WO2022250430A1 - Method for preparing mrna for expressing protein, and use of mrna prepared thereby - Google Patents

Method for preparing mrna for expressing protein, and use of mrna prepared thereby Download PDF

Info

Publication number
WO2022250430A1
WO2022250430A1 PCT/KR2022/007377 KR2022007377W WO2022250430A1 WO 2022250430 A1 WO2022250430 A1 WO 2022250430A1 KR 2022007377 W KR2022007377 W KR 2022007377W WO 2022250430 A1 WO2022250430 A1 WO 2022250430A1
Authority
WO
WIPO (PCT)
Prior art keywords
mrna
car
cells
nucleotide sequence
poly
Prior art date
Application number
PCT/KR2022/007377
Other languages
French (fr)
Korean (ko)
Inventor
김태돈
강희영
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Publication of WO2022250430A1 publication Critical patent/WO2022250430A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • A61K39/464466Adhesion molecules, e.g. NRCAM, EpCAM or cadherins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4613Natural-killer cells [NK or NK-T]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/463Cellular immunotherapy characterised by recombinant expression
    • A61K39/4631Chimeric Antigen Receptors [CAR]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • A61K39/464402Receptors, cell surface antigens or cell surface determinants
    • A61K39/464403Receptors for growth factors
    • A61K39/464404Epidermal growth factor receptors [EGFR]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • A61K39/46448Cancer antigens from embryonic or fetal origin
    • A61K39/464482Carcinoembryonic antigen [CEA]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/7051T-cell receptor (TcR)-CD3 complex
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2818Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD28 or CD152
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0646Natural killers cells [NK], NKT cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/02Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/03Fusion polypeptide containing a localisation/targetting motif containing a transmembrane segment
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/50Vector systems having a special element relevant for transcription regulating RNA stability, not being an intron, e.g. poly A signal
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2840/00Vectors comprising a special translation-regulating system
    • C12N2840/20Vectors comprising a special translation-regulating system translation of more than one cistron
    • C12N2840/203Vectors comprising a special translation-regulating system translation of more than one cistron having an IRES

Definitions

  • the present invention relates to a technology for improving mRNA stability and protein translation in a host cell with respect to mRNA for transformation for protein expression.
  • mRNA is an intermediate link between the translation of DNA encoding protein information and the protein production process by cytoplasmic ribosomes.
  • Optimal in vitro transcription mRNA preparations for therapeutic purposes are produced from linear DNA templates using T7, T3 or Sp6 phage RNA polymerase.
  • the RNA thus prepared must have an open reading frame (ORF) encoding the protein of interest, an untranslated region, a 5'-Cap and a poly (A) tail sequence.
  • ORF open reading frame
  • the engineered mRNA is similar to the fully mature natural mRNA molecule and is identical to that naturally present in the cytoplasm of eukaryotic cells, thereby avoiding the activation of the host cell's innate immune system.
  • poly(A) tail plays an important regulatory role in mRNA translation and stability
  • RNA transcripts are prepared from DNA templates and then poly(A) polymerase is used. Tailing, which extends the adenosine sequence at the 3' end of the mRNA, is essential.
  • the length of the poly (A) tail affects mRNA stability and protein expression efficiency, and the optimal poly (A) tail length may vary depending on the type of cell and the protein to be expressed.
  • TIL Tumor Infiltrating Lymphocytes
  • CAR Chimeric Antigen Receptor
  • TCR T-Cell Receptor
  • a transgenic CAR-NK cell Chimeric Antigen Receptor - Natural killer cell
  • DNA has a problem in that safety is not guaranteed because the CAR gene is integrated into the genome or mutated.
  • attempts have been made to use transiently transformed CAR-NK cells using mRNA, but in the case of transient transformation, mRNA instability, low transfection rate, and target protein expression rate act as obstacles, resulting in poor performance. No studies were shown. Accordingly, it is necessary to develop an mRNA construct capable of stably expressing CAR without being degraded in the cytoplasm of natural killer cells.
  • One object of the present invention is to provide an mRNA construct having a long half-life and a high expression rate of a target protein in the cytoplasm of a host cell and a method for preparing the same.
  • Another object of the present invention is to provide a transient transformant transformed with the mRNA construct and the transformant for use in the treatment of cancer.
  • one aspect of the present invention is a nucleotide sequence encoding a target protein or peptide; and a poly(A) sequence having a length of 20 nt to 500 nt linked downstream of the mRNA encoding the target protein or peptide.
  • Another aspect of the present invention provides a gene construct comprising a DNA sequence corresponding to or complementary to the nucleotide sequence of the mRNA construct, and a vector comprising the gene construct.
  • another aspect of the present invention provides a method for preparing mRNA with improved stability, comprising performing in vitro transcription using the vector as a template.
  • poly(A) tailing may not be performed in vitro.
  • another aspect of the present invention provides a transformant in which the mRNA construct is introduced into a host cell, and a cell therapy composition comprising the same as an active ingredient.
  • the present invention provides a cancer treatment method comprising administering the transformant to a subject.
  • the present invention provides the use of the transformant for the preparation of anticancer drugs.
  • the mRNA construct of the present invention is stable and can express a target protein that fully functions after being injected into a cell for a long time, it is expected to contribute to the active use of transient transformation technology.
  • transiently transfected CAR-NK cells prepared by selecting a Chimeric Antigen Receptor (CAR) as a target protein and applying it to the mRNA construct of the present invention have excellent cytotoxicity against cancer cells while stably expressing the CAR for a long time.
  • CAR Chimeric Antigen Receptor
  • FIG. 1 shows the structure of the CAR mRNA of the present invention and the domain and motif configuration of the CAR.
  • Figure 2 shows the results of optimizing transfection, showing the results of establishing transformation conditions for NK92 cells using the Nepa21 system.
  • Figure 3 shows the results of transfection optimization, showing the results of establishing transfection conditions for primary NK cells using the Nepa21 system.
  • Figure 4 shows the results of the confirmation of CAR expression over time in Transient CAR NK92 cells and Stable CAR NK92 cells.
  • Figure 5 shows the results of confirming the cancer cell killing ability over time for Transient CAR NK92 cells and Stable CAR NK92 cells.
  • Figure 6 shows the domains and motifs constituting the vector construction or CAR for the confirmation experiment on the expression rate and cancer cell killing ability of the chimeric antigen receptor including DAP10,
  • FIG. 7 shows the confirmation of the CAR expression rate according to the presence or absence of DAP10 during CAR mRNA transfection using FACS, in relation to FIG. 6 above.
  • Figure 11a is a schematic diagram of mRNA constructs designed differently with 5'- ⁇ -globin UTR, 3'-BGH, EMCV-IRES structure, forward/reverse direction or 5'/3' position of EMCV-IRES
  • Figure 11b is a schematic view of the mRNA construct manufacturing process.
  • FIG. 12 is a diagram comparing the reduction ratios of mRNA constructs 1 to 7 injected into cells over time.
  • FIG. 13 is a diagram confirming comparison of CAR protein expression levels in transient NK92 cells injected with mRNA constructs 1 to 7.
  • FIG. 14 is a view comparing and confirming the toxicity of transient NK92 cells injected with mRNA constructs 1 to 7 in lung cancer cell lines and breast cancer cell lines.
  • 15A is a view confirming, through electrophoresis, a transcript obtained from a vector containing a DNA sequence corresponding to or complementary to the nucleotide sequence of mRNA in which the order of BGH and IRES is different at the 3' end.
  • 15B is a view confirming the efficiency of target protein expression and the performance of the target protein in cells of the mRNA construct in which the order of BGH and IRES is different at the 3' end.
  • 16a and 16b are views confirming the efficiency of expression of the target protein and the performance of the target protein in cells of the mRNA construct according to the presence or absence of the poly(A) sequence at the 3' end.
  • One aspect of the present invention provides an mRNA construct that is structurally stable and capable of actively inducing the expression of a target protein having intact functions by being injected into a cell for a long time.
  • the mRNA construct of the present invention includes a nucleotide sequence encoding a target protein or peptide and a poly(A) nucleotide sequence.
  • the target protein or peptide is a target protein or peptide to be produced in a recombinant transformant, and refers to any protein or peptide that can be expressed using the transformant's own transcription or translation system.
  • the target protein or peptide includes hormones, hormone analogues, enzymes, enzyme inhibitors, receptors and receptor fragments, antigens and fragments or analogs of antigens, antibodies and antibody fragments, monoclonal antibodies, structural proteins, toxin proteins, etc., It may be a protein in which some or some or all of them are fused.
  • a chimeric antigen receptor (CAR) was used as the target protein or peptide.
  • the nucleotide sequence encoding the target protein or peptide may be an RNA sequence, and in particular, an mRNA sequence.
  • the poly(A) nucleotide sequence refers to a nucleotide sequence in which a plurality of adenosine monophosphates are linked through phosphodiester bonds.
  • the poly(A) sequence may have a length of 20 nt to 500 nt, for example, 30 nt to 450 nt, 50 nt to 400 nt, 100 nt to 350 nt, or 150 nt to 310 nt.
  • the poly(A) nucleotide sequence may be arranged downstream of the nucleotide sequence encoding the target protein or peptide.
  • the downstream means the next part of the 3'-end of the nucleotide sequence encoding the target protein or peptide. Therefore, the poly(A) nucleotide sequence may be placed after the 3'-end of the nucleotide sequence encoding the target protein or peptide.
  • the poly(A) nucleotide sequence may be connected immediately after the 3'-end of the nucleotide sequence encoding the target protein or peptide, and the 3'-end of the nucleotide sequence encoding the target protein or peptide and the An arbitrary base sequence may be interposed between the poly(A) base sequences.
  • the mRNA construct of the present invention may further include a 5'- ⁇ -globin untranslated region (UTR) region upstream of the nucleotide sequence encoding the target protein or peptide.
  • the upstream refers to the front part of the 5'-end of the nucleotide sequence encoding the target protein or peptide. Therefore, the 5'- ⁇ -globin UTR region may be placed in front of the 5'-end of the nucleotide sequence encoding the target protein or peptide.
  • the 5'-end of the nucleotide sequence encoding the target protein or peptide may be connected immediately after the 5'- ⁇ -globin UTR region, and the 5'- ⁇ -globin UTR region and the target protein or peptide Any nucleotide sequence may be interposed between the 5'-end of the nucleotide sequence encoding .
  • the 5'- ⁇ -globin UTR region is an untranslated portion present in the front part of the 5'-end of the nucleotide sequence of the gene encoding ⁇ -globin, that is, upstream of the gene encoding ⁇ -globin.
  • the 5'- ⁇ -globin UTR region may include or consist of the nucleotide sequence of SEQ ID NO: 1.
  • the mRNA construct of the present invention may further include BGH between the nucleotide sequence encoding the target protein or peptide and the poly(A) nucleotide sequence. Therefore, the BGH may be placed between the 3'-end of the nucleotide sequence encoding the target protein or peptide and the 5'-end of the poly(A) nucleotide sequence, and similarly, the target protein or peptide encoding the target protein or peptide Any base sequence may be interposed between the 3'-end of the base sequence and the BGH, and between the BGH and the 3'-end of the poly(A) base sequence.
  • the BGH refers to a polyadenylation signal of bovine growth hormone (bGH).
  • the BGH may include or consist of the nucleotide sequence of SEQ ID NO: 2.
  • the mRNA construct of the present invention may further include an IRES between the nucleotide sequence encoding the target protein or peptide and the poly(A) nucleotide sequence. Therefore, the IRES may be placed between the 3'-end of the nucleotide sequence encoding the target protein or peptide and the 5'-end of the poly(A) nucleotide sequence, and similarly, the target protein or peptide encoding the target protein or peptide Any base sequence may be interposed between the 3'-end of the base sequence and the IRES, and between the IRES and the 3'-end of the poly(A) base sequence.
  • the IRES is i) between the nucleotide sequence encoding the target protein or peptide and the BGH and ii) between the BGH and the poly(A) sequence.
  • the IRES is an internal ribosome entry site or a ribosome binding site, and forms a loop structure on mRNA to initiate translation of mRNA.
  • the IRES may be an IRES region of encephalomyocarditis virus (EMCV), and may specifically include or consist of the nucleotide sequence of SEQ ID NO: 3.
  • EMCV encephalomyocarditis virus
  • the mRNA construct of the present invention constructed as described above may be intended to be transformed into cells.
  • the transformation means introducing a foreign nucleotide sequence into a cell, and the cell into which the foreign gene is introduced by transformation is called a transformant.
  • the mRNA construct of the present invention may be transformed into cells as mRNA itself, and in this case, the mRNA itself is not in a form capable of independently replicating in cells, and is degraded in cells over time. It is extinguished.
  • the mRNA construct of the present invention may be for temporary transformation, or may be for maintaining the expression of the target protein or peptide by being stably maintained for a long time in the cytoplasm of the transformed cell.
  • an mRNA construct was designed in which poly(A) sequences of 40 nt, 150 nt and 310 nt lengths were linked downstream of the mRNA encoding the target protein, the chimeric antigen receptor. It was confirmed that the expression rate of the protein from the mRNA construct and the activity (cytotoxicity to cancer cells) by the protein were remarkably improved and sustained in the transient CAR-NK cells prepared by direct transformation of cells and primary NK cells.
  • Another aspect of the present invention provides a gene construct comprising a DNA sequence corresponding to or complementary to the nucleotide sequence of the mRNA construct of the present invention, and a vector comprising the gene construct.
  • the DNA nucleotide sequence corresponding to the nucleotide sequence of the mRNA construct means that only uracil (U) is changed to thymine (T) in the nucleotide sequence of the mRNA construct, and all other nucleotide sequences are the same DNA sequence. do.
  • the DNA nucleotide sequence complementary to the mRNA construct means a DNA sequence having an antisense nucleotide sequence to a DNA nucleotide sequence corresponding to the nucleotide sequence of the mRNA construct.
  • a gene construct comprising a DNA sequence corresponding to or complementary to the nucleotide sequence of the mRNA construct of the present invention may be used in a form included in a vector for storage or utilization.
  • the vector itself can be transformed into cells.
  • the gene construct is stably or permanently transformed, and the target protein or peptide can be expressed by transcribing and translating the target protein or peptide from the vector using the transcription and translation system of the transformant.
  • mRNA may be prepared using the vector as a template by in vitro transcription and transformed into cells.
  • the mRNA may be transiently transformed, and the target protein or peptide may be translated using the transformant's translation system to express the target protein or peptide.
  • the poly(A) nucleotide sequence is included downstream of the nucleotide sequence encoding the target protein or peptide, even when introduced into the cell, it exists very stably in the cytoplasm of the cell It is possible to express the target protein or peptide for a long time.
  • another aspect of the present invention provides a method for producing mRNA with improved stability, comprising performing in vitro transcription using the vector as a template.
  • the in vitro transcription refers to a process of synthesizing RNA in vitro using RNA polymerase, its cofactor, NTP substrate, and template DNA, and is well known to those skilled in the art to which the present invention pertains. Therefore, those skilled in the art to which the present invention pertains can perform the above process in an appropriate manner.
  • a nucleotide sequence corresponding to or complementary to the poly(A) nucleotide sequence is included in the gene construct included in the vector, only in vitro transcription as described above is performed. and poly(A) tailing may not be performed separately or additionally in vitro after in vitro transcription.
  • another aspect of the present invention provides a transformant in which an mRNA construct in which the target protein or peptide is a chimeric antigen receptor (CAR) in the mRNA construct of the present invention is introduced into a cell.
  • CAR chimeric antigen receptor
  • the cells may be immune cells, and the immune cells may be used without limitation as long as they are cells capable of inducing immunity to induce a desired therapeutic effect, and peripheral blood, umbilical cord blood, bone marrow, tumor-infiltrating lymphocytes, lymph node tissue or thymus tissue may be used. It can be obtained from, and can be obtained by differentiating from placental cells, embryonic stem cells, induced pluripotent stem cells or hematopoietic stem cells. In addition, the immune cells can be obtained from human, monkey, chimpanzee, dog, cat, mouse, rat and transgenic species thereof as well as established cell lines.
  • the method for obtaining immune cells can use any means known in the art, and can be obtained from autologous, allogeneic or heterologous sources.
  • autologous means any cell derived from the same individual that is subsequently reintroduced into the individual
  • allogeneic means any cell derived from another animal of the same species as the individual into which the cell is being introduced
  • xenogeneic means a cell derived from another species of animal.
  • the immune cells are natural killer cells (NK cells), T cells, natural killer T cells (NKT cells), cytokine induced killer cells (CIK), macrophages , It may be any one selected from dendritic cells, etc., but is not limited thereto. Therefore, immune cells expressing the chimeric antigen receptor according to the present invention on the cell surface include CAR-NK cells (Chimeric Antigen Receptor Natural Killer Cell), CAR-T cells (Chimeric Antigen Receptor T Cell), and CAR-NKT cells (Chimeric Antigen Receptor Cell). Receptor Natural killer T Cell), CAR-macrophage (Chimeric Antigen Receptor Macrophage), and the like.
  • the immune cells provided in the present invention can control the onset (on) / stop (off) of a conventional chimeric antigen receptor response to target cells, subsequent cell therapy, the need to increase or decrease the activity of therapeutic cells It includes a safety switch that can be very beneficial in situations. For example, when immune cells expressing a chimeric antigen receptor are provided to a patient, in some circumstances there may be side effects, such as off-target toxicity. Or, for example, the therapeutic cells may act to reduce the number of tumor cells or tumor size, and may no longer be needed. In this situation, the treatment cells can be controlled so that they are no longer activated.
  • the CAR-NK cells into which the chimeric antigen receptor was introduced into natural killer cells have problems due to the persistent toxicity of cancer immunotherapy when using conventional T cell-based CAR-T therapeutics, and autologous Not only can the risk of immune disease, the problem of graft-versus-host disease (GVHD) for xenogeneic cell transplantation, and the problem of off-target toxicity be solved through the on/off switch, but also various cancer cells It has the advantage of being able to be used as a general-purpose therapeutic agent by allowing it to be targeted.
  • GVHD graft-versus-host disease
  • the transformant of the present invention can be used as an active ingredient in a pharmaceutical composition for preventing or treating cancer, and another aspect of the present invention is for preventing or treating cancer comprising the transformant as an active ingredient.
  • a pharmaceutical composition is provided.
  • cancer is used synonymously with “tumor” and refers to or refers to a physiological condition in mammals that is typically characterized by unregulated cell growth/proliferation.
  • Cancer or carcinoma that can be treated with the pharmaceutical composition of the present invention is not particularly limited, and includes both solid cancer and hematological cancer.
  • it may be a blood cancer such as the leukemia or lymphoma, specifically thymic carcinoma, non-Hodgkin lymphoma, diffuse large cell lymphoma, small lymphocytic cell lymphoma ( small lymphocytic lymphoma, T-cell neoplasma, peripheral T-cell lymphoma, mantle cell lymphoma, T-cell acute lymphocytic leukemia lymphobalstic lymphoma), chronic lymphoblastic leukemia, and the like.
  • the leukemia or lymphoma specifically thymic carcinoma
  • non-Hodgkin lymphoma diffuse large cell lymphoma
  • small lymphocytic cell lymphoma small lymphocytic lymphoma, T-cell neoplasma, peripheral T-cell lymphoma, mantle cell lymphoma, T
  • the pharmaceutical composition of the present invention may include 1 to 10 times, 2 to 10 times, or 5 to 8 times the number of immune cells compared to the number of tumor cells of the subject to be treated, but is limited thereto. it is not going to be
  • Anticancer agents used in chemotherapy induce apoptosis of proliferating cells, and radiation to enhance the therapeutic effect of anticancer agents increases such apoptosis.
  • cells whose apoptosis is induced by anticancer agents and radiation are not limited to cancer cells, and may also affect immune cell therapy agents administered to individuals for immunotherapy.
  • Chemotherapy includes, but is not limited to, CHOP (cyclophosphamide, doxorubicin, vincristine, prednisone), EPOCH (etoposide, vincristine, doxorubicin, cyclophosphamide, prednisone) or any other multi-drug regimen.
  • cell therapy product refers to cells and tissues manufactured through isolation, culture, and special manipulation from a subject, and is a drug (US FDA regulation) used for the purpose of treatment, diagnosis, and prevention, and is used to restore the function of cells or tissues. It refers to drugs used for the purpose of treatment, diagnosis, and prevention through a series of actions such as proliferation and selection of living autologous, allogeneic, or heterogeneous cells in vitro or changing the biological characteristics of cells in other ways.
  • the pharmaceutical composition of the present invention may additionally include a pharmaceutical or pharmaceutically acceptable carrier.
  • a pharmaceutical or pharmaceutically acceptable carrier is that it does not inhibit the activity of the active ingredient and does not have toxicity more than is adaptable to the subject of application (prescription), and the 'carrier' facilitates the addition of the compound into cells or tissues. defined as a compound that
  • compositions of the present invention may be formulated in various forms for administration to a subject, and a representative formulation for parenteral administration is an injectable formulation, preferably an isotonic aqueous solution or suspension.
  • Formulations for injection may be prepared according to techniques known in the art using suitable dispersing or wetting agents and suspending agents. For example, it may be formulated for injection by dissolving each component in saline or a buffer solution.
  • dosage forms for oral administration include, for example, ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, and wafers.
  • the tablet may contain a binder such as magnesium aluminum silicate, starch paste, gelatin, tragacanth, methylcellulose, sodium carboxymethylcellulose and/or polyvinylpyrrolidine, and optionally starch, agar, alginic acid or Disintegrants such as sodium salts, absorbents, colorants, flavors and/or sweeteners may further be included.
  • the formulation may be prepared by conventional mixing, granulating or coating methods.
  • composition of the present invention may further include adjuvants such as preservatives, hydrating agents, emulsification accelerators, salts or buffers for osmotic pressure control, and other therapeutically useful substances, and may be formulated according to conventional methods. .
  • the pharmaceutical composition according to the present invention can be administered through various routes including oral, transdermal, subcutaneous, intravenous or intramuscular, and the dosage of the active ingredient depends on the route of administration, age, sex, weight and severity of the patient. It can be appropriately selected according to several factors.
  • the composition of the present invention can be administered in parallel with a known compound capable of enhancing the desired effect.
  • the route of administration of the pharmaceutical composition according to the present invention may be administered to humans and animals orally or parenterally, such as intravenously, subcutaneously, intranasally or intraperitoneally.
  • the total effective amount of the transformant according to the present invention can be administered to the patient in a single dose, and a split treatment method in which multiple doses are administered for a long period of time ( fractionated treatment protocol).
  • the pharmaceutical composition of the present invention may vary the content of the active ingredient depending on the severity of the disease, but is typically administered repeatedly several times a day at an effective dose of 100 ⁇ g to 3,000 mg per administration based on adults. .
  • the concentration of the transformant can be determined by considering various factors such as the patient's age, weight, health condition, sex, disease severity, diet and excretion rate, as well as the drug administration route and number of treatments.
  • composition of the present invention may further include a known anticancer agent in addition to the above-described transformant as an active ingredient, and may be used in combination with other known therapies for the treatment of these diseases.
  • another aspect of the present invention provides a method for preventing or treating cancer, comprising administering the transformant of the present invention to a subject in need of treatment.
  • the transformant of the present invention may be in the form of the above-described pharmaceutical composition, and a person skilled in the art to which the present invention belongs can determine an appropriate administration route and dosage of the pharmaceutical composition.
  • Another aspect of the present invention provides the use of the transformant for the preparation of a drug for preventing or treating cancer.
  • a chimeric antigen receptor (CAR) configured as shown in FIG. 1 was designed as a target protein to be applied to the mRNA construct of the present invention and temporarily expressed in cells.
  • the chimeric antigen receptor includes an ectodomain that recognizes a target, a spacer (Myc-Hinge) that provides connection and flexibility of the ectodomain, a transmembrane domain that penetrates cell membranes, and It is constructed by sequentially connecting endodomains that induce cell signaling.
  • the ScFv of an anti-CEACAM6 antibody recognizing CEACAM6 as an antigen with the ectodomain the ScFv of an anti-cotinine antibody recognizing cotinine as an antigen, or an anti-EGFR affibody recognizing EGFR as an antigen
  • CD28 and DAP10 as co-activators along with CD3 ⁇ responsible for cytotoxic signaling as an endodomain
  • a chimeric antigen receptor having an anti-CEACAM6 scFv Anti-CEACAM6-CAR
  • a chimeric antigen receptor (anti-cotinine-CAR) having an anti-cotinine scFv and a chimeric antigen receptor (ZEGFR-CAR) having an anti-EGFR Affibody were respectively designed.
  • the nucleotide sequence of the gene construct encoding it was inserted into the pBluescript SK(-) vector (Addgene) and the lenti-virus vector (
  • GFP mRNA was injected into NK92 cells in an amount of 2 ⁇ g per 1 ⁇ 10 6 cells while varying the voltage from 110 V to 200 V using the Nepa21 system. After transfection, expression of GFP in NK92 cells was examined.
  • the survival rate of NK92 cells gradually decreased as the voltage increased, but it was confirmed that GFP was expressed in more than 90% of the surviving NK92 cells at a voltage of 150V or less, and in 110V conditions It was confirmed to exhibit the best cell viability and GFP expression rate.
  • the expression rate was increased, and GFP expression was observed until 3 days after transfection. Based on this, 20 ⁇ g of mRNA per 1X10 7 of NK92 cells was transfected at a voltage of 110 V to scale-up, and it was confirmed that the expression rate and persistence of expression were excellently maintained even in this case.
  • GFP mRNA was transfected in an amount of 5 ⁇ g per cell 1X10 6 while changing the voltage in the same manner as in the NK92 cells, and then the expression of GFP in primary NK cells was examined.
  • the mRNAs of the anti-CEACAM6-CAR and anti-cotinine-CAR obtained as above were transfected into NK92 cells with a voltage of 110 V using the Nepa 21 system used in Example 2 to obtain transient CAR-NK cells.
  • the CAR expression pattern expression rate and expression persistence
  • FIG. 4 In the case of anti-CEACAM6-CAR, a high expression rate of 90% or more was maintained until 48 hours after mRNA injection, and the expression continued for 4 days, and in the case of anti-cotinine-CAR, an expression rate of 70% or more was shown until 16 hours after mRNA injection.
  • the cytotoxicity (or cell killing ability, cytolytic activity) of the transient CAR-NK cells prepared as described above was confirmed by Calcein AM assay. Specifically, after reacting by treating AU565 cells with Calcein-AM (life technologies; C1430) at a concentration of 5ug/ml (37°C, 5% CO2, 1 hour in the dark), AU565 cells stained with Calcein The transient CAR-NK cells were treated at a ratio of 10:1, 5:1, and 1:1 (natural killer cells:cancer cells), respectively, in 200ul of RPMI1640 (10% FBS) for 5.5 hours, 13 hours, 25 hours, After reacting for 50 hours and 82 hours (37 ° C, 5% CO 2 ), 100 ul of the supernatant was taken to determine the amount of calcein present in the supernatant, and the cytotoxicity according to each condition was calculated in the following manner. At this time, the anti-cotinine-CAR-expressing trans
  • Cytotoxicity (%) (Calcein release value-spontaneous value according to conditions) / (maximum value-spontaneous value) x 100
  • each lenti-viral vector into which the nucleotide sequences of the gene constructs encoding the two target proteins, anti-CEACAM6-CAR and anti-cotinine-CAR, designed in Example 1 were inserted were converted into viral packaging vectors (viral packaging vectors).
  • viral packaging vectors viral packaging vectors.
  • vector; PMDLg/RRE, RSV/REV, VSVG were transfected into HEK293T cells, and anti-CEACAM6-CAR and anti-cotinine-CAR-expressing lentiviruses were obtained therefrom.
  • the amount of the Myc epitope of CD5-CAR was confirmed by flow cytometry to determine the infection unit was calculated. Calculate the number of natural killer cells and the amount of lentivirus so that the multiplicity of infection (MOI) is 30, and spinoculate lentiviruses expressing anti-CEACAM6-CAR and anti-cotinine-CAR in NK92 cells, respectively (360g, 90min, RT) to construct stable CAR-NK cells.
  • MOI multiplicity of infection
  • the CAR expression pattern (expression rate and expression persistence) and cytotoxicity over time were confirmed in the same manner as in the transient CAR-NK cells.
  • the ZEGFR- Based on CAR, ⁇ Ecto-TM-10z, a modified ZEGFR-CAR without an ectodomain, and three types of modified ZEGFR-CARs were designed, and the nucleotide sequences of gene constructs encoding them were inserted into a lenti-viral vector (Clontech, 632155).
  • the mRNAs of 5 CARs were obtained.
  • the mRNAs were transfected into NK92 cells with a voltage of 110V using the Nepa 21 system used in Example 2 to prepare transient CAR-NK cells.
  • CAR expression and cytotoxicity of the transient CAR-NK cells were measured in the same manner as in Example 3 for the 5 types of transient CAR-NK cells prepared as described above.
  • a modified ZEGFR-CAR (ZEGFR-MH-TM-10z-B) in which the ITAM motif of CD28 was removed was designed, respectively, and obtained by the method described above.
  • the mRNA of the modified ZEGFR-CAR was transformed into NK92 cells as described above to prepare transient CAR-NK cells, and CAR expression and cytotoxicity of the transient CAR-NK cells were measured as described above. measured.
  • Example 1 in the case of the modified ZEGFR-CAR (ZEGFR-MH-TM-10z-B) in which the ITAM motif of CD28 is removed, the ZEGFR-CAR designed in Example 1 (in FIG. 8) Example containing the ITAM motif of CD28 as well as the cytotoxicity of transient CAR-NK cells against the breast cancer cell line AU565, as well as the lowered CAR expression rate compared to 'ZEGFR-MH-TM-28-10z-B') It was confirmed that it fell short of the ZEGFR-CAR designed in 1.
  • the mRNA of the modified ZEGFR-CARs was transformed into NK92 cells as described above to prepare transient CAR-NK cells, and CAR expression and cytotoxicity of the transient CAR-NK cells were measured as described above. .
  • FIG. 11a is a schematic diagram of the constructs arranged next to the T7 promoter in the template vector for synthesizing the 7 types of mRNA constructs listed in Table 1 below, and Table 2 below is introduced into the 5'-UTR and 3'-UTR of ZEGFR-CAR. It shows the DNA sequence of one component.
  • the base sequences of the gene constructs encoding the 7 types of mRNA constructs designed as described above were inserted into the pBluescript SK(-) vector (Addgene), and in vitro transcription and mRNA constructs 1 to 7 were prepared by poly(A) tailing.
  • 5'-Cap and 3'-Poly (A) tails are bound to the 7 types of mRNAs obtained as described above.
  • Example [5-1] The 7 types of mRNAs obtained in Example [5-1] were transfected into NK92 cells with a voltage of 110 V using the Nepa 21 system used in Example 2 to prepare transient CAR-NK cells. .
  • the amount of mRNA remaining in the cytoplasm after being injected into NK92 cells over time was confirmed by RT-PCR.
  • Example [5-2] Furthermore, for the 7 types of transient CAR-NK cells prepared in Example [5-2], the expression level of the CAR protein expressed at 8 hours after the mRNA was injected into NK92 cells was measured. As criterion (1), the translational stability of the mRNA construct over time was evaluated.
  • transient CAR-NK cells prepared in Example [5-2] were injected into NK92 cells, and 18 hours later, the same method as in Example 3 was performed.
  • the transient CAR-NK cells were treated with breast cancer cell line AU565 and lung cancer cell line A549, respectively, and cytotoxicity to cancer cells was evaluated.
  • the transient CAR-NK cells had a level and pattern corresponding to the protein expression rate confirmed in Example 5-3.
  • the cytotoxicity of was confirmed, and the secretion of IFN ⁇ and TNF ⁇ , which are a series of reactions occurring during the cell lysis process, was also confirmed to appear at the level and pattern corresponding to the protein expression rate confirmed in Example 5-3.
  • Example 1 In order to confirm the effect of the IRES and BGH sequences located in the 3'-UTR of the mRNA structure on the structural stability, translational stability and cytotoxicity of mRNA, the anti-cotinine-CAR designed in Example 1 was targeted. 5'-UTR and 3'-UTR were designed as shown in Table 3 below, and mRNA was obtained in the same manner as in Example [5-1], followed by electrophoresis. The mRNA obtained as described above has a 5'-Cap and a 3'-Poly(A) tail bound thereto, similarly to the mRNA obtained in Example [5-1].
  • the IRES is included during mRNA synthesis during in vitro transcription. Two bands of the transcript and the IRES-deleted transcript were identified, whereas in the case of the 'UTR-CAR-IRES-BGH' construct in which the IRES is located in front of the BGH, a single band of the transcript containing the IRES was identified. only confirmed
  • the mRNA obtained as described above was transformed into NK92 cells in the same manner as in Examples [5-2] to [5-4], and structural stability, translational stability, and cytotoxicity of the mRNA construct were evaluated.
  • structures No. 2, 3, and 4 in Table 4 are designed so that poly(A) tails exist in the structures themselves, so poly(A) tailing does not proceed separately after in vitro transfer, and structure No. 5 in Table 4 is Although the poly(A) tail does not exist in the structure itself, the poly(A) tail is attached by additional poly(A) tailing after in vitro transcription.
  • the 5 types of mRNs designed and obtained as described above were transformed into NK92 cells and primary NK cells under optimal conditions in the same manner as in Example 2 above to construct transient CAR-NK cells.
  • the protein expression level of CAR and its cytotoxicity to cancer cells were confirmed.
  • construct No. 2 in the case of constructs No. 2 to 4 having a poly(A) tail in the construct itself, in NK92 cells, construct No. 2 is more effective in protein expression or breast cancer cell line AU65 than construct No. 1 without the poly(A) tail. Although the cytotoxicity was high, it was confirmed that the protein expression or cytotoxicity to the breast cancer cell line AU565 was lower than that of constructs 3 and 4, respectively. In addition, constructs 3 and 4 of Nos. 3 and 4 were confirmed to stably express the protein and exhibit cytotoxicity at a level or aspect corresponding to the expression rate (FIG. 16a).
  • construct 5 showed the highest level of protein expression, but the cytotoxicity against breast cancer cell line AU565 was found to be highest in construct 3 containing 150 bp of adenosine (A) (FIG. 16b ).

Abstract

The present invention relates to an mRNA structure comprising a nucleic acid sequence, which encodes a target protein or peptide, and a poly A nucleic acid sequence, which has a length of 20nt to 500nt and is connected downstream of the nucleic acid sequence encoding a target protein or peptide. It is expected that the mRNA structure is structurally stable in the cytoplasm after introduced into cells and enables a target protein fully performing the functions thereof to be expressed for a long time, and thus contributes to robust utilization of a transient transformation technology.

Description

단백질 발현용 mRNA 제조방법 및 이에 의해 제조된 mRNA의 용도Method for producing mRNA for protein expression and use of the mRNA produced thereby
본 발명은 단백질 발현을 위한 형질전환용 mRNA에 대하여, 숙주 세포 내에서 mRNA의 안정성과 단백질로의 번역을 향상시키는 기술에 관한 것이다.The present invention relates to a technology for improving mRNA stability and protein translation in a host cell with respect to mRNA for transformation for protein expression.
mRNA는 단백질 정보를 암호화하는 DNA의 번역과 세포질의 리보솜에 의한 단백질 생산과정 사이를 연결하는 중간 매개체이다. 치료제 목적을 위한 최적의 시험관 내 전사 mRNA 제조는 T7, T3 또는 Sp6 파지(phage) RNA 중합 효소(polymerase)를 사용하여 선형 DNA 주형(linear DNA template)으로부터 생산된다. 이렇게 만들어진 RNA는 목적 단백질(protein of interest)을 암호화하고 있는 개방형 판독틀(open reading frame; ORF), 비번역구간, 5'-Cap과 다중 아데노신 꼬리 서열(poly (A) tail)을 갖고 있어야 한다. 제작된 mRNA는 완전히 성숙한 자연적인 mRNA 분자와 유사하며 진핵세포의 세포질에 자연적으로 존재하는 것과 동일하여 숙주세포의 선천성 면역계(innate immune system) 작동을 피할 수 있다. mRNA is an intermediate link between the translation of DNA encoding protein information and the protein production process by cytoplasmic ribosomes. Optimal in vitro transcription mRNA preparations for therapeutic purposes are produced from linear DNA templates using T7, T3 or Sp6 phage RNA polymerase. The RNA thus prepared must have an open reading frame (ORF) encoding the protein of interest, an untranslated region, a 5'-Cap and a poly (A) tail sequence. . The engineered mRNA is similar to the fully mature natural mRNA molecule and is identical to that naturally present in the cytoplasm of eukaryotic cells, thereby avoiding the activation of the host cell's innate immune system.
폴리(A) 테일(poly(A) tail)은 mRNA 번역 및 안정성에 중요한 조절 역할을 수행하는바, DNA 주형에서 RNA 전사체를 제작한 후 다중 아데노신 중합효소(poly (A) polymerase)를 사용하여 mRNA의 3' 말단에 아데노신 서열을 연장하는 tailing 작업이 필수적이다. 한편, Poly (A) tail의 길이는 mRNA의 안정성과 단백질 발현 효율에 영향을 미치고, 세포의 종류와 발현하고자 하는 단백질에 따라 최적의 폴리(A) 테일의 길이가 다를 수 있다.Since poly(A) tail plays an important regulatory role in mRNA translation and stability, RNA transcripts are prepared from DNA templates and then poly(A) polymerase is used. Tailing, which extends the adenosine sequence at the 3' end of the mRNA, is essential. On the other hand, the length of the poly (A) tail affects mRNA stability and protein expression efficiency, and the optimal poly (A) tail length may vary depending on the type of cell and the protein to be expressed.
한편, 최근 암 치료를 위한 면역세포 요법으로 체내의 면역세포를 꺼내서 강화시키거나 유전공학적으로 변형시켜 다시 넣어주는 세포치료 방식이 개발되고 있다. 이의 대표적인 예로는 종양 침윤 림프구(Tumor Infiltrating Lymphocytes, TIL), 키메라 항원 수용체(Chimeric Antigen Receptor; CAR), T세포 수용체(T-Cell Receptor; TCR) 기술 등이 있으며, 특히 유전자 재조합 변형을 이용한 인공 수용체인 CAR를 이용한 연구 및 임상이 이루어지고 있다. 하지만, 상기 유전공학 변형을 이용한 세포치료 방식 또는 유전자 요법은 게놈 내의 무작위 위치에서의 유전자의 혼입으로 인해서 바람직하지 않은 면역 반응 및 안전성 문제를 비롯한 다수의 도전을 갖는다. 이와 관련하여, DNA를 이용한 형질전환 CAR-NK 세포(Chimeric Antigen Receptor - Natural killer cell)는 CAR 유전자가 게놈에 통합되거나 돌연변이가 발생하여 안전성이 담보되지 않는다는 문제점이 존재한다. 이를 해결하기 위해 mRNA를 이용한 일시적(transient) 형질전환된 CAR-NK 세포를 이용하고자 하는 시도가 있으나, 일시적 형질전환의 경우 mRNA의 불안정성과 낮은 형질주입율 및 목적 단백질 발현율이 장애로 작용하여 성과를 나타낸 연구가 없었다. 이에, 자연살해세포의 세포질에서 분해되지 않고 안정적으로 CAR를 발현할 수 있는 mRNA 구조체의 개발이 필요한 실정이다.On the other hand, recently, as an immune cell therapy for cancer treatment, a cell therapy method in which immune cells in the body are taken out and strengthened or genetically modified and reinserted is being developed. Representative examples include Tumor Infiltrating Lymphocytes (TIL), Chimeric Antigen Receptor (CAR), and T-Cell Receptor (TCR) technology. Research and clinical trials using phosphorus CAR are being conducted. However, cell therapy modalities or gene therapy using the genetic engineering modifications have a number of challenges, including undesirable immune responses and safety issues due to the incorporation of genes at random locations in the genome. In this regard, a transgenic CAR-NK cell (Chimeric Antigen Receptor - Natural killer cell) using DNA has a problem in that safety is not guaranteed because the CAR gene is integrated into the genome or mutated. In order to solve this problem, attempts have been made to use transiently transformed CAR-NK cells using mRNA, but in the case of transient transformation, mRNA instability, low transfection rate, and target protein expression rate act as obstacles, resulting in poor performance. No studies were shown. Accordingly, it is necessary to develop an mRNA construct capable of stably expressing CAR without being degraded in the cytoplasm of natural killer cells.
본 발명의 일 목적은 숙주세포의 세포질에서 반감기가 길고 목적 단백질의 발현율이 높은 mRNA 구조체 및 이를 제조하는 방법을 제공하는 것이다.One object of the present invention is to provide an mRNA construct having a long half-life and a high expression rate of a target protein in the cytoplasm of a host cell and a method for preparing the same.
또한, 본 발명의 다른 목적은 상기 mRNA 구조체로 형질전환된 일시적 형질전환체 및 상기 형질전환체를 암의 치료 용도에 제공하는 것이다. Another object of the present invention is to provide a transient transformant transformed with the mRNA construct and the transformant for use in the treatment of cancer.
그러나 본 발명에서 해결하고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당해 기술분야의 통상의 기술자에게 명확하게 이해될 수 있을 것이다.However, the technical problem to be solved in the present invention is not limited to the above-mentioned problems, and other problems not mentioned will be clearly understood by those skilled in the art from the description below.
상기의 목적을 달성하기 위하여, 본 발명의 일 측면은 목적 단백질 또는 펩티드를 암호화하는 염기서열; 및 상기 목적 단백질 또는 펩티드를 암호화하는 mRNA의 하류에 연결된 20nt 내지 500nt의 길이를 갖는 폴리(A) 염기서열;을 포함하는 mRNA 구조체를 제공한다.In order to achieve the above object, one aspect of the present invention is a nucleotide sequence encoding a target protein or peptide; and a poly(A) sequence having a length of 20 nt to 500 nt linked downstream of the mRNA encoding the target protein or peptide.
또한, 본 발명의 다른 측면은 mRNA 구조체의 염기서열과 대응하거나 또는 이와 상보적인 DNA 염기서열을 포함하는 유전자 컨스트럭트, 및 상기 유전자 컨스트럭트를 포함하는 벡터를 제공한다.Another aspect of the present invention provides a gene construct comprising a DNA sequence corresponding to or complementary to the nucleotide sequence of the mRNA construct, and a vector comprising the gene construct.
또한, 본 발명의 또 다른 측면은 상기 벡터를 주형으로, 시험관내 전사(in vitro transcription)를 수행하는 단계;를 포함하는 안정성이 향상된 mRNA의 제조 방법을 제공한다.In addition, another aspect of the present invention provides a method for preparing mRNA with improved stability, comprising performing in vitro transcription using the vector as a template.
상기 시험관내 전사 이후에, 시험관내에서 폴리(A) 테일링을 수행하지 않을 수 있다.After the in vitro transcription, poly(A) tailing may not be performed in vitro.
또한, 본 발명의 또 다른 측면은 상기 mRNA 구조체가 숙주세포 내로 도입된 형질전환체 및 이를 유효성분으로 포함하는 세포치료제 조성물을 제공한다.In addition, another aspect of the present invention provides a transformant in which the mRNA construct is introduced into a host cell, and a cell therapy composition comprising the same as an active ingredient.
또한, 본 발명은 상기 형질전환체를 개체에 투여하는 단계를 포함하는 암 치료방법을 제공한다. In addition, the present invention provides a cancer treatment method comprising administering the transformant to a subject.
또한, 본 발명은 항암제 제조를 위한 상기 형질전환체의 용도를 제공한다. In addition, the present invention provides the use of the transformant for the preparation of anticancer drugs.
본 발명의 mRNA 구조체는 안정적이고, 세포 내에 주입되어 그 기능을 온전하게 발휘하는 목적 단백질을 장시간 발현할 수 있는바 일시적(transient) 형질전환 기술의 활발한 이용에 기여할 것으로 기대된다. 예컨대, 목적 단백질로 키메릭 항원 수용체(Chimeric Antigen Receptor, CAR)를 선택하고 본 발명의 mRNA 구조체에 적용하여 제조된 일시적 형질전환 CAR-NK 세포는 CAR를 안정적으로 오랫동안 발현하면서 암세포에 대한 우수한 세포독성을 나타낼 뿐만 아니라, 자연살해 세포의 게놈에 유전자 삽입 없이 CAR를 발현하여 체내 안전성이 보장되기까지 하므로, 항암용 약학 조성물과 고형암을 표적하는 항암면역요법에 유용하게 활용될 수 있다.Since the mRNA construct of the present invention is stable and can express a target protein that fully functions after being injected into a cell for a long time, it is expected to contribute to the active use of transient transformation technology. For example, transiently transfected CAR-NK cells prepared by selecting a Chimeric Antigen Receptor (CAR) as a target protein and applying it to the mRNA construct of the present invention have excellent cytotoxicity against cancer cells while stably expressing the CAR for a long time. In addition to expressing CAR without gene insertion into the genome of natural killer cells, safety in vivo is guaranteed, so it can be usefully used for anti-cancer pharmaceutical compositions and anti-cancer immunotherapy targeting solid cancer.
도 1은 본 발명의 CAR mRNA의 구조 및 CAR의 도메인 및 모티프(motif) 구성을 나타낸 것이다.1 shows the structure of the CAR mRNA of the present invention and the domain and motif configuration of the CAR.
도 2는 형질전환(Transfection) 최적화에 대한 결과를 나타낸 것으로, Nepa21 시스템을 이용한 NK92 세포에 대한 형질전환 조건 확립에 대한 결과를 나타낸 것이다.Figure 2 shows the results of optimizing transfection, showing the results of establishing transformation conditions for NK92 cells using the Nepa21 system.
도 3은 형질전환(Transfection) 최적화에 대한 결과를 나타낸 것으로, Nepa21 시스템을 이용한 primary NK 세포에 대한 transfection 조건 확립에 대한 결과를 나타낸 것이다.Figure 3 shows the results of transfection optimization, showing the results of establishing transfection conditions for primary NK cells using the Nepa21 system.
도 4는 Transient CAR NK92 세포와 Stable CAR NK92 세포에서 시간별 CAR 발현 확인에 대한 결과를 나타낸 것이다.Figure 4 shows the results of the confirmation of CAR expression over time in Transient CAR NK92 cells and Stable CAR NK92 cells.
도 5는 Transient CAR NK92 세포와 Stable CAR NK92 세포에 대한 시간별 암세포 살상능을 확인한 결과를 나타낸 것이다.Figure 5 shows the results of confirming the cancer cell killing ability over time for Transient CAR NK92 cells and Stable CAR NK92 cells.
도 6은 DAP10를 포함하는 키메라항원수용체의 발현율 및 암세포 살상능에 대한 확인 실험을 위한 벡터 구축 또는 CAR를 구성하는 도메인 및 모티프를 나타낸 것이고,Figure 6 shows the domains and motifs constituting the vector construction or CAR for the confirmation experiment on the expression rate and cancer cell killing ability of the chimeric antigen receptor including DAP10,
도 7은 상기 도6과 관련하여, FACS를 이용하여 CAR mRNA 형질전환 시 DAP10 유무에 따른 CAR 발현율 확인을 나타낸 것이다.FIG. 7 shows the confirmation of the CAR expression rate according to the presence or absence of DAP10 during CAR mRNA transfection using FACS, in relation to FIG. 6 above.
도 8은 CAR 구조에서 co-activator 2개(CD28, DAP10)를 갖는 3세대 CAR와 co-activator 1개(DAP10)를 갖는 2세대 CAR 형태에 따른 CAR 발현율과 cytotoxicity 차이 결과를 나타낸 것이다.8 shows the difference in CAR expression rate and cytotoxicity according to the type of 3rd generation CAR having 2 co-activators (CD28, DAP10) and 2nd generation CAR having 1 co-activator (DAP10) in the CAR structure.
도 9는 CAR 구조에서 co-activator DAP10과 4-1BB에 따른 CAR 발현율과 cytotoxicity 차이를 확인한 결과를 나타낸 것이다.9 shows the results of confirming the difference in CAR expression rate and cytotoxicity according to the co-activators DAP10 and 4-1BB in the CAR structure.
도 10은 CAR 구조에서 co-activator DAP10과 2B4에 따른 CAR 발현율과 cytotoxicity 차이를 확인한 결과를 나타낸 것이다.10 shows the result of confirming the difference in CAR expression rate and cytotoxicity according to the co-activators DAP10 and 2B4 in the CAR structure.
도 11a는 5'-β-globin UTR, 3'-BGH, EMCV-IRES 구조의 유무, EMCV-IRES의 정/역방향 또는 5'/3' 위치를 상이하게 설계한 mRNA 구조체의 모식도이고, 도 11b는 mRNA 구조체 제조과정을 도식화한 도면이다.Figure 11a is a schematic diagram of mRNA constructs designed differently with 5'-β-globin UTR, 3'-BGH, EMCV-IRES structure, forward/reverse direction or 5'/3' position of EMCV-IRES, Figure 11b is a schematic view of the mRNA construct manufacturing process.
도 12는 세포 내로 주입된 mRNA 구조체 1 내지 7의 시간 경과에 따른 감소비율을 비교한 도면이다.12 is a diagram comparing the reduction ratios of mRNA constructs 1 to 7 injected into cells over time.
도 13은 mRNA 구조체 1 내지 7이 주입된 transient NK92 세포의 CAR 단백질 발현 수준을 비교 확인한 도면이다.13 is a diagram confirming comparison of CAR protein expression levels in transient NK92 cells injected with mRNA constructs 1 to 7.
도 14는 mRNA 구조체 1 내지 7이 주입된 transient NK92 세포의 폐암 세포주 및 유방암세포주에서의 독성을 비교 확인한 도면이다.14 is a view comparing and confirming the toxicity of transient NK92 cells injected with mRNA constructs 1 to 7 in lung cancer cell lines and breast cancer cell lines.
도 15a는 3' 말단에 BGH와 IRES의 순서를 달리한 mRNA의 염기서열과 대응하는 또는 이에 상보적인 DNA 서열을 포함하는 벡터에서 획득된 전사체를 전기영동을 통해 확인한 도면이다. 15A is a view confirming, through electrophoresis, a transcript obtained from a vector containing a DNA sequence corresponding to or complementary to the nucleotide sequence of mRNA in which the order of BGH and IRES is different at the 3' end.
도 15b는 3' 말단에 BGH와 IRES의 순서를 달리한 mRNA 구조체의 세포 내 목적 단백질 발현 효율과 목적 단백질의 성능을 확인한 도면이다. 15B is a view confirming the efficiency of target protein expression and the performance of the target protein in cells of the mRNA construct in which the order of BGH and IRES is different at the 3' end.
도 16a 및 도 16b는 3' 말단에 poly(A) 서열의 유무에 따른 mRNA 구조체의 세포 내 목적 단백질 발현 효율과 목적 단백질의 성능을 확인한 도면이다.16a and 16b are views confirming the efficiency of expression of the target protein and the performance of the target protein in cells of the mRNA construct according to the presence or absence of the poly(A) sequence at the 3' end.
이하에서 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명의 일 측면은 구조적으로 안정하고 세포 내로 주입되어 온전한 기능을 갖는 목적 단백질의 발현을 장시간 활발하게 유도할 수 있는 mRNA 구조체를 제공한다.One aspect of the present invention provides an mRNA construct that is structurally stable and capable of actively inducing the expression of a target protein having intact functions by being injected into a cell for a long time.
본 발명의 상기 mRNA 구조체는 목적 단백질 또는 펩티드를 암호화하는 염기서열과 폴리(A) 염기서열을 포함한다.The mRNA construct of the present invention includes a nucleotide sequence encoding a target protein or peptide and a poly(A) nucleotide sequence.
상기 목적 단백질 또는 펩티드는 재조합 형질전환체에서 생산하고자 하는 목적이 되는 단백질 또는 펩티드로서, 형질전환체 자체의 전사 또는 번역 체계를 이용하여 발현이 가능한 모든 단백질 또는 펩티드를 의미한다. 예컨대, 상기 목적 단백질 또는 펩티드는 호르몬, 호르몬 유사체, 효소, 효소 저해제, 리셉터 및 리셉터의 단편, 항원 및 항원의 단편 또는 유사체, 항체 및 항체 단편, 단선 항체, 구조 단백질, 독소 단백질 등이나, 이들의 일부 또는 이들의 일부 또는 전부가 융합된 단백질 등일 수 있다. 본 발명의 구체적인 실시예에서는 상기 목적 단백질 또는 펩티드로 키메릭 항원 수용체(Chimeric Antigen Receptor, CAR)를 이용하였다.The target protein or peptide is a target protein or peptide to be produced in a recombinant transformant, and refers to any protein or peptide that can be expressed using the transformant's own transcription or translation system. For example, the target protein or peptide includes hormones, hormone analogues, enzymes, enzyme inhibitors, receptors and receptor fragments, antigens and fragments or analogs of antigens, antibodies and antibody fragments, monoclonal antibodies, structural proteins, toxin proteins, etc., It may be a protein in which some or some or all of them are fused. In a specific embodiment of the present invention, a chimeric antigen receptor (CAR) was used as the target protein or peptide.
상기 목적 단백질 또는 펩티드를 암호화하는 염기서열은 RNA 서열일 수 있고, 특히 mRNA 서열일 수 있다.The nucleotide sequence encoding the target protein or peptide may be an RNA sequence, and in particular, an mRNA sequence.
상기 폴리(A) 염기서열은 복수 개의 아데노신 일인산(adenosine monophosphate)이 인산이에스테르(phosphodiester) 결합을 통해 연결된 염기서열을 의미한다. 상기 폴리(A) 염기서열은 20 nt 내지 500 nt 길이, 예컨대 30 nt 내지 450 nt, 50 nt 내지 400 nt, 100 nt 내지 350 nt, 또는 150 nt 내지 310 nt 길이일 수 있다. The poly(A) nucleotide sequence refers to a nucleotide sequence in which a plurality of adenosine monophosphates are linked through phosphodiester bonds. The poly(A) sequence may have a length of 20 nt to 500 nt, for example, 30 nt to 450 nt, 50 nt to 400 nt, 100 nt to 350 nt, or 150 nt to 310 nt.
상기 폴리(A) 염기서열은 상기 목적 단백질 또는 펩티드를 암호화하는 염기서열의 하류(downstream)에 배치될 수 있다. 상기 하류는 상기 목적 단백질 또는 펩티드를 암호화하는 염기서열의 3'-말단의 다음 부분을 의미한다. 따라서 상기 목적 단백질 또는 펩티드를 암호화하는 염기서열의 3'-말단의 다음에, 상기 폴리(A) 염기서열이 배치될 수 있다. 이때, 상기 목적 단백질 또는 펩티드를 암호화하는 염기서열의 3'-말단의 다음에 곧바로 상기 폴리(A) 염기서열이 연결될 수도 있고, 상기 목적 단백질 또는 펩티드를 암호화하는 염기서열의 3'-말단과 상기 폴리(A) 염기서열의 사이에 임의의 염기서열이 개재될 수도 있다.The poly(A) nucleotide sequence may be arranged downstream of the nucleotide sequence encoding the target protein or peptide. The downstream means the next part of the 3'-end of the nucleotide sequence encoding the target protein or peptide. Therefore, the poly(A) nucleotide sequence may be placed after the 3'-end of the nucleotide sequence encoding the target protein or peptide. At this time, the poly(A) nucleotide sequence may be connected immediately after the 3'-end of the nucleotide sequence encoding the target protein or peptide, and the 3'-end of the nucleotide sequence encoding the target protein or peptide and the An arbitrary base sequence may be interposed between the poly(A) base sequences.
상기와 같이 폴리(A) 염기서열이 상기 목적 단백질 또는 펩티드를 암호화하는 염기서열의 하류(downstream)에 배치되어 구성되는 mRNA 구조체의 경우, 세포 내로 도입된 이후에 사기 세포의 세포질 내에서도 구조적으로 높은 안정성을 나타낼 뿐만 아니라, 온전한 기능을 갖는 목적 단백질 또는 펩티드의 발현을 장시간 활발하게 유도할 수 있다.As described above, in the case of an mRNA construct in which the poly(A) base sequence is arranged downstream of the base sequence encoding the target protein or peptide, structurally high stability even in the cytoplasm of the fraudulent cell after being introduced into the cell. , and can actively induce the expression of a target protein or peptide with intact functions for a long time.
또한, 상기 본 발명의 mRNA 구조체는 상기 목적 단백질 또는 펩티드를 암호화하는 염기서열의 상류(upstream)에 5'-β-globin UTR(untranslated region) 영역을 더 포함할 수 있다. 상기 상류는 상기 목적 단백질 또는 펩티드를 암호화하는 염기서열의 5'-말단의 앞 부분을 의미한다. 따라서, 상기 목적 단백질 또는 펩티드를 암호화하는 염기서열의 5'-말단의 앞에, 상기 5'-β-globin UTR 영역이 배치될 수 있다. 이때, 상기 5'-β-globin UTR 영역의 다음에 곧바로 상기 목적 단백질 또는 펩티드를 암호화하는 염기서열의 5'-말단이 연결될 수도 있고, 상기 5'-β-globin UTR 영역과 상기 목적 단백질 또는 펩티드를 암호화하는 염기서열의 5'-말단 사이에 임의의 염기서열이 개재될 수도 있다. 한편, 상기 5'-β-globin UTR 영역은 β-globin을 암호화하는 유전자의 상류(upstream), 즉 β-globin을 암호화하는 유전자의 염기서열의 5'-말단의 앞 부분에 존재하는 비해독 부분을 의미한다. 특히, 상기 5'-β-globin UTR 영역은 서열번호 1의 염기서열을 포함하거나 이로 이루어진 것일 수 있다.In addition, the mRNA construct of the present invention may further include a 5'-β-globin untranslated region (UTR) region upstream of the nucleotide sequence encoding the target protein or peptide. The upstream refers to the front part of the 5'-end of the nucleotide sequence encoding the target protein or peptide. Therefore, the 5'-β-globin UTR region may be placed in front of the 5'-end of the nucleotide sequence encoding the target protein or peptide. At this time, the 5'-end of the nucleotide sequence encoding the target protein or peptide may be connected immediately after the 5'-β-globin UTR region, and the 5'-β-globin UTR region and the target protein or peptide Any nucleotide sequence may be interposed between the 5'-end of the nucleotide sequence encoding . On the other hand, the 5'-β-globin UTR region is an untranslated portion present in the front part of the 5'-end of the nucleotide sequence of the gene encoding β-globin, that is, upstream of the gene encoding β-globin. means In particular, the 5'-β-globin UTR region may include or consist of the nucleotide sequence of SEQ ID NO: 1.
또한, 상기 본 발명의 mRNA 구조체는 상기 목적 단백질 또는 펩티드를 암호화하는 염기서열과 상기 폴리(A) 염기서열 사이에 BGH를 더 포함할 수 있다. 따라서, 상기 BGH는 상기 목적 단백질 또는 펩티드를 암호화하는 염기서열의 3'-말단과 상기 폴리(A) 염기서열의 5'-말단의 사이에 배치될 수 있고, 마찬가지로 상기 목적 단백질 또는 펩티드를 암호화하는 염기서열의 3'-말단과 상기 BGH의 사이, 그리고 상기 BGH와 상기 폴리(A) 염기서열의 3'-말단의 사이에는 임의의 염기서열이 개재될 수도 있다. 한편, 상기 BGH는 소 성장인자(bovine growth hormone; bGH)의 폴리아데닐화 신호를 의미한다. 특히, 상기 BGH는 서열번호 2의 염기서열을 포함하거나 이로 이루어진 것일 수 있다.In addition, the mRNA construct of the present invention may further include BGH between the nucleotide sequence encoding the target protein or peptide and the poly(A) nucleotide sequence. Therefore, the BGH may be placed between the 3'-end of the nucleotide sequence encoding the target protein or peptide and the 5'-end of the poly(A) nucleotide sequence, and similarly, the target protein or peptide encoding the target protein or peptide Any base sequence may be interposed between the 3'-end of the base sequence and the BGH, and between the BGH and the 3'-end of the poly(A) base sequence. Meanwhile, the BGH refers to a polyadenylation signal of bovine growth hormone (bGH). In particular, the BGH may include or consist of the nucleotide sequence of SEQ ID NO: 2.
나아가, 상기 본 발명의 mRNA 구조체는 상기 목적 단백질 또는 펩티드를 암호화하는 염기서열과 상기 폴리(A) 염기서열 사이에 IRES를 더 포함할 수 있다. 따라서, 상기 IRES는 상기 목적 단백질 또는 펩티드를 암호화하는 염기서열의 3'-말단과 상기 폴리(A) 염기서열의 5'-말단의 사이에 배치될 수 있고, 마찬가지로 상기 목적 단백질 또는 펩티드를 암호화하는 염기서열의 3'-말단과 상기 IRES의 사이, 그리고 상기 IRES와 상기 폴리(A) 염기서열의 3'-말단의 사이에는 임의의 염기서열이 개재될 수도 있다. 특히, 상기 목적 단백질 또는 펩티드를 암호화하는 염기서열과 상기 폴리(A) 염기서열 사이에 BGH와 IRES가 모두 포함되는 경우, 상기 IRES는 i) 상기 목적 단백질 또는 펩티드를 암호화하는 염기서열과 상기 BGH 사이 및 ii) 상기 BGH와 상기 폴리(A) 염기서열 사이 중 적어도 하나에 포함될 수 있다. 한편, 상기 IRES는 내부 리보솜 진입 부위 또는 리보솜 결합 부위로서 mRNA 상에서 고리(loop) 구조를 형성하여 mRNA의 번역(translation)의 개시하는 부분이다. 특히, 상기 IRES는 encephalomyocarditis virus(EMCV)의 IRES 영역일 수 있고, 구체적으로 서열번호 3의 염기서열을 포함하거나 이로 이루어진 것일 수 있다.Furthermore, the mRNA construct of the present invention may further include an IRES between the nucleotide sequence encoding the target protein or peptide and the poly(A) nucleotide sequence. Therefore, the IRES may be placed between the 3'-end of the nucleotide sequence encoding the target protein or peptide and the 5'-end of the poly(A) nucleotide sequence, and similarly, the target protein or peptide encoding the target protein or peptide Any base sequence may be interposed between the 3'-end of the base sequence and the IRES, and between the IRES and the 3'-end of the poly(A) base sequence. In particular, when both BGH and IRES are included between the nucleotide sequence encoding the target protein or peptide and the poly(A) nucleotide sequence, the IRES is i) between the nucleotide sequence encoding the target protein or peptide and the BGH and ii) between the BGH and the poly(A) sequence. On the other hand, the IRES is an internal ribosome entry site or a ribosome binding site, and forms a loop structure on mRNA to initiate translation of mRNA. In particular, the IRES may be an IRES region of encephalomyocarditis virus (EMCV), and may specifically include or consist of the nucleotide sequence of SEQ ID NO: 3.
상기와 같이 구성되는 본 발명의 mRNA 구조체는 세포에 형질전환되기 위한 것일 수 있다. 상기 형질전환은 외래의 염기서열을 세포로 도입시키는 것을 의미하고, 형질전환에 의해 외래 유전자가 도입된 세포는 형질전환체라고 한다. 한편, 상기와 같이 세포 내로 도입된 외래의 염기서열이 세포의 염색체 내로 삽입되거나 또는 독립적으로 복제 가능한 형태로 존재하는 경우, 이를 안정적 형질전환 또는 영구적 형질전환이라고 하고, 그렇지 않은 경우를 일시적(transient) 형질전환이라고 한다. 특히, 본 발명의 상기 mRNA 구조체는 mRNA 그 자체로 세포 내에 형질전환되는 것일 수 있고, 이러한 경우 상기 mRNA 그 자체는 세포 내에서 독립적으로 복제 가능한 형태가 아니고, 시간이 경과함에 따라 세포 내에서 분해되어 소멸된다. 본 발명의 상기 mRNA 구조체는 일시적인 형질전환을 위한 것일 수 있고, 형질전환된 세포의 세포질 내에서 최대한 안정적으로 오랫동안 유지됨으로써 상기 목적 단백질 또는 펩티드의 발현을 지속시킬 수 있도록 하기 위한 것일 수 있다.The mRNA construct of the present invention constructed as described above may be intended to be transformed into cells. The transformation means introducing a foreign nucleotide sequence into a cell, and the cell into which the foreign gene is introduced by transformation is called a transformant. On the other hand, when the foreign base sequence introduced into the cell as described above is inserted into the chromosome of the cell or exists in an independently replicable form, this is referred to as stable transformation or permanent transformation, otherwise it is called transient (transient) is called transformation. In particular, the mRNA construct of the present invention may be transformed into cells as mRNA itself, and in this case, the mRNA itself is not in a form capable of independently replicating in cells, and is degraded in cells over time. It is extinguished. The mRNA construct of the present invention may be for temporary transformation, or may be for maintaining the expression of the target protein or peptide by being stably maintained for a long time in the cytoplasm of the transformed cell.
본 발명의 구체적인 실시예에서는 목적 단백질인 키메릭 항원 수용체를 암호화하는 mRNA의 하류에 40nt, 150nt 및 310nt 길이의 폴리(A) 염기서열이 연결된 mRNA 구조체를 설계하였고, 이를 mRNA 상태로 숙주세포인 NK92 세포 및 primary NK 세포에 직접 형질전환시켜 제작한 일시적 CAR-NK 세포에서 상기 mRNA 구조체로부터의 단백질 발현율과 상기 단백질에 의한 활성(암세포에 대한 세포독성)이 눈에 띄게 향상 및 지속됨을 확인하였다.In a specific embodiment of the present invention, an mRNA construct was designed in which poly(A) sequences of 40 nt, 150 nt and 310 nt lengths were linked downstream of the mRNA encoding the target protein, the chimeric antigen receptor. It was confirmed that the expression rate of the protein from the mRNA construct and the activity (cytotoxicity to cancer cells) by the protein were remarkably improved and sustained in the transient CAR-NK cells prepared by direct transformation of cells and primary NK cells.
또한, 본 발명의 다른 측면은, 본 발명의 상기 mRNA 구조체의 염기서열에 대응되거나 또는 이와 상보적인 DNA 염기서열을 포함하는 유전자 컨스트럭트, 및 상기 유전자 컨스트럭트를 포함하는 벡터를 제공한다.Another aspect of the present invention provides a gene construct comprising a DNA sequence corresponding to or complementary to the nucleotide sequence of the mRNA construct of the present invention, and a vector comprising the gene construct.
상기 mRNA 구조체의 염기서열에 대응되는 DNA 염기서열은 상기 mRNA 구조체의 염기서열에서 우라실(uracil, U)이 티민(thymine, T)으로만 바뀌었을 뿐, 나머지 염기서열은 모두 동일한 DNA 염기서열을 의미한다. 또한, 상기 mRNA 구조체와 상보적인 DNA 염기서열은 상기 mRNA 구조체의 염기서열에 대응되는 DNA 염기서열에 대한 안티센스 염기서열을 갖는 DNA 서열을 의미한다.The DNA nucleotide sequence corresponding to the nucleotide sequence of the mRNA construct means that only uracil (U) is changed to thymine (T) in the nucleotide sequence of the mRNA construct, and all other nucleotide sequences are the same DNA sequence. do. In addition, the DNA nucleotide sequence complementary to the mRNA construct means a DNA sequence having an antisense nucleotide sequence to a DNA nucleotide sequence corresponding to the nucleotide sequence of the mRNA construct.
본 발명의 상기 mRNA 구조체의 염기서열에 대응되거나 또는 이와 상보적인 DNA 염기서열을 포함하는 유전자 컨스트럭트는 보관 또는 활용을 위해 벡터에 포함된 형태로 이용될 수 있다.A gene construct comprising a DNA sequence corresponding to or complementary to the nucleotide sequence of the mRNA construct of the present invention may be used in a form included in a vector for storage or utilization.
예컨대, 일 구현예에서 상기 벡터는 그 자체로 세포 내로 형질전환될 있다. 이러한 경우 상기 유전자 컨스트럭트는 안정적 또는 영구적으로 형질전환되고, 형질전환체의 전사 및 번역 체계를 이용하여 상기 벡터로부터 목적 단백질 또는 펩티드를 전사 및 번역하여 상기 목적 단백질 또는 펩티드를 발현시킬 수 있다.For example, in one embodiment, the vector itself can be transformed into cells. In this case, the gene construct is stably or permanently transformed, and the target protein or peptide can be expressed by transcribing and translating the target protein or peptide from the vector using the transcription and translation system of the transformant.
한편, 다른 구현예에서 상기 벡터를 주형으로 시험관내 전사(in vitro transcription)를 통해 mRNA를 제조하고, 이를 세포 내로 형질전환할 수 있다. 이러한 경우 상기 mRNA는 일시적으로 형질전환되고 형질전환체의 번역 체계를 이용하여 목적 단백질 또는 펩티드를 번역하여 상기 목적 단백질 또는 펩티드를 발현시킬 수 있다. 상기 벡터를 주형으로 시험관내 전사되어 얻어지는 mRNA의 경우 목적 단백질 또는 펩티드를 암호화하는 염기서열의 하류에 폴리(A) 염기서열이 포함되어 있기 때문에, 세포 내로 도입되더라도 세포의 세포질에서 매우 안정적으로 존재하면서 오랫동안 상기 목적 단백질 또는 펩티드를 발현시킬 수 있다. 따라서, 본 발명의 또 다른 측면은 상기 벡터를 주형으로, 시험관내 전사(in vitro transcription)를 수행하는 단계를 포함하는 안정성이 향상된 mRNA의 제조 방법을 제공한다.Meanwhile, in another embodiment, mRNA may be prepared using the vector as a template by in vitro transcription and transformed into cells. In this case, the mRNA may be transiently transformed, and the target protein or peptide may be translated using the transformant's translation system to express the target protein or peptide. In the case of mRNA obtained by in vitro transcription using the vector as a template, since the poly(A) nucleotide sequence is included downstream of the nucleotide sequence encoding the target protein or peptide, even when introduced into the cell, it exists very stably in the cytoplasm of the cell It is possible to express the target protein or peptide for a long time. Accordingly, another aspect of the present invention provides a method for producing mRNA with improved stability, comprising performing in vitro transcription using the vector as a template.
상기 시험관내 전사는 RNA 중합효소와 그 보조인자, 기질 NTP와 주형 DNA를 이용하여 시험관 내에서 RNA를 합성하는 과정을 의미하는 것으로서, 본 발명이 속하는 기술분야의 통상의 기술자에게 널리 알려져 있다. 따라서, 본 발명이 속하는 기술분야의 통상의 기술자들은 적절한 방법으로 상기 과정을 수행할 수 있다.The in vitro transcription refers to a process of synthesizing RNA in vitro using RNA polymerase, its cofactor, NTP substrate, and template DNA, and is well known to those skilled in the art to which the present invention pertains. Therefore, those skilled in the art to which the present invention pertains can perform the above process in an appropriate manner.
특히, 본 발명의 mRNA 제조 방법의 경우, 상기 벡터에 포함된 유전자 컨스트럭트 내에 폴리(A) 염기서열에 대응되거나 또는 이에 상보적인 염기서열이 포함되어 있기 때문에, 상기와 같은 시험관내 전사만을 수행하면 되고, 시험관내 전사 이후에 별도로 또는 추가적으로 시험관내에서 폴리(A) 테일링을 수행하지 않을 수 있다. In particular, in the case of the mRNA production method of the present invention, since a nucleotide sequence corresponding to or complementary to the poly(A) nucleotide sequence is included in the gene construct included in the vector, only in vitro transcription as described above is performed. and poly(A) tailing may not be performed separately or additionally in vitro after in vitro transcription.
일반적으로 시험관내 전사를 통해 mRNA을 얻는 경우, 얻어진 mRNA를 대상으로 폴리(A) 중합효소(poly(A) polymerase) 등을 이용하여 mRNA를 폴리아데닐화(polyadenylation)하는 추가적인 폴리(A) 테일링 과정을 수행하여야 한다. 그런데 이와 같이 폴리(A) 중합효소를 이용하여 폴리(A) 테일링을 수행하는 경우, mRNA의 하류에 연결되는 폴리(A)의 길이를 일정하게 조절할 수 없고, 심지어 몇 개 길이의 폴리(A)가 연결되는지도 정확하게 알 수 없는 문제가 있다. 그러나 본 발명에서와 같이 mRNA 구조체 내에 폴리(A) 염기서열이 포함되면, 폴리(A) 테일링을 수행할 필요 없이 단순히 시험관내 전사 과정만으로도 단일한 길이를 갖는 안정적인 mRNA를 생산할 수 있게 되는 효과가 있는 것이다.In general, when mRNA is obtained through in vitro transcription, an additional poly(A) tailing process of polyadenylating the mRNA using poly(A) polymerase or the like for the obtained mRNA. should be performed. However, when poly(A) tailing is performed using poly(A) polymerase, the length of poly(A) connected to the downstream of mRNA cannot be constantly adjusted, and even several lengths of poly(A) There is a problem that it is not known exactly whether is connected. However, when the poly(A) sequence is included in the mRNA construct as in the present invention, it is possible to produce stable mRNA having a single length simply by in vitro transcription without the need to perform poly(A) tailing. will be.
또한, 본 발명의 다른 측면은, 본 발명의 상기 mRNA 구조체에서 상기 목적 단백질 또는 펩티드가 키메릭 항원 수용체(Chimeric Antigen Receptor, CAR)인 mRNA 구조체가 세포 내로 도입된 형질전환체를 제공한다.In addition, another aspect of the present invention provides a transformant in which an mRNA construct in which the target protein or peptide is a chimeric antigen receptor (CAR) in the mRNA construct of the present invention is introduced into a cell.
상기 세포는 면역세포일 수 있고, 상기 면역세포는 면역을 유도하여 목적하는 치료 효과를 유발할 수 있는 세포라면 제한 없이 이용될 수 있으며, 말초혈액, 제대혈, 골수, 종양침윤 림프구, 림프절조직 또는 흉선 조직으로부터 획득될 수 있고, 태반세포, 배아줄기세포, 유도만능줄기세포 또는 조혈줄기세포로부터 분화시켜 획득할 수 있다. 또한, 상기 면역세포는 인간, 원숭이, 침팬지, 개, 고양이, 마우스, 래트 및 그의 유전자삽입 종뿐만 아니라 확립세포주로부터 획득할 수 있다.The cells may be immune cells, and the immune cells may be used without limitation as long as they are cells capable of inducing immunity to induce a desired therapeutic effect, and peripheral blood, umbilical cord blood, bone marrow, tumor-infiltrating lymphocytes, lymph node tissue or thymus tissue may be used. It can be obtained from, and can be obtained by differentiating from placental cells, embryonic stem cells, induced pluripotent stem cells or hematopoietic stem cells. In addition, the immune cells can be obtained from human, monkey, chimpanzee, dog, cat, mouse, rat and transgenic species thereof as well as established cell lines.
면역세포 획득방법은 임의의 당업계에 알려진 수단을 사용할 수 있고, 자가, 동종 또는 이종으로부터 획득할 수 있다. "자가"는 이후에 개체에게 재도입될 동일한 개체로부터 파생된 모든 세포를 의미하고, "동종"은 세포가 도입되는 개체와 동일한 종의 다른 동물로부터 유래된 모든 세포를 의미하는 것이며, "이종"은 다른 종의 동물에서 유래된 세포를 의미한다.The method for obtaining immune cells can use any means known in the art, and can be obtained from autologous, allogeneic or heterologous sources. "autologous" means any cell derived from the same individual that is subsequently reintroduced into the individual, "allogeneic" means any cell derived from another animal of the same species as the individual into which the cell is being introduced, and "xenogeneic" means a cell derived from another species of animal.
특히, 상기 면역세포는 자연살해 세포(Natural Killer cell, NK cell), T 세포, 자연살해 T 세포(natural killer T cell, NKT cell), 사이토카인 유도 살해세포(Cytokine Induced Killer cell; CIK), 마크로파지, 수지상세포 등에서 선택되는 어느 하나일 수 있으나, 이에 제한되는 것은 아니다. 따라서, 본 발명에 따른 키메라 항원 수용체를 세포 표면에 발현하는 면역세포는 CAR-NK 세포(Chimeric Antigen Receptor Natural Killer Cell), CAR-T 세포(Chimeric Antigen Receptor T Cell), CAR-NKT 세포(Chimeric Antigen Receptor Natural killer T Cell), CAR-대식세포(Chimeric Antigen Receptor Macrophage) 등일 수 있다.In particular, the immune cells are natural killer cells (NK cells), T cells, natural killer T cells (NKT cells), cytokine induced killer cells (CIK), macrophages , It may be any one selected from dendritic cells, etc., but is not limited thereto. Therefore, immune cells expressing the chimeric antigen receptor according to the present invention on the cell surface include CAR-NK cells (Chimeric Antigen Receptor Natural Killer Cell), CAR-T cells (Chimeric Antigen Receptor T Cell), and CAR-NKT cells (Chimeric Antigen Receptor Cell). Receptor Natural killer T Cell), CAR-macrophage (Chimeric Antigen Receptor Macrophage), and the like.
본 발명에서 제공되는 면역세포는 통상적인 키메릭 항원 수용체의 표적 세포에 대한 반응 개시(on)/중지(off)를 조절할 수 있으므로, 후속 세포 요법, 치료 세포의 활성이 증가 또는 감소될 필요가 있는 상황에서 매우 유익할 수 있는 안전성 스위치를 포함한다. 예를 들어, 키메릭 항원 수용체를 발현하는 면역세포가 환자에게 제공되는 경우, 어떤 상황에서는 부작용, 예를 들어 탈표적(off-target) 독성이 있을 수 있다. 또는 예를 들어, 치료 세포가 종양 세포의 수 또는 종양 크기를 감소시키는 작용을 할 수 있고, 더 이상 필요하지 않을 수 있다. 이러한 상황에서는 치료세포가 더 이상 활성화되지 않도록 조절할 수 있다. 특히, 자연살해 세포에 키메릭 항원 수용체가 도입된 상기 CAR-NK 세포는, 기존의 T 세포를 기반으로 한 CAR-T 치료제를 이용하였을 때의 암 면역치료가 가지고 있는 지속적인 독성에 의한 문제점, 자가면역 질환의 위험, 이종세포 이식에 대한 이식편대숙주질환(GVHD)의 문제점, 비표적 독성 문제 등을 반응 개시(on)/중지(off)의 스위치를 통해 해결할 수 있을 뿐만 아니라, 다양한 암 세포를 표적할 수 있도록 하여 범용의 치료제로 활용가능한 장점이 있다.Since the immune cells provided in the present invention can control the onset (on) / stop (off) of a conventional chimeric antigen receptor response to target cells, subsequent cell therapy, the need to increase or decrease the activity of therapeutic cells It includes a safety switch that can be very beneficial in situations. For example, when immune cells expressing a chimeric antigen receptor are provided to a patient, in some circumstances there may be side effects, such as off-target toxicity. Or, for example, the therapeutic cells may act to reduce the number of tumor cells or tumor size, and may no longer be needed. In this situation, the treatment cells can be controlled so that they are no longer activated. In particular, the CAR-NK cells into which the chimeric antigen receptor was introduced into natural killer cells have problems due to the persistent toxicity of cancer immunotherapy when using conventional T cell-based CAR-T therapeutics, and autologous Not only can the risk of immune disease, the problem of graft-versus-host disease (GVHD) for xenogeneic cell transplantation, and the problem of off-target toxicity be solved through the on/off switch, but also various cancer cells It has the advantage of being able to be used as a general-purpose therapeutic agent by allowing it to be targeted.
따라서 본 발명의 상기 형질전환체는 암의 예방 또는 치료용 약학적 조성물의 유효성분으로 이용될 수 있고, 본 발명의 또 다른 측면은 상기 형질전환체를 유효성분으로 포함하는 암의 예방 또는 치료용 약학적 조성물을 제공한다. Therefore, the transformant of the present invention can be used as an active ingredient in a pharmaceutical composition for preventing or treating cancer, and another aspect of the present invention is for preventing or treating cancer comprising the transformant as an active ingredient. A pharmaceutical composition is provided.
본 발명에서 용어 "암"은 "종양"은 동일한 의미로 사용되며, 전형적으로 조절되지 않은 세포 성장/증식을 특징으로 하는 포유동물의 생리학적 상태를 지칭하거나 의미한다.In the present invention, the term "cancer" is used synonymously with "tumor" and refers to or refers to a physiological condition in mammals that is typically characterized by unregulated cell growth/proliferation.
본 발명의 상기 약학적 조성물로 치료할 수 있는 암 또는 암종은 특별히 제한되지 않으며, 고형암 및 혈액암을 모두 포함한다. 특히, 상기 백혈병 또는 림프종 등과 같은 혈액암일 수 있고, 구체적으로 흉선 암종(thymic carcinoma), 비-호지킨 림프종(non-Hodgkin lymphoma), 광범위큰세포림프종(diffuse large cell lymphoma), 소림프구성세포 림프종(small lymphocytic lymphoma), T-세포 종양(T-cell neoplasma), 말초 T-세포 림프종(peripheral T-cell lymphoma), 외투세포림프종(mantle cell lymphoma), T-세포 급성림프구성백혈병(T-cell acute lymphobalstic lymphoma), 만성림프성백혈병(chronic lymphoblastic lymphoma) 등에서 선택된 것일 수 있다.Cancer or carcinoma that can be treated with the pharmaceutical composition of the present invention is not particularly limited, and includes both solid cancer and hematological cancer. In particular, it may be a blood cancer such as the leukemia or lymphoma, specifically thymic carcinoma, non-Hodgkin lymphoma, diffuse large cell lymphoma, small lymphocytic cell lymphoma ( small lymphocytic lymphoma, T-cell neoplasma, peripheral T-cell lymphoma, mantle cell lymphoma, T-cell acute lymphocytic leukemia lymphobalstic lymphoma), chronic lymphoblastic leukemia, and the like.
또한, 본 발명의 상기 약학적 조성물은, 치료 대상인 개체의 종양 세포의 수에 비해 상기 면역세포의 수가 1배 내지 10배, 2배 내지 10배, 또는 5배 내지 8배로 포함될 수 있으나, 이에 제한되는 것은 아니다.In addition, the pharmaceutical composition of the present invention may include 1 to 10 times, 2 to 10 times, or 5 to 8 times the number of immune cells compared to the number of tumor cells of the subject to be treated, but is limited thereto. it is not going to be
한편, 암의 치료에는 화학요법 및 방사선 요법을 병행하는 것이 일반적이다. 화학요법에 이용되는 항암제는 증식이 활발한 세포의 세포사멸을 유도하고 항암제의 치료 효과를 높이기 위한 방사선 조사는 이러한 세포사멸을 증가시킨다. 이때 항암제 및 방사선에 의해 세포사멸이 유도되는 세포는 암세포에 한정되는 것이 아니며, 면역치료를 위해 개체에 투여된 면역세포치료제에도 영향을 미칠 수 있다.Meanwhile, in the treatment of cancer, it is common to combine chemotherapy and radiation therapy. Anticancer agents used in chemotherapy induce apoptosis of proliferating cells, and radiation to enhance the therapeutic effect of anticancer agents increases such apoptosis. At this time, cells whose apoptosis is induced by anticancer agents and radiation are not limited to cancer cells, and may also affect immune cell therapy agents administered to individuals for immunotherapy.
화학요법은 CHOP(cyclophosphamide, doxorubicin, vincristine, prednisone), EPOCH(etoposide, vincristine, doxorubicin, cyclophosphamide, prednisone) 또는 임의의 다른 여러약물 요법을 포함하지만 이에 한정되지 않는다.Chemotherapy includes, but is not limited to, CHOP (cyclophosphamide, doxorubicin, vincristine, prednisone), EPOCH (etoposide, vincristine, doxorubicin, cyclophosphamide, prednisone) or any other multi-drug regimen.
본 발명에서 "세포치료제"는 개체로부터 분리, 배양 및 특수한 조작을 통해 제조된 세포 및 조직으로 치료, 진단 및 예방의 목적으로 사용되는 의약품(미국 FDA규정)으로서, 세포 혹은 조직의 기능을 복원시키기 위하여 살아있는 자가, 동종, 또는 이종 세포를 체외에서 증식 선별하거나 다른 방법으로 세포의 생물학적 특성을 변화시키는 등의 일련의 행위를 통하여 치료, 진단 및 예방의 목적으로 사용되는 의약품을 의미한다.In the present invention, "cell therapy product" refers to cells and tissues manufactured through isolation, culture, and special manipulation from a subject, and is a drug (US FDA regulation) used for the purpose of treatment, diagnosis, and prevention, and is used to restore the function of cells or tissues. It refers to drugs used for the purpose of treatment, diagnosis, and prevention through a series of actions such as proliferation and selection of living autologous, allogeneic, or heterogeneous cells in vitro or changing the biological characteristics of cells in other ways.
한편, 본 발명의 약학적 조성물은 약학적 또는 약제학적으로 허용되는 담체를 추가적으로 포함할 수 있다. 상기 '약학적으로 허용 가능한'의 의미는 유효성분의 활성을 억제하지 않으면서 적용(처방) 대상이 적응 가능한 이상의 독성을 지니지 않는다는 것이며, 상기 '담체'는 세포 또는 조직 내로의 화합물의 부가를 용이하게 하는 화합물로 정의된다. Meanwhile, the pharmaceutical composition of the present invention may additionally include a pharmaceutical or pharmaceutically acceptable carrier. The meaning of 'pharmaceutically acceptable' is that it does not inhibit the activity of the active ingredient and does not have toxicity more than is adaptable to the subject of application (prescription), and the 'carrier' facilitates the addition of the compound into cells or tissues. defined as a compound that
본 발명의 상기 약학적 조성물은 개체에 투여를 위한 다양한 형태로 제형화될 수 있으며, 비경구 투여용 제형의 대표적인 것은 주사용 제형으로 등장성 수용액 또는 현탁액이 바람직하다. 주사용 제형은 적합한 분산제 또는 습윤제 및 현탁화제를 사용하여 당업계에 공지된 기술에 따라 제조할 수 있다. 예를 들면, 각 성분을 식염수 또는 완충액에 용해시켜 주사용으로 제형화 될 수 있다. 또한, 경구 투여용 제형으로는 예를들면 섭취형 정제, 협측 정제, 트로키, 캡슐, 엘릭시르, 서스펜션, 시럽 및 웨이퍼 등이 있는데, 이들 제형은 유효성분 이외에 희석제(예: 락토즈, 덱스트로즈, 수크로즈, 만니톨, 솔비톨, 셀룰로즈 및/또는 글리신)와 활탁제(예: 실리카, 탈크, 스테아르산 및 그의 마그네슘 또는 칼슘염 및/또는 폴리에틸렌 글리콜)를 포함할 수 있다. 상기 정제는 마그네슘 알루미늄 실리케이트, 전분페이스트, 젤라틴, 트라가칸스, 메틸셀룰로즈, 나트륨 카복시메틸셀룰로즈 및/또는 폴리비닐피롤리딘과 같은 결합제를 포함할 수 있으며, 경우에 따라 전분, 한천, 알긴산 또는 그의 나트륨 염과 같은 붕해제, 흡수제, 착색제, 향미제 및/또는 감미제를 추가로 포함할 수 있다. 상기 제형은 통상적인 혼합, 과립화 또는 코팅 방법에 의해 제조될 수 있다.The pharmaceutical composition of the present invention may be formulated in various forms for administration to a subject, and a representative formulation for parenteral administration is an injectable formulation, preferably an isotonic aqueous solution or suspension. Formulations for injection may be prepared according to techniques known in the art using suitable dispersing or wetting agents and suspending agents. For example, it may be formulated for injection by dissolving each component in saline or a buffer solution. In addition, dosage forms for oral administration include, for example, ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, and wafers. , sucrose, mannitol, sorbitol, cellulose and/or glycine) and lubricants (eg silica, talc, stearic acid and its magnesium or calcium salts and/or polyethylene glycol). The tablet may contain a binder such as magnesium aluminum silicate, starch paste, gelatin, tragacanth, methylcellulose, sodium carboxymethylcellulose and/or polyvinylpyrrolidine, and optionally starch, agar, alginic acid or Disintegrants such as sodium salts, absorbents, colorants, flavors and/or sweeteners may further be included. The formulation may be prepared by conventional mixing, granulating or coating methods.
또한, 본 발명의 약학적 조성물은 방부제, 수화제, 유화 촉진제, 삼투압 조절을 위한 염 또는 완충제와 같은 보조제와 기타 치료적으로 유용한 물질을 추가로 포함할 수 있으며, 통상적인 방법에 따라 제제화 될 수 있다. In addition, the pharmaceutical composition of the present invention may further include adjuvants such as preservatives, hydrating agents, emulsification accelerators, salts or buffers for osmotic pressure control, and other therapeutically useful substances, and may be formulated according to conventional methods. .
본 발명에 따른 약학적 조성물은 경구, 경피, 피하, 정맥 또는 근육을 포함한 여러 경로를 통해 투여될 수 있으며, 활성 성분의 투여량은 투여 경로, 환자의 연령, 성별, 체중 및 환자의 중증도 등의 여러 인자에 따라 적절히 선택될 수 있다. 또한, 본 발명의 조성물은 목적하는 효과를 상승시킬 수 있는 공지의 화합물과도 병행하여 투여할 수 있다The pharmaceutical composition according to the present invention can be administered through various routes including oral, transdermal, subcutaneous, intravenous or intramuscular, and the dosage of the active ingredient depends on the route of administration, age, sex, weight and severity of the patient. It can be appropriately selected according to several factors. In addition, the composition of the present invention can be administered in parallel with a known compound capable of enhancing the desired effect.
본 발명에 따른 약학적 조성물의 투여경로로는 경구적으로 또는 정맥 내, 피하, 비강 내 또는 복강 내 등과 같은 비경구적으로 사람과 동물에게 투여될 수 있다. The route of administration of the pharmaceutical composition according to the present invention may be administered to humans and animals orally or parenterally, such as intravenously, subcutaneously, intranasally or intraperitoneally.
본 발명의 약학적 조성물에 있어서, 본 발명에 따른 형질전환체의 총 유효량은 단일 투여량(single dose)으로 환자에게 투여될 수 있으며, 다중 투여량(multiple dose)이 장기간 투여되는 분할 치료 방법(fractionated treatment protocol)에 의해 투여될 수 있다. 본 발명의 약학적 조성물은 질환의 정도에 따라 유효성분의 함량을 달리할 수 있으나, 통상적으로 성인을 기준으로 1회 투여시 100㎍ 내지 3,000㎎의 유효용량으로 하루에 수차례 반복 투여될 수 있다. 그러나 상기 형질전환체의 농도는 약의 투여 경로 및 치료 횟수뿐 만 아니라 환자의 연령, 체중, 건강 상태, 성별, 질환의 중증도, 식이 및 배설율 등 다양한 요인들을 고려하여 환자에 대한 유효 투여량이 결정될 수 있다. 따라서 이러한 점을 고려할 때 당 분야의 통상적인 지식을 가진 자라면 상기 형질전환체의 항암제로서의 특정한 용도에 따른 적절한 유효 투여량을 결정할 수 있으며, 본 발명에 따른 약학적 조성물은 본 발명의 효과를 보이는 한 그 제형, 투여 경로 및 투여방법에 특별히 제한되지는 않는다.In the pharmaceutical composition of the present invention, the total effective amount of the transformant according to the present invention can be administered to the patient in a single dose, and a split treatment method in which multiple doses are administered for a long period of time ( fractionated treatment protocol). The pharmaceutical composition of the present invention may vary the content of the active ingredient depending on the severity of the disease, but is typically administered repeatedly several times a day at an effective dose of 100 μg to 3,000 mg per administration based on adults. . However, the concentration of the transformant can be determined by considering various factors such as the patient's age, weight, health condition, sex, disease severity, diet and excretion rate, as well as the drug administration route and number of treatments. can Therefore, considering this point, those skilled in the art can determine an appropriate effective dosage according to the specific use of the transformant as an anticancer agent, and the pharmaceutical composition according to the present invention exhibits the effect of the present invention. As long as the dosage form, route of administration and method of administration are not particularly limited.
또한, 본 발명의 약학적 조성물은 유효성분으로서 상술한 형질전환체 이외에 공지된 항암제를 추가로 포함할 수 있고, 이들 질환의 치료를 위해 공지된 다른 치료와 병용될 수 있다.In addition, the pharmaceutical composition of the present invention may further include a known anticancer agent in addition to the above-described transformant as an active ingredient, and may be used in combination with other known therapies for the treatment of these diseases.
또한, 본 발명의 또 다른 측면은 상기 본 발명의 상기 형질전환체를 치료가 필요한 개체에 투여하는 단계를 포함하는, 암의 예방 또는 치료 방법을 제공한다.In addition, another aspect of the present invention provides a method for preventing or treating cancer, comprising administering the transformant of the present invention to a subject in need of treatment.
상기 본 발명의 형질전환체는 상술한 약학적 조성물의 형태일 수 있고, 본 발명이 속하는 기술분야의 통상의 기술자가 상기 약학적 조성물의 적절한 투여 경로와 용량을 결정할 수 있다.The transformant of the present invention may be in the form of the above-described pharmaceutical composition, and a person skilled in the art to which the present invention belongs can determine an appropriate administration route and dosage of the pharmaceutical composition.
또한, 본 발명의 또 다른 측면은 상기 형질전환체의 암의 예방 또는 치료를 위한 약물의 제조를 위한 용도를 제공한다.In addition, another aspect of the present invention provides the use of the transformant for the preparation of a drug for preventing or treating cancer.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 이하 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.The present invention can apply various transformations and can have various embodiments. Hereinafter, specific embodiments will be illustrated in the drawings and described in detail in the detailed description. However, it should be understood that this is not intended to limit the present invention to specific embodiments, and includes all transformations, equivalents, and substitutes included in the spirit and scope of the present invention. In describing the present invention, if it is determined that a detailed description of related known technologies may obscure the gist of the present invention, the detailed description will be omitted.
[실시예 1] [Example 1]
목적 단백질의 설계Design of target protein
본 발명의 mRNA 구조체에 적용되어 세포 내에서 일시적으로 발현시킬 목적 단백질로 도 1과 같이 구성된 키메릭 항원 수용체(Chimeric antigen receptor; CAR)를 설계하였다. 구체적으로, 상기 키메릭 항원 수용체는 표적을 인지하는 엑토도메인(ectodomain), 상기 엑토도메인의 연결 및 유연성을 부여하는 스페이서(spacer)(Myc-Hinge), 세포막을 투과하는 TM 도메인(transmembrane domain) 및 세포 내 신호전달(cell signaling)을 유도하는 엔도도메인(endodomain)이 순차적으로 연결되어 구성된다. 본 발명에서는 상기 엑토도메인으로 CEACAM6를 항원으로 인지하는 항-CEACAM6 항체의 ScFv, 코티닌(cotinine)을 항원으로 인지하는 항-cotinine 항체의 ScFv 또는 EGFR을 항원으로 인지하는 항-EGFR 애피바디(affibody)를 이용하는 한편, 엔도도메인으로 세포독성 신호전달(cytotoxic signaling)을 담당하는 CD3ξ와 함께, CD28과 DAP10을 공-활성자(co-activator)로 채택하여, 항-CEACAM6 scFv를 가지는 키메릭 항원 수용체(항-CEACAM6-CAR), 항-cotinine scFv를 가지는 키메릭 항원 수용체(항-cotinine-CAR) 및 항-EGFR의 애피바디를 가지는 키메릭 항원 수용체(ZEGFR-CAR)를 각각 설계하였다. 그리고 이를 암호화하는 유전자 컨스트럭트의 염기서열을 pBluescript SK(-) 벡터(Addgene사)와 렌티-바이러스 벡터(Clontech사, 632155)에 각각 삽입하였다.A chimeric antigen receptor (CAR) configured as shown in FIG. 1 was designed as a target protein to be applied to the mRNA construct of the present invention and temporarily expressed in cells. Specifically, the chimeric antigen receptor includes an ectodomain that recognizes a target, a spacer (Myc-Hinge) that provides connection and flexibility of the ectodomain, a transmembrane domain that penetrates cell membranes, and It is constructed by sequentially connecting endodomains that induce cell signaling. In the present invention, the ScFv of an anti-CEACAM6 antibody recognizing CEACAM6 as an antigen with the ectodomain, the ScFv of an anti-cotinine antibody recognizing cotinine as an antigen, or an anti-EGFR affibody recognizing EGFR as an antigen On the other hand, by adopting CD28 and DAP10 as co-activators along with CD3ξ responsible for cytotoxic signaling as an endodomain, a chimeric antigen receptor having an anti-CEACAM6 scFv ( Anti-CEACAM6-CAR), a chimeric antigen receptor (anti-cotinine-CAR) having an anti-cotinine scFv, and a chimeric antigen receptor (ZEGFR-CAR) having an anti-EGFR Affibody were respectively designed. And the nucleotide sequence of the gene construct encoding it was inserted into the pBluescript SK(-) vector (Addgene) and the lenti-virus vector (Clontech, 632155), respectively.
[실시예 2] [Example 2]
자연살해 세포로의 일시적 형질전환(transient transfection)을 위한 최적 조건 확립Establishment of optimal conditions for transient transfection into natural killer cells
mRNA 구조체를 자연살해 세포로 일시적 형질전환시킬 수 있는 최적의 조건을 확립하기 위해, Nepa21 시스템을 이용하여 전압을 110V에서 200V로 변화시키면서, GFP의 mRNA를 세포 1X106개당 2μg의 양으로 NK92 세포에 형질전환한 다음, NK92 세포에서 GFP의 발현을 살펴보았다.To establish optimal conditions for transient transformation of mRNA constructs into natural killer cells, GFP mRNA was injected into NK92 cells in an amount of 2 μg per 1×10 6 cells while varying the voltage from 110 V to 200 V using the Nepa21 system. After transfection, expression of GFP in NK92 cells was examined.
그 결과, 도 2에 도시된 바와 같이, 전압이 상승함에 따라 NK92 세포의 생존률은 점점 감소하였으나, 150V 이하의 전압에서는 생존한 NK92 세포들의 90% 이상에서 GFP가 발현되는 것으로 확인되었고, 110V 조건에서 최상의 세포생존율과 GFP 발현율을 나타내는 것으로 확인되었다. 또한, NK92 세포 1X106개당 처리한 mRNA 양을 2μg에서 5μg으로 높여 110V의 전압으로 형질전환시킨 결과, 발현율이 증가되었고, 형질전환 후 3일이 경과할 때까지 GFP의 발현이 관찰되었다. 이를 바탕으로, NK92 세포 1X107개당 20μg의 mRNA를 110V의 전압으로 형질전환시켜 스케일-업(scale-up)을 해 보았고, 이 경우에도 발현율과 발현 지속성이 우수하게 유지되는 것으로 확인되었다.As a result, as shown in FIG. 2, the survival rate of NK92 cells gradually decreased as the voltage increased, but it was confirmed that GFP was expressed in more than 90% of the surviving NK92 cells at a voltage of 150V or less, and in 110V conditions It was confirmed to exhibit the best cell viability and GFP expression rate. In addition, as a result of transfection with a voltage of 110 V by increasing the amount of mRNA treated per 1X10 6 of NK92 cells from 2 μg to 5 μg, the expression rate was increased, and GFP expression was observed until 3 days after transfection. Based on this, 20 μg of mRNA per 1X10 7 of NK92 cells was transfected at a voltage of 110 V to scale-up, and it was confirmed that the expression rate and persistence of expression were excellently maintained even in this case.
또한, 제대혈에서 CD3+ 세포들을 제거(deplete)하여 얻어진 단핵구(monocytes)에 히드로코르티손(hydrocortisone)과 IL15, IL21 등과 같은 사이토카인(cytokines)을 7일 이상 처리하여 성숙시킨 primary NK 세포를 대상으로, 상기 NK92 세포에서와 동일하게 전압을 변화시키면서 GFP의 mRNA를 세포 1X106개당 5μg의 양으로 형질전환한 다음, primary NK 세포에서 GFP의 발현을 살펴보았다.In addition, targeting primary NK cells matured by treating monocytes obtained by depleting CD3 + cells from cord blood with hydrocortisone and cytokines such as IL15 and IL21 for more than 7 days, GFP mRNA was transfected in an amount of 5 μg per cell 1X10 6 while changing the voltage in the same manner as in the NK92 cells, and then the expression of GFP in primary NK cells was examined.
그 결과, 도 3에 도시된 바와 같이, 190V 및 200V 조건에서 형질전환 효율이 높게 나타났고, 200V 조건에서 최상의 효율을 보였다(도 3).As a result, as shown in FIG. 3, the transformation efficiency was high in 190V and 200V conditions, and the best efficiency was shown in 200V conditions (FIG. 3).
[실시예 3] [Example 3]
자연살해 세포에서 목적 단백질의 일시적(Transient) 발현과 영구적 발현의 비교Comparison of transient and permanent expression of target protein in natural killer cells
상기 실시예 1에서 설계한 목적 단백질 중 항-CEACAM6-CAR와 항-cotinine-CAR를 암호화하는 유전자 컨스트럭트의 염기서열이 삽입된 각각의 pBluescript SK(-)벡터로부터, 시험관내 전사(in vitro transcription) 및 폴리(A) 테일링(poly(A) tailing)을 통해 항-CEACAM6-CAR와 항-cotinine-CAR의 mRNA를 각각 수득하였다.From each of the pBluescript SK (-) vectors into which the nucleotide sequences of the gene constructs encoding anti-CEACAM6-CAR and anti-cotinine-CAR among the target proteins designed in Example 1 were inserted, in vitro transcription ( in vitro mRNAs of anti-CEACAM6-CAR and anti-cotinine-CAR were respectively obtained through transcription) and poly(A) tailing.
상기와 같이 수득된 항-CEACAM6-CAR와 항-cotinine-CAR의 mRNA들을 상기 실시예 2에서 이용된 Nepa 21 시스템을 이용하여 110V 전압으로 NK92 세포에 형질전환시켜 일시적(transient) CAR-NK 세포를 제작하였다.먼저, 상기와 같이 제작된 일시적 CAR-NK 세포를 대상으로, 유세포분석을 통해 시간의 경과에 따른 CAR의 발현 양상(발현율 및 발현 지속성)을 확인한 결과, 도 4에 도시된 바와 같이, 항-CEACAM6-CAR의 경우 mRNA 주입 후 48시간까지 90% 이상의 높은 발현율을 유지했고 그 발현이 4일 동안 지속되었고, 항-cotinine-CAR의 경우 mRNA 주입 후 16시간까지 70% 이상의 발현율을 보였다.The mRNAs of the anti-CEACAM6-CAR and anti-cotinine-CAR obtained as above were transfected into NK92 cells with a voltage of 110 V using the Nepa 21 system used in Example 2 to obtain transient CAR-NK cells. First, the CAR expression pattern (expression rate and expression persistence) over time was confirmed through flow cytometry for the transient CAR-NK cells prepared as described above. As shown in FIG. 4, In the case of anti-CEACAM6-CAR, a high expression rate of 90% or more was maintained until 48 hours after mRNA injection, and the expression continued for 4 days, and in the case of anti-cotinine-CAR, an expression rate of 70% or more was shown until 16 hours after mRNA injection.
또한, 유방암 세포주인 AU565에 대하여, 상기와 같이 제작된 일시적 CAR-NK 세포들의 세포독성(cytotoxicity)(또는 세포살상능, 세포용해 활성)을 칼세인 AM 분석법으로 확인하였다. 구체적으로, AU565 세포에 칼세인-AM(life technologies; C1430)을 5ug/ml의 농도로 처리하여 반응시킨 후(37℃, 5% CO2, 암소에서 1시간), 칼세인으로 염색된 AU565 세포에 상기 일시적 CAR-NK 세포를 각각 10:1, 5:1, 1:1의 비율(자연살해 세포 : 암 세포)로 처리하여 200ul의 RPMI1640(10% FBS)에서 5.5시간, 13시간, 25시간, 50시간 및 82시간 동안 반응시킨 다음(37℃, 5% CO2) 상등액 100ul를 취하여 상등액 내에 존재하는 칼세인의 양을 확인하여, 각 조건에 따른 세포독성을 아래와 같은 방법으로 계산하였다. 이때, 항-cotinine-CAR를 발현하는 일시적 CAR-NK 세포는 EGFR에 대한 항체에 코티닌(cotinine)이 태깅된 접합체(conjugate)와 함께 상기 AU565 세포에 처리하였다.In addition, with respect to breast cancer cell line AU565, the cytotoxicity (or cell killing ability, cytolytic activity) of the transient CAR-NK cells prepared as described above was confirmed by Calcein AM assay. Specifically, after reacting by treating AU565 cells with Calcein-AM (life technologies; C1430) at a concentration of 5ug/ml (37°C, 5% CO2, 1 hour in the dark), AU565 cells stained with Calcein The transient CAR-NK cells were treated at a ratio of 10:1, 5:1, and 1:1 (natural killer cells:cancer cells), respectively, in 200ul of RPMI1640 (10% FBS) for 5.5 hours, 13 hours, 25 hours, After reacting for 50 hours and 82 hours (37 ° C, 5% CO 2 ), 100 ul of the supernatant was taken to determine the amount of calcein present in the supernatant, and the cytotoxicity according to each condition was calculated in the following manner. At this time, the anti-cotinine-CAR-expressing transient CAR-NK cells were treated with the AU565 cells together with a cotinine-tagged conjugate to an antibody against EGFR.
세포독성(%) = (조건에 따른 칼세인 release value-spontaneous value) / (maximum value-spontaneous value) x 100Cytotoxicity (%) = (Calcein release value-spontaneous value according to conditions) / (maximum value-spontaneous value) x 100
그 결과, 도 5에 도시된 바와 같이, 항-cotinine-CAR의 mRNA를 형질전환한 후 상기 CAR들의 단백질 발현이 높을 때 암세포에 대한 세포독성 또한 높고, 이후 상기 CAR들의 단백질 발현이 감소함과 함께 세포독성 또한 감소되는 것으로 확인되었다.As a result, as shown in FIG. 5, when the protein expression of the CARs is high after transfection of the mRNA of the anti-cotinine-CAR, the cytotoxicity to cancer cells is also high, and then the protein expression of the CARs decreases. Cytotoxicity was also found to be reduced.
한편, 상기 실시예 1에서 설계한 두 목적 단백질인 항-CEACAM6-CAR와 항-cotinine-CAR를 암호화하는 유전자 컨스트럭트의 염기서열이 삽입된 각각의 렌티-바이러스 벡터를 바이러스 패키징 벡터(viral packaging vector; PMDLg/RRE, RSV/REV, VSVG)와 함께 HEK293T 세포에 형질전환시키고, 그로부터 항-CEACAM6-CAR와 항-cotinine-CAR를 발현하는 렌티바이러스를 얻었다. 상기 렌티바이러스를 초고속원심분리기를 이용하여 농축시키고, 농축된 상기 렌티바이러스를 HEK293T 세포에 감염시킨 뒤, CD5-CAR의 Myc 에피토프 양을 유동세포계수법(Flow cytometry)으로 확인하여 감염 단위(Infection Unit)을 계산하였다. 감염다중도(Multiplicity of infection; MOI)가 30이 되도록 자연살해 세포 수 및 렌티바이러스의 양을 계산하고, 항-CEACAM6-CAR와 항-cotinine-CAR를 발현하는 렌티바이러스를 각각 NK92 세포에 spinoculation 방법(360g, 90min, RT)으로 감염시켜, 영구적(stable) CAR-NK 세포를 제작하였다.On the other hand, each lenti-viral vector into which the nucleotide sequences of the gene constructs encoding the two target proteins, anti-CEACAM6-CAR and anti-cotinine-CAR, designed in Example 1 were inserted, were converted into viral packaging vectors (viral packaging vectors). vector; PMDLg/RRE, RSV/REV, VSVG) were transfected into HEK293T cells, and anti-CEACAM6-CAR and anti-cotinine-CAR-expressing lentiviruses were obtained therefrom. After concentrating the lentivirus using an ultra-high-speed centrifugal separator, infecting HEK293T cells with the concentrated lentivirus, the amount of the Myc epitope of CD5-CAR was confirmed by flow cytometry to determine the infection unit was calculated. Calculate the number of natural killer cells and the amount of lentivirus so that the multiplicity of infection (MOI) is 30, and spinoculate lentiviruses expressing anti-CEACAM6-CAR and anti-cotinine-CAR in NK92 cells, respectively (360g, 90min, RT) to construct stable CAR-NK cells.
상기와 같이 제작된 영구적 CAR-NK 세포에 대하여, 상기 일시적 CAR-NK 세포에서와 동일한 방법으로, 시간의 경과에 따른 CAR의 발현 양상(발현율 및 발현 지속성)과 세포독성을 확인하였다.For the permanent CAR-NK cells prepared as described above, the CAR expression pattern (expression rate and expression persistence) and cytotoxicity over time were confirmed in the same manner as in the transient CAR-NK cells.
그 결과, 도 4에 도시된 바와 같이, 항-CEACAM6-CAR의 경우 일시적 CAR-NK 세포와 마찬가지로 48시간까지 90% 이상의 높은 발현율을 유지했고 그 발현이 4일 동안 지속되었고, 항-cotinine-CAR의 경우 40%에 미치지 못하는 발현율이 2일 동안 지속되는 것으로 확인되었다. 또한, 세포독성은, 도 5에 도시된 바와 같이, 일시적 CAR-NK 세포와 마찬가지로 CAR들의 단백질 발현과 동일한 양상을 나타내는 것으로 확인되었다.As a result, as shown in Figure 4, in the case of anti-CEACAM6-CAR, like transient CAR-NK cells, a high expression rate of 90% or more was maintained until 48 hours, and the expression continued for 4 days, and anti-cotinine-CAR In the case of , it was confirmed that the expression rate of less than 40% lasted for 2 days. In addition, as shown in FIG. 5 , cytotoxicity was confirmed to exhibit the same pattern as protein expression of CARs as in transient CAR-NK cells.
[실시예 4] [Example 4]
공-활성자(co-activator)를 포함하는 키메릭 항원 수용체의 발현율 및 암세포에 대한 세포독성(cytotoxicity) 확인Confirmation of expression rate of chimeric antigen receptor containing co-activator and cytotoxicity against cancer cells
상기 실시예 1에서 설계한 키메릭 항원 수용체의 엔도도메인을 구성하는 각 부분의 기능 및 mRNA의 발현에 미치는 영향을 평가하기 위해, 도 6에 도시된 바와 같이, 상기 실시예 1에서 설계한 ZEGFR-CAR를 기준으로, 엑토도메인이 없는 변형 ZEGFR-CAR인 ΔEcto-TM-10z와, 엔도도메인의 일부 구성들이 제거된 3종의 변형 ZEGFR-CAR들(ZEGFR-TM, ZEGFR-TM-10 및 ZEGFR-TM-z)를 설계하고, 이들을 암호화하는 유전자 컨스트럭트의 염기서열을 렌티-바이러스 벡터(Clontech사, 632155)에 삽입하였다.In order to evaluate the function of each part constituting the endodomain of the chimeric antigen receptor designed in Example 1 and the effect on mRNA expression, as shown in FIG. 6, the ZEGFR- Based on CAR, ΔEcto-TM-10z, a modified ZEGFR-CAR without an ectodomain, and three types of modified ZEGFR-CARs (ZEGFR-TM, ZEGFR-TM-10 and ZEGFR- TM-z) were designed, and the nucleotide sequences of gene constructs encoding them were inserted into a lenti-viral vector (Clontech, 632155).
상기 ZEGFR-CAR와 상기 4종의 변형 ZEFGR-CAR들을 암호화하는 유전자 컨스트럭트의 염기서열이 포함된 렌티-바이러스 벡터로부터, 시험관내 전사(in vitro transcription) 및 폴리(A) 테일링을 통해, 상기 5종의 CAR들의 mRNA를 수득하였다. 그리고, 상기 mRNA들을 상기 실시예 2에서 이용된 Nepa 21 시스템을 이용하여 110V 전압으로 NK92 세포에 형질전환시켜 일시적(transient) CAR-NK 세포를 제작하였다. 상기와 같이 제작된 5종의 일시적 CAR-NK 세포를 대상으로, 상기 실시예 3에서와 동일한 방법으로 CAR의 발현 및 상기 일시적 CAR-NK 세포의 세포독성을 측정하였다.From a lenti-viral vector containing the nucleotide sequence of the gene construct encoding the ZEGFR-CAR and the four modified ZEFGR-CARs, through in vitro transcription and poly (A) tailing, the mRNAs of 5 CARs were obtained. In addition, the mRNAs were transfected into NK92 cells with a voltage of 110V using the Nepa 21 system used in Example 2 to prepare transient CAR-NK cells. CAR expression and cytotoxicity of the transient CAR-NK cells were measured in the same manner as in Example 3 for the 5 types of transient CAR-NK cells prepared as described above.
그 결과, 도 7에 도시된 바와 같이, DAP10을 갖지 않은 ZEGFR-TM 및 ZEGFR-TM-z에 비해, DAP10을 갖는 ZEGFR-TM-10와 실시예 1에서 설계한 ZEGFR-CAR(ZEGFR-TM-10z)의 경우에 CAR의 발현율이 향상되고(도 7의 (A)), 상기 CAR 단백질에 의한 NK 세포의 세포자살(apoptosis) 비율도 감소되는 것으로 확인되었다(도 7의 (D)). 아울러, DAP10과 CD3ξ를 모두 갖는 실시예 1에서 설계한 ZEGFR-CAR(ZEGFR-TM-10z)의 경우, NK92 세포에서 CD107a의 발현을 향상시킬 뿐만 아니라(도 7의 (B)), 실제로 유방암 세포주 AU565에 대한 일시적 CAR-NK 세포의 세포독성 역시 훨씬 향상시키는 것으로 확인되었다(도 7의 (C)).As a result, as shown in FIG. 7, compared to ZEGFR-TM and ZEGFR-TM-z without DAP10, ZEGFR-TM-10 with DAP10 and ZEGFR-CAR designed in Example 1 (ZEGFR-TM-z) 10z), it was confirmed that the CAR expression rate was improved (FIG. 7(A)), and the apoptosis rate of NK cells caused by the CAR protein was also reduced (FIG. 7(D)). In addition, in the case of the ZEGFR-CAR (ZEGFR-TM-10z) designed in Example 1 having both DAP10 and CD3ξ, not only enhances the expression of CD107a in NK92 cells (FIG. 7(B)), but actually breast cancer cell line It was confirmed that the cytotoxicity of transient CAR-NK cells to AU565 was also greatly improved (FIG. 7(C)).
또한, 상기 실시예 1에서 설계한 ZEGFR-CAR를 기준으로, CD28의 ITAM motif가 제거된 변형 ZEGFR-CAR(ZEGFR-MH-TM-10z-B)를 각각 설계하였고, 상술한 바와 같은 방법으로 수득한 상기 변형 ZEGFR-CAR의 mRNA를 상술한 바와 같은 방법으로 NK92 세포에 형질전환시켜 일시적 CAR-NK 세포를 제작하였으며, 상술한 바와 같은 방법으로 CAR의 발현 및 상기 일시적 CAR-NK 세포의 세포독성을 측정하였다.In addition, based on the ZEGFR-CAR designed in Example 1, a modified ZEGFR-CAR (ZEGFR-MH-TM-10z-B) in which the ITAM motif of CD28 was removed was designed, respectively, and obtained by the method described above. The mRNA of the modified ZEGFR-CAR was transformed into NK92 cells as described above to prepare transient CAR-NK cells, and CAR expression and cytotoxicity of the transient CAR-NK cells were measured as described above. measured.
그 결과, 도 8에 도시된 바와 같이, CD28의 ITAM motif가 제거된 변형 ZEGFR-CAR(ZEGFR-MH-TM-10z-B)의 경우에, 실시예 1에서 설계한 ZEGFR-CAR(도 8에서는 'ZEGFR-MH-TM-28-10z-B'로 표시됨)에 비해 CAR의 발현율이 저하될 뿐만 아니라, 유방암 세포주 AU565에 대한 일시적 CAR-NK 세포의 세포독성 역시 CD28의 ITAM motif를 포함하는 실시예 1에서 설계한 ZEGFR-CAR 에 미치지 못하는 것으로 확인되었다.As a result, as shown in FIG. 8, in the case of the modified ZEGFR-CAR (ZEGFR-MH-TM-10z-B) in which the ITAM motif of CD28 is removed, the ZEGFR-CAR designed in Example 1 (in FIG. 8) Example containing the ITAM motif of CD28 as well as the cytotoxicity of transient CAR-NK cells against the breast cancer cell line AU565, as well as the lowered CAR expression rate compared to 'ZEGFR-MH-TM-28-10z-B') It was confirmed that it fell short of the ZEGFR-CAR designed in 1.
마지막으로, 상기 실시예 1에서 설계한 ZEGFR-CAR를 기준으로, DAP10 motif 대신 4-1BB motif 또는 2B4 motif를 갖는 변형 ZEGFR-CAR들(각각 'ZEGFR-MH-BBz' 및 'ZEGFR-MH-2B4z'라고 함)을 각각 설계하였고, 상술한 바와 같은 방법으로 수득한 상기 Finally, based on the ZEGFR-CAR designed in Example 1, modified ZEGFR-CARs having a 4-1BB motif or a 2B4 motif instead of the DAP10 motif ('ZEGFR-MH-BBz' and 'ZEGFR-MH-2B4z, respectively) ') was designed, respectively, and the above obtained by the method described above
변형 ZEGFR-CAR들의 mRNA를 상술한 바와 같은 방법으로 NK92 세포에 형질전환시켜 일시적 CAR-NK 세포를 제작하였으며, 상술한 바와 같은 방법으로 CAR의 발현 및 상기 일시적 CAR-NK 세포의 세포독성을 측정하였다.The mRNA of the modified ZEGFR-CARs was transformed into NK92 cells as described above to prepare transient CAR-NK cells, and CAR expression and cytotoxicity of the transient CAR-NK cells were measured as described above. .
그 결과, 도 9 및 도 10에 도시된 바와 같이, 4-1BB motif나 2B4 motif를 가지는 변형 ZEGFR-CAR들의 경우에, DAP10 motif를 가지는 실시예 1에서 설계한 ZEGFR-CAR에 비해 CAR의 발현율이 저하될 뿐만 아니라, 유방암 세포주 AU565에 대한 일시적 CAR-NK 세포의 세포독성 역시 실시예 1에서 설계한 ZEGFR-CAR에 미치지 못하는 것으로 확인되었다.As a result, as shown in FIGS. 9 and 10, in the case of the modified ZEGFR-CARs having the 4-1BB motif or the 2B4 motif, the expression rate of the CAR was higher than that of the ZEGFR-CAR designed in Example 1 having the DAP10 motif. In addition, it was confirmed that the cytotoxicity of transient CAR-NK cells against breast cancer cell line AU565 was also inferior to that of ZEGFR-CAR designed in Example 1.
상기와 같은 결과로부터, 엔도도메인으로 CD3ξ와 함께, CD28과 DAP10을 모두 가지는 실시예 1에서 설계한 ZEGFR-CAR가 CAR의 발현율이나 일시적 CAR-NK 세포의 세포독성 측면 모두에서 가장 효과가 우수한 것임을 알 수 있다.From the above results, it can be seen that the ZEGFR-CAR designed in Example 1 having both CD28 and DAP10 together with CD3ξ as the endodomain is the most effective in terms of both the CAR expression rate and the cytotoxicity of transient CAR-NK cells. can
[실시예 5] [Example 5]
mRNA의 구조적 안정성 및 목적 단백질의 발현 향상을 위한 구성 확인Confirmation of the structure for improving the structural stability of mRNA and the expression of the target protein
[5-1] [5-1] 목적 단백질에 대한 mRNA 구조체 설계 및 제작Design and manufacture of mRNA constructs for target proteins
목적 단백질에 대한 mRNA의 구조적 안정성과 그 단백질의 발현에 5'-UTR 및 3'-UTR이 어떠한 역할을 하는지 확인하기 위해, 상기 실시예 1에서 설계한 ZEGFR-CAR를 대상으로 5'-UTR과 3'-UTR을 다양하게 변형하여 하기 표 1에 기재된 바와 같은 mRNA 구조체 1~7을 설계하였다. 도 11a는 하기 표 1에 기재된 7종의 mRNA 구조체를 합성하기 위한 주형 벡터에서 T7 프로모터 다음에 배열된 구조체의 모식도이고, 하기 표 2는 ZEGFR-CAR의 5'-UTR 및 3'-UTR에 도입한 구성의 DNA 서열을 나타낸 것이다.In order to confirm the role of 5'-UTR and 3'-UTR in the structural stability of mRNA for the target protein and the expression of the protein, 5'-UTR and 5'-UTR were tested for the ZEGFR-CAR designed in Example 1 above. The 3'-UTR was variously modified to design mRNA constructs 1 to 7 as described in Table 1 below. Figure 11a is a schematic diagram of the constructs arranged next to the T7 promoter in the template vector for synthesizing the 7 types of mRNA constructs listed in Table 1 below, and Table 2 below is introduced into the 5'-UTR and 3'-UTR of ZEGFR-CAR. It shows the DNA sequence of one component.
구조체 No.Structure No. 명명denomination mRNA SizemRNA Size
1One CAR(실시예 1에서 설계한 ZEGFR-CAR)CAR (ZEGFR-CAR designed in Example 1) 1286 bp1286 bp
22 CAR-BGHCAR-BGH 1519 bp1519 bp
33 5U-CAR5U-CAR 1345 bp1345 bp
44 5U-CAR-BGH5U-CAR-BGH 1578 bp1578 bp
55 5U-CAR-IRES-BGH5U-CAR-IRES-BGH 2164 bp2164 bp
66 5U-CAR-reIRES-BGH5U-CAR-reIRES-BGH 2164 bp2164 bp
77 5U-IRES-CAR-BGH5U-IRES-CAR-BGH 2164 bp2164 bp
ee 유전자gene 염기서열base sequence
1One 5U(β-globin UTR)5U (β-globin UTR) ACATTTGCTTCTGACATAGTTGTGTTGACTCACAACCCCAGAAACAGACATCC ACATTTGCTTCTGACATAGTTGTGTTGACTCACAACCCCAGAAACAGACATCC
22 BGH BGH GCCTCGACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGGA TTGGGAAGACAATAGCAGGCATGCTGGGGAGCCTCGACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGA
33 EMCV-IRESEMCV-IRES TCCCCCTCTCCCTCCCCCCCCCCCTAACGTTACTGGCCGAAGCCGCTTGGAATAAGGCCGGTGTGCGTTTGTCTATATGTTATTTTCCACCATATTGCCGTCTTTTGGCAATGTGAGGGCCCGGAAACCTGGCCCTGTCTTCTTGACGAGCATTCCTAGGGGTCTTTCCCCTCTCGCCAAAGGAATGCAAGGTCTGTTGAATGTCGTGAAGGAAGCAGTTCCTCTGGAAGCTTCTTGAAGACAAACAACGTCTGTAGCGACCCTTTGCAGGCAGCGGAACCCCCCACCTGGCGACAGGTGCCTCTGCGGCCAAAAGCCACGTGTATAAGATACACCTGCAAAGGCGGCACAACCCCAGTGCCACGTTGTGAGTTGGATAGTTGTGGAAAGAGTCAAATGGCTCTCCTCAAGCGTATTCAACAAGGGGCTGAAGGATGCCCAGAAGGTACCCCATTGTATGGGATCTGATCTGGGGCCTCGGTGCACATGCTTTACATGTGTTTAGTCGAGGTTAAAAAACGTCTAGGCCCCCCGAACCACGGGGACGTGGTTTTCCTTTGAAAAACACGTTGATAATTTGTCCCCCTCTCCCTCCCCCCCCCCCTAACGTTACTGGCCGAAGCCGCTTGGAATAAGGCCGGTGTGCGTTTGTCTATATGTTATTTTCCACCATATTGCCGTCTTTTGGCAATGTGAGGGCCCGGAAACCTGGCCCTGTCTTCTTGACGAGCATTCCTAGGGGTCTTTCCCCTCTCGCCAAAGGAATGCAAGGTCTGTTGAATGTCGTGAAGGAAGCAGTTCCTCTGGAAGCTTCTTGAAGACAAACAACGTCTGTAGCGACCCTTTGCAGGCAGCGGAACCCCCCACCTGGCGACAGGTGCCTCTGCGGCCAAAAGCCACGTGTATAAGATACACCTGCAAAGGCGGCACAACCCCAGTGCCACGTTGTGAGTTGGATAGTTGTGGAAAGAGTCAAATGGCTCTCCTCAAGCGTATTCAACAAGGGGCTGAAGGATGCCCAGAAGGTACCCCATTGTATGGGATCTGATCTGGGGCCTCGGTGCACATGCTTTACATGTGTTTAGTCGAGGTTAAAAAACGTCTAGGCCCCCCGAACCACGGGGACGTGGTTTTCCTTTGAAAAACACGTTGATAATTTG
상기와 같이 설계된 7종의 mRNA 구조체를 암호화하는 유전자 컨스트럭트의 염기서열들을 pBluescript SK(-) 벡터(Addgene사)에 삽입하였고, 도 11b에 도시된 바와 같은 시험관내 전사(in vitro transcription) 및 폴리(A) 테일링을 통해 mRNA 구조체 1~7을 제작하였다.The base sequences of the gene constructs encoding the 7 types of mRNA constructs designed as described above were inserted into the pBluescript SK(-) vector (Addgene), and in vitro transcription and mRNA constructs 1 to 7 were prepared by poly(A) tailing.
상기와 같이 얻어지는 7종의 mRNA에는 도 11b에 도시된 바와 같이, 5'-Cap과 3'-Poly(A) tail이 결합되어 있다.As shown in FIG. 11b, 5'-Cap and 3'-Poly (A) tails are bound to the 7 types of mRNAs obtained as described above.
[5-2] [5-2] mRNA 구조체의 구조적 안정성(structural stability) 평가Evaluation of structural stability of mRNA constructs
상기 실시예 [5-1]에서 수득한 7종의 mRNA들을, 상기 실시예 2에서 이용된 Nepa 21 시스템을 이용하여 110V 전압으로 NK92 세포에 형질전환시켜 일시적(transient) CAR-NK 세포를 제작하였다. 상기와 같이 제작된 일시적 CAR-NK 세포를 대상으로, 시간의 경과에 따라 NK92 세포 내로 주입되어 세포질에 잔존하는 mRNA의 양을 RT-PCR로 확인하였다.The 7 types of mRNAs obtained in Example [5-1] were transfected into NK92 cells with a voltage of 110 V using the Nepa 21 system used in Example 2 to prepare transient CAR-NK cells. . For the transient CAR-NK cells prepared as described above, the amount of mRNA remaining in the cytoplasm after being injected into NK92 cells over time was confirmed by RT-PCR.
먼저, 상기와 같이 mRNA를 NK92 세포 내로 주입한 후 4시간이 경과한 시점에서 mRNA의 잔존량은, 도 12의 (A)에서 확인되는 바와 같이, CAR > 5U-CAR > CAR-BGH > 5U-CAR-BGH > 5U-CAR-IRES-BGH 순으로, NK92 세포 내에 잔존하는 mRNA의 양이 많음을 알 수 있다(도 12의 (A) 및 표 1).다음으로, mRNA를 NK92 세포 내로 주입한 후 4시간이 경과한 시점에서의 mRNA의 잔존량을 1로 두고 8시간 경과한 시점에서의 mRNA의 잔존량을 평가한 결과, 도 12의 (B) 및 (C)에 도시된 바와 같이, mRNA 구조체의 5'-UTR 부분에 5'-β-globin이 존재함으로써 5U-CAR는 CAR보다 36.9%, 5U-CAR-BGH는 CAR-BGH보다 35.9% 향상된 안정성을 나타내는 것으로 확인되었고, mRNA 구조체의 3'-UTR 부분에 3'-BGH가 존재함으로써 CAR-BGH가 CAR보다 20.2%, 5U-CAR-BGH가 5U-CAR보다 19.1% 향상된 안정성을 나타내는 것으로 확인되었다. 또한, mRNA 구조체의 5'-UTR 부분과 3'-UTR 부분에 5'-β-globin과 3'-BGH를 모두 포함하는 5U-CAR-BGH는 CAR보다 56.1% 향상된 안정성을 나타내는 것으로 확인되었다. First, the remaining amount of mRNA at the time point 4 hours after the mRNA was injected into NK92 cells as described above, as confirmed in (A) of FIG. 12, CAR > 5U-CAR > CAR-BGH > 5U- In the order of CAR-BGH > 5U-CAR-IRES-BGH, it can be seen that the amount of mRNA remaining in NK92 cells is high (Fig. 12 (A) and Table 1). Next, mRNA was injected into NK92 cells. As a result of evaluating the residual amount of mRNA at the time point of 8 hours after setting the residual amount of mRNA at the time of 4 hours to 1, as shown in FIG. 12 (B) and (C), mRNA By the presence of 5'-β-globin in the 5'-UTR part of the construct, it was confirmed that 5U-CAR showed 36.9% better stability than CAR and 5U-CAR-BGH showed 35.9% better stability than CAR-BGH. By the presence of 3'-BGH in the '-UTR part, it was confirmed that the stability of CAR-BGH was 20.2% higher than that of CAR, and the stability of 5U-CAR-BGH was improved by 19.1% than that of 5U-CAR. In addition, 5U-CAR-BGH containing both 5'-β-globin and 3'-BGH in the 5'-UTR and 3'-UTR portions of the mRNA structure was confirmed to exhibit 56.1% improved stability than CAR.
상기와 같은 결과로부터 mRAN 구조체의 5'-UTR 부분과 3'-UTR 부분에 각각 존재하는 5'-β-globin과 3'-BGH가 mRNA의 구조적 안정성을 상승시킴을 알 수 있다.From the above results, it can be seen that 5'-β-globin and 3'-BGH present in the 5'-UTR and 3'-UTR portions of the mRAN structure, respectively, increase the structural stability of mRNA.
[5-3] [5-3] 번역 안정성(translational stability) 평가Evaluation of translational stability
나아가, 상기 실시예 [5-2]에서 제작한 7종의 제작된 일시적 CAR-NK 세포를 대상으로, mRNA를 NK92 세포 내로 주입한 후 8시간이 경과한 시점에서 발현된 CAR 단백질의 발현량을 기준(1)으로 시간의 경과에 따른 mRNA 구조체의 번역 안정성(translational stability)을 평가하였다.Furthermore, for the 7 types of transient CAR-NK cells prepared in Example [5-2], the expression level of the CAR protein expressed at 8 hours after the mRNA was injected into NK92 cells was measured. As criterion (1), the translational stability of the mRNA construct over time was evaluated.
그 결과, mRNA를 NK92 세포 내로 주입한 후 18시간이 경과한 시점에서의 단백질 발현량의 경우, 도 13에 도시된 바와 같이, mRNA 구조체의 3'-UTR 부분에 3'-BGH가 존재함으로써 CAR-BGH가 CAR보다 28.4% 향상된 단백질 발현율을, mRNA 구조체의 5'-UTR 부분에 5'-β-globin이 존재함으로써 5U-CAR-BGH가 5U-CAR보다 24.3% 향상된 단백질 발현율을 나타내었고, mRNA 구조체의 3'-UTR 부분에 EMCV-IRES가 추가적으로 존재함으로써 5U-CAR-BGH보다 5U-CAR-IRES-BGH가 33.3% 향상된 단백질 발현율을 나타내는 것으로 확인되었다. 한편, EMCV-IRES를 역방향으로 삽입해 번역을 위한 루프 구조의 형태를 변형한 경우와 5'-UTR 부분에 EMCV-IRES를 배치한 경우에는 단백질 발현율이 급격히 감소하는 것으로 확인되었다. As a result, in the case of the protein expression level at 18 hours after the mRNA was injected into NK92 cells, as shown in FIG. 13, CAR -BGH showed a 28.4% higher protein expression rate than CAR, and 5U-CAR-BGH showed a 24.3% higher protein expression rate than 5U-CAR due to the presence of 5'-β-globin in the 5'-UTR part of the mRNA structure, mRNA It was confirmed that 5U-CAR-IRES-BGH exhibited a 33.3% higher protein expression rate than 5U-CAR-BGH due to the additional presence of EMCV-IRES in the 3'-UTR portion of the construct. On the other hand, it was confirmed that the protein expression rate rapidly decreased when the shape of the loop structure for translation was modified by inserting EMCV-IRES in the reverse direction and when EMCV-IRES was placed in the 5'-UTR part.
상기와 같은 결과를 종합적으로 고려해 볼 때, mRNA 구조체의 3'-UTR 부분에 정방향으로 존재하는 EMCV-IRES가 mRNA의 번역 안정성에 크게 기여하는 것으로 판단된다.Considering the above results comprehensively, it is judged that EMCV-IRES present in the forward direction in the 3'-UTR portion of the mRNA construct greatly contributes to the translational stability of mRNA.
[5-4] [5-4] 세포용해 활성(cytolytic activity) 평가Evaluation of cytolytic activity
이어서, 상기 실시예 [5-2]에서 제작한 7종의 일시적(transient) CAR-NK 세포를, mRNA를 NK92 세포 내로 주입한 후 18시간이 경과한 시점에, 상기 실시예 3에서와 같은 방법으로 상기 일시적 CAR-NK 세포를 유방암 세포주 AU565와 폐암 세포주 A549에 각각 처리하여, 암세포에 대한 세포독성을 평가하였다.Subsequently, 7 types of transient CAR-NK cells prepared in Example [5-2] were injected into NK92 cells, and 18 hours later, the same method as in Example 3 was performed. The transient CAR-NK cells were treated with breast cancer cell line AU565 and lung cancer cell line A549, respectively, and cytotoxicity to cancer cells was evaluated.
그 결과, 도 14에 도시된 바와 같이, 유방암 세포주 AU565와 폐암 세포주 A549 모두에 대하여, 상기 실시예 5-3에서 확인된 단백질 발현율에 상응하는 수준 및 양상으로, 상기 일시적(transient) CAR-NK 세포의 세포독성이 확인되었고, 세포용해 과정에서 일어나는 일련의 반응인 IFNγ와 TNFα의 분비 역시 상기 실시예 5-3에서 확인된 단백질 발현율에 상응하는 수준과 양상으로 나타나는 것으로 확인되었다. As a result, as shown in FIG. 14, with respect to both the breast cancer cell line AU565 and the lung cancer cell line A549, the transient CAR-NK cells had a level and pattern corresponding to the protein expression rate confirmed in Example 5-3. The cytotoxicity of was confirmed, and the secretion of IFNγ and TNFα, which are a series of reactions occurring during the cell lysis process, was also confirmed to appear at the level and pattern corresponding to the protein expression rate confirmed in Example 5-3.
[5-5] [5-5] IRES-BGH와 BGH-IRES의 비교Comparison of IRES-BGH and BGH-IRES
한편, mRNA 구조체의 3'-UTR에 위치하는 IRES와 BGH 순서가 mRNA의 구조적 안정성, 번역 안정성 및 세포독성에 미치는 영향을 확인하기 위하여, 상기 실시예 1에서 설계한 항-cotinine-CAR를 대상으로 5'-UTR과 3'-UTR을 하기 표 3에 기재된 바와 같이 설계하고, 상기 실시예 [5-1]에서와 동일한 방법으로 mRNA를 수득한 다음, 이를 전기영동하였다. 상기와 같이 수득된 mRNA에는, 상기 실시예 [5-1]에서 수득된 mRNA와 마찬가지로 5'-Cap과 3'-Poly(A) tail이 결합되어 있다.On the other hand, in order to confirm the effect of the IRES and BGH sequences located in the 3'-UTR of the mRNA structure on the structural stability, translational stability and cytotoxicity of mRNA, the anti-cotinine-CAR designed in Example 1 was targeted. 5'-UTR and 3'-UTR were designed as shown in Table 3 below, and mRNA was obtained in the same manner as in Example [5-1], followed by electrophoresis. The mRNA obtained as described above has a 5'-Cap and a 3'-Poly(A) tail bound thereto, similarly to the mRNA obtained in Example [5-1].
mRNA 구조체mRNA structure 구조rescue
UTR-COT-MH-10Z-IRES-BGHUTR-COT-MH-10Z-IRES-BGH
Figure PCTKR2022007377-appb-I000001
Figure PCTKR2022007377-appb-I000001
UTR-COT-MH-10Z-BGH-IRESUTR-COT-MH-10Z-BGH-IRES
Figure PCTKR2022007377-appb-I000002

Figure PCTKR2022007377-appb-I000003
Figure PCTKR2022007377-appb-I000002

Figure PCTKR2022007377-appb-I000003
그 결과, 도 15a에 도시된 바와 같이, 복잡한 2차 구조를 형성하는 IRES가 BGH의 뒤에 위치하는 'UTR-CAR-BGH-IRES' 구조체의 경우에는 시험관내 전사 과정에서 mRNA 합성시 IRES가 포함된 전사체와 IRES가 제거된 전사체의 두 개의 밴드(band)가 확인된 반면, IRES가 BGH의 앞에 위치하는 'UTR-CAR-IRES-BGH' 구조체의 경우에는 IRES가 포함된 전사체의 단일 밴드만이 확인되었다. As a result, as shown in FIG. 15a, in the case of the 'UTR-CAR-BGH-IRES' structure in which the IRES forming a complex secondary structure is located behind BGH, the IRES is included during mRNA synthesis during in vitro transcription. Two bands of the transcript and the IRES-deleted transcript were identified, whereas in the case of the 'UTR-CAR-IRES-BGH' construct in which the IRES is located in front of the BGH, a single band of the transcript containing the IRES was identified. only confirmed
또한, 상기와 같이 수득한 mRNA를 상기 실시예 [5-2] 내지 [5-4]에서와 동일한 방법으로 NK92 세포에 형질전환시켜 mRNA 구조체의 구조적 안정성, 번역 안정성 및 세포독성을 평가하였다.In addition, the mRNA obtained as described above was transformed into NK92 cells in the same manner as in Examples [5-2] to [5-4], and structural stability, translational stability, and cytotoxicity of the mRNA construct were evaluated.
그 결과, 도 15b에 도시된 바와 같이, 'UTR-CAR-BGH-IRES' 구조체보다, 'UTR-CAR-IRES-BGH' 구조체가 더욱 높은 단백질 발현 수준과 더욱 높은 세포독 성을 나타내는 것으로 확인되었다.As a result, as shown in FIG. 15B, it was confirmed that the 'UTR-CAR-IRES-BGH' construct exhibited higher protein expression levels and higher cytotoxicity than the 'UTR-CAR-BGH-IRES' construct. .
[실시예 6] [Example 6]
Poly (A) tail이 목적 단백질의 발현에 미치는 영향 확인Confirmation of the effect of Poly (A) tail on the expression of the target protein
먼저, 상기 실시예 [5-1]에서 설계한 5번 구조체(5U-CAR-IRES-BGH)를 기준으로, 하기 표 4에 기재된 바와 같이, 3'-UTR에 각각 40bp, 150bp 또는 310bp의 poly(A) 서열이 추가된 mRNA 구조체(하기 표 4의 2, 3 및 4번 구조체)를 설계하고, 이들을 암호화하는 유전자 컨스트럭트의 염기서열을 pBluescript SK(-) 벡터(Addgene사)에 각각 삽입하였다. 상기와 같이 제조된 각각의 pBluescript SK(-)벡터로부터, 폴리(A) 테일링 없이, 시험관내 전사만을 통해 각각의 하기 표 4의 2, 3 및 4번의 구조를 갖는 mRNA를 수득하였다.First, based on structure 5 (5U-CAR-IRES-BGH) designed in Example [5-1], as shown in Table 4 below, 40 bp, 150 bp or 310 bp poly (A) Design mRNA constructs with added sequences ( structures 2, 3, and 4 in Table 4 below), and insert the base sequences of the gene constructs encoding them into the pBluescript SK(-) vector (Addgene), respectively. did From each of the pBluescript SK(-) vectors prepared as described above, mRNAs having structures 2, 3 and 4 in Table 4 below were obtained through only in vitro transcription without poly(A) tailing.
한편, 상기 실시예 [5-1]에서 설계한 5번 구조체를 암호화하는 유전자 컨스트럭트의 염기서열이 삽입된 pBluescript SK(-)벡터로부터, 폴리(A) 테일링 없이, 시험관내 전사만을 통해 각각의 하기 표 4의 1번의 구조를 갖는 mRNA를, 그리고 시험관내 전사와 폴리(A) 테일링을 모두 거쳐 하기 표 4의 5번의 구조를 갖는 mRNA를 각각 수득하였다. On the other hand, from the pBluescript SK(-) vector into which the nucleotide sequence of the gene construct encoding the 5th construct designed in Example [5-1] was inserted, only through in vitro transcription without poly(A) tailing, respectively. mRNA having structure No. 1 of Table 4 below and mRNA having structure No. 5 in Table 4 below were obtained through both in vitro transcription and poly(A) tailing.
mRNA 구조체 mRNA structure 구조rescue
1. 5U-CAR-IRES-BGH1. 5U-CAR-IRES-BGH
Figure PCTKR2022007377-appb-I000004
Figure PCTKR2022007377-appb-I000004
2. 5U-CAR-IRES-BGH-PA402. 5U-CAR-IRES-BGH-PA40
Figure PCTKR2022007377-appb-I000005
Figure PCTKR2022007377-appb-I000005
3. 5U-CAR-IRES-BGH-PA1503. 5U-CAR-IRES-BGH-PA150
Figure PCTKR2022007377-appb-I000006
Figure PCTKR2022007377-appb-I000006
4. 5U-CAR-IRES-BGH-PA3104. 5U-CAR-IRES-BGH-PA310
Figure PCTKR2022007377-appb-I000007
Figure PCTKR2022007377-appb-I000007
5. 5U-CAR-IRES-BGH-PolyA5. 5U-CAR-IRES-BGH-PolyA
Figure PCTKR2022007377-appb-I000008
Figure PCTKR2022007377-appb-I000008
결국, 상기 표 4에서 2, 3 및 4번 구조체는 구조체 자체에 폴리(A) 테일이 존재하도록 설계되어 시험관내 전사 이후에 폴리(A) 테일링을 별도로 진행하지 않고, 표 4의 5번 구조체는 구조체 자체에 폴리(A) 테일이 존재하지 않지만 시험관내 전사 이후에 추가적으로 폴리(A) 테일링을 진행하여 폴리(A) 테일을 붙인 것이다.As a result, structures No. 2, 3, and 4 in Table 4 are designed so that poly(A) tails exist in the structures themselves, so poly(A) tailing does not proceed separately after in vitro transfer, and structure No. 5 in Table 4 is Although the poly(A) tail does not exist in the structure itself, the poly(A) tail is attached by additional poly(A) tailing after in vitro transcription.
상기와 같이 설계 및 수득된 5종의 mRN를 상기 실시예 2에서와 동일한 방법으로 최적의 조건 하에 NK92 세포 및 primary NK 세포에 형질전환하여 일시적(transient) CAR-NK 세포를 제작하였고, 상기 실시예 [5-3] 및 실시예 [5-4]에서와 동일한 방법으로 CAR의 단백질 발현 수준과 암세포에 대한 세포독성을 확인하였다. The 5 types of mRNs designed and obtained as described above were transformed into NK92 cells and primary NK cells under optimal conditions in the same manner as in Example 2 above to construct transient CAR-NK cells. In the same manner as in [5-3] and Example [5-4], the protein expression level of CAR and its cytotoxicity to cancer cells were confirmed.
먼저, 1번 구조체와 5번 구조체를 비교한 결과, 도 16a 및 도 16b에서 확인되는 바와 같이, 폴리(A) 테일이 포함된 5번 구조체에 비해, 폴리(A) 테일이 없는 1번 구조체의 경우에 mRNA 구조체의 3'-UTR에 안정성을 높여주는 BGH와 번역 안정성을 높여주는 IRES가 존재함에도 불구하고, CAR의 단백질 발현이나 유방암 세포주 AU565에 대한 세포독성이 현저히 낮은 것으로 확인되었다(도 16a, 도 16b).First, as a result of comparing structure 1 and structure 5, as shown in FIGS. 16A and 16B, compared to structure 5 including a poly (A) tail, structure 1 without a poly (A) tail In this case, despite the presence of BGH, which increases stability, and IRES, which increases translational stability, in the 3'-UTR of the mRNA construct, it was confirmed that the CAR protein expression or cytotoxicity against breast cancer cell line AU565 was significantly low (FIG. 16a, Figure 16b).
반면, 구조체 자체에 폴리(A) 테일을 갖는 2번 내지 4번 구조체의 경우, NK92 세포에서, 2번 구조체는 폴리(A) 테일이 포함되지 않은 1번 구조체보다 단백질 발현이나 유방암 세포주 AU65에 대한 세포독성이 높았으나, 3번 및 4번 구조체 3 및 4에 비해서는 단백질 발현이나 유방암 세포주 AU565에 대한 세포독성이 낮은 것으로 확인되었다. 그리고 3번 및 4번 구조체 3 및 4는 단백질을 안정적으로 발현하고, 그 발현율에 상응하는 수준이나 양상의 세포독성을 나타내는 것으로 확인되었다(도 16a). 한편, primary NK 세포에서는, 5번 구조체가 가장 높은 수준의 단백질 발현을 나타내었으나 유방암 세포주 AU565에 대한 세포독성은 오히려 150bp의 아데노신(A)을 포함하는 3번 구조체에서 가장 높은 것으로 확인되었다(도 16b).On the other hand, in the case of constructs No. 2 to 4 having a poly(A) tail in the construct itself, in NK92 cells, construct No. 2 is more effective in protein expression or breast cancer cell line AU65 than construct No. 1 without the poly(A) tail. Although the cytotoxicity was high, it was confirmed that the protein expression or cytotoxicity to the breast cancer cell line AU565 was lower than that of constructs 3 and 4, respectively. In addition, constructs 3 and 4 of Nos. 3 and 4 were confirmed to stably express the protein and exhibit cytotoxicity at a level or aspect corresponding to the expression rate (FIG. 16a). On the other hand, in primary NK cells, construct 5 showed the highest level of protein expression, but the cytotoxicity against breast cancer cell line AU565 was found to be highest in construct 3 containing 150 bp of adenosine (A) (FIG. 16b ).
상기와 같은 결과로부터, 효소 활성 및 반응시간 의존적으로 mRNA 구조체에 추가적으로 합성되는 폴리(A) 테일에 비해, mRNA 구조체 내에 폴리(A) 테일 자체가 포함되도록 설계되는 경우에, 이를 암호화하는 유전자 컨스트럭트의 염기서열이 포함된 주형 재조합 벡터로부터 별도의 폴리(A) 테일링 과정 없이 시험관내 전사만을 통해 폴리(A) 테일이 포함된 mRNA 구조체가 생성될 수 있으므로, mRNA 구조체 생산시 단일 크기의 mRNA 구조체 생산이 가능할 뿐만 아니라, mRNA 구조체 합성 공정 자체가 감소하고, mRNA 구조체의 품질 관리도 용이해지는 장점이 있다.From the above results, compared to the poly (A) tail that is additionally synthesized in the mRNA structure depending on the enzyme activity and reaction time, when the poly (A) tail itself is designed to be included in the mRNA structure, the gene construct encoding it Since an mRNA construct containing a poly(A) tail can be generated through in vitro transcription only without a separate poly(A) tailing process from a template recombinant vector containing the nucleotide sequence of the nucleotide sequence, a single-sized mRNA construct is produced when the mRNA construct is produced. In addition to production, there are advantages in that the mRNA construct synthesis process itself is reduced and the quality control of the mRNA construct is facilitated.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As above, specific parts of the present invention have been described in detail, and for those skilled in the art, it is clear that these specific descriptions are only preferred embodiments, and the scope of the present invention is not limited thereby. something to do. Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (17)

  1. 목적 단백질 또는 펩티드를 암호화하는 염기서열; 및 상기 목적 단백질 또는 펩티드를 암호화하는 염기서열의 하류(downstream)에 연결된 20nt 내지 500nt의 길이를 갖는 폴리(A) 염기서열;을 포함하는 mRNA 구조체.A nucleotide sequence encoding a target protein or peptide; and a poly(A) sequence having a length of 20 nt to 500 nt linked downstream of the nucleotide sequence encoding the target protein or peptide.
  2. 청구항 1에 있어서,The method of claim 1,
    상기 목적 단백질 또는 펩티드를 암호화하는 염기서열의 상류(upstream)에 5'-β-globin UTR 영역을 더 포함하는 것인 mRNA 구조체.The mRNA construct further comprising a 5'-β-globin UTR region upstream of the nucleotide sequence encoding the target protein or peptide.
  3. 청구항 2에 있어서,The method of claim 2,
    상기 목적 단백질 또는 펩티드를 암호화하는 염기서열과 상기 폴리(A) 염기서열 사이에 BGH를 더 포함하는 것인 mRNA 구조체.The mRNA construct further comprising BGH between the nucleotide sequence encoding the target protein or peptide and the poly (A) nucleotide sequence.
  4. 청구항 3에 있어서,The method of claim 3,
    상기 목적 단백질 또는 펩티드를 암호화하는 염기서열과 상기 폴리(A) 염기서열 사이에 IRES를 더 포함하는 것인 mRNA 구조체.The mRNA construct further comprising an IRES between the nucleotide sequence encoding the target protein or peptide and the poly (A) nucleotide sequence.
  5. 청구항 4에 있어서,The method of claim 4,
    상기 IRES는 i) 상기 목적 단백질 또는 펩티드를 암호화하는 염기서열과 상기 BGH 사이 및 ii) 상기 BGH와 상기 폴리(A) 염기서열 사이 중 적어도 하나에 포함되는 것인 mRNA 구조체.The IRES is an mRNA construct that is included in at least one of i) between the nucleotide sequence encoding the target protein or peptide and the BGH, and ii) between the BGH and the poly (A) nucleotide sequence.
  6. 청구항 1에 있어서,The method of claim 1,
    상기 폴리(A) 염기서열은 100nt 내지 350nt의 길이를 갖는 것인 mRNA 구조체.The poly (A) nucleotide sequence has a length of 100nt to 350nt mRNA construct.
  7. 청구항 1 내지 청구항 6 중 어느 한 항에 있어서,The method according to any one of claims 1 to 6,
    상기 mRNA 구조체는 세포에 형질전환되기 위한 것인 mRNA 구조체.Wherein the mRNA construct is to be transformed into a cell.
  8. 청구항 1 내지 청구항 6 중 어느 한 항에 있어서,The method according to any one of claims 1 to 6,
    상기 목적 단백질 또는 펩티드는 키메릭 항원 수용체(Chimeric Antigen Receptor, CAR)인 것인 mRNA 구조체.The target protein or peptide is an mRNA construct that is a chimeric antigen receptor (Chimeric Antigen Receptor, CAR).
  9. 청구항 1 내지 청구항 6 중 어느 한 항의 mRNA 구조체의 염기서열과 대응하거나 또는 이와 상보적인 DNA 염기서열을 포함하는 유전자 컨스트럭트.A gene construct comprising a DNA sequence corresponding to or complementary to the nucleotide sequence of the mRNA construct according to any one of claims 1 to 6.
  10. 청구항 9의 유전자 컨스트럭트를 포함하는 벡터.A vector comprising the gene construct of claim 9.
  11. 청구항 10의 벡터를 주형으로, 시험관내 전사(in vitro transcription)를 수행하는 단계;를 포함하는 안정성이 향상된 mRNA의 제조 방법.A method for producing mRNA with improved stability, comprising performing in vitro transcription using the vector of claim 10 as a template.
  12. 청구항 11에 있어서,The method of claim 11,
    상기 시험관내 전사 이후에, 시험관내에서 폴리(A) 테일링을 수행하지 않는 것인 안정성이 향상된 mRNA의 제조 방법.A method for producing mRNA with improved stability, wherein poly (A) tailing is not performed in vitro after the in vitro transcription.
  13. 청구항 8의 mRNA 구조체가 숙주세포 내로 도입된 형질전환체.A transformant in which the mRNA construct of claim 8 is introduced into a host cell.
  14. 청구항 13에 있어서, The method of claim 13,
    상기 숙주세포는 면역세포인 것인 형질전환체.The transformant wherein the host cell is an immune cell.
  15. 청구항 13의 형질전환체를 유효성분으로 포함하는 세포치료제 조성물.A cell therapy composition comprising the transformant of claim 13 as an active ingredient.
  16. 청구항 15에 있어서, The method of claim 15
    상기 세포치료제는 항암제인 것인 세포치료제 조성물.The cell therapy agent is a cell therapy composition that is an anti-cancer agent.
  17. 청구항 16에 있어서,The method of claim 16
    상기 암은 고형암인 것인 세포치료제 조성물.The cell therapy composition of which the cancer is a solid cancer.
PCT/KR2022/007377 2021-05-25 2022-05-24 Method for preparing mrna for expressing protein, and use of mrna prepared thereby WO2022250430A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0066744 2021-05-25
KR20210066744 2021-05-25

Publications (1)

Publication Number Publication Date
WO2022250430A1 true WO2022250430A1 (en) 2022-12-01

Family

ID=84229356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/007377 WO2022250430A1 (en) 2021-05-25 2022-05-24 Method for preparing mrna for expressing protein, and use of mrna prepared thereby

Country Status (2)

Country Link
KR (1) KR20220159909A (en)
WO (1) WO2022250430A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5807707A (en) * 1995-02-10 1998-09-15 Mcmaster University High efficiency translation of mRNA molecules
US20070298417A1 (en) * 2001-03-09 2007-12-27 John Daly Constructs for gene expression analysis
WO2016197121A1 (en) * 2015-06-05 2016-12-08 Dana-Farber Cancer Institute, Inc. Compositions and methods for transient gene therapy with enhanced stability
CN109097396A (en) * 2018-09-10 2018-12-28 上海细胞治疗工程技术研究中心集团有限公司 A method of preparing the CAR-T cell of targeting mesothelin
KR20210065065A (en) * 2019-11-26 2021-06-03 한국생명공학연구원 mRNA construct for expression protein and use thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5807707A (en) * 1995-02-10 1998-09-15 Mcmaster University High efficiency translation of mRNA molecules
US20070298417A1 (en) * 2001-03-09 2007-12-27 John Daly Constructs for gene expression analysis
WO2016197121A1 (en) * 2015-06-05 2016-12-08 Dana-Farber Cancer Institute, Inc. Compositions and methods for transient gene therapy with enhanced stability
CN109097396A (en) * 2018-09-10 2018-12-28 上海细胞治疗工程技术研究中心集团有限公司 A method of preparing the CAR-T cell of targeting mesothelin
KR20210065065A (en) * 2019-11-26 2021-06-03 한국생명공학연구원 mRNA construct for expression protein and use thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HU, Y. ET AL.: "Chimeric antigen receptor (CAR)-transduced natural killer cells in tumor immunotherapy", ACTA PHARMACOLOGICA SINICA, vol. 39, 2018, pages 167 - 176, XP055625054, DOI: 10.1038/aps.2017.125 *

Also Published As

Publication number Publication date
KR20220159909A (en) 2022-12-05

Similar Documents

Publication Publication Date Title
EP4166655A1 (en) Engineered immune cell and use thereof
US20180327470A1 (en) Chimeric antigen receptor-modified immune effector cell carrying pd-l1 blocking agent
WO2020038490A1 (en) Therapeutic agent comprising nucleic acid and car-modified immune cell and application thereof
WO2019080537A1 (en) Therapeutic agent comprising oncolytic virus and car-nk cells, use, kit and method for treating tumor and/or cancer
WO2017135800A1 (en) Mesenchymal stem cell expressing trail and cd, and use thereof
SK74793A3 (en) Pharmaceutical agent for treatment of tumors and its using
WO2018106068A1 (en) Anticancer composition comprising recombinant adenovirus expressing degradation factor for extracellular matrix
US20220290176A1 (en) mRNA CONSTRUCT FOR PROTEIN EXPRESSION AND USE OF SAME
WO2013027988A2 (en) Recombinant adenovirus comprising trans-splicing ribozyme and cancer-treating gene, and use thereof
BR112020011898A2 (en) daric nkg2d receivers
CA3084551A1 (en) Daric interleukin receptors
EP3831945A1 (en) Protein heterodimer and use thereof
CN117295515A (en) Chimeric antigen receptor modified granulocyte-macrophage progenitor cells for cancer immunotherapy
WO2022250430A1 (en) Method for preparing mrna for expressing protein, and use of mrna prepared thereby
WO2013180473A1 (en) Bicistronic expression vector for expressing antibody and method for producing antibody using the same
WO2024053933A1 (en) Construct comprising utr sequence that improves intracellular stability and biosynthesis of mrna and use thereof
US20230279352A1 (en) Methods for generating primary immune cells
WO2022270969A1 (en) Non-natural 5'-untranslated region and 3'-untranslated region and use thereof
CN109554349B (en) Engineered immune cells with silenced PD-1 gene expression
CN111499766B (en) Immune effector cell aiming at chronic lymphocytic leukemia, preparation method and application thereof
WO2021232050A1 (en) Natural killer cell immunotherapy for the treatment or prevention of sars-cov-2 infection
KR100869861B1 (en) Feline cd80, feline cd86, feline cd28, and feline ctla-4 nucleic acid and polypeptides
WO2022245098A1 (en) Immune cells with improved extracellular vesicle secretion ability and immunotherapy utilizing same
TWI830771B (en) Therapeutic agents containing nucleic acids and CAR-modified immune cells and their applications
WO2024071544A1 (en) Novel recombinant fc receptor and cells comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22811623

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE