WO2022252134A1 - Zoom lens and optical system thereof - Google Patents

Zoom lens and optical system thereof Download PDF

Info

Publication number
WO2022252134A1
WO2022252134A1 PCT/CN2021/097795 CN2021097795W WO2022252134A1 WO 2022252134 A1 WO2022252134 A1 WO 2022252134A1 CN 2021097795 W CN2021097795 W CN 2021097795W WO 2022252134 A1 WO2022252134 A1 WO 2022252134A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens group
lens
zoom lens
zoom
focal length
Prior art date
Application number
PCT/CN2021/097795
Other languages
French (fr)
Inventor
Ryotaro Izumi
Takuya Anzawa
Mitsuo Kano
Atsushi Horidan
Yoneyama Atsushi
Yusuke Ehara
Kazuya Atsuta
Original Assignee
Huawei Technologies Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co.,Ltd. filed Critical Huawei Technologies Co.,Ltd.
Priority to PCT/CN2021/097795 priority Critical patent/WO2022252134A1/en
Priority to CN202180098884.7A priority patent/CN117425848A/en
Publication of WO2022252134A1 publication Critical patent/WO2022252134A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/143Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only
    • G02B15/1431Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being positive
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/0065Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having a beam-folding prism or mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/163Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group

Definitions

  • the present invention relates to an image pick up lens system, and more particularly to a compact zoom lens system and a telephoto zoom lens system.
  • the present application also relates to an electronic device such as a mobile communication terminal equipped with the present zoom lens system.
  • CCD Charge Coupled Device
  • CMOS Complementary Metal Oxide Semiconductor
  • a zoom lens with a higher magnification and a longer focal length i.e., for a telephoto zoom lens.
  • the amount of movement of the lens group is increased, such that the size of the lens must become larger.
  • a telephoto zoom lens has a large amount of macro lens movement, and if focusing is performed by an all-group extending system, the amount of the lens movement is increased and the zoom lens module becomes larger.
  • the present invention provides a telephoto zoom lens that alleviates and /or avoids the aforementioned drawbacks.
  • US20060227415A1 discloses a zoom lens in which the zoom lens module is miniaturized by providing a plurality of bending prisms.
  • US20120075717A1 discloses a zoom lens whose height is reduced by using two bending prisms. In both prior art documents, one or more bending prism (s) is used to bend the optical path to shorten the overall length of the zoom lens.
  • the zoom lens module in these prior art documents still has components that are not suitable for miniaturization.
  • the present invention aims to provide a compact telephoto zoom lens with a configuration in which the lens group including the two bending prisms is moved with respect to the other lens groups, and to provide an imaging device including the telephoto zoom lens.
  • the present invention mitigates and/or obviates the aforementioned disadvantages.
  • reflective optical elements are used only for bending the optical path to shorten the overall length of the lens, but also for half the amount of the movement of a lens group by moving a lens group having a refractive power and including two reflective optical elements with respect to lens groups arranged on the objective side and on the image side.
  • a zoom lens comprises, from an object side to an image side along the optical axis, a first lens group, a second lens group having a refractive power and including a first reflective optical element and a second reflective optical element, and a third lens group including a movable sub-lens group.
  • the first, second and third lens groups are arranged such that the first reflective optical element bends the optical path of the first lens group towards the second reflective optical element, and the second reflective optical element bends the optical path of the second lens group towards the third lens group.
  • the second lens group is movable in a direction with respect to the first and third lens group.
  • the zoom lens is zoomed by the movement of the second lens group, and the zoom lens is focused by the movement of the movable sub-lens group in the third lens group.
  • LG1t is a distance on the optical axis from the most object-side surface of the first lens group to the injection surface of the first reflective optical element of the second lens group at the tele end, and ft is the focal length of the zoom lens at tele the end, it satisfies the following conditions:
  • LG3t is a distance on the optical axis from the incident surface of the second reflective optical element of the second lens group to the imaging surface at the tele end, and ft is the focal length of the zoom lens at the tele end, it satisfies the following conditions:
  • the first lens group has a positive refractive power.
  • the third lens group includes a fixed sub-lens group on the object side of the movable sub-lens group.
  • fG1 is a focal length of first lens group
  • fG2 is a focal length of second lens group
  • fG1 is a focal length of first lens group
  • fw is a focal length of the zoom lens at the wide end
  • ft is a focal length of the zoom lens at the tele end.
  • fG3m is a focal length of the movable sub-lens group of the third lens group
  • fw is a focal length of the zoom lens at the wide end
  • ft is a focal length of the zoom lens at the tele end
  • ⁇ G3mw is a horizontal magnification of the movable sub-lens group in the third lens group at the wide end
  • ⁇ G3nw is a horizontal magnification of the entire lens group located on the image side of the movable sub-lens group at the wide end or equals to 1 when there is no lens on the image side of the movable sub-lens group
  • ⁇ G3mt is a horizontal magnification of the movable sub-lens group in the third lens group at the tele end
  • ⁇ G3nt is a horizontal magnification of the entire lens group located on the image side of the movable sub-lens group at the tele end or equals to 1 when there is no lens on the image side of the movable sub-lens group.
  • the first lens group and the third lens group respectively includes at least one positive lens and one negative lens.
  • the second lens group includes at least two optical surfaces having refractive powers.
  • the first and second reflective optical elements may be selected from a group of a bending prism, a mirror, a spherical mirror, an aspherical mirror, and a free curved mirror.
  • An incident surface, a reflecting surface, and/or an injection surface of the first and second reflective optical elements may be a flat surface, a spherical surface, an aspherical surface, or a free curved surface.
  • a zoom lens comprises, from an object side to an image side along the optical axis, a first lens group, a second lens group having a refractive power and including a first reflective optical element and a second reflective optical element, and a third lens group including a movable sub-lens group.
  • the first, second and third lens groups are arranged such that the first reflective optical element bends the optical path of the first lens group towards the second reflective optical element, and the second reflective optical element bends the optical path of the second lens group towards the third lens group.
  • the second lens group is movable with respect to the first and third lens group.
  • the zoom lens is zoomed by the movement of the movable sub-lens group in the third lens group, and the zoom lens is focused by the movement of the second lens group.
  • LG1t is a distance on the optical axis from the most object-side surface of the first lens group to the injection surface of the first reflective optical element of the second lens group at the tele end, and ft is the focal length of the zoom lens at the tele end, it satisfies the following conditions:
  • LG3t is a distance on the optical axis from the incident surface of the second reflective optical element of the second lens group to the imaging surface at the tele end, and ft is the focal length of the zoom lens at the tele end, it satisfies the following conditions:
  • the first lens group has a positive refractive power.
  • the third lens group includes a fixed sub-lens group on the object side of the movable sub-lens group.
  • fG1 is a focal length of first lens group
  • fG2 is a focal length of second lens group
  • fG1 is a focal length of first lens group
  • fw is a focal length of the zoom lens at the wide end
  • ft is a focal length of the zoom lens at the tele end.
  • fG3m is a focal length of the movable sub-lens group of the third lens group
  • fw is a focal length of the zoom lens at the wide end
  • ft is a focal length of the zoom lens at the tele end
  • ⁇ G3mw is a horizontal magnification of the movable sub-lens group in the third lens group at the wide end
  • ⁇ G3nw is a horizontal magnification of the entire lens group located on the image side of the movable sub-lens group at the wide end or equals to 1 when there is no lens on the image side of the movable sub-lens group
  • ⁇ G2t is a horizontal magnification of the second lens group at the tele end
  • ⁇ G3t is a horizontal magnification of the entire lens group located on the image side of the movable sub-lens group at the tele end or equals to 1 when there is no lens on the image side of the movable sub-lens group.
  • the first lens group and the third lens group respectively includes at least one positive lens and one negative lens.
  • the second lens group includes at least two optical surfaces having refractive powers.
  • the first and second reflective optical elements may be selected from a group of a bending prism, a mirror, a spherical mirror, an aspherical mirror, and a free curved mirror.
  • An incident surface, a reflecting surface, and/or an injection surface of the first and second reflective optical elements may be a flat surface, a spherical surface, an aspherical surface, or a free curved surface.
  • a zoom lens module comprise the zoom lens provided in the first or second aspect, and a prism or a mirror on the object side of the first lens group.
  • a camera comprising the zoom lens (module) provided in the first, second or the third aspect and an image sensor.
  • the zoom lens is configured to input light, which is used to carrying image data, to the image sensor; and the image sensor is configured to display an image according to the image data.
  • a terminal comprises a camera, which is the camera provided in the fourth aspect, and a Graphic Processing Unit (GPU) .
  • the GPU is connected to the camera.
  • the camera is configured to obtain image data and input the image data into the GPU, and the CPU is configured to process the image data received from the camera.
  • the terminal can be applied to small cameras for mobile devices such as mobile phones and tablets.
  • FIG 1-1 shows a cross-sectional illustration of a zoom lens in accordance with a first embodiment of the present disclosure at the wide end position.
  • FIG 1-2 shows a cross-sectional illustration of the zoom lens in accordance with the first embodiment of the present disclosure at the tele end position.
  • FIG 1-3 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the first embodiment of the present disclosure at the wide end position.
  • FIG 1-4 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the first embodiment of the present disclosure at the tele end position.
  • FIG 2-1 shows a cross-sectional illustration of a zoom lens in accordance with a second embodiment of the present disclosure at the wide end position.
  • FIG 2-2 shows a cross-sectional illustration of the zoom lens in accordance with the second embodiment of the present disclosure at the tele end position.
  • FIG 2-3 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the second embodiment of the present disclosure at the wide end position.
  • FIG 2-4 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the second embodiment of the present disclosure at the tele end position.
  • FIG 3-1 shows a cross-sectional illustration of a zoom lens in accordance with a third embodiment of the present disclosure at the wide end position.
  • FIG 3-2 shows a cross-sectional illustration of the zoom lens in accordance with the third embodiment of the present disclosure at the tele end position.
  • FIG 3-3 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the third embodiment of the present disclosure at the wide end position.
  • FIG 3-4 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the third embodiment of the present disclosure at the tele endo position.
  • FIG 4-1 shows a cross-sectional illustration of a zoom lens in accordance with a fourth embodiment of the present disclosure at the wide end position.
  • FIG 4-2 shows a cross-sectional illustration of the zoom lens in accordance with the fourth embodiment of the present disclosure at the tele end position.
  • FIG 4-3 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the fourth embodiment of the present disclosure at the wide end position.
  • FIG 4-4 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the fourth embodiment of the present disclosure at the tele end position.
  • FIG 5-1 shows a cross-sectional illustration of a zoom lens in accordance with a fifth embodiment of the present disclosure at the wide end position.
  • FIG 5-2 shows a cross-sectional illustration of the zoom lens in accordance with the fifth embodiment of the present disclosure at the tele end position.
  • FIG 5-3 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the fifth embodiment of the present disclosure at the wide end position.
  • FIG 5-4 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the fifth embodiment of the present disclosure at the tele end position.
  • FIG 6-1 shows a cross-sectional illustration of a zoom lens in accordance with a sixth embodiment of the present disclosure at the wide end position.
  • FIG 6-2 shows a cross-sectional illustration of the zoom lens in accordance with the sixth embodiment of the present disclosure at the tele end position.
  • FIG 6-3 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the sixth embodiment of the present disclosure at the wide end position.
  • FIG 6-4 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the sixth embodiment of the present disclosure at the tele endo position.
  • FIG 7-1 shows a cross-sectional illustration of a zoom lens in accordance with a seventh embodiment of the present disclosure at the wide end position.
  • FIG 7-2 shows a cross-sectional illustration of the zoom lens in accordance with the seventh embodiment of the present disclosure at the tele end position.
  • FIG 7-3 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the seventh embodiment of the present disclosure at the wide end position.
  • FIG 7-4 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the seventh embodiment of the present disclosure at the tele end position.
  • FIG 8-1 shows a cross-sectional illustration of a zoom lens in accordance with an eighth embodiment of the present disclosure at the wide end position.
  • FIG 8-2 shows a cross-sectional illustration of the zoom lens in accordance with the eighth embodiment of the present disclosure at the tele end position.
  • FIG 8-3 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the eighth embodiment of the present disclosure at the wide end position.
  • FIG 8-4 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the eighth embodiment of the present disclosure at the tele end position.
  • FIG 9-1 shows a cross-sectional illustration of a zoom lens in accordance with a ninth embodiment of the present disclosure at the wide end position.
  • FIG 9-2 shows a cross-sectional illustration of the zoom lens in accordance with the ninth embodiment of the present disclosure at the tele end position.
  • FIG 9-3 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the ninth embodiment of the present disclosure at the wide end position.
  • FIG 9-4 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the ninth embodiment of the present disclosure at the tele endo position.
  • FIG 10-1 shows a cross-sectional illustration of a zoom lens in accordance with a tenth embodiment of the present disclosure at the wide end position.
  • FIG 10-2 shows a cross-sectional illustration of the zoom lens in accordance with the tenth embodiment of the present disclosure at the tele end position.
  • FIG 10-3 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the tenth embodiment of the present disclosure at the wide end position.
  • FIG 10-4 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the tenth embodiment of the present disclosure at the tele end position.
  • FIG 11-1 shows a cross-sectional illustration of a zoom lens in accordance with an eleventh embodiment of the present disclosure at the wide end position.
  • FIG 11-2 shows a cross-sectional illustration of the zoom lens in accordance with the eleventh embodiment of the present disclosure at the tele end position.
  • FIG 11-3 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the eleventh embodiment of the present disclosure at the wide end position.
  • FIG 11-4 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the eleventh embodiment of the present disclosure at the tele end position.
  • FIG 12-1 shows a cross-sectional illustration of a zoom lens in accordance with a twelfth embodiment of the present disclosure at the wide end position.
  • FIG 12-2 shows a cross-sectional illustration of the zoom lens in accordance with the twelfth embodiment of the present disclosure at the tele end position.
  • FIG 12-3 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the twelfth embodiment of the present disclosure at the wide end position.
  • FIG 12-4 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the twelfth embodiment of the present disclosure at the tele endo position.
  • FIG 13-1 shows a cross-sectional illustration of a zoom lens in accordance with a thirteenth embodiment of the present disclosure at the wide end position.
  • FIG 13-2 shows a cross-sectional illustration of the zoom lens in accordance with the thirteenth embodiment of the present disclosure at the tele end position.
  • FIG 13-3 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the thirteenth embodiment of the present disclosure at the wide end position.
  • FIG 13-4 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the thirteenth embodiment of the present disclosure at the tele end position.
  • FIG 14-1 shows a cross-sectional illustration of a zoom lens in accordance with a fourteenth embodiment of the present disclosure at the wide end position.
  • FIG 14-2 shows a cross-sectional illustration of the zoom lens in accordance with the fourteenth embodiment of the present disclosure at the tele end position.
  • FIG 14-3 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the fourteenth embodiment of the present disclosure at the wide end position.
  • FIG 14-4 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the fourteenth embodiment of the present disclosure at the tele end position.
  • FIG 15-1 shows a cross-sectional illustration of a zoom lens in accordance with a fifteenth embodiment of the present disclosure at the wide end position.
  • FIG 15-2 shows a cross-sectional illustration of the zoom lens in accordance with the fifteenth embodiment of the present disclosure at the tele end position.
  • FIG 15-3 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the fifteenth embodiment of the present disclosure at the wide end position.
  • FIG 15-4 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the fifteenth embodiment of the present disclosure at the tele endo position.
  • FIG 16-1 shows a cross-sectional illustration of a zoom lens in accordance with a sixteenth embodiment of the present disclosure at the wide end position.
  • FIG 16-2 shows a cross-sectional illustration of the zoom lens in accordance with the sixteenth embodiment of the present disclosure at the tele end position.
  • FIG 16-3 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the sixteenth embodiment of the present disclosure at the wide end position.
  • FIG 16-4 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the sixteenth embodiment of the present disclosure at the tele end position.
  • FIG 17 shows an implementation of the present disclosure.
  • This zoom lens system can be applied to small cameras for mobile devices such as a mobile-phones and tablets.
  • the zoom lens according to the present invention comprises three lens groups, i.e., in order from the object side along the optical axis, a first lens group having a positive refractive power a second lens group having a refractive power and comprising a first reflective optical element and a second reflective optical element, and a third lens group comprising a movable sub-lens group.
  • zooming is performed by moving the second lens group with respect to the first and third lens group or by moving the movable sub-lens group within the third lens group.
  • FIG 1-1 shows a cross-sectional illustration of a zoom lens system in accordance with a first embodiment of the present disclosure at the wide end.
  • the zoom lens system comprises three lens groups G1, G2, and G3 from the object side along the optical axis.
  • the first lens group G1 comprises lens elements L1 and L2.
  • the second lens group G2 comprises a first reflective optical element P1 and a second reflective optical element P2.
  • the first reflective optical element P1 has spherical surfaces on both sides.
  • the second reflective optical element P2 has a spherical surface on its incident surface.
  • the third lens group comprises lens elements L3, L4, L5, L6, and L7.
  • the lens element L6 is a movable sub-lens group of the third lens group G3.
  • OP represents an object prism or mirror which may be arranged on the object side of the first lens group to bend the optical axis of the first lens group towards the object.
  • the object prism may be a right angle prism or any angle prism.
  • IS represents an image sensor and CG represents a cover glass such as an IR cut filter.
  • FIG 1-2 shows a cross-sectional illustration of a zoom lens system in accordance with the first embodiment of the present disclosure at the tele end.
  • the entire second lens group G2 is moved away from the first and third lens groups G1, G3 along a direction parallel to the optical axes of the first and third lens groups G1, G3 to the tele end position.
  • the zoom lens is focused by moving the movable sub-lens group L6 within the lens group G3.
  • Table 1-1 shows the radius of curvature (R) and the thickness or separation (D) for each of the optical surfaces, and the refractive index (nd) , and the Abbe number (vd) at wave length 587.65 nm for each of the lens elements of the zoom lens system of the first embodiment. *indicates that the surface is aspheric.
  • Table 1-2 shows the thickness or separation (D) for D1 to D4 in Table 1-1 at the wide end and the tele end positions.
  • Table 1-3 shows the aspheric coefficients for each of the optical surfaces of the zoom lens, wherein the equation of the aspheric surface profiles is expressed as follows:
  • X the height of a point on the aspheric surface at a distance Y from the optical axis relative to the tangential plane at the aspheric surface vertex;
  • Y the distance from a point on the curve of the aspheric surface to the optical axis
  • Ai the aspheric coefficient of order i.
  • Table 1-4 shows the optical parameters of the zoom lens in accordance with the first embodiment of the present disclosure.
  • the f, F, and FOV represents the focal length, F number and the field of view of the zoom lens respectively.
  • FIG 2-1 shows a cross-sectional illustration of a zoom lens system in accordance with a second embodiment of the present disclosure at the wide end.
  • the zoom lens system comprises three lens groups G1, G2, and G3 from the object side along the optical axis.
  • the first lens group G1 comprises lens elements L1 and L2.
  • the second lens group G2 comprises a first reflective optical element P1, a second lens element L3, a third lens element L4, and a second reflective optical element P2.
  • the first reflective optical element P1 is a right angle prism and the second reflective optical element P2 is a mirror.
  • the third lens group comprises lens elements L5, L6, L7, L8, and L9.
  • the lens element L8 is a movable sub-lens group of the third lens group G3.
  • OP represents an object prism or mirror which may be arranged on the object side of the first lens group to bend the optical axis of the first lens group towards the object.
  • the object prism may be a right angle prism or any angle prism.
  • IS represents an image sensor and CG represents a cover glass such as an IR cut filter.
  • FIG 2-2 shows a cross-sectional illustration of a zoom lens system in accordance with the second embodiment of the present disclosure at the tele end.
  • the entire second lens group G2 is moved away from the first and third lens groups G1, G3 along a direction parallel to the optical axes of the first and third lens groups G1, G3 to the tele end position.
  • the zoom lens is focused by moving the movable sub-lens group L8 within the lens group G3.
  • Table 2-1 shows the radius of curvature (R) and the thickness or separation (D) for each of the optical surfaces, and the refractive index (nd) , and the Abbe number (vd) at wave length 587.65 nm for each of the lens elements of the zoom lens system of the second embodiment. *indicates that the surface is aspheric.
  • Table 2-2 shows the thickness or separation (D) for D1 to D4 in Table 2-1 at the wide end and the tele end positions.
  • Table 2-3 shows the aspheric coefficients for each of the optical surfaces of the zoom lens.
  • Table 2-4 shows the optical parameters of the zoom lens in accordance with the second embodiment of the present disclosure.
  • the f, F, and FOV represents the focal length, F number and the field of view of the zoom lens respectively.
  • FIG 3-1 shows a cross-sectional illustration of a zoom lens system in accordance with a third embodiment of the present disclosure at the wide end.
  • the zoom lens system comprises three lens groups G1, G2, and G3 from the object side along the optical axis.
  • the first lens group G1 comprises lens elements L1 and L2.
  • the second lens group G2 comprises a first reflective optical element P1, a third lens element L3, and a second reflective optical element P2.
  • the first reflective optical element P 1 has a spherical surface on the incident side.
  • the second reflective optical element P2 is a right angle prism.
  • the third lens group comprises lens elements L4, L5, L6, L7 and L8.
  • the lens element L7 is a movable sub-lens group of the third lens group G3.
  • OP represents an object prism or mirror which may be arranged on the object side of the first lens group to bend the optical axis of the first lens group towards the object.
  • the object prism may be a right angle prism or any angle prism.
  • IS represents an image sensor and CG represents a cover glass such as an IR cut filter.
  • FIG 3-2 shows a cross-sectional illustration of a zoom lens system in accordance with the third embodiment of the present disclosure at the tele end.
  • the entire second lens group G2 is moved away from the first and third lens groups G1, G3 along a direction parallel to the optical axes of the first and third lens groups G1, G3 to the tele end position.
  • the zoom lens is focused by moving the movable sub-lens group L7 within the lens group G3.
  • Table 3-1 shows the radius of curvature (R) and the thickness or separation (D) for each of the optical surfaces, and the refractive index (nd) , and the Abbe number (vd) at wave length 587.65 nm for each of the lens elements of the zoom lens system of the third embodiment. *indicates that the surface is aspheric.
  • Table 3-2 shows the thickness or separation (D) for D1 to D4 in Table 3-1 at the wide end and the tele end positions.
  • Table 3-3 shows the aspheric coefficients for each of the optical surfaces of the zoom lens.
  • Table 3-4 shows the optical parameters of the zoom lens in accordance with the third embodiment of the present disclosure.
  • the f, F, and FOV represents the focal length, F number and the field of view of the zoom lens respectively.
  • FIG 4-1 shows a cross-sectional illustration of a zoom lens system in accordance with a fourth embodiment of the present disclosure at the wide end.
  • the zoom lens system comprises three lens groups G1, G2, and G3 from the object side along the optical axis.
  • the first lens group G1 comprises lens elements L1 and L2.
  • the second lens group G2 comprises a first reflective optical element P1, a third lens element L3, a fourth lens element L4, and a second reflective optical element P2.
  • the first and second reflective optical elements P1 and P2 are right angle prisms.
  • the third lens group comprises lens elements L5, L6, L7, and L8.
  • the lens element L7 is a movable sub-lens group of the third lens group G3.
  • OP represents an object prism or mirror which may be arranged on the object side of the first lens group to bend the optical axis of the first lens group towards the object.
  • the object prism may be a right angle prism or any angle prism.
  • IS represents an image sensor and CG represents a cover glass such as an IR cut filter.
  • FIG 4-2 shows a cross-sectional illustration of a zoom lens system in accordance with the fourth embodiment of the present disclosure at the tele end.
  • the entire second lens group G2 is moved away from the first and third lens groups G1, G3 along a direction parallel to the optical axes of the first and third lens groups G1, G3 to the tele end position.
  • the zoom lens is focused by moving the movable sub-lens group L7 within the lens group G3.
  • Table 4-1 shows the radius of curvature (R) and the thickness or separation (D) for each of the optical surfaces, and the refractive index (nd) , and the Abbe number (vd) at wave length 587.65 nm for each of the lens elements of the zoom lens system of the fourth embodiment. *indicates that the surface is aspheric.
  • Table 4-2 shows the thickness or separation (D) for D1 to D4 in Table 4-1 at the wide end and the tele end positions.
  • Table 4-3 shows the aspheric coefficients for each of the optical surfaces of the zoom lens.
  • Table 4-4 shows the optical parameters of the zoom lens in accordance with the fourth embodiment of the present disclosure.
  • the f, F, and FOV represents the focal length, F number and the field of view of the zoom lens respectively.
  • FIG 5-1 shows a cross-sectional illustration of a zoom lens system in accordance with a fifth embodiment of the present disclosure at the wide end.
  • the zoom lens system comprises three lens groups G1, G2, and G3 from the object side along the optical axis.
  • the first lens group G1 comprises lens elements L1 and L2.
  • the second lens group G2 comprises a first reflective optical element P1, a third lens element L3, a fourth lens element L4, and a second reflective optical element P2.
  • the first and second reflective optical elements P1 and P2 are right angle prisms.
  • the third lens group G3 comprises lens elements L5, L6, L7, L8, and L9.
  • the lens element L8 is a movable sub-lens group of the third lens group G3.
  • OP represents an object prism or mirror which may be arranged on the object side of the first lens group to bend the optical axis of the first lens group towards the object.
  • the object prism may be a right angle prism or any angle prism.
  • IS represents an image sensor and CG represents a cover glass such as an IR cut filter.
  • FIG 5-2 shows a cross-sectional illustration of a zoom lens system in accordance with the fifth embodiment of the present disclosure at the tele end.
  • the entire second lens group G2 is moved away from the first and third lens groups G1, G3 along a direction parallel to the optical axes of the first and third lens groups G1, G3 to the tele end position.
  • the zoom lens is focused by moving the movable sub-lens group L7 within the lens group G3.
  • Table 5-1 shows the radius of curvature (R) and the thickness or separation (D) for each of the optical surfaces, and the refractive index (nd) , and the Abbe number (vd) at wave length 587.65 nm for each of the lens elements of the zoom lens system of the fifth embodiment. *indicates that the surface is aspheric.
  • Table 5-2 shows the thickness or separation (D) for D1 to D4 in Table 5-1 at the wide end and the tele end photo positions.
  • Table 5-3 shows the aspheric coefficients for each of the optical surfaces of the zoom lens.
  • Table 5-4 shows the optical parameters of the zoom lens in accordance with the fifth embodiment of the present disclosure.
  • the f, F, and FOV represents the focal length, F number and the field of view of the zoom lens respectively.
  • FIG 6-1 shows a cross-sectional illustration of a zoom lens system in accordance with a sixth embodiment of the present disclosure at the wide end.
  • the zoom lens system comprises three lens groups G1, G2, and G3 from the object side along the optical axis.
  • the first lens group G1 comprises lens elements L1 and L2.
  • the second lens group G2 comprises a first reflective optical element P1 and a second reflective optical element P2.
  • the first reflective optical element P1 has a spherical surface on the incident side.
  • the second reflective optical element P2 has a spherical surface on the incident side.
  • the third lens group comprises lens elements L3, L4, L5, and L6.
  • the lens element L6 is a movable sub-lens group of the third lens group G3.
  • OP represents an object prism or mirror which may be arranged on the object side of the first lens group to bend the optical axis of the first lens group towards the object.
  • the object prism may be a right angle prism or any angle prism.
  • IS represents an image sensor and CG represents a cover glass such as an IR cut filter.
  • FIG 6-2 shows a cross-sectional illustration of a zoom lens system in accordance with the sixth embodiment of the present disclosure at the tele end.
  • the entire second lens group G2 is moved away from the first and third lens groups G1, G3 along a direction parallel to the optical axes of the first and third lens groups G1, G3 to the tele end position.
  • the zoom lens is focused by moving the movable sub-lens group L6 within the lens group G3.
  • Table 6-1 shows the radius of curvature (R) and the thickness or separation (D) for each of the optical surfaces, and the refractive index (nd) , and the Abbe number (vd) at wave length 587.65 nm for each of the lens elements of the zoom lens system of the sixth embodiment. *indicates that the surface is aspheric.
  • Table 6-2 shows the thickness or separation (D) for D1 to D4 in Table 6-1 at the wide end and the tele end positions.
  • Table 6-3 shows the aspheric coefficients for each of the optical surfaces of the zoom lens.
  • Table 6-4 shows the optical parameters of the zoom lens in accordance with the sixth embodiment of the present disclosure.
  • the f, F, and FOV represents the focal length, F number and the field of view of the zoom lens respectively.
  • FIG 7-1 shows a cross-sectional illustration of a zoom lens system in accordance with a seventh embodiment of the present disclosure at the wide end.
  • the zoom lens system comprises three lens groups G1, G2, and G3 from the object side along the optical axis.
  • the first lens group G1 comprises lens elements L1 and L2.
  • the second lens group G2 comprises a first reflective optical element P1 and a second reflective optical element P2.
  • the first reflective optical element P1 has a spherical surface on the incident side.
  • the second reflective optical element P2 has a spherical surface on the incident side.
  • the third lens group comprises lens elements L3, L4, L5, L6, and L7.
  • the lens element L5 is a movable sub-lens group of the third lens group G3.
  • OP represents an object prism or mirror which may be arranged on the object side of the first lens group to bend the optical axis of the first lens group towards the object.
  • the object prism may be a right angle prism or any angle prism.
  • IS represents an image sensor and CG represents a cover glass such as an IR cut filter.
  • FIG 7-2 shows a cross-sectional illustration of a zoom lens system in accordance with the seventh embodiment of the present disclosure at the tele end.
  • the entire second lens group G2 is moved away from the first and third lens groups G1, G3 along a direction parallel to the optical axes of the first and third lens groups G1, G3 to the tele end position.
  • the zoom lens is focused by moving the movable sub-lens group L5 within the lens group G3.
  • Table 7-1 shows the radius of curvature (R) and the thickness or separation (D) for each of the optical surfaces, and the refractive index (nd) , and the Abbe number (vd) at wave length 587.65 nm for each of the lens elements of the zoom lens system of the seventh embodiment. *indicates that the surface is aspheric.
  • Table 7-2 shows the thickness or separation (D) for D1 to D4 in Table 6-1 at the wide end and the tele end positions.
  • Table 7-3 shows the aspheric coefficients for each of the optical surfaces of the zoom lens.
  • Table 7-4 shows the optical parameters of the zoom lens in accordance with the seventh embodiment of the present disclosure.
  • the f, F, and FOV represents the focal length, F number and the field of view of the zoom lens respectively.
  • FIG 8-1 shows a cross-sectional illustration of a zoom lens system in accordance with an eighth embodiment of the present disclosure at the wide end.
  • the zoom lens system comprises three lens groups G1, G2, and G3 from the object side along the optical axis.
  • the first lens group G1 comprises lens elements L1 and L2.
  • the second lens group G2 comprises a first reflective optical element P1, a third lens element L3, a fourth lens element L4, and a second reflective optical element P2.
  • the first and second reflective optical elements P1 and P2 are right angle prisms.
  • the third lens group comprises a third lens element L3, a fourth lens element L4, a fifth lens element L5, a sixth lens element L6, a seventh lens element L7, a eighth lens element L8, and a ninth lens element L9.
  • the eighth lens element L8 is a movable sub-lens group of the third lens group G3.
  • OP represents an object prism or mirror which may be arranged on the object side of the first lens group to bend the optical axis of the first lens group towards the object.
  • the object prism may be a right angle prism or any angle prism.
  • IS represents an image sensor and CG represents a cover glass such as an IR cut filter.
  • FIG 8-2 shows a cross-sectional illustration of a zoom lens system in accordance with the eighth embodiment of the present disclosure at the tele end.
  • the entire second lens group G2 is moved away from the first and third lens groups G1, G3 along a direction parallel to the optical axes of the first and third lens groups G1, G3 to the tele end position.
  • the zoom lens is focused by moving the movable sub-lens group L8 within the lens group G3.
  • Table 8-1 shows the radius of curvature (R) and the thickness or separation (D) for each of the optical surfaces, and the refractive index (nd) , and the Abbe number (vd) at wave length 587.65 nm for each of the lens elements of the zoom lens system of the eighth embodiment. *indicates that the surface is aspheric.
  • Table 8-2 shows the thickness or separation (D) for D1 to D4 in Table 6-1 at the wide end and the tele end positions.
  • Table 8-3 shows the aspheric coefficients for each of the optical surfaces of the zoom lens.
  • Table 8-4 shows the optical parameters of the zoom lens in accordance with the eighth embodiment of the present disclosure.
  • the f, F, and FOV represents the focal length, F number and the field of view of the zoom lens respectively.
  • FIG 9-1 shows a cross-sectional illustration of a zoom lens system in accordance with a ninth embodiment of the present disclosure at the wide end.
  • the zoom lens system comprises three lens groups G1, G2, and G3 from the object side a1ong the optical axis.
  • the first lens group G1 comprises lens elements L1 and L2.
  • the second lens group G2 comprises a first reflective optical element P1, a third lens element L3, a fourth lens element L4, and a second reflective optical element P2.
  • the first and second reflective optical elements P1 and P2 are right angle prisms.
  • the third lens group comprises a third lens element L3, a fourth lens element L4, a fifth lens element L5, a sixth lens element L6, a seventh lens element L7, an eighth lens element L8, and a ninth lens element L9.
  • the eighth lens element L8 is a movable sub-lens group of the third lens group G3.
  • OP represents an object prism or mirror which may be arranged on the object side of the first lens group to bend the optical axis of the first lens group towards the object.
  • the object prism may be a right angle prism or any angle prism.
  • IS represents an image sensor and CG represents a cover glass such as an IR cut filter.
  • FIG 9-2 shows a cross-sectional illustration of a zoom lens system in accordance with the ninth embodiment of the present disclosure at the tele end.
  • the entire second lens group G2 is moved away from the first and third lens groups G1, G3along a direction parallel to the optical axes of the first and third lens groups G1, G3 to the tele end position.
  • the zoom lens is focused by moving the movable sub-lens group L8.
  • Table 9-1 shows the radius of curvature (R) and the thickness or separation (D) for each of the optical surfaces, and the refractive index (nd) , and the Abbe number (vd) at wave length 587.65 nm for each of the lens elements of the zoom lens system of the ninth embodiment. *indicates that the surface is aspheric.
  • Table 9-2 shows the thickness or separation (D) for D1 to D4 in Table 6-1 at the wide end and the tele end positions.
  • Table 9-3 shows the aspheric coefficients for each of the optical surfaces of the zoom lens.
  • Table 9-4 shows the optical parameters of the zoom lens in accordance with the ninth embodiment of the present disclosure.
  • the f, F, and FOV represents the focal length, F number and the field of view of the zoom lens respectively.
  • FIG 10-1 shows a cross-sectional illustration of a zoom lens system in accordance with a tenth embodiment of the present disclosure at the wide end.
  • the zoom lens system comprises three lens groups G1, G2, and G3 from the object side along the optical axis.
  • the first lens group G1 comprises lens elements L1 and L2.
  • the second lens group G2 comprises a first reflective optical element P1, a third lens element L3, a fourth lens element L4, and a second reflective optical element P2.
  • the first and second reflective optical elements P1 and P2 are right angle prisms.
  • the third lens group comprises a third lens element L3, a fourth lens element L4, a fifth lens element L5, a sixth lens element L6, a seventh lens element L7, an eighth lens element L8, and a ninth lens element L9.
  • the eighth lens element L8 is a movable sub-lens group of the third lens group G3.
  • OP represents an object prism or mirror which may be arranged on the object side of the first lens group to bend the optical axis of the first lens group towards the object.
  • the object prism may be a right angle prism or any angle prism.
  • IS represents an image sensor and CG represents a cover glass such as an IR cut filter.
  • FIG 10-2 shows a cross-sectional illustration of a zoom lens system in accordance with the tenth embodiment of the present disclosure at the tele end.
  • the movable sub-lens group L8 is moved towards the object side within the third lens group G3 to the tele end position.
  • the zoom lens is focused by moving the entire second lens group G2 with respect to the first and third lens groups G1, G3 along a direction parallel to the optical axes of the first and third lens groups G1, G3.
  • Table 10-1 shows the radius of curvature (R) and the thickness or separation (D) for each of the optical surfaces, and the refractive index (nd) , and the Abbe number (vd) at wave length 587.65 nm for each of the lens elements of the zoom lens system of the tenth embodiment. *indicates that the surface is aspheric.
  • Table 10-2 shows the thickness or separation (D) for D1 to D4 in Table 10-1 at the wide end and the tele end positions.
  • Table 10-3 shows the aspheric coefficients for each of the optical surfaces of the zoom lens.
  • Table 10-4 shows the optical parameters of the zoom lens in accordance with the tenth embodiment of the present disclosure.
  • the f, F, and FOV represents the focal length, F number and the field of view of the zoom lens respectively.
  • FIG 11-1 shows a cross-sectional illustration of a zoom lens system in accordance with an eleventh embodiment of the present disclosure at the wide end.
  • the zoom lens system comprises three lens groups G1, G2, and G3 from the object side along the optical axis.
  • the first lens group G1 comprises lens elements L1 and L2.
  • the second lens group G2 comprises a first reflective optical element P1, a third lens element L3, a fourth lens element L4, and a second reflective optical element P2.
  • the first and second reflective optical elements P1 and P2 are right angle prisms.
  • the third lens group comprises a third lens element L3, a fourth lens element L4, a fifth lens element L5, a sixth lens element L6, a seventh lens element L7, an eighth lens element L8, and a ninth lens element L9.
  • the eighth lens element L8 is a movable sub-lens group of the third lens group G3.
  • OP represents an object prism or mirror which may be arranged on the object side of the first lens group to bend the optical axis of the first lens group towards the object.
  • the object prism may be a right angle prism or any angle prism.
  • IS represents an image sensor and CG represents a cover glass such as an IR cut filter.
  • FIG 11-2 shows a cross-sectional illustration of a zoom lens system in accordance with the eleventh embodiment of the present disclosure at the tele end.
  • the movable sub-lens group L8 is moved towards the object side within the third lens group G3 to the tele end position.
  • the zoom lens is focused by moving the entire second lens group G2 with respect to the first and third lens groups G1, G3 along a direction parallel to the optical axes of the first and third lens groups G1, G3.
  • Table 11-1 shows the radius of curvature (R) and the thickness or separation (D) for each of the optical surfaces, and the refractive index (nd) , and the Abbe number (vd) at wave length 587.65 nm for each of the lens elements of the zoom lens system of the eleventh embodiment. *indicates that the surface is aspheric.
  • Table 11-2 shows the thickness or separation (D) for D1 to D4 in Table 11-1 at the wide end and the tele end positions.
  • Table 11-3 shows the aspheric coefficients for each of the optical surfaces of the zoom lens.
  • Table 11-4 shows the optical parameters of the zoom lens in accordance with the eleventh embodiment of the present disclosure.
  • the f, F, and FOV represents the focal length, F number and the field of view of the zoom lens respectively.
  • FIG 12-1 shows a cross-sectional illustration of a zoom lens system in accordance with a twelfth embodiment of the present disclosure at the wide end.
  • the zoom lens system comprises three lens groups G1, G2, and G3 from the object side along the optical axis.
  • the first lens group G1 comprises lens elements L1 and L2.
  • the second lens group G2 comprises a first reflective optical element P1, a third lens element L3, a fourth lens element L4, and a second reflective optical element P2.
  • the first and second reflective optical elements P1 and P2 are right angle prisms.
  • the third lens group comprises a third lens element L3, a fourth lens element L4, a fifth lens element L5, a sixth lens element L6, a seventh lens element L7, an eighth lens element L8, and a ninth lens element L9.
  • the eighth lens element L8 is a movable sub-lens group of the third lens group G3.
  • OP represents an object prism or mirror which may be arranged on the object side of the first lens group to bend the optical axis of the first lens group towards the object.
  • the object prism may be a right angle prism or any angle prism.
  • IS represents an image sensor and CG represents a cover glass such as an IR cut filter.
  • FIG 12-2 shows a cross-sectional illustration of a zoom lens system in accordance with the twelfth embodiment of the present disclosure at the tele end.
  • the movable sub-lens group L8 is moved towards the object side within the third lens group G3 to the tele end position.
  • the zoom lens is focused by moving the entire second lens group G2 with respect to the first and third lens groups G1, G3 along a direction parallel to the optical axes of the first and third lens groups G1, G3.
  • Table 12-1 shows the radius of curvature (R) and the thickness or separation (D) for each of the optical surfaces, and the refractive index (nd) , and the Abbe number (vd) at wave length 587.65 nm for each of the lens elements of the zoom lens system of the twelfth embodiment. *indicates that the surface is aspheric.
  • Table 12-2 shows the thickness or separation (D) for D1 to D4 in Table 12-1 at the wide end and the tele end positions.
  • Table 12-3 shows the aspheric coefficients for each of the optical surfaces of the zoom lens.
  • Table 12-4 shows the optical parameters of the zoom lens in accordance with the twelfth embodiment of the present disclosure.
  • the f, F, and FOV represents the focal length, F number and the field of view of the zoom lens respectively.
  • FIG 13-1 shows a cross-sectional illustration of a zoom lens system in accordance with a thirteenth embodiment of the present disclosure at the wide end.
  • the zoom lens system comprises three lens groups G1, G2, and G3 from the object side along the optical axis.
  • the first lens group G1 comprises lens elements L1 and L2.
  • the second lens group G2 comprises a first reflective optical element P1, a third lens element L3, a fourth lens element L4, and a second reflective optical element P2.
  • the first and second reflective optical elements P1 and P2 are right angle prisms.
  • the third lens group comprises a third lens element L3, a fourth lens element L4, a fifth lens element L5, a sixth lens element L6, a seventh lens element L7, an eighth lens element L8, and a ninth lens element L9.
  • the eighth lens element L8 is a movable sub-lens group of the third lens group G3.
  • OP represents an object prism or mirror which may be arranged on the object side of the first lens group to bend the optical axis of the first lens group towards the object.
  • the object prism may be a right angle prism or any angle prism.
  • IS represents an image sensor and CG represents a cover glass such as an IR cut filter.
  • FIG 13-2 shows a cross-sectional illustration of a zoom lens system in accordance with the thirteenth embodiment of the present disclosure at the tele end.
  • the movable sub-lens group L8 is moved towards the object side within the third lens group G3 to the tele end position.
  • the zoom lens is focused by moving the entire second lens group G2 with respect to the first and third lens groups G1, G3 along a direction parallel to the optical axes of the first and third lens groups G1, G3.
  • Table 13-1 shows the radius of curvature (R) and the thickness or separation (D) for each of the optical surfaces, and the refractive index (nd) , and the Abbe number (vd) at wave length 587.65 nm for each of the lens elements of the zoom lens system of the thirteenth embodiment. *indicates that the surface is aspheric.
  • Table 13-2 shows the thickness or separation (D) for D1 to D4 in Table 13-1 at the wide end and the tele end positions.
  • Table 13-3 shows the aspheric coefficients for each of the optical surfaces of the zoom lens.
  • Table 13-4 shows the optical parameters of the zoom lens in accordance with the thirteenth embodiment of the present disclosure.
  • the f, F, and FOV represents the focal length, F number and the field of view of the zoom lens respectively.
  • FIG 14-1 shows a cross-sectional illustration of a zoom lens system in accordance with a fourteenth embodiment of the present disclosure at the wide end.
  • the zoom lens system comprises three lens groups G1, G2, and G3 from the object side along the optical axis.
  • the first lens group G1 comprises lens elements L1 and L2.
  • the second lens group G2 comprises a first reflective optical element P1, a third lens element L3, a fourth lens element L4, and a second reflective optical element P2.
  • the first and second reflective optical elements P1 and P2 are right angle prisms.
  • the third lens group comprises a third lens element L3, a fourth lens element L4, a fifth lens element L5, a sixth lens element L6, a seventh lens element L7, an eighth lens element L8, and a ninth lens element L9.
  • the eighth lens element L8 is a movable sub-lens group of the third lens group G3.
  • OP represents an object prism or mirror which may be arranged on the object side of the first lens group to bend the optical axis of the first lens group towards the object.
  • the object prism may be a right angle prism or any angle prism.
  • IS represents an image sensor and CG represents a cover glass such as an IR cut filter.
  • FIG 14-2 shows a cross-sectional illustration of a zoom lens system in accordance with the fourteenth embodiment of the present disclosure at the tele end.
  • the movable sub-lens group L8 is moved towards the object side within the third lens group G3 to the tele end position.
  • the zoom lens is focused by moving the entire second lens group G2 with respect to the first and third lens groups G1, G3 along a direction parallel to the optical axes of the first and third lens groups G1, G3.
  • Table 14-1 shows the radius of curvature (R) and the thickness or separation (D) for each of the optical surfaces, and the refractive index (nd) , and the Abbe number (vd) at wave length 587.65 nm for each of the lens elements of the zoom lens system of the fourteenth embodiment. *indicates that the surface is aspheric.
  • Table 14-2 shows the thickness or separation (D) for D1 to D4 in Table 14-1 at the wide end and the tele end positions.
  • Table 14-3 shows the aspheric coefficients for each of the optical surfaces of the zoom lens.
  • Table 14-4 shows the optical parameters of the zoom lens in accordance with the fourteenth embodiment of the present disclosure.
  • the f, F, and FOV represents the focal length, F number and the field of view of the zoom lens respectively.
  • FIG 15-1 shows a cross-sectional illustration of a zoom lens system in accordance with a fifteenth embodiment of the present disclosure at the wide end.
  • the zoom lens system comprises three lens groups G1, G2, and G3 from the object side along the optical axis.
  • the first lens group G1 comprises lens elements L1 and L2.
  • the second lens group G2 comprises a first reflective optical element P1, a third lens element L3, a fourth lens element L4, and a second reflective optical element P2.
  • the first and second reflective optical elements P1 and P2 are right angle prisms.
  • the third lens group comprises a third lens element L3, a fourth lens element L4, a fifth lens element L5, a sixth lens element L6, a seventh lens element L7, an eighth lens element L8, and a ninth lens element L9.
  • the eighth lens element L8 is a movable sub-lens group of the third lens group G3.
  • OP represents an object prism or mirror which may be arranged on the object side of the first lens group to bend the optical axis of the first lens group towards the object.
  • the object prism may be a right angle prism or any angle prism.
  • IS represents an image sensor and CG represents a cover glass such as an IR cut filter.
  • FIG 15-2 shows a cross-sectional illustration of a zoom lens system in accordance with the fifteenth embodiment of the present disclosure at the tele end.
  • the movable sub-lens group L8 is moved towards the object side within the third lens group G3 to the tele end position.
  • the zoom lens is focused by moving the entire second lens group G2 with respect to the first and third lens groups G1, G3 along a direction parallel to the optical axes of the first and third lens groups G1, G3.
  • Table 15-1 shows the radius of curvature (R) and the thickness or separation (D) for each of the optical surfaces, and the refractive index (nd) , and the Abbe number (vd) at wave length 587.65 nm for each of the lens elements of the zoom lens system of the fifteenth embodiment. *indicates that the surface is aspheric.
  • Table 15-2 shows the thickness or separation (D) for D1 to D4 in Table 15-1 at the wide end and the tele end positions.
  • Table 15-3 shows the aspheric coefficients for each of the optical surfaces of the zoom lens.
  • Table 15-4 shows the optical parameters of the zoom lens in accordance with the fifteenth embodiment of the present disclosure.
  • the f, F, and FOV represents the focal length, F number and the field of view of the zoom lens respectively.
  • FIG 16-1 shows a cross-sectional illustration of a zoom lens system in accordance with a sixteenth embodiment of the present disclosure at the wide end.
  • the zoom lens system comprises three lens groups G1, G2, and G3 from the object side along the optical axis.
  • the first lens group G1 comprises lens elements L1 and L2.
  • the second lens group G2 comprises a first reflective optical element P1, a third lens element L3, a fourth lens element L4, and a second reflective optical element P2.
  • the first reflective optical element P1 comprises a right angle prism.
  • the second reflective optical element P2 is a prism with a reflective surface at a 40 degree angle with respect to the optical axis of the second lens group G2 to bend the optical axis of the second lens group by an 80 degree angle towards the third lens group G3.
  • the third lens group comprises a third lens element L3, a fourth lens element L4, a fifth lens element L5, a sixth lens element L6, a seventh lens element L7, an eighth lens element L8, and a ninth lens element L9.
  • the eighth lens element L8 is a movable sub-lens group of the third lens group G3.
  • OP represents an object prism or mirror which may be arranged on the object side of the first lens group to bend the optical axis of the first lens group towards the object.
  • the object prism may be a right angle prism or any angle prism.
  • IS represents an image sensor and CG represents a cover glass such as an IR cut filter.
  • FIG 16-2 shows a cross-sectional illustration of a zoom lens system in accordance with the sixteenth embodiment of the present disclosure at the tele end.
  • the movable sub-lens group L8 is moved towards the object side within the third lens group G3 to the tele end position.
  • the zoom lens is focused by moving the entire second lens group G2 with respect to the first and third lens groups G1, G3 along a direction parallel to the optical axis of the first lens group G1.
  • Table 16-1 shows the radius of curvature (R) and the thickness or separation (D) for each of the optical surfaces, and the refractive index (nd) , and the Abbe number (vd) at wave length 587.65 nm for each of the lens elements of the zoom lens system of the sixteenth embodiment. *indicates that the surface is an aspheric surface. **indicates that the surface is an anamorphic aspheric.
  • Table 16-2 shows the thickness or separation (D) for D1 to D4 in the Table 16-1 at the wide end and the tele end positions.
  • Table 16-3a shows the aspheric coefficients for each of the optical surfaces of the zoom lens.
  • Table 16-3b shows the anamorphic aspheric coefficients for each of the optical surfaces of the zoom lens, wherein the equation of the anamorphic aspheric surface profiles is expressed as follows:
  • XR radius of x
  • YR radius of y
  • Xk the conic coefficient of x
  • Yk the conic coefficient of y
  • R4, R6, R8, R10 rotational symmetry of 4th, 6th, 8th, and 10th order deformations from Conic;
  • P4, P6, P8, P10 non-rotational symmetry of 4th, 6th, 8th, and 10th order deformations from Conic.
  • Table 16-4 shows the optical parameters of the zoom lens in accordance with the sixteenth embodiment of the present disclosure.
  • the f, F, and FOV represents the focal length, F number and the field of view of the zoom lens respectively.
  • the f, F, and FOV represents the focal length, F number and the field of view of the zoom lens respectively.
  • the zoom lens systems according to the present disclosure comprise lens groups, i.e., in order from the object side along the optical axis, a first lens group G1 having a positive refractive power, a second lens group G2 comprising at least a first reflective optical element P1 and a second reflective optical element P2, and, a third lens group G3 comprising a movable sub-lens group.
  • zooming is performed by either one of the movement of the second lens group G2 and the movement of the movable sub-lens group within the third lens group G3, and focusing is performed by the other movement.
  • the first and second reflective optical elements may be selected from a group of a bending prism, a mirror, a spherical mirror, an aspherical mirror, a free curved mirror, or any reflective means.
  • An incident surface, a reflecting surface, and/or an injection surface of the first and second reflective optical elements may be a flat surface, a spherical surface, an aspherical surface, or a free curved surface.
  • the terms “incident surface” and “injection surface” of the reflective optical element refers to the incident surface and the injection surface of the right angle prism.
  • the terms “incident surface” and “injection surface” of the reflective optical element refers to the incident surface and the injection surface of an imaginary right angle prism which the reflective optical element include as a section. For example, see the first and second reflective optical elements in Fig. 1-1.
  • the terms “incident surface” and “injection surface” of the reflective optical element refers to the incident surface and the injection surface of an imaginary right angle prism which is imaginary formed from the reflection surface of the mirror. For example, see the second reflective optical element in Fig. 2-1.
  • the reflective optical element When a reflective optical element has a spherical surface (s) on the incident side and/or the injection side, the reflective optical element may be integrally formed by molding or by any means, or may be a compound element from a right angle prism section and a spherical section (s) . Even when a reflective optical element with spherical surface (s) is a compound element, the terms “incident surface” and “injection surface” of the reflective optical element refers to the incident surface and the injection surface of an imaginary right angle prism.
  • the size of the zoom lens module as a whole is reduced by the configuration where the second lens group G2 having a refractive power reflects and comprising a first reflective optical element P1 and a second reflective optical element P2, in which the first reflective optical element P1 bends the optical axis of the first lens group G1 towards the second reflective optical element P2, and the second reflective optical element P2 bends the optical axis of the second kens group G2 towards the third lens group G3.
  • the entire second lens group G2 having a refractive power with respect to the first and third lens groups G1, G3, the amount of movement during zooming or focusing can be reduced by half as compared with the prior art while there is no change in length of each lens group G1, G2, and G3 during zooming and focusing.
  • the actuator motor in the camera module can be miniaturized and the power consumption can be reduced, and the entire camera module can be miniaturized. Therefore, the zoom lens in the present invention can be in a size that can be mounted on a mobile device. Further, by comprising the first lens group G1, the second lens group G2, and the third lens group G3 from the object side to the image side, it is possible to cancel the aberration generated in each group and secure good optical performance.
  • zooming is performed by the movement of the second lens group G2 and focusing is performed by the movement of the movable sub-lens group within the third lens group G3. Therefore, the amount of the movement for zooming can be reduced by half. Further, by using the movable sub-lens group for focusing, it is not necessary to change the total length of the zoom lens when the object distance changes, and the total length of the module can be reduced.
  • LG1t is a distance on the optical axis from the most object-side surface of the first lens group to the injection surface of the first reflective optical element of the second lens group at the tele end
  • ft is the focal length of the zoom lens at the tele end
  • LG3t is a distance on the optical axis from the incident surface of the second reflective optical element of the second lens group to the imaging surface at the tele end.
  • fG1 is a focal length of first lens group
  • fG2 is a focal length of second lens group
  • fw is a focal length of the zoom lens at the wide end
  • ft is a focal length of the zoom lens at the tele end
  • fG3m is a focal length of the movable sub-lens group of the third lens group.
  • ⁇ G3mw is a horizontal magnification of the movable sub-lens group in the third lens group at the wide end
  • ⁇ G3nw is a horizontal magnification of the entire lens group located on the image side of the movable sub-lens group at the wide end or equals to 1 when there is no lens on the image side of the movable sub-lens group.
  • ⁇ G3mt is a horizontal magnification of the movable sub-lens group in the third lens group at the tele end
  • ⁇ G3nt is a horizontal magnification of the entire lens group located on the image side of the movable sub-lens group at the tele end or equals to 1 when there is no lens on the image side of the movable sub-lens group.
  • Condition (iv) relating to the focal length of the first lens group when the upper limit is exceeded, the focal length of the first lens group becomes large, so that the distance on the optical axis from the most object-side surface of the first lens group to the injection surface of the first reflective optical element becomes large.
  • the focal length of the first lens group becomes smaller, the distance on the optical axis from the most object-side surface of the first lens group to the injection surface of the first reflective optical element is reduced.
  • the focal length of the first lens group is small, the spherical aberration and the chromatic aberration is increased, and the optical performance is deteriorated. By satisfying the range of the condition, it is possible to reduce the overall length and ensure good optical performance.
  • Table 17 shows the values of the parameters used in the above-mentioned conditions from the first to ninth embodiments.
  • zooming is performed by the movement of the movable sub-lens group within the third lens group G3 and focusing is performed by the movement of the second lens group G2.
  • the second lens group G2 comprising the first and second reflective optical elements P1, P2 and having a refractive power for focusing
  • the amount of movement of the second lens group for focusing can be reduced by half as compared with the conventional technique. Therefore, the actuator motor in the camera module can be miniaturized and the power consumption can be reduced, and the entire camera module can be miniaturized.
  • the movable sub-lens group in the third lens group G3 for zooming it is possible to reduce the amount of movement of the lens group for zooming, so that the zoom lens can be miniaturized. Further, by focusing when the object distance changes by moving the second lens group having power, the amount of movement can be reduced, so that the total length of the zoom lens can be reduced.
  • LG1t is a distance on the optical axis from the most object-side surface of the first lens group to the injection surface of the first reflective optical element of the second lens group at the tele end
  • ft is the focal length of the zoom lens at the tele end
  • LG3t is a distance on the optical axis from the incident surface of the second reflective optical element of the second lens group to the imaging surface at the tele end.
  • fG1 is a focal length of first lens group
  • fG2 is a focal length of second lens group
  • fw is a focal length of the zoom lens at the wide end
  • ft is a focal length of the zoom lens at the tele end
  • fG3m is a focal length of the movable sub-lens group of the third lens group.
  • ⁇ G3mw is a horizontal magnification of the movable sub-lens group in the third lens group at the wide end
  • ⁇ G3nw is a horizontal magnification of the entire lens group located on the image side of the movable sub-lens group at the wide end or equals to 1 when there is no lens on the image side of the movable sub-lens group.
  • ⁇ G3mt is a horizontal magnification of the movable sub-lens group in the third lens group at the tele end
  • ⁇ G3nt is a horizontal magnification of the entire lens group located on the image side of the movable sub-lens group at the tele end or equals to 1 when there is no lens on the image side of the movable sub-lens group.
  • Condition (x) when the upper limit is exceeded, the amount of movement of the second lens group becomes large, and the distance on the optical axis from the most object-side surface of the first lens group to the injection surface of the first reflective optical element and the distance on the optical axis from the incident surface of the second reflective optical element to the imaging surface become too long.
  • Condition (xi) relating to the focal length of the first lens group when the upper limit is exceeded, the focal length of the first lens group becomes large, so that the distance on the optical axis from the most object-side surface of the first lens group to the injection surface of the first reflective optical element becomes large.
  • the focal length of the first lens group becomes smaller, the distance on the optical axis from the most object-side surface of the first lens group to the injection surface of the first reflective optical element is reduced.
  • the focal length of the first lens group is small, the spherical aberration and the chromatic aberration is increased, and the optical performance is deteriorated. By satisfying the range of the condition, it is possible to reduce the overall length and ensure good optical performance.
  • Table 18 shows the values of the parameters used in the above-mentioned conditions from the tenth to sixteenth embodiments.
  • the first lens group G1 has a positive refractive power.
  • the posterior principal point position of the entire optical system can be arranged on the object side to shorten the total length, and the optical system can be miniaturized.
  • the third lens group G3 includes a fixed sub-lens group on the object side of the movable sub-lens group, which makes it possible enables to ensure a high optical performance.
  • the first lens group G1 and the third lens group G3 respectively includes at least one positive lens and one negative lens, which makes it possible to ensure a high optical performance since the aberrations generated in each group can be canceled.
  • the second lens group G2 includes at least two optical surfaces having refractive powers, which helps to correct the aberrations generated in the second lens group G2.
  • the first and second reflective optical elements may be selected from a group of a bending prism, a mirror, a spherical mirror, an aspherical mirror, a free curved mirror, or any reflective means.
  • An incident surface, a reflecting surface, and/or an injection surface of the first and second reflective optical elements may be a flat surface, a spherical surface, an aspherical surface, or a free curved surface.
  • an object prism or mirror OP may be arranged on the object side of the first lens group G1 to bend the optical axis of the first lens group G1 towards the object.
  • the object prism OP may be a right angle prism or any angle prism. Such object prism enables the zoom lens module to be arranged perpendicular to the thickness direction of a mobile device.
  • the camera in the present disclosure comprises the zoom lens of the present disclosure and an image sensor.
  • the zoom lens is configured to input light, which is used to project an image to the image sensor; and the image sensor is configured to convert the image into digital image data.
  • FIG. 17 shows a terminal 1000 disclosed in the present disclosure.
  • the terminal 1000 comprises cameras 100 provided in the above implementations and a Graphic Processing Unit (GPU) 200.
  • the camera 100 is configured to convert an image through a zoom lens of the present disclosure to digital image data and input the digital image data into the GPU 200, and the GPU 200 is configured to process the image data received from the camera.
  • GPU Graphic Processing Unit
  • the terminal comprises two cameras 100.
  • the terminal may comprise a single camera or two or more cameras and it (or they) could be connected to the single GPU 200.
  • One of the cameras 100 can be combined with the zoom lens of the present disclosure, and other of the cameras 100 can be combined with a different type of lens such as a single focus wide-angle lens.
  • the lens system according to the present disclosure can be applied especially to mobile phone cameras, it can be also applied to cameras in any mobile device such as tablet type devices and wearable devices

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)

Abstract

A zoom lens comprising, from an object side to an image side along the optical axis, a first lens group (G1), a second lens group (G2) having a refractive power, including a first reflective optical element (P1) and a second reflective optical element (P2), and a third lens group (G3) including a movable sub-lens group (L6). The second lens group (G2) is movable with respect to the first and third lens groups (G1, G3), and the zoom lens is zoomed by one of the movement of the second lens group (G2) and the movement of the movable sub-lens group (L6) in the third lens group (G3), and the zoom lens is focused by the other.

Description

ZOOM LENS AND OPTICAL SYSTEM THEREOF
FIELD OF THE DISCLOSURE
The present invention relates to an image pick up lens system, and more particularly to a compact zoom lens system and a telephoto zoom lens system. The present application also relates to an electronic device such as a mobile communication terminal equipped with the present zoom lens system.
BACKGROUND OF THE DISCLOSURE
With the spread of mobile phone cameras, imaging lenses have become smaller and thinner, and with the progress of semiconductor manufacturing technology, the pixel size of electronic image sensors (CCD (Charge Coupled Device) and CMOS (Complementary Metal) Oxide Semiconductor) sensors for general digital cameras) continues to decrease, and the image sensors are required to be smaller and have higher resolution.
In recent years, mobile devices such as smartphones equipped with a plurality of cameras, for example, both a wide-angle lens and a telephoto lens, have appeared. Furthermore, due to the thinning of smartphones, it is required to make the lens module thinner in the height direction. In particular, the total length of a telephoto lens becomes longer as the focal length increases. Therefore, implementation of folded optics is adopted as one of the solutions. Further, although the angle of view between the wide-angle lens and the telephoto lens has been complemented by digital processing, there is always a need for optical zoom lenses, which does not require such digital processing, as one of the lenses of multi-camera mobile devices.
Also, from the viewpoint of user experience, there is a demand for a zoom lens with a higher magnification and a longer focal length, i.e., for a telephoto zoom lens. However, in order to realize such a telephoto zoom lens, the amount of movement of the lens group is increased, such that the size of the lens must become larger. In addition, a telephoto zoom lens has a large amount of macro lens movement, and if focusing is performed by an all-group extending system, the amount of the lens movement is increased and the zoom lens module becomes larger.
The present invention provides a telephoto zoom lens that alleviates and /or avoids the aforementioned drawbacks.
As a way to make the zoom lens compact, folded optics have been known as a way to miniaturize the camera body. US20060227415A1 discloses a zoom lens in which the zoom lens module is miniaturized by providing a plurality of bending prisms. US20120075717A1 discloses a zoom lens whose height is reduced by using two bending prisms. In both prior art documents, one or more bending prism (s) is used to bend the optical path to shorten the overall length of the zoom lens.
By using multiple bending prisms as disclosed in US20060227415A1, it is possible to bend the optical axis and make the zoom lens module compact. However, since there are a plurality of moving lens groups, it is necessary to move the lens between the bending prisms. Therefore, it is necessary to secure the space between the bending prisms, such that the total length of the optical path becomes long. In US20120075717A1, the height can be reduced by using two bending prisms, but the distance between the two bending prisms becomes longer by having two moving lens groups between the two bending prisms.
For these reasons, the zoom lens module in these prior art documents still has components that are not suitable for miniaturization.
Therefore, the present invention aims to provide a compact telephoto zoom lens with a configuration in which the lens group including the two bending prisms is moved with respect to the other lens groups, and to provide an imaging device including the telephoto zoom lens.
SUMMARY OF THE DISCLOSURE
The present invention mitigates and/or obviates the aforementioned disadvantages.
In the present invention, reflective optical elements are used only for bending the optical path to shorten the overall length of the lens, but also for half the amount of the movement of a lens group by moving a lens group having a refractive power and including  two reflective optical elements with respect to lens groups arranged on the objective side and on the image side.
According to a first aspect, a zoom lens is provided. The zoom lens comprises, from an object side to an image side along the optical axis, a first lens group, a second lens group having a refractive power and including a first reflective optical element and a second reflective optical element, and a third lens group including a movable sub-lens group. The first, second and third lens groups are arranged such that the first reflective optical element bends the optical path of the first lens group towards the second reflective optical element, and the second reflective optical element bends the optical path of the second lens group towards the third lens group. The second lens group is movable in a direction with respect to the first and third lens group. The zoom lens is zoomed by the movement of the second lens group, and the zoom lens is focused by the movement of the movable sub-lens group in the third lens group.
According to one aspect of the present zoom lens, when LG1t is a distance on the optical axis from the most object-side surface of the first lens group to the injection surface of the first reflective optical element of the second lens group at the tele end, and ft is the focal length of the zoom lens at tele the end, it satisfies the following conditions:
(i-1) 0.4 < LG1t/ft < 2.0; preferably
(i-2) more, prferebly 0.4 < LG1t/ft < 1.5; and more preferably
(i-3) 0.4 < LG1t/ft < 1.0;
According to one aspect of the present zoom lens, when LG3t is a distance on the optical axis from the incident surface of the second reflective optical element of the second lens group to the imaging surface at the tele end, and ft is the focal length of the zoom lens at the tele end, it satisfies the following conditions:
(ii-1) 0.5 < LG3t/ft < 2.0; preferably
(ii-2) 0.5 < LG3t/ft < 1.5; and more preferably
(ii-3) 0.5 < LG3t/ft < 1.0
According to one aspect of the present zoom lens, the first lens group has a positive refractive power.
According to one aspect of the present zoom lens, the third lens group includes a fixed sub-lens group on the object side of the movable sub-lens group.
According to one aspect of the present zoom lens, when fG1 is a focal length of first lens group, and fG2 is a focal length of second lens group, it satisfies the following condition:
(iii) 0.0 < |fG1/fG2| < 1.0
According to one aspect of the present zoom lens, when fG1 is a focal length of first lens group, fw is a focal length of the zoom lens at the wide end, and ft is a focal length of the zoom lens at the tele end., it satisfies the following condition:
(iv) 1 < fG1/sqrt (fw*ft) < 2
According to one aspect of the present zoom lens, when fG3m is a focal length of the movable sub-lens group of the third lens group, fw is a focal length of the zoom lens at the wide end, ft is a focal length of the zoom lens at the tele end, it satisfies the following condition:
(v) 0.2 < |fG3m/sqrt (fw*ft) | < 0.6
According to one aspect of the present zoom lens, when βG3mw is a horizontal magnification of the movable sub-lens group in the third lens group at the wide end, and βG3nw is a horizontal magnification of the entire lens group located on the image side of the movable sub-lens group at the wide end or equals to 1 when there is no lens on the image side of the movable sub-lens group, it satisfies the following condition:
(vi) 0.7 < | (1-βG3mw) ^2 * (βG3nw) ^2| < 2
According to one aspect of the present zoom lens, when βG3mt is a horizontal magnification of the movable sub-lens group in the third lens group at the tele end, and βG3nt is a horizontal magnification of the entire lens group located on the image side of the movable sub-lens group at the tele end or equals to 1 when there is no lens on the image side of the movable sub-lens group.
(vii) 0.8 < | (1-βG3mt) ^2 * (βG3nt) ^2| < 3.5
According to one aspect of the present zoom lens, the first lens group and the third lens group respectively includes at least one positive lens and one negative lens.
According to one aspect of the present zoom lens, the second lens group includes at least two optical surfaces having refractive powers.
According to one aspect of the present zoom lens, the first and second reflective optical elements may be selected from a group of a bending prism, a mirror, a spherical mirror, an aspherical mirror, and a free curved mirror. An incident surface, a reflecting surface, and/or an injection surface of the first and second reflective optical elements may be a flat surface, a spherical surface, an aspherical surface, or a free curved surface.
According to a second aspect, a zoom lens is provided. The zoom lens comprises, from an object side to an image side along the optical axis, a first lens group, a second lens group having a refractive power and including a first reflective optical element and a second reflective optical element, and a third lens group including a movable sub-lens group. The first, second and third lens groups are arranged such that the first reflective optical element bends the optical path of the first lens group towards the second reflective optical element, and the second reflective optical element bends the optical path of the second lens group towards the third lens group. The second lens group is movable with respect to the first and third lens group. The zoom lens is zoomed by the movement of the movable sub-lens group in the third lens group, and the zoom lens is focused by the movement of the second lens group.
According to one aspect of the present zoom lens, when LG1t is a distance on the optical axis from the most object-side surface of the first lens group to the injection surface of the first reflective optical element of the second lens group at the tele end, and ft is the focal length of the zoom lens at the tele end, it satisfies the following conditions:
(viii-1) 0.1 < LG1t/ft < 2.0; preferably
(viii-2) 0.1 < LG1t/ft < 1.5; and more preferably
(viii-3) 0.1 < LG1t/ft < 1.0;
According to one aspect of the present zoom lens, when LG3t is a distance on the optical axis from the incident surface of the second reflective optical element of the second lens group to the imaging surface at the tele end, and ft is the focal length of the zoom lens at the tele end, it satisfies the following conditions:
(ix-1) 0.5 < LG3t/ft < 2.0 preferably
(ix-2) 0.5 < LG3t/ft < 1.5 and more preferably
(ix-3) 0.5 < LG3t/ft < 1.0
According to one aspect of the present zoom lens, the first lens group has a positive refractive power.
According to one aspect of the present zoom lens, the third lens group includes a fixed sub-lens group on the object side of the movable sub-lens group.
According to one aspect of the present zoom lens, when fG1 is a focal length of first lens group, and fG2 is a focal length of second lens group, it satisfies the following condition:
(x) 0.0 < |fG1/fG2| < 1.5
According to one aspect of the present zoom lens, when fG1 is a focal length of first lens group, fw is a focal length of the zoom lens at the wide end, and ft is a focal length of the zoom lens at the tele end., it satisfies the following condition:
(xi) 1.0 < fG1/sqrt (fw*ft) < 2.5
According to one aspect of the present zoom lens, when fG3m is a focal length of the movable sub-lens group of the third lens group, fw is a focal length of the zoom lens at the wide end, ft is a focal length of the zoom lens at the tele end, it satisfies the following condition:
(xii) 0.2 < |fG3m/sqrt (fw*ft) | < 0.6
According to one aspect of the present zoom lens, when βG3mw is a horizontal magnification of the movable sub-lens group in the third lens group at the wide end, and βG3nw is a horizontal magnification of the entire lens group located on the image side of the  movable sub-lens group at the wide end or equals to 1 when there is no lens on the image side of the movable sub-lens group, it satisfies the following condition:
(xiii) 0 < | (1-βG3mw) ^2 * (βG3nw) ^2| < 0.6
According to one aspect of the present zoom lens, when βG2t is a horizontal magnification of the second lens group at the tele end, and βG3t is a horizontal magnification of the entire lens group located on the image side of the movable sub-lens group at the tele end or equals to 1 when there is no lens on the image side of the movable sub-lens group.
(xiv) 0 < | (1-βG2t) ^2 * (βG3t) ^2| < 1.5
According to one aspect of the present zoom lens, the first lens group and the third lens group respectively includes at least one positive lens and one negative lens.
According to one aspect of the present zoom lens, the second lens group includes at least two optical surfaces having refractive powers.
According to one aspect of the present zoom lens, the first and second reflective optical elements may be selected from a group of a bending prism, a mirror, a spherical mirror, an aspherical mirror, and a free curved mirror. An incident surface, a reflecting surface, and/or an injection surface of the first and second reflective optical elements may be a flat surface, a spherical surface, an aspherical surface, or a free curved surface.
According to a third aspect, a zoom lens module comprise the zoom lens provided in the first or second aspect, and a prism or a mirror on the object side of the first lens group.
According to a fourth aspect, a camera is provided. The camera comprises the zoom lens (module) provided in the first, second or the third aspect and an image sensor. The zoom lens is configured to input light, which is used to carrying image data, to the image sensor; and the image sensor is configured to display an image according to the image data.
According to a fifth aspect, a terminal is provided. The terminal comprises a camera, which is the camera provided in the fourth aspect, and a Graphic Processing Unit (GPU) . The GPU is connected to the camera. The camera is configured to obtain image data and input the image data into the GPU, and the CPU is configured to process the image data  received from the camera. The terminal can be applied to small cameras for mobile devices such as mobile phones and tablets.
The present disclosure will be presented in further detail from the following descriptions with accompanying drawings, which show, for purpose of illustration only, the preferred embodiments in accordance with the present disclosure.
BRIEF DESCRIPTION OF THE DRAWINGS
The disclosure can be better understood from the following detailed description of non-limiting embodiments thereof, and on examining the accompanying drawings, in which:
FIG 1-1 shows a cross-sectional illustration of a zoom lens in accordance with a first embodiment of the present disclosure at the wide end position.
FIG 1-2 shows a cross-sectional illustration of the zoom lens in accordance with the first embodiment of the present disclosure at the tele end position.
FIG 1-3 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the first embodiment of the present disclosure at the wide end position.
FIG 1-4 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the first embodiment of the present disclosure at the tele end position.
FIG 2-1 shows a cross-sectional illustration of a zoom lens in accordance with a second embodiment of the present disclosure at the wide end position.
FIG 2-2 shows a cross-sectional illustration of the zoom lens in accordance with the second embodiment of the present disclosure at the tele end position.
FIG 2-3 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the second embodiment of the present disclosure at the wide end position.
FIG 2-4 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the second embodiment of the present disclosure at the tele end position.
FIG 3-1 shows a cross-sectional illustration of a zoom lens in accordance with a third embodiment of the present disclosure at the wide end position.
FIG 3-2 shows a cross-sectional illustration of the zoom lens in accordance with the third embodiment of the present disclosure at the tele end position.
FIG 3-3 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the third embodiment of the present disclosure at the wide end position.
FIG 3-4 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the third embodiment of the present disclosure at the tele endo position.
FIG 4-1 shows a cross-sectional illustration of a zoom lens in accordance with a fourth embodiment of the present disclosure at the wide end position.
FIG 4-2 shows a cross-sectional illustration of the zoom lens in accordance with the fourth embodiment of the present disclosure at the tele end position.
FIG 4-3 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the fourth embodiment of the present disclosure at the wide end position.
FIG 4-4 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the fourth embodiment of the present disclosure at the tele end position.
FIG 5-1 shows a cross-sectional illustration of a zoom lens in accordance with a fifth embodiment of the present disclosure at the wide end position.
FIG 5-2 shows a cross-sectional illustration of the zoom lens in accordance with the fifth embodiment of the present disclosure at the tele end position.
FIG 5-3 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the fifth embodiment of the present disclosure at the wide end position.
FIG 5-4 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the fifth embodiment of the present disclosure at the tele end position.
FIG 6-1 shows a cross-sectional illustration of a zoom lens in accordance with a sixth embodiment of the present disclosure at the wide end position.
FIG 6-2 shows a cross-sectional illustration of the zoom lens in accordance with the sixth embodiment of the present disclosure at the tele end position.
FIG 6-3 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the sixth embodiment of the present disclosure at the wide end position.
FIG 6-4 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the sixth embodiment of the present disclosure at the tele endo position.
FIG 7-1 shows a cross-sectional illustration of a zoom lens in accordance with a seventh embodiment of the present disclosure at the wide end position.
FIG 7-2 shows a cross-sectional illustration of the zoom lens in accordance with the seventh embodiment of the present disclosure at the tele end position.
FIG 7-3 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the seventh embodiment of the present disclosure at the wide end position.
FIG 7-4 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the seventh embodiment of the present disclosure at the tele end position.
FIG 8-1 shows a cross-sectional illustration of a zoom lens in accordance with an eighth embodiment of the present disclosure at the wide end position.
FIG 8-2 shows a cross-sectional illustration of the zoom lens in accordance with the eighth embodiment of the present disclosure at the tele end position.
FIG 8-3 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the eighth embodiment of the present disclosure at the wide end position.
FIG 8-4 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the eighth embodiment of the present disclosure at the tele end position.
FIG 9-1 shows a cross-sectional illustration of a zoom lens in accordance with a ninth embodiment of the present disclosure at the wide end position.
FIG 9-2 shows a cross-sectional illustration of the zoom lens in accordance with the ninth embodiment of the present disclosure at the tele end position.
FIG 9-3 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the ninth embodiment of the present disclosure at the wide end position.
FIG 9-4 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the ninth embodiment of the present disclosure at the tele endo position.
FIG 10-1 shows a cross-sectional illustration of a zoom lens in accordance with a tenth embodiment of the present disclosure at the wide end position.
FIG 10-2 shows a cross-sectional illustration of the zoom lens in accordance with the tenth embodiment of the present disclosure at the tele end position.
FIG 10-3 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the tenth embodiment of the present disclosure at the wide end position.
FIG 10-4 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the tenth embodiment of the present disclosure at the tele end position.
FIG 11-1 shows a cross-sectional illustration of a zoom lens in accordance with an eleventh embodiment of the present disclosure at the wide end position.
FIG 11-2 shows a cross-sectional illustration of the zoom lens in accordance with the eleventh embodiment of the present disclosure at the tele end position.
FIG 11-3 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the eleventh embodiment of the present disclosure at the wide end position.
FIG 11-4 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the eleventh embodiment of the present disclosure at the tele end position.
FIG 12-1 shows a cross-sectional illustration of a zoom lens in accordance with a twelfth embodiment of the present disclosure at the wide end position.
FIG 12-2 shows a cross-sectional illustration of the zoom lens in accordance with the twelfth embodiment of the present disclosure at the tele end position.
FIG 12-3 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the twelfth embodiment of the present disclosure at the wide end position.
FIG 12-4 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the twelfth embodiment of the present disclosure at the tele endo position.
FIG 13-1 shows a cross-sectional illustration of a zoom lens in accordance with a thirteenth embodiment of the present disclosure at the wide end position.
FIG 13-2 shows a cross-sectional illustration of the zoom lens in accordance with the thirteenth embodiment of the present disclosure at the tele end position.
FIG 13-3 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the thirteenth embodiment of the present disclosure at the wide end position.
FIG 13-4 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the thirteenth embodiment of the present disclosure at the tele end position.
FIG 14-1 shows a cross-sectional illustration of a zoom lens in accordance with a fourteenth embodiment of the present disclosure at the wide end position.
FIG 14-2 shows a cross-sectional illustration of the zoom lens in accordance with the fourteenth embodiment of the present disclosure at the tele end position.
FIG 14-3 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the fourteenth embodiment of the present disclosure at the wide end position.
FIG 14-4 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the fourteenth embodiment of the present disclosure at the tele end position.
FIG 15-1 shows a cross-sectional illustration of a zoom lens in accordance with a fifteenth embodiment of the present disclosure at the wide end position.
FIG 15-2 shows a cross-sectional illustration of the zoom lens in accordance with the fifteenth embodiment of the present disclosure at the tele end position.
FIG 15-3 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the fifteenth embodiment of the present disclosure at the wide end position.
FIG 15-4 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the fifteenth embodiment of the present disclosure at the tele endo position.
FIG 16-1 shows a cross-sectional illustration of a zoom lens in accordance with a sixteenth embodiment of the present disclosure at the wide end position.
FIG 16-2 shows a cross-sectional illustration of the zoom lens in accordance with the sixteenth embodiment of the present disclosure at the tele end position.
FIG 16-3 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the sixteenth embodiment of the present disclosure at the wide end position.
FIG 16-4 shows a longitudinal spherical aberration, an astigmatic field curves, and a distortion of the zoom lens in accordance with the sixteenth embodiment of the present disclosure at the tele end position.
FIG 17 shows an implementation of the present disclosure.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The following embodiments of the zoom lens system of the present disclosure will be described referring to the figures and the optical data. This zoom lens system can be applied to small cameras for mobile devices such as a mobile-phones and tablets.
The zoom lens according to the present invention comprises three lens groups, i.e., in order from the object side along the optical axis, a first lens group having a positive refractive power a second lens group having a refractive power and comprising a first reflective optical element and a second reflective optical element, and a third lens group comprising a movable sub-lens group. In this zoom lens, zooming is performed by moving the second lens group with respect to the first and third lens group or by moving the movable sub-lens group within the third lens group.
First Embodiment
FIG 1-1 shows a cross-sectional illustration of a zoom lens system in accordance with a first embodiment of the present disclosure at the wide end.
The zoom lens system comprises three lens groups G1, G2, and G3 from the object side along the optical axis. The first lens group G1 comprises lens elements L1 and L2. The second lens group G2 comprises a first reflective optical element P1 and a second reflective optical element P2. The first reflective optical element P1 has spherical surfaces on both sides. The second reflective optical element P2 has a spherical surface on its incident surface. The third lens group comprises lens elements L3, L4, L5, L6, and L7. The lens element L6 is a movable sub-lens group of the third lens group G3.
OP represents an object prism or mirror which may be arranged on the object side of the first lens group to bend the optical axis of the first lens group towards the object. The object prism may be a right angle prism or any angle prism. IS represents an image sensor and CG represents a cover glass such as an IR cut filter.
FIG 1-2 shows a cross-sectional illustration of a zoom lens system in accordance with the first embodiment of the present disclosure at the tele end. The entire second lens group G2 is moved away from the first and third lens groups G1, G3 along a direction parallel to the optical axes of the first and third lens groups G1, G3 to the tele end position. The zoom lens is focused by moving the movable sub-lens group L6 within the lens group G3.
By moving the second lens group in this way, the amount of movement of the lens group for zooming can be reduced by half to configure a compact zoom lens module.
Table 1-1 shows the radius of curvature (R) and the thickness or separation (D) for each of the optical surfaces, and the refractive index (nd) , and the Abbe number (vd) at wave length 587.65 nm for each of the lens elements of the zoom lens system of the first embodiment. *indicates that the surface is aspheric.
Table 1-1
Figure PCTCN2021097795-appb-000001
Table 1-2 shows the thickness or separation (D) for D1 to D4 in Table 1-1 at the wide end and the tele end positions.
Table 1-2
D Wide Tele
D1 0.000 6.697
D2 0.000 6.697
D3 4.558 0.897
D4 1.210 4.871
Table 1-3 shows the aspheric coefficients for each of the optical surfaces of the zoom lens, wherein the equation of the aspheric surface profiles is expressed as follows:
Figure PCTCN2021097795-appb-000002
wherein:
X: the height of a point on the aspheric surface at a distance Y from the optical axis relative to the tangential plane at the aspheric surface vertex;
Y: the distance from a point on the curve of the aspheric surface to the optical axis;
k: the conic coefficient;
Ai: the aspheric coefficient of order i.
Table 1-3
Figure PCTCN2021097795-appb-000003
Table 1-4 shows the optical parameters of the zoom lens in accordance with the first embodiment of the present disclosure. The f, F, and FOV represents the focal length, F number and the field of view of the zoom lens respectively.
Table 1-4
Parameter Wide Tele
f 16.645 36.987
F 2.449 5.439
FOV 28.654 12.724
entrance pupil position 13.800 25.021
exit pupil positi0n -16.341 -50.101
Second Embodiment
FIG 2-1 shows a cross-sectional illustration of a zoom lens system in accordance with a second embodiment of the present disclosure at the wide end.
The zoom lens system comprises three lens groups G1, G2, and G3 from the object side along the optical axis. The first lens group G1 comprises lens elements L1 and L2. The second lens group G2 comprises a first reflective optical element P1, a second lens element L3, a third lens element L4, and a second reflective optical element P2. The first reflective optical element P1 is a right angle prism and the second reflective optical element P2 is a mirror. The third lens group comprises lens elements L5, L6, L7, L8, and L9. The lens element L8 is a movable sub-lens group of the third lens group G3.
OP represents an object prism or mirror which may be arranged on the object side of the first lens group to bend the optical axis of the first lens group towards the object. The object prism may be a right angle prism or any angle prism. IS represents an image sensor and CG represents a cover glass such as an IR cut filter.
FIG 2-2 shows a cross-sectional illustration of a zoom lens system in accordance with the second embodiment of the present disclosure at the tele end. The entire second lens group G2 is moved away from the first and third lens groups G1, G3 along a direction parallel to the optical axes of the first and third lens groups G1, G3 to the tele end position. The zoom lens is focused by moving the movable sub-lens group L8 within the lens group G3. 
By moving the second lens group in this way, the amount of movement of the lens group for zooming can be reduced by half to configure a compact zoom lens module.
Table 2-1 shows the radius of curvature (R) and the thickness or separation (D) for each of the optical surfaces, and the refractive index (nd) , and the Abbe number (vd) at wave length 587.65 nm for each of the lens elements of the zoom lens system of the second embodiment. *indicates that the surface is aspheric.
Table 2-1
Figure PCTCN2021097795-appb-000004
Table 2-2 shows the thickness or separation (D) for D1 to D4 in Table 2-1 at the wide end and the tele end positions.
Table 2-2
D Wide Tele
D1 0.000 7.357
D2 0.000 7.357
D3 4.531 0.798
D4 1.169 4.902
Table 2-3 shows the aspheric coefficients for each of the optical surfaces of the zoom lens.
Table 2-3
Figure PCTCN2021097795-appb-000005
Table 2-4 shows the optical parameters of the zoom lens in accordance with the second embodiment of the present disclosure. The f, F, and FOV represents the focal length, F number and the field of view of the zoom lens respectively.
Table 2-4
Parameter Wide Tele
f 16.634 37.013
F 2.451 5.453
FOV 28.858 12.697
entrance pupil position 14.960 27.640
exit pupil position -16.895 -35.938
Third Embodiment
FIG 3-1 shows a cross-sectional illustration of a zoom lens system in accordance with a third embodiment of the present disclosure at the wide end.
The zoom lens system comprises three lens groups G1, G2, and G3 from the object side along the optical axis. The first lens group G1 comprises lens elements L1 and L2. The second lens group G2 comprises a first reflective optical element P1, a third lens element L3, and a second reflective optical element P2. The first reflective optical element P 1 has a spherical surface on the incident side. The second reflective optical element P2 is a right angle prism. The third lens group comprises lens elements L4, L5, L6, L7 and L8. The lens element L7 is a movable sub-lens group of the third lens group G3.
OP represents an object prism or mirror which may be arranged on the object side of the first lens group to bend the optical axis of the first lens group towards the object. The object prism may be a right angle prism or any angle prism. IS represents an image sensor and CG represents a cover glass such as an IR cut filter.
FIG 3-2 shows a cross-sectional illustration of a zoom lens system in accordance with the third embodiment of the present disclosure at the tele end. The entire second lens group G2 is moved away from the first and third lens groups G1, G3 along a direction parallel to the optical axes of the first and third lens groups G1, G3 to the tele end position. The zoom lens is focused by moving the movable sub-lens group L7 within the lens group G3.
By moving the second lens group in this way, the amount of movement of the lens group for zooming can be reduced by half to configure a compact zoom lens module.
Table 3-1 shows the radius of curvature (R) and the thickness or separation (D) for each of the optical surfaces, and the refractive index (nd) , and the Abbe number (vd) at wave length 587.65 nm for each of the lens elements of the zoom lens system of the third embodiment. *indicates that the surface is aspheric.
Table 3-1
Figure PCTCN2021097795-appb-000006
Table 3-2 shows the thickness or separation (D) for D1 to D4 in Table 3-1 at the wide end and the tele end positions.
Table 3-2
D Wide Tele
D1 0.000 6.263
D2 0.000 6.263
D3 4.629 0.626
D4 0.995 4.998
Table 3-3 shows the aspheric coefficients for each of the optical surfaces of the zoom lens.
Table 3-3
Figure PCTCN2021097795-appb-000007
Table 3-4 shows the optical parameters of the zoom lens in accordance with the third embodiment of the present disclosure. The f, F, and FOV represents the focal length, F number and the field of view of the zoom lens respectively.
Table 3-4
Parameter Wide Tele
f 16.645 37.013
F 2.450 5.447
FOV 28.885 12.701
entrance pupil position 12.440 23.699
exit pupil position -11.181 -20.813
Fourth Embodiment
FIG 4-1 shows a cross-sectional illustration of a zoom lens system in accordance with a fourth embodiment of the present disclosure at the wide end.
The zoom lens system comprises three lens groups G1, G2, and G3 from the object side along the optical axis. The first lens group G1 comprises lens elements L1 and L2. The second lens group G2 comprises a first reflective optical element P1, a third lens element L3, a fourth lens element L4, and a second reflective optical element P2. The first and second reflective optical elements P1 and P2 are right angle prisms. The third lens group comprises lens elements L5, L6, L7, and L8. The lens element L7 is a movable sub-lens group of the third lens group G3.
OP represents an object prism or mirror which may be arranged on the object side of the first lens group to bend the optical axis of the first lens group towards the object. The object prism may be a right angle prism or any angle prism. IS represents an image sensor and CG represents a cover glass such as an IR cut filter.
FIG 4-2 shows a cross-sectional illustration of a zoom lens system in accordance with the fourth embodiment of the present disclosure at the tele end. The entire second lens group G2 is moved away from the first and third lens groups G1, G3 along a direction parallel to the optical axes of the first and third lens groups G1, G3 to the tele end position. The zoom lens is focused by moving the movable sub-lens group L7 within the lens group G3.
By moving the second lens group in this way, the amount of movement of the lens group for zooming can be reduced by half to configure a compact zoom lens module.
Table 4-1 shows the radius of curvature (R) and the thickness or separation (D) for each of the optical surfaces, and the refractive index (nd) , and the Abbe number (vd) at wave length 587.65 nm for each of the lens elements of the zoom lens system of the fourth embodiment. *indicates that the surface is aspheric.
Table 4-1
Figure PCTCN2021097795-appb-000008
Table 4-2 shows the thickness or separation (D) for D1 to D4 in Table 4-1 at the wide end and the tele end positions.
Table 4-2
D Wide Tele
D1 0.000 6.618
D2 0.000 6.618
D3 5.017 0.500
D4 1.005 5.522
Table 4-3 shows the aspheric coefficients for each of the optical surfaces of the zoom lens.
Table 4-3
Figure PCTCN2021097795-appb-000009
Table 4-4 shows the optical parameters of the zoom lens in accordance with the fourth embodiment of the present disclosure. The f, F, and FOV represents the focal length, F number and the field of view of the zoom lens respectively.
Table 4-4
Parameter Wide Tele
f 16.659 37.028
F 2.352 5.216
FOV 28.874 13.008
entrance pupil position 14.455 29.733
exit pupil position -10.450 -21.641
Fifth Embodiment
FIG 5-1 shows a cross-sectional illustration of a zoom lens system in accordance with a fifth embodiment of the present disclosure at the wide end.
The zoom lens system comprises three lens groups G1, G2, and G3 from the object side along the optical axis. The first lens group G1 comprises lens elements L1 and L2. The second lens group G2 comprises a first reflective optical element P1, a third lens element L3, a fourth lens element L4, and a second reflective optical element P2. The first and second reflective optical elements P1 and P2 are right angle prisms. The third lens group G3 comprises lens elements L5, L6, L7, L8, and L9. The lens element L8 is a movable sub-lens group of the third lens group G3.
OP represents an object prism or mirror which may be arranged on the object side of the first lens group to bend the optical axis of the first lens group towards the object. The object prism may be a right angle prism or any angle prism. IS represents an image sensor and CG represents a cover glass such as an IR cut filter.
FIG 5-2 shows a cross-sectional illustration of a zoom lens system in accordance with the fifth embodiment of the present disclosure at the tele end. The entire second lens group G2 is moved away from the first and third lens groups G1, G3 along a direction parallel  to the optical axes of the first and third lens groups G1, G3 to the tele end position. The zoom lens is focused by moving the movable sub-lens group L7 within the lens group G3.
By moving the second lens group in this way, the amount of movement of the lens group for zooming can be reduced by half to configure a compact zoom lens module.
Table 5-1 shows the radius of curvature (R) and the thickness or separation (D) for each of the optical surfaces, and the refractive index (nd) , and the Abbe number (vd) at wave length 587.65 nm for each of the lens elements of the zoom lens system of the fifth embodiment. *indicates that the surface is aspheric.
Table 5-1
Figure PCTCN2021097795-appb-000010
Table 5-2 shows the thickness or separation (D) for D1 to D4 in Table 5-1 at the wide end and the tele end photo positions.
Table 5-2
D Wide Tele
D1 O.000 6.467
D2 0.000 6.467
D3 4.609 0.500
D4 0.929 5.039
Table 5-3 shows the aspheric coefficients for each of the optical surfaces of the zoom lens.
Table 5-3
Figure PCTCN2021097795-appb-000011
Table 5-4 shows the optical parameters of the zoom lens in accordance with the fifth embodiment of the present disclosure. The f, F, and FOV represents the focal length, F number and the field of view of the zoom lens respectively.
Table 5-4
Parameter Wide Tele
f 16.665 37.016
F 2.352 5.213
FOV 28.799 12.745
entrance pupil position 14.783 30.102
exit pupil position -10.397 -21.274
Sixth Embodiment
FIG 6-1 shows a cross-sectional illustration of a zoom lens system in accordance with a sixth embodiment of the present disclosure at the wide end.
The zoom lens system comprises three lens groups G1, G2, and G3 from the object side along the optical axis. The first lens group G1 comprises lens elements L1 and L2. The second lens group G2 comprises a first reflective optical element P1 and a second reflective optical element P2. The first reflective optical element P1 has a spherical surface on the incident side. The second reflective optical element P2 has a spherical surface on the incident side. The third lens group comprises lens elements L3, L4, L5, and L6. The lens element L6 is a movable sub-lens group of the third lens group G3.
OP represents an object prism or mirror which may be arranged on the object side of the first lens group to bend the optical axis of the first lens group towards the object. The object prism may be a right angle prism or any angle prism. IS represents an image sensor and CG represents a cover glass such as an IR cut filter.
FIG 6-2 shows a cross-sectional illustration of a zoom lens system in accordance with the sixth embodiment of the present disclosure at the tele end. The entire second lens group G2 is moved away from the first and third lens groups G1, G3 along a direction parallel to the optical axes of the first and third lens groups G1, G3 to the tele end position. The zoom lens is focused by moving the movable sub-lens group L6 within the lens group G3. 
By moving the second lens group in this way, the amount of movement of the lens group for zooming can be reduced by half to configure a compact zoom lens module.
Table 6-1 shows the radius of curvature (R) and the thickness or separation (D) for each of the optical surfaces, and the refractive index (nd) , and the Abbe number (vd) at wave length 587.65 nm for each of the lens elements of the zoom lens system of the sixth embodiment. *indicates that the surface is aspheric.
Table 6-1
Figure PCTCN2021097795-appb-000012
Table 6-2 shows the thickness or separation (D) for D1 to D4 in Table 6-1 at the wide end and the tele end positions.
Table 6-2
D Wide Tele
D1 0.000 7.012
D2 O.000 7.012
D3 4.275 0.540
D4 2.775 6.511
Table 6-3 shows the aspheric coefficients for each of the optical surfaces of the zoom lens.
Table 6-3
Figure PCTCN2021097795-appb-000013
Table 6-4 shows the optical parameters of the zoom lens in accordance with the sixth embodiment of the present disclosure. The f, F, and FOV represents the focal length, F number and the field of view of the zoom lens respectively.
Table 6-4
Parameter Wide Tele
f 16.630 37.005
F 2.449 5.446
FOV 28.720 12.697
entrance pupil position 13.656 26.470
exit pupil position -12.011 -19.658
Seventh Embodiment
FIG 7-1 shows a cross-sectional illustration of a zoom lens system in accordance with a seventh embodiment of the present disclosure at the wide end.
The zoom lens system comprises three lens groups G1, G2, and G3 from the object side along the optical axis. The first lens group G1 comprises lens elements L1 and L2. The second lens group G2 comprises a first reflective optical element P1 and a second reflective optical element P2. The first reflective optical element P1 has a spherical surface on the incident side. The second reflective optical element P2 has a spherical surface on the incident side. The third lens group comprises lens elements L3, L4, L5, L6, and L7. The lens element L5 is a movable sub-lens group of the third lens group G3.
OP represents an object prism or mirror which may be arranged on the object side of the first lens group to bend the optical axis of the first lens group towards the object. The object prism may be a right angle prism or any angle prism. IS represents an image sensor and CG represents a cover glass such as an IR cut filter.
FIG 7-2 shows a cross-sectional illustration of a zoom lens system in accordance with the seventh embodiment of the present disclosure at the tele end. The entire second lens group G2 is moved away from the first and third lens groups G1, G3 along a direction parallel to the optical axes of the first and third lens groups G1, G3 to the tele end position. The zoom lens is focused by moving the movable sub-lens group L5 within the lens group G3.
By moving the second lens group in this way, the amount of movement of the lens group for zooming can be reduced by half to configure a compact zoom lens module.
Table 7-1 shows the radius of curvature (R) and the thickness or separation (D) for each of the optical surfaces, and the refractive index (nd) , and the Abbe number (vd) at wave length 587.65 nm for each of the lens elements of the zoom lens system of the seventh embodiment. *indicates that the surface is aspheric.
Table 7-1
Figure PCTCN2021097795-appb-000014
Table 7-2 shows the thickness or separation (D) for D1 to D4 in Table 6-1 at the wide end and the tele end positions.
Table 7-2
D Wide Tele
D1 0.000 7.062
D2 0.000 7.062
D3 0.247 4.603
D4 4.856 0.500
Table 7-3 shows the aspheric coefficients for each of the optical surfaces of the zoom lens.
Table 7-3
Figure PCTCN2021097795-appb-000015
Table 7-4 shows the optical parameters of the zoom lens in accordance with the seventh embodiment of the present disclosure. The f, F, and FOV represents the focal length, F number and the field of view of the zoom lens respectively.
Table 7-4
Parameter Wide Tele
f 16.649 36.908
F 2.450 5.428
FOV 28.526 12.724
entrance pupil position 13.506 25.966
exit pupil position -11.336 -19.680
Eighth Embodiment
FIG 8-1 shows a cross-sectional illustration of a zoom lens system in accordance with an eighth embodiment of the present disclosure at the wide end.
The zoom lens system comprises three lens groups G1, G2, and G3 from the object side along the optical axis. The first lens group G1 comprises lens elements L1 and L2. The second lens group G2 comprises a first reflective optical element P1, a third lens element L3, a fourth lens element L4, and a second reflective optical element P2. The first and second reflective optical elements P1 and P2 are right angle prisms. The third lens group comprises a third lens element L3, a fourth lens element L4, a fifth lens element L5, a sixth lens element L6, a seventh lens element L7, a eighth lens element L8, and a ninth lens element L9. The eighth lens element L8 is a movable sub-lens group of the third lens group G3.
OP represents an object prism or mirror which may be arranged on the object side of the first lens group to bend the optical axis of the first lens group towards the object. The object prism may be a right angle prism or any angle prism. IS represents an image sensor and CG represents a cover glass such as an IR cut filter.
FIG 8-2 shows a cross-sectional illustration of a zoom lens system in accordance with the eighth embodiment of the present disclosure at the tele end. The entire second lens group G2 is moved away from the first and third lens groups G1, G3 along a direction parallel to the optical axes of the first and third lens groups G1, G3 to the tele end position. The zoom lens is focused by moving the movable sub-lens group L8 within the lens group G3. 
By moving the second lens group in this way, the amount of movement of the lens group for zooming can be reduced by half to configure a compact zoom lens module. )
Table 8-1 shows the radius of curvature (R) and the thickness or separation (D) for each of the optical surfaces, and the refractive index (nd) , and the Abbe number (vd) at wave length 587.65 nm for each of the lens elements of the zoom lens system of the eighth embodiment. *indicates that the surface is aspheric.
Table 8-1
Figure PCTCN2021097795-appb-000016
Table 8-2 shows the thickness or separation (D) for D1 to D4 in Table 6-1 at the wide end and the tele end positions.
Table 8-2
D Wide Tele
D1 0.000 54.947
D2 0.000 54.947
D3 8.546 1.500
D4 2.692 9.738
Table 8-3 shows the aspheric coefficients for each of the optical surfaces of the zoom lens.
Table 8-3
Figure PCTCN2021097795-appb-000017
Table 8-4 shows the optical parameters of the zoom lens in accordance with the eighth embodiment of the present disclosure. The f, F, and FOV represents the focal length, F number and the field of view of the zoom lens respectively.
Table 8-4
Parameter Wide Tele
f 28.140 110.995
F 1.556 3.618
FOV 17.205 4.135
entrance pupil position 45.276 181.411
exit pupil position -29.643 294.783
Ninth Embodiment
FIG 9-1 shows a cross-sectional illustration of a zoom lens system in accordance with a ninth embodiment of the present disclosure at the wide end.
The zoom lens system comprises three lens groups G1, G2, and G3 from the object side a1ong the optical axis. The first lens group G1 comprises lens elements L1 and L2. The second lens group G2 comprises a first reflective optical element P1, a third lens element L3, a fourth lens element L4, and a second reflective optical element P2. The first and second reflective optical elements P1 and P2 are right angle prisms. The third lens group comprises a third lens element L3, a fourth lens element L4, a fifth lens element L5, a sixth lens element L6, a seventh lens element L7, an eighth lens element L8, and a ninth lens element L9. The eighth lens element L8 is a movable sub-lens group of the third lens group G3.
OP represents an object prism or mirror which may be arranged on the object side of the first lens group to bend the optical axis of the first lens group towards the object. The object prism may be a right angle prism or any angle prism. IS represents an image sensor and CG represents a cover glass such as an IR cut filter. 
FIG 9-2 shows a cross-sectional illustration of a zoom lens system in accordance with the ninth embodiment of the present disclosure at the tele end. The entire second lens  group G2 is moved away from the first and third lens groups G1, G3along a direction parallel to the optical axes of the first and third lens groups G1, G3 to the tele end position. The zoom lens is focused by moving the movable sub-lens group L8.
By moving the second lens group in this way, the amount of movement of the lens group for zooming can be reduced by half to configure a compact zoom lens module.
Table 9-1 shows the radius of curvature (R) and the thickness or separation (D) for each of the optical surfaces, and the refractive index (nd) , and the Abbe number (vd) at wave length 587.65 nm for each of the lens elements of the zoom lens system of the ninth embodiment. *indicates that the surface is aspheric.
Table 9-1
Figure PCTCN2021097795-appb-000018
Table 9-2 shows the thickness or separation (D) for D1 to D4 in Table 6-1 at the wide end and the tele end positions.
Table 9-2
D Wide Tele
D1 0.000 11.201
D2 0.000 11.201
D3 5.417 0.501
D4 0.500 5.878
Table 9-3 shows the aspheric coefficients for each of the optical surfaces of the zoom lens.
Table 9-3
Figure PCTCN2021097795-appb-000019
Table 9-4 shows the optical parameters of the zoom lens in accordance with the ninth embodiment of the present disclosure. The f, F, and FOV represents the focal length, F number and the field of view of the zoom lens respectively.
Table 9-4
Parameter Wide Tele
f 12.310 37.019
F 2.462 7.404
FOV 38.337 14.808
entrance pupil position 13.207 39.843
exit pupil position -16.028 -610.446
Tenth Embodiment
FIG 10-1 shows a cross-sectional illustration of a zoom lens system in accordance with a tenth embodiment of the present disclosure at the wide end.
The zoom lens system comprises three lens groups G1, G2, and G3 from the object side along the optical axis. The first lens group G1 comprises lens elements L1 and L2. The second lens group G2 comprises a first reflective optical element P1, a third lens element L3, a fourth lens element L4, and a second reflective optical element P2. The first and second reflective optical elements P1 and P2 are right angle prisms. The third lens group comprises a third lens element L3, a fourth lens element L4, a fifth lens element L5, a sixth lens element L6, a seventh lens element L7, an eighth lens element L8, and a ninth lens element L9. The eighth lens element L8 is a movable sub-lens group of the third lens group G3.
OP represents an object prism or mirror which may be arranged on the object side of the first lens group to bend the optical axis of the first lens group towards the object. The object prism may be a right angle prism or any angle prism. IS represents an image sensor and CG represents a cover glass such as an IR cut filter.
FIG 10-2 shows a cross-sectional illustration of a zoom lens system in accordance with the tenth embodiment of the present disclosure at the tele end. The movable sub-lens group L8 is moved towards the object side within the third lens group G3 to the tele end position. The zoom lens is focused by moving the entire second lens group G2 with respect to the first and third lens groups G1, G3 along a direction parallel to the optical axes of the first and third lens groups G1, G3.
By moving the second lens group in this way, the amount of movement of the lens group for focusing can be reduced by half to configure a compact zoom lens module.
Table 10-1 shows the radius of curvature (R) and the thickness or separation (D) for each of the optical surfaces, and the refractive index (nd) , and the Abbe number (vd) at wave length 587.65 nm for each of the lens elements of the zoom lens system of the tenth embodiment. *indicates that the surface is aspheric.
Table 10-1
Figure PCTCN2021097795-appb-000020
Table 10-2 shows the thickness or separation (D) for D1 to D4 in Table 10-1 at the wide end and the tele end positions.
Table 10-2
D Wide Tele
D1 0.000 5.087
D2 0.000 5.087
D3 5.250 0.501
D4 0.600 5.348
Table 10-3 shows the aspheric coefficients for each of the optical surfaces of the zoom lens.
Table 10-3
Figure PCTCN2021097795-appb-000021
Table 10-4 shows the optical parameters of the zoom lens in accordance with the tenth embodiment of the present disclosure. The f, F, and FOV represents the focal length, F number and the field of view of the zoom lens respectively.
Table 10-4
Parameter Wide Tele
f 16.832 37.014
F 2.362 5.194
FOV 28.446 12.871
entrance pupil position 12.593 23.721
exit pupil position -12.925 -32.664
Eleventh Embodiment
FIG 11-1 shows a cross-sectional illustration of a zoom lens system in accordance with an eleventh embodiment of the present disclosure at the wide end.
The zoom lens system comprises three lens groups G1, G2, and G3 from the object side along the optical axis. The first lens group G1 comprises lens elements L1 and L2. The second lens group G2 comprises a first reflective optical element P1, a third lens element L3, a fourth lens element L4, and a second reflective optical element P2. The first and second reflective optical elements P1 and P2 are right angle prisms. The third lens group comprises a third lens element L3, a fourth lens element L4, a fifth lens element L5, a sixth lens element L6, a seventh lens element L7, an eighth lens element L8, and a ninth lens element L9. The eighth lens element L8 is a movable sub-lens group of the third lens group G3.
OP represents an object prism or mirror which may be arranged on the object side of the first lens group to bend the optical axis of the first lens group towards the object. The object prism may be a right angle prism or any angle prism. IS represents an image sensor and CG represents a cover glass such as an IR cut filter.
FIG 11-2 shows a cross-sectional illustration of a zoom lens system in accordance with the eleventh embodiment of the present disclosure at the tele end. The movable sub-lens group L8 is moved towards the object side within the third lens group G3 to the tele end position. The zoom lens is focused by moving the entire second lens group G2 with respect to the first and third lens groups G1, G3 along a direction parallel to the optical axes of the first and third lens groups G1, G3.
By moving the second lens group in this way, the amount of movement of the lens group for focusing can be reduced by half to configure a compact zoom lens module.
Table 11-1 shows the radius of curvature (R) and the thickness or separation (D) for each of the optical surfaces, and the refractive index (nd) , and the Abbe number (vd) at wave length 587.65 nm for each of the lens elements of the zoom lens system of the eleventh embodiment. *indicates that the surface is aspheric.
Table 11-1
Figure PCTCN2021097795-appb-000022
Table 11-2 shows the thickness or separation (D) for D1 to D4 in Table 11-1 at the wide end and the tele end positions.
Table 11-2
D Wide Tele
D1 0.600 7.610
D2 0.600 7.610
D3 5.270 0.438
D4 0.600 5.432
Table 11-3 shows the aspheric coefficients for each of the optical surfaces of the zoom lens.
Table 11-3
Figure PCTCN2021097795-appb-000023
Table 11-4 shows the optical parameters of the zoom lens in accordance with the eleventh embodiment of the present disclosure. The f, F, and FOV represents the focal length, F number and the field of view of the zoom lens respectively.
Table 11-4
Parameter Wide Tele
f 16.692 37.022
F 2.351 5.214
FOV 28.524 12.809
entrance pupil position 12.704 25.780
exit pupil position -12.346 -26.959
Twelfth Embodiment
FIG 12-1 shows a cross-sectional illustration of a zoom lens system in accordance with a twelfth embodiment of the present disclosure at the wide end.
The zoom lens system comprises three lens groups G1, G2, and G3 from the object side along the optical axis. The first lens group G1 comprises lens elements L1 and L2. The second lens group G2 comprises a first reflective optical element P1, a third lens element L3, a fourth lens element L4, and a second reflective optical element P2. The first and second reflective optical elements P1 and P2 are right angle prisms. The third lens group comprises a third lens element L3, a fourth lens element L4, a fifth lens element L5, a sixth lens element L6, a seventh lens element L7, an eighth lens element L8, and a ninth lens element L9. The eighth lens element L8 is a movable sub-lens group of the third lens group G3.
OP represents an object prism or mirror which may be arranged on the object side of the first lens group to bend the optical axis of the first lens group towards the object. The object prism may be a right angle prism or any angle prism. IS represents an image sensor and CG represents a cover glass such as an IR cut filter.
FIG 12-2 shows a cross-sectional illustration of a zoom lens system in accordance with the twelfth embodiment of the present disclosure at the tele end. The movable sub-lens group L8 is moved towards the object side within the third lens group G3 to the tele end position. The zoom lens is focused by moving the entire second lens group G2 with respect to the first and third lens groups G1, G3 along a direction parallel to the optical axes of the first and third lens groups G1, G3.
By moving the second lens group in this way, the amount of movement of the lens group for focusing can be reduced by half to configure a compact zoom lens module.
Table 12-1 shows the radius of curvature (R) and the thickness or separation (D) for each of the optical surfaces, and the refractive index (nd) , and the Abbe number (vd) at wave length 587.65 nm for each of the lens elements of the zoom lens system of the twelfth embodiment. *indicates that the surface is aspheric.
Table 12-1
Figure PCTCN2021097795-appb-000024
Table 12-2 shows the thickness or separation (D) for D1 to D4 in Table 12-1 at the wide end and the tele end positions.
Table 12-2
D Wide Tele
D1 0.600 5.190
D2 0.600 5.190
D3 3.876 0.435
D4 0.600 4.041
Table 12-3 shows the aspheric coefficients for each of the optical surfaces of the zoom lens.
Table 12-3
Figure PCTCN2021097795-appb-000025
Table 12-4 shows the optical parameters of the zoom lens in accordance with the twelfth embodiment of the present disclosure. The f, F, and FOV represents the focal length, F number and the field of view of the zoom lens respectively.
Table 12-4
Parameter Wide Tele
f 16.669 27.752
F 2.348 3.909
FOV 28.642 17.012
entrance pupil position 12.660 20.019
exit pupil position -11.512 -17.149
Thirteenth Embodiment
FIG 13-1 shows a cross-sectional illustration of a zoom lens system in accordance with a thirteenth embodiment of the present disclosure at the wide end.
The zoom lens system comprises three lens groups G1, G2, and G3 from the object side along the optical axis. The first lens group G1 comprises lens elements L1 and L2. The second lens group G2 comprises a first reflective optical element P1, a third lens element L3, a fourth lens element L4, and a second reflective optical element P2. The first and second reflective optical elements P1 and P2 are right angle prisms. The third lens group comprises a third lens element L3, a fourth lens element L4, a fifth lens element L5, a sixth lens element L6, a seventh lens element L7, an eighth lens element L8, and a ninth lens element L9. The eighth lens element L8 is a movable sub-lens group of the third lens group G3.
OP represents an object prism or mirror which may be arranged on the object side of the first lens group to bend the optical axis of the first lens group towards the object. The object prism may be a right angle prism or any angle prism. IS represents an image sensor and CG represents a cover glass such as an IR cut filter.
FIG 13-2 shows a cross-sectional illustration of a zoom lens system in accordance with the thirteenth embodiment of the present disclosure at the tele end. The movable sub-lens group L8 is moved towards the object side within the third lens group G3 to the tele end position. The zoom lens is focused by moving the entire second lens group G2 with respect to the first and third lens groups G1, G3 along a direction parallel to the optical axes of the first and third lens groups G1, G3.
By moving the second lens group in this way, the amount of movement of the lens group for focusing can be reduced by half to configure a compact zoom lens module.
Table 13-1 shows the radius of curvature (R) and the thickness or separation (D) for each of the optical surfaces, and the refractive index (nd) , and the Abbe number (vd) at wave length 587.65 nm for each of the lens elements of the zoom lens system of the thirteenth embodiment. *indicates that the surface is aspheric.
Table 13-1
Figure PCTCN2021097795-appb-000026
Table 13-2 shows the thickness or separation (D) for D1 to D4 in Table 13-1 at the wide end and the tele end positions.
Table 13-2
D Wide Tele
D1 0.197 4.709
D2 0.197 4.709
D3 3.713 0.500
D4 0.600 3.813
Table 13-3 shows the aspheric coefficients for each of the optical surfaces of the zoom lens.
Table 13-3
Figure PCTCN2021097795-appb-000027
Table 13-4 shows the optical parameters of the zoom lens in accordance with the thirteenth embodiment of the present disclosure. The f, F, and FOV represents the focal length, F number and the field of view of the zoom lens respectively.
Table 13-4
Parameter Wide Tele
f 14.760 28.847
F 2.407 4.704
FOV 28.261 14.292
entrance pupil position 11.310 20.104
exit pupil position -11.278 -22.594
Fourteenth Embodiment
FIG 14-1 shows a cross-sectional illustration of a zoom lens system in accordance with a fourteenth embodiment of the present disclosure at the wide end.
The zoom lens system comprises three lens groups G1, G2, and G3 from the object side along the optical axis. The first lens group G1 comprises lens elements L1 and L2. The second lens group G2 comprises a first reflective optical element P1, a third lens element L3, a fourth lens element L4, and a second reflective optical element P2. The first and second reflective optical elements P1 and P2 are right angle prisms. The third lens group comprises a third lens element L3, a fourth lens element L4, a fifth lens element L5, a sixth lens element L6, a seventh lens element L7, an eighth lens element L8, and a ninth lens element L9. The eighth lens element L8 is a movable sub-lens group of the third lens group G3.
OP represents an object prism or mirror which may be arranged on the object side of the first lens group to bend the optical axis of the first lens group towards the object. The object prism may be a right angle prism or any angle prism. IS represents an image sensor and CG represents a cover glass such as an IR cut filter.
FIG 14-2 shows a cross-sectional illustration of a zoom lens system in accordance with the fourteenth embodiment of the present disclosure at the tele end. The movable sub-lens group L8 is moved towards the object side within the third lens group G3 to the tele end position. The zoom lens is focused by moving the entire second lens group G2 with respect to the first and third lens groups G1, G3 along a direction parallel to the optical axes of the first and third lens groups G1, G3.
By moving the second lens group in this way, the amount of movement of the lens group for focusing can be reduced by half to configure a compact zoom lens module.
Table 14-1 shows the radius of curvature (R) and the thickness or separation (D) for each of the optical surfaces, and the refractive index (nd) , and the Abbe number (vd) at wave length 587.65 nm for each of the lens elements of the zoom lens system of the fourteenth embodiment. *indicates that the surface is aspheric.
Table 14-1
Figure PCTCN2021097795-appb-000028
Table 14-2 shows the thickness or separation (D) for D1 to D4 in Table 14-1 at the wide end and the tele end positions.
Table 14-2
D Wide Tele
D1 0.000 41.402
D2 0.000 41.402
D3 26.862 1.000
D4 1.000 26.862
Table 14-3 shows the aspheric coefficients for each of the optical surfaces of the zoom lens.
Table 14-3
Figure PCTCN2021097795-appb-000029
Table 14-4 shows the optical parameters of the zoom lens in accordance with the fourteenth embodiment of the present disclosure. The f, F, and FOV represents the focal length, F number and the field of view of the zoom lens respectively.
Table 14-4
Parameter Wide Tele
f 59.360 185.042
F 1.915 5.969
FOV 8.169 2.573
entrance pupil position 46.996 119.843
exit pupil position -42.702 -91.975
Fifteenth Embodiment
FIG 15-1 shows a cross-sectional illustration of a zoom lens system in accordance with a fifteenth embodiment of the present disclosure at the wide end.
The zoom lens system comprises three lens groups G1, G2, and G3 from the object side along the optical axis. The first lens group G1 comprises lens elements L1 and L2. The second lens group G2 comprises a first reflective optical element P1, a third lens element L3, a fourth lens element L4, and a second reflective optical element P2. The first and second reflective optical elements P1 and P2 are right angle prisms. The third lens group comprises a third lens element L3, a fourth lens element L4, a fifth lens element L5, a sixth lens element L6, a seventh lens element L7, an eighth lens element L8, and a ninth lens element L9. The eighth lens element L8 is a movable sub-lens group of the third lens group G3.
OP represents an object prism or mirror which may be arranged on the object side of the first lens group to bend the optical axis of the first lens group towards the object. The object prism may be a right angle prism or any angle prism. IS represents an image sensor and CG represents a cover glass such as an IR cut filter.
FIG 15-2 shows a cross-sectional illustration of a zoom lens system in accordance with the fifteenth embodiment of the present disclosure at the tele end. The movable sub-lens group L8 is moved towards the object side within the third lens group G3 to the tele end position. The zoom lens is focused by moving the entire second lens group G2 with respect to the first and third lens groups G1, G3 along a direction parallel to the optical axes of the first and third lens groups G1, G3.
By moving the second lens group in this way, the amount of movement of the lens group for focusing can be reduced by half to configure a compact zoom lens module.
Table 15-1 shows the radius of curvature (R) and the thickness or separation (D) for each of the optical surfaces, and the refractive index (nd) , and the Abbe number (vd) at wave length 587.65 nm for each of the lens elements of the zoom lens system of the fifteenth embodiment. *indicates that the surface is aspheric.
Table 15-1
Figure PCTCN2021097795-appb-000030
Table 15-2 shows the thickness or separation (D) for D1 to D4 in Table 15-1 at the wide end and the tele end positions.
Table 15-2
D Wide Tele
D1 0.000 72.615
D2 0.000 72.615
D3 21.019 1.000
D4 1.000 21.019
Table 15-3 shows the aspheric coefficients for each of the optical surfaces of the zoom lens.
Table 15-3
Figure PCTCN2021097795-appb-000031
Table 15-4 shows the optical parameters of the zoom lens in accordance with the fifteenth embodiment of the present disclosure. The f, F, and FOV represents the focal length, F number and the field of view of the zoom lens respectively.
Table 15-4
Parameter Wide Tele
f 36.943 184.978
F 1.478 7.399
FOV 13.103 2.576
entrance pupil position 42.617 224.452
exit pupil position -71.426 330.005
Sixteenth Embodiment
FIG 16-1 shows a cross-sectional illustration of a zoom lens system in accordance with a sixteenth embodiment of the present disclosure at the wide end.
The zoom lens system comprises three lens groups G1, G2, and G3 from the object side along the optical axis. The first lens group G1 comprises lens elements L1 and L2. The second lens group G2 comprises a first reflective optical element P1, a third lens element L3, a fourth lens element L4, and a second reflective optical element P2. The first reflective optical element P1 comprises a right angle prism. The second reflective optical element P2 is a prism with a reflective surface at a 40 degree angle with respect to the optical axis of the second lens group G2 to bend the optical axis of the second lens group by an 80 degree angle towards the third lens group G3. The third lens group comprises a third lens element L3, a fourth lens element L4, a fifth lens element L5, a sixth lens element L6, a seventh lens element L7, an eighth lens element L8, and a ninth lens element L9. The eighth lens element L8 is a movable sub-lens group of the third lens group G3. 
OP represents an object prism or mirror which may be arranged on the object side of the first lens group to bend the optical axis of the first lens group towards the object. The object prism may be a right angle prism or any angle prism. IS represents an image sensor and CG represents a cover glass such as an IR cut filter.
FIG 16-2 shows a cross-sectional illustration of a zoom lens system in accordance with the sixteenth embodiment of the present disclosure at the tele end. The movable sub-lens group L8 is moved towards the object side within the third lens group G3 to the tele end position. The zoom lens is focused by moving the entire second lens group G2  with respect to the first and third lens groups G1, G3 along a direction parallel to the optical axis of the first lens group G1.
By moving the second lens group in this way, the amount of movement of the lens group for focusing can be reduced by half to configure a compact zoom lens module.
Table 16-1 shows the radius of curvature (R) and the thickness or separation (D) for each of the optical surfaces, and the refractive index (nd) , and the Abbe number (vd) at wave length 587.65 nm for each of the lens elements of the zoom lens system of the sixteenth embodiment. *indicates that the surface is an aspheric surface. **indicates that the surface is an anamorphic aspheric.
Table 16-1
Figure PCTCN2021097795-appb-000032
Table 16-2 shows the thickness or separation (D) for D1 to D4 in the Table 16-1 at the wide end and the tele end positions.
Table 16-2
D Wide Tele
D1 0.000 5.092
D2 0.000 5.092
D3 5.169 0.500
D4 0.600 5.269
Table 16-3a shows the aspheric coefficients for each of the optical surfaces of the zoom lens.
Table 16-3a
Figure PCTCN2021097795-appb-000033
Table 16-3b shows the anamorphic aspheric coefficients for each of the optical surfaces of the zoom lens, wherein the equation of the anamorphic aspheric surface profiles is expressed as follows:
Figure PCTCN2021097795-appb-000034
wherein:
z: amount of sag on the surface parallel to the z-axis
XR: radius of x;
YR: radius of y;
Xk: the conic coefficient of x;
Yk: the conic coefficient of y;
R4, R6, R8, R10: rotational symmetry of 4th, 6th, 8th, and 10th order deformations from Conic;
P4, P6, P8, P10: non-rotational symmetry of 4th, 6th, 8th, and 10th order deformations from Conic.
Table 16-3b
Figure PCTCN2021097795-appb-000035
Table 16-4 shows the optical parameters of the zoom lens in accordance with the sixteenth embodiment of the present disclosure. The f, F, and FOV represents the focal length, F number and the field of view of the zoom lens respectively. The f, F, and FOV represents the focal length, F number and the field of view of the zoom lens respectively.
Table 16-4
Parameter Wide Tele
f 16.647 37.009
F 2.360 5.225
FOV 28.712 12.899
entrance pupil position 12.539 23.730
exit pupil position -14.652 -45.686
As shown in the optical data of the first to the sixteenth embodiments, the zoom lens systems according to the present disclosure comprise lens groups, i.e., in order from the object side along the optical axis, a first lens group G1 having a positive refractive power, a second lens group G2 comprising at least a first reflective optical element P1 and a second reflective optical element P2, and, a third lens group G3 comprising a movable sub-lens group. In this zoom lens, zooming is performed by either one of the movement of the second lens group G2 and the movement of the movable sub-lens group within the third lens group G3, and focusing is performed by the other movement.
The first and second reflective optical elements may be selected from a group of a bending prism, a mirror, a spherical mirror, an aspherical mirror, a free curved mirror, or any reflective means. An incident surface, a reflecting surface, and/or an injection surface of the first and second reflective optical elements may be a flat surface, a spherical surface, an aspherical surface, or a free curved surface.
In the present specifications, when a reflective optical element is a right angle prism, the terms “incident surface” and “injection surface” of the reflective optical element refers to the incident surface and the injection surface of the right angle prism. When a reflective optical element has a spherical surface (s) on the incident side and/or the injection side, the terms “incident surface” and “injection surface” of the reflective optical element refers to the incident surface and the injection surface of an imaginary right angle prism which the reflective optical element include as a section. For example, see the first and second reflective optical elements in Fig. 1-1. When a reflective optical element is a mirror, the terms “incident surface” and “injection surface” of the reflective optical element refers to the incident surface and the injection surface of an imaginary right angle prism which is imaginary formed from the reflection surface of the mirror. For example, see the second reflective optical element in Fig. 2-1.
When a reflective optical element has a spherical surface (s) on the incident side and/or the injection side, the reflective optical element may be integrally formed by molding or by any means, or may be a compound element from a right angle prism section and a spherical section (s) . Even when a reflective optical element with spherical surface (s) is a compound element, the terms “incident surface” and “injection surface” of the reflective optical element refers to the incident surface and the injection surface of an imaginary right angle prism.
The size of the zoom lens module as a whole is reduced by the configuration where the second lens group G2 having a refractive power reflects and comprising a first reflective optical element P1 and a second reflective optical element P2, in which the first reflective optical element P1 bends the optical axis of the first lens group G1 towards the second reflective optical element P2, and the second reflective optical element P2 bends the optical axis of the second kens group G2 towards the third lens group G3. Further, by moving the entire second lens group G2 having a refractive power with respect to the first and third lens groups G1, G3, the amount of movement during zooming or focusing can be reduced by half as compared with the prior art while there is no change in length of each lens group G1, G2, and G3 during zooming and focusing. Therefore, the actuator motor in the camera module can be miniaturized and the power consumption can be reduced, and the entire camera module can be miniaturized. Therefore, the zoom lens in the present invention can be in a size that can be mounted on a mobile device. Further, by comprising the first lens group G1, the second lens group G2, and the third lens group G3 from the object side to the image side, it is possible to cancel the aberration generated in each group and secure good optical performance.
In the first to the ninth embodiments, zooming is performed by the movement of the second lens group G2 and focusing is performed by the movement of the movable sub-lens group within the third lens group G3. Therefore, the amount of the movement for zooming can be reduced by half. Further, by using the movable sub-lens group for focusing, it is not necessary to change the total length of the zoom lens when the object distance changes, and the total length of the module can be reduced.
The above-mentioned advantages are accomplished when it satisfies the following relations:
(i-1) 0.4 < LG1t/ft < 2.0; preferably
(i-2) 0.4 < LG1t/ft < 1.5; and more preferably
(i-3) 0.4 < LG1t/ft < 1.0;
where LG1t is a distance on the optical axis from the most object-side surface of the first lens group to the injection surface of the first reflective optical element of the second lens group at the tele end, and ft is the focal length of the zoom lens at the tele end.
(ii-1) 0.5 < LG3t/ft < 2.0; preferably
(ii-2) 0.5 < LG3t/ft < 1.5; and more preferably
(ii-3) 0.5 < LG3t/ft < 1.0;
where LG3t is a distance on the optical axis from the incident surface of the second reflective optical element of the second lens group to the imaging surface at the tele end.
(iii) 0.0 < |fG1/fG2| < 1.0;
where fG1 is a focal length of first lens group, and fG2 is a focal length of second lens group
(iv) 1 < fG1/sqrt (fw*ft) < 2;
where fw is a focal length of the zoom lens at the wide end, and ft is a focal length of the zoom lens at the tele end.
(v) 0.2 < |fG3m/sqrt (fw*ft) | < 0.6;
where fG3m is a focal length of the movable sub-lens group of the third lens group.
(vi) 0.7 < | (1-βG3mw) ^2 * (βG3nw) ^2| < 2;
where βG3mw is a horizontal magnification of the movable sub-lens group in the third lens group at the wide end, and βG3nw is a horizontal magnification of the entire lens group located on the image side of the movable sub-lens group at the wide end or equals to 1 when there is no lens on the image side of the movable sub-lens group.
(vii) 0.8 < | (1-βG3mt) ^2 * (βG3nt) ^2| < 3.5;
where βG3mt is a horizontal magnification of the movable sub-lens group in the third lens group at the tele end, and βG3nt is a horizontal magnification of the entire lens group located on the image side of the movable sub-lens group at the tele end or equals to 1 when there is no lens on the image side of the movable sub-lens group.
Regarding Conditions (i-1) , (i-2) , and (i-3) , when the upper limit is exceeded, the distance on the optical axis from the most object-side surface of the first lens group to the injection surface of the first reflective optical element at the tele end becomes too long, and the size of the zoom lens becomes large. When it is below the lower limit, the zoom lens can be miniaturized, but the refractive power of each lens group needs to be increased, and the optical performance deteriorates. By satisfying the range of conditions, it is possible to reduce the overall length and ensure good optical performance.
For Conditions (ii-1) , (ii-2) , and (ii-3) , when the upper limit is exceeded, the total length becomes too long and the size of the zoom lens becomes large. If it is below the lower limit, it is possible to reduce the size of the zoom lens, but it is necessary to increase the refractive power of each lens group, and the optical performance deteriorates. By satisfying the range of conditions, it is possible to reduce the overall length and ensure good optical performance.
For Condition (iii) , when the upper limit is exceeded, the amount of movement of the second lens group becomes large, and the distance on the optical axis from the most object-side surface of the first lens group to the injection surface of the first reflective optical element and the distance on the optical axis from the incident surface of the second reflective optical element to the imaging surface become too long. By satisfying the range of the conditional expression, it is possible to reduce the overall length and ensure good optical performance.
Regarding Condition (iv) relating to the focal length of the first lens group, when the upper limit is exceeded, the focal length of the first lens group becomes large, so that the distance on the optical axis from the most object-side surface of the first lens group to the injection surface of the first reflective optical element becomes large. When it is below the lower limit, since the focal length of the first lens group becomes smaller, the distance on the optical axis from the most object-side surface of the first lens group to the injection surface of the first reflective optical element is reduced. However, since the focal length of the first  lens group is small, the spherical aberration and the chromatic aberration is increased, and the optical performance is deteriorated. By satisfying the range of the condition, it is possible to reduce the overall length and ensure good optical performance.
Regarding Condition (v) relating to the focal length of the movable sub-lens group of the third lens group G3, when the upper limit is exceeded, the focal length of the movable sub-lens group becomes large, so that the amount of movement of the movable sub-lens group for focusing increases. As a result, the distance on the optical axis from the incident surface of the second reflective optical element to the imaging surface becomes large. When it is below the lower limit, the focal length of the movable sub-lens group of the third lens group G3 becomes small, so that the amount of movement of the movable sub-lens group decreases. As a result, it is possible to reduce the distance on the optical axis from the incident surface of the second reflective optical element P2 to the imaging surface, but various aberrations are deteriorated, so that the optical performance is deteriorated. By satisfying the range of the conditional expression, it is possible to reduce the overall length and ensure good optical performance.
Regarding Condition (vi) relating to the vertical magnification of the movable sub-lens group in the third lens group at the wide end, when the upper limit is exceeded, the focusing performed by moving the movable sub-lens group becomes too sensitive, and it becomes difficult to adjust and control the focusing. When it is below than the lower limit, the adjustment control of focusing performed by moving the movable sub-lens group becomes slow and easy, but the amount of movement of the movable sub-lens group for focusing becomes large and the distance on the optical axis from the incident surface of the second reflective optical element to the imaging surface becomes large. By satisfying the range of the condition, it is possible to reduce the overall length and perform reliable focus adjustment control.
Regarding Condition (vii) relating to the vertical magnification of the movable lens group in the third lens group, when the upper limit is exceeded, the focusing performed by moving the movable sub-lens group becomes too sensitive, and the adjustment control of the focusing becomes difficult. When it is below the lower limit, the adjustment control of focusing performed by moving the movable sub-lens group becomes slow and easy but the amount of movement of the movable lens for focusing is increased. Therefore, the distance on the optical axis from the incident surface of the second reflective optical element to the  imaging surface becomes large, and the size of the zoom lens becomes large. By satisfying the range of the condition, it is possible to reduce the overall length and perform reliable focus adjustment control.
Table 17 shows the values of the parameters used in the above-mentioned conditions from the first to ninth embodiments.
Table 17
paramerter E1 E2 E3 E4 E5 E6 E7 E8 E9
fw 16.65 16.63 16.64 16.66 16.66 16.63 16.65 28.14 12.31
ft 36.99 37.01 37.01 37.03 37.02 37.01 36.91 111.00 37.02
fG1 44.94 46.93 34.30 33.03 32.30 39.13 40.59 161.71 38.14
fG2 64.47 69.98 99.57 -629.68 -525.43 146.74 88.73 -729.43 774.91
LG1t 17.42 17.94 17.15 16.36 16.23 17.78 17.66 81.40 20.84
LG3t 28.60 29.12 27.50 25.94 26.90 28.50 28.50 106.56 32.57
fG3m -6.98 -8.14 -7.53 -9.47 -8.55 -8.66 9.55 -17.53 -10.05
β G3mw 1.48 1.43 1.52 1.39 1.52 1.42 0.17 1.53 1.38
β G3nw 0.93 0.95 0.92 0.94 0.88 1.00 1.31 0.85 0.86
β G3mt 2.01 1.89 2.06 1.87 2.00 1.85 0.62 1.93 1.92
β G3nt 0.93 0.95 0.92 0.94 0.88 1.00 1.30 0.85 0.86
In the tenth to the sixteenth embodiments, zooming is performed by the movement of the movable sub-lens group within the third lens group G3 and focusing is performed by the movement of the second lens group G2. By using the second lens group G2 comprising the first and second reflective optical elements P1, P2 and having a refractive power for focusing, the amount of movement of the second lens group for focusing can be  reduced by half as compared with the conventional technique. Therefore, the actuator motor in the camera module can be miniaturized and the power consumption can be reduced, and the entire camera module can be miniaturized. Further, by using the movable sub-lens group in the third lens group G3 for zooming, it is possible to reduce the amount of movement of the lens group for zooming, so that the zoom lens can be miniaturized. Further, by focusing when the object distance changes by moving the second lens group having power, the amount of movement can be reduced, so that the total length of the zoom lens can be reduced.
The above-mentioned advantages are accomplished when it satisfies the following relations:
(viii-1) 0.1 < LG1t/ft < 2.0; preferably
(viii-2) 0.1 < LG1t/ft < 1.5; and more preferably
(viii-3) 0.1 < LG1t/ft < 1.0;
where LG1t is a distance on the optical axis from the most object-side surface of the first lens group to the injection surface of the first reflective optical element of the second lens group at the tele end, and ft is the focal length of the zoom lens at the tele end.
(ix-1) 0.5 < LG3t/ft < 2.0; preferably
(ix-2) 0.5 < LG3t/ft < 1.5; and more preferably
(ix-3) 0.5 < LG3t/ft < 1.0;
where LG3t is a distance on the optical axis from the incident surface of the second reflective optical element of the second lens group to the imaging surface at the tele end.
(x) 0.0 < |fG1/fG2| < 1.5;
where fG1 is a focal length of first lens group, and fG2 is a focal length of second lens group.
(xi) 1.0 < fG1/sqrt (fw*ft) < 2.5;
where fw is a focal length of the zoom lens at the wide end, and ft is a focal length of the zoom lens at the tele end.
(xii) 0.2 < |fG3m/sqrt (fw*ft) | < 0.6;
where fG3m is a focal length of the movable sub-lens group of the third lens group.
(xiii) 0 < | (1-βG3mw) ^2 * (βG3nw) ^2| < 0.6;
where βG3mw is a horizontal magnification of the movable sub-lens group in the third lens group at the wide end, and βG3nw is a horizontal magnification of the entire lens group located on the image side of the movable sub-lens group at the wide end or equals to 1 when there is no lens on the image side of the movable sub-lens group.
(xiv) 0 < | (1-βG2t) ^2 * (βG3t) ^2| < 1.5
where βG3mt is a horizontal magnification of the movable sub-lens group in the third lens group at the tele end, and βG3nt is a horizontal magnification of the entire lens group located on the image side of the movable sub-lens group at the tele end or equals to 1 when there is no lens on the image side of the movable sub-lens group.
For Conditions (viii-1) , (viii-2) , and (viii-3) , when the upper limit is exceeded, the distance on the optical axis from the most object-side surface of the first lens group to the injection surface of the first reflective optical element at the tele end becomes too long, and the size of the zoom lens becomes large. When it is below the lower limit, the zoom lens can be miniaturized, but the refractive power of each lens group needs to be increased, and the optical performance deteriorates. By satisfying the range of conditions, it is possible to reduce the overall length and ensure good optical performance.
For Conditions (ix-1) , (ix-2) , and (ix-3) , when the upper limit is exceeded, the total length becomes too long and the size of the zoom lens becomes large. If it is below the lower limit, it is possible to reduce the size of the zoom lens, but it is necessary to increase the refractive power of each lens group, and the optical performance deteriorates. By satisfying the range of conditions, it is possible to reduce the overall length and ensure good optical performance.
For Condition (x) , when the upper limit is exceeded, the amount of movement of the second lens group becomes large, and the distance on the optical axis from the most object-side surface of the first lens group to the injection surface of the first reflective optical element and the distance on the optical axis from the incident surface of the second reflective optical element to the imaging surface become too long. By satisfying the range of the  conditional expression, it is possible to reduce the overall length and ensure good optical performance.
Regarding Condition (xi) relating to the focal length of the first lens group, when the upper limit is exceeded, the focal length of the first lens group becomes large, so that the distance on the optical axis from the most object-side surface of the first lens group to the injection surface of the first reflective optical element becomes large. When it is below the lower limit, since the focal length of the first lens group becomes smaller, the distance on the optical axis from the most object-side surface of the first lens group to the injection surface of the first reflective optical element is reduced. However, since the focal length of the first lens group is small, the spherical aberration and the chromatic aberration is increased, and the optical performance is deteriorated. By satisfying the range of the condition, it is possible to reduce the overall length and ensure good optical performance.
Regarding Condition (xii) relating to the focal length of the movable sub-lens group of the third lens group G3, when the upper limit is exceeded, the focal length of the movable sub-lens group becomes large, so that the amount of movement of the movable sub-lens group for focusing increases. As a result, the distance on the optical axis from the incident surface of the second reflective optical element to the imaging surface becomes large. When it is below the lower limit, the focal length of the movable sub-lens group of the third lens group G3 becomes small, so that the amount of movement of the movable sub-lens group decreases. As a result, it is possible to reduce the distance on the optical axis from the incident surface of the second reflective optical element P2 to the imaging surface, but various aberrations are deteriorated, so that the optical performance is deteriorated. By satisfying the range of the conditional expression, it is possible to reduce the overall length and ensure good optical performance.
Regarding Condition (xiii) relating to the vertical magnification of the second lens group G2 having a refractive power, at the wide end, when the upper limit is exceeded, focusing performed by moving a second lens group G2 having a refractive power becomes too sensitive, and adjustment control of focusing becomes difficult. When it is below the lower limit, the adjustment control of focusing performed by moving the second lens group G2 having a refractive power becomes slow and easy, but the amount of movement for focusing becomes large, so is the length of the zoom lens. Therefore, in order to secure the amount of movement, the distance on the optical axis from the incident surface of the second  reflective optical element to the imaging surface becomes large, and the size of the zoom lens becomes large. By satisfying the range of the conditional expression, it is possible to reduce the overall length and perform reliable focus adjustment control.
Regarding Condition (xiv) relating to the vertical magnification of the second lens group G2 having a refractive power, at the tele end. When the upper limit is exceeded, focusing performed by moving the movable sub-lens group of the third lens group G3 becomes too sensitive, and adjustment control of focusing becomes difficult. If it is below the lower limit, the adjustment control of becomes slow and easy, but the amount of movement of the movable sub-lens group for focusing becomes large. Therefore, in order to secure the amount of movement of the sub-lens group, the distance on the optical axis from the incident surface of the second reflective optical element to the imaging surface becomes large, and the size of the zoom lens becomes large, so is the length of the zoom lens. By satisfying the range of the conditional expression, it is possible to reduce the overall length and perform reliable focus adjustment control.
Table 18 shows the values of the parameters used in the above-mentioned conditions from the tenth to sixteenth embodiments.
Table 18
paramerter E10 E11 E12 E13 E14 E15 E16
fw 16.83 16.69 16.67 14.76 59.36 36.94 16.65
ft 37.01 37.02 27.75 28.85 185.04 184.98 37.01
fG1 27.35 40.54 49.31 30.84 172.26 163.89 27.03
fG2 -834.19 65.31 37.86 69.30 1433.40 -244.75 -912.44
LG1t 14.90 17.22 14.80 13.74 74.61 104.51 14.91
LG2t 25.55 27.98 24.36 22.45 116.89 144.56 26.72
fG3m -8.37 -8.89 -10.51 -7.02 -39.67 -37.46 -8.12
β G3mw 1.44 1.42 1.38 1.48 1.24 1.25 1.25
β G3nw 0.88 0.89 0.92 0.88 0.94 0.91 0.91
β G3mt 2.01 1.96 1.71 1.94 1.90 1.79 1.79
β G3nt 0.88 0.89 0.92 0.88 0.94 0.91 0.91
It should also be noted that, in all of the embodiments, the first lens group G1 has a positive refractive power. By setting the first lens group as a group having a positive refractive power, the posterior principal point position of the entire optical system can be arranged on the object side to shorten the total length, and the optical system can be miniaturized.
It should also be noted that, in all of the embodiments, the third lens group G3 includes a fixed sub-lens group on the object side of the movable sub-lens group, which makes it possible enables to ensure a high optical performance.
It should also be noted that, in all of the embodiments, the first lens group G1 and the third lens group G3 respectively includes at least one positive lens and one negative lens, which makes it possible to ensure a high optical performance since the aberrations generated in each group can be canceled.
It should also be noted that, in all of the embodiments, the second lens group G2 includes at least two optical surfaces having refractive powers, which helps to correct the aberrations generated in the second lens group G2.
The first and second reflective optical elements may be selected from a group of a bending prism, a mirror, a spherical mirror, an aspherical mirror, a free curved mirror, or any reflective means. An incident surface, a reflecting surface, and/or an injection surface of the first and second reflective optical elements may be a flat surface, a spherical surface, an aspherical surface, or a free curved surface.
It should also be noted that, in all of the embodiments, an object prism or mirror OP may be arranged on the object side of the first lens group G1 to bend the optical axis of the first lens group G1 towards the object. The object prism OP may be a right angle prism or any angle prism. Such object prism enables the zoom lens module to be arranged perpendicular to the thickness direction of a mobile device.
Further, a camera is provided. The camera in the present disclosure comprises the zoom lens of the present disclosure and an image sensor. The zoom lens is configured to input light, which is used to project an image to the image sensor; and the image sensor is configured to convert the image into digital image data.
FIG. 17 shows a terminal 1000 disclosed in the present disclosure. The terminal 1000 comprises cameras 100 provided in the above implementations and a Graphic Processing Unit (GPU) 200. The camera 100 is configured to convert an image through a zoom lens of the present disclosure to digital image data and input the digital image data into the GPU 200, and the GPU 200 is configured to process the image data received from the camera.
In FIG. 17, the terminal comprises two cameras 100. However, the terminal may comprise a single camera or two or more cameras and it (or they) could be connected to the single GPU 200. One of the cameras 100 can be combined with the zoom lens of the present disclosure, and other of the cameras 100 can be combined with a different type of lens such as a single focus wide-angle lens.
Although the lens system according to the present disclosure can be applied especially to mobile phone cameras, it can be also applied to cameras in any mobile device such as tablet type devices and wearable devices
Although preferred embodiments of the present disclosure have been disclosed for illustrative purposes, those skilled in the art will appreciate that various modifications, additions, and substitutions are possible, without departing from the scope and spirit of the disclosure as disclosed in the accompanying claims.

Claims (38)

  1. A zoom lens comprising, from an object side to an image side along the optical axis:
    a first lens group;
    a second lens group having a refractive power, including a first reflective optical element and a second reflective optical element; and
    a third lens group including a movable sub-lens group;
    wherein the first, second and third lens groups are arranged such that the first reflective optical element bends the optical path of the first lens group towards the second reflective optical element, and the second reflective optical element bends the optical path of the second lens group towards the third lens group,
    wherein the second lens group is movable with respect to the first and third lens groups, and
    wherein the zoom lens is zoomed by one of the movement of the second lens group and the movement of the movable sub-lens group in the third lens group, and the zoom lens is focused by the other.
  2. The zoom lens as claimed in claim 1, wherein the zoom lens is zoomed by the movement of the second lens group, and the zoom lens is focused by the movement of the movable sub-lens group in the third lens group.
  3. The zoom lens as claimed in claim 2, wherein the following conditions are satisfied:
    (i-1) 0.4 < LG1t/ft < 2.0;
    where LG1t is a distance on the optical axis from the most object-side surface of the first lens group to the injection surface of the first reflective optical element of the second lens group at the tele end, and ft is the focal length of the zoom lens at the tele end.
  4. The zoom lens as claimed in claim 2, wherein the following conditions are satisfied:
    (i-2) 0.4 < LG1t/ft < 1.5;
    where LG1t is a distance on the optical axis from the most object-side surface of the first lens group to the injection surface of the first reflective optical element of the second lens group at the tele end, and ft is the focal length of the zoom lens at the tele end.
  5. The zoom lens as claimed in claim 2, wherein the following conditions are satisfied:
    (i-3) 0.4 < LG1t/ft < 1.0;
    where LG1t is a distance on the optical axis from the most object-side surface of the first lens group to the injection surface of the first reflective optical element of the second lens group at the tele end, and ft is the focal length of the zoom lens at the tele end.
  6. The zoom lens as claimed in any one of claims 2 to 5, wherein the following conditions are satisfied:
    (ii-1) 0.5 < LG3t/ft < 2.0
    where LG3t is a distance on the optical axis from the incident surface of the second reflective optical element of the second lens group to the imaging surface at the tele end, and ft is the focal length of the zoom lens at the tele end.
  7. The zoom lens as claimed in any one of claims 2 to 5, wherein the following conditions are satisfied:
    (ii-2) 0.5 < LG3t/ft < 1.5
    where LG3t is a distance on the optical axis from the incident surface of the second reflective optical element of the second lens group to the imaging surface at the tele end, and ft is the focal length of the zoom lens at the tele end.
  8. The zoom lens as claimed in any one of claims 2 to 5, wherein the following conditions are satisfied:
    (ii-3) 0.5 < LG3t/ft < 1.0
    where LG3t is a distance on the optical axis from the incident surface of the second reflective optical element of the second lens group to the imaging surface at the tele end, and ft is the focal length of the zoom lens at the tele end.
  9. The zoom lens as claimed in any one of claims 2 to 8, wherein the first lens group has a positive refractive power.
  10. The zoom lens as claimed in any one of claims 2 to 9, wherein the third lens group includes a fixed sub-lens group on the object side of the movable sub-lens group.
  11. The zoom lens as claimed in any one of claims 2 to 10, wherein the following conditions are satisfied:
    (iii) 0.0 < |fG1/fG2| < 1.0
    where fG1 is a focal length of the first lens group, and fG2 is a focal length of the second lens group.
  12. The zoom lens as claimed in any one of claims 2 to 11, wherein the following conditions are satisfied:
    (iv) 1 < fG1/sqrt (fw*ft) < 2
    where fG1 is a focal length of first lens group, fw is a focal length of the zoom lens at the wide end, and ft is a focal length of the zoom lens at the tele end.
  13. The zoom lens as claimed in any one of claims 2 to 12, wherein the following conditions are satisfied:
    (v) 0.2 < |fG3m/sqrt (fw*ft) | < 0.6
    where fG3m is a focal length of the movable sub-lens group of the third lens group, fw is a focal length of the zoom lens at the wide end, ft is a focal length of the zoom lens at the tele end
  14. The zoom lens as claimed in any one of claims 2 to 13, wherein the following conditions are satisfied:
    (vi) 0.7 < | (1-βG3mw) ^2 * (βG3nw) ^2| < 2
    where βG3mw is a horizontal magnification of the movable sub-lens group in the third lens group at the wide end, and βG3nw is a horizontal magnification of the entire lens group located on the image side of the movable sub-lens group at the wide end or equals to 1 when there is no lens on the image side of the movable sub-lens group.
  15. The zoom lens as claimed in any one of claims 2 to 14, wherein the following conditions are satisfied:
    (vii) 0.8 < | (1-βG3mt) ^2 * (βG3nt) ^2| < 3.5
    where βG3mt is a horizontal magnification of the movable sub-lens group in the third lens group at the tele end, and βG3nt is a horizontal magnification of the entire lens group located on the image side of the movable sub-lens group at the tele end or equals to 1 when there is no lens on the image side of the movable sub-lens group.
  16. The zoom lens as claimed in any one of claims 2 to 15, wherein the first lens group and the third lens group respectively includes at least one positive lens and one negative lens.
  17. The zoom lens as claimed in any one of claims 2 to 16, wherein the second lens group includes at least two optical surfaces having refractive powers.
  18. The zoom lens as claimed in any one of claims 2 to 17, wherein the first and second reflective optical elements are selected from a group of a bending prism, a mirror, a spherical mirror, an aspherical mirror, and a free curved mirror, and an incident surface, a reflecting surface, and/or an injection surface of the first and second reflective optical elements are a flat surface, a spherical surface, an aspherical surface, or a free curved surface.
  19. The zoom lens as claimed in claim 1, wherein the zoom lens is zoomed by the movement of the movable sub-lens group in the third lens group, and the zoom lens is focused by the movement of the second lens group.
  20. The zoom lens as claimed in claim 19, wherein the following conditions are satisfied:
    (viii-1) 0.1 < LG1t/ft < 2.0;
    where LG1t is a distance on the optical axis from the most-object side surface of the first lens group to the injection surface of the first reflective optical element of the second lens group at the tele end, and ft is the focal length of the zoom lens at the tele end.
  21. The zoom lens as claimed in claim 19, wherein the following conditions are satisfied:
    (viii-2) 0.1 < LG1t/ft < 1.5;
    where LG1t is a distance on the optical axis from the most object-side surface of the first lens group to the injection surface of the first reflective optical element of the second lens group at the tele end, and ft is the focal length of the zoom lens at the tele end.
  22. The zoom lens as claimed in claim 19, wherein the following conditions are satisfied:
    (viii-3) 0.1 < LG1t/ft < 1.0;
    where LG1t is a distance on the optical axis from the most object-side surface of the first lens group to the injection surface of the first reflective optical element of the second lens group at the tele end, and ft is the focal length of the zoom lens at the tele end.
  23. The zoom lens as claimed in any one of claims 19 to 22, wherein the following conditions are satisfied:
    (ix-1) 0.5 < LG3t/ft < 2.0
    where LG3t is a distance on the optical axis from the incident surface of the second reflective optical element of the second lens group to the imaging surface at the tele end, and ft is the focal length of the zoom lens at the tele end.
  24. The zoom lens as claimed in any one of claims 19 to 22, wherein the following conditions are satisfied:
    (ix-2) 0.5 < LG3t/ft < 1.5
    where LG3t is a distance on the optical axis from the incident surface of the second reflective optical element of the second lens group to the imaging surface at the tele end, and ft is the focal length of the zoom lens at the tele end.
  25. The zoom lens as claimed in any one of claims 19 to 22, wherein the following conditions are satisfied:
    (ix-3) 0.5 < LG3t/ft < 1.0
    where LG3t is a distance on the optical axis from the incident surface of the second reflective optical element of the second lens group to the imaging surface at the tele end, and ft is the focal length of the zoom lens at the tele end.
  26. The zoom lens as claimed in one of claims 19 to 25, wherein the first lens group has a positive refractive power.
  27. The zoom lens as claimed in any one of claims 19 to 26, wherein the third lens group includes a fixed sub-lens group on the object side of the movable sub-lens group.
  28. The zoom lens as claimed in any one of claims 19 to 27, wherein the following conditions are satisfied:
    (x) 0.0 < |fG1/fG2| < 1.5
    where fG1 is a focal length of first lens group, and fG2 is a focal length of second lens group.
  29. The zoom lens as claimed in any one of claims 19 to 28, wherein the following conditions are satisfied:
    (xi) 1.0 < fG1/sqrt (fw*ft) < 2.5
    where fG1 is a focal length of first lens group, fw is a focal length of the zoom lens at the wide end, and ft is a focal length of the zoom lens at the tele end.
  30. The zoom lens as claimed in any one of claims 19 to 29, wherein the following conditions are satisfied:
    (xii) 0.2 < |fG3m/sqrt (fw*ft) | < 0.6
    where fG3m is a focal length of the movable sub-lens group of the third lens group, fw is a focal length of the zoom lens at the wide end, ft is a focal length of the zoom lens at the tele end
  31. The zoom lens as claimed in any one of claims 19 to 30, wherein the following conditions are satisfied:
    (xiii) 0 < | (1-βG3mw) ^2 * (βG3nw) ^2| < 0.6
    where βG3mw is a horizontal magnification of the movable sub-lens group in the third lens group at the wide end, and βG3nw is a horizontal magnification of the entire lens group located on the image side of the movable sub-lens group at the wide end or equals to 1 when there is no lens on the image side of the movable sub-lens group.
  32. The zoom lens as claimed in any one of claims 19 to 31, wherein the following conditions are satisfied:
    (xiv) 0 < | (1-βG2t) ^2 * (βG3t) ^2| < 1.5
    where βG2t is a horizontal magnification of the second lens group at the tele end, and βG3t is a horizontal magnification of the entire lens group located on the image side of the movable sub-lens group at the tele end or equals to 1 when there is no lens on the image side of the movable sub-lens group.
  33. The zoom lens as claimed in any one of claims 19 to 32, wherein the first lens group and the third lens group respectively includes at least one positive lens and one negative lens.
  34. The zoom lens as claimed in any one of claims 19 to 33, wherein the second lens group includes at least two optical surfaces having refractive powers.
  35. The zoom lens as claimed in any one of claims 19 to 34, wherein the first and second reflective optical elements are selected from a group of a bending prism, a mirror, a spherical mirror, an aspherical mirror, and a free curved mirror, and an incident surface, a reflecting surface, and/or an injection surface of the first and second reflective optical elements are a flat surface, a spherical surface, an aspherical surface, or a free curved surface.
  36. The zoom lens as claimed in any one of claims 1 to 34, wherein the zoom lens further comprises a prism or a mirror on the object side of the first lens group to bend the optical axis of the first lens group towards the object.
  37. A camera comprising the zoom lens according to any one of claims 1 to 36, further comprising an image sensor, wherein the zoom lens is configured to project an image onto the image sensor, and the image sensor is configured to convert the image into digital image data.
  38. A terminal comprising the camera according to claim 37 and a Graphics Processing Unit (GPU) , wherein the GPU is connected with the camera to receive and process the digital image.
PCT/CN2021/097795 2021-06-02 2021-06-02 Zoom lens and optical system thereof WO2022252134A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/097795 WO2022252134A1 (en) 2021-06-02 2021-06-02 Zoom lens and optical system thereof
CN202180098884.7A CN117425848A (en) 2021-06-02 2021-06-02 Zoom lens and optical system thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/097795 WO2022252134A1 (en) 2021-06-02 2021-06-02 Zoom lens and optical system thereof

Publications (1)

Publication Number Publication Date
WO2022252134A1 true WO2022252134A1 (en) 2022-12-08

Family

ID=84322647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/097795 WO2022252134A1 (en) 2021-06-02 2021-06-02 Zoom lens and optical system thereof

Country Status (2)

Country Link
CN (1) CN117425848A (en)
WO (1) WO2022252134A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060215277A1 (en) * 2005-03-25 2006-09-28 Fujinon Corporation Zoom lens including four lens groups
CN101000402A (en) * 2006-12-15 2007-07-18 浙江舜宇光学有限公司 Ultraminiature zoom lens
US20080239506A1 (en) * 2007-03-28 2008-10-02 Tetsuya Ori Variable-power optical system and imaging device
CN101876746A (en) * 2009-04-29 2010-11-03 凤凰光学(广东)有限公司 Zoom optical system and lens using same
US20130027785A1 (en) * 2011-07-28 2013-01-31 Samsung Electronics Co., Ltd. Zoom lens and photographing device having the same
US20170139184A1 (en) * 2015-11-13 2017-05-18 Samsung Electronics Co., Ltd. Tele-lens and imaging device
US20190170988A1 (en) * 2015-08-27 2019-06-06 Ricoh Company, Ltd. Projection optical system, projection apparatus, and projection system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060215277A1 (en) * 2005-03-25 2006-09-28 Fujinon Corporation Zoom lens including four lens groups
CN101000402A (en) * 2006-12-15 2007-07-18 浙江舜宇光学有限公司 Ultraminiature zoom lens
US20080239506A1 (en) * 2007-03-28 2008-10-02 Tetsuya Ori Variable-power optical system and imaging device
CN101876746A (en) * 2009-04-29 2010-11-03 凤凰光学(广东)有限公司 Zoom optical system and lens using same
US20130027785A1 (en) * 2011-07-28 2013-01-31 Samsung Electronics Co., Ltd. Zoom lens and photographing device having the same
US20190170988A1 (en) * 2015-08-27 2019-06-06 Ricoh Company, Ltd. Projection optical system, projection apparatus, and projection system
US20170139184A1 (en) * 2015-11-13 2017-05-18 Samsung Electronics Co., Ltd. Tele-lens and imaging device

Also Published As

Publication number Publication date
CN117425848A (en) 2024-01-19

Similar Documents

Publication Publication Date Title
US8184378B2 (en) Compact zoom lens system and image pickup device with the same
KR100927347B1 (en) Zoom lens optical system
KR100935344B1 (en) Imaging lens
US8300119B2 (en) Compact lens optical system and digital camera module including the same
US8824061B2 (en) Zoom lens and imaging apparatus
KR20160000759A (en) Slim telephoto lens system
CN101876747B (en) Zoom lens and imaging optical device including the same
US20060056052A1 (en) Zoom lens and image sensing apparatus
JP2007256564A (en) Zoom lens
KR20060061285A (en) Zoom lens and imaging device
CN111308672A (en) Optical imaging system
JP5529475B2 (en) Zoom lens and imaging device
US7715122B2 (en) Wide-angle zoom optic system
US8218248B2 (en) Zoom lens and imaging optical device including the same
US8089702B2 (en) Zoom lens and image pickup apparatus
EP1666945A1 (en) Zoom lens and imaging device
KR101880633B1 (en) Zoom lens and photographing device having the same
KR20110040246A (en) Compact zoom lens
US20060245075A1 (en) Compact zoom lens
KR100781161B1 (en) High magnification zoom lens
US8199413B2 (en) Compact zoom optical system
WO2022252134A1 (en) Zoom lens and optical system thereof
CN213957728U (en) Optical system, camera module and electronic equipment
KR101416237B1 (en) Zoom lens
US20120293871A1 (en) Zoom lens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21943503

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180098884.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21943503

Country of ref document: EP

Kind code of ref document: A1