WO2022250474A1 - 렌즈 어셈블리 및 이를 포함한 전자 장치 - Google Patents

렌즈 어셈블리 및 이를 포함한 전자 장치 Download PDF

Info

Publication number
WO2022250474A1
WO2022250474A1 PCT/KR2022/007492 KR2022007492W WO2022250474A1 WO 2022250474 A1 WO2022250474 A1 WO 2022250474A1 KR 2022007492 W KR2022007492 W KR 2022007492W WO 2022250474 A1 WO2022250474 A1 WO 2022250474A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
image
lens assembly
electronic device
Prior art date
Application number
PCT/KR2022/007492
Other languages
English (en)
French (fr)
Inventor
곽호근
신정길
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to EP22811665.3A priority Critical patent/EP4318070A1/en
Publication of WO2022250474A1 publication Critical patent/WO2022250474A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/143Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only
    • G02B15/1431Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being positive
    • G02B15/143103Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being positive arranged ++-
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/0065Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having a beam-folding prism or mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/009Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras having zoom function
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/22Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with movable lens means specially adapted for focusing at close distances
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0087Simple or compound lenses with index gradient
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/12Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof

Definitions

  • Various embodiments relate to a lens assembly and an electronic device including the same, for example, to a miniaturized lens assembly and an electronic device including the same.
  • An electronic device eg, a mobile device or a user device
  • An electronic device may provide various services through various sensor modules.
  • An electronic device may provide a multimedia service, for example, a photo service or a video service.
  • a multimedia service for example, a photo service or a video service.
  • a camera of an electronic device may be used to take pictures of various types of landscapes, people, or self-shots.
  • multimedia for example, photos or videos, can be shared on social networking sites or other media.
  • a plurality of optical devices are mounted in an electronic device to improve the quality of a captured image, and also provide various visual effects to the captured image.
  • a photographed image may be obtained by acquiring subject images through a plurality of cameras having different optical characteristics (eg, a telephoto camera and a wide-angle camera) and combining them.
  • Such an optical device may be mounted in an electronic device specialized in a photographing function, such as a digital camera, and may be mounted in a miniaturized electronic device carried by a user, such as a mobile communication terminal.
  • a method of reducing the thickness of a lens assembly by including a reflective member (eg, a prism) in an optical zoom lens and bending an optical axis by about 90 degrees has been applied to a compact digital camera.
  • a reflective member eg, a prism
  • such a zoom lens has limitations in miniaturization, so it is difficult to install it in a small mobile device, and it is difficult to configure the brightness of the telephoto end (small Fno (F number)) brightly.
  • Various embodiments provide an optical lens assembly capable of obtaining a zoom image in a small mobile device without deteriorating image quality, and a method of configuring the small lens assembly that can be mounted while maintaining the design of the small mobile device.
  • Various embodiments may provide a compact lens assembly in, for example, an electronic device (eg, a portable terminal).
  • an electronic device eg, a portable terminal.
  • various embodiments may provide an electronic device including, for example, a small lens assembly.
  • a lens assembly is a lens assembly including a plurality of lenses disposed from an object side to an image side with an image plane, from the object side. a reflective member that bends a first optical axis of incident light into a second optical axis; a first lens group disposed on the second optical axis and having a positive refractive power so that the light bent by the reflective member is incident; a second lens group provided on an image side of the first lens group and having a positive refractive power; and a third lens group provided on the image side of the second lens group and having a negative refractive power, wherein the first and third lens groups move toward the object and perform zooming from the wide-angle end to the telephoto end.
  • the first lens group includes a first lens disposed on the most object side and a second lens disposed on the image side of the first lens, wherein the first lens has an Abbe number greater than 50,
  • the second lens may have an Abbe number of 30 or less
  • an electronic device includes a lens assembly including a plurality of lenses disposed from an object side to an image side with an image plane; at least one camera module for acquiring information about a subject from light incident through the lens assembly; and an image signal processor for processing an image of the subject based on the information.
  • the lens assembly The lens assembly,
  • a reflective member that bends a first optical axis of light incident from the object side into a second optical axis; a first lens group disposed on the second optical axis and having a positive refractive power so that the light bent by the reflective member is incident; a second lens group provided on an image side of the first lens group and having a positive refractive power; and a third lens group provided on an image side of the second lens group and having a negative refractive power;
  • the first lens group and the third lens group move toward the object side to perform zooming from the wide-angle end to the telephoto end, and the first lens group with the first lens group disposed most toward the object side, and the image side of the first lens It may include a second lens disposed on, the first lens may have an Abbe's number greater than 50, and the second lens may have an Abbe's number less than 30.
  • Various embodiments provide a compact lens assembly capable of obtaining intermediate images from a wide-angle end, an intermediate end, and a telephoto end without deterioration in image quality.
  • a lens assembly according to various embodiments is, for example, compact and can perform focusing.
  • a lens assembly according to various embodiments may facilitate aberration correction by appropriately distributing refractive power of a lens.
  • an electronic device including a lens assembly according to various embodiments is, for example, compact and capable of capturing multimedia (eg, pictures or videos) with high performance.
  • lens assemblies according to various embodiments may include a reflective member, and hand shake correction may be performed by the reflective member. In addition to this, various effects identified directly or indirectly through this document may be provided.
  • FIG. 1 illustrates a lens assembly of a first numerical example at a wide-angle end, according to various embodiments.
  • FIG. 2 illustrates a lens assembly of a first numerical example at a telephoto end, according to various embodiments.
  • FIG. 3 illustrates an example of hand shake correction in a lens assembly according to various embodiments.
  • FIG. 4 illustrates another example of hand shake correction in a lens assembly according to various embodiments.
  • FIG. 5 illustrates an image circle of a lens assembly according to various embodiments.
  • FIG. 6 is a view for explaining an effective mirror and a short-side effective mirror of a lens assembly according to various embodiments.
  • FIG. 7 illustrates an aberration diagram at a wide-angle end of a lens assembly according to a first numerical example, according to various embodiments.
  • FIG. 8 illustrates an aberration diagram at a telephoto end of a lens assembly according to a first numerical example, according to various embodiments.
  • FIG 9 illustrates a lens assembly of a second numerical example at a wide-angle end, according to various embodiments.
  • FIG. 10 illustrates a lens assembly of a second numerical example at a telephoto end, according to various embodiments.
  • FIG. 11 illustrates an aberration diagram at a wide-angle end of a lens assembly according to a second numerical example, according to various embodiments.
  • FIG. 12 illustrates an aberration diagram at a telephoto end of a lens assembly according to a second numerical example, according to various embodiments.
  • FIG. 13 illustrates a lens assembly of a third numerical example at a wide-angle end, according to various embodiments.
  • FIG. 14 illustrates a lens assembly of a third numerical example at a telephoto end, according to various embodiments.
  • FIG. 15 illustrates an aberration diagram at a wide-angle end of a lens assembly according to a third numerical example, according to various embodiments.
  • FIG. 16 illustrates an aberration diagram at a telephoto end of a lens assembly according to a third numerical example, according to various embodiments.
  • FIG. 17 illustrates a lens assembly of a fourth numerical example at a wide-angle end, according to various embodiments.
  • FIG. 18 illustrates a lens assembly of a fourth numerical example at a telephoto end, according to various embodiments.
  • FIG. 19 illustrates an aberration diagram at a wide-angle end of a lens assembly according to a fourth numerical example, according to various embodiments.
  • FIG. 20 illustrates an aberration diagram at a telephoto end of a lens assembly according to a fourth numerical example, according to various embodiments.
  • 21 is a front view of a mobile device including a lens assembly according to various embodiments.
  • FIG. 22 illustrates a rear surface of a mobile device including a lens assembly according to various embodiments.
  • 23 is a block diagram of an electronic device in a network environment, according to various embodiments.
  • 24 is a block diagram of a camera module in an electronic device, according to various embodiments.
  • 25 is a high-level flowchart of a method of performing image capturing using a lens assembly in an electronic device according to various embodiments.
  • Electronic devices may be devices of various types.
  • the electronic device may include, for example, a portable communication device (eg, a smart phone), a computer device, a portable multimedia device, a portable medical device, a camera, a wearable device, or a home appliance.
  • a portable communication device eg, a smart phone
  • a computer device e.g., a smart phone
  • a portable multimedia device e.g., a portable medical device
  • a camera e.g., a portable medical device
  • a camera e.g., a portable medical device
  • a camera e.g., a portable medical device
  • a camera e.g., a camera
  • a wearable device e.g., a smart bracelet
  • first, second, or first or secondary may simply be used to distinguish a given component from other corresponding components, and may be used to refer to a given component in another aspect (eg, importance or order) is not limited.
  • a (e.g., first) component is said to be “coupled” or “connected” to another (e.g., second) component, with or without the terms “functionally” or “communicatively.”
  • the certain component may be connected to the other component directly (eg by wire), wirelessly, or through a third component.
  • module used in various embodiments of this document may include a unit implemented in hardware, software, or firmware, and is interchangeable with terms such as, for example, logic, logical blocks, parts, or circuits.
  • a module may be an integrally constructed component or a minimal unit of components or a portion thereof that performs one or more functions.
  • the module may be implemented in the form of an application-specific integrated circuit (ASIC).
  • ASIC application-specific integrated circuit
  • a storage medium eg, an internal memory 436 or an external storage medium
  • a machine eg, the electronic device 401
  • a processor eg, the processor 420
  • a device eg, the electronic device 401
  • the one or more instructions may include code generated by a compiler or code executable by an interpreter.
  • the device-readable storage medium may be provided in the form of a non-transitory storage medium.
  • 'non-temporary' only means that the storage medium is a tangible device and does not contain a signal (e.g. electromagnetic wave), and this term refers to the case where data is stored semi-permanently in the storage medium. It does not discriminate when it is temporarily stored.
  • a signal e.g. electromagnetic wave
  • the method according to various embodiments disclosed in this document may be included and provided in a computer program product.
  • Computer program products may be traded between sellers and buyers as commodities.
  • a computer program product is distributed in the form of a device-readable storage medium (e.g. compact disc read only memory (CD-ROM)), or through an application store (e.g. Play Store TM ) or on two user devices (e.g. It can be distributed (eg downloaded or uploaded) online, directly between smart phones.
  • a device e.g. compact disc read only memory (CD-ROM)
  • an application store e.g. Play Store TM
  • It can be distributed (eg downloaded or uploaded) online, directly between smart phones.
  • at least part of the computer program product may be temporarily stored or temporarily created in a storage medium readable by a device such as a manufacturer's server, an application store server, or a relay server's memory.
  • each component (eg, module or program) of the above-described components may include a single object or a plurality of entities, and some of the plurality of entities may be separately disposed in other components. have.
  • one or more components or operations among the aforementioned corresponding components may be omitted, or one or more other components or operations may be added.
  • a plurality of components eg modules or programs
  • the integrated component may perform one or more functions of each of the plurality of components identically or similarly to those performed by a corresponding component of the plurality of components prior to the integration. .
  • the actions performed by a module, program, or other component are executed sequentially, in parallel, iteratively, or heuristically, or one or more of the actions are executed in a different order, or omitted. or one or more other actions may be added.
  • the term user may refer to a person using an electronic device or a device using an electronic device (eg, an artificial intelligence electronic device).
  • FIG. 1 shows a lens assembly 100-1 of a first numerical example according to various embodiments at the wide-angle end
  • FIG. 2 shows the lens assembly 100-1 at the telephoto end.
  • the lens assembly 100-1 includes a plurality of lenses disposed from an object side (O) to an image side (I) with an image plane.
  • the image side may indicate, for example, a direction in which an image plane (IMG) in which an image is formed is located
  • the object side (object side) side) may indicate a direction in which an object is located
  • the “object side surface” of the lens is, for example, a surface on which light is incident with respect to the optical axis OA2 to the lens surface on the side where the subject is located based on the optical axis OA2.
  • image side surface is a lens surface on the side where the image side (IMG) is located with respect to the optical axis (OA2). have.
  • the upper surface IMG may be, for example, an imaging device surface or an image sensor surface.
  • the image sensor may include, for example, a sensor such as a complementary metal oxide semiconductor (CMOS) or a charge coupled device (CCD).
  • CMOS complementary metal oxide semiconductor
  • CCD charge coupled device
  • the image sensor is not limited thereto, and may be, for example, a device that converts an image of a subject into an electrical image signal.
  • S1, S2, S3 sequentially from the object side (O) to the image side (I) along the optical axes (OA1, OA2) for the object side and image side of the reflective member (RE), each lens, and optical element (OD).
  • OA1, OA2 optical axes
  • ⁇ , and Sn n is a natural number
  • a micro lens layer (not shown) may be further formed on the image sensor.
  • the structure in which the plurality of lenses or filters are formed is not limited to the one described above, and additional lenses or filters may be further formed, and at least one of the plurality of lenses may be omitted.
  • the lens assembly 100-1 includes a reflective member RE that bends a first optical axis OA1 of light incident from the object side O to a second optical axis OA2, and a reflective member RE.
  • a second lens group G21 provided on the lens group G21 having a positive refractive power and a third lens group G31 provided on the image side I of the second lens group G21 and having a negative refractive power include When parallel light is incident on a lens having positive refractive power, the light passing through the lens can be concentrated.
  • a lens having positive refractive power may be a lens based on the principle of a convex lens.
  • a lens having negative refractive power may be a lens based on the principle of a concave lens.
  • the reflective member RE is provided as shown in FIG. 1 , the object side O is based on when the curved optical axes OA1 and OA2 are straightened.
  • the reflective member RE may include, for example, a prism or a reflective mirror.
  • the lens assembly 100-1 does not include any lens on the object side O of the reflective member RE.
  • the reflective member R2 may include an incident surface S1 through which light is incident, a reflective surface S2 through which light is reflected, and an emission surface S3 through which light is emitted.
  • the reflective member RE may include glass or plastic.
  • the first lens group G11 and the third lens group G31 move, Two lens groups G21 may be fixed.
  • the first lens group G11 and the third lens group G31 may perform focusing for image plane matching according to a change in the object distance of the subject.
  • hand shake correction may be performed by moving the at least one lens group L in a substantially vertical direction VD or a substantially horizontal direction TD with respect to the second direction DD2.
  • the at least one lens group L may include a first lens group G11, a second lens group G21, and a third lens group G31.
  • the first direction DD1 may be the direction of the first optical axis OA1 of FIG. 1
  • the second direction DD2 may be the direction of the second optical axis OA2 of FIG. 1 .
  • the reflective member RE is tilted to perform image stabilization in the pitch direction PD, and the first lens group G11, the second lens group G21, and the third lens group ( G31) may move substantially horizontally in the second direction DD2 to perform hand shake correction in the yaw direction YD.
  • the first lens group G11, the second lens group G21, and the third lens group G31 are denoted by L.
  • the first lens group G11 may include a first lens L11 disposed on the most object side O and a second lens L21 disposed on the image side I of the first lens L11. have.
  • the first lens L11 may have positive refractive power and the second lens L21 may have negative refractive power.
  • the first lens L11 may include an object side surface S4 that is convex toward the object side O.
  • the first lens L11 may be a meniscus lens.
  • the second lens L21 may be a meniscus lens convex toward the object side O.
  • the first lens L11 may have an Abbe number greater than 50
  • the second lens L21 may have an Abbe number less than 30.
  • Abbe numbers of the first lens L11 and the second lens L21 are defined as Abbe numbers of a wavelength of 546.0740 NM.
  • the above condition is for correcting the axial color aberration, and within a range satisfying the above condition, the axial color aberration can be corrected satisfactorily.
  • the first lens group G11 may include an aperture ST for determining Fno.
  • the diaphragm ST is a virtual plane formed or defined by a structure including an aperture and a blocking portion (not shown), and may be a virtual plane including an aperture through which light is incident.
  • the blocking unit (not shown) may adjust the size of an aperture (eg, the physical amount of light entering the lens), and the diaphragm ST may refer to a virtual plane including the aperture.
  • the diaphragm ST is provided on, for example, the object-side surface S4 of the first lens L11, and may contribute to miniaturizing the lens assembly 100-1.
  • the diaphragm ST is for adjusting the diameter of the luminous flux, and may include, for example, an aperture diaphragm, a variable diaphragm, or a stop in the form of a mask.
  • the aperture ST is illustrated as being disposed adjacent to the object-side surface S4 of the first lens L11 in the drawing, it is not limited thereto, and the image side surface of the first lens L11 ( S5) may be arranged.
  • the amount of light reaching the upper surface IMG of the image sensor may be adjusted by adjusting the size of the aperture ST.
  • the second lens group G21 may include a third lens L31 with negative refractive power, a fourth lens L41 with positive or negative refractive power, and a fifth lens L51 with positive refractive power.
  • the third lens L31 is, for example, a bi-concave lens
  • the fourth lens L41 is a bi-convex lens
  • the fifth lens L51 is concave toward the object side O.
  • the third lens group G31 may include a sixth lens L61 having positive refractive power and a seventh lens L71 having negative refractive power.
  • the sixth lens L61 may be a meniscus lens concave toward the object side O, and the seventh lens L71 may be a biconcave lens.
  • a seventh lens L71 may be disposed on the uppermost side I of the lens assembly 100-1.
  • At least one optical element OD may be provided between the seventh lens L71 and the image surface IMG.
  • the optical element OD may include, for example, at least one of a low pass filter, an infrared (IR)-cut filter, or a cover glass.
  • a low pass filter e.g., an infrared (IR)-cut filter
  • IR infrared
  • cover glass e.g., glass
  • an optical element (OD) eg, an infrared cut filter
  • the color of an image detected and photographed through an image sensor can be approximated to the color that a person feels when viewing a real object.
  • an infrared cut-off filter is provided as an optical element, visible light is transmitted and infrared light is emitted to the outside, so that infrared light is not transmitted to the upper surface.
  • a lens assembly according to various embodiments may satisfy the following equation.
  • the following equations will be described with reference to the lens assembly 100 - 1 according to the first numerical embodiment shown in FIG. 1 . However, the same can be applied to other embodiments.
  • EFL1G is the focal length of the first lens group
  • EFLW is the focal length of the lens assembly at the wide angle end
  • EFL2G is the focal length of the second lens group
  • EFLT represents the focal length of the lens assembly at the telephoto end.
  • a lens assembly according to various embodiments may satisfy the following equation.
  • Ld is the size of the maximum effective diameter (eg, max clear aperture) at the wide-angle end of the last lens (eg, the seventh lens (L71)) disposed on the uppermost side (I) of the lens assembly
  • D is the image circle size. (image circle size).
  • an “effective mirror” may be defined as a region through which external light is substantially transmitted the most or through which light, which may be the center of image acquisition, passes.
  • a light blocking member (not shown) may be formed around the first lens L11 to correspond to the size of an effective mirror through which most of the light passes.
  • the image circle IC may represent a circle having a diagonal length of the image sensor IMG as a diameter.
  • D represents the size of the image circle IC, which represents the diameter of the image circle IC or the diagonal length of the image sensor IMG.
  • the image height represents half of the diagonal length of the image sensor IMG.
  • V represents the length of the short side of the image sensor IMG, and H represents the length of the long side. Equation 1 defines that the maximum effective diameter at the wide-angle end of the last lens L71 on the uppermost image side I of the lens assembly is smaller than the image circle size D. When Equation 1 is satisfied, the lens assembly can be miniaturized.
  • FIG. 6 is an enlarged view of a part of the lens assembly 100-1, showing a seventh lens L71 located on the uppermost image side (I), an optical element OD, and an image sensor IMG.
  • Ld is the maximum effective diameter at the wide-angle end of the seventh lens L71 located on the uppermost side
  • Lv is the ray LR reaching the end point P1 of the short side of the image sensor IMG at the wide-angle end.
  • the effective diameter at the point P2 passing through the lens L71 is shown.
  • Lv is called the short side effective diameter.
  • Equation 1 represents the ratio of the maximum effective diameter (Ld) at the wide-angle end of the seventh lens (L71) to the diameter (D) of the image circle (IC).
  • the size of the seventh lens L71 is smaller than that of the image sensor assembly, so that the size of the lens assembly can be reduced.
  • a total track length (TTL) of the lens assembly 100-1 may be less than or equal to about 35 mm.
  • the total optical path length (TTL) of the lens assembly 100-1 is the distance ttla from the incident surface S1 of the reflective member RE to the reflective surface S2 and the reflective surface S2 of the reflective member RE. ) to the image plane IMG passing through the exit plane S3.
  • the lens assembly can be miniaturized by setting the total optical path length (TTL) to 35 mm or less, and when the lens assembly 100-1 is adopted in an electronic device, the reflection member RE causes Since the degree of freedom of arrangement may be increased, the lens assembly may be easily incorporated into a small electronic device.
  • the total optical path length TTL is an air conversion value for this can be applied
  • n and d are the refractive index and thickness of the optical element OD
  • a value of (1-(1/n))*d may be applied when calculating the total optical path length TTL.
  • the light incident from the object side O is bent by 90 degrees using the reflective member RE so that the thickness of the lens assembly 100-1 corresponds to the thickness of the mobile device, so that it is compact and compact. It can be easily installed in a thin mobile device.
  • the refractive power of the lens group included in the lens assembly is sequentially arranged as positive, positive, and negative, so that the image height or the size of the image circle (IC) is higher than the last lens (eg, the second lens). 7
  • the lens assembly can be miniaturized while achieving high resolution by reducing the maximum effective diameter of the lens (L71) and properly distributing the Abbe number of the lens to efficiently reduce optical aberration.
  • the Abbe number represents a quantity that defines the property of light dispersion of a lens, and may be formed differently depending on the refractive index, and may mean the reciprocal of dispersion.
  • a sharp image may be obtained by distributing Abbe numbers of lenses. For example, the higher the Abbe number, the clearer the image can be obtained. The higher the refractive index, the lower the Abbe number, and the higher the refractive index, the higher the dispersion, so that a clear image can be obtained.
  • a lens assembly according to various embodiments may be mounted on a mobile device such as a mobile phone, a smart phone, or a digital camera.
  • the lens assembly according to various embodiments may be used in tablet computing devices, laptops, netbooks, laptops, sub-notebooks and ultrabook computers, surveillance cameras, automotive cameras, augmented reality (AR) glasses, virtual reality (VR) glasses, and action cameras. It can be applied to an action cam or the like.
  • a dual camera or a multi-camera may be configured together with a wide-angle lens camera or one or more other camera modules.
  • the first lens group G11 and the third lens group G31 move in the object side (O) direction when zooming from the wide-angle end to the telephoto end in order to obtain an optical zoom magnification.
  • the third lens group G31 includes a sixth lens L61 sequentially having a positive refractive power from the object side O and a seventh lens L71 having a negative refractive power concave toward the object side O.
  • the maximum effective diameter of the seventh lens L71 is smaller than the diameter D of the image circle IC, thereby miniaturizing the lens assembly.
  • the second lens group G21 includes negative lenses, positive lenses, and positive lenses sequentially disposed from the object side (O) to the image side (I), or includes negative lenses, negative lenses, Including a positive lens
  • the third lens group G31 includes a positive lens and a negative lens sequentially disposed from the object side O to reduce chromatic aberration in a region from the wide-angle end to the telephoto end, and zooming It is possible to efficiently reduce astigmatism and curvature of image field aberration that occur in the field of view.
  • the first to seventh lenses (L11) (L21) (L31) (L410 (L51) (L61) (L71) included in the lens assembly may be formed of plastic.
  • the lens assembly according to may include at least one aspherical surface lens, for example, the first to seventh lenses (L11) (L21) (L31) (L410 (L51) (L61) (L71) Each may be a double-sided aspherical lens.
  • the horizontal axis of the longitudinal spherical aberration represents the coefficient
  • the vertical axis represents the normalized distance from the center of the optical axis
  • the change of the longitudinal spherical aberration according to the wavelength of light is shown.
  • Longitudinal spherical aberration for example, has a wavelength of 656.2725 (NM, nanometer) (e.g. red), 587.5618 (NM) (e.g.
  • the field curvature shows tangential (or meridional) field curvature (Y) and sagittal field curvature (X).
  • Field curvature is shown for light with a wavelength of 546.0740 (NM)
  • distortion aberration is shown for light with a wavelength of 546.0740 (NM).
  • an image captured through the lens assembly 100-1 is distorted at a point deviating from the optical axis OA1 and OA2, but this distortion is caused by the optical axis using the lens. It is a degree that can generally be found in the device, and the distortion rate is less than about 2%, which can provide good optical characteristics.
  • the lens assembly 100-2 includes a first lens group G12 having positive refractive power, a second lens group G22 having positive refractive power, and a negative refractive power arranged from the object side O to the image side I.
  • a third lens group G32 is included.
  • the first lens group G12 includes a first lens L12 having positive refractive power and a second lens L22 having negative refractive power.
  • the second lens group G22 may include a third lens L32 with negative refractive power, a fourth lens L42 with positive refractive power, and a fifth lens L52 with positive refractive power.
  • the third lens group G32 may include a sixth lens L62 having positive refractive power and a seventh lens L72 having negative refractive power. Since each lens of the lens assembly 100-2 of the second numerical embodiment is substantially the same as that described for the lens assembly 100-1 of the first numerical embodiment, a detailed description thereof will be omitted.
  • FIG. 11 shows longitudinal spherical aberration, astigmatism, and distortion (or distortion) at the wide-angle end of the lens assembly 100-2 according to the second numerical example.
  • . 12 shows longitudinal spherical aberration, astigmatism, and distortion (or distortion) at the telephoto end of the lens assembly 100-2 according to the second numerical example. .
  • the lens assembly 100-3 includes a first lens group G13 having positive refractive power, a second lens group G23 having positive refractive power, and a negative refractive power arranged from the object side O to the image side I.
  • a third lens group G33 is included.
  • the first lens group G13 includes a first lens L13 having a positive refractive power and a second lens L23 having a negative refractive power.
  • the second lens group G23 may include a third lens L33 with negative refractive power, a fourth lens L43 with negative refractive power, and a fifth lens L53 with positive refractive power.
  • the third lens group G33 may include a sixth lens L63 having positive refractive power and a seventh lens L73 having negative refractive power. Since each lens of the lens assembly 100-3 of the third numerical embodiment is substantially the same as that described for the lens assembly 100-1 of the first numerical embodiment, a detailed description thereof will be omitted.
  • FIG. 15 illustrates longitudinal spherical aberration, astigmatism, and distortion (or distortion) at the wide-angle end of the lens assembly 100-3 according to the third numerical example.
  • . 16 illustrates longitudinal spherical aberration, astigmatism, and distortion (or distortion) at the telephoto end of the lens assembly 100-3 according to the third numerical example. .
  • FIG. 17 shows the lens assembly 100 - 4 of the fourth numerical example at the wide-angle end, according to various embodiments, and FIG. 18 shows it at the telephoto end.
  • the lens assembly 100-4 includes a first lens group G14 having positive refractive power, a second lens group G24 having positive refractive power, and a negative refractive power arranged from the object side O to the image side I.
  • a third lens group G34 is included.
  • the first lens group G14 includes a first lens L14 having a positive refractive power and a second lens L24 having a negative refractive power.
  • the second lens group G24 may include a third lens L34 having negative refractive power, a fourth lens L44 having negative refractive power, and a fifth lens L54 having positive refractive power.
  • the third lens group G34 may include a sixth lens L64 having positive refractive power and a seventh lens L74 having negative refractive power. Since each lens of the lens assembly 100-4 of the fourth numerical embodiment is substantially the same as that described for the lens assembly 100-1 of the first numerical embodiment, a detailed description thereof will be omitted.
  • FIG. 19 illustrates longitudinal spherical aberration, astigmatism, and distortion (or distortion) at the wide-angle end of the lens assembly 100-4 according to the fourth numerical example.
  • . 20 shows longitudinal spherical aberration, astigmatism, and distortion (or distortion) at the telephoto end of the lens assembly 100-4 according to the fourth numerical example. .
  • an aspheric surface used in a lens assembly is as follows.
  • the aspheric shape can be expressed by the following equation, when the x-axis is the optical axis direction and the y-axis is the direction perpendicular to the optical axis direction, and the traveling direction of the light ray is positive.
  • x is the distance from the apex of the lens in the direction of the optical axis
  • y is the distance in the direction perpendicular to the optical axis
  • K is the conic constant
  • A, B, C, D, ... denotes an aspherical surface coefficient
  • c denotes a reciprocal (1/R) of a radius of curvature (R) at the apex of the lens.
  • the radius of curvature may represent, for example, a value indicating the degree of curvature at each point of a curved surface or curve.
  • a lens assembly may be implemented through numerical examples according to various designs as follows.
  • the surface numbers (S1, S2, S3, ..., Sn: n is a natural number) of the reflective member, lens, and optical element are sequentially lined from the object side (O) to the image side (I).
  • EFL is the total focal length of the lens assembly
  • FNO is the F number
  • FOV is the half angle of view
  • R is the radius of curvature
  • Dn is the thickness of the lens or the distance between the lenses
  • nd is the refractive index
  • vd is the Abbe represents a number.
  • ST represents the aperture
  • obj represents the subject. * indicates an aspherical surface.
  • FIG. 1 and 2 show a lens assembly 100-1 of a first numerical example, according to various embodiments, and Table 1 shows, for example, design data of the first numerical example.
  • Table 2 shows the aspherical surface coefficients in the first numerical example.
  • Table 3 shows the lens spacing, angle of view, and F number in the first numerical example.
  • FIG. 9 and 10 show a lens assembly 100-2 according to a second numerical example, according to various embodiments, and Table 4 shows, for example, design data of the second numerical example. .
  • Table 5 shows the aspherical surface coefficients in the second numerical example.
  • Table 6 shows the lens spacing, angle of view, and F number in the second numerical example.
  • FIG. 13 and 14 show a lens assembly 100-3 according to a third numerical example, according to various embodiments, and Table 7 shows, for example, design data of the third numerical example. .
  • Table 8 shows the aspherical surface coefficients in the third numerical example.
  • Table 9 shows the lens spacing, angle of view, and F number in the third numerical example.
  • 17 and 18 show a lens assembly 100-4 according to a fourth numerical example, according to various embodiments, and Table 10 shows, for example, design data of the fourth numerical example. .
  • Table 11 shows the aspherical surface coefficients in the fourth numerical example.
  • Table 12 shows the lens spacing, angle of view, and F number in the fourth numerical example.
  • Table 13 shows Equations 1 to 3 and values for the total optical path length (TTL) in the lens assemblies according to the first to fourth numerical examples.
  • Equation 1 0.5 ⁇ (EFL1G/EFLW) ⁇ 3.0 Equation 2 0.1 ⁇ (EFL2G/EFLT) ⁇ 1.0 Equation 3 (Ld/D) ⁇ 1 TTL ⁇ 35mm
  • a lens assembly according to various embodiments may be applied to, for example, an electronic device employing an image sensor.
  • a lens assembly according to an exemplary embodiment can be applied to various electronic devices such as digital cameras, interchangeable lens cameras, video cameras, mobile phone cameras, cameras for small mobile devices, VR, AR, drones, or unmanned aerial vehicles.
  • 21 and 22 illustrate an example of an electronic device having a lens assembly according to an exemplary embodiment.
  • 21 and 22 show an example in which the electronic device is applied to a mobile phone, but is not limited thereto.
  • 21 shows the front surface of the mobile phone
  • FIG. 22 shows the back surface of the mobile phone.
  • the electronic device 300 includes a first surface (or front surface) 310A, a second surface (or rear surface) 310B, and a gap between the first surface 310A and the second surface 310B. It may include a housing 310 including a side surface 310C surrounding the space. In another embodiment (not shown), the housing 310 may refer to a structure forming some of the first face 310A, the second face 310B, and the side face 310C. According to one embodiment, first surface 310A may be formed by at least a portion of a substantially transparent front plate 302 (eg, a glass plate or polymer plate including various coating layers). In another embodiment, the front plate 302 may be coupled to the housing 310 to form an interior space with the housing 310 . In various embodiments, the 'inner space' may refer to an inner space of the housing 310 and a space accommodating at least a portion of the display 301 .
  • a substantially transparent front plate 302 eg, a glass plate or polymer plate including various coating layers.
  • the second surface 310B may be formed by a substantially opaque back plate 311 .
  • Back plate 311 may be formed, for example, of coated or tinted glass, ceramic, polymer, metal (eg, aluminum, stainless steel (STS), or magnesium), or a combination of at least two of these materials.
  • the side surface 310C may be formed by a side bezel structure (or "side member") 318 that is coupled to the front plate 302 and the back plate 311 and includes metal and/or polymer.
  • the back plate 311 and the side bezel structure 318 may be integrally formed and include the same material (eg, a metal material such as aluminum).
  • the front plate 302 curves from the first surface 310A toward the back plate 311 and extends seamlessly with the two first regions 310D, the front plate 302. It can be included on both ends of the long edge.
  • the rear plate 311 may include two second regions 310E, which are curved from the second surface 310B toward the surface plate 302 and extend seamlessly, at both ends of the long edge.
  • the front plate 302 (or the rear plate 311 ) may include only one of the first regions 310D (or the second regions 310E). In another embodiment, some of the first regions 310D or the second regions 310E may not be included.
  • the side bezel structure 318 when viewed from the side of the electronic device, is a side that does not include the first area 310D or the second area 310E (eg, the side on which the connector hole 308 is formed). ) side has a first thickness (or width), and has a first thickness (or width) on the side including the first area 310D or the second area 310E (eg, the side where the key input device 317 is disposed) than the first thickness. It may have a thin second thickness.
  • the electronic device 300 includes a display 301, audio modules 303, 307, and 314, sensor modules 304, 316, and 319, camera modules 305, 312a, and 312b, and key input. At least one of the device 317 , the light emitting element 306 , and the connector holes 308 and 309 may be included. In various embodiments, the electronic device 300 may omit at least one of the components (eg, the key input device 317 or the light emitting device 306) or may additionally include other components.
  • the display 301 may be exposed through a substantial portion of the front plate 302, for example.
  • at least a portion of the display 301 may be exposed through the front plate 302 forming the first surface 310A and the first region 310D of the side surface 310C.
  • a corner of the display 301 may be formed substantially the same as an adjacent outer shape of the front plate 302 .
  • the distance between the outer edge of the display 301 and the outer edge of the front plate 302 may be substantially the same.
  • a recess or opening is formed in a portion of the screen display area (eg, active area) or an area outside the screen display area (eg, inactive area) of the display 301, At least one of an audio module 314 , a sensor module 304 , a camera module 305 , and a light emitting device 306 aligned with the recess or the opening may be included.
  • at least one of an audio module 314, a sensor module 304, a camera module 305, a fingerprint sensor 316, and a light emitting element 306 is included on the rear surface of the screen display area of the display 301. can do.
  • the display 301 may be combined with or disposed adjacent to a touch sensing circuit, a pressure sensor capable of measuring the intensity (pressure) of a touch, and/or a digitizer that detects a magnetic field type stylus pen.
  • a touch sensing circuit capable of measuring the intensity (pressure) of a touch
  • a digitizer capable of measuring the intensity (pressure) of a touch
  • a digitizer that detects a magnetic field type stylus pen.
  • at least a portion of the sensor modules 304 and 319, and/or at least a portion of the key input device 317 may be disposed in the first regions 310D and/or the second regions 310E. can be placed in
  • the audio modules 303 , 307 , and 314 may include microphone holes 303 and speaker holes 307 and 314 .
  • a microphone for acquiring external sound may be disposed inside the microphone hole 303, and in various embodiments, a plurality of microphones may be disposed to detect the direction of sound.
  • the speaker holes 307 and 314 may include an external speaker hole 307 and a receiver hole 314 for communication.
  • the speaker holes 307 and 314 and the microphone hole 303 may be implemented as one hole, or a speaker may be included without the speaker holes 307 and 314 (eg, a piezo speaker).
  • the sensor modules 304 , 316 , and 319 may generate electrical signals or data values corresponding to an internal operating state of the electronic device 300 or an external environmental state.
  • the sensor modules 304, 316, and 319 may include, for example, a first sensor module 304 (eg, a proximity sensor) and/or a second sensor module (eg, a proximity sensor) disposed on the first surface 310A of the housing 310. (not shown) (eg, a fingerprint sensor), and/or a third sensor module 319 (eg, an HRM sensor) and/or a fourth sensor module 316 disposed on the second surface 310B of the housing 310. ) (eg, a fingerprint sensor).
  • a first sensor module 304 eg, a proximity sensor
  • a second sensor module eg, a proximity sensor
  • a third sensor module 319 eg, an HRM sensor
  • fourth sensor module 316 disposed on the second surface 310B of the housing 310.
  • the fingerprint sensor may be disposed on the second surface 310B as well as the first surface 310A (eg, the display 301 ) of the housing 310 .
  • the electronic device 300 includes a sensor module (not shown), for example, a gesture sensor, a gyro sensor, an air pressure sensor, a magnetic sensor, an acceleration sensor, a grip sensor, a color sensor, an IR (infrared) sensor, a biometric sensor, a temperature sensor, At least one of a humidity sensor and an illuminance sensor may be further included.
  • the camera modules 305, 312a, and 312b include a first camera module 305 disposed on the first surface 310A of the electronic device 300 and a second camera module 312a disposed on the second surface 310B. ), a third camera module 312b and/or a flash 313.
  • the camera modules 305, 312a, and 312b may include one or a plurality of lenses, an image sensor, and/or an image signal processor.
  • the camera modules 305, 312a, and 312b may include lens assemblies according to various embodiments described with reference to FIGS. 1 to 120 .
  • the flash 313 may include, for example, a light emitting diode or a xenon lamp.
  • two or more lenses (infrared camera, wide-angle and telephoto lenses) and image sensors may be disposed on one side of the electronic device 101 .
  • the key input device 317 may be disposed on the side surface 310C of the housing 310 .
  • the electronic device 300 may not include some or all of the key input devices 317, and the key input devices 317 that are not included may be displayed in other forms such as soft keys on the display 301.
  • the key input device may include a sensor module 316 disposed on the second side 310B of the housing 310 .
  • the light emitting device 306 may be disposed on, for example, the first surface 310A of the housing 310 .
  • the light emitting element 306 may provide, for example, state information of the electronic device 101 in the form of light.
  • the light emitting device 306 may provide, for example, a light source interlocked with the operation of the camera module 305 .
  • the light emitting element 306 may include, for example, an LED, an IR LED, and a xenon lamp.
  • the connector holes 308 and 309 include a first connector hole 308 capable of receiving a connector (eg, a USB connector) for transmitting and receiving power and/or data to and from an external electronic device, and/or an external electronic device. and a second connector hole (eg, an earphone jack) 309 capable of accommodating a connector for transmitting and receiving an audio signal.
  • a connector eg, a USB connector
  • a second connector hole eg, an earphone jack
  • the electronic device 300 illustrated in FIGS. 21 and 22 corresponds to one example, and the type of device to which the technical concept disclosed in this document is applied is not limited.
  • the technical concept disclosed in this document is a first camera module 305 disposed on the first surface 310A, and a second camera module 312a disposed on the second surface 310B, and a third camera module 312b disposed on the second surface 310B.
  • the technical concept disclosed in this document may be applied to a foldable electronic device capable of horizontally or vertically folding by employing a flexible display and a hinge structure, or a tablet or laptop computer.
  • the first camera module 305, the second camera module 312a, and the third camera module 312b facing the same direction to face different directions through rotation, folding, deformation, etc. of the device. This technical idea can be applied.
  • the illustrated electronic device 300 may be a part of a rollable electronic device.
  • a “rollable electronic device” means that a display (eg, the display 301 of FIG. 21 ) can be bent or deformed, so that at least a portion of it is rolled or rolled, or a housing (eg, the display 301 in FIG. 21 ) can be bent or deformed. and an electronic device that can be accommodated inside the housing 310 of FIG. 22 .
  • the rollable electronic device can be used by expanding the screen display area by unfolding the display or exposing a larger area of the display to the outside according to a user's need.
  • an electronic device 401 communicates with an electronic device 402 through a first network 498 (eg, a short-range wireless communication network) or through a second network 499. It may communicate with at least one of the electronic device 404 or the server 408 through (eg, a long-distance wireless communication network). According to an embodiment, the electronic device 401 may communicate with the electronic device 404 through the server 408 .
  • a first network 498 eg, a short-range wireless communication network
  • a second network 499 e.g., a second network 499. It may communicate with at least one of the electronic device 404 or the server 408 through (eg, a long-distance wireless communication network).
  • the electronic device 401 may communicate with the electronic device 404 through the server 408 .
  • the electronic device 401 includes a processor 420, a memory 430, an input module 450, a sound output module 455, a display module 460, an audio module 470, a sensor module ( 476), interface 477, connection terminal 478, haptic module 479, camera module 480, power management module 488, battery 489, communication module 490, subscriber identification module 496 , or an antenna module 497.
  • at least one of these components eg, the connection terminal 478) may be omitted or one or more other components may be added.
  • some of these components eg, sensor module 476, camera module 480, or antenna module 497) are integrated into a single component (eg, display module 460). It can be.
  • the processor 420 for example, executes software (eg, the program 440) to cause at least one other component (eg, hardware or software component) of the electronic device 401 connected to the processor 420. It can control and perform various data processing or calculations. According to one embodiment, as at least part of the data processing or operation, the processor 420 transfers instructions or data received from other components (e.g., sensor module 476 or communication module 490) to volatile memory 432. , process the command or data stored in the volatile memory 432, and store the resulting data in the non-volatile memory 434.
  • software eg, the program 440
  • the processor 420 transfers instructions or data received from other components (e.g., sensor module 476 or communication module 490) to volatile memory 432. , process the command or data stored in the volatile memory 432, and store the resulting data in the non-volatile memory 434.
  • the processor 420 may include a main processor 421 (eg, a central processing unit or an application processor) or a secondary processor 423 (eg, a graphic processing unit, a neural network processing unit ( NPU: neural processing unit (NPU), image signal processor, sensor hub processor, or communication processor).
  • a main processor 421 e.g, a central processing unit or an application processor
  • a secondary processor 423 e.g, a graphic processing unit, a neural network processing unit ( NPU: neural processing unit (NPU), image signal processor, sensor hub processor, or communication processor.
  • NPU neural network processing unit
  • NPU neural processing unit
  • image signal processor sensor hub processor
  • communication processor e.g., a communication processor.
  • the auxiliary processor 423 may use less power than the main processor 421 or be set to be specialized for a designated function.
  • the secondary processor 423 may be implemented separately from or as part of the main processor 421 .
  • the secondary processor 423 may, for example, take place of the main processor 421 while the main processor 421 is in an inactive (eg, sleep) state, or when the main processor 421 is active (eg, running an application). ) state, together with the main processor 421, at least one of the components of the electronic device 401 (eg, the display module 460, the sensor module 476, or the communication module 490) It is possible to control at least some of the related functions or states.
  • the coprocessor 423 eg, image signal processor or communication processor
  • may be implemented as part of other functionally related components eg, camera module 480 or communication module 490). have.
  • the auxiliary processor 423 may include a hardware structure specialized for processing an artificial intelligence model.
  • AI models can be created through machine learning. Such learning may be performed, for example, in the electronic device 401 itself where the artificial intelligence model is performed, or may be performed through a separate server (eg, the server 408).
  • the learning algorithm may include, for example, supervised learning, unsupervised learning, semi-supervised learning or reinforcement learning, but in the above example Not limited.
  • the artificial intelligence model may include a plurality of artificial neural network layers.
  • Artificial neural networks include deep neural networks (DNNs), convolutional neural networks (CNNs), recurrent neural networks (RNNs), restricted boltzmann machines (RBMs), deep belief networks (DBNs), bidirectional recurrent deep neural networks (BRDNNs), It may be one of deep Q-networks or a combination of two or more of the foregoing, but is not limited to the foregoing examples.
  • the artificial intelligence model may include, in addition or alternatively, software structures in addition to hardware structures.
  • the memory 430 may store various data used by at least one component (eg, the processor 420 or the sensor module 476) of the electronic device 401 .
  • the data may include, for example, input data or output data for software (eg, the program 440) and commands related thereto.
  • the memory 430 may include volatile memory 432 or non-volatile memory 434 .
  • the program 440 may be stored as software in the memory 430 and may include, for example, an operating system 442 , middleware 444 , or an application 446 .
  • the input module 450 may receive a command or data to be used by a component (eg, the processor 420) of the electronic device 401 from an outside of the electronic device 401 (eg, a user).
  • the input module 450 may include, for example, a microphone, a mouse, a keyboard, a key (eg, a button), or a digital pen (eg, a stylus pen).
  • the sound output module 455 may output sound signals to the outside of the electronic device 401 .
  • the sound output module 455 may include, for example, a speaker or receiver.
  • the speaker can be used for general purposes such as multimedia playback or recording playback.
  • a receiver may be used to receive an incoming call. According to one embodiment, the receiver may be implemented separately from the speaker or as part of it.
  • the display module 460 can visually provide information to the outside of the electronic device 401 (eg, a user).
  • the display module 460 may include, for example, a display, a hologram device, or a projector and a control circuit for controlling the device.
  • the display module 460 may include a touch sensor configured to detect a touch or a pressure sensor configured to measure the intensity of force generated by the touch.
  • the audio module 470 may convert sound into an electrical signal or vice versa. According to an embodiment, the audio module 470 acquires sound through the input module 450, the sound output module 455, or an external electronic device connected directly or wirelessly to the electronic device 401 (eg: Sound may be output through the electronic device 402 (eg, a speaker or a headphone).
  • the audio module 470 acquires sound through the input module 450, the sound output module 455, or an external electronic device connected directly or wirelessly to the electronic device 401 (eg: Sound may be output through the electronic device 402 (eg, a speaker or a headphone).
  • the sensor module 476 detects an operating state (eg, power or temperature) of the electronic device 401 or an external environmental state (eg, a user state), and generates an electrical signal or data value corresponding to the detected state. can do.
  • the sensor module 476 may include, for example, a gesture sensor, a gyro sensor, an air pressure sensor, a magnetic sensor, an acceleration sensor, a grip sensor, a proximity sensor, a color sensor, an IR (infrared) sensor, a biometric sensor, It may include a temperature sensor, humidity sensor, or light sensor.
  • the interface 477 may support one or more specified protocols that may be used to directly or wirelessly connect the electronic device 401 to an external electronic device (eg, the electronic device 402).
  • the interface 477 may include, for example, a high definition multimedia interface (HDMI), a universal serial bus (USB) interface, an SD card interface, or an audio interface.
  • HDMI high definition multimedia interface
  • USB universal serial bus
  • SD card interface Secure Digital Card
  • connection terminal 478 may include a connector through which the electronic device 401 may be physically connected to an external electronic device (eg, the electronic device 402).
  • the connection terminal 478 may include, for example, an HDMI connector, a USB connector, an SD card connector, or an audio connector (eg, a headphone connector).
  • the haptic module 479 may convert electrical signals into mechanical stimuli (eg, vibration or movement) or electrical stimuli that a user can perceive through tactile or kinesthetic senses.
  • the haptic module 479 may include, for example, a motor, a piezoelectric element, or an electrical stimulation device.
  • the camera module 480 may capture still images and moving images.
  • the camera module 480 may include one or more lenses, image sensors, image signal processors, or flashes.
  • the power management module 488 may manage power supplied to the electronic device 401 .
  • the power management module 488 may be implemented as at least part of a power management integrated circuit (PMIC), for example.
  • PMIC power management integrated circuit
  • the battery 489 may supply power to at least one component of the electronic device 401 .
  • the battery 489 may include, for example, a non-rechargeable primary cell, a rechargeable secondary cell, or a fuel cell.
  • the communication module 490 is a direct (eg, wired) communication channel or a wireless communication channel between the electronic device 401 and an external electronic device (eg, the electronic device 402, the electronic device 404, or the server 408). Establishment and communication through the established communication channel may be supported.
  • the communication module 490 may include one or more communication processors that operate independently of the processor 420 (eg, an application processor) and support direct (eg, wired) communication or wireless communication.
  • the communication module 490 may be a wireless communication module 492 (eg, a cellular communication module, a short-range wireless communication module, or a global navigation satellite system (GNSS) communication module) or a wired communication module 494 (eg, a : a local area network (LAN) communication module or a power line communication module).
  • a corresponding communication module is a first network 498 (eg, a short-range communication network such as Bluetooth, wireless fidelity (WiFi) direct, or infrared data association (IrDA)) or a second network 499 (eg, a legacy communication module).
  • the wireless communication module 492 uses subscriber information (eg, International Mobile Subscriber Identifier (IMSI)) stored in the subscriber identification module 496 within a communication network such as the first network 498 or the second network 499.
  • IMSI International Mobile Subscriber Identifier
  • the wireless communication module 492 may support a 5G network after a 4G network and a next-generation communication technology, for example, NR access technology (new radio access technology).
  • NR access technologies include high-speed transmission of high-capacity data (enhanced mobile broadband (eMBB)), minimization of terminal power and access of multiple terminals (massive machine type communications (mMTC)), or high reliability and low latency (ultra-reliable and low latency (URLLC)). -latency communications)) can be supported.
  • the wireless communication module 492 may support a high frequency band (eg, mmWave band) to achieve a high data rate, for example.
  • a high frequency band eg, mmWave band
  • the wireless communication module 492 uses various technologies for securing performance in a high frequency band, such as beamforming, massive multiple-input and multiple-output (MIMO), and full-dimensional multiplexing. Technologies such as input/output (FD-MIMO: full dimensional MIMO), array antenna, analog beam-forming, or large scale antenna may be supported.
  • the wireless communication module 492 may support various requirements defined for the electronic device 401, an external electronic device (eg, the electronic device 404), or a network system (eg, the second network 499).
  • the wireless communication module 492 is a peak data rate for eMBB realization (eg, 20 Gbps or more), a loss coverage for mMTC realization (eg, 164 dB or less), or a U-plane latency for URLLC realization (eg, Example: downlink (DL) and uplink (UL) each of 0.5 ms or less, or round trip 1 ms or less) may be supported.
  • eMBB peak data rate for eMBB realization
  • a loss coverage for mMTC realization eg, 164 dB or less
  • U-plane latency for URLLC realization eg, Example: downlink (DL) and uplink (UL) each of 0.5 ms or less, or round trip 1 ms or less
  • the antenna module 497 may transmit or receive signals or power to the outside (eg, an external electronic device).
  • the antenna module 497 may include an antenna including a radiator formed of a conductor or a conductive pattern formed on a substrate (eg, PCB).
  • the antenna module 497 may include a plurality of antennas (eg, an array antenna). In this case, at least one antenna suitable for a communication method used in a communication network such as the first network 498 or the second network 499 is selected from the plurality of antennas by the communication module 490, for example. can be chosen A signal or power may be transmitted or received between the communication module 490 and an external electronic device through the selected at least one antenna.
  • other components eg, a radio frequency integrated circuit (RFIC) may be additionally formed as a part of the antenna module 497 in addition to the radiator.
  • RFIC radio frequency integrated circuit
  • the antenna module 497 may form a mmWave antenna module.
  • the mmWave antenna module includes a printed circuit board, an RFIC disposed on or adjacent to a first surface (eg, a lower surface) of the printed circuit board and capable of supporting a designated high frequency band (eg, mmWave band); and a plurality of antennas (eg, array antennas) disposed on or adjacent to a second surface (eg, a top surface or a side surface) of the printed circuit board and capable of transmitting or receiving signals of the designated high frequency band. can do.
  • peripheral devices eg, a bus, general purpose input and output (GPIO), serial peripheral interface (SPI), or mobile industry processor interface (MIPI)
  • signal e.g. commands or data
  • commands or data may be transmitted or received between the electronic device 401 and the external electronic device 404 through the server 408 connected to the second network 499 .
  • Each of the external electronic devices 402 or 404 may be the same as or different from the electronic device 401 .
  • all or part of operations executed in the electronic device 401 may be executed in one or more external electronic devices among the external electronic devices 402 , 404 , or 408 .
  • the electronic device 401 when the electronic device 401 needs to perform a certain function or service automatically or in response to a request from a user or other device, the electronic device 401 instead of executing the function or service by itself.
  • one or more external electronic devices may be requested to perform the function or at least part of the service.
  • One or more external electronic devices receiving the request may execute at least a part of the requested function or service or an additional function or service related to the request, and deliver the execution result to the electronic device 401 .
  • the electronic device 401 may provide the result as at least part of a response to the request as it is or additionally processed.
  • cloud computing distributed computing, mobile edge computing (MEC), or client-server computing technology may be used.
  • the electronic device 401 may provide an ultra-low latency service using, for example, distributed computing or mobile edge computing.
  • the external electronic device 404 may include an internet of things (IoT) device.
  • Server 408 may be an intelligent server using machine learning and/or neural networks.
  • the external electronic device 404 or server 408 may be included in the second network 499 .
  • the electronic device 401 may be applied to intelligent services (eg, smart home, smart city, smart car, or health care) based on 5G communication technology and IoT-related technology.
  • the camera module 480 includes a lens assembly 510, a flash 520, an image sensor 530, an image stabilizer 540, a memory 550 (eg, a buffer memory), or an image signal processor. (560).
  • the lens assembly 510 may collect light emitted from a subject that is an image capturing target.
  • Lens assembly 510 may include one or more lenses.
  • the embodiments described with reference to FIGS. 1 to 20 may be applied to the lens assembly 510 .
  • the camera module 480 may include a plurality of lens assemblies 510 .
  • the camera module 480 may form, for example, a dual camera, a 360-degree camera, or a spherical camera.
  • Some of the plurality of lens assemblies 510 may have the same lens properties (eg, angle of view, focal length, auto focus, f number, or optical zoom), or at least one lens assembly may have the same lens properties as another lens assembly. may have one or more lens properties different from the lens properties of .
  • the lens assembly 510 may include, for example, a wide-angle lens or a telephoto lens.
  • the flash 520 may emit light used to enhance light emitted or reflected from a subject.
  • the flash 520 may include one or more light emitting diodes (eg, a red-green-blue (RGB) LED, a white LED, an infrared LED, or an ultraviolet LED), or a xenon lamp.
  • the image sensor 530 may obtain an image corresponding to the subject by converting light emitted or reflected from the subject and transmitted through the lens assembly 510 into an electrical signal.
  • the image sensor 530 is, for example, an image sensor selected from among image sensors having different properties, such as an RGB sensor, a black and white (BW) sensor, an IR sensor, or a UV sensor, It may include a plurality of image sensors having a property, or a plurality of image sensors having other properties.
  • Each image sensor included in the image sensor 530 may be implemented using, for example, a charged coupled device (CCD) sensor or a complementary metal oxide semiconductor (CMOS) sensor.
  • CCD charged coupled device
  • CMOS complementary metal oxide semiconductor
  • the image stabilizer 540 moves at least one lens or image sensor 530 included in the lens assembly 510 in a specific direction in response to movement of the camera module 480 or the electronic device 401 including the same. Operating characteristics of the image sensor 530 may be controlled (eg, read-out timing is adjusted, etc.). This makes it possible to compensate at least part of the negative effect of the movement on the image being taken.
  • the image stabilizer 540 may include a gyro sensor (not shown) or an acceleration sensor (not shown) disposed inside or outside the camera module 480. Such a movement of the camera module 480 or the electronic device 401 may be detected using .
  • the image stabilizer 540 may be implemented as, for example, an optical image stabilizer.
  • the memory 550 may at least temporarily store at least a portion of an image acquired through the image sensor 530 for a next image processing task. For example, when image acquisition is delayed according to the shutter or a plurality of images are acquired at high speed, the acquired original image (eg, a Bayer-patterned image or a high-resolution image) is stored in the memory 550 and , a copy image (eg, a low resolution image) corresponding thereto may be previewed through the display module 460 . Thereafter, when a specified condition is satisfied (eg, a user input or a system command), at least a part of the original image stored in the memory 550 may be acquired and processed by, for example, the image signal processor 560 . According to one embodiment, the memory 550 may be configured as at least a part of the memory 430 or as a separate memory operated independently of the memory 430 .
  • a specified condition eg, a user input or a system command
  • the image signal processor 560 may perform one or more image processes on an image acquired through the image sensor 530 or an image stored in the memory 550 .
  • the one or more image processes for example, depth map generation, 3D modeling, panorama generation, feature point extraction, image synthesis, or image compensation (eg, noise reduction, resolution adjustment, brightness adjustment, blurring ( blurring, sharpening, or softening.
  • the image signal processor 560 may include at least one of the components included in the camera module 480 (eg, an image sensor). 530) may be controlled (eg, exposure time control, read-out timing control, etc.)
  • the image processed by the image signal processor 560 is stored again in the memory 550 for further processing.
  • the image signal processor 560 may be configured as at least a part of the processor 420 or may be configured as a separate processor that operates independently of the processor 420.
  • the image signal processor 560 may be configured as a processor 420 When configured as a separate processor, at least one image processed by the image signal processor 560 may be displayed through the display module 460 as it is or after additional image processing by the processor 420 .
  • the electronic device 401 may include a plurality of camera modules 480 each having different properties or functions.
  • at least one of the plurality of camera modules 480 may be a wide-angle camera and at least one other may be a telephoto camera.
  • at least one of the plurality of camera modules 480 may be a front camera and at least one other camera may be a rear camera.
  • FIG. 25 illustrates a lens assembly (eg, the lens assembly 100-1 of FIGS. 1, 2, 9, 10, 13, 14, 17, and 18 in an electronic device according to various embodiments). It shows a high-level flow diagram 2500 of a method for performing image capturing using (100-2) (100-3) (100-4).
  • a lens assembly 100 - 1 shown in FIG. 1 shows a lens assembly 100 - 1 shown in FIG. 1 .
  • the lens assembly 100-1 transmits light (light) from the first lens L11 included in the lens assembly 100-1 through the aperture ST.
  • the diaphragm ST may be disposed on the object side O of the first lens L11 of FIG. 1 .
  • the first lens L11 included in the lens assembly may refract light to the second lens L21.
  • the second lens L21 included in the lens assembly may refract the light to the third lens L31.
  • the third lens L31 included in the lens assembly may refract the light to the fourth lens L41.
  • the fourth lens L41 included in the lens assembly may refract the light to the fifth lens L51.
  • the fifth lens L51 included in the lens assembly may refract the light to the sixth lens L61.
  • the sixth lens L61 included in the lens assembly may refract the light to the seventh lens L71.
  • the light refracted from the seventh lens L71 may form an image on the image plane IMG.
  • the light may form an image on the upper surface IMG through the optical device OD.
  • the optical element OD may include, for example, at least one of a low pass filter, an infrared (IR)-cut filter, or a cover glass.
  • an electronic device including a lens assembly receives information received through the upper surface IMG.
  • the image may be captured using light.
  • an image sensor eg, the image sensor 530 of FIG. 24
  • a camera module eg, the camera module 480 of FIGS. 23 and 24
  • a lens assembly (100-1,100-2,100-3,100-4) including a plurality of lenses disposed from an object side to an image side with an image plane, light incident from the object side a reflective member (RE) for bending the first optical axis into a second optical axis; a first lens group (G11) disposed on the second optical axis and having a positive refractive power so that the light bent by the reflective member (RE) is incident; a second lens group G21 provided on the image side of the first lens group G11 and having a positive refractive power; and a third lens group G31 provided on an image side of the second lens group G21 and having a negative refractive power, wherein the first lens group G11 and the third lens group G31 form an object Zooming is performed from the wide angle end to the telephoto end by moving to the side, and the first lens group G11 has the first lens L11 disposed on the most object side and the first lens group G11 disposed on the image side of the first lens L
  • the first lens group G11 or the third lens group G31 may be configured to perform focusing.
  • the lens assembly 100-1 may satisfy the following equation.
  • EFL1G represents the focal length of the first lens group
  • EFLW represents the focal length of the lens assembly at the wide-angle end.
  • the lens assembly 100-1 may satisfy the following equation.
  • EFL2G represents the focal length of the second lens group G21
  • EFLT represents the focal length of the lens assembly 100-1 at the telephoto end.
  • the third lens group G31 may include the last lens L71 disposed on the uppermost side, and may satisfy the following equation.
  • Ld represents the effective lens size at the wide-angle end of the last lens L71
  • D represents the image circle size
  • a total track length (TTL) of the lens assembly 100-1 may be less than or equal to 35 mm.
  • a lens is not provided on the object side of the reflective member R3.
  • the first lens group G11, the second lens group G21, and the third lens group G31 are moved vertically or horizontally with respect to the second optical axis. It may be configured to perform image stabilization.
  • the lens assembly 100-1 may be configured to perform hand shake correction in a pitch direction by tilting the reflective member.
  • the first lens group G11, the second lens group G21, and the third lens group G31 are moved horizontally with respect to the second optical axis to form a yaw direction. It may be configured to perform image stabilization.
  • the first lens L11 may have positive refractive power
  • the second lens L21 may have negative refractive power
  • the first lens L11 and the second lens L21 may move for zooming.
  • the third lens group G31 may include the last lens L71 disposed on the most image side, and the last lens L71 may have negative refractive power with a concave object side.
  • the third lens group G31 may include a lens L61 having positive refractive power disposed on the object side and a lens L71 having negative refractive power disposed on the most image side.
  • the second lens group G21 may include a third lens L31 having negative refractive power, a fourth lens L41 having positive or negative refractive power, and a fifth lens L51 having positive refractive power.
  • All lenses included in the lens assembly 100-1 may be made of plastic lenses.
  • a lens assembly 100-1 including a plurality of lenses disposed from an object side to an image side with an image plane; at least one camera module 480 for obtaining information about a subject from light incident through the lens assembly 100-1; and an image signal processor 560 processing an image of the subject based on the information,
  • the lens assembly 100-1 The lens assembly 100-1,
  • a reflective member (RE) for bending a first optical axis of light incident from the object side into a second optical axis; a first lens group (G11) disposed on the second optical axis and having a positive refractive power so that the light bent by the reflective member (RE) is incident; a second lens group G21 provided on the image side of the first lens group G11 and having a positive refractive power; and a third lens group G31 provided on an image side of the second lens group G21 and having a negative refractive power,
  • the first lens group G11 and the third lens group G31 move toward the object side to perform zooming from the wide-angle end to the telephoto end, and the first lens group G11 is disposed most toward the object side. (L11) and a second lens (L21) disposed on the image side of the first lens (L11), wherein the first lens (L11) has an Abbe number greater than 50, and the second lens (L21) ) has an Abbe number less than 30.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Lenses (AREA)

Abstract

렌즈 어셈블리 및 이를 포함한 전자 장치가 개시된다. 개시된 렌즈 어셈블리는, 물체 측으로부터 상 면(image plane)이 있는 상 측으로 배치된 복수의 렌즈들을 포함하는 렌즈 어셈블리에 있어서, 상기 물체 측으로부터 입사하는 광의 제1 광 축을 제2 광 축으로 굴곡시키는 반사 부재; 상기 반사 부재에 의해 굴곡된 광이 입사하도록 상기 제2 광 축 상에 배치되고, 정의 굴절력을 가지는 제1 렌즈군; 상기 제1 렌즈군의 상 측에 구비되고, 정의 굴절력을 가지는 제2 렌즈군; 및 상기 제2 렌즈군의 상 측에 구비되고, 부의 굴절력을 가지는 제3 렌즈군;을 포함하고, 상기 제1렌즈군과 제3렌즈군이 물체 측으로 이동하여 광각단에서 망원단으로 주밍을 수행한다. 그 외에도 다양한 실시 예들이 가능하다.

Description

렌즈 어셈블리 및 이를 포함한 전자 장치
다양한 실시예들은 렌즈 어셈블리 및 이를 포함한 전자 장치에 관한 것으로, 예를 들어, 소형화된 렌즈 어셈블리 및 이를 포함한 전자 장치에 관한 것이다.
전자 장치에서 제공하는 다양한 서비스 및 부가 기능들이 점차 확대되고 있다. 전자 장치, 예를 들어, 모바일 기기 또는 사용자 기기는, 다양한 센서 모듈들을 통해서 다양한 서비스를 제공할 수 있다. 전자 장치는, 멀티미디어 서비스, 예를 들어, 사진 서비스, 또는 동영상 서비스를 제공할 수 있다. 전자 장치의 사용이 증가함에 따라, 전자 장치와 기능적으로 연결된 카메라 사용도 점점 증대되고 있다. 이러한 사용자의 수요에 따라 전자 장치의 카메라 성능 및/또는 해상도 등이 향상되고 있다. 전자 장치의 카메라를 이용하여 다양한 종류의 풍경, 인물, 또는 셀프 샷의 사진을 찍을 수 있다. 그리고, 이러한 멀티미디어, 예를 들어, 사진, 또는 동영상은 소셜 네트워크 사이트 또는 다른 미디어 등에 공유될 수 있다.
전자 장치에 복수의 광학 장치들이 탑재되어 촬영 이미지의 품질을 향상시키고 있으며, 또한 촬영 이미지에 다양한 시각 효과를 부여할 수 있게 되었다. 예를 들어, 서로 다른 광학적 특성을 가진 복수의 카메라들(예: 망원 카메라와 광각 카메라)을 통해 피사체 이미지를 획득하고 이를 합성하여 촬영 이미지를 획득할 수 있다. 이러한 광학 장치는 디지털 카메라와 같이 촬영 기능에 특화된 전자 장치에 탑재될 수 있으며, 이동통신 단말기와 같이 사용자가 휴대하는 소형화된 전자 장치에도 탑재되고 있다.
소형 모바일 기기에서 고해상도의 줌 화상을 얻기 위해 광각과 망원 단초점 렌즈 모듈 두 개를 장착하여 줌 화상을 얻고 광각단과 망원단의 중간 영역은 전자적인 화상 처리로 줌 화상을 얻었다. 화상처리 기술이 점차 좋아지고 있으나 광각단과 망원단 대비 중간단(middle단)의 화질은 광학적인 줌 화상을 제공하는 광각단과 망원단 대비 저하될 수 밖에 없으며 망원단의 줌 배율이 커질수록 디지털 줌으로 보완해야 할 중간단 영역이 많아질 수 있다.
광학식 줌 렌즈에 반사 부재(예: 프리즘)를 포함하여 광 축을 약 90도 굴곡하여 렌즈 어셈블리의 두께를 얇게 하는 방식이 소형 디지털 카메라에 적용되어 왔다. 그러나 반사 부재 앞에 렌즈 1매를 포함하거나, 반사 부재에 렌즈 면을 설정하여 반사 부재가 굴절력을 가지거나 4 개 이상의 렌즈군을 배치하여 광학계의 길이는 길어지고, 줌 배율을 높이는 제안들이 많았다. 하지만, 이러한 줌렌즈는 소형화에 한계가 있어 소형 모바일 기기에 장착하기 어려우며 망원단의 밝기(작은 Fno(F 넘버))를 밝게 구성하기 어려운 문제가 있다.
다양한 실시 예들은 소형 모바일 기기에서 줌 화상을 화질 열화 없이 얻을 수 있는 광학식 렌즈 어셈블리를 제공하고, 소형 모바일 기기의 디자인을 유지 하면서 실장할 수 있는 소형 렌즈 어셈블리의 구성 방법을 제공한다.
다양한 실시예들은, 예컨대, 전자 장치(예: 휴대 단말)에서 소형의 렌즈 어셈블리를 제공할 수 있다.
또한, 다양한 실시예들은, 예컨대, 소형의 렌즈 어셈블리를 포함하는 전자 장치를 제공할 수 있다.
전술한 과제 또는 다른 과제를 해결하기 위한, 한 실시예에 따른 렌즈 어셈블리는, 물체 측으로부터 상 면(image plane)이 있는 상 측으로 배치된 복수의 렌즈들을 포함하는 렌즈 어셈블리에 있어서, 상기 물체 측으로부터 입사하는 광의 제1 광 축을 제2 광 축으로 굴곡시키는 반사 부재; 상기 반사 부재에 의해 굴곡된 광이 입사하도록 상기 제2 광 축 상에 배치되고, 정의 굴절력을 가지는 제1 렌즈군; 상기 제1 렌즈군의 상 측에 구비되고, 정의 굴절력을 가지는 제2 렌즈군; 및 상기 제2 렌즈군의 상 측에 구비되고, 부의 굴절력을 가지는 제3 렌즈군;을 포함하고, 상기 제1렌즈군과 제3렌즈군이 물체 측으로 이동하여 광각단에서 망원단으로 주밍을 수행하고, 상기 제1 렌즈군이 가장 물체 측에 배치된 제1 렌즈와, 상기 제1 렌즈의 상 측에 배치된 제2 렌즈를 포함하고, 상기 제1 렌즈가 50보다 큰 아베수를 가지고, 상기 제2 렌즈가 30 이하의 아베수를 가질 수 있다.
전술한 과제 또는 다른 과제를 해결하기 위한, 한 실시예에 따른 전자 장치는, 물체 측으로부터 상 면(image plane)이 있는 상 측으로 배치된 복수의 렌즈들을 포함하는 렌즈 어셈블리; 상기 렌즈 어셈블리를 통해 입사된 빛으로부터 피사체에 관한 정보를 획득하는 적어도 하나의 카메라 모듈; 및 상기 정보에 기반하여 상기 피사체의 이미지를 처리하는 이미지 시그널 프로세서;를 포함하고,
상기 렌즈 어셈블리가,
상기 물체 측으로부터 입사하는 광의 제1 광 축을 제2 광 축으로 굴곡시키는 반사 부재; 상기 반사 부재에 의해 굴곡된 광이 입사하도록 상기 제2 광 축 상에 배치되고, 정의 굴절력을 가지는 제1 렌즈군; 상기 제1 렌즈군의 상 측에 구비되고, 정의 굴절력을 가지는 제2 렌즈군; 및 상기 제2 렌즈군의 상 측에 구비되고, 부의 굴절력을 가지는 제3 렌즈군;을 포함하고,
상기 제1렌즈군과 제3렌즈군이 물체 측으로 이동하여 광각단에서 망원단으로 주밍을 수행하고, 상기 제1 렌즈군이 가장 물체 측에 배치된 제1 렌즈와, 상기 제1 렌즈의 상 측에 배치된 제2 렌즈를 포함하고, 상기 제1 렌즈가 50보다 큰 아베수를 가지고, 상기 제2 렌즈가 30 이하 의 아베수를 가질 수 있다.
다양한 실시예들은 광각단, 중간단, 망원단까지의 중 화상을 화질 열화 없이 얻을 수 있는 소형의 렌즈 어셈블리를 제공한다. 다양한 실시예들에 따른 렌즈 어셈블리는, 예컨대, 소형이고, 포커싱을 수행할 수 있다. 다양한 실시예들에 따른 렌즈 어셈블리는, 렌즈의 굴절력을 적절히 배분하여 수차 보정을 용이하게 할 수 있다. 또한, 다양한 실시예에 따른 렌즈 어셈블리를 포함한 전자 장치는, 예를 들면, 소형이고, 고성능으로 멀티미디어(예: 사진, 또는 동영상 등)를 촬영할 수 있다. 또한, 다양한 실시예에 따른 렌즈 어셈블리는 반사 부재를 포함하고, 반사 부재에 의해 손떨림 보정을 수행할 수 있다. 이 외에, 본 문서를 통해 직접적 또는 간접적으로 파악되는 다양한 효과들이 제공될 수 있다.
도 1은 다양한 실시예에 따른, 제1 수치 실시예의 렌즈 어셈블리를 광각단에서 도시한 것이다.
도 2는 다양한 실시예에 따른, 제1 수치 실시예의 렌즈 어셈블리를 망원단에서 도시한 것이다.
도 3은 다양한 실시예에 따른 렌즈 어셈블리에서 손떨림 보정을 하는 일 예를 도시한 것이다.
도 4는 다양한 실시예에 따른 렌즈 어셈블리에서 손떨림 보정을 하는 다른 예를 도시한 것이다.
도 5는 다양한 실시예에 따른 렌즈 어셈블리의 이미지 서클을 도시한 것이다.
도 6은 다양한 실시예에 따른 렌즈 어셈블리의 유효경과 단변 유효경을 설명하기 위한 도면이다.
도 7은 다양한 실시예에 따른, 제1 수치 실시예에 따른 렌즈 어셈블리의 광각단에서의 수차도를 나타낸 것이다.
도 8은 다양한 실시예에 따른, 제1 수치 실시예에 따른 렌즈 어셈블리의 망원단에서의 수차도를 나타낸 것이다.
도 9는 다양한 실시예에 따른, 제2 수치 실시예의 렌즈 어셈블리를 광각단에서 도시한 것이다.
도 10은 다양한 실시예에 따른, 제2 수치 실시예의 렌즈 어셈블리를 망원단에서 도시한 것이다.
도 11은 다양한 실시예에 따른, 제2 수치 실시예에 따른 렌즈 어셈블리의 광각단에서의 수차도를 나타낸 것이다.
도 12는 다양한 실시예에 따른, 제2 수치 실시예에 따른 렌즈 어셈블리의 망원단에서의 수차도를 나타낸 것이다.
도 13은 다양한 실시예에 따른, 제3 수치 실시예의 렌즈 어셈블리를 광각단에서 도시한 것이다.
도 14는 다양한 실시예에 따른, 제3 수치 실시예의 렌즈 어셈블리를 망원단에서 도시한 것이다.
도 15는 다양한 실시예에 따른, 제3 수치 실시예에 따른 렌즈 어셈블리의 광각단에서의 수차도를 나타낸 것이다.
도 16은 다양한 실시예에 따른, 제3 수치 실시예에 따른 렌즈 어셈블리의 망원단에서의 수차도를 나타낸 것이다.
도 17은 다양한 실시예에 따른, 제4 수치 실시예의 렌즈 어셈블리를 광각단에서 도시한 것이다.
도 18은 다양한 실시예에 따른, 제4 수치 실시예의 렌즈 어셈블리를 망원단에서 도시한 것이다.
도 19는 다양한 실시예에 따른, 제4 수치 실시예에 따른 렌즈 어셈블리의 광각단에서의 수차도를 나타낸 것이다.
도 20은 다양한 실시예에 따른, 제4 수치 실시예에 따른 렌즈 어셈블리의 망원단에서의 수차도를 나타낸 것이다.
도 21은 다양한 실시예에 따른 렌즈 어셈블리를 포함한 모바일 장치의 전면을 도시한 것이다.
도 22는 다양한 실시예에 따른 렌즈 어셈블리를 포함한 모바일 장치의 후면을 도시한 것이다.
도 23은 다양한 실시예들에 따른, 네트워크 환경 내의 전자 장치의 블록도이다.
도 24는 다양한 실시예들에 따른, 전자 장치 내의 카메라 모듈의 블록도이다.
도 25는 다양한 실시예에 따른 전자 장치에서 렌즈 어셈블리를 이용한 이미지 캡처링을 수행하는 방법의 상위 레벨 흐름도를 도시한 것이다.
이하, 본 문서의 다양한 실시예가 첨부된 도면을 참조하여 기재된다. 그러나, 이는 본 문서에 기재된 기술을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 문서의 실시예의 다양한 변경(modifications), 균등물(equivalents), 및/또는 대체물(alternatives)을 포함하는 것으로 이해되어야 한다. 도면의 설명과 관련하여, 유사한 구성요소에 대해서는 유사한 참조 부호가 사용될 수 있다.
본 문서에 개시된 다양한 실시예들에 따른 전자 장치는 다양한 형태의 장치가 될 수 있다. 전자 장치는, 예를 들면, 휴대용 통신 장치(예: 스마트폰), 컴퓨터 장치, 휴대용 멀티미디어 장치, 휴대용 의료 기기, 카메라, 웨어러블 장치, 또는 가전 장치를 포함할 수 있다. 본 문서의 실시예에 따른 전자 장치는 전술한 기기들에 한정되지 않는다.
본 문서의 다양한 실시예들 및 이에 사용된 용어들은 본 문서에 기재된 기술적 특징들을 특정한 실시예들로 한정하려는 것이 아니며, 해당 실시예의 다양한 변경, 균등물, 또는 대체물을 포함하는 것으로 이해되어야 한다. 도면의 설명과 관련하여, 유사한 또는 관련된 구성요소에 대해서는 유사한 참조 부호가 사용될 수 있다. 아이템에 대응하는 명사의 단수 형은 관련된 문맥상 명백하게 다르게 지시하지 않는 한, 상기 아이템 한 개 또는 복수 개를 포함할 수 있다. 본 문서에서, "A 또는 B", "A 및 B 중 적어도 하나", "A 또는 B 중 적어도 하나", "A, B 또는 C", "A, B 및 C 중 적어도 하나", 및 "A, B, 또는 C 중 적어도 하나"와 같은 문구들 각각은 그 문구들 중 해당하는 문구에 함께 나열된 항목들 중 어느 하나, 또는 그들의 모든 가능한 조합을 포함할 수 있다. "제 1", "제 2", 또는 "첫째" 또는 "둘째"와 같은 용어들은 단순히 해당 구성요소를 다른 해당 구성요소와 구분하기 위해 사용될 수 있으며, 해당 구성요소들을 다른 측면(예: 중요성 또는 순서)에서 한정하지 않는다. 어떤(예: 제 1) 구성요소가 다른(예: 제 2) 구성요소에, "기능적으로" 또는 "통신적으로"라는 용어와 함께 또는 이런 용어 없이, "커플드" 또는 "커넥티드"라고 언급된 경우, 그것은 상기 어떤 구성요소가 상기 다른 구성요소에 직접적으로(예: 유선으로), 무선으로, 또는 제 3 구성요소를 통하여 연결될 수 있다는 것을 의미한다.
본 문서의 다양한 실시예들에서 사용된 용어 "모듈"은 하드웨어, 소프트웨어 또는 펌웨어로 구현된 유닛을 포함할 수 있으며, 예를 들면, 로직, 논리 블록, 부품, 또는 회로와 같은 용어와 상호 호환적으로 사용될 수 있다. 모듈은, 일체로 구성된 부품 또는 하나 또는 그 이상의 기능을 수행하는, 상기 부품의 최소 단위 또는 그 일부가 될 수 있다. 예를 들면, 일실시예에 따르면, 모듈은 ASIC(application-specific integrated circuit)의 형태로 구현될 수 있다.
본 문서의 다양한 실시예들은 도 21 내지 도 24를 참조하면, 기기(machine)(예: 전자 장치(401))에 의해 읽을 수 있는 저장 매체(storage medium)(예: 내장 메모리(436) 또는 외장 메모리(438))에 저장된 하나 이상의 명령어들을 포함하는 소프트웨어(예: 프로그램(440))로서 구현될 수 있다. 예를 들면, 기기(예: 전자 장치(401))의 프로세서(예: 프로세서(420))는, 저장 매체로부터 저장된 하나 이상의 명령어들 중 적어도 하나의 명령을 호출하고, 그것을 실행할 수 있다. 이것은 기기가 상기 호출된 적어도 하나의 명령어에 따라 적어도 하나의 기능을 수행하도록 운영되는 것을 가능하게 한다. 상기 하나 이상의 명령어들은 컴파일러에 의해 생성된 코드 또는 인터프리터에 의해 실행될 수 있는 코드를 포함할 수 있다. 기기로 읽을 수 있는 저장 매체는, 비일시적(non-transitory) 저장 매체의 형태로 제공될 수 있다. 여기서, ‘비일시적’은 저장 매체가 실재(tangible)하는 장치이고, 신호(signal)(예: 전자기파)를 포함하지 않는다는 것을 의미할 뿐이며, 이 용어는 데이터가 저장 매체에 반영구적으로 저장되는 경우와 임시적으로 저장되는 경우를 구분하지 않는다.
일 실시예에 따르면, 본 문서에 개시된 다양한 실시예들에 따른 방법은 컴퓨터 프로그램 제품(computer program product)에 포함되어 제공될 수 있다. 컴퓨터 프로그램 제품은 상품으로서 판매자 및 구매자 간에 거래될 수 있다. 컴퓨터 프로그램 제품은 기기로 읽을 수 있는 저장 매체(예: compact disc read only memory(CD-ROM))의 형태로 배포되거나, 또는 어플리케이션 스토어(예: 플레이 스토어TM)를 통해 또는 두 개의 사용자 장치들(예: 스마트 폰들) 간에 직접, 온라인으로 배포(예: 다운로드 또는 업로드)될 수 있다. 온라인 배포의 경우에, 컴퓨터 프로그램 제품의 적어도 일부는 제조사의 서버, 어플리케이션 스토어의 서버, 또는 중계 서버의 메모리와 같은 기기로 읽을 수 있는 저장 매체에 적어도 일시 저장되거나, 임시적으로 생성될 수 있다.
다양한 실시예들에 따르면, 상기 기술한 구성요소들의 각각의 구성요소(예: 모듈 또는 프로그램)는 단수 또는 복수의 개체를 포함할 수 있으며, 복수의 개체 중 일부는 다른 구성요소에 분리 배치될 수도 있다. 다양한 실시예들에 따르면, 전술한 해당 구성요소들 중 하나 이상의 구성요소들 또는 동작들이 생략되거나, 또는 하나 이상의 다른 구성요소들 또는 동작들이 추가될 수 있다. 대체적으로 또는 추가적으로, 복수의 구성요소들(예: 모듈 또는 프로그램)은 하나의 구성요소로 통합될 수 있다. 이런 경우, 통합된 구성요소는 상기 복수의 구성요소들 각각의 구성요소의 하나 이상의 기능들을 상기 통합 이전에 상기 복수의 구성요소들 중 해당 구성요소에 의해 수행되는 것과 동일 또는 유사하게 수행할 수 있다. 다양한 실시예들에 따르면, 모듈, 프로그램 또는 다른 구성요소에 의해 수행되는 동작들은 순차적으로, 병렬적으로, 반복적으로, 또는 휴리스틱하게 실행되거나, 상기 동작들 중 하나 이상이 다른 순서로 실행되거나, 생략되거나, 또는 하나 이상의 다른 동작들이 추가될 수 있다. 본 문서에서, 사용자라는 용어는 전자 장치를 사용하는 사람 또는 전자 장치를 사용하는 장치(예: 인공지능 전자 장치)를 지칭할 수 있다.
이하, 첨부 도면을 참조하여, 다양한 실시예에 따른 렌즈 어셈블리, 및 이를 포함한 장치에 대해 첨부 도면을 참조하여 상세히 설명한다.
도 1은 다양한 실시예에 따른 제1수치 실시예의 렌즈 어셈블리(100-1)를 광각단에서 도시한 것이고, 도 2는 렌즈 어셈블리(100-1)를 망원단에서 도시한 것이다.
다양한 실시예에 따른 렌즈 어셈블리(100-1)는 물체 측(object side)(O)으로부터 상 면(image plane)이 있는 상 측(image side)(I)으로 배치된 복수의 렌즈들을 포함한다.
이하에서 각 렌즈의 구성을 설명함에 있어, 상 측(image side)은, 예를 들면, 상(image)이 결상되는 상면(IMG)(image plane)이 있는 방향을 나타낼 수 있고, 물체 측(object side)은 피사체(object)가 있는 방향을 나타낼 수 있다. 또한, 렌즈의 "물체측 면(object side surface)"은, 예를 들면, 광 축(OA2)을 기준으로 하여 피사체가 있는 쪽의 렌즈 면으로 광 축(OA2)을 기준으로 빛이 입사하는 면을 의미하며, "상측 면(image side surface)"은 광 축(OA2)을 기준으로 하여 상면(IMG)이 있는 쪽의 렌즈 면으로 광 축(OA2)을 기준으로 빛이 출사하는 면을 나타낼 수 있다. 상면(IMG)은 예를 들어, 촬상 소자 면 또는 이미지 센서 면일 수 있다. 이미지 센서는 예를 들어, 씨모스 이미지 센서(CMOS, complementary metal oxide semiconductor) 또는 전하 결합 소자(CCD, charge coupled device)와 같은 센서를 포함할 수 있다. 상기 이미지 센서는 이에 한정되지 않고, 예를 들면, 피사체의 이미지를 전기적인 영상 신호로 변환하는 소자일 수 있다. 반사 부재(RE), 각 렌즈, 광학 소자(OD)의 물체 측면과 상 측면에 대해 광 축(OA1,OA2)을 따라 물체 측(O)으로부터 상 측(I)으로 순차적으로 S1, S2, S3, 쪋, Sn (n은 자연수)의 부재 번호를 부쳤다. 다양한 실시 예에 따르면, 이미지 센서의 위에 마이크로 렌즈 층(미도시)이 더 형성될 수 있다. 복수의 렌즈들 또는 필터가 형성되는 구조는 앞에서 설명된 것으로 한정되지 않으며, 추가적인 렌즈 또는 필터가 더 형성될 수 있으며, 복수의 렌즈들 중에서 적어도 하나는 생략될 수 있다.
다양한 실시예에 따른 렌즈 어셈블리(100-1)는 물체 측(O)으로부터 입사하는 광의 제1 광 축(OA1)을 제2 광 축(OA2)으로 굴곡시키는 반사 부재(RE), 반사 부재(RE)에 의해 굴곡된 광이 입사되도록 제2 광 축(OA2) 상에 배치되고, 정(positive)의 굴절력을 가지는 제1 렌즈군(G11), 제1 렌즈군(G11)의 상 측(I)에 구비되고, 정의 굴절력을 가지는 제2 렌즈군(G21), 및 제2 렌즈군(G21)의 상 측(I)에 구비되고, 부(negative)의 굴절력을 가지는 제3 렌즈군(G31)을 포함한다. 정의 굴절력을 가지는 렌즈에 평행한 빛이 입사되면, 렌즈를 통과한 빛은 집중될 수 있다. 예를 들면, 정의 굴절력을 가지는 렌즈는 볼록 렌즈의 원리에 기반한 렌즈일 수 있다. 반면에, 부의 굴절력을 가지는 렌즈에 평행한 빛이 입사되면, 렌즈를 통과한 빛은 퍼질 수 있다. 예를 들면, 부의 굴절력을 가지는 렌즈는 오목 렌즈의 원리에 기반한 렌즈일 수 있다. 도 1에서와 같이 반사 부재(RE)가 구비된 경우에, 물체 측(O)은 굽은 광 축(OA1)(OA2)을 일직선으로 폈을 때를 기준으로 한다. 반사 부재(RE)는 예를 들어, 프리즘 또는 반사 미러를 포함할 수 있다. 다양한 실시예에 따른 렌즈 어셈블리(100-1)는 반사 부재(RE)의 물체 측(O)에 어떠한 렌즈도 구비되지 않는다. 반사 부재(RE) 앞에 렌즈가 구비되는 경우 렌즈 어셈블리(100-1)를 소형화 하기 어렵다. 반사 부재(R2)는 광이 입사되는 입사 면(S1), 광이 반사되는 반사 면(S2), 및 광이 출사되는 출사 면(S3)을 포함할 수 있다. 반사 부재(RE)는 글래스 또는 플라스틱을 포함할 수 있다.
렌즈 어셈블리(100-1)가 광각단(wide angle end)에서 망원단(telephoto angle end)으로 주밍(zooming)시, 제1 렌즈군(G11)과 제3 렌즈군(G31)이 이동하고, 제2 렌즈군(G21)이 고정될 수 있다. 제1 렌즈군(G11)과 제3 렌즈군(G31)이 피사체의 물체 거리 변화에 따른 상면 맞춤을 위한 포커싱을 수행할 수 있다.
다양한 실시예에 따르면, 카메라의 촬영 시 흔들리는 손떨림 에러의 보정을 할 수 있다. 도 3 및 도 4는 손떨림 보정 동작을 개략적으로 설명하기 위한 개념도이다. 도 3에 도시된 바와 같이 적어도 하나의 렌즈군(L)을 제2 방향(DD2)에 대해 실질적으로 수직한 방향(VD)으로 또는 실질적으로 수평한 방향(TD)으로 이동하여 손떨림 보정을 수행할 수 있다. 적어도 하나의 렌즈군(L)은 제1 렌즈군(G11), 제2 렌즈군(G21), 제3 렌즈군(G31)을 포함할 수 있다. 제1 방향(DD1)이 도 1의 제1 광축 (OA1) 방향이고, 제2 방향(DD2)이 도 1의 제2 광축(OA2) 방향일 수 있다.
또는, 도 4에 도시된 바와 같이 반사 부재(RE)가 틸팅하여 피치 방향(PD)의 손떨림 보정을 수행하고, 제1 렌즈군(G11), 제2 렌즈군(G21), 제3 렌즈군(G31)이 제2 방향(DD2)에 대해 실질적으로 수평하게 이동하여 요(yaw) 방향(YD)의 손떨림 보정을 수행할 수 있다. 도 4에서 편의상 제1 렌즈군(G11), 제2 렌즈군(G21), 제3 렌즈군(G31)을 L로 나타내었다.
제1 렌즈군(G11)은 가장 물체 측(O)에 배치된 제1 렌즈(L11)와, 제1 렌즈(L11)의 상 측(I)에 배치된 제2 렌즈(L21)를 포함할 수 있다. 제1 렌즈(L11)은 예를 들어, 제1 렌즈(L11)는 정의 굴절력을 가지고, 제2 렌즈(L21)는 부의 굴절력을 가질 수 있다. 제1 렌즈(L11)가 물체 측(O)을 향해 볼록(convex)한 물체측 면(S4)을 포함할 수 있다. 제1 렌즈(L11)가 메니스커스(meniscus) 렌즈일 수 있다. 제2 렌즈(L21)가 물체 측(O)을 향해 볼록한 메니스커스 렌즈일 수 있다.
제1 렌즈(L11)가 50보다 큰 아베수를 가지고, 제2 렌즈(L21)가 30 이하 의 아베수를 가질 수 있다. 제1 렌즈(L11)와 제2 렌즈(L21)의 아베수는 파장 546.0740 NM의 아베수로 정의된다. 상기 조건은 종색 수차의 보정을 위한 것으로, 상기 조건을 만족하는 범위에서, 종색 수차가 양호하게 보정될 수 있다.
제1 렌즈군(G11)은 Fno를 결정하는 조리개(ST)를 포함할 수 있다. 다양한 실시예에 따르면, 조리개(ST)는 개구(aperture)와 차단부(미도시)를 포함하는 구조물에 의해 형성된 또는 정의된 가상의 평면으로서 빛이 입사되는 개구가 포함된 가상의 평면일 수 있다. 예를 들어, 차단부(미도시)는 개구의 크기(예: 렌즈로 들어가는 빛의 물리적인 양)를 조절할 수 있으며, 조리개(ST)는 이러한 개구를 포함하는 가상의 평면을 의미할 수 있다. 조리개(ST)는 예를 들어, 제1 렌즈(L11)의 물체측 면(S4)에 구비되어, 렌즈 어셈블리(100-1)를 소형화 하는데 기여할 수 있다. 조리개(ST)는 광속의 직경을 조절하기 위한 것으로, 예를 들어 개구 조리개, 가변 조리개, 또는 마스크 형태의 스톱(stop) 등을 포함할 수 있다. 다양한 실시 예에 따라, 도면에서는 조리개(ST)가 제1 렌즈(L11)의 물체측 면(S4)에 인접하여 배치된 것으로 도시되었으나, 이에 한정되지 않으며, 제1 렌즈(L11)의 상측 면(S5)에 배치될 수도 있다. 예를 들면, 조리개(ST)의 크기가 조절됨으로써, 이미지 센서의 상면(IMG)에 도달하는 빛의 양이 조절될 수 있다.
제2 렌즈군(G21)이 부의 굴절력을 갖는 제3 렌즈(L31), 정의 굴절력 또는 부의 굴절력을 갖는 제4 렌즈(L41), 정의 굴절력을 갖는 제5 렌즈(L51)를 포함할 수 있다. 제3 렌즈(L31)가 예를 들어, 양오목(bi-concave) 렌즈이고, 제4 렌즈(L41)가 양볼록 렌즈이고, 제5 렌즈(L51)가 물체 측(O)을 향해 오목(concave)한 메니스커스 렌즈일 수 있다.
제3 렌즈군(G31)이 정의 굴절력을 갖는 제6 렌즈(L61)와 부의 굴절력을 갖는 제7 렌즈(L71)를 포함할 수 있다. 제6 렌즈(L61)가 물체 측(O)을 향해 오목한 메니스커스 렌즈일 수 있고, 제7 렌즈(L71)가 양오목 렌즈일 수 있다. 제7 렌즈(L71)가 렌즈 어셈블리(100-1)의 가장 상 측(I)에 배치될 수 있다.
다양한 실시 예에 따르면, 제7 렌즈(L71)와 상 면(IMG) 사이에 적어도 하나의 광학 소자(OD)가 구비될 수 있다. 광학 소자(OD)는 예를 들어 저역 통과 필터(low pass filter), 적외선 차단 필터(IR(infrared)-cut filter), 또는 커버 글라스 중 적어도 하나를 포함할 수 있다. 예를 들어, 광학 소자(OD)(예: 적외선 차단 필터)를 포함하는 경우, 이미지 센서를 통해 검출, 촬영되는 이미지 등의 색감을 사람이 실제 사물을 보았을 때 느끼는 색감에 근접하게 할 수 있다. 예를 들어, 광학 소자로서 적외선 차단 필터가 구비되는 경우, 가시광선은 투과되고, 적외선은 외부로 방출되도록 하여, 적외선이 상면에 전달되지 않도록 할 수 있다. 하지만, 광학 소자 없이 렌즈 어셈블리를 구성하는 것도 가능하다.
다양한 실시예에 따른 렌즈 어셈블리는 다음 식을 만족할 수 있다. 이하의 식들에 대해서는 도 1에 도시된 제1수치 실시예에 따른 렌즈 어셈블리(100-1)를 참조하여 설명하기로 한다. 하지만, 다른 실시예들에 대해서도 동일하게 적용될 수 있다.
0.5 < EFL1G / EFLW < 3.0 <식 1>
0.1 < EFL2G / EFLT < 1.0 <식 2>
여기서, EFL1G는 제1 렌즈군의 초점 거리를, EFLW는 광각단에서의 렌즈 어셈블리의 초점 거리를, EFL2G는 제2 렌즈군의 초점 거리를, EFLT는 망원단에서의 렌즈 어셈블리의 초점 거리를 나타낸다.
(EFL1G / EFLW)가 식 1의 하한 값보다 작으면, 제1 렌즈군의 초점 거리가 너무 작아서 제1 렌즈군의 민감도가 커지고, (EFL1G / EFLW)가 식 1의 상한 값보다 크면 제1 렌즈군의 파워가 약해져서 광학 수차를 보정하는 것이 어렵고, 광 경로 길이가 길어져 렌즈 어셈블리를 소형화 하기 어렵다.
(EFL2G / EFLT)가 식 2의 하한 값보다 작으면, 제2 렌즈군의 초점 거리가 너무 작아서 제2 렌즈군의 민감도가 커지고, (EFL2G / EFLT)가 식 2의 상한 값보다 크면 제2 렌즈군의 파워가 약해져서 광학 수차를 보정하는 것이 어렵고, 광 경로 길이가 길어져 렌즈 어셈블리를 소형화 하기 어렵다.
다양한 실시예에 따른 렌즈 어셈블리는 다음 식을 만족할 수 있다.
Ld / D < 1 <식 3>
여기서, Ld는 렌즈 어셈블리의 가장 상 측(I)에 배치된 마지막 렌즈(예: 제7 렌즈(L71))의 광각단에서의 최대 유효경(예: max clear aperture) 크기를, D는 이미지 서클 사이즈(image circle size)를 나타낸다. 예를 들면, 렌즈에서, 실질적으로 외부의 광이 가장 많이 투과되거나, 이미지를 획득하는데 있어 중심이 될 수 있는 광들이 통과되는 영역을 "유효경"이라 정의할 수 있다. 또한, 렌즈 어셈블리에서 반사된 광의 입사를 차단하기 위해, 대다수의 광들이 통과되는 유효경의 크기에 대응하여 차광 부재(미도시)가 제1 렌즈(L11) 주변에 형성될 수 있다.
도 5는 렌즈 어셈블리(100-1)의 이미지 센서(IMG)와 이미지 서클(IC)을 도시한 것이다. 본 명세서에서 이미지 센서와 상 면에 대해 같은 도면 부호를 사용하기로 한다. 이미지 서클(IC)은 이미지 센서(IMG)의 대각선 길이를 직경으로 가지는 서클을 나타낼 수 있다. D는 이미지 서클(IC)의 사이즈를 나타내는데, 이미지 서클(IC)의 직경 또는 이미지 센서(IMG)의 대각선 길이를 나타낸다. 일반적으로 상고(image height)는 이미지 센서(IMG)의 대각선 길이의 반을 나타낸다. V는 이미지 센서(IMG)의 단변 길이를, H는 장변 길이를 나타낸다. 식 1은 렌즈 어셈블리의 가장 상 측(I)에 있는 마지막 렌즈(L71)의 광각단에서의 최대 유효경 크기가 이미지 서클 사이즈(D)보다 작은 것을 한정한다. 식 1을 만족할 때, 렌즈 어셈블리가 소형화될 수 있다.
도 6은 렌즈 어셈블리(100-1)의 일부 확대도를 나타낸 것으로, 가장 상 측(I)에 위치한 제7 렌즈(L71)와, 광학 소자(OD)와, 이미지 센서(IMG)를 나타낸다. Ld는 가장 상 측에 위치한 제7 렌즈(L71)의 광각단에서의 최대 유효경을, Lv는 광각단에서의 이미지 센서(IMG)의 단변의 끝점(P1)에 도달하는 광선(LR)이 제7 렌즈(L71))를 지나가는 점(P2)에서의 유효경을 나타낸다. Lv를 단변 유효경이라고 한다. 식 1은 제7 렌즈(L71)의 광각단에서의 최대 유효경(Ld)과 이미지 서클(IC)의 직경(D)의 비를 나타낸 것이다. 식 1을 만족할 때, 제7 렌즈(L71)의 사이즈가 이미지센서 조립체 보다 작게 구성되어 렌즈 어셈블리의 사이즈를 소형화 할 수 있다.
다양한 실시예에 따르면, 도 1을 참조하면, 렌즈 어셈블리(100-1)의 전체 광 경로 길이(TTL:total track length)가 약 35mm 보다 작거나 같을 수 있다. 렌즈 어셈블리(100-1)의 전체 광 경로 길이(TTL)는 반사 부재(RE)의 입사면(S1)에서부터 반사면(S2)까지의 거리(ttla)와 반사 부재(RE)의 반사면(S2)에서부터 출사면(S3)을 지나 상 면(IMG)까지의 거리(ttlb)의 합을 나타낼 수 있다. 전체 광 경로 길이(TTL)를 35mm 이하로 함으로써 렌즈 어셈블리를 소형화할 수 있고, 렌즈 어셈블리(100-1)를 전자 장치에 채용할 때, 반사 부재(RE)에 의해 렌즈 어셈블리(100-1)의 배치의 자유도가 높아질 수 있으므로 렌즈 어셈블리를 소형의 전자 장치에 용이하게 내장할 수 있다. 다양한 실시예에 따르면, 광 축(OA1)(OA2) 상에 광학 소자(OD)(예: 적외선 차단 필터, 커버 글라스)가 구비된 경우, 전체 광 경로 길이(TTL)는 이에 대해 공기 환산 값을 적용할 수 있다. 예를 들면, 광학 소자(OD)의 굴절률, 두께를 각각 n, d라고 할 때, (1-(1/n))*d 의 값이 전체 광 경로 길이(TTL) 계산시 적용될 수 있다.
다양한 실시예에 따르면, 물체 측(O)에서부터 입사한 광을 반사 부재(RE)를 이용하여 90도 굴곡시켜 렌즈 어셈블리(100-1)의 두께 부분이 모바일 기기의 두께 부분과 대응 되도록 하여 소형이고 박형화된 모바일 기기에 용이하게 설치할 수 있다. 또한, 다양한 실시예에 따르면, 렌즈 어셈블리에 포함된 렌즈 군의 굴절력을 순차적으로 정, 정, 부로 배치하여 결상되는 상의 상고(image height) 또는 이미지 서클(IC)의 크기보다 마지막 렌즈(예: 제7 렌즈(L71))의 최대 유효경을 작게 하고, 렌즈의 아베수를 적절하게 배분하여 광학 수차를 효율적으로 감소시켜 높은 해상도를 달성하면서 렌즈 어셈블리를 소형화 할 수 있다. 예를 들면, 아베수는, 렌즈의 빛 분산에 관한 성질을 규정한 양을 나타내는 것으로 굴절율에 따라 아베수가 다르게 형성될 수 있으며, 분산의 역수를 의미할 수 있다. 일 실시 예에서, 렌즈의 아베수를 배분하여 선명한 상을 획득할 수 있다. 예컨대, 아베수가 높을수록 더 선명한 상(image)을 얻을 수 있다. 굴절율이 높아질수록 아베수는 낮아지고, 굴절율이 높아질수록 분산이 커져서 선명한 상을 얻을 수 있다.
다양한 실시예에 따른 렌즈 어셈블리는 핸드폰이나, 스마트 폰, 디지털 카메라와 같이 모바일 장치에 장착될 수 있다. 또한, 다양한 실시예에 따른 렌즈 어셈블리는 태블릿 컴퓨팅 디바이스, 노트북, 넷북, 노트북, 서브 노트북 및 울트라 북 컴퓨터, 감시용 카메라, 자동차용 카메라, AR(augmented reality) 글래스, VR(virtual reality) 글래스, 액션 캠(action cam) 등에 적용될 수 있다. 또한, 더 높은 배율의 줌 화상을 얻기 위하여, 예를 들면 광각 렌즈 카메라 또는 하나 이상의 다른 카메라 모듈과 함께 듀얼 카메라(dual camera), 멀티 카메라(multi camera)를 구성할 수 있다.
다양한 실시예 따르면, 광학 줌 배율을 얻기 위하여 광각단에서 망원단으로 주밍 시에 제1 렌즈군(G11)과 제3 렌즈군(G31)이 물체측(O) 방향으로 이동한다. 또한, 제3 렌즈군(G31)이 물체측(O)으로부터 순차적으로 정의 굴절력을 갖는 제6 렌즈(L61)와 물체 측(O)을 향해 오목한 부의 굴절력을 가지는 제7 렌즈(L71)를 포함하여, 제7 렌즈(L71)의 최대 유효경이 이미지 서클(IC)의 직경(D)보다 작게 하고, 그럼으로써 렌즈 어셈블리를 소형화 할 수 있다.
또한, 다양한 실시예에 따르면, 제2 렌즈군(G21)이 물체 측(O)으로부터 상 측(I)으로 순차적으로 배치된 부렌즈, 정렌즈, 정렌즈를 포함하거나 또는 부렌즈, 부렌즈, 정렌즈를 포함하고, 제3 렌즈군(G31)이 물체 측(O)으로부터 순차적으로 배치된 정렌즈와 부렌즈를 포함하여 광각단으부터 망원단까지의 영역에서의 색수차를 감소시킬 수 있고, 주밍 시에 발생하는 비점 수차(astigmatism )와 상면 만곡(curvature of image field) 수차를 효율적으로 저감할 수 있다.
다양한 실시예에 따르면, 렌즈 어셈블리에 포함된 제1 내지 제7 렌즈(L11)(L21)(L31)(L410(L51)(L61)(L71)를 플라스틱으로 형성할 수 있다. 또한, 다양한 실시예에 따른 렌즈 어셈블리는 적어도 하나의 비구면(aspherical surface) 렌즈를 포함할 수 있다. 예를 들어 제1 내지 제7 렌즈(L11)(L21)(L31)(L410(L51)(L61)(L71)가 각각 양면 비구면 렌즈일 수 있다.
도 7은 제1 수치 실시예에 따른 렌즈 어셈블리(100-1)의 광각단에서의 종방향 구면수차(longitudinal spherical aberration), 비점수차(astigmatism)(예: 상면만곡), 왜곡수차(distortion)(또는 왜곡)를 나타낸 것이다. 도 8은 제1 수치 실시예에 따른 렌즈 어셈블리(100-1)의 망원단에서의 종방향 구면수차(longitudinal spherical aberration), 비점수차(astigmatism)(예: 상면만곡), 왜곡수차(distortion)(또는 왜곡)를 나타낸 것이다. 일 실시 예에서, 종방향 구면수차의 가로축은 계수를 나타내고, 세로축은 광축의 중심으로부터의 거리를 규격화(normalization)하여 나타낸 것으로써, 빛의 파장에 따른 종방향 구면수차의 변화가 도시된다. 종방향 구면수차는, 예를 들면, 파장이 656.2725(NM, nanometer)(예: 빨강색), 587.5618(NM)(예: 노랑색), 546.0740(NM), 486.1327(NM)(예: 파랑색), 435.8343(NM)인 광에 대해 각각 나타내며, 상면만곡으로는 자오상면 만곡(Y: tangential(or meridional) field curvature)과 구결상면 만곡(X: sagittal field curvature)을 보여준다. 상면만곡은 파장이 546.0740(NM)인 광에 대해 나타낸 것이며, 왜곡수차는 파장이 546.0740(NM)인 광에 대해 나타낸 것이다. 다양한 실시예에서, 왜곡수차를 참조하면, 렌즈 어셈블리(100-1)를 통해 촬영된 이미지는, 광축(OA1)(OA2)에서 벗어난 지점에서 왜곡이 발생하기는 하나, 이러한 왜곡은 렌즈를 이용하는 광학 장치에서 일반적으로 나타날 수 있는 정도의 것이며, 왜곡율이 약 2% 미만으로서, 양호한 광학 특성을 제공할 수 있다.
도 9는, 다양한 실시예에 따른, 제2 수치 실시예의 렌즈 어셈블리(100-2)를 광각단에서 도시한 것이고, 도 10은 망원단에서 도시한 것이다. 렌즈 어셈블리(100-2)는 물체 측(O)으로부터 상 측(I)으로 배열된 정의 굴절력을 가지는 제1 렌즈군(G12), 정의 굴절력을 가지는 제2 렌즈군(G22), 부의 굴절력을 가지는 제3 렌즈군(G32)을 포함한다. 제1 렌즈군(G12)은 정의 굴절력을 갖는 제1 렌즈(L12), 부의 굴절력을 갖는 제2 렌즈(L22)를 포함한다. 제2 렌즈군(G22)은 부의 굴절력을 갖는 제3 렌즈(L32), 정의 굴절력을 갖는 제4 렌즈(L42), 정의 굴절력을 갖는 제5 렌즈(L52)를 포함할 수 있다. 제3 렌즈군(G32)은 정의 굴절력을 갖는 제6 렌즈(L62)와, 부의 굴절력을 갖는 제7 렌즈(L72)를 포함할 수 있다. 제2 수치 실시예의 렌즈 어셈블리(100-2)의 각 렌즈는 제1 수치 실시예의 렌즈 어셈블리(100-1)에 대해 설명한 것과 실질적으로 동일하므로 여기서는 상세한 설명을 생략하기로 한다.
도 11은 제2 수치 실시예에 따른 렌즈 어셈블리(100-2)의 광각단에서의 종방향 구면수차(longitudinal spherical aberration), 비점수차(astigmatism), 왜곡수차(distortion)(또는 왜곡)를 나타낸 것이다. 도 12는 제2 수치 실시예에 따른 렌즈 어셈블리(100-2)의 망원단에서의 종방향 구면수차(longitudinal spherical aberration), 비점수차(astigmatism), 왜곡수차(distortion)(또는 왜곡)를 나타낸 것이다.
도 13은, 다양한 실시예에 따른, 제3 수치 실시예의 렌즈 어셈블리(100-3)를 광각단에서 도시한 것이고, 도 14는 망원단에서 도시한 것이다. 렌즈 어셈블리(100-3)는 물체 측(O)으로부터 상 측(I)으로 배열된 정의 굴절력을 가지는 제1 렌즈군(G13), 정의 굴절력을 가지는 제2 렌즈군(G23), 부의 굴절력을 가지는 제3 렌즈군(G33)을 포함한다. 제1 렌즈군(G13)은 정의 굴절력을 갖는 제1 렌즈(L13), 부의 굴절력을 갖는 제2 렌즈(L23)를 포함한다. 제2 렌즈군(G23)은 부의 굴절력을 갖는 제3 렌즈(L33), 부의 굴절력을 갖는 제4 렌즈(L43), 정의 굴절력을 갖는 제5 렌즈(L53)를 포함할 수 있다. 제3 렌즈군(G33)은 정의 굴절력을 갖는 제6 렌즈(L63)와, 부의 굴절력을 갖는 제7 렌즈(L73)를 포함할 수 있다. 제3 수치 실시예의 렌즈 어셈블리(100-3)의 각 렌즈는 제1 수치 실시예의 렌즈 어셈블리(100-1)에 대해 설명한 것과 실질적으로 동일하므로 여기서는 상세한 설명을 생략하기로 한다.
도 15는 제3 수치 실시예에 따른 렌즈 어셈블리(100-3)의 광각단에서의 종방향 구면수차(longitudinal spherical aberration), 비점수차(astigmatism), 왜곡수차(distortion)(또는 왜곡)를 나타낸 것이다. 도 16은 제3 수치 실시예에 따른 렌즈 어셈블리(100-3)의 망원단에서의 종방향 구면수차(longitudinal spherical aberration), 비점수차(astigmatism), 왜곡수차(distortion)(또는 왜곡)를 나타낸 것이다.
도 17은, 다양한 실시예에 따른, 제4 수치 실시예의 렌즈 어셈블리(100-4)를 광각단에서 도시한 것이고, 도 18은 망원단에서 도시한 것이다. 렌즈 어셈블리(100-4)는 물체 측(O)으로부터 상 측(I)으로 배열된 정의 굴절력을 가지는 제1 렌즈군(G14), 정의 굴절력을 가지는 제2 렌즈군(G24), 부의 굴절력을 가지는 제3 렌즈군(G34)을 포함한다. 제1 렌즈군(G14)은 정의 굴절력을 갖는 제1 렌즈(L14), 부의 굴절력을 갖는 제2 렌즈(L24)를 포함한다. 제2 렌즈군(G24)은 부의 굴절력을 갖는 제3 렌즈(L34), 부의 굴절력을 갖는 제4 렌즈(L44), 정의 굴절력을 갖는 제5 렌즈(L54)를 포함할 수 있다. 제3 렌즈군(G34)은 정의 굴절력을 갖는 제6 렌즈(L64)와, 부의 굴절력을 갖는 제7 렌즈(L74)를 포함할 수 있다. 제4 수치 실시예의 렌즈 어셈블리(100-4)의 각 렌즈는 제1 수치 실시예의 렌즈 어셈블리(100-1)에 대해 설명한 것과 실질적으로 동일하므로 여기서는 상세한 설명을 생략하기로 한다.
도 19는 제4 수치 실시예에 따른 렌즈 어셈블리(100-4)의 광각단에서의 종방향 구면수차(longitudinal spherical aberration), 비점수차(astigmatism), 왜곡수차(distortion)(또는 왜곡)를 나타낸 것이다. 도 20은 제4 수치 실시예에 따른 렌즈 어셈블리(100-4)의 망원단에서의 종방향 구면수차(longitudinal spherical aberration), 비점수차(astigmatism), 왜곡수차(distortion)(또는 왜곡)를 나타낸 것이다.
한편, 다양한 실시예에 따른 렌즈 어셈블리에 사용되는 비구면의 정의를 나타내면 다음과 같다.
비구면 형상은 광축 방향을 x축으로 하고, 광축 방향에 대해 수직한 방향을 y축으로 할 때, 광선의 진행 방향을 정으로 하여 다음과 같은 식으로 나타낼 수 있다. 여기서, x는 렌즈의 정점으로부터 광축 방향으로의 거리를, y는 광축에 대해 수직한 방향으로의 거리를, K는 코닉 상수(conic constant)를, A, B, C, D, …는 비구면 계수를, c는 렌즈의 정점에 있어서의 곡률 반경(R, radius of curvature)의 역수(1/R)를 각각 나타낸다. 곡률 반경(radius of curvature)은, 예를 들면, 곡면이나 곡선의 각 점에 있어서의 만곡의 정도를 표시하는 값을 나타낼 수 있다
Figure PCTKR2022007492-appb-img-000001
<식 4>
본 발명에서는 다음과 같이 다양한 설계에 따른 수치 실시예를 통해 렌즈 어셈블리를 구현할 수 있다.
각 수치 실시예에서 반사 부재, 렌즈, 광학 소자의 면 번호(S1, S2, S3, …, Sn: n은 자연수)는 물체 측(O)으로부터 상 측(I)으로 순차적으로 일렬로 부쳐진다. EFL은 렌즈 어셈블리의 전체 초점 거리를, FNO는 F 넘버를, FOV는 반화각을, R은 곡률 반경을, Dn은 렌즈의 두께 또는 렌즈와 렌즈 사이의 간격을, nd는 굴절률을, vd는 아베수를 나타낸다. ST는 조리개를 나타내고, obj는 피사체를 나타낸다. *는 비구면을 나타낸다.
<제1 수치 실시예>
도 1 및 도 2는, 다양한 실시예에 따른, 제1 수치 실시예의 렌즈 어셈블리(100-1)를 도시한 것이며, 표 1은, 예를 들면, 제1 수치 실시예의 설계 데이터를 나타낸 것이다.
렌즈면 R Dn nd vd
obj infinity D0    
S1 infinity 2.5 1.5168 64.2
S2 infinity 2.5 1.5168 64.2
S3 infinity D1    
S4(ST)* 6.18 1.441 1.5348 55.71
S5* 47.702 0.482    
S6* 10.748 0.65 1.62598 25.12
S7* 5.919 D2    
S8* -7.627 0.65 1.5813 35.84
S9* 61.851 0.041    
S10* 18.624 1.175 1.54397 55.93
S11* -10.004 0.041    
S12* -11.327 1.05 1.54397 55.93
S13* -5.946 D3    
S14* -7.721 0.885 1.67074 19.3
S15* -5.633 0.228    
S16* -6.926 0.65 1.54397 55.93
S17* 23.484 D4    
S18 infinity 0.11 1.5168 64.2
S19 infinity 0.612    
IMG infinity 0    
표2는 제1수치 실시예에서의 비구면 계수를 나타낸 것이다.
  K A B C D E
S4 0.0403 -3.63E-05 -4.09E-06 3.28E-09 -3.84E-08 4.60E-11
S5 1.45053 3.65E-05 -2.33E-06 -5.30E-07 1.63E-08 1.24E-10
S6 -0.08015 -1.71E-06 3.08E-06 5.91E-07 5.02E-08 -6.41E-10
S7 0.22452 1.63E-04 1.09E-05 1.77E-06 8.16E-08 -3.01E-09
S8 0.02955 -8.73E-04 -1.40E-05 5.66E-07 2.38E-07 -1.93E-08
S9 0.99643 -5.22E-04 -4.59E-05 -7.31E-07 9.02E-07 3.01E-08
S10 -0.31471 -8.84E-04 -8.10E-05 -2.34E-06 4.57E-07 6.52E-08
S11 -0.61876 -2.51E-04 -9.57E-06 -1.18E-06 -3.46E-07 5.26E-09
S12 0.40049 3.74E-04 1.48E-05 4.80E-08 7.53E-08 -4.65E-08
S13 -0.10312 3.36E-04 -5.37E-07 3.82E-07 -2.56E-08 -1.24E-08
S14 -2.51758 1.41E-03 2.41E-04 2.88E-06 -1.07E-06 -1.05E-08
S15 -1.84088 1.00E-03 8.85E-05 2.10E-05 8.66E-07 -2.34E-07
S16 1.78123 -2.98E-03 4.41E-05 2.78E-05 2.05E-06 -2.59E-07
S17 -11.6393 -3.64E-03 2.03E-04 -1.47E-06 3.74E-07 1.90E-09
표3은 제1수치 실시예에서의 렌즈 간격, 화각, F넘버를 나타낸 것이다.
  광각단 망원단
D0 infinity infinity
D1 8.5002 1.8
D2 4.27844 10.97897
D3 6.97825 0.897
D4 1.52771 7.60869
FOV 9.482 5.622
FNO 2.903 4.935
<제2 수치 실시예>
도 9 및 도 10은, 다양한 실시예에 따른, 제2 수치 실시예에 따른 렌즈 어셈블리(100-2)를 도시한 것이며, 표4는, 예를 들면, 제2 수치 실시예의 설계 데이터를 나타낸 것이다.
렌즈면 R Dn nd vd
obj infinity D0    
S1 infinity 2.5 1.5168 64.2
S2 infinity 2.5 1.5168 64.2
S3 infinity D1    
S4(ST)* 5.91 2.406 1.5348 55.71
S5* -220.868 0.756    
S6* 25.311 0.65 1.60764 28.66
S7* 5.917 D2    
S8* -14.35 0.65 1.59749 31.36
S9* 19.59 0.088    
S10* 18.545 0.727 1.67075 19.24
S11* 22.584 0.038    
S12* 22.317 1.568 1.5348 55.71
S13* -5.712 D3    
S14* -7.108 0.907 1.67075 19.24
S15* -5.123 0.38    
S16* -10.035 0.65 1.54397 55.93
S17* 9.817 D4    
S18 infinity 0.11 1.5168 64.2
S19 infinity 1.11    
IMG infinity -0.01    
표5는 제2수치 실시예에서의 비구면 계수를 나타낸 것이다.
  K A B C D E
S4 -0.02576 -7.33E-05 -8.36E-06 -2.98E-07 -3.17E-08 -5.77E-10
S5 1.92321 1.52E-05 -1.59E-05 -7.64E-07 3.66E-08 1.22E-09
S6 -2.7175 2.64E-04 9.15E-06 -7.31E-07 4.19E-08 1.77E-08
S7 0.82929 3.98E-04 3.42E-05 1.53E-06 -2.90E-07 5.81E-08
S8 -8.20703 -2.90E-03 -4.86E-05 9.60E-06 1.91E-07 -7.72E-08
S9 -0.44663 -6.68E-04 -7.47E-06 -8.09E-06 4.13E-06 -1.20E-07
S910 -15.7712 -3.46E-04 -1.39E-05 -2.04E-06 1.30E-06 1.07E-07
S11 -14.2568 -7.06E-04 -4.48E-05 1.90E-05 -1.26E-06 1.00E-07
S12 -16.4691 7.99E-04 -7.69E-05 1.57E-05 1.77E-07 -1.53E-08
S13 0.38561 4.31E-04 -2.19E-06 7.59E-06 -1.23E-06 1.01E-07
S14 -14.8678 1.41E-03 4.66E-04 -2.60E-05 3.96E-06 -2.44E-08
S15 -7.21751 2.00E-03 -3.61E-04 9.64E-05 -6.10E-06 7.96E-07
S16 12.12962 -9.33E-03 4.03E-04 -3.04E-05 1.67E-05 -8.51E-07
S17 -59.4119 -7.52E-03 4.91E-04 -6.26E-06 1.25E-06 -1.96E-07
표6은 제2수치 실시예에서의 렌즈 간격, 화각, F넘버를 나타낸 것이다.
  광각단 망원단
D0 infinity infinity
D1 8.92584 1.8
D2 3.04491 10.1704
D3 6.19936 0.798
D4 1.0996 6.50126
FOV 9.442 5.666
FNO 2.903 4.935
<제3 수치 실시예>
도 13 및 도 14는, 다양한 실시예에 따른, 제3 수치 실시예에 따른 렌즈 어셈블리(100-3)를 도시한 것이며, 표7은, 예를 들면, 제3 수치 실시예의 설계 데이터를 나타낸 것이다.
렌즈면 R Dn nd vd
obj infinity D0    
S1 infinity 2.5 1.5168 64.2
S2 infinity 2.5 1.5168 64.2
S3 infinity D1    
S4(ST)* 4.568 1.238 1.5348 55.71
S5* 36.697 0.154    
S6* 10.324 0.6 1.61443 25.96
S7* 4.884 D2    
S8* -6.249 0.6 1.54397 55.93
S9* 9.564 0.042    
S10* 7.611 1.287 1.67075 19.24
S11* 5.731 0.041    
S12* 4.366 2.104 1.5348 55.71
S13* -5.087 D3    
S14* -6.271 0.847 1.67075 19.24
S15* -4.663 0.393    
S16* -8.471 0.6 1.54397 55.93
S17* 7.782 D4    
S18 infinity 0.11 1.5168 64.2
S19 infinity 0.363    
IMG infinity 0    
표8은 제3수치 실시예에서의 비구면 계수를 나타낸 것이다.
  K A B C D E
S4 0.04117 3.99E-05 -2.57E-05 -1.63E-06 8.82E-08 -8.24E-08
S5 3.90185 8.05E-05 -1.98E-05 -2.88E-06 -3.99E-07 3.09E-08
S6 0.79044 9.12E-04 4.63E-05 -5.32E-06 -3.86E-07 1.87E-07
S7 1.06275 1.27E-03 7.37E-05 5.71E-06 -2.36E-06 4.43E-07
S8 -9.64917 -1.47E-03 4.29E-05 7.49E-06 -2.28E-06 4.31E-07
S9 11.19486 -1.47E-03 3.20E-05 -1.32E-05 9.02E-06 -3.37E-07
S910 2.38397 -1.15E-03 -1.01E-04 1.86E-05 8.42E-07 1.64E-07
S11 -1.42001 1.48E-04 3.04E-05 7.55E-06 -1.20E-06 -9.94E-08
S12 -5.28116 1.04E-03 -1.21E-04 1.60E-05 -1.66E-06 3.80E-08
S13 0.64606 2.91E-04 -7.17E-05 5.39E-06 -1.56E-06 8.48E-08
S14 -11.0459 1.68E-03 1.79E-04 -7.17E-06 1.27E-05 -9.39E-07
S15 -7.0284 4.66E-04 -6.51E-04 1.88E-04 -7.25E-06 3.63E-07
S16 -0.96391 -1.60E-02 1.09E-03 4.20E-05 -2.92E-06 -5.03E-07
S17 -31.7894 -1.14E-02 2.05E-03 -2.35E-04 1.76E-05 -7.15E-07
표9는 제3수치 실시예에서의 렌즈 간격, 화각, F넘버를 나타낸 것이다.
  광각단 망원단
D0 infinity infinity
D1 7 1.8
D2 1.71427 6.91349
D3 5.12481 0.84293
D4 1.57861 5.86155
FOV 12.537 7.446
FNO 2.872 4.894
<제4 수치 실시예>
도 17 및 도 18은, 다양한 실시예에 따른, 제4 수치 실시예에 따른 렌즈 어셈블리(100-4)를 도시한 것이며, 표 10은, 예를 들면, 제4 수치 실시예의 설계 데이터를 나타낸 것이다.
렌즈면 R Dn nd vd
obj infinity D0    
S1 infinity 2.25 1.5168 64.2
S2 infinity 2.25 1.5168 64.2
S3 infinity D1    
S4(ST)* 4.381 1.152 1.5348 55.71
S5* 27.623 0.248    
S6* 8.946 0.6 1.61443 25.96
S7* 4.444 D2    
S8* -7.111 0.6 1.54397 55.93
S9* 10.818 0.041    
S10* 8.072 0.904 1.67075 19.24
S11* 5.894 0.039    
S12* 4.868 1.828 1.5348 55.71
S13* -4.972 D3    
S14* -5.852 0.778 1.67075 19.24
S15* -4.357 0.362    
S16* -7.967 0.6 1.54397 55.93
S17* 7.926 D4    
S18 infinity 0.11 1.5168 64.2
S19 infinity 0.384    
IMG infinity 0    
표 11은 제4수치 실시예에서의 비구면 계수를 나타낸 것이다.
  K A B C D E
S4 0.0219 -3.41E-05 -3.07E-05 -2.45E-07 1.23E-07 -8.99E-08
S5 1.54289 -5.40E-05 -2.00E-05 -2.11E-06 -1.93E-07 1.14E-08
S6 -0.27253 8.21E-04 2.07E-05 -5.75E-06 -7.63E-07 2.88E-07
S7 0.90148 9.24E-04 4.00E-05 1.98E-06 -4.05E-06 8.08E-07
S8 -8.63199 -2.11E-03 1.04E-05 4.67E-06 -1.11E-06 2.90E-07
S9 11.56473 -1.56E-03 5.44E-05 -2.49E-05 1.15E-05 5.20E-07
S10 2.44824 -1.19E-03 -1.66E-04 3.58E-05 -4.57E-06 1.20E-06
S11 -2.24542 -2.64E-04 3.84E-05 1.76E-05 5.93E-06 -1.56E-06
S12 -6.00431 1.25E-03 -1.53E-04 3.28E-05 7.02E-06 -1.26E-06
S13 0.39175 5.19E-04 -9.49E-05 1.94E-05 -5.45E-06 7.64E-07
S14 -12.8219 6.95E-04 2.84E-04 -3.91E-05 1.87E-05 -1.36E-06
S15 -7.91538 -1.21E-04 -6.77E-04 1.96E-04 -1.50E-05 1.48E-06
S16 -3.75765 -1.63E-02 1.51E-03 -1.19E-04 1.10E-05 2.65E-07
S17 -47.634 -9.79E-03 1.70E-03 -1.94E-04 1.47E-05 -4.54E-07
표 12는 제4수치 실시예에서의 렌즈 간격, 화각, F넘버를 나타낸 것이다.
  광각단 망원단
D0 infinity infinity
D1 7.20667 1.8
D2 1.45528 6.86196
D3 5.04293 0.861
D4 1.4471 5.62905
FOV 12.969 7.773
FNO 2.872 4.883
표 13은 제1 내지 제4 수치 실시예에 따른 렌즈 어셈블리에서 식 1 내지 식 3과, 전체 광 경로 길이(TTL)에 대한 값을 나타낸 것이다.
식 1
0.5<(EFL1G / EFLW)<3.0
식 2
0.1<(EFL2G / EFLT)<1.0
식 3
(Ld / D)<1
TTL≤35mm
제1 수치 실시예 1.4 0.62 0.914 34.3
제2 수치 실시예 1.58 0.54 0.92 34.3
제3 수치 실시예 1.42 0.59 0.887 28.8
제4 수치 실시예 1.49 0.61 0.869 27.3
다양한 실시예에 따른 렌즈 어셈블리는 예를 들면, 이미지 센서를 채용한 전자 장치에 적용될 수 있다. 예시적인 실시예에 따른 렌즈 어셈블리는 디지털 카메라, 교환 렌즈 카메라, 비디오 카메라, 핸드폰 카메라, 소형 모바일 기기용 카메라, VR, AR, 드론, 또는 무인 항공기 등 다양한 전자 장치에 적용 가능하다. 도 21 및 도 22는 예시적인 실시예에 따른 렌즈 어셈블리를 구비한 전자 장치의 일 예를 도시한 것이다. 도 21 및 도 22에서는 전자 장치가 모바일 폰에 적용된 예를 도시하였으나 여기에 한정되는 것은 아니다. 도 21은 모바일 폰의 전면(front surface)을 나타낸 것이고, 도 22는 모바일 폰의 후면(back surface)을 나타낸 것이다.
일 실시예에 따른 전자 장치(300)는, 제 1 면(또는 전면)(310A), 제 2 면(또는 후면)(310B), 및 제 1 면(310A) 및 제 2 면(310B) 사이의 공간을 둘러싸는 측면(310C)을 포함하는 하우징(310)을 포함할 수 있다. 다른 실시예(미도시)에서는, 하우징(310)은, 제 1 면(310A), 제 2 면(310B) 및 측면(310C)들 중 일부를 형성하는 구조를 지칭할 수도 있다. 일 실시예에 따르면, 제 1 면(310A)은 적어도 일부분이 실질적으로 투명한 전면 플레이트(302)(예: 다양한 코팅 레이어들을 포함하는 글래스 플레이트, 또는 폴리머 플레이트)에 의하여 형성될 수 있다. 다른 실시예에서, 전면 플레이트(302)는 하우징(310)에 결합하여 하우징(310)과 함께 내부 공간을 형성할 수 있다. 다양한 실시예에서, '내부 공간'이라 함은 하우징(310)의 내부 공간으로 디스플레이(301)의 적어도 일부를 수용하는 공간을 의미할 수 있다.
다양한 실시예에 따르면, 제 2 면(310B)은 실질적으로 불투명한 후면 플레이트(311)에 의하여 형성될 수 있다. 후면 플레이트(311)는, 예를 들어, 코팅 또는 착색된 유리, 세라믹, 폴리머, 금속(예: 알루미늄, 스테인레스 스틸(STS), 또는 마그네슘), 또는 이들 물질들 중 적어도 둘의 조합에 의하여 형성될 수 있다. 측면(310C)은, 전면 플레이트(302) 및 후면 플레이트(311)와 결합하며, 금속 및/또는 폴리머를 포함하는 측면 베젤 구조 (또는 "측면 부재")(318)에 의하여 형성될 수 있다. 다양한 실시예에서, 후면 플레이트(311) 및 측면 베젤 구조(318)는 일체로 형성되고 동일한 물질(예: 알루미늄과 같은 금속 물질)을 포함할 수 있다.
도시된 실시예에서는, 전면 플레이트(302)는, 제 1 면(310A)으로부터 후면 플레이트(311) 쪽으로 휘어져 심리스하게(seamless) 연장된 2개의 제 1 영역(310D)들을, 전면 플레이트(302)의 긴 엣지(long edge) 양단에 포함할 수 있다. 후면 플레이트(311)는, 제 2 면(310B)으로부터 면 플레이트(302) 쪽으로 휘어져 심리스하게 연장된 2개의 제 2 영역(310E)들을 긴 엣지 양단에 포함할 수 있다. 다양한 실시예에서, 전면 플레이트(302)(또는 상기 후면 플레이트(311))가 제 1 영역(310D)들(또는 제 2 영역(310E)들) 중 하나만을 포함할 수 있다. 다른 실시예에서는, 제 1 영역(310D)들 또는 제 2 영역(310E)들 중 일부가 포함되지 않을 수 있다. 상기 실시예들에서, 전자 장치의 측면에서 볼 때, 측면 베젤 구조(318)는 제 1 영역(310D) 또는 제 2 영역(310E)이 포함되지 않는 측면(예: 커넥터 홀(308)이 형성된 측면) 쪽에서는 제 1 두께 (또는 폭)을 가지고, 제 1 영역(310D) 또는 제 2 영역(310E)을 포함한 측면(예: 키 입력 장치(317)가 배치된 측면) 쪽에서는 상기 제 1 두께보다 얇은 제 2 두께를 가질 수 있다.
일 실시예에 따르면, 전자 장치(300)는, 디스플레이(301), 오디오 모듈(303, 307, 314), 센서 모듈(304, 316, 319), 카메라 모듈(305, 312a, 312b), 키 입력 장치(317), 발광 소자(306), 및 커넥터 홀(308, 309) 중 적어도 하나 이상을 포함할 수 있다. 다양한 실시예에서, 전자 장치(300)는, 구성요소들 중 적어도 하나(예: 키 입력 장치(317), 또는 발광 소자(306))를 생략하거나 다른 구성요소를 추가적으로 포함할 수 있다.
디스플레이(301)는, 예를 들어, 전면 플레이트(302)의 상당 부분을 통하여 노출될 수 있다. 다양한 실시예에서, 제 1 면(310A), 및 측면(310C)의 제 1 영역(310D)을 형성하는 전면 플레이트(302)를 통하여 디스플레이(301)의 적어도 일부가 노출될 수 있다. 다양한 실시예에서, 디스플레이(301)의 모서리를 전면 플레이트(302)의 인접한 외곽 형상과 대체로 동일하게 형성할 수 있다. 다른 실시예(미도시)에서는, 디스플레이(301)가 노출되는 면적을 확장하기 위하여, 디스플레이(301)의 외곽과 전면 플레이트(302)의 외곽간의 간격이 대체로 동일하게 형성될 수 있다.
다른 실시예(미도시)에서는, 디스플레이(301)의 화면 표시 영역(예: 활성 영역) 또는 화면 표시 영역을 벗어난 영역(예: 비활성 영역)의 일부에 리세스 또는 개구부(opening)을 형성하고, 상기 리세스 또는 상기 개구부(opening)와 정렬되는 오디오 모듈(314), 센서 모듈(304), 카메라 모듈(305), 및 발광 소자(306) 중 적어도 하나 이상을 포함할 수 있다. 또는, 디스플레이(301)의 화면 표시 영역의 배면에, 오디오 모듈(314), 센서 모듈(304), 카메라 모듈(305), 지문 센서(316), 및 발광 소자(306) 중 적어도 하나 이상을 포함할 수 있다. 또는, 디스플레이(301)는, 터치 감지 회로, 터치의 세기(압력)를 측정할 수 있는 압력 센서, 및/또는 자기장 방식의 스타일러스 펜을 검출하는 디지타이저와 결합되거나 인접하여 배치될 수 있다. 다양한 실시예에서는, 센서 모듈(304, 319)의 적어도 일부, 및/또는 키 입력 장치(317)의 적어도 일부가, 상기 제 1 영역(310D)들, 및/또는 상기 제 2 영역(310E)들에 배치될 수 있다.
오디오 모듈(303, 307, 314)은, 마이크 홀(303) 및 스피커 홀(307, 314)을 포함할 수 있다. 마이크 홀(303)은 외부의 소리를 획득하기 위한 마이크가 내부에 배치될 수 있고, 다양한 실시예에서 소리의 방향을 감지할 수 있도록 복수개의 마이크가 배치될 수 있다. 스피커 홀(307, 314)은, 외부 스피커 홀(307) 및 통화용 리시버 홀(314)을 포함할 수 있다. 다양한 실시예에서 스피커 홀(307, 314)과 마이크 홀(303)이 하나의 홀로 구현되거나, 스피커 홀(307, 314) 없이 스피커가 포함될 수 있다(예: 피에조 스피커).
센서 모듈(304, 316, 319)은, 전자 장치(300)의 내부의 작동 상태, 또는 외부의 환경 상태에 대응하는 전기 신호 또는 데이터 값을 생성할 수 있다. 센서 모듈(304, 316, 319)은, 예를 들어, 하우징(310)의 제 1 면(310A)에 배치된 제 1 센서 모듈(304)(예: 근접 센서) 및/또는 제 2 센서 모듈(미도시)(예: 지문 센서), 및/또는 상기 하우징(310)의 제 2 면(310B)에 배치된 제 3 센서 모듈(319)(예: HRM 센서) 및/또는 제 4 센서 모듈(316)(예: 지문 센서)을 포함할 수 있다. 상기 지문 센서는 하우징(310)의 제 1 면(310A)(예: 디스플레이(301))뿐만 아니라 제 2 면(310B)에 배치될 수 있다. 전자 장치(300)는, 도시되지 않은 센서 모듈, 예를 들어, 제스처 센서, 자이로 센서, 기압 센서, 마그네틱 센서, 가속도 센서, 그립 센서, 컬러 센서, IR(infrared) 센서, 생체 센서, 온도 센서, 습도 센서, 또는 조도 센서 중 적어도 하나를 더 포함할 수 있다.
카메라 모듈(305, 312a, 312b)은, 전자 장치(300)의 제 1 면(310A)에 배치된 제 1 카메라 모듈(305), 및 제 2 면(310B)에 배치된 제 2 카메라 모듈(312a), 제3 카메라 모듈(312b) 및/또는 플래시(313)를 포함할 수 있다. 카메라 모듈(305, 312a, 312b)은, 하나 또는 복수의 렌즈들, 이미지 센서 및/또는 이미지 시그널 프로세서를 포함할 수 있다. 예를 들어, 카메라 모듈(305, 312a, 312b)은 도 1 내지 도 120을 참조하여 설명한 다양한 실시 예에 따른 렌즈 어셈블리를 포함할 수 있다. 플래시(313)는, 예를 들어, 발광 다이오드 또는 제논 램프(xenon lamp)를 포함할 수 있다. 다양한 실시예에서, 2개 이상의 렌즈들 (적외선 카메라, 광각 및 망원 렌즈) 및 이미지 센서들이 전자 장치(101)의 한 면에 배치될 수 있다.
키 입력 장치(317)는, 하우징(310)의 측면(310C)에 배치될 수 있다. 다른 실시예에서, 전자 장치(300)는 키 입력 장치(317)들 중 일부 또는 전부를 포함하지 않을 수 있고 포함되지 않은 키 입력 장치(317)는 디스플레이(301) 상에 소프트 키 등 다른 형태로 구현될 수 있다. 다양한 실시예에서, 키 입력 장치는 하우징(310)의 제 2 면(310B)에 배치된 센서 모듈(316)을 포함할 수 있다.
발광 소자(306)는, 예를 들어, 하우징(310)의 제 1 면(310A)에 배치될 수 있다. 발광 소자(306)는, 예를 들어, 전자 장치(101)의 상태 정보를 광 형태로 제공할 수 있다. 다른 실시예에서, 발광 소자(306)는, 예를 들어, 카메라 모듈(305)의 동작과 연동되는 광원을 제공할 수 있다. 발광 소자(306)는, 예를 들어, LED, IR LED 및 제논 램프를 포함할 수 있다.
커넥터 홀(308, 309)은, 외부 전자 장치와 전력 및/또는 데이터를 송수신하기 위한 커넥터(예를 들어, USB 커넥터)를 수용할 수 있는 제 1 커넥터 홀(308), 및/또는 외부 전자 장치와 오디오 신호를 송수신하기 위한 커넥터를 수용할 수 있는 제 2 커넥터 홀(예를 들어, 이어폰 잭)(309)을 포함할 수 있다.
도 21 및 도 22에 도시된 전자 장치(300)는 하나의 예시에 해당하며, 본 문서에 개시된 기술적 사상이 적용되는 장치의 형태를 제한하는 것은 아니다. 본 문서에 개시되는 기술적 사상은, 제 1 면(310A)에 배치된 제 1 카메라 모듈(305), 및 제 2 면(310B)에 배치된 제 2 카메라 모듈(312a), 제3 카메라 모듈(312b)을 구비한 다양한 사용자 장치에 적용 가능하다. 예를 들어, 플렉서블 디스플레이 및 힌지 구조를 채용하여, 가로 방향으로 폴딩이 가능하거나 세로 방향으로 폴딩이 가능한 폴더블 전자 장치나, 태블릿 또는 노트북에도 본 문서에 개시되는 기술적 사상이 적용될 수 있다. 또한, 같은 향하는 제1 카메라 모듈(305), 제2 카메라 모듈(312a), 제3 카메라 모듈(312b)이, 장치의 회전, 접힘, 변형 등을 통해 다른 방향을 향하도록 배치되는 것이 가능한 경우에도 본 기술적 사상은 적용될 수 있다.
다양한 실시 예에 따라, 도시된 전자 장치(300)는, 롤러블 전자 장치의 일부일 수 있다. "롤러블 전자 장치(rollable electronic device)"라 함은, 디스플레이(예: 도 21의 디스플레이(301))의 굽힘 변형이 가능해, 적어도 일부분이 말아지거나(wound or rolled), 하우징(예: 도 21 및 도 22의 하우징(310))의 내부로 수납될 수 있는 전자 장치를 의미할 수 있다. 롤러블 전자 장치는 사용자의 필요에 따라, 디스플레이를 펼침으로써 또는 디스플레이의 더 넓은 면적을 외부로 노출시킴으로써 화면 표시 영역을 확장하여 사용할 수 있다.
도 23은, 다양한 실시예들에 따른, 네트워크 환경(400) 내의 전자 장치(401)의 블록도이다. 도 23을 참조하면, 네트워크 환경(400)에서 전자 장치(401)는 제 1 네트워크(498)(예: 근거리 무선 통신 네트워크)를 통하여 전자 장치(402)와 통신하거나, 또는 제 2 네트워크(499)(예: 원거리 무선 통신 네트워크)를 통하여 전자 장치(404) 또는 서버(408) 중 적어도 하나와 통신할 수 있다. 일실시예에 따르면, 전자 장치(401)는 서버(408)를 통하여 전자 장치(404)와 통신할 수 있다. 일 실시예에 따르면, 전자 장치(401)는 프로세서(420), 메모리(430), 입력 모듈(450), 음향 출력 모듈(455), 디스플레이 모듈(460), 오디오 모듈(470), 센서 모듈(476), 인터페이스(477), 연결 단자(478), 햅틱 모듈(479), 카메라 모듈(480), 전력 관리 모듈(488), 배터리(489), 통신 모듈(490), 가입자 식별 모듈(496), 또는 안테나 모듈(497)을 포함할 수 있다. 어떤 실시예에서는, 전자 장치(401)에는, 이 구성요소들 중 적어도 하나(예: 연결 단자(478))가 생략되거나, 하나 이상의 다른 구성요소가 추가될 수 있다. 어떤 실시예에서는, 이 구성요소들 중 일부들(예: 센서 모듈(476), 카메라 모듈(480), 또는 안테나 모듈(497))은 하나의 구성요소(예: 디스플레이 모듈(460))로 통합될 수 있다.
프로세서(420)는, 예를 들면, 소프트웨어(예: 프로그램(440))를 실행하여 프로세서(420)에 연결된 전자 장치(401)의 적어도 하나의 다른 구성요소(예: 하드웨어 또는 소프트웨어 구성요소)를 제어할 수 있고, 다양한 데이터 처리 또는 연산을 수행할 수 있다. 일 실시예에 따르면, 데이터 처리 또는 연산의 적어도 일부로서, 프로세서(420)는 다른 구성요소(예: 센서 모듈(476) 또는 통신 모듈(490))로부터 수신된 명령 또는 데이터를 휘발성 메모리(432)에 저장하고, 휘발성 메모리(432)에 저장된 명령 또는 데이터를 처리하고, 결과 데이터를 비휘발성 메모리(434)에 저장할 수 있다. 일 실시예에 따르면, 프로세서(420)는 메인 프로세서(421)(예: 중앙 처리 장치 또는 어플리케이션 프로세서) 또는 이와는 독립적으로 또는 함께 운영 가능한 보조 프로세서(423)(예: 그래픽 처리 장치, 신경망 처리 장치(NPU: neural processing unit), 이미지 시그널 프로세서, 센서 허브 프로세서, 또는 커뮤니케이션 프로세서)를 포함할 수 있다. 예를 들어, 전자 장치(401)가 메인 프로세서(421) 및 보조 프로세서(423)를 포함하는 경우, 보조 프로세서(423)는 메인 프로세서(421)보다 저전력을 사용하거나, 지정된 기능에 특화되도록 설정될 수 있다. 보조 프로세서(423)는 메인 프로세서(421)와 별개로, 또는 그 일부로서 구현될 수 있다.
보조 프로세서(423)는, 예를 들면, 메인 프로세서(421)가 인액티브(예: 슬립) 상태에 있는 동안 메인 프로세서(421)를 대신하여, 또는 메인 프로세서(421)가 액티브(예: 어플리케이션 실행) 상태에 있는 동안 메인 프로세서(421)와 함께, 전자 장치(401)의 구성요소들 중 적어도 하나의 구성요소(예: 디스플레이 모듈(460), 센서 모듈(476), 또는 통신 모듈(490))와 관련된 기능 또는 상태들의 적어도 일부를 제어할 수 있다. 일 실시예에 따르면, 보조 프로세서(423)(예: 이미지 시그널 프로세서 또는 커뮤니케이션 프로세서)는 기능적으로 관련 있는 다른 구성요소(예: 카메라 모듈(480) 또는 통신 모듈(490))의 일부로서 구현될 수 있다. 일 실시예에 따르면, 보조 프로세서(423)(예: 신경망 처리 장치)는 인공지능 모델의 처리에 특화된 하드웨어 구조를 포함할 수 있다. 인공지능 모델은 기계 학습을 통해 생성될 수 있다. 이러한 학습은, 예를 들어, 인공지능 모델이 수행되는 전자 장치(401) 자체에서 수행될 수 있고, 별도의 서버(예: 서버(408))를 통해 수행될 수도 있다. 학습 알고리즘은, 예를 들어, 지도형 학습(supervised learning), 비지도형 학습(unsupervised learning), 준지도형 학습(semi-supervised learning) 또는 강화 학습(reinforcement learning)을 포함할 수 있으나, 전술한 예에 한정되지 않는다. 인공지능 모델은, 복수의 인공 신경망 레이어들을 포함할 수 있다. 인공 신경망은 심층 신경망(DNN: deep neural network), CNN(convolutional neural network), RNN(recurrent neural network), RBM(restricted boltzmann machine), DBN(deep belief network), BRDNN(bidirectional recurrent deep neural network), 심층 Q-네트워크(deep Q-networks) 또는 상기 중 둘 이상의 조합 중 하나일 수 있으나, 전술한 예에 한정되지 않는다. 인공지능 모델은 하드웨어 구조 이외에, 추가적으로 또는 대체적으로, 소프트웨어 구조를 포함할 수 있다.
메모리(430)는, 전자 장치(401)의 적어도 하나의 구성요소(예: 프로세서(420) 또는 센서 모듈(476))에 의해 사용되는 다양한 데이터를 저장할 수 있다. 데이터는, 예를 들어, 소프트웨어(예: 프로그램(440)) 및, 이와 관련된 명령에 대한 입력 데이터 또는 출력 데이터를 포함할 수 있다. 메모리(430)는, 휘발성 메모리(432) 또는 비휘발성 메모리(434)를 포함할 수 있다.
프로그램(440)은 메모리(430)에 소프트웨어로서 저장될 수 있으며, 예를 들면, 운영 체제(442), 미들 웨어(444) 또는 어플리케이션(446)을 포함할 수 있다.
입력 모듈(450)은, 전자 장치(401)의 구성요소(예: 프로세서(420))에 사용될 명령 또는 데이터를 전자 장치(401)의 외부(예: 사용자)로부터 수신할 수 있다. 입력 모듈(450)은, 예를 들면, 마이크, 마우스, 키보드, 키(예: 버튼), 또는 디지털 펜(예: 스타일러스 펜)을 포함할 수 있다.
음향 출력 모듈(455)은 음향 신호를 전자 장치(401)의 외부로 출력할 수 있다. 음향 출력 모듈(455)은, 예를 들면, 스피커 또는 리시버를 포함할 수 있다. 스피커는 멀티미디어 재생 또는 녹음 재생과 같이 일반적인 용도로 사용될 수 있다. 리시버는 착신 전화를 수신하기 위해 사용될 수 있다. 일 실시예에 따르면, 리시버는 스피커와 별개로, 또는 그 일부로서 구현될 수 있다.
디스플레이 모듈(460)은 전자 장치(401)의 외부(예: 사용자)로 정보를 시각적으로 제공할 수 있다. 디스플레이 모듈(460)은, 예를 들면, 디스플레이, 홀로그램 장치, 또는 프로젝터 및 해당 장치를 제어하기 위한 제어 회로를 포함할 수 있다. 일 실시예에 따르면, 디스플레이 모듈(460)은 터치를 감지하도록 설정된 터치 센서, 또는 상기 터치에 의해 발생되는 힘의 세기를 측정하도록 설정된 압력 센서를 포함할 수 있다.
오디오 모듈(470)은 소리를 전기 신호로 변환시키거나, 반대로 전기 신호를 소리로 변환시킬 수 있다. 일 실시예에 따르면, 오디오 모듈(470)은, 입력 모듈(450)을 통해 소리를 획득하거나, 음향 출력 모듈(455), 또는 전자 장치(401)와 직접 또는 무선으로 연결된 외부 전자 장치(예: 전자 장치(402))(예: 스피커 또는 헤드폰)를 통해 소리를 출력할 수 있다.
센서 모듈(476)은 전자 장치(401)의 작동 상태(예: 전력 또는 온도), 또는 외부의 환경 상태(예: 사용자 상태)를 감지하고, 감지된 상태에 대응하는 전기 신호 또는 데이터 값을 생성할 수 있다. 일실시예에 따르면, 센서 모듈(476)은, 예를 들면, 제스처 센서, 자이로 센서, 기압 센서, 마그네틱 센서, 가속도 센서, 그립 센서, 근접 센서, 컬러 센서, IR(infrared) 센서, 생체 센서, 온도 센서, 습도 센서, 또는 조도 센서를 포함할 수 있다.
인터페이스(477)는 전자 장치(401)가 외부 전자 장치(예: 전자 장치(402))와 직접 또는 무선으로 연결되기 위해 사용될 수 있는 하나 이상의 지정된 프로토콜들을 지원할 수 있다. 일실시예에 따르면, 인터페이스(477)는, 예를 들면, HDMI(high definition multimedia interface), USB(universal serial bus) 인터페이스, SD카드 인터페이스, 또는 오디오 인터페이스를 포함할 수 있다.
연결 단자(478)는, 그를 통해서 전자 장치(401)가 외부 전자 장치(예: 전자 장치(402))와 물리적으로 연결될 수 있는 커넥터를 포함할 수 있다. 일 실시예에 따르면, 연결 단자(478)는, 예를 들면, HDMI 커넥터, USB 커넥터, SD 카드 커넥터, 또는 오디오 커넥터(예: 헤드폰 커넥터)를 포함할 수 있다.
햅틱 모듈(479)은 전기적 신호를 사용자가 촉각 또는 운동 감각을 통해서 인지할 수 있는 기계적인 자극(예: 진동 또는 움직임) 또는 전기적인 자극으로 변환할 수 있다. 일 실시예에 따르면, 햅틱 모듈(479)은, 예를 들면, 모터, 압전 소자, 또는 전기 자극 장치를 포함할 수 있다.
카메라 모듈(480)은 정지 영상 및 동영상을 촬영할 수 있다. 일 실시예에 따르면, 카메라 모듈(480)은 하나 이상의 렌즈들, 이미지 센서들, 이미지 시그널 프로세서들, 또는 플래시들을 포함할 수 있다.
전력 관리 모듈(488)은 전자 장치(401)에 공급되는 전력을 관리할 수 있다. 일 실시예에 따르면, 전력 관리 모듈(488)은, 예를 들면, PMIC(power management integrated circuit)의 적어도 일부로서 구현될 수 있다.
배터리(489)는 전자 장치(401)의 적어도 하나의 구성요소에 전력을 공급할 수 있다. 일 실시예에 따르면, 배터리(489)는, 예를 들면, 재충전 불가능한 1차 전지, 재충전 가능한 2차 전지 또는 연료 전지를 포함할 수 있다.
통신 모듈(490)은 전자 장치(401)와 외부 전자 장치(예: 전자 장치(402), 전자 장치(404), 또는 서버(408)) 간의 직접(예: 유선) 통신 채널 또는 무선 통신 채널의 수립, 및 수립된 통신 채널을 통한 통신 수행을 지원할 수 있다. 통신 모듈(490)은 프로세서(420)(예: 어플리케이션 프로세서)와 독립적으로 운영되고, 직접(예: 유선) 통신 또는 무선 통신을 지원하는 하나 이상의 커뮤니케이션 프로세서를 포함할 수 있다. 일 실시예에 따르면, 통신 모듈(490)은 무선 통신 모듈(492)(예: 셀룰러 통신 모듈, 근거리 무선 통신 모듈, 또는 GNSS(global navigation satellite system) 통신 모듈) 또는 유선 통신 모듈(494)(예: LAN(local area network) 통신 모듈, 또는 전력선 통신 모듈)을 포함할 수 있다. 이들 통신 모듈 중 해당하는 통신 모듈은 제 1 네트워크(498)(예: 블루투스, WiFi(wireless fidelity) direct 또는 IrDA(infrared data association)와 같은 근거리 통신 네트워크) 또는 제 2 네트워크(499)(예: 레거시 셀룰러 네트워크, 5G 네트워크, 차세대 통신 네트워크, 인터넷, 또는 컴퓨터 네트워크(예: LAN 또는 WAN)와 같은 원거리 통신 네트워크)를 통하여 외부의 전자 장치(404)와 통신할 수 있다. 이런 여러 종류의 통신 모듈들은 하나의 구성요소(예: 단일 칩)로 통합되거나, 또는 서로 별도의 복수의 구성요소들(예: 복수 칩들)로 구현될 수 있다. 무선 통신 모듈(492)은 가입자 식별 모듈(496)에 저장된 가입자 정보(예: 국제 모바일 가입자 식별자(IMSI))를 이용하여 제 1 네트워크(498) 또는 제 2 네트워크(499)와 같은 통신 네트워크 내에서 전자 장치(401)를 확인 또는 인증할 수 있다.
무선 통신 모듈(492)은 4G 네트워크 이후의 5G 네트워크 및 차세대 통신 기술, 예를 들어, NR 접속 기술(new radio access technology)을 지원할 수 있다. NR 접속 기술은 고용량 데이터의 고속 전송(eMBB(enhanced mobile broadband)), 단말 전력 최소화와 다수 단말의 접속(mMTC(massive machine type communications)), 또는 고신뢰도와 저지연(URLLC(ultra-reliable and low-latency communications))을 지원할 수 있다. 무선 통신 모듈(492)은, 예를 들어, 높은 데이터 전송률 달성을 위해, 고주파 대역(예: mmWave 대역)을 지원할 수 있다. 무선 통신 모듈(492)은 고주파 대역에서의 성능 확보를 위한 다양한 기술들, 예를 들어, 빔포밍(beamforming), 거대 배열 다중 입출력(massive MIMO(multiple-input and multiple-output)), 전차원 다중입출력(FD-MIMO: full dimensional MIMO), 어레이 안테나(array antenna), 아날로그 빔형성(analog beam-forming), 또는 대규모 안테나(large scale antenna)와 같은 기술들을 지원할 수 있다. 무선 통신 모듈(492)은 전자 장치(401), 외부 전자 장치(예: 전자 장치(404)) 또는 네트워크 시스템(예: 제 2 네트워크(499))에 규정되는 다양한 요구사항을 지원할 수 있다. 일실시예에 따르면, 무선 통신 모듈(492)은 eMBB 실현을 위한 Peak data rate(예: 20Gbps 이상), mMTC 실현을 위한 손실 Coverage(예: 164dB 이하), 또는 URLLC 실현을 위한 U-plane latency(예: 다운링크(DL) 및 업링크(UL) 각각 0.5ms 이하, 또는 라운드 트립 1ms 이하)를 지원할 수 있다.
안테나 모듈(497)은 신호 또는 전력을 외부(예: 외부의 전자 장치)로 송신하거나 외부로부터 수신할 수 있다. 일 실시예에 따르면, 안테나 모듈(497)은 서브스트레이트(예: PCB) 위에 형성된 도전체 또는 도전성 패턴으로 이루어진 방사체를 포함하는 안테나를 포함할 수 있다. 일 실시예에 따르면, 안테나 모듈(497)은 복수의 안테나들(예: 어레이 안테나)을 포함할 수 있다. 이런 경우, 제 1 네트워크(498) 또는 제 2 네트워크(499)와 같은 통신 네트워크에서 사용되는 통신 방식에 적합한 적어도 하나의 안테나가, 예를 들면, 통신 모듈(490)에 의하여 상기 복수의 안테나들로부터 선택될 수 있다. 신호 또는 전력은 상기 선택된 적어도 하나의 안테나를 통하여 통신 모듈(490)과 외부의 전자 장치 간에 송신되거나 수신될 수 있다. 어떤 실시예에 따르면, 방사체 이외에 다른 부품(예: RFIC(radio frequency integrated circuit))이 추가로 안테나 모듈(497)의 일부로 형성될 수 있다.
다양한 실시예에 따르면, 안테나 모듈(497)은 mmWave 안테나 모듈을 형성할 수 있다. 일실시예에 따르면, mmWave 안테나 모듈은 인쇄 회로 기판, 상기 인쇄 회로 기판의 제 1 면(예: 아래 면)에 또는 그에 인접하여 배치되고 지정된 고주파 대역(예: mmWave 대역)을 지원할 수 있는 RFIC, 및 상기 인쇄 회로 기판의 제 2 면(예: 윗 면 또는 측 면)에 또는 그에 인접하여 배치되고 상기 지정된 고주파 대역의 신호를 송신 또는 수신할 수 있는 복수의 안테나들(예: 어레이 안테나)을 포함할 수 있다.
상기 구성요소들 중 적어도 일부는 주변 기기들간 통신 방식(예: 버스, GPIO(general purpose input and output), SPI(serial peripheral interface), 또는 MIPI(mobile industry processor interface))을 통해 서로 연결되고 신호(예: 명령 또는 데이터)를 상호간에 교환할 수 있다.
일 실시예에 따르면, 명령 또는 데이터는 제 2 네트워크(499)에 연결된 서버(408)를 통해서 전자 장치(401)와 외부의 전자 장치(404)간에 송신 또는 수신될 수 있다. 외부의 전자 장치(402, 또는 404) 각각은 전자 장치(401)와 동일한 또는 다른 종류의 장치일 수 있다. 일 실시예에 따르면, 전자 장치(401)에서 실행되는 동작들의 전부 또는 일부는 외부의 전자 장치들(402, 404, 또는 408) 중 하나 이상의 외부의 전자 장치들에서 실행될 수 있다. 예를 들면, 전자 장치(401)가 어떤 기능이나 서비스를 자동으로, 또는 사용자 또는 다른 장치로부터의 요청에 반응하여 수행해야 할 경우에, 전자 장치(401)는 기능 또는 서비스를 자체적으로 실행시키는 대신에 또는 추가적으로, 하나 이상의 외부의 전자 장치들에게 그 기능 또는 그 서비스의 적어도 일부를 수행하라고 요청할 수 있다. 상기 요청을 수신한 하나 이상의 외부의 전자 장치들은 요청된 기능 또는 서비스의 적어도 일부, 또는 상기 요청과 관련된 추가 기능 또는 서비스를 실행하고, 그 실행의 결과를 전자 장치(401)로 전달할 수 있다. 전자 장치(401)는 상기 결과를, 그대로 또는 추가적으로 처리하여, 상기 요청에 대한 응답의 적어도 일부로서 제공할 수 있다. 이를 위하여, 예를 들면, 클라우드 컴퓨팅, 분산 컴퓨팅, 모바일 에지 컴퓨팅(MEC: mobile edge computing), 또는 클라이언트-서버 컴퓨팅 기술이 이용될 수 있다. 전자 장치(401)는, 예를 들어, 분산 컴퓨팅 또는 모바일 에지 컴퓨팅을 이용하여 초저지연 서비스를 제공할 수 있다. 다른 실시예에 있어서, 외부의 전자 장치(404)는 IoT(internet of things) 기기를 포함할 수 있다. 서버(408)는 기계 학습 및/또는 신경망을 이용한 지능형 서버일 수 있다. 일실시예에 따르면, 외부의 전자 장치(404) 또는 서버(408)는 제 2 네트워크(499) 내에 포함될 수 있다. 전자 장치(401)는 5G 통신 기술 및 IoT 관련 기술을 기반으로 지능형 서비스(예: 스마트 홈, 스마트 시티, 스마트 카, 또는 헬스 케어)에 적용될 수 있다.
도 24는, 다양한 실시예들에 따른, 카메라 모듈(480)을 예시하는 블록도(500)이다. 도 24를 참조하면, 카메라 모듈(480)은 렌즈 어셈블리(510), 플래쉬(520), 이미지 센서(530), 이미지 스태빌라이저(540), 메모리(550)(예: 버퍼 메모리), 또는 이미지 시그널 프로세서(560)를 포함할 수 있다. 렌즈 어셈블리(510)는 이미지 촬영의 대상인 피사체로부터 방출되는 빛을 수집할 수 있다. 렌즈 어셈블리(510)는 하나 또는 그 이상의 렌즈들을 포함할 수 있다. 렌즈 어셈블리(510)에는 도 1 내지 도 20을 참조하여 설명한 실시 예들이 적용될 수 있다. 일 실시예에 따르면, 카메라 모듈(480)은 복수의 렌즈 어셈블리(510)들을 포함할 수 있다. 이런 경우, 카메라 모듈(480)은, 예를 들면, 듀얼 카메라, 360도 카메라, 또는 구형 카메라(spherical camera)를 형성할 수 있다. 복수의 렌즈 어셈블리(510)들 중 일부는 동일한 렌즈 속성(예: 화각, 초점 거리, 자동 초점, f 넘버(f number), 또는 광학 줌)을 갖거나, 또는 적어도 하나의 렌즈 어셈블리는 다른 렌즈 어셈블리의 렌즈 속성들과 다른 하나 이상의 렌즈 속성들을 가질 수 있다. 렌즈 어셈블리(510)는, 예를 들면, 광각 렌즈 또는 망원 렌즈를 포함할 수 있다.
플래쉬(520)는 피사체로부터 방출 또는 반사되는 빛을 강화하기 위하여 사용되는 빛을 방출할 수 있다. 일 실시예에 따르면, 플래쉬(520)는 하나 이상의 발광 다이오드들(예: RGB(red-green-blue) LED, white LED, infrared LED, 또는 ultraviolet LED), 또는 xenon lamp를 포함할 수 있다. 이미지 센서(530)는 피사체로부터 방출 또는 반사되어 렌즈 어셈블리(510)를 통해 전달된 빛을 전기적인 신호로 변환함으로써, 상기 피사체에 대응하는 이미지를 획득할 수 있다. 일 실시예에 따르면, 이미지 센서(530)는, 예를 들면, RGB 센서, BW(black and white) 센서, IR 센서, 또는 UV 센서와 같이 속성이 다른 이미지 센서들 중 선택된 하나의 이미지 센서, 동일한 속성을 갖는 복수의 이미지 센서들, 또는 다른 속성을 갖는 복수의 이미지 센서들을 포함할 수 있다. 이미지 센서(530)에 포함된 각각의 이미지 센서는, 예를 들면, CCD(charged coupled device) 센서 또는 CMOS(complementary metal oxide semiconductor) 센서를 이용하여 구현될 수 있다.
이미지 스태빌라이저(540)는 카메라 모듈(480) 또는 이를 포함하는 전자 장치(401)의 움직임에 반응하여, 렌즈 어셈블리(510)에 포함된 적어도 하나의 렌즈 또는 이미지 센서(530)를 특정한 방향으로 움직이거나 이미지 센서(530)의 동작 특성을 제어(예: 리드 아웃(read-out) 타이밍을 조정 등)할 수 있다. 이는 촬영되는 이미지에 대한 상기 움직임에 의한 부정적인 영향의 적어도 일부를 보상하게 해 준다. 일 실시예에 따르면, 이미지 스태빌라이저(540)는, 일 실시예에 따르면, 이미지 스태빌라이저(540)은 카메라 모듈(480)의 내부 또는 외부에 배치된 자이로 센서(미도시) 또는 가속도 센서(미도시)를 이용하여 카메라 모듈(480) 또는 전자 장치(401)의 그런 움직임을 감지할 수 있다. 일 실시예에 따르면, 이미지 스태빌라이저(540)는, 예를 들면, 광학식 이미지 스태빌라이저로 구현될 수 있다. 메모리(550)는 이미지 센서(530)을 통하여 획득된 이미지의 적어도 일부를 다음 이미지 처리 작업을 위하여 적어도 일시 저장할 수 있다. 예를 들어, 셔터에 따른 이미지 획득이 지연되거나, 또는 복수의 이미지들이 고속으로 획득되는 경우, 획득된 원본 이미지(예: Bayer-patterned 이미지 또는 높은 해상도의 이미지)는 메모리(550)에 저장이 되고, 그에 대응하는 사본 이미지(예: 낮은 해상도의 이미지)는 디스플레이 모듈(460)을 통하여 프리뷰될 수 있다. 이후, 지정된 조건이 만족되면(예: 사용자 입력 또는 시스템 명령) 메모리(550)에 저장되었던 원본 이미지의 적어도 일부가, 예를 들면, 이미지 시그널 프로세서(560)에 의해 획득되어 처리될 수 있다. 일 실시예에 따르면, 메모리(550)는 메모리(430)의 적어도 일부로, 또는 이와는 독립적으로 운영되는 별도의 메모리로 구성될 수 있다.
이미지 시그널 프로세서(560)는 이미지 센서(530)를 통하여 획득된 이미지 또는 메모리(550)에 저장된 이미지에 대하여 하나 이상의 이미지 처리들을 수행할 수 있다. 상기 하나 이상의 이미지 처리들은, 예를 들면, 깊이 지도(depth map) 생성, 3차원 모델링, 파노라마 생성, 특징점 추출, 이미지 합성, 또는 이미지 보상(예: 노이즈 감소, 해상도 조정, 밝기 조정, 블러링(blurring), 샤프닝(sharpening), 또는 소프트닝(softening)을 포함할 수 있다. 추가적으로 또는 대체적으로, 이미지 시그널 프로세서(560)는 카메라 모듈(480)에 포함된 구성 요소들 중 적어도 하나(예: 이미지 센서(530))에 대한 제어(예: 노출 시간 제어, 또는 리드 아웃 타이밍 제어 등)를 수행할 수 있다. 이미지 시그널 프로세서(560)에 의해 처리된 이미지는 추가 처리를 위하여 메모리(550)에 다시 저장 되거나 카메라 모듈(480)의 외부 구성 요소(예: 메모리(430), 디스플레이 모듈(460), 전자 장치(402), 전자 장치(404), 또는 서버(408))로 제공될 수 있다. 일실시예에 따르면, 이미지 시그널 프로세서(560)는 프로세서(420)의 적어도 일부로 구성되거나, 프로세서(420)와 독립적으로 운영되는 별도의 프로세서로 구성될 수 있다. 이미지 시그널 프로세서(560)이 프로세서(420)과 별도의 프로세서로 구성된 경우, 이미지 시그널 프로세서(560)에 의해 처리된 적어도 하나의 이미지는 프로세서(420)에 의하여 그대로 또는 추가의 이미지 처리를 거친 후 디스플레이 모듈(460)을 통해 표시될 수 있다.
일 실시예에 따르면, 전자 장치(401)는 각각 다른 속성 또는 기능을 가진 복수의 카메라 모듈(480)들을 포함할 수 있다. 이런 경우, 예를 들면, 상기 복수의 카메라 모듈(480)들 중 적어도 하나는 광각 카메라이고, 적어도 다른 하나는 망원 카메라일 수 있다. 유사하게, 상기 복수의 카메라 모듈(480)들 중 적어도 하나는 전면 카메라이고, 적어도 다른 하나는 후면 카메라일 수 있다.
도 25는, 다양한 실시예에 따른 전자 장치에서, 렌즈 어셈블리(예: 도 1, 도 2, 도 9, 도 10, 도 13, 도 14, 도 17, 및 도 18의 렌즈 어셈블리(100-1)(100-2)(100-3)(100-4))를 이용한 이미지 캡처링을 수행하는 방법의 상위 레벨 흐름도(2500)를 도시한다. 이하에서는, 이미지 캡처링 방법에 대해 도 1에 도시된 렌즈 어셈블리(100-1)를 참조하여 설명한다.
한 실시예에 따르면, 동작 2501에서, 예를 들면, 렌즈 어셈블리(100-1)는, 렌즈 어셈블리(100-1)에 포함된 제 1 렌즈(L11)에서 조리개(ST)를 통해 빛(광)을 수신할 수 있다. 다양한 실시예에 따르면, 조리개(ST)는, 도 1의 제1렌즈(L11)의 물체 측(O)에 배치될 수 있다.
동작 2502에서, 예를 들면, 렌즈 어셈블리에 포함된 제 1 렌즈(L11)는 빛을 제 2 렌즈(L21)로 굴절시킬 수 있다.
동작 2503에서, 예를 들면, 렌즈 어셈블리에 포함된 제 2 렌즈(L21)는 상기 빛을 제 3 렌즈(L31)로 굴절시킬 수 있다.
동작 2504에서, 예를 들면, 렌즈 어셈블리에 포함된 제 3 렌즈(L31)는, 상기 빛을 제 4 렌즈(L41)로 굴절시킬 수 있다.
동작 2505에서, 예를 들면, 렌즈 어셈블리에 포함된 제 4 렌즈(L41)는, 상기 빛을 제 5 렌즈(L51)로 굴절시킬 수 있다.
동작 2506에서, 예를 들면, 렌즈 어셈블리에 포함된 제 5 렌즈(L51)는, 상기 빛을 제 6 렌즈(L61)로 굴절시킬 수 있다.
동작 2507에서, 예를 들면, 렌즈 어셈블리에 포함된 제 6 렌즈(L61)는, 상기 빛을 제 7 렌즈(L71)로 굴절시킬 수 있다.
동작 2508에서, 예를 들면, 상기 제 7 렌즈(L71)로부터 굴절된 상기 빛은, 상면(IMG)에 이미지를 형성(form)할 수 있다. 다양한 실시예에 따르면, 상기 빛은, 광학 소자(OD)를 통해, 상기 상면(IMG)에 이미지를 형성할 수 있다. 상기 광학 소자(OD)는, 예를 들어, 저역 통과 필터(low pass filter), 적외선 차단 필터(IR(infrared)-cut filter), 또는 커버 글라스 중 적어도 하나를 포함할 수 있다.
동작 2509에서, 예를 들면, 렌즈 어셈블리를 포함하는 전자 장치(예: 도 21, 도 22의 전자 장치(300), 도 23의 전자 장치(401))는, 상기 상면(IMG)을 통해 수신된 빛을 이용하여 상기 이미지를 캡쳐할 수 있다. 예를 들면, 상기 전자 장치에 포함된, 카메라 모듈(예: 도 23및 도 24의 카메라 모듈(480))의 적어도 일부를 구성하는 이미지 센서(예: 도 24의 이미지 센서(530))를 이용하여, 상기 이미지를 캡쳐할 수 있다. 다양한 실시예에 따르면, 물체 측으로부터 상 면(image plane)이 있는 상 측으로 배치된 복수의 렌즈들을 포함하는 렌즈 어셈블리(100-1,100-2,100-3,100-4)에 있어서, 상기 물체 측으로부터 입사하는 광의 제1 광 축을 제2 광 축으로 굴곡시키는 반사 부재(RE); 상기 반사 부재(RE)에 의해 굴곡된 광이 입사하도록 상기 제2 광 축 상에 배치되고, 정의 굴절력을 가지는 제1 렌즈군(G11); 상기 제1 렌즈군(G11)의 상 측에 구비되고, 정의 굴절력을 가지는 제2 렌즈군(G21); 및 상기 제2 렌즈군(G21)의 상 측에 구비되고, 부의 굴절력을 가지는 제3 렌즈군(G31);을 포함하고, 상기 제1렌즈군(G11)과 제3렌즈군(G31)이 물체 측으로 이동하여 광각단에서 망원단으로 주밍을 수행하고, 상기 제1 렌즈군(G11)이 가장 물체 측에 배치된 제1 렌즈(L11)와, 상기 제1 렌즈(L11)의 상 측에 배치된 제2 렌즈(L21)를 포함하고, 상기 제1 렌즈(L11)가 50보다 큰 아베수를 가지고, 상기 제2 렌즈(L21)가 30 이하 의 아베수를 가질 수 있다.
상기 제1렌즈군(G11) 또는 제3렌즈군(G31)이 포커싱을 수행하도록 구성될 수 있다.
상기 렌즈 어셈블리(100-1)가 다음 식을 만족할 수 있다.
<식>
0.5 < EFL1G / EFLW < 3.0
여기서, EFL1G는 제1 렌즈군의 초점 거리를, EFLW는 광각단에서의 렌즈 어셈블리의 초점 거리를 나타낸다.
상기 렌즈 어셈블리(100-1)가 다음 식을 만족할 수 있다.
<식>
0.1 < EFL2G / EFLT < 1.0
여기서, EFL2G는 제2 렌즈군(G21)의 초점 거리를, EFLT는 망원단에서의 렌즈 어셈블리(100-1)의 초점 거리를 나타낸다.
상기 제3 렌즈군(G31)이 가장 상 측에 배치된 마지막 렌즈(L71)를 포함하고, 다음 식을 만족할 수 있다.
<식>
Ld / D < 1
여기서, Ld는 상기 마지막 렌즈(L71)의 광각단에서의 유효경 크기를, D는 이미지 서클 사이즈(Image Circle size)를 나타낸다.
상기 렌즈 어셈블리(100-1)의 전체 광 경로 길이(TTL:Total track length)가 35mm 보다 작거나 같을 수 있다.
상기 반사 부재(R3)의 물체 측에 렌즈가 구비되지 않는다.
상기 렌즈 어셈블리(100-1)가, 상기 제1 렌즈군(G11), 제2 렌즈군(G21), 및 제3 렌즈군(G31)이 상기 제2 광 축에 대해 수직하게 또는 수평하게 이동되어 손떨림 보정을 수행하도록 구성될 수 있다.
상기 렌즈 어셈블리(100-1)가, 상기 반사 부재가 틸팅되어 피치 방향의 손떨림 보정을 수행하도록 구성될 수 있다.
상기 렌즈 어셈블리(100-1)가, 상기 제1 렌즈군(G11), 제2 렌즈군(G21) 및 제3 렌즈군(G31)이 제2 광축에 대해 수평하게 이동하여 요(yaw) 방향의 손떨림 보정을 수행하도록 구성될 수 있다.
상기 제 1렌즈(L11)가 정의 굴절력을 가지고, 상기 제2 렌즈(L21)가 부의 굴절력을 가질 수 있다.
상기 제1렌즈(L11)와 제2렌즈(L21)가 주밍을 위해 이동할 수 있다.
상기 제3 렌즈군(G31)이 가장 상 측에 배치된 마지막 렌즈(L71)를 포함하고, 상기 마지막 렌즈(L71)가 물체 측이 오목한 부의 굴절력을 가질 수 있다.
상기 제3 렌즈군(G31)이 물체 측에 배치된 정의 굴절력을 갖는 렌즈(L61)와 가장 상 측에 배치된 부의 굴절력을 갖는 렌즈(L71)를 포함할 수 있다.
상기 제2 렌즈군(G21)이 부의 굴절력을 갖는 제3 렌즈(L31), 정 또는 부의 굴절력을 가지는 제4 렌즈(L41), 및 정의 굴절력을 갖는 제5 렌즈(L51)를 포함할 수 있다.
상기 렌즈 어셈블리(100-1)에 포함된 모든 렌즈들이 플라스틱 렌즈로 구성될 수 있다.
다양한 실시예에 따르면, 물체 측으로부터 상 면(image plane)이 있는 상 측으로 배치된 복수의 렌즈들을 포함하는 렌즈 어셈블리(100-1); 상기 렌즈 어셈블리(100-1)를 통해 입사된 빛으로부터 피사체에 관한 정보를 획득하는 적어도 하나의 카메라 모듈(480); 및 상기 정보에 기반하여 상기 피사체의 이미지를 처리하는 이미지 시그널 프로세서(560);를 포함하고,
상기 렌즈 어셈블리(100-1)가,
상기 물체 측으로부터 입사하는 광의 제1 광 축을 제2 광 축으로 굴곡시키는 반사 부재(RE); 상기 반사 부재(RE)에 의해 굴곡된 광이 입사하도록 상기 제2 광 축 상에 배치되고, 정의 굴절력을 가지는 제1 렌즈군(G11); 상기 제1 렌즈군(G11)의 상 측에 구비되고, 정의 굴절력을 가지는 제2 렌즈군(G21); 및 상기 제2 렌즈군(G21)의 상 측에 구비되고, 부의 굴절력을 가지는 제3 렌즈군(G31);을 포함하고,
상기 제1렌즈군(G11)과 제3렌즈군(G31)이 물체 측으로 이동하여 광각단에서 망원단으로 주밍을 수행하고, 상기 제1 렌즈군(G11)이 가장 물체 측에 배치된 제1 렌즈(L11)와, 상기 제1 렌즈(L11)의 상 측에 배치된 제2 렌즈(L21)를 포함하고, 상기 제1 렌즈(L11)가 50보다 큰 아베수를 가지고, 상기 제2 렌즈(L21)가 30이하 의 아베수를 가진다.
본 문서에 개시된 실시예는 개시된, 기술 내용의 설명 및 이해를 위해 제시된 것이며, 본 문서에서 기재된 기술의 범위를 한정하는 것은 아니다. 따라서, 본 문서의 범위는, 본 문서의 기술적 사상에 근거한 모든 변경 또는 다양한 다른 실시예를 포함하는 것으로 해석되어야 한다. 상기한 실시예들은 예시적인 것에 불과한 것으로, 당해 기술분야의 통상을 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다. 따라서, 본 발명의 실시예에 따른 진정한 기술적 보호범위는 하기의 특허청구범위에 기재된 발명의 기술적 사상에 의해 정해져야만 할 것이다.

Claims (15)

  1. 물체 측으로부터 상 면(image plane)이 있는 상 측으로 배치된 복수의 렌즈들을 포함하는 렌즈 어셈블리에 있어서,
    상기 물체 측으로부터 입사하는 광의 제1 광 축을 제2 광 축으로 굴곡시키는 반사 부재;
    상기 반사 부재에 의해 굴곡된 광이 입사하도록 상기 제2 광 축 상에 배치되고, 정의 굴절력을 가지는 제1 렌즈군;
    상기 제1 렌즈군의 상 측에 구비되고, 정의 굴절력을 가지는 제2 렌즈군; 및
    상기 제2 렌즈군의 상 측에 구비되고, 부의 굴절력을 가지는 제3 렌즈군;을 포함하고,
    상기 제1렌즈군과 제3렌즈군이 물체 측으로 이동하여 광각단에서 망원단으로 주밍을 수행하고,
    상기 제1 렌즈군이 가장 물체 측에 배치된 제1 렌즈와, 상기 제1 렌즈의 상 측에 배치된 제2 렌즈를 포함하고,
    상기 제1 렌즈가 50보다 큰 아베수를 가지고, 상기 제2 렌즈가 30 이하 의 아베수를 가지는, 렌즈 어셈블리.
  2. 제1 항에 있어서,
    상기 제1렌즈군 또는 제3렌즈군이 포커싱을 수행하도록 구성된, 렌즈 어셈블리.
  3. 제1 항에 있어서,
    다음 식을 만족하는, 렌즈 어셈블리.
    <식>
    0.5 < EFL1G / EFLW < 3.0
    여기서, EFL1G는 제1 렌즈군의 초점 거리를, EFLW는 광각단에서의 렌즈 어셈블리의 초점 거리를 나타낸다.
  4. 제1 항에 있어서,
    다음 식을 만족하는, 렌즈 어셈블리.
    <식>
    0.1 < EFL2G / EFLT < 1.0
    여기서, EFL2G는 제2 렌즈군의 초점 거리를, EFLT는 망원단에서의 렌즈 어셈블리의 초점 거리를 나타낸다.
  5. 제1 항에 있어서,
    상기 제3 렌즈군이 가장 상 측에 배치된 마지막 렌즈를 포함하고,
    다음 식을 만족하는, 렌즈 어셈블리.
    <식>
    Ld / D < 1
    여기서, Ld는 상기 마지막 렌즈의 광각단에서의 유효경 크기를, D는 이미지 서클 사이즈(Image Circle size)를 나타낸다.
  6. 제1 항에 있어서,
    상기 렌즈 어셈블리의 전체 광 경로 길이(TTL:Total track length)가 35mm 보다 작거나 같은, 렌즈 어셈블리.
  7. 제1 항에 있어서,
    상기 반사 부재의 물체 측에 렌즈가 구비되지 않는, 렌즈 어셈블리.
  8. 제1 항에 있어서,
    상기 제1 렌즈군, 제2 렌즈군, 및 제3 렌즈군이 상기 제2 광 축에 대해 수직하게 또는 수평하게 이동되어 손떨림 보정을 수행하도록 구성된, 렌즈 어셈블리.
  9. 제1 항에 있어서,
    상기 반사 부재가 틸팅되어 피치 방향의 손떨림 보정을 수행하도록 구성된, 렌즈 어셈블리.
  10. 제1 항에 있어서,
    상기 제1 렌즈군, 제2 렌즈군 및 제3 렌즈군이 제2 광축에 대해 수평하게 이동하여 요(yaw) 방향의 손떨림 보정을 수행하도록 구성된, 렌즈 어셈블리.
  11. 제1 항에 있어서,
    상기 제 1렌즈가 정의 굴절력을 가지고, 상기 제2 렌즈가 부의 굴절력을 가지는, 렌즈 어셈블리.
  12. 제1 항에 있어서,
    상기 제1렌즈와 제2렌즈가 주밍을 위해 이동하는, 렌즈 어셈블리.
  13. 물체 측으로부터 상 면(image plane)이 있는 상 측으로 배치된 복수의 렌즈들을 포함하는 렌즈 어셈블리;
    상기 렌즈 어셈블리를 통해 입사된 빛으로부터 피사체에 관한 정보를 획득하는 적어도 하나의 카메라 모듈; 및
    상기 정보에 기반하여 상기 피사체의 이미지를 처리하는 이미지 시그널 프로세서;를 포함하고,
    상기 렌즈 어셈블리가,
    상기 물체 측으로부터 입사하는 광의 제1 광 축을 제2 광 축으로 굴곡시키는 반사 부재;
    상기 반사 부재에 의해 굴곡된 광이 입사하도록 상기 제2 광 축 상에 배치되고, 정의 굴절력을 가지는 제1 렌즈군;
    상기 제1 렌즈군의 상 측에 구비되고, 정의 굴절력을 가지는 제2 렌즈군; 및
    상기 제2 렌즈군의 상 측에 구비되고, 부의 굴절력을 가지는 제3 렌즈군;을 포함하고,
    상기 제1렌즈군과 제3렌즈군이 물체 측으로 이동하여 광각단에서 망원단으로 주밍을 수행하고,
    상기 제1 렌즈군이 가장 물체 측에 배치된 제1 렌즈와, 상기 제1 렌즈의 상 측에 배치된 제2 렌즈를 포함하고,
    상기 제1 렌즈가 50보다 큰 아베수를 가지고, 상기 제2 렌즈가 30 이하의 아베수를 가지는, 전자 장치.
  14. 제13 항에 있어서,
    상기 제1렌즈군 또는 제3렌즈군이 포커싱을 수행하도록 구성된, 전자 장치.
  15. 제13 항에 있어서,
    다음 식을 만족하는, 전자 장치.
    <식>
    0.5 < EFL1G / EFLW < 3.0
    여기서, EFL1G는 제1 렌즈군의 초점 거리를, EFLW는 광각단에서의 렌즈 어셈블리의 초점 거리를 나타낸다.
PCT/KR2022/007492 2021-05-26 2022-05-26 렌즈 어셈블리 및 이를 포함한 전자 장치 WO2022250474A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22811665.3A EP4318070A1 (en) 2021-05-26 2022-05-26 Lens assembly and electronic device comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0067892 2021-05-26
KR1020210067892A KR20220159825A (ko) 2021-05-26 2021-05-26 렌즈 어셈블리 및 이를 포함한 전자 장치

Publications (1)

Publication Number Publication Date
WO2022250474A1 true WO2022250474A1 (ko) 2022-12-01

Family

ID=84229098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/007492 WO2022250474A1 (ko) 2021-05-26 2022-05-26 렌즈 어셈블리 및 이를 포함한 전자 장치

Country Status (3)

Country Link
EP (1) EP4318070A1 (ko)
KR (1) KR20220159825A (ko)
WO (1) WO2022250474A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0882769A (ja) * 1994-09-14 1996-03-26 Minolta Co Ltd 手ぶれ補正機能を有するズームレンズ
KR20010030068A (ko) * 1999-08-09 2001-04-16 오노 시게오 가변 초점 거리 렌즈계
KR100398989B1 (ko) * 2001-02-09 2003-09-19 삼성테크윈 주식회사 고배율 줌 렌즈
JP2004199099A (ja) * 2004-04-05 2004-07-15 Pentax Corp 高変倍ズームレンズ
KR20190032905A (ko) * 2017-09-20 2019-03-28 삼성전자주식회사 옵티칼 렌즈 어셈블리 및 이를 포함한 전자 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0882769A (ja) * 1994-09-14 1996-03-26 Minolta Co Ltd 手ぶれ補正機能を有するズームレンズ
KR20010030068A (ko) * 1999-08-09 2001-04-16 오노 시게오 가변 초점 거리 렌즈계
KR100398989B1 (ko) * 2001-02-09 2003-09-19 삼성테크윈 주식회사 고배율 줌 렌즈
JP2004199099A (ja) * 2004-04-05 2004-07-15 Pentax Corp 高変倍ズームレンズ
KR20190032905A (ko) * 2017-09-20 2019-03-28 삼성전자주식회사 옵티칼 렌즈 어셈블리 및 이를 포함한 전자 장치

Also Published As

Publication number Publication date
EP4318070A1 (en) 2024-02-07
KR20220159825A (ko) 2022-12-05

Similar Documents

Publication Publication Date Title
WO2019132283A1 (ko) 옵티칼 렌즈 어셈블리 및 이를 포함한 전자 장치
WO2020116922A1 (en) Lens assembly and electronic device including the same
WO2020101193A1 (en) Lens assembly and electronic device including the same
WO2022169332A1 (ko) 렌즈 어셈블리 및 이를 포함한 전자 장치
WO2020153768A1 (en) Lens assembly and electronic device including the same
WO2023017955A1 (ko) 렌즈 어셈블리 및 그를 포함하는 전자 장치
EP4007933A1 (en) Lens assembly and electronic device including the same
WO2022114619A1 (ko) 렌즈 어셈블리를 포함하는 전자 장치
WO2022139424A1 (ko) 전자 장치 및 그의 사용자 시선을 추적하고 증강 현실 서비스를 제공하는 방법
WO2022250474A1 (ko) 렌즈 어셈블리 및 이를 포함한 전자 장치
WO2022265348A1 (ko) 렌즈 어셈블리 및 이를 포함한 전자 장치
WO2022145772A1 (ko) 렌즈 어셈블리 및 이를 포함한 전자 장치
WO2023229174A1 (ko) 렌즈 어셈블리 및 그를 포함하는 전자 장치
WO2023013846A1 (ko) 렌즈 어셈블리 및 그를 포함하는 전자 장치
WO2023068475A1 (ko) 렌즈 어셈블리 및 그를 포함하는 전자 장치
WO2024076081A1 (ko) 렌즈 어셈블리 및 이를 포함한 전자 장치
WO2024034907A1 (ko) 렌즈 어셈블리 및 그를 포함하는 전자 장치
WO2023128198A1 (ko) 렌즈 어셈블리 및 그를 포함하는 전자 장치
WO2023136427A1 (ko) 렌즈 어셈블리 및 그를 포함하는 전자 장치
WO2023106578A1 (ko) 렌즈 어셈블리 및 그를 포함하는 전자 장치
WO2023158081A1 (ko) 렌즈 어셈블리 및 그를 포함하는 전자 장치
WO2024054067A1 (ko) 렌즈 어셈블리 및 그를 포함하는 전자 장치
WO2022260238A1 (ko) 카메라 모듈 및 카메라 모듈을 포함하는 전자 장치
WO2023101541A1 (ko) 렌즈 어셈블리 및 그를 포함하는 전자 장치
WO2024085609A1 (ko) 렌즈 어셈블리 및 그를 포함하는 전자 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22811665

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022811665

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022811665

Country of ref document: EP

Effective date: 20231102

NENP Non-entry into the national phase

Ref country code: DE