述第二夹持部与所述支撑件的所述第三表面接触;
    用所述连接部连接所述第一夹持部与所述第二夹持部。
  13. 根据权利要求12所述的方法,其特征在于,所述连接部位于所述流道模组和所述支撑件的端部的外侧;
    所述第一夹持部与所述流道模组的接触点靠近所述流道模组的外边缘,所述第二夹持部与所述支撑件的接触点靠近所述支撑件的外边缘。
  14. 根据权利要求12所述的方法,其特征在于,所述连接部贯穿所述流道模组和所述支撑件。
  15. 根据权利要求11-14任一项所述的方法,其特征在于,将流道模组放置在所述支撑件的第四表面上之前,所述制备方法还包括:将密封圈放置在所述支撑件的所述第四表面上。
  16. 根据权利要求11-15任一项所述的方法,其特征在于,在所述基板的所述第一表面上形成支撑件之前,所述制备方法还包括:
    在所述裸芯片组件远离所述基板的表面上形成冷却介质阻隔层。
  17. 根据权利要求11-16任一项所述的方法,其特征在于,所述制备方法还包括:将所述基板与印刷线路板耦接。
PCT/CN2021/098470 2021-06-04 2021-06-04 液冷式芯片封装结构、印刷线路板组件及方法、电子装置 WO2022252233A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/098470 WO2022252233A1 (zh) 2021-06-04 2021-06-04 液冷式芯片封装结构、印刷线路板组件及方法、电子装置
CN202180097904.9A CN117280464A (zh) 2021-06-04 2021-06-04 液冷式芯片封装结构、印刷线路板组件及方法、电子装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/098470 WO2022252233A1 (zh) 2021-06-04 2021-06-04 液冷式芯片封装结构、印刷线路板组件及方法、电子装置

Publications (1)

Publication Number Publication Date
WO2022252233A1 true WO2022252233A1 (zh) 2022-12-08

Family

ID=84323749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098470 WO2022252233A1 (zh) 2021-06-04 2021-06-04 液冷式芯片封装结构、印刷线路板组件及方法、电子装置

Country Status (2)

Country Link
CN (1) CN117280464A (zh)
WO (1) WO2022252233A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5349831A (en) * 1991-11-08 1994-09-27 Hitachi, Ltd. Apparatus for cooling heat generating members
US6351384B1 (en) * 1999-08-11 2002-02-26 Hitachi, Ltd. Device and method for cooling multi-chip modules
CN101080160A (zh) * 2006-05-25 2007-11-28 国际商业机器公司 冷却设备、冷却的电子模块及其制作方法
US20080037221A1 (en) * 2006-08-07 2008-02-14 International Business Machines Corporation Jet orifice plate with projecting jet orifice structures for direct impingement cooling apparatus
CN112216663A (zh) * 2020-05-21 2021-01-12 谷歌有限责任公司 带有o形环密封的直接液体冷却

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5349831A (en) * 1991-11-08 1994-09-27 Hitachi, Ltd. Apparatus for cooling heat generating members
US6351384B1 (en) * 1999-08-11 2002-02-26 Hitachi, Ltd. Device and method for cooling multi-chip modules
CN101080160A (zh) * 2006-05-25 2007-11-28 国际商业机器公司 冷却设备、冷却的电子模块及其制作方法
US20080037221A1 (en) * 2006-08-07 2008-02-14 International Business Machines Corporation Jet orifice plate with projecting jet orifice structures for direct impingement cooling apparatus
CN112216663A (zh) * 2020-05-21 2021-01-12 谷歌有限责任公司 带有o形环密封的直接液体冷却

Also Published As

Publication number Publication date
CN117280464A (zh) 2023-12-22

Similar Documents

Publication Publication Date Title
US7298623B1 (en) Organic substrate with integral thermal dissipation channels, and method for producing same
JP6162316B2 (ja) 冷却剤チャネルを有する積層ウェハ
US5745344A (en) Heat dissipation apparatus and method for attaching a heat dissipation apparatus to an electronic device
US11145571B2 (en) Heat transfer for power modules
US20170303431A1 (en) Silicon Cooling Plate With An Integrated PCB
CN1956647A (zh) 冷却装置及其制造方法
US20160150678A1 (en) Silicon Cooling Plate With An Integrated PCB
US6639798B1 (en) Automotive electronics heat exchanger
US20230238302A1 (en) Semiconductor package having liquid-cooling lid
US20230037380A1 (en) Direct Liquid Cooling With O-Ring Sealing
CN109904139B (zh) 带有柔性转接板的大尺寸芯片系统封装结构及其制作方法
US20060262819A1 (en) Diode laser component with an integrated cooling element
WO2022252233A1 (zh) 液冷式芯片封装结构、印刷线路板组件及方法、电子装置
JP2001284513A (ja) パワー半導体装置
US11769710B2 (en) Heterogeneous integration module comprising thermal management apparatus
TWM592106U (zh) 功率模組
US11961782B2 (en) Integration of semiconductor device assemblies with thermal dissipation mechanisms
CN115274569A (zh) 电子设备及服务器
KR20040086133A (ko) 반도체장치
JPH04177869A (ja) 半導体装置及び半導体ウェーハの実装方法
EP4184567A1 (en) Cooler unit, semiconductor device and method for manufacturing a cooler unit
CN113421868B (zh) 一种芯片冷却装置及其装配方法
US20220293485A1 (en) Semiconductor device
US20240006370A1 (en) Chip package with heat dissipation plate and manufacturing method thereof
CN106304811B (zh) 一种电子系统的自散热结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21943594

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180097904.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21943594

Country of ref document: EP

Kind code of ref document: A1