WO2022250411A1 - Smart granular raw material conveyance system and smart granular raw material conveyance method - Google Patents

Smart granular raw material conveyance system and smart granular raw material conveyance method Download PDF

Info

Publication number
WO2022250411A1
WO2022250411A1 PCT/KR2022/007340 KR2022007340W WO2022250411A1 WO 2022250411 A1 WO2022250411 A1 WO 2022250411A1 KR 2022007340 W KR2022007340 W KR 2022007340W WO 2022250411 A1 WO2022250411 A1 WO 2022250411A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
module
transfer
unit
metering
Prior art date
Application number
PCT/KR2022/007340
Other languages
French (fr)
Korean (ko)
Inventor
이상홍
정인석
최의집
권태연
임경섭
Original Assignee
(주) 테크윈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 테크윈 filed Critical (주) 테크윈
Priority to EP22811604.2A priority Critical patent/EP4349473A1/en
Publication of WO2022250411A1 publication Critical patent/WO2022250411A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/80Forming a predetermined ratio of the substances to be mixed
    • B01F35/892Forming a predetermined ratio of the substances to be mixed for solid materials, e.g. using belts, vibrations, hoppers with variable outlets or hoppers with rotating elements, e.g. screws, at their outlet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/71805Feed mechanisms characterised by the means for feeding the components to the mixer using valves, gates, orifices or openings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/7181Feed mechanisms characterised by the means for feeding the components to the mixer using fans or turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/80Forming a predetermined ratio of the substances to be mixed
    • B01F35/83Forming a predetermined ratio of the substances to be mixed by controlling the ratio of two or more flows, e.g. using flow sensing or flow controlling devices
    • B01F35/832Flow control by weighing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/80Forming a predetermined ratio of the substances to be mixed
    • B01F35/83Forming a predetermined ratio of the substances to be mixed by controlling the ratio of two or more flows, e.g. using flow sensing or flow controlling devices
    • B01F35/833Flow control by valves, e.g. opening intermittently
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a smart powder material transfer system and a smart powder material transfer method, and more specifically, when powder in the form of powder is transferred along a transfer line, the powder precisely measured in a vertical tube installed vertically in the transfer line It relates to a smart powder raw material conveying system and a smart powder raw material conveying method for preventing powder from remaining or stagnation in a vertical pipe while passing smoothly.
  • aqueous electrolyte-based lithium secondary batteries and capacitors that can be applied to fields requiring high output characteristics are attracting attention.
  • These electrochemical devices generally include a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode.
  • the positive electrode and the negative electrode are generally formed by a method of forming an electrode active material layer by applying an electrode active material slurry containing an electrode active material, a polymer binder, and a solvent for dissolving the polymer binder to the surface of the current collector for uniform mixing of the electrode active material. are manufactured
  • the electrode active material slurry may further include a conductive material to improve the electrical conductivity of the electrode. Meanwhile, in order to form an excellent electrode, a dispersing material for uniformly dispersing at least one of the electrode active material and the conductive material may be further included. This is because the shape of the electrode changes according to the degree of dispersion of the electrode active material and the conductive material, and the performance of the battery also changes accordingly.
  • An object of the present invention is to solve the conventional problems, and when powder in the form of powder is transported along a transfer line, the precisely-measured powder smoothly passes through a vertical tube installed vertically among the transfer lines, while the powder is It is to provide a smart powder material transfer system and a smart powder material transfer method to prevent remaining or stagnation in the vertical pipe.
  • the smart powder raw material conveying system includes a first conveying unit for conveying powder in response to a first conveying amount, and is spaced apart from the first conveying unit.
  • a second transfer unit that transfers the powder in response to a second transfer amount equal to or different from the first transfer amount, and a second transfer amount that is spaced apart from the first transfer unit and the second transfer unit and equal to the first transfer amount or the second transfer amount. or a powder transfer unit including at least one of a third transfer unit for transferring the powder in response to a small third transfer amount.
  • the smart powder raw material conveying system when the powder of the first conveying unit rises in the first vertical pipe formed long in the height direction, some of the powder in the first transfer amount acts toward the upper end of the first vertical pipe. passes through the first vertical pipe in a suction method using a suction force to pass through the first vertical pipe, and then, the remaining powder of the first conveying amount passes through the first vertical pipe in a pressure feeding method using a pressing force acting on the lower end of the first vertical pipe. pass
  • the first transfer unit includes a powder metering valve that measures the powder in a predetermined amount in response to the first transfer amount, and the powder metering valve has an open inlet to which a hopper is coupled, and the inlet A hollow metering housing having an opening opposite to the outlet; and a distribution module rotatably embedded in the metering housing on the basis of a virtual first axis perpendicular to a virtual line connecting the inlet and the outlet, and having a plurality of unit discharge grooves arranged at equal intervals along the rotational direction; Including, the powder introduced into the inlet according to the rotation of the distribution module is separately accommodated in a predetermined amount for each unit discharge groove and then discharged through the outlet in a first-in-first-out manner.
  • the first transfer unit may include: a first input module for storing the powder and measuring and discharging the powder at the first transfer amount; a 1-1 pressure transfer module that pressurizes the powder discharged from the first input module using a process gas or compressed air so that the powder discharged from the first input module is transferred in a pressure transfer method using a pressurizing force; a first vertical pipe formed long in a height direction to form a path through which the powder discharged from the first input module rises; Process gas or compressed air is used to suction and store the powder discharged from the first input module or the powder from the first upright pipe so that the powder discharged from the first input module is transferred in a suction method using suction power, and stored in a rotary A first measuring module for measuring and discharging the powder in a first weighing amount by using a valve method; And a 1-2 pressure transfer module for pressurizing the powder discharged from the first metering module using a process gas or compressed air so that the powder discharged from the first metering module is transferred in a
  • the first weighing module may include: a first weighing hopper in which powder transported through the first vertical pipe is stored; a first vacuum ejector that sucks the powder discharged from the first input module in a suction method using a suction force and delivers it to the first metering hopper; and a first metering valve for measuring and discharging the powder stored in the first metering hopper at the first metering amount using a rotary valve method, wherein the first metering valve includes the powder metering valve.
  • the first vacuum ejector the vacuum tank unit is maintained in a vacuum state inside by process gas or compressed air; a vacuum head unit generating the suction force as the process gas or the compressed air is input to maintain the inside of the vacuum tank unit in a vacuum state; a powder input unit to which the first vertical tube is connected so that the first vertical tube communicates with the vacuum tank unit; a connection valve unit that connects the vacuum tank unit and the first metering hopper in an open and close manner; and a control unit controlling an operating relationship between the first input module, the 1-1 pressure transfer module, and the vacuum head unit.
  • control unit in a state in which the 1-1 pressure feeding module is stopped so that a part of the powder passes through the first vertical pipe in a suction method by suction force as the powder is discharged from the first input module
  • the vacuum head unit is operated, and then, the 1-1 pressure transfer module is operated with the vacuum head unit stopped so that the remainder of the powder passes through the first vertical pipe in a pressure transfer method by pressing force.
  • the first input module may include a first input hopper in which the powder is stored; a first magnetic filter for filtering foreign substances having magnetism from the powder when the powder is put into the first input hopper; a first mesh filter filtering non-magnetic foreign substances from the powder when the powder is put into the first input hopper; and a first input valve for measuring and discharging the powder stored in the first input hopper by the first transfer amount using a rotary valve method, wherein the first input valve includes the powder metering valve.
  • the smart powder raw material conveying system when the powder of the second conveying unit is elevated in the second vertical pipe formed long in the height direction, some of the powder of the second conveying amount acts toward the upper end of the second vertical pipe. passes through the second vertical pipe in a suction method using a suction force to pass through the second vertical pipe, and then, the remaining powder of the second conveying amount passes through the second vertical pipe in a pressure feeding method using a pressing force acting on the lower end of the second vertical pipe. pass
  • the second transfer unit includes a powder metering valve that measures the powder in a predetermined amount in response to the second transfer amount, and the powder metering valve has an open inlet to which a hopper is coupled, and the inlet A hollow metering housing having an opening opposite to the outlet; and a distribution module rotatably embedded in the metering housing on the basis of a virtual first axis perpendicular to a virtual line connecting the inlet and the outlet, and having a plurality of unit discharge grooves arranged at equal intervals along the rotational direction; Including, the powder introduced into the inlet according to the rotation of the distribution module is separately accommodated in a predetermined amount for each unit discharge groove and then discharged through the outlet in a first-in-first-out manner.
  • the second transfer unit may include a second input module for storing the powder and measuring and discharging the powder at the second transfer amount; a 2-1 pressure transfer module that pressurizes the powder discharged from the second input module using a process gas or compressed air so that the powder discharged from the second input module is transferred by a pressure transfer method using a pressing force; a second vertical pipe formed long in a height direction to form a path through which the powder discharged from the second input module rises; The powder discharged from the second input module or the powder from the second vertical pipe is sucked and stored using process gas or compressed air so that the powder discharged from the second input module is transferred in a suction method using suction power, and stored in the rotary A second measuring module for measuring and discharging the powder in a second measuring amount using a valve method; And a 2-2 pressure transfer module for pressurizing the powder discharged from the second metering module using a process gas or compressed air so that the powder discharged from the second metering module is transferred by a pressure transfer method using a
  • the second measurement module may include a second measurement hopper in which powder transported through the second vertical pipe is stored; a second vacuum ejector that sucks the powder discharged from the second input module in a suction method using a suction force and delivers it to the second metering hopper; and a second metering valve for measuring and discharging the powder stored in the second metering hopper by the second metering amount using a rotary valve method, wherein the second metering valve includes the powder metering valve.
  • the second vacuum ejector the vacuum tank unit is maintained in a vacuum state by the process gas or compressed air; a vacuum head unit generating the suction force as the process gas or the compressed air is input to maintain the inside of the vacuum tank unit in a vacuum state; a powder input unit to which the second vertical tube is connected so that the second vertical tube communicates with the vacuum tank unit; a connection valve unit that connects the vacuum tank unit and the second metering hopper in an open and close manner; and a control unit controlling an operating relationship between the second input module, the 2-1 pressure transfer module, and the vacuum head unit.
  • control unit in a state in which the 2-1 pressure feeding module is stopped so that a part of the powder passes through the second vertical pipe in a suction method by suction force as the powder is discharged from the second input module
  • the vacuum head unit is operated, and then, the 2-1 pressure transfer module is operated with the vacuum head unit stopped so that the remainder of the powder passes through the second vertical pipe in a pressure transfer method by pressing force.
  • the second transfer unit may include a second input module for storing the powder and measuring and discharging the powder at the second transfer amount; a 2-1 pressure transfer module that pressurizes the powder discharged from the second input module using a process gas or compressed air so that the powder discharged from the second input module is transferred by a pressure transfer method using a pressing force; a second vertical pipe formed long in a height direction to form a path through which the powder discharged from the second input module rises; Process gas or compressed air is used to suction the powder discharged from the second input module or the powder from the second upright pipe so that the powder discharged from the second input module is transferred in a suction method using suction power, and then stored and then fed.
  • a second input module for storing the powder and measuring and discharging the powder at the second transfer amount
  • a 2-1 pressure transfer module that pressurizes the powder discharged from the second input module using a process gas or compressed air so that the powder discharged from the second input module is transferred by a pressure transfer method using a pressing force
  • a silo module that measures and discharges the powder by a second weighing method using a method; and a silo pressure transfer module that pressurizes the powder discharged from the silo module using process gas or compressed air so that the powder discharged from the silo module is transferred in a pressure transfer method using a pressurizing force
  • the second input module includes, The powder metering valve is included, the 2-1 pressure feeding module is connected to the lower end of the second vertical pipe based on the second vertical pipe, and the second input module is connected to the 2-1 pressure feeding module.
  • the silo module is connected to the upper end of the second vertical pipe based on the second vertical pipe, and the silo pressure transfer module is connected to the silo module.
  • the silo module includes a powder silo in which powder transported through the second vertical tube is stored; a silo vacuum ejector that sucks the powder discharged from the second input module by a suction method using a suction force and delivers it to the powder silo; and a table feeder for measuring and discharging the powder stored in the main silo by the second weighing amount using a feeding method.
  • the silo vacuum ejector includes a vacuum tank unit in which the inside is maintained in a vacuum state by process gas or compressed air; a vacuum head unit generating the suction force as the process gas or the compressed air is input to maintain the inside of the vacuum tank unit in a vacuum state; a powder input unit to which the second vertical tube is connected so that the second vertical tube communicates with the vacuum tank unit; a connection valve unit for opening and closing communication between the vacuum tank unit and the powder silo; and a control unit controlling an operating relationship between the second input module, the 2-1 pressure transfer module, and the vacuum head unit.
  • control unit in a state in which the 2-1 pressure feeding module is stopped so that a part of the powder passes through the second vertical pipe in a suction method by suction force as the powder is discharged from the second input module
  • the vacuum head unit is operated, and then, the 2-1 pressure transfer module is operated with the vacuum head unit stopped so that the remainder of the powder passes through the second vertical pipe in a pressure transfer method by pressing force.
  • the second transfer unit includes a silo module that stores the powder and measures and discharges the powder at a second transfer amount using a feeding method;
  • a silo pressure transfer module that pressurizes the powder discharged from the silo module using a process gas or compressed air so that the powder discharged from the second weighing module is transferred by a pressure transfer method using a pressurizing force;
  • a second vertical pipe formed long in a height direction to form a path through which the powder discharged from the silo module rises; Process gas or compressed air is used to suction and store the powder discharged from the silo module or the powder of the second vertical pipe using a rotary valve method so that the powder discharged from the silo module is transported in a suction method using suction force.
  • the second metering module includes the powder metering valve, the silo pressure feeding module is connected to the lower end of the second vertical pipe based on the second vertical pipe, and the silo module is connected to the silo pressure feeding module. And, based on the second vertical pipe, the second measuring module is connected to the upper end of the second vertical pipe, and the 2-2 pressure feeding module is connected to the second measuring module.
  • the second measurement module may include a second measurement hopper in which powder transported through the second vertical pipe is stored; a second vacuum ejector that sucks the powder discharged from the second input module in a suction method using a suction force and delivers it to the second metering hopper; and a second metering valve for measuring and discharging the powder stored in the second metering hopper by the second metering amount using a rotary valve method, wherein the second metering valve includes the powder metering valve.
  • the second vacuum ejector the vacuum tank unit is maintained in a vacuum state by the process gas or compressed air; a vacuum head unit generating the suction force as the process gas or the compressed air is input to maintain the inside of the vacuum tank unit in a vacuum state; a powder input unit to which the second vertical tube is connected so that the second vertical tube communicates with the vacuum tank unit; a connection valve unit that connects the vacuum tank unit and the second metering hopper in an open and close manner; and a control unit controlling an operating relationship between the silo module, the silo pressure feeding module, and the vacuum head unit.
  • control unit operates the vacuum head unit in a state in which the silo pressure feeding module is stopped so that a part of the powder passes through the second vertical pipe in a suction method by suction force as the powder is discharged from the silo module.
  • the silo pressure feeding module is operated with the vacuum head stopped so that the remainder of the powder passes through the second vertical pipe in a pressure feeding method by pressing force.
  • the second input module the second input hopper in which the powder is stored; a second magnetic filter for filtering foreign substances having magnetism from the powder when the powder is put into the second input hopper; a second mesh filter for filtering non-magnetic foreign substances from the powder when the powder is put into the second input hopper; and a second input valve for measuring and discharging the powder stored in the second input hopper by the second transfer amount using a rotary valve method, wherein the second input valve includes the powder metering valve.
  • the third transfer unit may include: a third input module for storing the powder and measuring and discharging the powder at the third transfer amount; and a third pressure transfer module pressurizing the powder discharged from the third input module by using a process gas or compressed air so that the powder discharged from the third input module is transferred by a pressure transfer method using a pressing force.
  • a smart powder raw material conveying system includes a binder conveying unit for converting and conveying the binder mixed with the active material into a liquid solution in response to the binder conveying amount; and a solvent transport unit configured to transport the solvent for forming the solution by dissolving the binder in response to the transport amount of the solvent, wherein the powder is made of an active material that is a raw material of an electrode.
  • the binder transfer unit may include a binder input module for storing the binder and metering and discharging the binder according to the binder transfer amount; a binder pressure feeding module that pressurizes the binder discharged from the binder feeding module using a process gas or compressed air so that the binder discharged from the binder feeding module is transported by a pressure feeding method; a binder mixing module for mixing the binder delivered through the binder pressure delivery module and the solvent delivered through the solvent delivery unit to form the solution; A solution transfer module for pumping the solution; A solution hopper scale capable of storing the solution delivered from the solution transfer module and discharging the fixed amount of the solution in response to the transfer amount of the solution; and a solution supply pump for pumping the solution of the solution hopper scale in response to the transfer amount of the solution.
  • the solvent transport unit includes a solvent tank in which the solvent is stored; a solvent pumping module for pumping the solvent stored in the solvent tank; a mixing control module for adjusting the solvent mixed with the binder; and a slurry control module for adjusting the solvent mixed with the slurry.
  • a smart powder raw material conveying system includes a conductive material conveying unit for conveying a conductive material mixed with a slurry for forming an electrode in response to a conveying amount of the conductive material; and a dispersion material transport unit for transporting the dispersion material mixed with the slurry for forming the electrode in response to the transport amount of the dispersion material. It further includes at least one of
  • the conductive material conveying unit may include a conductive material hopper scale in which the conductive material is stored; and a conductive material supply pump for pumping the conductive material stored in the conductive material hopper scale in a quantitative amount in response to the transfer amount of the conductive material.
  • the dispersion ash transfer unit includes a dispersion ash hopper scale in which the dispersion material is stored; and a dispersion material supply pump for pumping the dispersion material stored in the dispersion material hopper scale in a fixed amount corresponding to the amount of the dispersion material conveyed.
  • the smart powder raw material conveying system further includes a mixing unit for mixing the powder delivered through the powder conveying unit, the solution conveyed through the binder conveying unit, and the solvent conveyed through the solvent conveying unit.
  • a smart powder raw material transfer method is a method for transferring the powder using the smart powder raw material transfer system according to the present invention, and includes a first transfer step of transferring the powder in response to a first transfer amount, and the first transfer amount At least one of a second transfer step of transferring the powder in response to a second transfer amount equal to or different from, and a third transfer step of transferring the powder in response to a third transfer amount smaller than the first transfer amount or the second transfer amount It includes; powder transfer step including one.
  • the powder of the first transfer unit when the powder of the first transfer unit is raised in the first vertical tube formed long in the height direction, the powder of a part of the first transfer amount in the first vertical tube is transferred to the first number.
  • the powder of the second transfer unit when the powder of the second transfer unit is raised in the second vertical tube formed long in the height direction, the powder of a part of the second transfer amount in the second vertical tube is transferred to the second number
  • a second suction step of passing through a suction method using suction force acting at the upper end of the straight tube And after passing through the second suction step, a second pressure conveying step of passing the remaining powder of the second conveying amount through the second vertical pipe in a pressure conveying method using a pressing force acting at the lower end of the second vertical pipe.
  • the third transfer step may include a third input step of measuring and discharging the powder stored in the third input module at the third transfer amount; and a third pressure transfer step of pressurizing the powder discharged from the third input module by using a process gas or compressed air so that the powder discharged through the third input step is transferred by a pressure transfer method using a pressurizing force.
  • a smart powder raw material transfer method includes a binder transfer step of converting and transferring the binder mixed with the active material into a liquid solution in response to the amount of binder transfer; and a solvent transfer step of transferring the solvent for forming the solution by dissolving the binder in response to the solvent transfer amount, wherein the powder is made of an active material that is a raw material of an electrode.
  • a smart powder raw material transfer method includes a conductive material transfer step of transferring a conductive material mixed with a slurry for forming an electrode in response to a conductive material transfer amount; and a dispersion material transfer step of transferring the dispersion material mixed with the slurry for forming an electrode in response to the amount of the dispersion material transported. It further includes at least one of
  • the smart powder raw material transfer method mixes the powder delivered through the powder transfer step, the solution delivered through the binder transfer step, and the solvent delivered through the solvent transfer step to form a slurry for forming an electrode A mixing step to do; further includes.
  • the smart powder raw material conveying system and the smart powder raw material conveying method according to the present invention when powder in the form of powder is transferred along the powder conveying line, the powder accurately measured in the vertical pipe installed vertically in the powder conveying line is smoothly transported. while allowing the powder to pass through, it is possible to prevent the powder from remaining or being stagnant in the riser.
  • the present invention minimizes the load acting on the first vertical pipe and reduces the thickness of the first vertical pipe by pressurizing the powder after the suction of the powder in the first powder line of the powder transfer line, Cost reduction can be expected by reducing maintenance and material costs.
  • the present invention facilitates the transfer of powder between the first input module and the first metering module through the detailed configuration of the first transfer unit, and the suction and pressurization of the powder in the first powder line among the powder transfer lines can be made clear
  • the present invention stably generates a suction power for powder suction in the first powder line of the powder transfer line through the detailed configuration of the first metering module, and in the first metering module integrated with the first vertical pipe and the first metering Powder transfer between hoppers can be smoothly performed.
  • the present invention provides a stable suction power to the powder through the detailed configuration of the first vacuum ejector, while it is possible to clearly perform the continuous transfer of the main body in response to the first transfer amount, and the powder remains or stagnates in the first vertical tube. It is possible to prevent clogging of the first powder line or the first vertical pipe.
  • the present invention facilitates the delivery of powder delivered from the outside through the detailed configuration of the first input module, and can improve the purity of the powder by removing foreign substances mixed with the powder.
  • the present invention minimizes the load acting on the second vertical pipe and reduces the thickness of the second vertical pipe as the powder is pumped after the powder is sucked in the second powder line of the powder transfer line, Cost reduction can be expected by reducing maintenance and material costs.
  • the present invention facilitates the transfer of powder between the second input module and the second metering module through the detailed configuration of the second transfer unit, and the powder suction and pressurized transfer of powder in the second powder line among the powder transfer lines can be made clear
  • the present invention stably generates a suction power for powder suction in the second powder line of the powder transfer line through the detailed configuration of the second metering module, and the second vertical pipe and the second metering in the integrated second metering module. Powder transfer between hoppers can be smoothly performed.
  • the present invention provides a stable suction power to the powder through the detailed configuration of the second vacuum ejector, while it is possible to clearly perform the continuous transfer of the main body in response to the second transfer amount, and the powder remains or stagnates in the second vertical tube. It is possible to prevent clogging of the second powder line or the second vertical pipe.
  • the present invention facilitates the transfer of powder between the second input module and the silo module through the detailed configuration of the second transfer unit, and clearly performs the suction and pressurization of powder in the second powder line among the powder transfer lines. can do.
  • the present invention stably generates a suction power for powder suction in the second powder line of the powder transfer line through the detailed configuration of the silo module, and transfers the powder between the second vertical tube and the powder silo in the integrated silo module. can be done smoothly.
  • the present invention provides a stable suction power to the powder through the detailed configuration of the silo vacuum ejector, while it is possible to clarify the continuous transfer of the main body in response to the second transfer amount, and the powder remains or stagnates in the second vertical pipe. It is possible to prevent clogging of the second powder line or the second vertical pipe.
  • the present invention facilitates the transfer of powder between the silo module and the second weighing module through the detailed configuration of the second transfer unit, and clearly performs the suction and pressurization of powder in the second powder line among the powder transfer lines. can do.
  • the present invention can store a large amount of powder delivered from the outside through the silo module and then discharge it intermittently.
  • the present invention facilitates the delivery of powder delivered from the outside through the detailed configuration of the second input module, and can improve the purity of the powder by removing foreign substances mixed with the powder.
  • the amount of powder can be additionally added by adjusting the amount of powder according to the state of the finally completed slurry in the mixing unit, which is the final destination of the powder, through the detailed configuration of the third transfer unit.
  • the present invention can stably prepare a slurry for forming an electrode using powder made of an active material through the addition of a binder transfer unit and a solvent transfer unit.
  • the present invention can stably dissolve the binder in the form of powder or fillet through the detailed configuration of the binder transfer unit, and conveniently adjust the concentration of the solution formed according to the dissolution of the binder.
  • the present invention can stably supply a fixed amount of solvent to the required unit through the detailed configuration of the solvent transfer unit.
  • the present invention can stably supply a quantity of conductive material to the finally completed slurry through the additional configuration of the conductive material transfer unit, and improve the electrical conductivity of the slurry.
  • the present invention facilitates the transfer of the conductive material by promoting liquefaction of the conductive material through the detailed configuration of the conductive material transfer unit, and forms a safe uniform mixture between the conductive material and the active material.
  • the present invention can smoothly disperse the powder as an active material through the additional configuration of the dispersion material transfer unit, and improve the marketability of the finally completed slurry.
  • the present invention facilitates the transport of the dispersion material by promoting liquefaction of the dispersion material through the detailed configuration of the dispersion material transport unit, and smoothly pre-dispersing the active material through the dispersion material, and forming a stable uniform mixture of the dispersion material and the active material. let it do
  • the present invention can stabilize the finally completed slurry to form an electrode through the additional configuration of the mixing unit.
  • the present invention allows the slurry to be formed as a stable and homogeneous mixture through the detailed configuration of the mixing unit, and it is possible to conveniently control the concentration of the slurry.
  • the present invention can clarify the coupling relationship of the smart powder raw material conveying system through detailed configurations of the smart powder raw material conveying method, implement a stable smart powder raw material conveying system, and clearly express the effects of the above-mentioned units. have.
  • powder in the form of powder can be mechanically clearly metered and discharged sequentially.
  • the present invention rotatably supports the distribution module through the metering housing, and forms a unit discharge groove therein so that a predetermined amount of powder is separately accommodated.
  • the present invention enables the opening and closing of at least the inspection port among the distribution opening and the inspection port through the detailed configuration of the metering housing, simplifies attachment and detachment of the distribution module from the metering housing, and can stabilize maintenance of the distribution module in the metering housing. .
  • the present invention prevents dust explosion at at least one of the inlet and outlet through the configuration of the purge unit, facilitates the transfer of powder, allows the powder to be supplied in a fixed amount to the distribution module, and the powder is discharged in a fixed amount from the distribution module Let it be.
  • a unit discharge groove portion capable of accommodating a predetermined quantity of powder can be formed inside the metering housing through the distribution module, and the powder can be smoothly transported.
  • the present invention stably divides the unit discharge groove through the detailed configuration of the distribution module, so that the powder of the unit discharge groove can be clearly transferred.
  • the present invention can prevent the powder from sticking inside the metering housing through the scraper and prevent the powder from being transferred between the unit discharge grooves.
  • the present invention enables opening and closing of at least the distribution opening of the distribution opening and the inspection port through the shaft joint module, simplifies attachment and detachment of the distribution module from the metering housing, and can stabilize maintenance of the distribution module in the metering housing.
  • the present invention can prevent the leakage of powder inside the metering housing to the outside through the opening and closing joint member, make the rotation of the distribution module clear, and prevent the flow due to the rotation of the distribution module.
  • the present invention can stably support the transmission drive shaft portion, which is a virtual first axis, through the shaft coupling member, and smooth the rotation of the transmission drive shaft portion.
  • the present invention can stably rotate the distribution module with a uniform rotational force by adjusting the rotational force through the conversion module.
  • the present invention can easily change the transmission direction of the rotational force through the detailed configuration of the conversion module.
  • the present invention facilitates the rotation of the transmission drive shaft by coaxially arranging the distribution module, the shaft joint module, and the conversion module through the coupling relationship of the transmission drive shaft, and distributes it to the transmission drive shaft by improving the coupling force of the transmission drive shaft in the distribution module.
  • the module can be stably fixed, and the transmission drive shaft part rotates smoothly in the shaft coupling module.
  • the present invention can ensure stable rotational force is generated through the power generation module, and the transmission of rotational force to the conversion module can be clarified.
  • the present invention can easily check the amount of rotation of the distribution module corresponding to the unit discharge groove through the rotation sensing module, and can easily and clearly identify the location of the unit discharge groove based on the inlet and outlet.
  • the present invention clearly detects the position necessary for adjusting the rotation speed of the distribution module through the detailed configuration of the rotation sensing module, and adjusts the communication relationship between the inlet, the unit discharge groove, and the outlet so that the powder is stably transported.
  • the present invention stably specifies the sensing position corresponding to the rotational width of the unit discharge groove through the detailed configuration of the sensing paddle, and improves the sensitivity of the speed sensor to clearly control the rotational force.
  • the present invention can initially position the unit discharge groove corresponding to the inlet through the default setting unit, and can simplify the initialization of the powder metering valve.
  • the present invention clearly controls the delivery amount of powder delivered to the distribution module through the speed control module, and allows a predetermined amount of powder to be injected into each unit distribution groove.
  • the present invention provides a deceleration force smaller than the reference rotational force through a fine deceleration method, it is possible to prevent energy waste in the power generation module and smoothly control the rotational force.
  • the present invention provides an acceleration force greater than the reference rotational force through the accommodating acceleration method, control according to rotation of the distribution module can be simplified and rotational force control can be smoothly controlled.
  • FIG. 1 is a block diagram for the transport of powdery active material in a smart powder raw material transport system according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a transfer control unit in a smart powder raw material transfer system according to an embodiment of the present invention.
  • FIG. 3 is a block diagram for transporting a binder mixed with an active material in a smart powder raw material transport system according to an embodiment of the present invention.
  • FIG. 4 is a block diagram for transporting a solvent mixed with an active material in a smart powder raw material transport system according to an embodiment of the present invention.
  • FIG. 5 is a block diagram for transporting a conductive material mixed with an active material in a smart powder raw material transport system according to an embodiment of the present invention.
  • FIG. 6 is a block diagram for transporting a dispersion material mixed with an active material in a smart powder raw material transport system according to an embodiment of the present invention.
  • FIG. 7 is a block diagram showing a mixing unit for mixing materials in a smart powder raw material conveying system according to an embodiment of the present invention.
  • FIG. 8 is a block diagram showing a smart powder raw material transfer method according to an embodiment of the present invention.
  • FIG. 9 is a plan view showing a powder metering valve according to an embodiment of the present invention.
  • FIG. 10 is a front sectional view showing a powder metering valve according to an embodiment of the present invention.
  • FIG. 11 is a side view showing a powder metering valve according to an embodiment of the present invention.
  • FIG. 12 is a view showing a distribution module in a powder metering valve according to an embodiment of the present invention.
  • FIG. 13 is an exploded view showing a coupled state of a distribution module in a powder metering valve according to an embodiment of the present invention.
  • FIG 14 is a front view (a) and a side view (b) showing a first coupling state of a rotation sensing module in a powder metering valve according to an embodiment of the present invention.
  • FIG. 15 is a side view illustrating a second coupling state of a rotation sensing module in a powder metering valve according to an embodiment of the present invention.
  • FIG. 16 is a perspective view illustrating a sensing paddle of the rotation sensing module in FIG. 15;
  • 17 is a front view (a) and a side view (b) showing a third coupled state of a rotation sensing module in a powder metering valve according to an embodiment of the present invention.
  • the smart powder raw material conveying system when powder in the form of powder is transferred along the powder conveying line, the precisely measured powder smoothly passes through the corresponding vertical pipe installed vertically among the powder conveying lines. In this case, it is possible to prevent solids from remaining or stagnation in the riser.
  • the powder transfer line represents the powder transfer path in the powder transfer unit 400
  • the first powder line represents the powder transfer path in the first transfer unit 100
  • the second powder line represents the second transfer unit.
  • 200 shows the powder transport path
  • the third powder line shows the powder transport path in the third transfer unit 300 .
  • the binder transfer line indicates the transfer path of the binder in the binder transfer unit 500
  • the solvent transfer line indicates the transfer path of the solvent in the solvent transfer unit 600
  • the conductive material transfer line indicates the conductive material transfer unit 700 Indicates the transfer path of the conductive material
  • the dispersion material transfer line indicates the transfer path of the dispersant material in the dispersion material transfer unit 800.
  • the powder may be made of an active material.
  • a smart powder raw material transport system according to an embodiment of the present invention will be described as a system for preparing a slurry for forming an electrode of an electrochemical device.
  • An active material is a raw material of an electrode of an electrochemical device.
  • the binder provides binding force to the final slurry to form an electrode of an electrochemical device.
  • the solvent dissolves at least the binder among the binder, the conductive material, and the dispersant to improve the bonding strength of the active material or the final slurry.
  • the conductive material improves the conductivity of the final slurry by forming an electron conduction passage in the final slurry to improve the electrical conductivity of the electrode of the electrochemical device.
  • the dispersant disperses at least one of the active material and the conductive material so that the final slurry is uniformly mixed.
  • the electrolyte helps smooth movement of ions with respect to the final slurry.
  • the concentration of the slurry can be adjusted by adjusting the solvent or electrolyte in the final slurry.
  • the smart powder raw material conveying system may include a powder conveying unit 400 for conveying powder.
  • the powder is transferred along the powder transfer line.
  • the powder transfer unit 400 includes a first transfer unit 100 that transfers powder in response to a first transfer amount, and powders corresponding to a second transfer amount that is equal to or different from the first transfer amount apart from the first transfer unit 100.
  • the second transfer unit 200 that transfers the powder, and the first transfer unit 100 and the second transfer unit 200 are separated from each other and transfer powder in response to the first transfer amount or the third transfer amount smaller than the second transfer amount. At least one of the three transfer units 300 may be included.
  • the first transfer unit 100 may transfer the powder of the first vertical tube 130 in two steps.
  • the first transfer unit 100 may include a powder metering valve to be described later.
  • the powder of the first transfer unit 100 when the powder of the first transfer unit 100 is raised in the first upright pipe 130 formed long in the height direction, some of the powder of the first transfer amount acts toward the upper end of the first upright pipe 130. It can pass through the first vertical pipe 130 in a suction method using a suction force. Next, the remaining powder in the first conveying amount may pass through the first upright pipe 130 in a pressure conveying method using a pressing force acting on the lower end of the first upright pipe 130 .
  • the powder transported from the first transfer unit 100 passes through the first upright pipe 130 by sequentially applying the suction method and the pressure feeding method based on the first upright pipe 130. ), it is possible to implement complete passage of the powder, prevent the powder from being stagnant in the first upright pipe 130, and prevent the first upright pipe 130 from being blocked by the powder.
  • the first transfer unit 100 has a first input module 110 that stores powder and measures and discharges the powder in a first transfer amount, and transfers the powder discharged from the first input module 110 in a pressure transfer method using pressurized force.
  • the 1-1 pressure transfer module 120 that pressurizes the powder discharged from the first input module 110 using process gas or compressed air as much as possible and the path on which the powder discharged from the first input module 110 rises
  • the first vertical pipe 130 formed long in the height direction to form and the powder discharged from the first input module 110 using a process gas or compressed air to be transported in a suction method using suction power to the first input module ( 110) or the powder of the first vertical pipe 130 is sucked in and stored, and then the first measurement module 140 measures and discharges the powder at a first metered amount using a rotary valve method;
  • the 1-2 pressure transfer module 150 pressurizes the powder discharged from the first metering module 140 using process gas or compressed air so that the powder discharged from the metering module 140 is transferred by a pressure
  • the 1-1 pressure feeding module 120 is connected to the lower end of the 1 vertical pipe 130, and the 1-1 pressure feeding module 120 has a first input module. (110) to be connected.
  • the first metering module 140 is connected to the upper end of the first vertical tube 130 based on the first vertical tube 130, and the first metering module 140 has a 1-2 pressure transfer module 150 ) to be connected.
  • the first input module 110 includes a first input hopper 111 in which powder is stored, and a first magnetic filter 112 for filtering foreign substances having magnetic properties from the powder when the powder is put into the first input hopper 111. And, when the powder is put into the first input hopper 111, the first mesh filter 113 for filtering non-magnetic foreign substances from the powder and the powder stored in the first input hopper 111 using a rotary valve method It may include a first input valve 114 that measures and discharges the first transfer amount.
  • the first input hopper 111 can accommodate all the powders stored in the powder bag delivered from the outside through the powder transport module 410 .
  • the powder transport module 410 may be made of a crane or a chain block.
  • the capacity of the first input hopper 111 can be changed in various ways according to the powder transfer speed and the powder unit transfer amount.
  • the first magnetic filter 112 and the first mesh filter 113 are spaced apart from each other and disposed at the upper end of the first input hopper 111 to filter foreign substances from the powder supplied from the powder bag.
  • the first mesh filter 113 since the first mesh filter 113 is disposed above the first magnetic filter 112, it shows a crushing effect of the agglomerated powder, can restore the size of the agglomerated powder to its original state, and powder bag It is possible to improve the filtering effect of foreign substances that are magnetic in the powder delivered from the powder.
  • the first injection valve 114 is provided with a plurality of pockets arranged at equal intervals along the circumferential direction around the intermittently rotated rotation shaft, a fixed amount of powder can be accommodated in the pockets.
  • a quantity of powder may be accommodated corresponding to the first transfer amount.
  • the capacity of one pocket in the first input valve 114 can be variously changed according to the powder transfer speed and the powder unit transfer amount corresponding to the first transfer amount.
  • the first input valve 114 may include a powder metering valve to be described later.
  • the 1-1 pressure feeding module 120 supplies process gas or compressed air generated in the system to powder intermittently discharged from the first input hopper 111 of the first input module 110, in the first powder line Powder can be pressurized stably.
  • the first input valve 114 of the first input module 110 and the 1-1 pressure feeding module 120 Between the first input valve 114 of the first input module 110 and the 1-1 pressure feeding module 120, the first input valve 114 and the 1-1 A vent for discharging gas between the pressure transfer modules 120 or for injecting external gas may be provided.
  • the first vertical pipe 130 forms a part of the first powder line among the powder transfer lines.
  • the first vertical pipe 130 forms a path through which the powder rises in the height direction of the system in the first powder line.
  • the first vertical pipe 130 may be formed long in the height direction of the system.
  • the first metering module 140 is a first metering hopper 141 in which the powder transported through the first vertical pipe 130 is stored, and the powder discharged from the first input module 110 is suctioned using a suction force.
  • a first vacuum ejector 143 that sucks and transfers to the first metering hopper 141, and a first metering and discharging the powder stored in the first metering hopper 141 at a first metering amount using a rotary valve method
  • a metering valve 144 may be included.
  • the first metering valve 144 may include a powder metering valve to be described later.
  • the first weighing hopper 141 can sequentially accommodate the powder delivered through the 1-1 pressure transfer module 120 .
  • the capacity of the first metering hopper 141 can be changed in various ways according to the powder transfer speed and the powder unit transfer amount.
  • the first metering hopper 141 may include a first air unit 142 that disperses the powder accommodated in the first metering hopper 141 using process gas.
  • the first air unit 142 may inject process gas into the first metering hopper 141 to prevent agglomeration of powders accommodated in the first metering hopper 141 .
  • the first metering hopper 141 may be provided with a vent through which gas from the first metering hopper 141 is discharged or external gas is injected in order to adjust the internal pressure of the first metering hopper 141 .
  • the first vacuum ejector 143 includes a vacuum tank unit 420 in which the inside is maintained in a vacuum state by process gas or compressed air, and a process gas or compressed air to maintain the inside of the vacuum tank unit 420 in a vacuum state.
  • the vacuum head unit 430 that generates suction force according to the input, and the powder input unit 440 to which the first vertical tube 130 is connected so that the first vertical tube 130 and the vacuum tank unit 420 communicate with each other.
  • the vacuum tank unit 420 preferably has a cylindrical shape to support suction force. Since the vacuum jacket part 421 surrounds and supports the vacuum tank part 420 , deformation of the vacuum tank part 420 can be prevented and the vacuum tank part 420 can be protected.
  • the vacuum head part 430 is provided at the upper end of the vacuum tank part 420 .
  • the vacuum head unit 430 includes a gas injection unit 431 into which process gas or compressed air is injected, and a gas discharge unit spaced from the gas injection unit 431 and discharging process gas generated according to the generation of suction force. It can be.
  • the vacuum head unit 430 is provided with a venturi unit (not shown) for providing a suction force to the powder by using the venturi effect using the injected process gas or compressed air, thereby stabilizing the suction of the powder and conveniently adjusting the suction cycle. .
  • the powder introduction unit 440 is provided on the side of the vacuum tank unit 420 or on the upper end of the vacuum tank unit 420 to facilitate the transfer of powder from the first vertical pipe 130 .
  • connection valve unit 450 is provided at the lower end of the vacuum tank unit 420 .
  • the connection valve unit 450 includes a vacuum buffer unit provided at the lower end of the vacuum tank unit 420 so that the vacuum state of the vacuum tank unit 420 is maintained, and a vacuum buffer unit provided at the lower end of the vacuum buffer unit and the first measurement module 140.
  • a valve body portion 451 communicating with the first metering hopper 141, and a valve opening and closing portion provided on the valve body portion 451 to open and close the valve body portion 451 or to adjust the opening degree of the valve body portion 451 It may include an opening/closing driver 452 for operating the valve opening/closing unit.
  • the control unit 460 stops the 1-1 pressure transfer module 120 so that a portion of the powder passes through the first vertical pipe 130 in a suction method by suction force. 1-1 with the stop of the vacuum head 430 so that the rest of the powder passes through the first vertical tube 130 in a pressure feeding method by pressing force. Since the pressure feeding module 120 is operated, the powder can be stably discharged from the first vertical pipe 130.
  • control unit 460 In more detail, the operation of the control unit 460 will be described as follows.
  • a first input opening/closing valve for opening and closing the first powder line is provided between the 1-1 pressure feeding module 120 and the first vertical pipe 130, and the 1-1 pressure feeding module 120 and the first
  • a first input return line connecting the first powder line and the first input hopper 111 is provided between the input shutoff valves, and a first input return valve may be provided in the first input return line.
  • the first input return valve closes or seals the first input return line, and the first input shut-off valve opens the first powder line.
  • the first vacuum ejector 143 of the first measurement module 140 By operating the first vacuum ejector 143 of the first measurement module 140, a part of the powder is transported in a suction method. Subsequently, the first input return line is closed or closed with the first input return valve and the first powder line is opened with the first input shut-off valve, and the powder is supplied by the pressure transfer method using the 1-1 pressure transfer module 120. transport the rest
  • one pocket continues to communicate with the first powder line, and in a state where the first powder line is closed or sealed with the first input shut-off valve and the first input return line is opened with the first input return valve, the first When the first pressure feeding module 120 is stopped, the powder and gas between the first input valve 114 and the first input on/off valve pass through the first input return line by the pressure remaining in the first powder line to the first input hopper. (111).
  • one pocket continues to communicate with the first powder line, and the first vacuum ejector in a state in which the first powder line is closed or sealed with the first input opening/closing valve and the first input return line is opened with the first input return valve When the 143 is operated, the suction force in the first upright pipe 130 can be improved.
  • the first metering valve 144 is provided with a plurality of pockets arranged at equal intervals along the circumferential direction around the intermittently rotated rotation shaft, a fixed amount of powder can be accommodated in the pockets. In one pocket of the first metering valve 144, a quantity of powder corresponding to the first metering amount may be accommodated. The capacity of one pocket in the first metering valve 144 can be variously changed according to the powder transfer speed and the unit transfer amount of the powder in response to the first metering amount.
  • the 1-2 pressure feeding module 150 supplies process gas or compressed air generated in the system to the powder intermittently discharged from the first metering hopper 141 of the first metering module 140, in the first powder line Powder can be pressurized stably.
  • the first metering valve 144 and the 1-2 A vent may be provided to discharge gas between the pressure transfer modules 150 or to inject external gas.
  • the second transfer unit 200 may transfer the powder of the second vertical tube 230 in two steps.
  • the second transfer unit 200 may include a powder metering valve to be described later.
  • the powder of the second conveying unit 200 when the powder of the second conveying unit 200 is raised in the second vertical pipe 230 formed long in the height direction, some of the powder in the second conveying amount acts on the upper end of the second vertical pipe 230. It can pass through the second vertical pipe 230 in a suction method using a suction force. Next, the remaining powder in the second transport amount may pass through the second upright pipe 230 in a pressure feeding method using a pressing force acting on the lower end of the second upright pipe 230 .
  • the powder transferred from the second transfer unit 200 passes through the second upright pipe 230 by sequentially applying the suction method and the pressure feeding method based on the second upright pipe 230. ), it is possible to implement complete passage of the powder, prevent the powder from being stagnant in the second upright pipe 230, and prevent the second upright pipe 230 from being blocked by the powder.
  • the second transfer unit 200 can be operated in four ways as follows.
  • the second transfer unit 200 may adopt a method in which powder is sequentially transferred through the second input module 210 and the second measurement module 240 .
  • the second transfer unit 200 stores powder, measures and discharges the powder in a second transfer amount, and transfers the powder discharged from the second input module 210 in a pressure-feeding method using pressurized force.
  • the 2-1 pressure feeding module 220 that pressurizes the powder discharged from the second input module 210 using process gas or compressed air as much as possible and the path on which the powder discharged from the second input module 210 rises
  • the second vertical pipe 230 formed long in the height direction to form and the powder discharged from the second input module 210 using a process gas or compressed air so that the powder discharged from the suction power is transferred to the second input module ( 210) or the second metering module 240 that absorbs and stores the powder discharged from the second vertical pipe 230 and then measures and discharges the powder at a second metering amount using a rotary valve method;
  • the 2-2 pressure transfer module 250 pressurizes the powder discharged from the second metering module 240 using process gas or compressed air so that the powder discharged from the metering module 240
  • the 2-1 pressure feeding module 220 is connected to the lower end of the second vertical pipe 230 based on the second vertical pipe 230, and the second input module is connected to the 2-1 pressure feeding module 220. (210) to be connected.
  • the second measuring module 240 is connected to the upper end of the second vertical pipe 230 based on the second vertical pipe 230, and the second measuring module 240 has a 2-2 pressure feeding module 250 ) to be connected.
  • the second input module 210 includes a second input hopper 211 in which powder is stored, and a second magnetic filter 212 for filtering foreign substances having magnetic properties from the powder when the powder is put into the second input hopper 211. And, when the powder is put into the second input hopper 211, the second mesh filter 213 for filtering non-magnetic foreign substances from the powder and the powder stored in the second input hopper 211 using a rotary valve method It may include a second input valve 214 that measures and discharges the second transfer amount.
  • the second input valve 214 may include a powder metering valve to be described later.
  • the second input hopper 211 can accommodate all the powders stored in the powder bag delivered from the outside through the powder transport module 410 .
  • the capacity of the second input hopper 211 can be changed in various ways according to the powder transfer speed and the powder unit transfer amount.
  • the second magnetic filter 212 and the second mesh filter 213 are spaced apart from each other and disposed at the upper end of the second input hopper 211 to filter foreign substances from the powder supplied from the powder bag.
  • the second mesh filter 213 since the second mesh filter 213 is disposed above the second magnetic filter 212, it exhibits a crushing effect of the agglomerated powder, can restore the size of the agglomerated powder to its original state, and powder bag It is possible to improve the filtering effect of foreign substances that are magnetic in the powder delivered from the powder.
  • the second input valve 214 is provided with a plurality of pockets arranged at equal intervals along the circumferential direction around the intermittently rotated rotation shaft, a fixed amount of powder can be accommodated in the pockets.
  • a quantity of powder may be accommodated in one pocket corresponding to the second transfer amount.
  • the capacity of one pocket in the second input valve 214 can be variously changed according to the powder transfer speed and the powder unit transfer amount corresponding to the second transfer amount.
  • the 2-1 pressure feeding module 220 supplies process gas or compressed air generated in the system to the powder intermittently discharged from the second input hopper 211 of the second input module 210, in the second powder line Powder can be pressurized stably.
  • the second input valve 214 of the second input module 210 and the 2-1 pressure feeding module 220 Between the second input valve 214 of the second input module 210 and the 2-1 pressure feeding module 220, the second input valve 214 and the 2-1 A vent for discharging gas between the pressure transfer modules 220 or for injecting external gas may be provided.
  • the second vertical pipe 230 forms a part of the second powder line among the powder transfer lines.
  • the second vertical pipe 230 forms a path through which the powder rises in the height direction of the system in the second powder line.
  • the second vertical pipe 230 may be formed long in the height direction of the system.
  • the second metering module 240 is a second metering hopper 241 in which the powder transported through the second vertical pipe 230 is stored, and the powder discharged from the second input module 210 is suctioned using a suction force.
  • a second vacuum ejector 243 that sucks and delivers to the second metering hopper 241, and a second metering unit that measures and discharges powder stored in the second metering hopper 241 at a second metering amount by using a rotary valve method.
  • a metering valve 244 may be included.
  • the second metering valve 244 may include a powder metering valve to be described later.
  • the second metering hopper 241 can sequentially accommodate the powder delivered through the 2-1 pressure transfer module 220 .
  • the capacity of the second metering hopper 241 can be variously changed according to the powder transfer speed and the unit transfer amount of the powder.
  • a second air unit 242 may be provided in the second metering hopper 241 to disperse the powder accommodated in the second metering hopper 241 using process gas.
  • the second air unit 242 injects process gas into the second metering hopper 241 to prevent agglomeration of powders accommodated in the second metering hopper 241 .
  • the second metering hopper 241 may be provided with a vent through which gas from the second metering hopper 241 is discharged or external gas is injected in order to adjust the internal pressure of the second metering hopper 241 .
  • the second vacuum ejector 243 includes a vacuum tank unit 420 in which the inside is maintained in a vacuum state by process gas or compressed air, and a process gas or compressed air to maintain the inside of the vacuum tank unit 420 in a vacuum state.
  • the connection valve unit 450 which connects the vacuum tank unit 420 and the second metering hopper 241 in an open and close manner, the second input module 210, the 2-1 pressure transfer module 220, and the vacuum head unit It may include a control unit 460 that controls the operational relationship between (430).
  • the second vacuum ejector 243 has the same configuration as the above-described first vacuum ejector 143 and is given the same reference numerals.
  • the vacuum tank unit 420 preferably has a cylindrical shape to support suction force. Since the vacuum jacket part 421 surrounds and supports the vacuum tank part 420 , deformation of the vacuum tank part 420 can be prevented and the vacuum tank part 420 can be protected.
  • the vacuum head part 430 is provided at the upper end of the vacuum tank part 420 .
  • the vacuum head unit 430 includes a gas injection unit 431 into which process gas or compressed air is injected, and a gas discharge unit spaced from the gas injection unit 431 and discharging process gas generated according to the generation of suction force. It can be.
  • the vacuum head unit 430 is provided with a venturi unit (not shown) for providing a suction force to the powder by using the venturi effect using the injected process gas or compressed air, thereby stabilizing the suction of the powder and conveniently adjusting the suction cycle. .
  • the powder introduction unit 440 is provided on the side of the vacuum tank unit 420 or on the upper end of the vacuum tank unit 420 to facilitate the transfer of powder from the second vertical pipe 230 .
  • connection valve unit 450 is provided at the lower end of the vacuum tank unit 420 .
  • the connection valve unit 450 includes a vacuum buffer unit provided at the lower end of the vacuum tank unit 420 so that the vacuum state of the vacuum tank unit 420 is maintained, and a vacuum buffer unit provided at the lower end of the vacuum buffer unit and the second measurement module 240.
  • a valve body part 451 communicating with the second metering hopper 241, and a valve opening and closing part provided on the valve body part 451 to open and close the valve body part 451 or to adjust the opening degree of the valve body part 451 It may include an opening/closing driver 452 for operating the valve opening/closing unit.
  • the control unit 460 stops the 2-1 pressure feeding module 220 so that a part of the powder passes through the second vertical pipe 230 in a suction method by suction force. 2-1 with the stop of the vacuum head 430 so that the rest of the powder passes through the second vertical pipe 230 in a pressure-feeding method by pressing force. Since the pressure feeding module 220 is operated, the powder can be stably discharged from the second vertical pipe 230.
  • control unit 460 In more detail, the operation of the control unit 460 will be described as follows.
  • the second upright pipe 230 follows the rotation of the rotating shaft, and another pocket follows the second upright pipe 230.
  • a blank time may be given until the suction method proceeds in communication with the powder line.
  • a second input opening/closing valve for opening and closing the second powder line is provided between the 2-1 pressure feeding module 220 and the second vertical pipe 230, and the 2-1 pressure feeding module 220 and the second
  • a second input return line connecting the second powder line and the second input hopper 211 is provided between the input shutoff valves, and a second input return valve may be provided in the second input return line.
  • the second input return valve closes or closes the second input return line, and the second input shut-off valve opens the second powder line.
  • the second vacuum ejector 243 of the second measurement module 240 By operating the second vacuum ejector 243 of the second measurement module 240, a part of the powder is transported in a suction method. Subsequently, the second input return line is closed or closed with the second input return valve and the second powder line is opened with the second input shut-off valve, and the powder is supplied by the pressure transfer method using the 2-1 pressure transfer module 220. transport the rest
  • one pocket continues to communicate with the second powder line, and in a state where the second powder line is closed or sealed with the second input shut-off valve and the second input return line is opened with the second input return valve, the second When the first pressure transfer module 220 is stopped, the powder and gas between the second input valve 214 and the second input on/off valve are transferred to the second input hopper 211 via the second input return line by the residual pressure. .
  • one pocket continues to communicate with the second powder line, and the second vacuum ejector in a state in which the second powder line is closed or sealed with the second input shut-off valve and the second input return line is opened with the second input return valve
  • the suction force in the second upright pipe 230 can be improved.
  • the second metering valve 244 is provided with a plurality of pockets arranged at equal intervals along the circumferential direction around the intermittently rotated rotation shaft, a fixed amount of powder can be accommodated in the pockets. In one pocket of the second metering valve 244, a quantity of powder corresponding to the second metering amount may be accommodated.
  • the capacity of one pocket in the second metering valve 244 can be variously changed according to the second metering amount, the powder transfer speed, and the powder unit transfer amount.
  • the 2-2 pressure feeding module 250 supplies process gas or compressed air generated in the system to the powder intermittently discharged from the second metering hopper 241 of the second metering module 240, so that in the second powder line Powder can be pressurized stably.
  • the second metering valve 244 of the second metering module 240 and the 2-2 pressure feeding module 250 the second metering valve 244 and the 2-2 A vent for discharging gas between the pressure transfer modules 250 or for injecting external gas may be provided.
  • the second transfer unit 200 may adopt a method in which powder is sequentially transferred through the second input module 210 and the silo module 260 .
  • the second transfer unit 200 stores powder, measures and discharges the powder in a second transfer amount, and transfers the powder discharged from the second input module 210 in a pressure-feeding method using pressurized force.
  • the 2-1 pressure feeding module 220 that pressurizes the powder discharged from the second input module 210 using process gas or compressed air as much as possible and the path on which the powder discharged from the second input module 210 rises
  • the second vertical pipe 230 formed long in the height direction to form and the powder discharged from the second input module 210 using a process gas or compressed air so that the powder discharged from the suction power is transferred to the second input module ( 210) or the powder of the second vertical pipe 230 is sucked in and stored, and the silo module 260 measures and discharges the powder in a second metered amount using a feeding method, and the silo module 260 It may include a silo pressure transfer module 270 that pressurizes the powder discharged from the silo module 260 using a process gas or compressed air so that the powder
  • the 2-1 pressure feeding module 220 is connected to the lower end of the second vertical pipe 230 based on the second vertical pipe 230, and the second input module is connected to the 2-1 pressure feeding module 220. (210) to be connected.
  • the silo module 260 is connected to the upper end of the second upright pipe 230 based on the second upright pipe 230, and the silo pressure transfer module 270 is connected to the silo module 260.
  • the second input module 210 includes a second input hopper 211 in which powder is stored, and a second magnetic filter 212 for filtering foreign substances having magnetic properties from the powder when the powder is put into the second input hopper 211. And, when the powder is put into the second input hopper 211, the second mesh filter 213 for filtering non-magnetic foreign substances from the powder and the powder stored in the second input hopper 211 using a rotary valve method It may include a second input valve 214 that measures and discharges the second transfer amount.
  • the second input valve 214 may include a powder metering valve to be described later.
  • the second input hopper 211 can accommodate all the powders stored in the powder bag delivered from the outside through the powder transport module 410 .
  • the capacity of the second input hopper 211 can be changed in various ways according to the powder transfer speed and the powder unit transfer amount.
  • the second magnetic filter 212 and the second mesh filter 213 are spaced apart from each other and disposed at the upper end of the second input hopper 211 to filter foreign substances from the powder supplied from the powder bag.
  • the second mesh filter 213 since the second mesh filter 213 is disposed above the second magnetic filter 212, it exhibits a crushing effect of the agglomerated powder, can restore the size of the agglomerated powder to its original state, and powder bag It is possible to improve the filtering effect of foreign substances that are magnetic in the powder delivered from the powder.
  • the second input valve 214 is provided with a plurality of pockets arranged at equal intervals along the circumferential direction around the intermittently rotated rotation shaft, a fixed amount of powder can be accommodated in the pockets.
  • a quantity of powder may be accommodated in one pocket corresponding to the second transfer amount.
  • the capacity of one pocket in the second input valve 214 can be variously changed according to the powder transfer speed and the powder unit transfer amount corresponding to the second transfer amount.
  • the 2-1 pressure feeding module 220 supplies process gas or compressed air generated in the system to the powder intermittently discharged from the second input hopper 211 of the second input module 210, in the second powder line Powder can be pressurized stably.
  • the second input valve 214 of the second input module 210 and the 2-1 pressure feeding module 220 Between the second input valve 214 of the second input module 210 and the 2-1 pressure feeding module 220, the second input valve 214 and the 2-1 A vent for discharging gas between the pressure transfer modules 220 or for injecting external gas may be provided.
  • the second vertical pipe 230 forms a part of the second powder line among the powder transfer lines.
  • the second vertical pipe 230 forms a path through which the powder rises in the height direction of the system in the second powder line.
  • the second vertical pipe 230 may be formed long in the height direction of the system.
  • the silo module 260 includes a powder silo 261 in which the powder transported through the second vertical pipe 230 is stored, and the powder discharged from the second input module 210 is sucked into the powder silo by a suction method using suction force. It may include a silo vacuum ejector 262 that delivers to 261, and a table feeder 263 that measures and discharges the powder stored in the main silo by using a feeding method.
  • the powder silo 261 can sequentially accommodate the powder delivered through the 2-1 pressure transfer module 220 .
  • the powder silo 261 accommodates the powders contained in the plurality of powder bags.
  • Process gas may be injected into the powder silo 261 to disperse the powder accommodated in the powder silo 261 .
  • the process gas injected into the powder silo 261 can prevent agglomeration of the powders accommodated in the powder silo 261 .
  • the powder silo 261 may be provided with a vent through which gas from the powder silo 261 is discharged or external gas is injected in order to adjust the internal pressure of the powder silo 261 .
  • the silo vacuum ejector 262 includes a vacuum tank unit 420 in which the inside is maintained in a vacuum state by process gas or compressed air, and a process gas or compressed air to maintain the inside of the vacuum tank unit 420 in a vacuum state.
  • a vacuum head unit 430 generating suction force according to input, and a powder input unit 440 to which the second vertical tube 230 is connected so that the second vertical tube 230 and the vacuum tank unit 420 communicate with each other,
  • a connection valve unit 450 for opening and closing communication between the vacuum tank unit 420 and the powder silo 261, the second input module 210, the 2-1 pressure transfer module 220, and the vacuum head unit 430 It may include a control unit 460 for controlling the operational relationship between.
  • the silo vacuum ejector 262 has the same configuration as the above-described first vacuum ejector 143 and is given the same reference numerals.
  • the vacuum tank unit 420 preferably has a cylindrical shape to support suction force. Since the vacuum jacket part 421 surrounds and supports the vacuum tank part 420 , deformation of the vacuum tank part 420 can be prevented and the vacuum tank part 420 can be protected.
  • the vacuum head part 430 is provided at the upper end of the vacuum tank part 420 .
  • the vacuum head unit 430 includes a gas injection unit 431 into which process gas or compressed air is injected, and a gas discharge unit spaced from the gas injection unit 431 and discharging process gas generated according to the generation of suction force. It can be.
  • the vacuum head unit 430 is provided with a venturi unit (not shown) for providing a suction force to the powder by using the venturi effect using the injected process gas or compressed air, thereby stabilizing the suction of the powder and conveniently adjusting the suction cycle. .
  • the powder introduction unit 440 is provided on the side of the vacuum tank unit 420 or on the upper end of the vacuum tank unit 420 to facilitate the transfer of powder from the second vertical pipe 230 .
  • connection valve unit 450 is provided at the lower end of the vacuum tank unit 420 .
  • the connection valve unit 450 includes a vacuum buffer unit provided at the lower end of the vacuum tank unit 420 to maintain the vacuum state of the vacuum tank unit 420 and a powder silo of the silo module 260 provided at the lower end of the vacuum buffer unit.
  • the control unit 460 stops the 2-1 pressure feeding module 220 so that a part of the powder passes through the second vertical pipe 230 in a suction method by suction force. 2-1 with the stop of the vacuum head 430 so that the rest of the powder passes through the second vertical pipe 230 in a pressure-feeding method by pressing force. Since the pressure feeding module 220 is operated, the powder can be stably discharged from the second vertical pipe 230.
  • control unit 460 In more detail, the operation of the control unit 460 will be described as follows.
  • the second upright pipe 230 follows the rotation of the rotating shaft, and another pocket follows the second upright pipe 230.
  • a blank time may be given until the suction method proceeds in communication with the powder line.
  • a second input opening/closing valve for opening and closing the second powder line is provided between the 2-1 pressure feeding module 220 and the second vertical pipe 230, and the 2-1 pressure feeding module 220 and the second
  • a second input return line connecting the second powder line and the second input hopper 211 is provided between the input shutoff valves, and a second input return valve may be provided in the second input return line.
  • the second input return valve closes or closes the second input return line, and the second input shut-off valve opens the second powder line.
  • the second vacuum ejector 243 of the second measurement module 240 By operating the second vacuum ejector 243 of the second measurement module 240, a part of the powder is transported in a suction method. Subsequently, the second input return line is closed or closed with the second input return valve and the second powder line is opened with the second input shut-off valve, and the powder is supplied by the pressure transfer method using the 2-1 pressure transfer module 220. transport the rest
  • one pocket continues to communicate with the second powder line, and in a state where the second powder line is closed or sealed with the second input shut-off valve and the second input return line is opened with the second input return valve, the second When the first pressure transfer module 220 is stopped, the powder and gas between the second input valve 214 and the second input on/off valve are transferred to the second input hopper 211 via the second input return line by the residual pressure. .
  • one pocket continues to communicate with the second powder line, and the second vacuum ejector in a state in which the second powder line is closed or sealed with the second input shut-off valve and the second input return line is opened with the second input return valve
  • the suction force in the second upright pipe 230 can be improved.
  • the table feeder 263 includes a first feeder valve part provided at the lower end of the powder silo 261, a powder storage provided at the lower end of the feeder valve part to receive powder in response to the second weighing amount, and a powder storage provided at the lower end of the powder storage. It may include a second feeder valve unit provided.
  • the powder in the powder silo 261 is moved to the powder storage, and the powder corresponding to the second weighing amount is stored in the powder storage. is accepted
  • the powder stored in the powder storage can be delivered to the second powder line in response to the second weighing amount.
  • the powder in the second powder line may be transferred to the silo pressure feeding module 270 by a pressure feeding method.
  • the silo pressure feeding module 270 supplies process gas or compressed air generated in the system to the powder intermittently discharged from the powder silo 261 of the silo module 260, the powder can be stably pressurized in the second powder line. have.
  • gas between the table feeder 263 and the silo pressure feed module 270 is discharged to adjust the internal pressure of the second powder line, or A vent through which external gas is injected may be provided.
  • the second transfer unit 200 may adopt a method in which powder is sequentially transferred through the silo module 260 and the second weighing module 240 .
  • the second transfer unit 200 includes a silo module 260 that stores powder and measures and discharges the powder at a second transfer amount using a feeding method, and pressurizes the powder discharged from the second metering module 240 using a pressing force.
  • the silo pressure transfer module 270 pressurizes the powder discharged from the silo module 260 using process gas or compressed air to be transported in a height direction to form a path for the powder discharged from the silo module 260 to rise.
  • the second vertical pipe 230 formed long and the powder discharged from the silo module 260 by using process gas or compressed air so that the powder discharged from the silo module 260 is transferred in a suction method using suction force.
  • the second metering module 240 that sucks and stores the powder of the second vertical pipe 230 and measures and discharges the powder in a second metering amount using a rotary valve method, and the second metering module 240 discharges the powder It may include a 2-2 pressure transfer module 250 that pressurizes the powder discharged from the second metering module 240 by using process gas or compressed air so that the powder is transferred in a pressure transfer method using a pressurized force.
  • the second metering module 240 may include a powder metering valve to be described later.
  • the silo pressure feeding module 270 is connected to the lower end of the second vertical pipe 230 based on the second vertical pipe 230, and the silo module 260 is connected to the silo pressure feeding module 270.
  • the second measuring module 240 is connected to the upper end of the second vertical pipe 230 based on the second vertical pipe 230, and the second measuring module 240 has a 2-2 pressure feeding module 250 ) to be connected.
  • the silo module 260 includes a powder silo 261 in which the powder transported through the second vertical pipe 230 is stored, and a table for measuring and discharging the powder stored in the main silo by a second weighing amount by using a feeding method.
  • a feeder 263 may be included.
  • the silo module 260 includes a silo magnet filter for filtering foreign substances having magnetism from the powder when the powder is introduced into the powder silo 261, and filtering non-magnetic foreign substances from the powder when the powder is introduced into the powder silo 261. It may further include a silomesh filter to.
  • silo module 260 it is preferable that the above-described silo vacuum ejector 262 is omitted.
  • the powder silo 261 can accommodate all the powder stored in the powder bag delivered from the outside through the powder transport module 410 .
  • the powder silo 261 accommodates the powders contained in the plurality of powder bags.
  • Process gas may be injected into the powder silo 261 to disperse the powder accommodated in the powder silo 261 .
  • the process gas injected into the powder silo 261 can prevent agglomeration of the powders accommodated in the powder silo 261 .
  • the powder silo 261 may be provided with a vent through which gas from the powder silo 261 is discharged or external gas is injected in order to adjust the internal pressure of the powder silo 261 .
  • the silo magnet filter and the silo mesh filter are spaced apart from each other and disposed at the upper end of the powder silo 261 to filter foreign substances from the powder supplied from the powder bag.
  • the silo mesh filter since the silo mesh filter is disposed above the silo magnet filter, it exhibits a crushing effect of the agglomerated powder, can return the size of the agglomerated powder to its original state, and is magnetic in the powder delivered from the powder bag. The filtering effect of foreign substances can be improved.
  • the table feeder 263 includes a first feeder valve part provided at the lower end of the powder silo 261, a powder storage provided at the lower end of the feeder valve part to receive powder in response to the second transfer amount, and a powder storage provided at the lower end of the powder storage. It may include a second feeder valve unit that is.
  • the powder in the powder silo 261 is moved to the powder storage unit, and the powder corresponding to the second transfer amount is transferred to the powder storage unit. Accepted.
  • the powder stored in the powder storage can be transferred to the second powder line in response to the second transfer amount.
  • the powder in the second powder line may be transferred to the silo pressure feeding module 270 by a pressure feeding method.
  • the silo pressure feeding module 270 supplies process gas or compressed air generated in the system to the powder intermittently discharged from the powder silo 261 of the silo module 260, the powder can be stably pressurized in the second powder line. have.
  • gas between the table feeder 263 and the silo pressure feed module 270 is discharged to adjust the internal pressure of the second powder line, or A vent through which external gas is injected may be provided.
  • the second vertical pipe 230 forms a part of the second powder line among the powder transfer lines.
  • the second vertical pipe 230 forms a path through which the powder rises in the height direction of the system in the second powder line.
  • the second vertical pipe 230 may be formed long in the height direction of the system.
  • the second metering module 240 is a second metering hopper 241 in which the powder transported through the second vertical pipe 230 is stored, and the powder discharged from the second input module 210 is suctioned using a suction force.
  • a second vacuum ejector 243 that sucks and delivers to the second metering hopper 241, and a second metering unit that measures and discharges powder stored in the second metering hopper 241 at a second metering amount by using a rotary valve method.
  • a metering valve 244 may be included.
  • the second metering valve 244 may include a powder metering valve to be described later.
  • the second metering hopper 241 can sequentially accommodate the powder delivered through the silo pressure transfer module 270 .
  • the capacity of the second metering hopper 241 can be variously changed according to the powder transfer speed and the unit transfer amount of the powder.
  • a second air unit 242 may be provided in the second metering hopper 241 to disperse the powder accommodated in the second metering hopper 241 using process gas.
  • the second air unit 242 injects process gas into the second metering hopper 241 to prevent agglomeration of powders accommodated in the second metering hopper 241 .
  • the second metering hopper 241 may be provided with a vent through which gas from the second metering hopper 241 is discharged or external gas is injected in order to adjust the internal pressure of the second metering hopper 241 .
  • the second vacuum ejector 243 includes a vacuum tank unit 420 in which the inside is maintained in a vacuum state by process gas or compressed air, and a process gas or compressed air to maintain the inside of the vacuum tank unit 420 in a vacuum state.
  • connection valve unit 450 which connects the vacuum tank unit 420 and the second metering hopper 241 so as to be able to open and close, the silo module 260, the silo pressure feeding module 270, and the vacuum head unit 430 It may include a control unit 460 that controls the operational relationship.
  • the second vacuum ejector 243 has the same configuration as the above-described first vacuum ejector 143 and is given the same reference numerals.
  • the vacuum tank unit 420 preferably has a cylindrical shape to support suction force. Since the vacuum jacket part 421 surrounds and supports the vacuum tank part 420 , deformation of the vacuum tank part 420 can be prevented and the vacuum tank part 420 can be protected.
  • the vacuum head part 430 is provided at the upper end of the vacuum tank part 420 .
  • the vacuum head unit 430 includes a gas injection unit 431 into which process gas or compressed air is injected, and a gas discharge unit spaced from the gas injection unit 431 and discharging process gas generated according to the generation of suction force. It can be.
  • the vacuum head unit 430 is provided with a venturi unit (not shown) for providing a suction force to the powder by using the venturi effect using the injected process gas or compressed air, thereby stabilizing the suction of the powder and conveniently adjusting the suction cycle. .
  • the powder introduction unit 440 is provided on the side of the vacuum tank unit 420 or on the upper end of the vacuum tank unit 420 to facilitate the transfer of powder from the second vertical pipe 230 .
  • connection valve unit 450 is provided at the lower end of the vacuum tank unit 420 .
  • the connection valve unit 450 includes a vacuum buffer unit provided at the lower end of the vacuum tank unit 420 so that the vacuum state of the vacuum tank unit 420 is maintained, and a vacuum buffer unit provided at the lower end of the vacuum buffer unit and the second measurement module 240.
  • a valve body part 451 communicating with the second metering hopper 241, and a valve opening and closing part provided on the valve body part 451 to open and close the valve body part 451 or to adjust the opening degree of the valve body part 451 It may include an opening/closing driver 452 for operating the valve opening/closing unit.
  • the control unit 460 stops the silo pressure feeding module 270 so that a part of the powder passes through the second vertical pipe 230 in a suction method by suction force, and the vacuum head
  • the unit 430 is operated, and then the silo pressure feeding module 270 is operated together with the vacuum head unit 430 stopped so that the rest of the powder passes through the second vertical pipe 230 in a pressure feeding method by pressing force.
  • Powder can be stably discharged from the second vertical pipe 230.
  • control unit 460 In more detail, the operation of the control unit 460 will be described as follows.
  • the suction type powder transfer and the pressure transfer type powder transfer are sequentially performed.
  • the second feeder valve is opened, so that the powder storage and the second vertical pipe 230 are in communication, The powder is discharged to the second powder line.
  • an input opening/closing valve for opening and closing the second powder line may be provided.
  • the second powder line is opened with the input opening/closing valve and the second vacuum ejector 243 of the second measurement module 240 is operated to suction some of the powder. transfer
  • the second feeder valve unit is switched to a closed or sealed state.
  • the second powder line is opened with the input opening/closing valve, and the remainder of the powder is transferred by the pressure feeding method using the silo pressure feeding module 270 in a state where the second feeder valve is closed or sealed.
  • the second powder line is closed or sealed with the input on-off valve, and when the second feeder valve is opened, the powder and gas between the second feeder valve and the input on-off valve
  • the second feeder valve part is closed or closed for subsequent operation, and the first feeder valve part is opened, subsequent powder can be introduced into the powder silo 261.
  • the second vacuum ejector 243 is operated in a state in which the second powder line is closed or sealed by the input opening/closing valve together with the stop of the silo pressure feeding module 270, the suction force in the second vertical pipe 230 is improved. can make it
  • the second metering valve 244 is provided with a plurality of pockets arranged at equal intervals along the circumferential direction around the intermittently rotated rotation shaft, a fixed amount of powder can be accommodated in the pockets. In one pocket of the second metering valve 244, a quantity of powder corresponding to the second metering amount may be accommodated.
  • the capacity of one pocket in the second metering valve 244 can be variously changed according to the second metering amount, the powder transfer speed, and the powder unit transfer amount.
  • the 2-2 pressure feeding module 250 supplies process gas or compressed air generated in the system to the powder intermittently discharged from the second metering hopper 241 of the second metering module 240, so that in the second powder line Powder can be pressurized stably.
  • the second metering valve 244 of the second metering module 240 and the 2-2 pressure feeding module 250 the second metering valve 244 and the 2-2 A vent for discharging gas between the pressure transfer modules 250 or for injecting external gas may be provided.
  • the second transfer unit 200 may adopt a method in which powder is sequentially transferred through the second input module 210, the silo module 260, and the second weighing module 240.
  • the second vertical pipe 230 can be divided into a 2-1 vertical pipe and a 2-2 vertical pipe.
  • the second transfer unit 200 stores powder, measures and discharges the powder in a second transfer amount, and transfers the powder discharged from the second input module 210 in a pressure-feeding method using pressurized force.
  • the 2-1 pressure feeding module 220 that pressurizes the powder discharged from the second input module 210 using process gas or compressed air as much as possible and the path on which the powder discharged from the second input module 210 rises
  • a silo pressure transfer module 270 that pressurizes the powder discharged from the silo module 260 using process gas or compressed air so that the powder is transferred by a pressure transfer method using a pressurizing force, and the powder discharged from the silo module 260 is raised
  • a second metering module 240 that sucks and stores the powder discharged or the powder of the second vertical pipe 230 and then measures and discharges the powder at a second metering amount using a rotary valve method
  • the second metering module ( 240) may include a 2-2 pressure transfer module 250 that pressurizes the powder discharged from the second measurement module 240 using process gas or compressed air so that the powder discharged from the pressure is transported using a pressurized force.
  • At least one of the second input module 210 and the second metering module 240 may include a powder metering valve to be described later.
  • the 2-1 pressure feeding module 220 is connected to the lower end of the 2-1 vertical pipe based on the 2-1 vertical pipe, and the second input module 210 is connected to the 2-1 pressure feeding module 220. ) to be connected.
  • the silo module 260 is connected to the upper end of the 2-1 vertical pipe based on the 2-1 vertical pipe, and the silo pressure transfer module 270 is connected to the silo module 260.
  • the silo pressure feeding module 270 is connected to the lower end of the 2-2 vertical pipe based on the 2-2 vertical pipe, and the silo module 260 is connected to the silo pressure feeding module 270.
  • the second measuring module 240 is connected to the upper end of the 2-2 vertical pipe based on the 2-2 vertical pipe, and the 2-2 pressure feeding module 250 is connected to the second measuring module 240. make it connect
  • the structure and operation of the second transfer unit 200 according to the second example is applied to the powder transfer structure and the powder transfer relationship from the second input module 210 to the silo module 260, and the silo module ( 260) to the 2-2 pressure transfer module 250
  • the structure and operation of the second transfer unit 200 according to the third example is applied to the powder transfer structure and the powder transfer relationship according to the fourth example. Description of the two transfer units 200 will be omitted.
  • the 2-1 vertical pipe forms part of the second powder line among the powder transfer lines.
  • the 2-1 vertical pipe forms a path in which the powder in the second powder line rises in the height direction of the system.
  • the 2-1 vertical pipe may be formed long in the height direction of the system.
  • the 2-2 vertical pipe is spaced apart from the 2-1 vertical pipe to form a part of the second powder line among the powder transfer lines.
  • the 2-2 vertical pipe forms a path in which the powder in the second powder line rises in the height direction of the system.
  • the 2-2 vertical pipe may be formed long in the height direction of the system.
  • the powder discharged from the table feeder 263 according to the fourth example may be measured and discharged at the second transfer amount.
  • the second transfer unit 200 may further include a connection pipe, a first three-way valve, and a second three-way valve. Both ends of the connecting pipe are connected to the upper end of the 2-1 vertical pipe and the middle of the 2-2 vertical pipe, or connected to the upper end of the 2-1 vertical pipe and the upper end of the 2-2 vertical pipe.
  • the 1st three-way valve is connected to the 2-1 vertical pipe, the connecting pipe, and the 2nd powder line connected to the silo vacuum ejector 262 of the silo module 260, respectively, and to the 2nd three-way valve, the connecting pipe and the 2-2
  • the vertical tube and the second powder line connected to the second vacuum ejector 243 of the second metering module 240 are respectively connected.
  • the first three-way valve connects the 2-1 vertical pipe and the second powder line connected to the silo vacuum ejector 262 of the silo module 260
  • the second three-way valve connects the 2-2 vertical pipe and the second
  • the powder according to the fourth example is the second input module 210, the silo module 260, and the second metering module 240 ) can represent a powder transport structure that sequentially goes through.
  • the first three-way valve connects the 2-1 vertical pipe and the connecting pipe
  • the second three-way valve connects the second powder line connected to the connecting pipe and the second vacuum ejector 243 of the second metering module 240.
  • the powder according to the fourth example may show a powder transport structure that passes through the second input module 210 and the second metering module 240 without passing through the silo module 260 like the powder according to the first example. .
  • the third transfer unit 300 may transfer the powder of the third vertical pipe in a pressure transfer method.
  • the third transfer unit 300 can be used when additionally inputting powder in response to the powder transferred by any one of the first transfer unit 100 and the second transfer unit 200 .
  • the third transfer unit 300 can be used when inputting powder at a first transfer amount or a second transfer amount corresponding to maintenance of the first transfer unit 100 and the second transfer unit 200 .
  • the third transfer unit 300 is installed in parallel with any one of the first transfer unit 100 and the second transfer unit 200 .
  • the third transfer unit 300 is a third input module 310 that stores powder and measures and discharges the powder in a third transfer amount, and the powder discharged from the third input module 310 is transferred by a pressure transfer method using pressurized force. It may include a third pressure transfer module 320 that pressurizes the powder discharged from the third input module 310 using process gas or compressed air as much as possible.
  • the third input module 310 includes a third input hopper 311 in which powder is stored, and a third magnetic filter 312 for filtering foreign substances having magnetic properties from the powder when the powder is put into the third input hopper 311. And, when the powder is put into the third input hopper 311, it includes a third mesh filter 313 for filtering non-magnetic foreign substances from the powder, and stored in the third input hopper 311 using a rotary valve method It may further include a third input valve for metering and discharging the powder to be a third transfer amount.
  • the third input valve may include a powder metering valve to be described later.
  • the third input hopper 311 can accommodate all the powders stored in the powder bag delivered from the outside through the powder transport module 410 . Powders to be delivered separately may be accommodated in the third input hopper 311 .
  • the capacity of the third input hopper 311 can be variously changed according to the powder transfer speed and the powder unit transfer amount.
  • the third magnetic filter 312 and the third mesh filter 313 are spaced apart from each other and disposed at the upper end of the third input hopper 311 to filter foreign substances from the powder supplied from the powder bag.
  • the third mesh filter 313 since the third mesh filter 313 is disposed above the third magnetic filter 312, it exhibits a crushing effect of the agglomerated powder, can restore the size of the agglomerated powder to its original state, and It is possible to improve the filtering effect of foreign substances that are magnetic in the powder delivered from the powder or separately delivered.
  • the third injection valve is provided with a plurality of pockets arranged at equal intervals along the circumferential direction around the intermittently rotated rotation shaft, a fixed amount of powder can be accommodated in the pockets.
  • a fixed quantity of powder may be accommodated in one pocket corresponding to the third transfer amount.
  • the capacity of one pocket in the third input valve can be changed in various ways according to the powder transfer speed and the powder unit transfer amount corresponding to the third transfer amount.
  • the third pressure transfer module 320 supplies process gas or compressed air generated in the system to the powder intermittently discharged from the third input hopper 311 of the third input module 310, so that the powder is removed from the third powder line. It can pressurize stably.
  • the gas between the third input valve and the third pressure transfer module 320 is discharged to adjust the internal pressure of the third powder line. or a vent through which external gas is injected.
  • the third transfer unit 300 may further include a third vertical pipe formed long in the height direction to form a path on which the powder discharged from the third input module 310 rises. Since the height of the third vertical pipe is smaller than that of the first vertical pipe 130 or the second vertical pipe 230, the powder can be transported only by the third pressure conveying module 320.
  • the third vertical pipe forms a part of the third powder line in the powder transfer line.
  • the third vertical pipe forms a path through which the powder is raised in the height direction of the system in the third powder line.
  • the third vertical pipe may be formed long in the height direction of the system.
  • the smart powder raw material conveying system may further include a binder conveying unit 500 and a solvent conveying unit 600.
  • the powder may be made of an active material that is a raw material of the electrode.
  • the binder transfer unit 500 converts and transfers the binder mixed with the active material into a liquid solution in response to the binder transfer amount.
  • the binder transfer unit 500 includes a binder input module 510 for storing a binder and metering and discharging the binder by a binder transfer amount, and a process gas or a process gas or Through the binder pressure feeding module 520 that pressurizes the binder discharged from the binder input module 510 using compressed air, and the binder and solvent transport unit 600 delivered through the binder pressure feeding module 520 to form a solution.
  • a binder mixing module 530 for mixing the delivered solvent, a solution transfer module for pumping the solution, and a solution hopper scale (560) that stores the solution transferred from the solution transfer module and enables quantitative discharge of the solution in response to the transfer amount of the solution.
  • a solution supply pump 570 for pumping the solution of the solution hopper scale 560 in response to the transfer amount of the solution.
  • the binder input module 510 includes a binder input hopper 511 in which powder is stored, a binder magnetic filter 512 for filtering foreign substances having magnetism from the powder when the powder is put into the binder input hopper 511, and a powder When put into the binder input hopper 511, the powder stored in the binder input hopper 511 is measured and discharged by using a binder mesh filter 513 that filters non-magnetic foreign substances from the powder and a rotary valve method A binder input valve 514 may be included.
  • the binder input hopper 511 can accommodate all the binders stored in the binder bag delivered from the outside through the binder transport module.
  • the capacity of the binder input hopper 511 can be variously changed according to the binder transfer speed and the unit transfer amount of the binder. Process gas or compressed air may be supplied to the binder input hopper 511 to stabilize the storage state of the binder.
  • the binder magnetic filter 512 and the binder mesh filter 513 are spaced apart from each other and disposed at the upper end of the binder input hopper 511 to filter foreign substances from the binder supplied from the binder bag.
  • the binder mesh filter 513 since the binder mesh filter 513 is disposed above the binder magnet filters 512 and 541, it exhibits a crushing effect of the agglomerated binder, can restore the size of the agglomerated binder to its original state, and binder It is possible to improve the filtering effect of foreign substances that are magnetic in the binder delivered from the bag.
  • the binder input valve 514 is provided with a plurality of pockets arranged at equal intervals along the circumferential direction around the rotating shaft that rotates intermittently, a fixed amount of powder can be accommodated in the pockets.
  • a fixed amount of binder may be accommodated in one pocket corresponding to the binder transfer amount.
  • the capacity of one pocket in the binder input valve 514 can be variously changed according to the binder transfer rate and the unit transfer amount of the binder corresponding to the binder transfer amount.
  • the binder pressure feeding module 520 supplies process gas or compressed air generated in the system to the binder discharged intermittently from the binder input hopper 511 of the binder input module 510, the binder can be stably pressurized in the binder transfer line.
  • gas is discharged between the binder input valve 514 and the binder pressure transfer module 520 to adjust the pressure inside the binder transfer line.
  • a vent through which external gas is injected may be provided.
  • the solvent supplied through the mixing control module 650 of the solvent transfer unit 600 is accommodated together with the binder in the binder mixing module 530 .
  • the binder mixing module 530 includes a binder mixer 531 in which a binder and a solvent are accommodated in a predetermined ratio, and a binder stirrer for mixing the binder and the solvent while rotating inside the binder mixer 531 to form a liquid solution ( 532) may be included.
  • the binder mixing module 530 may further include a temperature controller 533 that receives the solvent or solution from the binder mixer 531, heats it, and supplies the solvent or solution to the binder mixer 531 again.
  • the temperature controller 533 is supplied with chiller water delivered from a main process unit that forms an electrode with slurry to adjust the concentration of the solution or the temperature of the temperature controller 533 .
  • the binder mixing module 530 may include a binder vent unit 580 in which gas from the binder mixer 531 is collected and discharged. Then, the internal pressure of the binder mixer 531 can be adjusted and the solution can be stabilized.
  • the binder vent part 580 is spaced apart from the binder vent line 581 connecting the binder mixer 531 and a separate storage space, and the binder vent line 581 to separate the binder mixer 531 and the binder vent line 581.
  • a binder filter line 582 connected to the binder filter line 582 and a binder vent filter 583 provided in the binder filter line 582 to filter the gas of the binder mixer 531 may be included.
  • a line through which the gas of the binder mixer 531 passes can be selected depending on whether the binder opening/closing valve is opened or closed.
  • the solution transfer module may include a solution transfer pump 542 for pumping the solution of the binder mixing module 530 .
  • a process gas or compressed air is supplied to the solution transfer pump 542 to smoothly transfer the solution.
  • the solution transfer module includes a solution magnetic filter 541 that filters foreign substances having magnetism from the solution when the solution is delivered to the solution hopper scale 560, and filters non-magnetic foreign substances from the solution when the solution is delivered to the solution hopper scale. At least one of the cobetter filters 543 may be further included.
  • the solution magnetic filter 541 is provided between the binder mixing module 530 and the solution transfer pump 542 to prevent damage to the solution transfer pump 542 due to foreign substances having magnetism.
  • the better filter 543 is provided between the solution transfer pump 542 and the solution hopper scale 560 to prevent foreign matter from being transferred to the solution hopper scale 560.
  • the cobetter filter 543 may be formed of the above-described mesh filter.
  • the coveter filter 543 may filter non-magnetic foreign substances in the liquid solution.
  • the binder transfer unit 500 may further include a first solution line 501 for returning the solution provided between the solution transfer pump 542 and the cobetter filter 543 to the binder mixing module 530 .
  • a first solution line 501 for returning the solution provided between the solution transfer pump 542 and the cobetter filter 543 to the binder mixing module 530 .
  • the solution is transferred to the solution hopper scale 560. It can be delivered or be delivered to the first solution line 501.
  • the solution hopper scale 560 automatically measures the amount of the liquid solution. Compressed air or process gas may be supplied to the solution hopper scale 560 to maintain a stable mixed state of the solution.
  • the solution hopper scale 560 allows the internal gas to be smoothly discharged.
  • Solvent delivered through the auxiliary control module 660 of the solvent transfer unit 600 to be described below may be supplied to the solution hopper scale 560.
  • the binder transfer unit 500 may further include a binder bulk transfer module for supplying the solution supplied to the mixing unit 900 to be described later to the solution hopper scale 560 again.
  • the binder bulk transfer module includes a bulk binder 551 in which the remainder of the solution supplied to the mixing unit 900 to be described later is stored, and a binder bulk transfer pump that supplies the solution of the bulk binder 551 to the solution hopper scale 560 (552). Process gas or compressed air may be supplied to the binder bulk transfer pump 552 to smoothly operate the binder bulk transfer pump 552 .
  • the solution supply pump 570 may deliver the solution of the solution hopper scale 560 to the mixing unit 900 to be described later. Process gas or compressed air is supplied to the solution supply pump 570 so that the solution can be stably transferred.
  • the binder transfer unit 500 may further include a second solution line 502 for returning the solution provided between the solution supply pump 570 and the mixing unit 900 to the solution hopper scale 560 .
  • the binder transfer unit 500 is a third solution that directly connects the solution hopper scale 560 and the mixing unit 900 to be described later so that the solution discharged from the solution hopper scale 560 is directly delivered to the mixing unit 900 described later It may further include line 503.
  • the solvent transfer unit 600 transfers the solvent for forming a solution by dissolving the binder in response to the amount of transfer of the solvent.
  • the solvent transport unit 600 includes a solvent tank 610 in which the solvent is stored, a solvent pumping module for pumping the solvent stored in the solvent tank 610, and mixing control for adjusting the solvent mixed with the binder for dissolution of the binder. It may include a module 650 and a slurry control module 670 for adjusting the solvent mixed with the slurry to adjust the concentration of the slurry for forming the electrode.
  • the solvent tank 610 allows the internal gas to be smoothly discharged.
  • the solvent pumping module may include a solvent pump 640 for pumping the solvent in the solvent tank 610 .
  • a process gas or compressed air is supplied to the solvent pump 640 to smoothly transfer the solvent.
  • the solvent pumping module includes at least one of a solvent magnet filter 620 for filtering foreign substances having magnetism from the solvent when the solvent is pumped, and a solvent mesh filter 630 for filtering non-magnetic substances from the solvent when the solvent is pumped. You can include one more.
  • the solvent magnet filter 620 is provided between the solvent tank 610 and the solvent pump 640 to prevent damage to the solvent pump 640 by foreign substances having magnetism, and the solvent mesh filter ( 630) is provided between the solvent magnet filter 620 and the solvent pump 640 to prevent foreign substances from being transferred to the solvent pump 640.
  • mixing control module 650 controls the amount of the solvent delivered to the binder mixing module 530 of the binder transfer unit 500, dissolution of the binder can be stabilized.
  • the slurry control module 670 controls the amount of the solvent delivered to the mixing unit 900 to be described later, the slurry can be stabilized and the concentration of the slurry can be adjusted.
  • the solvent transfer unit 600 is auxiliary control for controlling the solvent delivered to at least one of the conductive material transfer unit 700, the dispersion material transfer unit 800, and the solution hopper scale 560 of the binder transfer unit 500.
  • a module 660 may be further included.
  • the solvent discharged through the solvent pump 640 may be returned to the solvent tank 610 through the first solvent line 601 branched from the solvent transfer line.
  • At least one of the mixing control module 650, the auxiliary control module 660, and the slurry control module 670 passes through the second solvent line 602 connected to the solvent transfer line. to be passed on to
  • the solvent that has passed through the auxiliary control module 660 is at least one of the solution hopper scale 560 of the conductive material transfer unit 700, the dispersed material transfer unit 800, and the binder transfer unit 500 through the third solvent line 603. to be passed on to either one.
  • Each of the control modules described above is equipped with a control valve to select whether or not to transfer the solvent or to control the transfer amount of the solvent.
  • Compressed air is supplied to the solvent that has passed through each of the above-described control modules, so that the solvent can be smoothly transported.
  • the smart powder raw material conveying system may further include at least one of the conductive material conveying unit 700 and the dispersed material conveying unit 800.
  • the conductive material transfer unit 700 may transfer the conductive material mixed with the slurry for forming the electrode in response to the transfer amount of the conductive material.
  • the conductive material transfer unit 700 includes a conductive material hopper scale 710 in which the conductive material is stored, and a conductive material supply pump 720 for pumping the conductive material stored in the conductive material hopper scale 710 in a quantitative amount in response to the amount of conductive material transported. ) may be included.
  • the conductive material transfer line connects the conductive material hopper scale 710 and the conductive material supply pump 720.
  • the conductive material may be made of carbon nanotubes in a powder or fillet form.
  • the conductive material hopper scale 710 can accommodate the entire conductive material stored in the conductive material bag delivered from the outside through the conductive material transport module.
  • a solvent is supplied to the conductive material hopper scale 710 in response to the conductive material control information.
  • the solvent delivered through the auxiliary control module 660 of the solvent unit may be supplied to the conductive material hopper scale 710 .
  • the conductive material hopper scale 710 automatically measures the amount of liquid conductive material. Compressed air or process gas is supplied to the conductive material hopper scale 710 to stably maintain a mixed state of the liquid conductive material. The conductive material hopper scale 710 allows the internal gas to be smoothly discharged.
  • the conductive material transfer unit 700 further includes a conductive material bulk transfer module for supplying the liquid conductive material supplied to the mixing unit 900 to the conductive material hopper scale 710 again.
  • a conductive material bulk transfer module for supplying the liquid conductive material supplied to the mixing unit 900 to the conductive material hopper scale 710 again.
  • the conductive material bulk transfer module transfers the bulk conductive material 730 in which the residue of the liquid conductive material supplied to the mixing unit 900 to be described later is stored, and the conductive material of the bulk conductive material 730 to the conductive material hopper scale 710 It may include a conductive material bulk transfer pump 740 to supply. Process gas or compressed air may be supplied to the conductive material bulk transfer pump 740 to smoothly operate the conductive material bulk transfer pump 740 .
  • the conductive material supply pump 720 may transfer the conductive material of the conductive material hopper scale 710 to the mixing unit 900 to be described later.
  • a process gas or compressed air is supplied to the conductive material supply pump 720 so that the liquid conductive material can be stably transferred.
  • the conductive material transfer unit 700 further includes a first conductive material line 701 for returning the conductive material provided between the conductive material supply pump 720 and the mixing unit 900 to be described later to the conductive material hopper scale 710 can include
  • the conductive material transfer unit 700 directly connects the conductive material hopper scale 710 and the mixing unit 900 to be described later so that the conductive material discharged from the conductive material hopper scale 710 is directly transferred to the mixing unit 900 described later.
  • a second conductive material line 702 may be further included.
  • the dispersion material transfer unit 800 may transfer the dispersion material mixed with the slurry for forming the electrode in response to the transfer amount of the dispersion material.
  • the dispersion ash transport unit 800 may include a dispersion ash hopper scale 810 for storing the dispersion ash, and a dispersion ash supply pump 820 for pumping the dispersion ash stored in the dispersion ash hopper scale 810 in a quantitative amount corresponding to the amount of the dispersion ash transfer. .
  • the dispersion ash transfer line connects the dispersion ash hopper scale 810 and the dispersion ash supply pump 820.
  • Solvent is supplied to the dispersion ash hopper scale 810 in response to the dispersion readjustment information.
  • the solvent delivered through the auxiliary control module 660 of the solvent unit may be supplied to the dispersion ash hopper scale 810.
  • the dispersion ash hopper scale 810 automatically measures the amount of the liquid dispersion ash. Compressed air or process gas is supplied to the dispersion material hopper scale 810 to stably maintain the mixed state of the liquid dispersion material. The dispersion ash hopper scale 810 allows the internal gas to be smoothly discharged.
  • the dispersion ash transfer unit 800 may further include a dispersion ash bulk transfer module for supplying the liquid dispersion material supplied to the mixing unit 900 to be described later to the dispersion ash hopper scale 810 again.
  • the dispersion material bulk transport module is a bulk dispersion material 830 in which the residue of the liquid dispersion material supplied to the mixing unit 900 to be described later is stored, and a dispersion material bulk supplying the dispersion material of the bulk dispersion material 830 to the dispersion material hopper scale 810
  • a transfer pump 840 may be included. Process gas or compressed air may be supplied to the dispersion ash bulk transfer pump 840 to smoothly operate the dispersion ash bulk transfer pump 840 .
  • the dispersion material supply pump 820 may transfer the dispersion material of the dispersion material hopper scale 810 to the mixing unit 900 to be described later. Process gas or compressed air may be supplied to the dispersion material supply pump 820 to stably transfer the liquid conductive material.
  • the dispersion ash transfer unit 800 may further include a first dispersion ash line 801 for returning the dispersion material provided between the dispersion ash supply pump 820 and the mixing unit 900 to be described later to the dispersion ash hopper scale 810.
  • the dispersion ash transfer unit 800 directly connects the dispersion ash hopper scale 810 and the mixing unit 900 to be described later so that the dispersion material discharged from the dispersion ash hopper scale 810 is directly transferred to the mixing unit 900 to be described later. It may further include line 802.
  • the smart powder material conveying system may further include a mixing unit 900.
  • the mixing unit 900 mixes the powder delivered through the powder transport unit 400, the solution delivered through the binder transport unit 500, and the solvent delivered through the slurry control module 670 of the solvent transport unit 600 can do.
  • the powder may be delivered from at least one of the first transfer unit 100, the second transfer unit 200, and the third transfer unit 300.
  • the mixing unit 900 may further mix at least one of the conductive material transferred through the conductive material transfer unit 700 and the dispersant material transferred through the dispersion material transfer unit 800 .
  • the remainder of the solution is stored in the bulk binder 551
  • the remainder of the conductive material is stored in the bulk conductive material 730
  • the remainder of the dispersing material is stored in the bulk dispersing material 830.
  • the mixing unit 900 may include a slurry mixing module 910 that mixes at least powder, a solution, and a solvent in predetermined ratios to form a slurry.
  • the slurry mixing module 910 rotates inside the slurry mixer 911 to form a slurry mixer 911 in which at least powder, a solution, and a solvent are accommodated at a predetermined ratio, and a liquid slurry, so that at least powder, a solution, and a solvent It may include a slurry agitator 912 for mixing.
  • Compressed air or process gas may be supplied to the slurry mixer 911 to stabilize the formation of the slurry.
  • a hydraulic unit 913 is provided in the slurry mixer 911 to stabilize the operation of peripheral parts.
  • the slurry mixing module 910 may include a slurry vent unit 980 in which gas from the slurry mixer 911 is collected and discharged. Then, the internal pressure of the slurry mixer 911 can be adjusted and the slurry can be stabilized.
  • the slurry vent unit 980 has a slurry vent line 981 connecting the slurry mixer 911 and a separate storage space, and is spaced apart from the slurry vent line 981 to separate the slurry mixer 911 and the slurry vent line 981.
  • a slurry filter line 982 connected to the slurry filter line 982 and a slurry vent filter 983 provided in the slurry filter line 982 to filter the gas of the slurry mixer 911 may be included.
  • the line through which the gas of the slurry mixer 911 passes can be selected depending on whether the slurry opening/closing valves are opened or closed.
  • the mixing unit 900 may further include a slurry transfer pump 930 for pumping the slurry of the slurry mixer 911 .
  • Process gas or compressed air is supplied to the slurry transfer pump 930 to smoothly transfer the slurry.
  • the mixing unit 900 includes a slurry magnetic filter 920 for filtering foreign substances having magnetism from the slurry when the slurry is discharged from the slurry mixer 911, and a magnetic filter 920 from the slurry when the slurry is discharged from the slurry mixer 911. At least one of the slurry mesh filters 940 for filtering out foreign matter may be further included.
  • the slurry magnetic filter 920 is provided between the slurry mixer 911 and the slurry transfer pump 930 to prevent damage to the slurry transfer pump 930 due to foreign substances having magnetism, and the slurry mesh
  • the filter 940 may filter the slurry discharged from the slurry transfer pump 930 to prevent foreign matter from being transferred to a subsequent process.
  • the mixing unit 900 facilitates attachment and detachment of the slurry mixer 911 through the maintenance module 950 and can simplify maintenance of the slurry mixer 911 .
  • the maintenance module 950 may be made of a crane or a chain block.
  • the slurry that has passed through the mixing unit 900 is transferred to a subsequent process to be coated on the surface of the current collector.
  • Reference numeral 960 is an electrolyte supply unit that supplies a predetermined amount of electrolyte to the mixing unit 900 . Since the electrolyte supply unit 960 supplies the electrolyte to the slurry, ionization of the active material in the final electrode can be actively performed and performance of the electrode can be prevented from deteriorating.
  • Reference numeral 971 is a vacuum chamber for sucking gas inside the slurry mixer 911 of the mixing unit 900 . The internal gas of the slurry mixer 911 moved to the vacuum chamber 971 is discharged separately.
  • Reference numeral 972 denotes a vacuum pump that provides a suction force to the vacuum chamber 971 . The gas sucked by the vacuum pump 972 is discharged separately.
  • a smart powder material transfer method will be described as a method of transferring powder using a smart powder material transfer system according to an embodiment of the present invention.
  • the smart powder raw material transfer method may include a powder transfer step (S1).
  • the powder transfer step (S1) includes a first transfer step of transferring powder corresponding to a first transfer amount, a second transfer step of transferring powder corresponding to a second transfer amount equal to or different from the first transfer amount, and a first transfer amount or At least one of a third transfer step of transferring the powder in response to a third transfer amount equal to or smaller than the second transfer amount may be included.
  • the first transfer step when the powder of the first transfer unit 100 is raised in the first vertical tube 130 formed long in the height direction, the powder of a part of the first transfer amount is transferred from the first vertical tube 130 to the first number.
  • the detailed configuration of the first transfer step is replaced by the coupling relationship and operation of the first transfer unit 100 described above.
  • the powder of the second transfer unit 200 when the powder of the second transfer unit 200 is elevated in the second vertical tube 230 formed long in the height direction, the powder of a part of the second transfer amount is transferred from the second vertical tube 230 to the second number.
  • the remaining powder of the second transport amount acts on the lower end of the second vertical pipe 230. It may include a second pressure feeding step of passing the second vertical pipe 230 by a pressure feeding method using a pressing force.
  • the detailed configuration of the second transfer step is replaced by the coupling relationship and operation of the second transfer unit 200 described above.
  • the third transfer step includes a third input step of measuring and discharging the powder stored in the third input module 310 by a third transfer amount, and a process gas so that the powder discharged through the third input step is transferred by a pressure transfer method using pressurized force.
  • a third pressure feeding step of pressurizing the powder discharged from the third input module 310 using compressed air may be included.
  • the detailed configuration of the third transfer step is replaced by the coupling relationship and operation of the third transfer unit 300 described above.
  • the smart powder raw material transfer method according to an embodiment of the present invention may further include a binder transfer step (S2) and a solvent transfer step (S3).
  • the powder may be made of an active material that is a raw material of the electrode.
  • the binder mixed with the active material is converted into a liquid solution in response to the binder transfer amount and transferred.
  • the detailed configuration of the binder transfer step (S2) is replaced by the above-described coupling relationship and operation of the binder transfer unit 500.
  • a solvent is transferred to form a solution by dissolving the binder in response to the amount of solvent transfer.
  • the smart powder raw material transfer method according to an embodiment of the present invention may further include at least one of a conductive material transfer step (S4) and a dispersion material transfer step (S5).
  • the conductive material mixed with the slurry for forming the electrode is transferred in response to the amount of the conductive material transferred.
  • the detailed configuration of the conductive material transfer step (S4) is replaced by the above-described coupling relationship and operation of the conductive material transfer unit 700.
  • the dispersion material mixed with the slurry for forming the electrode is transferred in response to the amount of the dispersion material transported.
  • the detailed configuration of the dispersion ash transfer step (S5) is replaced by the above-described coupling relationship and operation of the dispersion ash transfer unit 800.
  • the smart powder raw material transfer method according to an embodiment of the present invention may further include a mixing step (S6).
  • the detailed configuration of the mixing step (S6) is replaced by the coupling relationship and operation of the slurry mixer 911 and the slurry stirrer 912 in the mixing unit 900 described above.
  • the smart powder raw material transfer method according to an embodiment of the present invention may further include a slurry transfer step (S7).
  • the slurry discharged through the mixing step (S6) is transferred to a subsequent process.
  • the detailed configuration of the slurry transfer step (S7) is replaced by the coupling relationship and operation of the slurry transfer pump 930, the slurry magnet filter 920, and the slurry mesh filter 940 described above.
  • Reference numeral S8 is an electrolyte supplying step of supplying a preset amount of electrolyte to the mixing unit 900 .
  • the electrolyte solution is supplied to the slurry, ionization of the active material in the finally completed electrode can be actively performed, and the performance of the electrode can be prevented from deteriorating.
  • the final slurry may be coated on the surface of the current collector.
  • the powder metering valve according to an embodiment of the present invention is for sequentially discharging by mechanically clearly metering and clearly measuring powder in the form of powder continuously supplied from a corresponding hopper in the form of powder.
  • a metering housing 10 and a distribution module 20 and the powder metering valve may further include a power generation module 50.
  • the powder metering valve according to an embodiment of the present invention may further include at least one of the rotation sensing module 60 and the speed control module 70.
  • the powder metering valve according to an embodiment of the present invention may further include at least one of the shaft coupling module 30 and the conversion module 40.
  • the powder introduced into the inlet 11 is separated and accommodated in a predetermined amount in each unit discharge groove 22 of the distribution module 20, and then passes through the outlet 12 in a first-in-first-out manner. emitted through
  • the metering housing 10 is formed as a hollow enclosure. An inlet 11 to which a hopper is coupled is opened at an upper portion of the metering housing 10, and an outlet 12 disposed opposite to the inlet 11 is opened at a lower portion of the metering housing 10.
  • the imaginary line is a line connecting the inlet 11 and the outlet 12
  • the imaginary first axis is an axis perpendicular to the imaginary line
  • the imaginary second axis is both the imaginary line and the imaginary first axis. It can be a vertical axis. However, it is not limited thereto, and the virtual second axis may be parallel to the virtual line.
  • the metering housing 10 includes a distribution opening formed through one side of the metering housing 10 based on a second axis perpendicular to the first axis, and a second axis perpendicular to the first axis.
  • an inspection port formed through the other side of the metering housing 10 and an opening/closing member 15 for opening and closing the inspection port may be included.
  • the distribution opening may be opened and closed by the opening and closing joint member 31 .
  • At least one of the inlet 11 and the outlet 12 may be provided with a purge unit 13 for ventilation.
  • the metering housing 10 includes an opening/closing hinge 16 to which the opening/closing member 15 is rotatably coupled, an opening/closing handle 17 provided on the opening/closing member 15 for a user's grip, and an opening/closing member 15 At least one of the opening and closing fixing parts 18 detachably coupled to the other side of the metering housing 10 may be further included.
  • Reference numeral 19 is a limit switch that senses the open/closed state of the inspection door by the opening/closing member 15 .
  • the distribution module 20 is rotatably embedded in the metering housing 10 with respect to a first virtual axis perpendicular to a virtual line connecting the inlet 11 and the outlet 12.
  • a plurality of unit discharge grooves 22 are arranged at regular intervals along the rotation direction. A predetermined amount of powder is accommodated in the unit discharge groove 22.
  • the distribution module 20 delivers the powder introduced through the inlet 11 to the outlet 12 .
  • the distribution module 20 is divided into a distribution body 21 having a cylindrical shape through which distribution holes 21-1 are formed coaxially with a virtual first axis, and two unit discharge grooves 22 adjacent to each other. ) It may include a plurality of partition blades 23 protruding in the normal direction of the distribution body 21 from the outer circumferential surface.
  • the distribution hole 21-1 is supported while the delivery drive shaft 43 coaxial with the virtual first shaft is inserted and supported, so that one side has a shaft support groove 21-2. And, the other side is provided with a shaft coupling groove (21-3).
  • the shape of the unit discharge groove 22 is not limited, and various forms may be shown, along the outer circumferential surface of the distribution body 21. It is preferable to arrange them at equal intervals.
  • the partition blades 23 protrude in a normal direction from the outer circumferential surface of the distribution body 21 and are supported in close contact with or in contact with the inside of the metering housing 10.
  • a scraper 23-1 that is supported in close contact with or in contact with the inner wall of the metering housing 10 is provided to improve adhesion. As shown in FIG. 12, the scraper 23-1 is chamfered to reduce friction between the inside of the metering housing 10 and the partition blades 23, and to facilitate the movement of the partition blades 23.
  • Shaft coupling module 30 is arranged to form a virtual first shaft and coaxial.
  • the shaft coupling module 30 rotatably supports a virtual first shaft.
  • the shaft coupling module 30 is coupled to the metering housing 10 to open and close the distribution opening.
  • the shaft coupling module 30 may connect the distribution module 20 and the conversion module 40 by being coaxial with the virtual first shaft.
  • the shaft coupling module 30 is coupled to the metering housing 10 and rotatably supports the virtual first shaft, the opening and closing joint member 31, and the conversion module 40 and rotatably supports the virtual first shaft. It may include at least one of the shaft joint member 32 to.
  • the opening/closing joint member 31 may include an opening/closing hole 31 - 1 that communicates with a distribution opening opened to one side of the metering housing 10 and is formed through a virtual first axis.
  • the opening/closing joint member 31 includes a bushing member 31-2 rotatably supporting the virtual first shaft in the opening/closing hole 31-1 so that the distribution opening is sealed, and the virtual first shaft and the opening/closing hole.
  • a retainer 31-3 rotatably supporting a virtual first shaft in the opening/closing hole 31-1 between the bushing member 31-2 and the shaft joint member 32 so that the center of the 31-1 is coaxial. ) At least one of them may be further included.
  • the shaft joint member 32 has a shaft joint hole 32-1 through which the imaginary first shaft passes, and a bearing member rotatably supporting the virtual first shaft in the shaft joint hole 32-1.
  • the bearing member includes a first bearing 32-2 provided on one side of the shaft joint hole 32-1 and a second bearing 32-2 provided on the other side of the shaft joint hole 32-1. Although shown as including 3), it is not limited thereto, and the number of bearing members can be adjusted.
  • the conversion module 40 is disposed to be coaxial or parallel to the first imaginary axis.
  • the conversion module 40 converts rotational force for rotating the distribution module 20 and transmits it to the distribution module 20 .
  • the conversion module 40 is shown as being coupled to the shaft joint module 30 made coaxial with the virtual first shaft. However, it is not limited thereto, and when the shaft coupling module 30 is omitted, the conversion module 40 may be coupled to one side of the metering housing 10.
  • the conversion module 40 is disposed on one side of the metering housing 10 and is coaxial with a conversion body 41 coupled to the shaft coupling module 30 or the metering housing 10 and a virtual first axis to form a conversion body ( 41) in a state in which the transmission drive shaft portion 43 rotatably coupled to the transmission drive shaft portion 43 and the imaginary second axis perpendicular to the first virtual axis are coaxial or parallel to the transmission drive shaft portion 43 and meshed with the conversion body 41 ) It may include a driving connecting shaft rotatably coupled to. At this time, the transmission drive shaft portion 43 is detachably coupled to the distribution module 20 so as to rotate together with the distribution module 20 .
  • the transmission drive shaft part 43 is connected to the conversion connection part 431 rotatably coupled to the conversion body 41 and the conversion connection part 43-1 to be inserted and supported in the distribution hole part 21-1 provided in the distribution module 20. ) may include a distribution joint connection portion 43-3 extending coaxially.
  • the transmission drive shaft portion 43 uses a shaft joint connection portion 43-2 that coaxially connects the conversion connection portion 43-1 and the distribution joint connection portion 43-3 so as to be rotatably inserted and supported in the shaft joint module 30. can include more.
  • the shaft joint connection portion 43-2 is rotatably supported by the shaft joint module 30.
  • the transmission drive shaft portion 43 is formed on one side of the distribution joint connection portion 433 and is attached and detachable to the other side of the distribution joint connection portion 43-3 and the supporting protrusion 43-4 hooked on one side of the distribution module 20. Possibly coupled and may further include a shaft fixing member that is engaged and supported on the other side of the distribution module 20 .
  • the shaft fixing member includes a fixing bracket 43-5 engaged in the shaft coupling groove 213 on the other side of the distribution module 20 so as to face the end of the transmission drive shaft 43, and a fixing bracket 43-5.
  • a fixed coupling portion 43-6 detachably coupled to the end of the transmission drive shaft portion 43 may be included.
  • the fixed coupling portion 43-6 is shown as being screwed to the transmission drive shaft portion 43 through the fixed bracket 435.
  • the power generation module 50 is arranged to form a first imaginary axis coaxial, parallel or intersecting.
  • the power generation module 50 generates rotational force for rotating the distribution module 20 by applied power.
  • the power generation module 50 is illustrated as being coupled to the conversion module 40 coaxially or parallel to a virtual second axis perpendicular to the first virtual axis.
  • the power generation module 50 is rotated by the rotational force at the center of the power generation unit 51 and the power generation unit 51 that generates rotational force by applied power and is coaxial with the driving connection shaft of the conversion module 40. It may include a connected power shaft.
  • the power generation module 50 may further include a power shaft joint 52 connecting the power shaft unit to the driving connection shaft unit.
  • the rotation sensing module 60 is arranged coaxially with the virtual first axis.
  • the rotation sensing module 60 detects the position of the unit discharge groove 22 in the metering housing 10 .
  • the rotation sensing module 60 is illustrated as being coupled to the conversion module 40 coaxially with the first virtual axis. However, when the conversion module 40 is omitted, it may be coupled to the shaft coupling module 30 or the metering housing 10.
  • the outlet 12 corresponds to the communication between the inlet 11 and the unit discharge groove 22 and the communication between the outlet 12 and the unit discharge groove 22
  • At least one of the unit discharge grooves 22 disposed on both sides of the unit discharge groove 22 communicating with the outlet 12 does not communicate with each other so that the outlet 12 can be closed and sealed stably, and mutually It is possible to minimize the error in the powder capacity in the powder unit accommodation space determined by the space between the pair of adjacent sensing blades 62-3 and the unit discharge groove 22.
  • the rotation sensing module 60 is rotatably coupled to the conversion module 40 or the shaft coupling module 30 or the metering housing 10 via the paddle shaft portion 62-1 coaxial with the virtual first axis, and It may include a sensing paddle 62 rotatable along a virtual first axis, and a speed sensor 63 for sensing the sensing paddle 62 .
  • the sensing paddle 62 is a paddle body 62-2 coupled to the paddle shaft portion 62-1 and a paddle body along the outer circumferential surface of the paddle body 62-2 corresponding to the unit discharge groove portion 22. (62-2) may include sensing blades 62-3 disposed at equal intervals. Then, the speed sensor 63 can detect the amount of rotation of the distribution module by sensing the sensing blades 62-3.
  • one of the paddle body 62-2 or the sensing wing 62-3 is provided with a default setting unit 62-4 to discharge unit from the inlet 11 of the metering housing 10. It is possible to keep the groove part 22 in a stable open state, and it is possible to promote initialization of the distribution module 20 .
  • the rotation sensing module 60 includes a sensing body 61 coupled to the conversion module 40 or the shaft coupling module 30 or the metering housing 10 so that some or all of the sensing paddle 62 and the speed sensor are embedded. can include more.
  • the sensing blades 62-3 may be bent from the edge of the paddle body 62-2. And the speed sensor 63 is spaced apart from the outside of the imaginary cylinder connecting the sensing wings 62-3 and coupled to the sensing body 61. Then, since the speed sensor 63 is spaced apart from the paddle body 62-2 and is disposed to face only the sensing blades 62-3, the sensing blades 62-3 are moved according to the rotation of the paddle shaft portion 62-1. Can be detected intermittently. Since the width of the sensing blades 62-3 corresponding to the rotational direction of the paddle shaft portion 62-1 forms the preset first sensing width, the unit discharge groove 22 corresponds to the inlet 11 or the outlet 12. ), and when the rotational force of the distribution module 20 is controlled by the speed control module 70, a predetermined amount of powder is stably accommodated in the unit discharge groove 22.
  • the sensing blades 62-3 may protrude from the circumferential surface of the paddle body 62-2 in a normal direction.
  • the speed sensor 63 is spaced apart from the outside of the imaginary cylinder connecting the sensing wings 62-3 and coupled to the sensing body 61. Then, since the speed sensor 63 is arranged to look at both the circumferential surface of the paddle body 62-2 and the sensing blades 62-3, the sensing blades 62-3 are rotated according to the rotation of the paddle shaft portion 62-1. ) can be detected intermittently.
  • the width of the sensing blades 62-3 corresponding to the rotational direction of the paddle shaft portion 62-1 forms a second sensing width smaller than the preset first sensing width, it corresponds to the inlet 11 or the outlet 12.
  • the sensing blades 62-3 may protrude from the circumferential surface of the paddle body 62-2 in a normal direction.
  • the speed sensor 63 is coupled to the sensing body 61 so as to face the side of the paddle body 62-2. Then, since the speed sensor 63 is arranged to look only at the sensing blades 62-3 in a direction parallel to the paddle shaft portion 62-1, the sensing blades 62-3 are rotated according to the rotation of the paddle shaft portion 62-1. ) can be detected intermittently.
  • the unit discharge groove 22 corresponds to the inlet 11 or the outlet 12.
  • the width of the sensing blades 62-3 corresponding to the rotation direction of the paddle shaft portion 62-1 and the distance between the two adjacent sensing blades 62-3 It is possible to adjust the time for the speed sensor 63 to detect the sensing blades 62-3, the time for adjusting the rotational force generated in the power generation module 50, etc., and accommodated in the unit distribution groove 22
  • the powder can be clearly controlled.
  • the speed control module 70 adjusts the rotational force generated in the power generation module 50 according to the position of the unit discharge groove 22 of the distribution module 20 detected by the rotation sensing module 60.
  • the control method of rotational force in the speed control module 70 can be divided into a fine deceleration method and an accommodating acceleration method. Then, the position of the unit discharge groove ( ) is detected through the rotation sensing module 60, and the weight value of the powder accumulated in the unit discharge groove 22 is calculated according to the control of the speed control module 70, and the unit discharge By converting the weight of the powder per groove 22, it is possible to minimize the error value according to precise measurement.
  • the speed control module 70 includes a detection confirmation unit 71 that checks whether a detection signal is generated in response to the amount of rotation of the distribution module 20, and detects the check result of the detection confirmation unit 71. If the signal is not generated, the acceptance control unit 72 that maintains the rotational force generated in the power generation module 50 and the detection confirmation unit 71 check the detection signal to generate the rotational force generated in the power generation module 50. It may include an adjustment control unit 73 that reduces the deceleration force to a predetermined level.
  • the speed control module 70 includes a detection confirmation unit 71 that checks whether a detection signal is generated in response to the amount of rotation of the distribution module 20, and detects the check result of the detection confirmation unit 71.
  • the acceptance control unit 72 that maintains the rotational force generated from the power generation module 50 and the detection confirmation unit 71 check that if the detection signal is not generated, the rotational force generated from the power generation module 50 is checked. It may include an adjustment control unit 73 that increases the acceleration to a predetermined acceleration.
  • the speed control module 70 relatively reduces the rotational force of the power generation module 50 and Since the distribution module 20 rotates slowly, the communication time of the unit discharge groove 22 at the inlet 11 is relatively long, and 85% to 90% of the unit discharge groove 22 at the inlet 11 It is possible to maintain the communication state so that the powder is sufficiently supplied to the unit discharge groove 22.
  • the speed control module 70 relatively increases the rotational force of the power generation module 50 and Since the distribution module 20 rotates quickly, the communication time of the unit discharge groove 22 at the inlet 11 is relatively shortened, and a portion of the powder delivered from the hopper (of the powder accommodated per unit discharge groove 22) 10% to 15%) can be supplied to the unit discharge groove (22).
  • the speed control module 70 relatively reduces the rotational force of the power generation module 50 and Since the distribution module 20 rotates slowly, powder can be delivered to each of the two adjacent unit discharge grooves 22.
  • the speed control module 70 relatively increases the rotational force of the power generation module 50 and Since the distribution module 20 rotates quickly, the communication time of the unit discharge groove 22 at the inlet 11 is relatively short, and one of the two adjacent unit discharge grooves 22 moves quickly to the outlet 12.
  • the other one of the two adjacent unit discharge grooves 22 increases the communication area with the inlet 11, but part of the powder delivered from the hopper (10% to 15% of the powder accommodated per unit discharge groove 22) Only can be supplied to the unit discharge groove (22).
  • the load acting on the first vertical pipe 130 is minimized and the thickness of the first vertical pipe 130 is reduced. Cost reduction can be expected through maintenance cost and material cost reduction.
  • the powder is smoothly transferred between the first input module 110 and the first weighing module 140, and the first powder line among the powder transfer lines Suction and pressurization of powder can be clarified.
  • the suction power for the suction of powder is stably generated in the first powder line of the powder transfer line, and the first vertical pipe ( 130) and the first weighing hopper 141 can smoothly transfer the powder.
  • the detailed configuration of the first vacuum ejector 143 provides a stable suction force to the powder, while the continuous transfer of the main body can be made clear in response to the first transfer amount, and the powder is placed in the first vertical pipe 130. Residual or stagnation can be prevented to solve the clogging of the first powder line or the first vertical pipe 130.
  • the first input module 110 it is possible to facilitate the delivery of powder delivered from the outside and to improve the purity of the powder by removing foreign substances mixed with the powder.
  • the load acting on the second vertical pipe 230 is minimized and the thickness of the second vertical pipe 230 is reduced. Cost reduction can be expected through maintenance cost and material cost reduction.
  • the powder is smoothly transferred between the second input module 210 and the second weighing module 240, and the second powder line among the powder transfer lines Suction and pressurization of powder can be clarified.
  • the suction power for powder suction is stably generated in the second powder line of the powder transfer line, and the second vertical pipe ( 230) and the second weighing hopper 241 can smoothly transfer the powder.
  • the detailed configuration of the second vacuum ejector 243 provides a stable suction force to the powder, while the continuous transfer of the main body can be made clear in response to the second transfer amount, and the powder is placed in the second vertical pipe 230. Residual or stagnation can be prevented to solve the clogging of the second powder line or the second vertical pipe 230.
  • the powder is smoothly transported between the second input module 210 and the silo module 260, and the powder is sucked in the second powder line among the powder transfer lines.
  • the pressure feeding of powder can be made clear.
  • the suction force for the suction of powder is stably generated in the second powder line of the powder transfer line, and the second vertical pipe 230 and the powder in the integrated silo module 260 It is possible to smoothly transfer the powder between the silos 261.
  • the detailed configuration of the silo vacuum ejector 262 provides a stable suction power to the powder, while the continuous transfer of the main body can be made clear in response to the second transfer amount, and the powder remains in the second vertical pipe 230. It is possible to solve the blockage of the second powder line or the second vertical pipe 230 by preventing stagnation.
  • the powder is smoothly transferred between the silo module 260 and the second weighing module 240, and the powder is sucked in the second powder line among the powder transfer lines.
  • the pressure feeding of powder can be made clear.
  • powder delivered from the outside through the silo module 260 can be stored in large quantities and then discharged intermittently.
  • the detailed configuration of the second input module 210 facilitates the delivery of powder delivered from the outside and removes foreign substances mixed with the powder to improve the purity of the powder.
  • the amount of powder can be additionally added by adjusting the amount of powder according to the state of the finally completed slurry in the mixing unit 900, which is the final destination of the powder.
  • the binder transfer unit 500 it is possible to stably dissolve the binder in the form of powder or fillet, and conveniently adjust the concentration of the solution formed according to the dissolution of the binder.
  • the conductive material conveying unit 700 it is possible to stably supply a quantity of conductive material to the finally completed slurry and improve the electrical conductivity of the slurry.
  • liquefaction of the conductive material is promoted to facilitate the transfer of the conductive material and to form a safe uniform mixture between the conductive material and the active material.
  • dispersion material transfer unit 800 it is possible to smoothly disperse the powder as an active material and improve the marketability of the final slurry.
  • the liquefaction of the dispersion material is promoted through the detailed configuration of the dispersion material transport unit 800 to facilitate the transport of the dispersion material, to ensure that the active material is smoothly pre-dispersed through the dispersion material, and to form a stable uniform mixture of the dispersion material and the active material. let it do
  • the slurry can be formed as a stable and uniform mixture, and the concentration of the slurry can be easily controlled.
  • the coupling relationship of the smart powder raw material conveying system can be clarified, a stable smart powder raw material conveying system can be implemented, and the effects of the above-mentioned units can be clearly expressed.
  • the powder in the form of powder can be mechanically clearly metered and discharged sequentially.
  • the distribution module 20 is rotatably supported through the metering housing 10, and a unit discharge groove 22 is formed therein so that a predetermined amount of powder is separately accommodated.
  • the detailed configuration of the metering housing 10 enables opening and closing of at least one of the distribution opening and the inspection port, simplifies attachment and detachment of the distribution module 20 from the metering housing 10, and distributes from the metering housing 10. Maintenance of the module 20 can be stabilized.
  • a unit discharge groove 22 capable of accommodating a predetermined amount of powder is formed inside the metering housing 10, and the powder can be smoothly transported.
  • unit discharge groove 22 is stably partitioned through the detailed configuration of the distribution module 20, so that powder in the unit discharge groove 22 can be clearly transported.
  • the powder inside the metering housing 10 is prevented from leaking to the outside, the rotation of the distribution module 20 is made clear, and the flow according to the rotation of the distribution module 20 is reduced. It can be prevented.
  • the transmission drive shaft portion 43 which is a virtual first axis, can be stably supported through the shaft coupling member 32, and rotation of the transmission drive shaft portion 43 can be smoothed.
  • the distribution module 20 can be stably rotated with a uniform rotational force by adjusting the rotational force through the conversion module 40 .
  • the transfer direction of the rotational force can be easily changed through the detailed configuration of the conversion module 40 .
  • the distribution module 20, the shaft joint module 30, and the conversion module 40 are coaxially arranged through the coupling relationship of the transmission drive shaft portion 43 to smoothly rotate the transmission drive shaft portion 43 and distribute
  • the distribution module 20 can be stably fixed to the transmission drive shaft portion 43 by improving the coupling force of the transmission drive shaft portion 43 in the module 20, and the transmission drive shaft portion 43 in the shaft joint module 30 to rotate smoothly.
  • the rotation amount of the distribution module 20 can be easily checked in correspondence with the unit discharge groove 22 through the rotation sensing module 60, and the unit discharge groove 22 based on the inlet 11 and the outlet 12 ) can be easily and clearly identified.
  • the sensing position can be stably specified in response to the rotational width of the unit discharge groove 22, and the sensitivity of the speed sensor 63 can be improved to clearly control the rotational force.
  • the unit discharge groove 22 can be initially positioned in correspondence with the inlet 11 through the default setting unit 62-4, and the powder metering valve can be easily initialized.
  • the amount of powder delivered to the distribution module 20 is clearly controlled through the speed control module 70, and a predetermined amount of powder is injected into each unit distribution groove.
  • the smart powder raw material conveying system and the smart powder raw material conveying method according to the present invention when powder in the form of powder is transferred along the powder conveying line, the powder accurately measured in the vertical pipe installed vertically in the powder conveying line is smoothly transported. while allowing the powder to pass through, it is possible to prevent the powder from remaining or being stagnant in the riser.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)
  • Air Transport Of Granular Materials (AREA)

Abstract

The present invention relates to a smart granular raw material conveyance system and a smart granular raw material conveyance method, wherein, when granular materials in powder form are conveyed along a conveyance line, the precisely metered granular materials are smoothly passed through a vertical pipe vertically installed in the conveyance line, and the granular materials are prevented from remaining or stagnating in the vertical pipe. The smart granular raw material conveyance system comprises at least one of: a first conveyance unit that conveys the granular materials in an amount corresponding to a first conveyance amount; a second conveyance unit that is spaced apart from the first conveyance unit and conveys the granular materials in an amount corresponding to a second conveyance amount equal to or different from the first amount; or a third conveyance unit that is spaced apart from the first conveyance unit and the second conveyance unit, and conveys the granular materials in an amount corresponding to a third conveyance amount equal to or less than the first amount or the second amount.

Description

스마트 분체원료 이송시스템 및 스마트 분체원료 이송방법Smart powder material transfer system and smart powder material transfer method
본 발명은 스마트 분체원료 이송시스템과 스마트 분체원료 이송방법에 관한 것으로, 보다 구체적으로는 분말 형태의 분체가 이송라인을 따라 이송될 때, 이송라인 중 수직으로 설치되는 수직관에서 정밀 계량된 분체를 원활하게 통과시키는 한편, 분체가 수직관에 잔류하거나 정체되는 것을 방지하기 위한 스마트 분체원료 이송시스템과 스마트 분체원료 이송방법에 관한 것이다.The present invention relates to a smart powder material transfer system and a smart powder material transfer method, and more specifically, when powder in the form of powder is transferred along a transfer line, the powder precisely measured in a vertical tube installed vertically in the transfer line It relates to a smart powder raw material conveying system and a smart powder raw material conveying method for preventing powder from remaining or stagnation in a vertical pipe while passing smoothly.
근래 들어 에너지 저장 기술에 대한 관심이 갈수록 높아지고 있다.In recent years, interest in energy storage technology has been increasing.
일반적으로, 휴대폰, 캠코더, 노트북, 데스크탑 컴퓨터 등의 가전제품, 나아가서는 전기차의 에너지까지 적용분야가 확대되면서 전기화학소자의 연구와 개발에 대한 노력이 점점 구체화되고 있다.In general, as the field of application expands to household appliances such as mobile phones, camcorders, laptops, and desktop computers, and further to the energy of electric vehicles, efforts for research and development of electrochemical devices are becoming more and more specific.
여러 전기화학소자 중 고출력 특성이 요구되는 분야에 응용이 가능한 수계 전해질 기반의 리튬 이차전지 및 커패시터(capacitor)가 주목받고 있다.Among various electrochemical devices, aqueous electrolyte-based lithium secondary batteries and capacitors that can be applied to fields requiring high output characteristics are attracting attention.
이러한 전기화학소자는 일반적으로 양극, 음극 및 양극과 음극 사이에 개재된 세퍼레이터를 포함한다. 이때, 양극 및 음극은 일반적으로 전극활물질, 고분자 바인더, 전극활물질의 균일 혼합을 위해 고분자 바인더를 용해시키는 용매를 포함하는 전극활물질 슬러리를 집전체의 표면에 도포하여 전극활물질층을 형성하는 방법에 의해 제조된다.These electrochemical devices generally include a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode. At this time, the positive electrode and the negative electrode are generally formed by a method of forming an electrode active material layer by applying an electrode active material slurry containing an electrode active material, a polymer binder, and a solvent for dissolving the polymer binder to the surface of the current collector for uniform mixing of the electrode active material. are manufactured
전극활물질 슬러리는 전극의 전기전도도 향상을 위하여 도전재를 더 포함하기도 한다. 한편, 우수한 전극을 형성하기 위해서는 전극활물질과 도전재 중 적어도 어느 하나를 균일하게 분산시키는 분산재를 더 포함하기도 한다. 왜냐하면, 전극활물질과 도전재의 분산 정도에 따라서 전극의 형상이 달라지며 그에 따라 전지의 성능도 달라지기 때문이다.The electrode active material slurry may further include a conductive material to improve the electrical conductivity of the electrode. Meanwhile, in order to form an excellent electrode, a dispersing material for uniformly dispersing at least one of the electrode active material and the conductive material may be further included. This is because the shape of the electrode changes according to the degree of dispersion of the electrode active material and the conductive material, and the performance of the battery also changes accordingly.
여기서, 분말 형태의 활물질의 경우, 투입호퍼로부터 투입호퍼보다 높은 곳에 배치되는 저장호퍼로 활물질을 이송시키는 경우, 이송라인 중 수직관이 반드시 형성되어야 한다.Here, in the case of the active material in powder form, when the active material is transferred from the input hopper to the storage hopper disposed higher than the input hopper, a vertical pipe must be formed among the transfer lines.
하지만, 종래의 흡송 방식으로 활물질을 이송시키는 경우, 흡송이 완료되더라도 수직관에 활물질이 잔류하므로, 수직관에서 활물질이 낙하하여 수직관이 막히는 문제점이 있었다. 또한, 종래의 압송 방식으로 활물질을 이송시키는 경우, 수직관의 압력이 상승하여 수직관에 작용하는 부하를 감당하기 위해 배관의 두께가 두꺼워지고, 재료비의 상승을 초래할 수 있다.However, when the active material is transported in a conventional suction method, since the active material remains in the vertical tube even after the suction is completed, there is a problem in that the vertical tube is clogged due to the active material falling from the vertical tube. In addition, when the active material is transported by the conventional pressure-feeding method, the pressure of the vertical pipe increases, and the thickness of the pipe becomes thick to handle the load acting on the vertical pipe, resulting in an increase in material cost.
본 발명의 목적은 종래의 문제점을 해결하기 위한 것으로서, 분말 형태의 분체가 이송라인을 따라 이송될 때, 이송라인 중 수직으로 설치되는 수직관에서 정밀 계량된 분체를 원활하게 통과시키는 한편, 분체가 수직관에 잔류하거나 정체되는 것을 방지하기 위한 스마트 분체원료 이송시스템과 스마트 분체원료 이송방법을 제공함에 있다.An object of the present invention is to solve the conventional problems, and when powder in the form of powder is transported along a transfer line, the precisely-measured powder smoothly passes through a vertical tube installed vertically among the transfer lines, while the powder is It is to provide a smart powder material transfer system and a smart powder material transfer method to prevent remaining or stagnation in the vertical pipe.
상술한 본 발명의 목적을 달성하기 위한 바람직한 실시예에 따르면, 본 발명에 따른 스마트 분체원료 이송시스템은 제1이송량에 대응하여 분체를 이송시키는 제1이송유닛과, 상기 제1이송유닛에서 이격되어 상기 제1이송량과 같거나 다른 제2이송량에 대응하여 상기 분체를 이송시키는 제2이송유닛과, 상기 제1이송유닛과 상기 제2이송유닛에서 이격되어 상기 제1이송량 또는 상기 제2이송량과 같거나 작은 제3이송량에 대응하여 상기 분체를 이송시키는 제3이송유닛 중 적어도 어느 하나를 포함하는 분체이송유닛;을 포함한다.According to a preferred embodiment for achieving the above object of the present invention, the smart powder raw material conveying system according to the present invention includes a first conveying unit for conveying powder in response to a first conveying amount, and is spaced apart from the first conveying unit. A second transfer unit that transfers the powder in response to a second transfer amount equal to or different from the first transfer amount, and a second transfer amount that is spaced apart from the first transfer unit and the second transfer unit and equal to the first transfer amount or the second transfer amount. or a powder transfer unit including at least one of a third transfer unit for transferring the powder in response to a small third transfer amount.
본 발명에 따른 스마트 분체원료 이송시스템은 상기 제1이송유닛의 분체가 높이 방향으로 길게 형성된 제1수직관에서 상승될 때, 상기 제1이송량 중 일부의 분체는 상기 제1수직관의 상단부 쪽에서 작용하는 흡입력을 이용한 흡송 방식으로 상기 제1수직관을 통과하고, 다음으로, 상기 제1이송량 중 나머지의 분체는 상기 제1수직관의 하단부 쪽에서 작용하는 가압력을 이용한 압송 방식으로 상기 제1수직관을 통과한다.In the smart powder raw material conveying system according to the present invention, when the powder of the first conveying unit rises in the first vertical pipe formed long in the height direction, some of the powder in the first transfer amount acts toward the upper end of the first vertical pipe. passes through the first vertical pipe in a suction method using a suction force to pass through the first vertical pipe, and then, the remaining powder of the first conveying amount passes through the first vertical pipe in a pressure feeding method using a pressing force acting on the lower end of the first vertical pipe. pass
여기서, 상기 제1이송유닛에는, 상기 제1이송량에 대응하여 상기 분체를 기설정된 정량으로 계량하는 분체계량밸브;가 포함되고, 상기 분체계량밸브는, 호퍼가 결합되는 입구가 개구되고, 상기 입구와 대향 배치되는 출구가 개구된 중공의 계량하우징; 및 상기 입구와 상기 출구를 연결하는 가상의 선에 수직인 가상의 제1축을 기준으로 상기 계량하우징에 회전 가능하게 내장되고, 회전 방향을 따라 다수의 단위배출홈부가 등간격으로 배치된 분배모듈;을 포함하고, 상기 분배모듈의 회전에 따라 상기 입구로 유입되는 상기 분체는, 상기 단위배출홈부마다 기설정된 정량으로 분리 수용되었다가 선입선출 방식으로 상기 출구를 통해 배출된다.Here, the first transfer unit includes a powder metering valve that measures the powder in a predetermined amount in response to the first transfer amount, and the powder metering valve has an open inlet to which a hopper is coupled, and the inlet A hollow metering housing having an opening opposite to the outlet; and a distribution module rotatably embedded in the metering housing on the basis of a virtual first axis perpendicular to a virtual line connecting the inlet and the outlet, and having a plurality of unit discharge grooves arranged at equal intervals along the rotational direction; Including, the powder introduced into the inlet according to the rotation of the distribution module is separately accommodated in a predetermined amount for each unit discharge groove and then discharged through the outlet in a first-in-first-out manner.
여기서, 상기 제1이송유닛은, 상기 분체가 저장되고, 상기 분체를 상기 제1이송량으로 계량하여 배출시키는 제1투입모듈; 상기 제1투입모듈에서 배출되는 분체가 가압력을 이용한 압송 방식으로 이송되도록 공정가스 또는 압축공기를 이용하여 상기 제1투입모듈에서 배출되는 분체를 가압하는 제1-1압송모듈; 상기 제1투입모듈에서 배출되는 분체가 상승되는 경로를 형성하도록 높이 방향으로 길게 형성되는 제1수직관; 상기 제1투입모듈에서 배출되는 분체가 흡입력을 이용한 흡송 방식으로 이송되도록 공정가스 또는 압축공기를 이용하여 상기 제1투입모듈에서 배출되는 분체 또는 상기 제1수직관의 분체를 흡입하여 저장하였다가 로터리밸브 방식을 이용하여 상기 분체를 제1계량량으로 계량하여 배출시키는 제1계량모듈; 및 상기 제1계량모듈에서 배출되는 분체가 가압력을 이용한 압송 방식으로 이송되도록 공정가스 또는 압축공기를 이용하여 상기 제1계량모듈에서 배출되는 분체를 가압하는 제1-2압송모듈;을 포함하며, 상기 제1투입모듈과 상기 제1계량모듈 중 적어도 어느 하나에는, 상기 분체계량밸브가 포함되고, 상기 제1수직관을 기준으로 상기 제1수직관의 하단부 쪽에는 상기 제1-1압송모듈이 연결되고, 상기 제1-1압송모듈에는 상기 제1투입모듈이 연결되며, 상기 제1수직관을 기준으로 상기 제1수직관의 상단부 쪽에는 상기 제1계량모듈이 연결되고, 상기 제1계량모듈에는 상기 제1-2압송모듈이 연결된다.Here, the first transfer unit may include: a first input module for storing the powder and measuring and discharging the powder at the first transfer amount; a 1-1 pressure transfer module that pressurizes the powder discharged from the first input module using a process gas or compressed air so that the powder discharged from the first input module is transferred in a pressure transfer method using a pressurizing force; a first vertical pipe formed long in a height direction to form a path through which the powder discharged from the first input module rises; Process gas or compressed air is used to suction and store the powder discharged from the first input module or the powder from the first upright pipe so that the powder discharged from the first input module is transferred in a suction method using suction power, and stored in a rotary A first measuring module for measuring and discharging the powder in a first weighing amount by using a valve method; And a 1-2 pressure transfer module for pressurizing the powder discharged from the first metering module using a process gas or compressed air so that the powder discharged from the first metering module is transferred in a pressure transfer method using a pressurizing force; At least one of the first input module and the first metering module includes the powder metering valve, and the 1-1 pressure transfer module is located at the lower end of the first vertical tube based on the first vertical tube. The first input module is connected to the 1-1 pressure feeding module, and the first metering module is connected to the upper end of the first vertical tube based on the first vertical tube, and the first metering module is connected. The module is connected to the first-second pressure transfer module.
여기서, 상기 제1계량모듈은, 상기 제1수직관을 거쳐 이송되는 분체가 저장되는 제1계량호퍼; 상기 제1투입모듈로부터 배출되는 분체를 흡입력을 이용한 흡송 방식으로 흡입하여 상기 제1계량호퍼에 전달하는 제1진공이젝터; 및 로터리밸브 방식을 이용하여 상기 제1계량호퍼에 저장되는 분체를 상기 제1계량량으로 계량하여 배출시키는 제1계량밸브;를 포함하고, 상기 제1계량밸브는, 상기 분체계량밸브를 포함한다.Here, the first weighing module may include: a first weighing hopper in which powder transported through the first vertical pipe is stored; a first vacuum ejector that sucks the powder discharged from the first input module in a suction method using a suction force and delivers it to the first metering hopper; and a first metering valve for measuring and discharging the powder stored in the first metering hopper at the first metering amount using a rotary valve method, wherein the first metering valve includes the powder metering valve. .
여기서, 상기 제1진공이젝터는, 공정가스 또는 압축공기에 의해 내부가 진공 상태로 유지되는 진공탱크부; 상기 진공탱크부의 내부를 진공 상태로 유지하기 위해 상기 공정가스 또는 상기 압축공기가 입력됨에 따라 상기 흡입력을 발생시키는 진공헤드부; 상기 제1수직관과 상기 진공탱크부가 연통되도록 상기 제1수직관이 연결되는 분체투입부; 상기 진공탱크부와 상기 제1계량호퍼를 개폐 가능하게 연통시키는 연결밸브부; 및 상기 제1투입모듈과 상기 제1-1압송모듈과 상기 진공헤드부 사이의 동작 관계를 제어하는 제어유닛;을 포함한다.Here, the first vacuum ejector, the vacuum tank unit is maintained in a vacuum state inside by process gas or compressed air; a vacuum head unit generating the suction force as the process gas or the compressed air is input to maintain the inside of the vacuum tank unit in a vacuum state; a powder input unit to which the first vertical tube is connected so that the first vertical tube communicates with the vacuum tank unit; a connection valve unit that connects the vacuum tank unit and the first metering hopper in an open and close manner; and a control unit controlling an operating relationship between the first input module, the 1-1 pressure transfer module, and the vacuum head unit.
여기서, 상기 제어유닛은, 상기 제1투입모듈에서 상기 분체가 배출됨에 따라 상기 분체의 일부가 흡입력에 의한 흡송 방식으로 상기 제1수직관을 통과하도록 상기 제1-1압송모듈을 정지시킨 상태에서 상기 진공헤드부를 동작시키고, 다음으로, 상기 분체의 나머지가 가압력에 의한 압송 방식으로 상기 제1수직관을 통과하도록 상기 진공헤드부의 정지와 함께 상기 제1-1압송모듈을 동작시킨다.Here, the control unit, in a state in which the 1-1 pressure feeding module is stopped so that a part of the powder passes through the first vertical pipe in a suction method by suction force as the powder is discharged from the first input module The vacuum head unit is operated, and then, the 1-1 pressure transfer module is operated with the vacuum head unit stopped so that the remainder of the powder passes through the first vertical pipe in a pressure transfer method by pressing force.
여기서, 상기 제1투입모듈은, 상기 분체가 저장되는 제1투입호퍼; 상기 분체가 상기 제1투입호퍼에 투입될 때, 상기 분체로부터 자성을 갖는 이물질을 필터링하는 제1자석필터; 상기 분체가 상기 제1투입호퍼에 투입될 때, 상기 분체로부터 자성이 없는 이물질을 필터링하는 제1메쉬필터; 및 로터리밸브 방식을 이용하여 상기 제1투입호퍼에 저장되는 분체를 상기 제1이송량으로 계량하여 배출시키는 제1투입밸브;를 포함하고, 상기 제1투입밸브는, 상기 분체계량밸브를 포함한다.Here, the first input module may include a first input hopper in which the powder is stored; a first magnetic filter for filtering foreign substances having magnetism from the powder when the powder is put into the first input hopper; a first mesh filter filtering non-magnetic foreign substances from the powder when the powder is put into the first input hopper; and a first input valve for measuring and discharging the powder stored in the first input hopper by the first transfer amount using a rotary valve method, wherein the first input valve includes the powder metering valve.
본 발명에 따른 스마트 분체원료 이송시스템은 상기 제2이송유닛의 분체가 높이 방향으로 길게 형성된 제2수직관에서 상승될 때, 상기 제2이송량 중 일부의 분체는 상기 제2수직관의 상단부 쪽에서 작용하는 흡입력을 이용한 흡송 방식으로 상기 제2수직관을 통과하고, 다음으로, 상기 제2이송량 중 나머지의 분체는 상기 제2수직관의 하단부 쪽에서 작용하는 가압력을 이용한 압송 방식으로 상기 제2수직관을 통과한다.In the smart powder raw material conveying system according to the present invention, when the powder of the second conveying unit is elevated in the second vertical pipe formed long in the height direction, some of the powder of the second conveying amount acts toward the upper end of the second vertical pipe. passes through the second vertical pipe in a suction method using a suction force to pass through the second vertical pipe, and then, the remaining powder of the second conveying amount passes through the second vertical pipe in a pressure feeding method using a pressing force acting on the lower end of the second vertical pipe. pass
여기서, 상기 제2이송유닛에는, 상기 제2이송량에 대응하여 상기 분체를 기설정된 정량으로 계량하는 분체계량밸브;가 포함되고, 상기 분체계량밸브는, 호퍼가 결합되는 입구가 개구되고, 상기 입구와 대향 배치되는 출구가 개구된 중공의 계량하우징; 및 상기 입구와 상기 출구를 연결하는 가상의 선에 수직인 가상의 제1축을 기준으로 상기 계량하우징에 회전 가능하게 내장되고, 회전 방향을 따라 다수의 단위배출홈부가 등간격으로 배치된 분배모듈;을 포함하고, 상기 분배모듈의 회전에 따라 상기 입구로 유입되는 상기 분체는, 상기 단위배출홈부마다 기설정된 정량으로 분리 수용되었다가 선입선출 방식으로 상기 출구를 통해 배출된다.Here, the second transfer unit includes a powder metering valve that measures the powder in a predetermined amount in response to the second transfer amount, and the powder metering valve has an open inlet to which a hopper is coupled, and the inlet A hollow metering housing having an opening opposite to the outlet; and a distribution module rotatably embedded in the metering housing on the basis of a virtual first axis perpendicular to a virtual line connecting the inlet and the outlet, and having a plurality of unit discharge grooves arranged at equal intervals along the rotational direction; Including, the powder introduced into the inlet according to the rotation of the distribution module is separately accommodated in a predetermined amount for each unit discharge groove and then discharged through the outlet in a first-in-first-out manner.
여기서, 상기 제2이송유닛은, 상기 분체가 저장되고, 상기 분체를 상기 제2이송량으로 계량하여 배출시키는 제2투입모듈; 상기 제2투입모듈에서 배출되는 분체가 가압력을 이용한 압송 방식으로 이송되도록 공정가스 또는 압축공기를 이용하여 상기 제2투입모듈에서 배출되는 분체를 가압하는 제2-1압송모듈; 상기 제2투입모듈에서 배출되는 분체가 상승되는 경로를 형성하도록 높이 방향으로 길게 형성되는 제2수직관; 상기 제2투입모듈에서 배출되는 분체가 흡입력을 이용한 흡송 방식으로 이송되도록 공정가스 또는 압축공기를 이용하여 상기 제2투입모듈에서 배출되는 분체 또는 상기 제2수직관의 분체를 흡입하여 저장하였다가 로터리밸브 방식을 이용하여 상기 분체를 제2계량량으로 계량하여 배출시키는 제2계량모듈; 및 상기 제2계량모듈에서 배출되는 분체가 가압력을 이용한 압송 방식으로 이송되도록 공정가스 또는 압축공기를 이용하여 상기 제2계량모듈에서 배출되는 분체를 가압하는 제2-2압송모듈;을 포함하며, 상기 제2투입모듈과 제2계량모듈 중 적어도 어느 하나에는, 상기 분체계량밸브가 포함되고, 상기 제2수직관을 기준으로 상기 제2수직관의 하단부 쪽에는 상기 제2-1압송모듈이 연결되고, 상기 제2-1압송모듈에는 상기 제2투입모듈이 연결되며, 상기 제2수직관을 기준으로 상기 제2수직관의 상단부 쪽에는 상기 제2계량모듈이 연결되고, 상기 제2계량모듈에는 상기 제2-2압송모듈이 연결된다.Here, the second transfer unit may include a second input module for storing the powder and measuring and discharging the powder at the second transfer amount; a 2-1 pressure transfer module that pressurizes the powder discharged from the second input module using a process gas or compressed air so that the powder discharged from the second input module is transferred by a pressure transfer method using a pressing force; a second vertical pipe formed long in a height direction to form a path through which the powder discharged from the second input module rises; The powder discharged from the second input module or the powder from the second vertical pipe is sucked and stored using process gas or compressed air so that the powder discharged from the second input module is transferred in a suction method using suction power, and stored in the rotary A second measuring module for measuring and discharging the powder in a second measuring amount using a valve method; And a 2-2 pressure transfer module for pressurizing the powder discharged from the second metering module using a process gas or compressed air so that the powder discharged from the second metering module is transferred by a pressure transfer method using a pressurizing force; At least one of the second input module and the second metering module includes the powder metering valve, and the 2-1 pressure transfer module is connected to the lower end of the second vertical tube based on the second vertical tube. The second input module is connected to the 2-1 pressure feeding module, the second metering module is connected to the upper end of the second vertical tube based on the second vertical tube, and the second metering module The 2-2 pressure transfer module is connected.
여기서, 상기 제2계량모듈은, 상기 제2수직관을 거쳐 이송되는 분체가 저장되는 제2계량호퍼; 상기 제2투입모듈로부터 배출되는 분체를 흡입력을 이용한 흡송 방식으로 흡입하여 상기 제2계량호퍼에 전달하는 제2진공이젝터; 및 로터리밸브 방식을 이용하여 상기 제2계량호퍼에 저장되는 분체를 상기 제2계량량으로 계량하여 배출시키는 제2계량밸브;를 포함하고, 상기 제2계량밸브는, 상기 분체계량밸브를 포함한다.Here, the second measurement module may include a second measurement hopper in which powder transported through the second vertical pipe is stored; a second vacuum ejector that sucks the powder discharged from the second input module in a suction method using a suction force and delivers it to the second metering hopper; and a second metering valve for measuring and discharging the powder stored in the second metering hopper by the second metering amount using a rotary valve method, wherein the second metering valve includes the powder metering valve. .
여기서, 상기 제2진공이젝터는, 공정가스 또는 압축공기에 의해 내부가 진공 상태로 유지되는 진공탱크부; 상기 진공탱크부의 내부를 진공 상태로 유지하기 위해 상기 공정가스 또는 상기 압축공기가 입력됨에 따라 상기 흡입력을 발생시키는 진공헤드부; 상기 제2수직관과 상기 진공탱크부가 연통되도록 상기 제2수직관이 연결되는 분체투입부; 상기 진공탱크부와 상기 제2계량호퍼를 개폐 가능하게 연통시키는 연결밸브부; 및 상기 제2투입모듈과 상기 제2-1압송모듈과 상기 진공헤드부 사이의 동작 관계를 제어하는 제어유닛;을 포함한다.Here, the second vacuum ejector, the vacuum tank unit is maintained in a vacuum state by the process gas or compressed air; a vacuum head unit generating the suction force as the process gas or the compressed air is input to maintain the inside of the vacuum tank unit in a vacuum state; a powder input unit to which the second vertical tube is connected so that the second vertical tube communicates with the vacuum tank unit; a connection valve unit that connects the vacuum tank unit and the second metering hopper in an open and close manner; and a control unit controlling an operating relationship between the second input module, the 2-1 pressure transfer module, and the vacuum head unit.
여기서, 상기 제어유닛은, 상기 제2투입모듈에서 상기 분체가 배출됨에 따라 상기 분체의 일부가 흡입력에 의한 흡송 방식으로 상기 제2수직관을 통과하도록 상기 제2-1압송모듈을 정지시킨 상태에서 상기 진공헤드부를 동작시키고, 다음으로, 상기 분체의 나머지가 가압력에 의한 압송 방식으로 상기 제2수직관을 통과하도록 상기 진공헤드부의 정지와 함께 상기 제2-1압송모듈을 동작시킨다.Here, the control unit, in a state in which the 2-1 pressure feeding module is stopped so that a part of the powder passes through the second vertical pipe in a suction method by suction force as the powder is discharged from the second input module The vacuum head unit is operated, and then, the 2-1 pressure transfer module is operated with the vacuum head unit stopped so that the remainder of the powder passes through the second vertical pipe in a pressure transfer method by pressing force.
여기서, 상기 제2이송유닛은, 상기 분체가 저장되고, 상기 분체를 상기 제2이송량으로 계량하여 배출시키는 제2투입모듈; 상기 제2투입모듈에서 배출되는 분체가 가압력을 이용한 압송 방식으로 이송되도록 공정가스 또는 압축공기를 이용하여 상기 제2투입모듈에서 배출되는 분체를 가압하는 제2-1압송모듈; 상기 제2투입모듈에서 배출되는 분체가 상승되는 경로를 형성하도록 높이 방향으로 길게 형성되는 제2수직관; 상기 제2투입모듈에서 배출되는 분체가 흡입력을 이용한 흡송 방식으로 이송되도록 공정가스 또는 압축공기를 이용하여 상기 제2투입모듈에서 배출되는 분체 또는 상기 제2수직관의 분체를 흡입하여 저장하였다가 피딩 방식을 이용하여 상기 분체를 제2계량량으로 계량하여 배출시키는 사일로모듈; 및 상기 사일로모듈에서 배출되는 분체가 가압력을 이용한 압송 방식으로 이송되도록 공정가스 또는 압축공기를 이용하여 상기 사일로모듈에서 배출되는 분체를 가압하는 사일로압송모듈;을 포함하며, 상기 제2투입모듈에는, 상기 분체계량밸브가 포함되고, 상기 제2수직관을 기준으로 상기 제2수직관의 하단부 쪽에는 상기 제2-1압송모듈이 연결되고, 상기 제2-1압송모듈에는 상기 제2투입모듈이 연결되며, 상기 제2수직관을 기준으로 상기 제2수직관의 상단부 쪽에는 상기 사일로모듈이 연결되고, 상기 사일로모듈에는 상기 사일로압송모듈이 연결된다.Here, the second transfer unit may include a second input module for storing the powder and measuring and discharging the powder at the second transfer amount; a 2-1 pressure transfer module that pressurizes the powder discharged from the second input module using a process gas or compressed air so that the powder discharged from the second input module is transferred by a pressure transfer method using a pressing force; a second vertical pipe formed long in a height direction to form a path through which the powder discharged from the second input module rises; Process gas or compressed air is used to suction the powder discharged from the second input module or the powder from the second upright pipe so that the powder discharged from the second input module is transferred in a suction method using suction power, and then stored and then fed. A silo module that measures and discharges the powder by a second weighing method using a method; and a silo pressure transfer module that pressurizes the powder discharged from the silo module using process gas or compressed air so that the powder discharged from the silo module is transferred in a pressure transfer method using a pressurizing force, wherein the second input module includes, The powder metering valve is included, the 2-1 pressure feeding module is connected to the lower end of the second vertical pipe based on the second vertical pipe, and the second input module is connected to the 2-1 pressure feeding module. The silo module is connected to the upper end of the second vertical pipe based on the second vertical pipe, and the silo pressure transfer module is connected to the silo module.
여기서, 상기 사일로모듈은, 상기 제2수직관을 거쳐 이송되는 분체가 저장되는 분체사일로; 상기 제2투입모듈로부터 배출되는 분체를 흡입력을 이용한 흡송 방식으로 흡입하여 상기 분체사일로에 전달하는 사일로진공이젝터; 및 피딩 방식을 이용하여 상기 본체사일로에 저장되는 분체를 상기 제2계량량으로 계량하여 배출시키는 테이블피더;를 포함한다.Here, the silo module includes a powder silo in which powder transported through the second vertical tube is stored; a silo vacuum ejector that sucks the powder discharged from the second input module by a suction method using a suction force and delivers it to the powder silo; and a table feeder for measuring and discharging the powder stored in the main silo by the second weighing amount using a feeding method.
여기서, 상기 사일로진공이젝터는, 공정가스 또는 압축공기에 의해 내부가 진공 상태로 유지되는 진공탱크부; 상기 진공탱크부의 내부를 진공 상태로 유지하기 위해 상기 공정가스 또는 상기 압축공기가 입력됨에 따라 상기 흡입력을 발생시키는 진공헤드부; 상기 제2수직관과 상기 진공탱크부가 연통되도록 상기 제2수직관이 연결되는 분체투입부; 상기 진공탱크부와 상기 분체사일로를 개폐 가능하게 연통시키는 연결밸브부; 및 상기 제2투입모듈과 상기 제2-1압송모듈과 상기 진공헤드부 사이의 동작 관계를 제어하는 제어유닛;을 포함한다.Here, the silo vacuum ejector includes a vacuum tank unit in which the inside is maintained in a vacuum state by process gas or compressed air; a vacuum head unit generating the suction force as the process gas or the compressed air is input to maintain the inside of the vacuum tank unit in a vacuum state; a powder input unit to which the second vertical tube is connected so that the second vertical tube communicates with the vacuum tank unit; a connection valve unit for opening and closing communication between the vacuum tank unit and the powder silo; and a control unit controlling an operating relationship between the second input module, the 2-1 pressure transfer module, and the vacuum head unit.
여기서, 상기 제어유닛은, 상기 제2투입모듈에서 상기 분체가 배출됨에 따라 상기 분체의 일부가 흡입력에 의한 흡송 방식으로 상기 제2수직관을 통과하도록 상기 제2-1압송모듈을 정지시킨 상태에서 상기 진공헤드부를 동작시키고, 다음으로, 상기 분체의 나머지가 가압력에 의한 압송 방식으로 상기 제2수직관을 통과하도록 상기 진공헤드부의 정지와 함께 상기 제2-1압송모듈을 동작시킨다.Here, the control unit, in a state in which the 2-1 pressure feeding module is stopped so that a part of the powder passes through the second vertical pipe in a suction method by suction force as the powder is discharged from the second input module The vacuum head unit is operated, and then, the 2-1 pressure transfer module is operated with the vacuum head unit stopped so that the remainder of the powder passes through the second vertical pipe in a pressure transfer method by pressing force.
여기서, 상기 제2이송유닛은, 상기 분체가 저장되고, 피딩 방식을 이용하여 상기 분체를 제2이송량으로 계량하여 배출시키는 사일로모듈; 상기 제2계량모듈에서 배출되는 분체가 가압력을 이용한 압송 방식으로 이송되도록 공정가스 또는 압축공기를 이용하여 상기 사일로모듈에서 배출되는 분체를 가압하는 사일로압송모듈; 상기 사일로모듈에서 배출되는 분체가 상승되는 경로를 형성하도록 높이 방향으로 길게 형성되는 제2수직관; 상기 사일로모듈에서 배출되는 분체가 흡입력을 이용한 흡송 방식으로 이송되도록 공정가스 또는 압축공기를 이용하여 상기 사일로모듈에서 배출되는 분체 또는 상기 제2수직관의 분체를 흡입하여 저장하였다가 로터리밸브 방식을 이용하여 상기 분체를 제2계량량으로 계량하여 배출시키는 제2계량모듈; 및 상기 제2계량모듈에서 배출되는 분체가 가압력을 이용한 압송 방식으로 이송되도록 공정가스 또는 압축공기를 이용하여 상기 제2계량모듈에서 배출되는 분체를 가압하는 제2-2압송모듈;을 포함하며, 상기 제2계량모듈에는, 상기 분체계량밸브가 포함되고, 상기 제2수직관을 기준으로 상기 제2수직관의 하단부 쪽에는 상기 사일로압송모듈이 연결되고, 상기 사일로압송모듈에는 상기 사일로모듈이 연결되며, 상기 제2수직관을 기준으로 상기 제2수직관의 상단부 쪽에는 상기 제2계량모듈이 연결되고, 상기 제2계량모듈에는 상기 제2-2압송모듈이 연결된다.Here, the second transfer unit includes a silo module that stores the powder and measures and discharges the powder at a second transfer amount using a feeding method; A silo pressure transfer module that pressurizes the powder discharged from the silo module using a process gas or compressed air so that the powder discharged from the second weighing module is transferred by a pressure transfer method using a pressurizing force; a second vertical pipe formed long in a height direction to form a path through which the powder discharged from the silo module rises; Process gas or compressed air is used to suction and store the powder discharged from the silo module or the powder of the second vertical pipe using a rotary valve method so that the powder discharged from the silo module is transported in a suction method using suction force. a second measurement module for measuring and discharging the powder by a second measurement amount; And a 2-2 pressure transfer module for pressurizing the powder discharged from the second metering module using a process gas or compressed air so that the powder discharged from the second metering module is transferred by a pressure transfer method using a pressurizing force; The second metering module includes the powder metering valve, the silo pressure feeding module is connected to the lower end of the second vertical pipe based on the second vertical pipe, and the silo module is connected to the silo pressure feeding module. And, based on the second vertical pipe, the second measuring module is connected to the upper end of the second vertical pipe, and the 2-2 pressure feeding module is connected to the second measuring module.
여기서, 상기 제2계량모듈은, 상기 제2수직관을 거쳐 이송되는 분체가 저장되는 제2계량호퍼; 상기 제2투입모듈로부터 배출되는 분체를 흡입력을 이용한 흡송 방식으로 흡입하여 상기 제2계량호퍼에 전달하는 제2진공이젝터; 및 로터리밸브 방식을 이용하여 상기 제2계량호퍼에 저장되는 분체를 상기 제2계량량으로 계량하여 배출시키는 제2계량밸브;를 포함하고, 상기 제2계량밸브는, 상기 분체계량밸브를 포함한다.Here, the second measurement module may include a second measurement hopper in which powder transported through the second vertical pipe is stored; a second vacuum ejector that sucks the powder discharged from the second input module in a suction method using a suction force and delivers it to the second metering hopper; and a second metering valve for measuring and discharging the powder stored in the second metering hopper by the second metering amount using a rotary valve method, wherein the second metering valve includes the powder metering valve. .
여기서, 상기 제2진공이젝터는, 공정가스 또는 압축공기에 의해 내부가 진공 상태로 유지되는 진공탱크부; 상기 진공탱크부의 내부를 진공 상태로 유지하기 위해 상기 공정가스 또는 상기 압축공기가 입력됨에 따라 상기 흡입력을 발생시키는 진공헤드부; 상기 제2수직관과 상기 진공탱크부가 연통되도록 상기 제2수직관이 연결되는 분체투입부; 상기 진공탱크부와 상기 제2계량호퍼를 개폐 가능하게 연통시키는 연결밸브부; 및 상기 사일로모듈과 상기 사일로압송모듈과 상기 진공헤드부 사이의 동작 관계를 제어하는 제어유닛;을 포함한다.Here, the second vacuum ejector, the vacuum tank unit is maintained in a vacuum state by the process gas or compressed air; a vacuum head unit generating the suction force as the process gas or the compressed air is input to maintain the inside of the vacuum tank unit in a vacuum state; a powder input unit to which the second vertical tube is connected so that the second vertical tube communicates with the vacuum tank unit; a connection valve unit that connects the vacuum tank unit and the second metering hopper in an open and close manner; and a control unit controlling an operating relationship between the silo module, the silo pressure feeding module, and the vacuum head unit.
여기서, 상기 제어유닛은, 상기 사일로모듈에서 상기 분체가 배출됨에 따라 상기 분체의 일부가 흡입력에 의한 흡송 방식으로 상기 제2수직관을 통과하도록 상기 사일로압송모듈을 정지시킨 상태에서 상기 진공헤드부를 동작시키고, 다음으로, 상기 분체의 나머지가 가압력에 의한 압송 방식으로 상기 제2수직관을 통과하도록 상기 진공헤드부의 정지와 함께 상기 사일로압송모듈을 동작시킨다.Here, the control unit operates the vacuum head unit in a state in which the silo pressure feeding module is stopped so that a part of the powder passes through the second vertical pipe in a suction method by suction force as the powder is discharged from the silo module. Next, the silo pressure feeding module is operated with the vacuum head stopped so that the remainder of the powder passes through the second vertical pipe in a pressure feeding method by pressing force.
여기서, 상기 제2투입모듈은, 상기 분체가 저장되는 제2투입호퍼; 상기 분체가 상기 제2투입호퍼에 투입될 때, 상기 분체로부터 자성을 갖는 이물질을 필터링하는 제2자석필터; 상기 분체가 상기 제2투입호퍼에 투입될 때, 상기 분체로부터 자성이 없는 이물질을 필터링하는 제2메쉬필터; 및 로터리밸브 방식을 이용하여 상기 제2투입호퍼에 저장되는 분체를 상기 제2이송량으로 계량하여 배출시키는 제2투입밸브;를 포함하고, 상기 제2투입밸브는, 상기 분체계량밸브를 포함한다.Here, the second input module, the second input hopper in which the powder is stored; a second magnetic filter for filtering foreign substances having magnetism from the powder when the powder is put into the second input hopper; a second mesh filter for filtering non-magnetic foreign substances from the powder when the powder is put into the second input hopper; and a second input valve for measuring and discharging the powder stored in the second input hopper by the second transfer amount using a rotary valve method, wherein the second input valve includes the powder metering valve.
여기서, 상기 제3이송유닛은, 상기 분체가 저장되고, 상기 분체를 상기 제3이송량으로 계량하여 배출시키는 제3투입모듈; 및 상기 제3투입모듈에서 배출되는 분체가 가압력을 이용한 압송 방식으로 이송되도록 공정가스 또는 압축공기를 이용하여 상기 제3투입모듈에서 배출되는 분체를 가압하는 제3압송모듈;을 포함한다.Here, the third transfer unit may include: a third input module for storing the powder and measuring and discharging the powder at the third transfer amount; and a third pressure transfer module pressurizing the powder discharged from the third input module by using a process gas or compressed air so that the powder discharged from the third input module is transferred by a pressure transfer method using a pressing force.
본 발명에 따른 스마트 분체원료 이송시스템은 바인더이송량에 대응하여 상기 활물질과 혼합되는 바인더를 액상의 솔루션으로 변환하여 이송시키는 바인더이송유닛; 및 용매이송량에 대응하여 상기 바인더를 용해시켜 상기 솔루션을 형성하기 위한 용매를 이송시키는 용매이송유닛;을 더 포함하고, 상기 분체는, 전극의 원료인 활물질로 이루어진다.A smart powder raw material conveying system according to the present invention includes a binder conveying unit for converting and conveying the binder mixed with the active material into a liquid solution in response to the binder conveying amount; and a solvent transport unit configured to transport the solvent for forming the solution by dissolving the binder in response to the transport amount of the solvent, wherein the powder is made of an active material that is a raw material of an electrode.
여기서, 상기 바인더이송유닛은, 상기 바인더가 저장되고, 상기 바인더를 상기 바인더이송량으로 계량하여 배출시키는 바인더투입모듈; 상기 바인더투입모듈에서 배출되는 바인더가 가압력을 이용한 압송 방식으로 이송되도록 공정가스 또는 압축공기를 이용하여 상기 바인더투입모듈에서 배출되는 바인더를 가압하는 바인더압송모듈; 상기 솔루션이 형성되도록 상기 바인더압송모듈을 거쳐 전달되는 바인더와 상기 용매이송유닛을 통해 전달되는 용매를 혼합시키는 바인더믹싱모듈; 상기 솔루션을 펌핑하는 솔루션이송모듈; 솔루션이송모듈로부터 전달되는 솔루션이 저장되되, 상기 솔루션의 이송량에 대응하여 상기 솔루션의 정량 배출이 가능한 솔루션호퍼스케일; 및 상기 솔루션의 이송량에 대응하여 상기 솔루션호퍼스케일의 솔루션을 펌핑하는 솔루션공급펌프;를 포함한다.Here, the binder transfer unit may include a binder input module for storing the binder and metering and discharging the binder according to the binder transfer amount; a binder pressure feeding module that pressurizes the binder discharged from the binder feeding module using a process gas or compressed air so that the binder discharged from the binder feeding module is transported by a pressure feeding method; a binder mixing module for mixing the binder delivered through the binder pressure delivery module and the solvent delivered through the solvent delivery unit to form the solution; A solution transfer module for pumping the solution; A solution hopper scale capable of storing the solution delivered from the solution transfer module and discharging the fixed amount of the solution in response to the transfer amount of the solution; and a solution supply pump for pumping the solution of the solution hopper scale in response to the transfer amount of the solution.
여기서, 상기 용매이송유닛은, 상기 용매가 저장되는 용매탱크; 상기 용매탱크에 저장되는 용매를 펌핑하는 용매펌핑모듈; 상기 바인더에 혼합되는 용매를 조절하는 믹싱조절모듈; 및 상기 슬러리에 혼합되는 용매를 조절하는 슬러리조절모듈;을 포함한다.Here, the solvent transport unit includes a solvent tank in which the solvent is stored; a solvent pumping module for pumping the solvent stored in the solvent tank; a mixing control module for adjusting the solvent mixed with the binder; and a slurry control module for adjusting the solvent mixed with the slurry.
본 발명에 따른 스마트 분체원료 이송시스템은 도전재이송량에 대응하여 전극을 형성하기 위한 슬러리에 혼합되는 도전재를 이송시키는 도전재이송유닛; 및 분산재이송량에 대응하여 전극을 형성하기 위한 슬러리에 혼합되는 분산재를 이송시키는 분산재이송유닛; 중 적어도 어느 하나를 더 포함한다.A smart powder raw material conveying system according to the present invention includes a conductive material conveying unit for conveying a conductive material mixed with a slurry for forming an electrode in response to a conveying amount of the conductive material; and a dispersion material transport unit for transporting the dispersion material mixed with the slurry for forming the electrode in response to the transport amount of the dispersion material. It further includes at least one of
여기서, 상기 도전재이송유닛은, 상기 도전재가 저장되는 도전재호퍼스케일; 및 상기 도전재이송량에 대응하여 상기 도전재호퍼스케일에 저장되는 도전재를 정량으로 펌핑하는 도전재공급펌프;를 포함한다.Here, the conductive material conveying unit may include a conductive material hopper scale in which the conductive material is stored; and a conductive material supply pump for pumping the conductive material stored in the conductive material hopper scale in a quantitative amount in response to the transfer amount of the conductive material.
여기서, 상기 분산재이송유닛은, 상기 분산재가 저장하는 분산재호퍼스케일; 및 상기 분산재이송량에 대응하여 상기 분산재호퍼스케일에 저장되는 분산재를 정량으로 펌핑하는 분산재공급펌프;를 포함한다.Here, the dispersion ash transfer unit includes a dispersion ash hopper scale in which the dispersion material is stored; and a dispersion material supply pump for pumping the dispersion material stored in the dispersion material hopper scale in a fixed amount corresponding to the amount of the dispersion material conveyed.
본 발명에 따른 스마트 분체원료 이송시스템은 상기 분체이송유닛을 거쳐 전달되는 분체와 상기 바인더이송유닛을 거쳐 전달되는 솔루션과 상기 용매이송유닛을 거쳐 전달되는 용매를 혼합하는 믹싱유닛;을 더 포함한다.The smart powder raw material conveying system according to the present invention further includes a mixing unit for mixing the powder delivered through the powder conveying unit, the solution conveyed through the binder conveying unit, and the solvent conveyed through the solvent conveying unit.
본 발명에 따른 스마트 분체원료 이송방법은 본 발명에 따른 스마트 분체원료 이송시스템을 이용하여 상기 분체를 이송하는 방법이고, 제1이송량에 대응하여 분체를 이송시키는 제1이송단계와, 상기 제1이송량과 같거나 다른 제2이송량에 대응하여 상기 분체를 이송시키는 제2이송단계와, 상기 제1이송량 또는 상기 제2이송량보다 작은 제3이송량에 대응하여 상기 분체를 이송시키는 제3이송단계 중 적어도 어느 하나를 포함하는 분체이송단계;를 포함한다.A smart powder raw material transfer method according to the present invention is a method for transferring the powder using the smart powder raw material transfer system according to the present invention, and includes a first transfer step of transferring the powder in response to a first transfer amount, and the first transfer amount At least one of a second transfer step of transferring the powder in response to a second transfer amount equal to or different from, and a third transfer step of transferring the powder in response to a third transfer amount smaller than the first transfer amount or the second transfer amount It includes; powder transfer step including one.
여기서, 상기 제1이송단계는, 상기 제1이송유닛의 분체가 높이 방향으로 길게 형성된 제1수직관에서 상승될 때, 상기 제1수직관에서 상기 제1이송량 중 일부의 분체를 상기 제1수직관의 상단부 쪽에서 작용하는 흡입력을 이용한 흡송 방식으로 통과시키는 제1흡송단계; 및 상기 제1흡송단계를 거친 다음, 상기 제1수직관에서 상기 제1이송량 중 나머지의 분체를 상기 제1수직관의 하단부 쪽에서 작용하는 가압력을 이용한 압송 방식으로 통과시키는 제1압송단계;를 포함한다.Here, in the first transfer step, when the powder of the first transfer unit is raised in the first vertical tube formed long in the height direction, the powder of a part of the first transfer amount in the first vertical tube is transferred to the first number. A first suction step of passing through a suction method using suction force acting at the upper end of the straight pipe; And after the first suction step, a first pressure conveying step of passing the remaining powder of the first transfer amount in the first vertical pipe by a pressure conveying method using a pressing force acting at the lower end of the first vertical pipe. do.
여기서, 상기 제2이송단계는, 상기 제2이송유닛의 분체가 높이 방향으로 길게 형성된 제2수직관에서 상승될 때, 상기 제2수직관에서 상기 제2이송량 중 일부의 분체를 상기 제2수직관의 상단부 쪽에서 작용하는 흡입력을 이용한 흡송 방식으로 통과시키는 제2흡송단계; 및 상기 제2흡송단계를 거친 다음, 상기 제2이송량 중 나머지의 분체는 상기 제2수직관의 하단부 쪽에서 작용하는 가압력을 이용한 압송 방식으로 상기 제2수직관을 통과시키는 제2압송단계;를 포함한다.Here, in the second transfer step, when the powder of the second transfer unit is raised in the second vertical tube formed long in the height direction, the powder of a part of the second transfer amount in the second vertical tube is transferred to the second number A second suction step of passing through a suction method using suction force acting at the upper end of the straight tube; And after passing through the second suction step, a second pressure conveying step of passing the remaining powder of the second conveying amount through the second vertical pipe in a pressure conveying method using a pressing force acting at the lower end of the second vertical pipe. do.
여기서, 상기 제3이송단계는, 상기 제3투입모듈에 저장된 분체를 상기 제3이송량으로 계량하여 배출시키는 제3투입단계; 및 상기 제3투입단계를 거쳐 배출되는 분체가 가압력을 이용한 압송 방식으로 이송되도록 공정가스 또는 압축공기를 이용하여 상기 제3투입모듈에서 배출되는 분체를 가압하는 제3압송단계;를 포함한다.Here, the third transfer step may include a third input step of measuring and discharging the powder stored in the third input module at the third transfer amount; and a third pressure transfer step of pressurizing the powder discharged from the third input module by using a process gas or compressed air so that the powder discharged through the third input step is transferred by a pressure transfer method using a pressurizing force.
본 발명에 따른 스마트 분체원료 이송방법은 바인더이송량에 대응하여 상기 활물질과 혼합되는 바인더를 액상의 솔루션으로 변환하여 이송시키는 바인더이송단계; 및 용매이송량에 대응하여 상기 바인더를 용해시켜 상기 솔루션을 형성하기 위한 용매를 이송시키는 용매이송단계;를 더 포함하고, 상기 분체는, 전극의 원료인 활물질로 이루어진다.A smart powder raw material transfer method according to the present invention includes a binder transfer step of converting and transferring the binder mixed with the active material into a liquid solution in response to the amount of binder transfer; and a solvent transfer step of transferring the solvent for forming the solution by dissolving the binder in response to the solvent transfer amount, wherein the powder is made of an active material that is a raw material of an electrode.
본 발명에 따른 스마트 분체원료 이송방법은 도전재이송량에 대응하여 전극을 형성하기 위한 슬러리에 혼합되는 도전재를 이송시키는 도전재이송단계; 및 분산재이송량에 대응하여 전극을 형성하기 위한 슬러리에 혼합되는 분산재를 이송시키는 분산재이송단계; 중 적어도 어느 하나를 더 포함한다.A smart powder raw material transfer method according to the present invention includes a conductive material transfer step of transferring a conductive material mixed with a slurry for forming an electrode in response to a conductive material transfer amount; and a dispersion material transfer step of transferring the dispersion material mixed with the slurry for forming an electrode in response to the amount of the dispersion material transported. It further includes at least one of
본 발명에 따른 스마트 분체원료 이송방법은 전극을 형성하기 위한 슬러리를 형성하도록 상기 분체이송단계를 거쳐 전달되는 분체와 상기 바인더이송단계를 거쳐 전달되는 솔루션과 상기 용매이송단계를 거쳐 전달되는 용매를 혼합하는 믹싱단계;를 더 포함한다.The smart powder raw material transfer method according to the present invention mixes the powder delivered through the powder transfer step, the solution delivered through the binder transfer step, and the solvent delivered through the solvent transfer step to form a slurry for forming an electrode A mixing step to do; further includes.
본 발명에 따른 스마트 분체원료 이송시스템과 스마트 분체원료 이송방법에 따르면, 분말 형태의 분체가 분체이송라인을 따라 이송될 때, 분체이송라인 중 수직으로 설치되는 해당 수직관에서 정밀 계량된 분체를 원활하게 통과시키는 한편, 분체가 해당 수직관에 잔류하거나 정체되는 것을 방지할 수 있다.According to the smart powder raw material conveying system and the smart powder raw material conveying method according to the present invention, when powder in the form of powder is transferred along the powder conveying line, the powder accurately measured in the vertical pipe installed vertically in the powder conveying line is smoothly transported. while allowing the powder to pass through, it is possible to prevent the powder from remaining or being stagnant in the riser.
또한, 본 발명은 분체이송라인 중 제1분체라인에서 분체의 흡송 이후에 분체의 압송이 이루어짐에 따라, 제1수직관에 작용하는 부하를 최소화시키고, 제1수직관의 두께를 줄일 수 있으며, 유지보수 비용 및 재료비 절감을 통해 원가절감 효과를 기대할 수 있다.In addition, the present invention minimizes the load acting on the first vertical pipe and reduces the thickness of the first vertical pipe by pressurizing the powder after the suction of the powder in the first powder line of the powder transfer line, Cost reduction can be expected by reducing maintenance and material costs.
또한, 본 발명은 제1이송유닛의 세부 구성을 통해 제1투입모듈과 제1계량모듈 사이에서 분체의 이송을 원활하게 하고, 분체이송라인 중 제1분체라인에서 분체의 흡송과 분체의 압송을 명확하게 할 수 있다.In addition, the present invention facilitates the transfer of powder between the first input module and the first metering module through the detailed configuration of the first transfer unit, and the suction and pressurization of the powder in the first powder line among the powder transfer lines can be made clear
또한, 본 발명은 제1계량모듈의 세부 구성을 통해 분체이송라인 중 제1분체라인에서 분체의 흡송을 위한 흡입력을 안정되게 발생시키고, 일체화된 제1계량모듈에서 제1수직관과 제1계량호퍼 사이의 분체 이송을 원활하게 할 수 있다.In addition, the present invention stably generates a suction power for powder suction in the first powder line of the powder transfer line through the detailed configuration of the first metering module, and in the first metering module integrated with the first vertical pipe and the first metering Powder transfer between hoppers can be smoothly performed.
또한, 본 발명은 제1진공이젝터의 세부 구성을 통해 분체에 안정된 흡입력을 제공하는 한편, 제1이송량에 대응하여 본체의 연속 이송을 명확하게 할 수 있고, 분체가 제1수직관에 잔류하거나 정체되는 것을 방지하여 제1분체라인 또는 제1수직관의 막힘을 해소할 수 있다.In addition, the present invention provides a stable suction power to the powder through the detailed configuration of the first vacuum ejector, while it is possible to clearly perform the continuous transfer of the main body in response to the first transfer amount, and the powder remains or stagnates in the first vertical tube. It is possible to prevent clogging of the first powder line or the first vertical pipe.
또한, 본 발명은 제1투입모듈의 세부 구성을 통해 외부에서 전달되는 분체의 전달을 용이하게 하고, 분체에 혼합되는 이물질을 제거하여 분체의 순도를 향상시킬 수 있다.In addition, the present invention facilitates the delivery of powder delivered from the outside through the detailed configuration of the first input module, and can improve the purity of the powder by removing foreign substances mixed with the powder.
또한, 본 발명은 분체이송라인 중 제2분체라인에서 분체의 흡송 이후에 분체의 압송이 이루어짐에 따라, 제2수직관에 작용하는 부하를 최소화시키고, 제2수직관의 두께를 줄일 수 있으며, 유지보수 비용 및 재료비 절감을 통해 원가절감 효과를 기대할 수 있다.In addition, the present invention minimizes the load acting on the second vertical pipe and reduces the thickness of the second vertical pipe as the powder is pumped after the powder is sucked in the second powder line of the powder transfer line, Cost reduction can be expected by reducing maintenance and material costs.
또한, 본 발명은 제2이송유닛의 세부 구성을 통해 제2투입모듈과 제2계량모듈 사이에서 분체의 이송을 원활하게 하고, 분체이송라인 중 제2분체라인에서 분체의 흡송과 분체의 압송을 명확하게 할 수 있다.In addition, the present invention facilitates the transfer of powder between the second input module and the second metering module through the detailed configuration of the second transfer unit, and the powder suction and pressurized transfer of powder in the second powder line among the powder transfer lines can be made clear
또한, 본 발명은 제2계량모듈의 세부 구성을 통해 분체이송라인 중 제2분체라인에서 분체의 흡송을 위한 흡입력을 안정되게 발생시키고, 일체화된 제2계량모듈에서 제2수직관과 제2계량호퍼 사이의 분체 이송을 원활하게 할 수 있다.In addition, the present invention stably generates a suction power for powder suction in the second powder line of the powder transfer line through the detailed configuration of the second metering module, and the second vertical pipe and the second metering in the integrated second metering module. Powder transfer between hoppers can be smoothly performed.
또한, 본 발명은 제2진공이젝터의 세부 구성을 통해 분체에 안정된 흡입력을 제공하는 한편, 제2이송량에 대응하여 본체의 연속 이송을 명확하게 할 수 있고, 분체가 제2수직관에 잔류하거나 정체되는 것을 방지하여 제2분체라인 또는 제2수직관의 막힘을 해소할 수 있다.In addition, the present invention provides a stable suction power to the powder through the detailed configuration of the second vacuum ejector, while it is possible to clearly perform the continuous transfer of the main body in response to the second transfer amount, and the powder remains or stagnates in the second vertical tube. It is possible to prevent clogging of the second powder line or the second vertical pipe.
또한, 본 발명은 제2이송유닛의 세부 구성을 통해 제2투입모듈과 사일로모듈 사이에서 분체의 이송을 원활하게 하고, 분체이송라인 중 제2분체라인에서 분체의 흡송과 분체의 압송을 명확하게 할 수 있다.In addition, the present invention facilitates the transfer of powder between the second input module and the silo module through the detailed configuration of the second transfer unit, and clearly performs the suction and pressurization of powder in the second powder line among the powder transfer lines. can do.
또한, 본 발명은 사일로모듈의 세부 구성을 통해 분체이송라인 중 제2분체라인에서 분체의 흡송을 위한 흡입력을 안정되게 발생시키고, 일체화된 사일로모듈에서 제2수직관과 분체사일로 사이의 분체 이송을 원활하게 할 수 있다.In addition, the present invention stably generates a suction power for powder suction in the second powder line of the powder transfer line through the detailed configuration of the silo module, and transfers the powder between the second vertical tube and the powder silo in the integrated silo module. can be done smoothly.
또한, 본 발명은 사일로진공이젝터의 세부 구성을 통해 분체에 안정된 흡입력을 제공하는 한편, 제2이송량에 대응하여 본체의 연속 이송을 명확하게 할 수 있고, 분체가 제2수직관에 잔류하거나 정체되는 것을 방지하여 제2분체라인 또는 제2수직관의 막힘을 해소할 수 있다.In addition, the present invention provides a stable suction power to the powder through the detailed configuration of the silo vacuum ejector, while it is possible to clarify the continuous transfer of the main body in response to the second transfer amount, and the powder remains or stagnates in the second vertical pipe. It is possible to prevent clogging of the second powder line or the second vertical pipe.
또한, 본 발명은 제2이송유닛의 세부 구성을 통해 사일로모듈과 제2계량모듈 사이에서 분체의 이송을 원활하게 하고, 분체이송라인 중 제2분체라인에서 분체의 흡송과 분체의 압송을 명확하게 할 수 있다.In addition, the present invention facilitates the transfer of powder between the silo module and the second weighing module through the detailed configuration of the second transfer unit, and clearly performs the suction and pressurization of powder in the second powder line among the powder transfer lines. can do.
또한, 본 발명은 사일로모듈을 통해 외부에서 전달되는 분체을 대량으로 보관하였다가 간헐적으로 배출시킬 수 있다.In addition, the present invention can store a large amount of powder delivered from the outside through the silo module and then discharge it intermittently.
또한, 본 발명은 제2투입모듈의 세부 구성을 통해 외부에서 전달되는 분체의 전달을 용이하게 하고, 분체에 혼합되는 이물질을 제거하여 분체의 순도를 향상시킬 수 있다.In addition, the present invention facilitates the delivery of powder delivered from the outside through the detailed configuration of the second input module, and can improve the purity of the powder by removing foreign substances mixed with the powder.
또한, 본 발명은 제3이송유닛의 세부 구성을 통해 분체의 최종 목적지인 믹싱유닛에서 최종 완성되는 슬러리의 상태에 따라 분체의 양을 조절하여 추가 투입할 수 있다.In addition, according to the present invention, the amount of powder can be additionally added by adjusting the amount of powder according to the state of the finally completed slurry in the mixing unit, which is the final destination of the powder, through the detailed configuration of the third transfer unit.
또한, 본 발명은 바인더이송유닛과 용매이송유닛의 부가 구성을 통해 활물질로 이루어진 분체를 이용하여 전극 형성을 위한 슬러리를 안정되게 제조할 수 있다.In addition, the present invention can stably prepare a slurry for forming an electrode using powder made of an active material through the addition of a binder transfer unit and a solvent transfer unit.
또한, 본 발명은 바인더이송유닛의 세부 구성을 통해 분말 형태 또는 필렛 형태의 바인더를 안정되게 용해시키고, 바인더의 용해에 따라 형성되는 솔류션의 농도 조절을 간편하게 할 수 있다.In addition, the present invention can stably dissolve the binder in the form of powder or fillet through the detailed configuration of the binder transfer unit, and conveniently adjust the concentration of the solution formed according to the dissolution of the binder.
또한, 본 발명은 용매이송유닛의 세부 구성을 통해 필요한 유닛에 정량의 용매를 안정되게 공급할 수 있다.In addition, the present invention can stably supply a fixed amount of solvent to the required unit through the detailed configuration of the solvent transfer unit.
또한, 본 발명은 도전재이송유닛의 부가 구성을 통해 최종 완성되는 슬러리에 정량의 도전재를 안정되게 공급하고, 슬러리의 전기전도도를 향상시킬 수 있다.In addition, the present invention can stably supply a quantity of conductive material to the finally completed slurry through the additional configuration of the conductive material transfer unit, and improve the electrical conductivity of the slurry.
또한, 본 발명은 도전재이송유닛의 세부 구성을 통해 도전재의 액상화를 도모하여 도전재의 이송을 원활하게 하고, 도전재와 활물질이 안전된 균일 혼합물을 형성하도록 한다.In addition, the present invention facilitates the transfer of the conductive material by promoting liquefaction of the conductive material through the detailed configuration of the conductive material transfer unit, and forms a safe uniform mixture between the conductive material and the active material.
또한, 본 발명은 분산재이송유닛의 부가 구성을 통해 활물질인 분체의 분산을 원활하게 하고, 최종 완성되는 슬러리의 상품성을 향상시킬 수 있다.In addition, the present invention can smoothly disperse the powder as an active material through the additional configuration of the dispersion material transfer unit, and improve the marketability of the finally completed slurry.
또한, 본 발명은 분산재이송유닛의 세부 구성을 통해 분산재의 액상화를 도모하여 분산재의 이송을 원활하게 하고, 분산재를 통한 활물질의 선분산이 원활하게 이루어지도록 하며, 분산재와 활물질이 안정된 균일 혼합물을 형성하도록 한다.In addition, the present invention facilitates the transport of the dispersion material by promoting liquefaction of the dispersion material through the detailed configuration of the dispersion material transport unit, and smoothly pre-dispersing the active material through the dispersion material, and forming a stable uniform mixture of the dispersion material and the active material. let it do
또한, 본 발명은 믹싱유닛의 부가 구성을 통해 전극을 형성하기 위해 최종 완성되는 슬러리를 안정화시킬 수 있다.In addition, the present invention can stabilize the finally completed slurry to form an electrode through the additional configuration of the mixing unit.
또한, 본 발명은 믹싱유닛의 세부 구성을 통해 슬러리가 안정된 균일 혼합물로 형성되도록 하고, 슬러리의 농도 조절을 간편하게 할 수 있다.In addition, the present invention allows the slurry to be formed as a stable and homogeneous mixture through the detailed configuration of the mixing unit, and it is possible to conveniently control the concentration of the slurry.
또한, 본 발명은 스마트 분체원료 이송방법의 세부 구성들을 통해 스마트 분체원료 이송시스템의 결합관계를 명확하게 하고, 안정된 스마트 분체원료 이송시스템을 구현할 수 있으며, 상술한 유닛들의 효과를 명확하게 표출시킬 수 있다.In addition, the present invention can clarify the coupling relationship of the smart powder raw material conveying system through detailed configurations of the smart powder raw material conveying method, implement a stable smart powder raw material conveying system, and clearly express the effects of the above-mentioned units. have.
본 발명에 따른 분체계량밸브에 따르면, 분말 형태의 분체를 기계적으로 명확하게 정량 계량하여 순차적으로 배출할 수 있다.According to the powder metering valve according to the present invention, powder in the form of powder can be mechanically clearly metered and discharged sequentially.
또한, 본 발명은 계량하우징을 통해 분배모듈을 회전 가능하게 지지하고, 내부에 단위배출홈부를 형성하여 기설정된 정량의 분체가 분리 수용되도록 한다.In addition, the present invention rotatably supports the distribution module through the metering housing, and forms a unit discharge groove therein so that a predetermined amount of powder is separately accommodated.
또한, 본 발명은 계량하우징의 세부 구성을 통해 분배개구부와 점검구 중 적어도 점검구의 개폐를 가능하게 하고, 계량하우징에서 분배모듈의 탈부착을 간편하게 하며, 계량하우징에서 분배모듈의 유지 보수를 안정화시킬 수 있다.In addition, the present invention enables the opening and closing of at least the inspection port among the distribution opening and the inspection port through the detailed configuration of the metering housing, simplifies attachment and detachment of the distribution module from the metering housing, and can stabilize maintenance of the distribution module in the metering housing. .
또한, 본 발명은 퍼지부의 구성을 통해 입구와 출구 중 적어도 어느 하나에 서 분진 폭발을 방지하고, 분체의 이송을 원활하게 하며, 분체가 분배모듈에 정량공급되도록 하고, 분배모듈에서 분체가 정량 배출되도록 한다.In addition, the present invention prevents dust explosion at at least one of the inlet and outlet through the configuration of the purge unit, facilitates the transfer of powder, allows the powder to be supplied in a fixed amount to the distribution module, and the powder is discharged in a fixed amount from the distribution module Let it be.
또한, 본 발명은 분배모듈을 통해 계량하우징의 내부에 기설정된 정량의 분체가 수용 가능한 단위배출홈부를 형성하고, 분체의 이송을 원활하게 할 수 있다.In addition, according to the present invention, a unit discharge groove portion capable of accommodating a predetermined quantity of powder can be formed inside the metering housing through the distribution module, and the powder can be smoothly transported.
또한, 본 발명은 분배모듈의 세부 구성을 통해 단위배출홈부를 안정되게 구획하여 단위배출홈부의 분체를 명확하게 이송시킬 수 있다.In addition, the present invention stably divides the unit discharge groove through the detailed configuration of the distribution module, so that the powder of the unit discharge groove can be clearly transferred.
또한, 본 발명은 스크래퍼를 통해 계량하우징의 내부에서 분체가 늘러붙는 것을 방지하고, 단위배출홈부 사이에서 분체의 전달을 방지할 수 있다.In addition, the present invention can prevent the powder from sticking inside the metering housing through the scraper and prevent the powder from being transferred between the unit discharge grooves.
또한, 본 발명은 축이음모듈을 통해 분배개구부와 점검구 중 적어도 분배개구부의 개폐를 가능하게 하고, 계량하우징에서 분배모듈의 탈부착을 간편하게 하며, 계량하우징에서 분배모듈의 유지보수를 안정화시킬 수 있다.In addition, the present invention enables opening and closing of at least the distribution opening of the distribution opening and the inspection port through the shaft joint module, simplifies attachment and detachment of the distribution module from the metering housing, and can stabilize maintenance of the distribution module in the metering housing.
또한, 본 발명은 개폐이음부재를 통해 계량하우징 내부의 분체가 외부로 누출되는 것을 방지하고, 분배모듈의 회전을 명확하게 하며, 분배모듈의 회전에 따른 유동을 방지할 수 있다.In addition, the present invention can prevent the leakage of powder inside the metering housing to the outside through the opening and closing joint member, make the rotation of the distribution module clear, and prevent the flow due to the rotation of the distribution module.
또한, 본 발명은 축이음부재를 통해 가상의 제1축인 전달구동축부를 안정되게 지지하고, 전달구동축부의 회전을 부드럽게 할 수 있다.In addition, the present invention can stably support the transmission drive shaft portion, which is a virtual first axis, through the shaft coupling member, and smooth the rotation of the transmission drive shaft portion.
또한, 본 발명은 변환모듈을 통해 회전력을 조절하여 균일한 회전력으로 분배모듈을 안정되게 회전시킬 수 있다.In addition, the present invention can stably rotate the distribution module with a uniform rotational force by adjusting the rotational force through the conversion module.
또한, 본 발명은 변환모듈의 세부 구성을 통해 회전력의 전달 방향을 간편하게 변경할 수 있다.In addition, the present invention can easily change the transmission direction of the rotational force through the detailed configuration of the conversion module.
또한, 본 발명은 전달구동축부의 결합 관계를 통해 분배모듈과 축이음모듈과 변환모듈을 동축에 배치하여 전달구동축부의 회전을 원활하게 하고, 분배모듈에서 전달구동축부의 결합력을 향상시켜 전달구동축부에 분배모듈을 안정되게 고정시킬 수 있으며, 축이음모듈에서 전달구동축부가 원활하게 회전되도록 한다.In addition, the present invention facilitates the rotation of the transmission drive shaft by coaxially arranging the distribution module, the shaft joint module, and the conversion module through the coupling relationship of the transmission drive shaft, and distributes it to the transmission drive shaft by improving the coupling force of the transmission drive shaft in the distribution module. The module can be stably fixed, and the transmission drive shaft part rotates smoothly in the shaft coupling module.
또한, 본 발명은 동력발생모듈을 통해 안정된 회전력이 발생되도록 하고, 변환모듈로의 회전력 전달을 명확하게 할 수 있다.In addition, the present invention can ensure stable rotational force is generated through the power generation module, and the transmission of rotational force to the conversion module can be clarified.
또한, 본 발명은 회전센싱모듈을 통해 단위배출홈부에 대응하여 분배모듈의 회전량을 간편하게 확인할 수 있고, 입구와 출구를 기준으로 단위배출홈부의 위치 파악을 간편하고 명확하게 할 수 있다.In addition, the present invention can easily check the amount of rotation of the distribution module corresponding to the unit discharge groove through the rotation sensing module, and can easily and clearly identify the location of the unit discharge groove based on the inlet and outlet.
또한, 본 발명은 회전센싱모듈의 세부 구성을 통해 분배모듈의 회전 속도 조절에 필요한 위치 검출을 명확하게 하고, 입구와 단위배출홈부와 출구 사이의 연통 관계를 조절하여 분체가 안정되게 이송되도록 한다.In addition, the present invention clearly detects the position necessary for adjusting the rotation speed of the distribution module through the detailed configuration of the rotation sensing module, and adjusts the communication relationship between the inlet, the unit discharge groove, and the outlet so that the powder is stably transported.
또한, 본 발명은 센싱패들의 세부 구성을 통해 단위배출홈부의 회전폭에 대응하여 센싱 위치를 안정되게 특정시키고, 스피드센서의 감도를 향상시켜 회전력의 조절을 명확하게 할 수 있다.In addition, the present invention stably specifies the sensing position corresponding to the rotational width of the unit discharge groove through the detailed configuration of the sensing paddle, and improves the sensitivity of the speed sensor to clearly control the rotational force.
또한, 본 발명은 디폴트설정부를 통해 입구에 대응하여 단위배출홈부를 초기에 정위치할 수 있고, 분체계량밸브의 초기화를 간편하게 할 수 있다.In addition, the present invention can initially position the unit discharge groove corresponding to the inlet through the default setting unit, and can simplify the initialization of the powder metering valve.
또한, 본 발명은 속도제어모듈을 통해 분배모듈에 전달되는 분체의 전달량을 명확하게 조절하고, 단위분배홈부마다 기설정된 정량의 분체가 투입되도록 한다.In addition, the present invention clearly controls the delivery amount of powder delivered to the distribution module through the speed control module, and allows a predetermined amount of powder to be injected into each unit distribution groove.
또한, 본 발명은 미세감속방식을 통해 기준 회전력보다 작은 감속력을 제공하므로, 동력발생모듈에서의 에너지 낭비를 방지할 수 있고, 회전력 제어를 원활하게 할 수 있다.In addition, since the present invention provides a deceleration force smaller than the reference rotational force through a fine deceleration method, it is possible to prevent energy waste in the power generation module and smoothly control the rotational force.
또한, 본 발명은 수용가속방식을 통해 기준 회전력보다 큰 가속력을 제공하므로, 분배모듈의 회전에 따른 제어를 간편하게 하고, 회전력 제어를 원활하게 할 수 있다.In addition, since the present invention provides an acceleration force greater than the reference rotational force through the accommodating acceleration method, control according to rotation of the distribution module can be simplified and rotational force control can be smoothly controlled.
도 1은 본 발명의 일 실시예에 따른 스마트 분체원료 이송시스템에서 분체인 활물질의 이송을 위한 블럭도이다.1 is a block diagram for the transport of powdery active material in a smart powder raw material transport system according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 스마트 분체원료 이송시스템에서 이송제어유닛을 도시한 도면이다.2 is a diagram showing a transfer control unit in a smart powder raw material transfer system according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 스마트 분체원료 이송시스템에서 활물질에 혼합되는 바인더의 이송을 위한 블럭도이다.3 is a block diagram for transporting a binder mixed with an active material in a smart powder raw material transport system according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 스마트 분체원료 이송시스템에서 활물질에 혼합되는 용매의 이송을 위한 블럭도이다.4 is a block diagram for transporting a solvent mixed with an active material in a smart powder raw material transport system according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 스마트 분체원료 이송시스템에서 활물질에 혼합되는 도전재의 이송을 위한 블럭도이다.5 is a block diagram for transporting a conductive material mixed with an active material in a smart powder raw material transport system according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 스마트 분체원료 이송시스템에서 활물질에 혼합되는 분산재의 이송을 위한 블럭도이다.6 is a block diagram for transporting a dispersion material mixed with an active material in a smart powder raw material transport system according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 스마트 분체원료 이송시스템에서 재료들을 혼합하는 믹싱유닛을 도시한 블럭도이다.7 is a block diagram showing a mixing unit for mixing materials in a smart powder raw material conveying system according to an embodiment of the present invention.
도 8은 본 발명의 일 실시예에 따른 스마트 분체원료 이송방법을 도시한 블럭도이다.8 is a block diagram showing a smart powder raw material transfer method according to an embodiment of the present invention.
도 9는 본 발명의 일 실시예에 따른 분체계량밸브를 도시한 평면도이다.9 is a plan view showing a powder metering valve according to an embodiment of the present invention.
도 10은 본 발명의 일 실시예에 따른 분체계량밸브를 도시한 정단면도이다.10 is a front sectional view showing a powder metering valve according to an embodiment of the present invention.
도 11은 본 발명의 일 실시예에 따른 분체계량밸브를 도시한 측면도이다.11 is a side view showing a powder metering valve according to an embodiment of the present invention.
도 12는 본 발명의 일 실시예에 따른 분체계량밸브에서 분배모듈을 도시한 도면이다.12 is a view showing a distribution module in a powder metering valve according to an embodiment of the present invention.
도 13은 본 발명의 일 실시예에 따른 분체계량밸브에서 분배모듈의 결합 상태를 도시한 분해도이다.13 is an exploded view showing a coupled state of a distribution module in a powder metering valve according to an embodiment of the present invention.
도 14는 본 발명의 일 실시예에 따른 분체계량밸브에서 회전센싱모듈의 제1결합 상태를 도시한 정면도(a)와 측면도(b)이다.14 is a front view (a) and a side view (b) showing a first coupling state of a rotation sensing module in a powder metering valve according to an embodiment of the present invention.
도 15는 본 발명의 일 실시예에 따른 분체계량밸브에서 회전센싱모듈의 제2결합 상태를 도시한 측면도이다.15 is a side view illustrating a second coupling state of a rotation sensing module in a powder metering valve according to an embodiment of the present invention.
도 16은 도 15에서 회전센싱모듈의 센싱패들을 도시한 사시도이다.16 is a perspective view illustrating a sensing paddle of the rotation sensing module in FIG. 15;
도 17은 본 발명의 일 실시예에 따른 분체계량밸브에서 회전센싱모듈의 제3결합 상태를 도시한 정면도(a)와 측면도(b)이다.17 is a front view (a) and a side view (b) showing a third coupled state of a rotation sensing module in a powder metering valve according to an embodiment of the present invention.
이하, 첨부된 도면들을 참조하여 본 발명에 따른 스마트 분체원료 이송시스템과 스마트 분체원료 이송방법의 일 실시예를 설명한다. 이때, 본 발명은 실시예에 의해 제한되거나 한정되는 것은 아니다. 또한, 본 발명을 설명함에 있어서, 공지된 기능 혹은 구성에 대해 구체적인 설명은 본 발명의 요지를 명확하게 하기 위해 생략될 수 있다.Hereinafter, an embodiment of a smart powder raw material conveying system and a smart powder raw material conveying method according to the present invention will be described with reference to the accompanying drawings. At this time, the present invention is not limited or limited by the examples. In addition, in describing the present invention, detailed descriptions of well-known functions or configurations may be omitted to clarify the gist of the present invention.
본 발명의 일 실시예에 따른 스마트 분체원료 이송시스템은 분말 형태의 분체가 분체이송라인을 따라 이송될 때, 분체이송라인 중 수직으로 설치되는 해당 수직관에서 정밀 계량된 분체를 원활하게 통과시키는 한편, 분체가 해당 수직관에 잔류하거나 정체되는 것을 방지할 수 있다.In the smart powder raw material conveying system according to an embodiment of the present invention, when powder in the form of powder is transferred along the powder conveying line, the precisely measured powder smoothly passes through the corresponding vertical pipe installed vertically among the powder conveying lines. In this case, it is possible to prevent solids from remaining or stagnation in the riser.
이하 설명에서 분체이송라인은 분체이송유닛(400)에서 분체의 이송 경로를 나타내고, 제1분체라인은 제1이송유닛(100)에서 분체의 이송 경로를 나타내며, 제2분체라인은 제2이송유닛(200)에서 분체의 이송 경로를 나타내고, 제3분체라인은 제3이송유닛(300)에서 분체의 이송 경로를 나타낸다. 또한, 바인더이송라인은 바인더이송유닛(500)에서 바인더의 이송 경로를 나타내며, 용매이송라인은 용매이송유닛(600)에서 용매의 이송 경로를 나타내고, 도전재이송라인은 도전재이송유닛(700)에서 도전재의 이송 경로를 나타내며, 분산재이송라인은 분산재이송유닛(800)에서 분산재의 이송 경로를 나타낸다.In the following description, the powder transfer line represents the powder transfer path in the powder transfer unit 400, the first powder line represents the powder transfer path in the first transfer unit 100, and the second powder line represents the second transfer unit. 200 shows the powder transport path, and the third powder line shows the powder transport path in the third transfer unit 300 . In addition, the binder transfer line indicates the transfer path of the binder in the binder transfer unit 500, the solvent transfer line indicates the transfer path of the solvent in the solvent transfer unit 600, and the conductive material transfer line indicates the conductive material transfer unit 700 Indicates the transfer path of the conductive material, and the dispersion material transfer line indicates the transfer path of the dispersant material in the dispersion material transfer unit 800.
본 발명의 일 실시예에 따른 스마트 분체원료 이송시스템에서 분체는 활물질로 이루어질 수 있다. 본 발명의 일 실시예에 따른 스마트 분체원료 이송시스템은 전기화학소자의 전극을 형성하기 위한 슬러리를 제조하는 시스템으로 설명한다.In the smart powder raw material conveying system according to an embodiment of the present invention, the powder may be made of an active material. A smart powder raw material transport system according to an embodiment of the present invention will be described as a system for preparing a slurry for forming an electrode of an electrochemical device.
활물질은 전기화학소자의 전극의 원료이다.An active material is a raw material of an electrode of an electrochemical device.
바인더는 전기화학소자의 전극을 형성하기 위해 최종 완성되는 슬러리에 결합력을 제공한다.The binder provides binding force to the final slurry to form an electrode of an electrochemical device.
용매는 바인더와 도전재와 분산재 중 적어도 바인더를 용해시켜 활물질 또는 최종 완성되는 슬러리의 결합력을 향상시킨다.The solvent dissolves at least the binder among the binder, the conductive material, and the dispersant to improve the bonding strength of the active material or the final slurry.
도전재는 전기화학소자의 전극의 전기전도도 향상을 위하여 최종 완성되는 슬러리에서 전자전도 통로를 형성하여 최종 완성되는 슬러의 도전성을 향상시킨다.The conductive material improves the conductivity of the final slurry by forming an electron conduction passage in the final slurry to improve the electrical conductivity of the electrode of the electrochemical device.
분산재는 활물질과 도전재 중 적어도 어느 하나를 분산시켜 최종 완성된 슬러리가 균일하게 혼합되도록 한다.The dispersant disperses at least one of the active material and the conductive material so that the final slurry is uniformly mixed.
전해액은 최종 완성되는 슬러리에 대해 이온의 이동을 원활하게 도와준다.The electrolyte helps smooth movement of ions with respect to the final slurry.
최종 완성되는 슬러리에서 용매 또는 전해액을 조절하여 슬러리의 농도를 조절할 수 있다.The concentration of the slurry can be adjusted by adjusting the solvent or electrolyte in the final slurry.
도 1 내지 도 7을 참조하면, 본 발명의 일 실시예에 따른 스마트 분체원료 이송시스템은 분체를 이송시키는 분체이송유닛(400)을 포함할 수 있다. 분체이송유닛(400)에서 분체는 분체이송라인을 따라 이송된다.Referring to FIGS. 1 to 7 , the smart powder raw material conveying system according to an embodiment of the present invention may include a powder conveying unit 400 for conveying powder. In the powder transfer unit 400, the powder is transferred along the powder transfer line.
분체이송유닛(400)은 제1이송량에 대응하여 분체를 이송시키는 제1이송유닛(100)과, 제1이송유닛(100)에서 이격되어 제1이송량과 같거나 다른 제2이송량에 대응하여 분체를 이송시키는 제2이송유닛(200)과, 제1이송유닛(100)과 제2이송유닛(200)에서 이격되어 제1이송량 또는 제2이송량보다 작은 제3이송량에 대응하여 분체를 이송시키는 제3이송유닛(300) 중 적어도 어느 하나를 포함할 수 있다.The powder transfer unit 400 includes a first transfer unit 100 that transfers powder in response to a first transfer amount, and powders corresponding to a second transfer amount that is equal to or different from the first transfer amount apart from the first transfer unit 100. The second transfer unit 200 that transfers the powder, and the first transfer unit 100 and the second transfer unit 200 are separated from each other and transfer powder in response to the first transfer amount or the third transfer amount smaller than the second transfer amount. At least one of the three transfer units 300 may be included.
첫째, 제1이송유닛(100)은 제1수직관(130)의 분체를 2단계에 걸쳐 이송시킬 수 있다. 제1이송유닛(100)에는 후술하는 분체계량밸브가 포함될 수 있다.First, the first transfer unit 100 may transfer the powder of the first vertical tube 130 in two steps. The first transfer unit 100 may include a powder metering valve to be described later.
좀더 자세하게, 제1이송유닛(100)의 분체가 높이 방향으로 길게 형성된 제1수직관(130)에서 상승될 때, 제1이송량 중 일부의 분체는 제1수직관(130)의 상단부 쪽에서 작용하는 흡입력을 이용한 흡송 방식으로 제1수직관(130)을 통과할 수 있다. 다음으로, 제1이송량 중 나머지의 분체는 제1수직관(130)의 하단부 쪽에서 작용하는 가압력을 이용한 압송 방식으로 제1수직관(130)을 통과할 수 있다.In more detail, when the powder of the first transfer unit 100 is raised in the first upright pipe 130 formed long in the height direction, some of the powder of the first transfer amount acts toward the upper end of the first upright pipe 130. It can pass through the first vertical pipe 130 in a suction method using a suction force. Next, the remaining powder in the first conveying amount may pass through the first upright pipe 130 in a pressure conveying method using a pressing force acting on the lower end of the first upright pipe 130 .
이와 같이 제1이송유닛(100)에서 이송되는 분체는 제1수직관(130)을 기준으로 흡송 방식과 압송 방식이 차례로 적용되어 제1수직관(130)을 통과하므로, 제1수직관(130)에서 분체의 완전한 통과를 구현할 수 있고, 분체가 제1수직관(130)에 정체되는 것을 방지하며, 분체에 의해 제1수직관(130)이 막히는 것을 방지할 수 있다.In this way, the powder transported from the first transfer unit 100 passes through the first upright pipe 130 by sequentially applying the suction method and the pressure feeding method based on the first upright pipe 130. ), it is possible to implement complete passage of the powder, prevent the powder from being stagnant in the first upright pipe 130, and prevent the first upright pipe 130 from being blocked by the powder.
제1이송유닛(100)은 분체가 저장되고 분체를 제1이송량으로 계량하여 배출시키는 제1투입모듈(110)과, 제1투입모듈(110)에서 배출되는 분체가 가압력을 이용한 압송 방식으로 이송되도록 공정가스 또는 압축공기를 이용하여 제1투입모듈(110)에서 배출되는 분체를 가압하는 제1-1압송모듈(120)과, 제1투입모듈(110)에서 배출되는 분체가 상승되는 경로를 형성하도록 높이 방향으로 길게 형성되는 제1수직관(130)과, 제1투입모듈(110)에서 배출되는 분체가 흡입력을 이용한 흡송 방식으로 이송되도록 공정가스 또는 압축공기를 이용하여 제1투입모듈(110)에서 배출되는 분체 또는 제1수직관(130)의 분체를 흡입하여 저장하였다가 로터리밸브 방식을 이용하여 분체를 제1계량량으로 계량하여 배출시키는 제1계량모듈(140)과, 제1계량모듈(140)에서 배출되는 분체가 가압력을 이용한 압송 방식으로 이송되도록 공정가스 또는 압축공기를 이용하여 제1계량모듈(140)에서 배출되는 분체를 가압하는 제1-2압송모듈(150)을 포함할 수 있다. 제1투입모듈(110)과, 제1계량모듈(140) 중 적어도 어느 하나에는 후술하는 분체계량밸브가 포함될 수 있다.The first transfer unit 100 has a first input module 110 that stores powder and measures and discharges the powder in a first transfer amount, and transfers the powder discharged from the first input module 110 in a pressure transfer method using pressurized force. The 1-1 pressure transfer module 120 that pressurizes the powder discharged from the first input module 110 using process gas or compressed air as much as possible and the path on which the powder discharged from the first input module 110 rises The first vertical pipe 130 formed long in the height direction to form and the powder discharged from the first input module 110 using a process gas or compressed air to be transported in a suction method using suction power to the first input module ( 110) or the powder of the first vertical pipe 130 is sucked in and stored, and then the first measurement module 140 measures and discharges the powder at a first metered amount using a rotary valve method; The 1-2 pressure transfer module 150 pressurizes the powder discharged from the first metering module 140 using process gas or compressed air so that the powder discharged from the metering module 140 is transferred by a pressure transfer method using a pressurized force. can include At least one of the first input module 110 and the first metering module 140 may include a powder metering valve to be described later.
이때, 제1수직관(130)을 기준으로 제1수직관(130)의 하단부 쪽에는 제1-1압송모듈(120)이 연결되고, 제1-1압송모듈(120)에는 제1투입모듈(110)이 연결되도록 한다. 또한, 제1수직관(130)을 기준으로 제1수직관(130)의 상단부 쪽에는 제1계량모듈(140)이 연결되고, 제1계량모듈(140)에는 제1-2압송모듈(150)이 연결되도록 한다.At this time, based on the first vertical pipe 130, the 1-1 pressure feeding module 120 is connected to the lower end of the 1 vertical pipe 130, and the 1-1 pressure feeding module 120 has a first input module. (110) to be connected. In addition, the first metering module 140 is connected to the upper end of the first vertical tube 130 based on the first vertical tube 130, and the first metering module 140 has a 1-2 pressure transfer module 150 ) to be connected.
제1투입모듈(110)은 분체가 저장되는 제1투입호퍼(111)와, 분체가 제1투입호퍼(111)에 투입될 때 분체로부터 자성을 갖는 이물질을 필터링하는 제1자석필터(112)와, 분체가 제1투입호퍼(111)에 투입될 때 분체로부터 자성이 없는 이물질을 필터링하는 제1메쉬필터(113)와, 로터리밸브 방식을 이용하여 제1투입호퍼(111)에 저장되는 분체를 제1이송량으로 계량하여 배출시키는 제1투입밸브(114)를 포함할 수 있다.The first input module 110 includes a first input hopper 111 in which powder is stored, and a first magnetic filter 112 for filtering foreign substances having magnetic properties from the powder when the powder is put into the first input hopper 111. And, when the powder is put into the first input hopper 111, the first mesh filter 113 for filtering non-magnetic foreign substances from the powder and the powder stored in the first input hopper 111 using a rotary valve method It may include a first input valve 114 that measures and discharges the first transfer amount.
제1투입호퍼(111)는 외부로부터 분체운반모듈(410)을 통해 전달되는 분체주머니에 보관된 전체 분체가 수용 가능하다. 분체운반모듈(410)은 크레인 또는 체인블럭으로 이루어질 수 있다. 제1투입호퍼(111)의 용량은 분체의 이송속도, 분체의 단위이송량에 따라 다양하게 변경 가능하다.The first input hopper 111 can accommodate all the powders stored in the powder bag delivered from the outside through the powder transport module 410 . The powder transport module 410 may be made of a crane or a chain block. The capacity of the first input hopper 111 can be changed in various ways according to the powder transfer speed and the powder unit transfer amount.
제1자석필터(112)와 제1메쉬필터(113)는 상호 이격되어 제1투입호퍼(111)의 상단부에 배치되어 분체주머니로부터 공급되는 분체에서 이물질을 필터링할 수 있다.The first magnetic filter 112 and the first mesh filter 113 are spaced apart from each other and disposed at the upper end of the first input hopper 111 to filter foreign substances from the powder supplied from the powder bag.
본 발명의 일 실시예에서 제1메쉬필터(113)는 제1자석필터(112)보다 상측에 배치되므로, 뭉쳐진 분체의 파쇄 효과를 나타내고, 뭉쳐진 분체의 크기를 원상태로 복귀시킬 수 있으며, 분체주머니로부터 전달되는 분체에서 자성을 띄는 이물질의 필터링 효과를 향상시킬 수 있다.In one embodiment of the present invention, since the first mesh filter 113 is disposed above the first magnetic filter 112, it shows a crushing effect of the agglomerated powder, can restore the size of the agglomerated powder to its original state, and powder bag It is possible to improve the filtering effect of foreign substances that are magnetic in the powder delivered from the powder.
제1투입밸브(114)는 간헐적으로 회전되는 회전축을 중심으로 원주 방향을 따라 등간격으로 배치되는 다수의 포켓이 구비되므로, 해당 포켓에는 정량의 분체가 수용될 수 있다. 제1투입밸브(114)에서 하나의 포켓에는 제1이송량에 대응하여 정량의 분체가 수용될 수 있다. 제1투입밸브(114)에서 하나의 포켓의 용량은 제1이송량에 대응하여 분체의 이송속도, 분체의 단위이송량에 따라 다양하게 변경 가능하다. 제1투입밸브(114)는 후술하는 분체계량밸브를 포함할 수 있다.Since the first injection valve 114 is provided with a plurality of pockets arranged at equal intervals along the circumferential direction around the intermittently rotated rotation shaft, a fixed amount of powder can be accommodated in the pockets. In one pocket of the first input valve 114, a quantity of powder may be accommodated corresponding to the first transfer amount. The capacity of one pocket in the first input valve 114 can be variously changed according to the powder transfer speed and the powder unit transfer amount corresponding to the first transfer amount. The first input valve 114 may include a powder metering valve to be described later.
제1-1압송모듈(120)은 제1투입모듈(110)의 제1투입호퍼(111)에서 간헐적으로 배출되는 분체에 시스템에서 발생되는 공정가스 또는 압축공기를 공급하므로, 제1분체라인에서 분체를 안정되게 가압할 수 있다.Since the 1-1 pressure feeding module 120 supplies process gas or compressed air generated in the system to powder intermittently discharged from the first input hopper 111 of the first input module 110, in the first powder line Powder can be pressurized stably.
제1투입모듈(110)의 제1투입밸브(114)와 제1-1압송모듈(120) 사이에는 제1분체라인의 내부 압력을 조절하기 위해 제1투입밸브(114)와 제1-1압송모듈(120) 사이의 가스를 배출시키거나 외부 가스가 주입되는 벤트가 구비될 수 있다.Between the first input valve 114 of the first input module 110 and the 1-1 pressure feeding module 120, the first input valve 114 and the 1-1 A vent for discharging gas between the pressure transfer modules 120 or for injecting external gas may be provided.
제1수직관(130)은 분체이송라인 중 제1분체라인의 일부를 형성한다. 제1수직관(130)은 제1분체라인에서 분체가 시스템의 높이 방향으로 상승되는 경로를 형성한다. 제1수직관(130)은 시스템의 높이 방향으로 길게 형성될 수 있다.The first vertical pipe 130 forms a part of the first powder line among the powder transfer lines. The first vertical pipe 130 forms a path through which the powder rises in the height direction of the system in the first powder line. The first vertical pipe 130 may be formed long in the height direction of the system.
제1계량모듈(140)은 제1수직관(130)을 거쳐 이송되는 분체가 저장되는 제1계량호퍼(141)와, 제1투입모듈(110)로부터 배출되는 분체를 흡입력을 이용한 흡송 방식으로 흡입하여 제1계량호퍼(141)에 전달하는 제1진공이젝터(143)와, 로터리밸브 방식을 이용하여 제1계량호퍼(141)에 저장되는 분체를 제1계량량으로 계량하여 배출시키는 제1계량밸브(144)를 포함할 수 있다. 제1계량밸브(144)는 후술하는 분체계량밸브를 포함할 수 있다.The first metering module 140 is a first metering hopper 141 in which the powder transported through the first vertical pipe 130 is stored, and the powder discharged from the first input module 110 is suctioned using a suction force. A first vacuum ejector 143 that sucks and transfers to the first metering hopper 141, and a first metering and discharging the powder stored in the first metering hopper 141 at a first metering amount using a rotary valve method A metering valve 144 may be included. The first metering valve 144 may include a powder metering valve to be described later.
제1계량호퍼(141)는 제1-1압송모듈(120)을 통해 전달되는 분체를 순차적으로 수용 가능하다. 제1계량호퍼(141)의 용량은 분체의 이송속도, 분체의 단위이송량에 따라 다양하게 변경 가능하다.The first weighing hopper 141 can sequentially accommodate the powder delivered through the 1-1 pressure transfer module 120 . The capacity of the first metering hopper 141 can be changed in various ways according to the powder transfer speed and the powder unit transfer amount.
제1계량호퍼(141)에는 공정가스를 이용하여 제1계량호퍼(141)에 수용되는 분체를 분산시키는 제1공기유닛(142)이 구비될 수 있다. 제1공기유닛(142)은 공정가스를 제1계량호퍼(141)에 주입하여 제1계량호퍼(141)에 수용되는 분체의 뭉침을 방지할 수 있다. 제1계량호퍼(141)에는 제1계량호퍼(141)의 내부 압력을 조절하기 위해 제1계량호퍼(141)의 가스를 배출시키거나 외부 가스가 주입되는 벤트가 구비될 수 있다.The first metering hopper 141 may include a first air unit 142 that disperses the powder accommodated in the first metering hopper 141 using process gas. The first air unit 142 may inject process gas into the first metering hopper 141 to prevent agglomeration of powders accommodated in the first metering hopper 141 . The first metering hopper 141 may be provided with a vent through which gas from the first metering hopper 141 is discharged or external gas is injected in order to adjust the internal pressure of the first metering hopper 141 .
제1진공이젝터(143)는 공정가스 또는 압축공기에 의해 내부가 진공 상태로 유지되는 진공탱크부(420)와, 진공탱크부(420)의 내부를 진공 상태로 유지하기 위해 공정가스 또는 압축공기가 입력됨에 따라 흡입력을 발생시키는 진공헤드부(430)와, 제1수직관(130)과 진공탱크부(420)가 연통되도록 제1수직관(130)이 연결되는 분체투입부(440)와, 진공탱크부(420)와 제1계량호퍼(141)를 개폐 가능하게 연통시키는 연결밸브부(450)와, 제1투입모듈(110)과 제1-1압송모듈(120)과 진공헤드부(430) 사이의 동작 관계를 제어하는 제어유닛(460)을 포함할 수 있다.The first vacuum ejector 143 includes a vacuum tank unit 420 in which the inside is maintained in a vacuum state by process gas or compressed air, and a process gas or compressed air to maintain the inside of the vacuum tank unit 420 in a vacuum state. The vacuum head unit 430 that generates suction force according to the input, and the powder input unit 440 to which the first vertical tube 130 is connected so that the first vertical tube 130 and the vacuum tank unit 420 communicate with each other. , the connection valve unit 450 for opening and closing the vacuum tank unit 420 and the first metering hopper 141 in open and close communication, the first input module 110, the 1-1 pressure transfer module 120, and the vacuum head unit It may include a control unit 460 that controls the operational relationship between (430).
진공탱크부(420)는 흡입력을 지탱하도록 원통 형상을 나타내는 것이 바람직하다. 진공자켓부(421)가 진공탱크부(420)를 감싸 지지하므로, 진공탱크부(420)의 변형을 방지하고, 진공탱크부(420)를 보호할 수 있다.The vacuum tank unit 420 preferably has a cylindrical shape to support suction force. Since the vacuum jacket part 421 surrounds and supports the vacuum tank part 420 , deformation of the vacuum tank part 420 can be prevented and the vacuum tank part 420 can be protected.
진공헤드부(430)는 진공탱크부(420)의 상단부에 구비되는 것이 유리하다. 진공헤드부(430)에는 공정가스 또는 압축공기가 주입되는 가스주입부(431)가 구비되고, 가스주입부(431)에서 이격되어 흡입력의 발생에 따라 생성되는 공정가스가 배출되는 가스배출부가 구비될 수 있다.It is advantageous that the vacuum head part 430 is provided at the upper end of the vacuum tank part 420 . The vacuum head unit 430 includes a gas injection unit 431 into which process gas or compressed air is injected, and a gas discharge unit spaced from the gas injection unit 431 and discharging process gas generated according to the generation of suction force. It can be.
진공헤드부(430)에는 주입되는 공정가스 또는 압축공기를 이용한 벤츄리 효과를 이용하여 분체에 흡입력을 제공하기 위한 벤츄리부(미도시)가 구비되어 분체의 흡송을 안정화시키고 흡송 주기를 간편하게 조절할 수 있다.The vacuum head unit 430 is provided with a venturi unit (not shown) for providing a suction force to the powder by using the venturi effect using the injected process gas or compressed air, thereby stabilizing the suction of the powder and conveniently adjusting the suction cycle. .
분체투입부(440)는 진공탱크부(420)의 측면 또는 진공탱크부(420)의 상단부에 구비되어 제1수직관(130)으로부터 분체의 이송을 원활하게 할 수 있다.The powder introduction unit 440 is provided on the side of the vacuum tank unit 420 or on the upper end of the vacuum tank unit 420 to facilitate the transfer of powder from the first vertical pipe 130 .
연결밸브부(450)는 진공탱크부(420)의 하단부에 구비되는 것이 유리하다. 연결밸브부(450)는 진공탱크부(420)의 진공 상태가 유지되도록 진공탱크부(420)의 하단부에 구비되는 진공버퍼부와, 진공버퍼부의 하단부에 구비되고 제1계량모듈(140)의 제1계량호퍼(141)와 연통되는 밸브바디부(451)와, 밸브바디부(451)에 구비되어 밸브바디부(451)를 개폐하거나 밸브바디부(451)의 개도를 조절하는 밸브개폐부와, 밸브개폐부를 동작시키는 개폐구동부(452)를 포함할 수 있다.It is advantageous that the connection valve unit 450 is provided at the lower end of the vacuum tank unit 420 . The connection valve unit 450 includes a vacuum buffer unit provided at the lower end of the vacuum tank unit 420 so that the vacuum state of the vacuum tank unit 420 is maintained, and a vacuum buffer unit provided at the lower end of the vacuum buffer unit and the first measurement module 140. A valve body portion 451 communicating with the first metering hopper 141, and a valve opening and closing portion provided on the valve body portion 451 to open and close the valve body portion 451 or to adjust the opening degree of the valve body portion 451 , It may include an opening/closing driver 452 for operating the valve opening/closing unit.
제어유닛(460)은 제1투입모듈(110)에서 분체가 배출됨에 따라 분체의 일부가 흡입력에 의한 흡송 방식으로 제1수직관(130)을 통과하도록 제1-1압송모듈(120)을 정지시킨 상태에서 진공헤드부(430)를 동작시키고, 다음으로, 분체의 나머지가 가압력에 의한 압송 방식으로 제1수직관(130)을 통과하도록 진공헤드부(430)의 정지와 함께 제1-1압송모듈(120)을 동작시키므로, 제1수직관(130)에서 분체를 안정되게 배출시킬 수 있다.As the powder is discharged from the first input module 110, the control unit 460 stops the 1-1 pressure transfer module 120 so that a portion of the powder passes through the first vertical pipe 130 in a suction method by suction force. 1-1 with the stop of the vacuum head 430 so that the rest of the powder passes through the first vertical tube 130 in a pressure feeding method by pressing force. Since the pressure feeding module 120 is operated, the powder can be stably discharged from the first vertical pipe 130.
좀더 자세하게, 제어유닛(460)의 동작을 살펴보면, 다음과 같다.In more detail, the operation of the control unit 460 will be described as follows.
제1투입밸브(114)에서 회전축의 회전에 따라 하나의 포켓이 제1분체라인과 연통되면, 흡송 방식의 분체의 이송과 압송 방식의 분체의 이송과 잔여 가압력에 따른 분체와 가스의 리턴이 순차적으로 이루어지도록 한다.When one pocket communicates with the first powder line according to the rotation of the rotating shaft in the first input valve 114, the powder transfer of the suction method, the transfer of the powder of the pressure feed method, and the return of the powder and gas according to the remaining pressure are sequentially performed. to be done with
제1-1압송모듈(120)을 통한 가압력으로 분체가 제1수직관(130)을 모두 통과하고 나면, 회전축의 회전에 따라 후속하는 다른 포켓이 제1수직관(130)의 하단부 쪽에서 제1분체라인과 연통되어 흡송 방식이 진행되기 까지 공백시간이 부여될 수 있다. 이때, 제1-1압송모듈(120)과 제1수직관(130) 사이에는 제1분체라인의 개폐를 위한 제1투입개폐밸브가 구비되고, 제1-1압송모듈(120)과 제1투입개폐밸브 사이에는 제1분체라인과 제1투입호퍼(111)를 연결하는 제1투입리턴라인이 구비되며, 제1투입리턴라인에는 제1투입리턴밸브가 구비될 수 있다.After all of the powders pass through the first upright pipe 130 by the pressing force through the 1-1 pressure feeding module 120, the following pockets are formed at the lower end of the first upright pipe 130 according to the rotation of the rotating shaft. A blank time may be given until the suction method proceeds in communication with the powder line. At this time, a first input opening/closing valve for opening and closing the first powder line is provided between the 1-1 pressure feeding module 120 and the first vertical pipe 130, and the 1-1 pressure feeding module 120 and the first A first input return line connecting the first powder line and the first input hopper 111 is provided between the input shutoff valves, and a first input return valve may be provided in the first input return line.
그러면, 회전축의 회전에 따라 하나의 포켓이 제1분체라인과 연통되기 시작하면, 제1투입리턴밸브로 제1투입리턴라인을 폐쇄 또는 밀폐시키고 제1투입개폐밸브로 제1분체라인을 개방시키며 제1계량모듈(140)의 제1진공이젝터(143)를 동작시켜 흡송 방식으로 분체의 일부를 이송시킨다. 계속해서 제1투입리턴밸브로 제1투입리턴라인을 폐쇄 또는 밀폐시키고 제1투입개폐밸브로 제1분체라인을 개방시킨 상태에서 제1-1압송모듈(120)을 이용하여 압송 방식으로 분체의 나머지를 이송시킨다.Then, when one pocket starts to communicate with the first powder line according to the rotation of the rotating shaft, the first input return valve closes or seals the first input return line, and the first input shut-off valve opens the first powder line. By operating the first vacuum ejector 143 of the first measurement module 140, a part of the powder is transported in a suction method. Subsequently, the first input return line is closed or closed with the first input return valve and the first powder line is opened with the first input shut-off valve, and the powder is supplied by the pressure transfer method using the 1-1 pressure transfer module 120. transport the rest
다음으로, 하나의 포켓이 계속해서 제1분체라인과 연통되며 제1투입개폐밸브로 제1분체라인을 폐쇄 또는 밀폐시키고 제1투입리턴밸브로 제1투입리턴라인을 개방시킨 상태에서 제1-1압송모듈(120)을 정지시키면, 제1투입밸브(114)와 제1투입개폐밸브 사이의 분체와 가스는 제1분체라인에 잔류하는 가압력에 의해 제1투입리턴라인을 거쳐 제1투입호퍼(111)에 전달된다. 또한, 하나의 포켓이 계속해서 제1분체라인과 연통되며 제1투입개폐밸브로 제1분체라인을 폐쇄 또는 밀폐시키고 제1투입리턴밸브로 제1투입리턴라인을 개방시킨 상태에서 제1진공이젝터(143)를 동작시키면 제1수직관(130)에서의 흡입력을 향상시킬 수 있다.Next, one pocket continues to communicate with the first powder line, and in a state where the first powder line is closed or sealed with the first input shut-off valve and the first input return line is opened with the first input return valve, the first When the first pressure feeding module 120 is stopped, the powder and gas between the first input valve 114 and the first input on/off valve pass through the first input return line by the pressure remaining in the first powder line to the first input hopper. (111). In addition, one pocket continues to communicate with the first powder line, and the first vacuum ejector in a state in which the first powder line is closed or sealed with the first input opening/closing valve and the first input return line is opened with the first input return valve When the 143 is operated, the suction force in the first upright pipe 130 can be improved.
그리고 회전축의 회전에 따라 후속하는 다른 포켓이 제1분체라인과 연통되기 시작하면, 상술한 동작을 반복하게 된다.And when another pocket following the rotation of the rotating shaft starts to communicate with the first powder line, the above-described operation is repeated.
제1계량밸브(144)는 간헐적으로 회전되는 회전축을 중심으로 원주 방향을 따라 등간격으로 배치되는 다수의 포켓이 구비되므로, 해당 포켓에는 정량의 분체가 수용될 수 있다. 제1계량밸브(144)에서 하나의 포켓에는 제1계량량에 대응하여 정량의 분체가 수용될 수 있다. 제1계량밸브(144)에서 하나의 포켓의 용량은 제1계량량에 대응하여 분체의 이송속도, 분체의 단위이송량에 따라 다양하게 변경 가능하다.Since the first metering valve 144 is provided with a plurality of pockets arranged at equal intervals along the circumferential direction around the intermittently rotated rotation shaft, a fixed amount of powder can be accommodated in the pockets. In one pocket of the first metering valve 144, a quantity of powder corresponding to the first metering amount may be accommodated. The capacity of one pocket in the first metering valve 144 can be variously changed according to the powder transfer speed and the unit transfer amount of the powder in response to the first metering amount.
제1-2압송모듈(150)은 제1계량모듈(140)의 제1계량호퍼(141)에서 간헐적으로 배출되는 분체에 시스템에서 발생되는 공정가스 또는 압축공기를 공급하므로, 제1분체라인에서 분체를 안정되게 가압할 수 있다.Since the 1-2 pressure feeding module 150 supplies process gas or compressed air generated in the system to the powder intermittently discharged from the first metering hopper 141 of the first metering module 140, in the first powder line Powder can be pressurized stably.
제1계량모듈(140)의 제1계량밸브(144)와 제1-2압송모듈(150) 사이에는 제1분체라인의 내부 압력을 조절하기 위해 제1계량밸브(144)와 제1-2압송모듈(150) 사이의 가스를 배출시키거나 외부 가스가 주입되는 벤트가 구비될 수 있다.Between the first metering valve 144 of the first metering module 140 and the 1-2 pressure feeding module 150, the first metering valve 144 and the 1-2 A vent may be provided to discharge gas between the pressure transfer modules 150 or to inject external gas.
둘째, 제2이송유닛(200)은 제2수직관(230)의 분체를 2단계에 걸쳐 이송시킬 수 있다. 제2이송유닛(200)에는 후술하는 분체계량밸브가 포함될 수 있다.Second, the second transfer unit 200 may transfer the powder of the second vertical tube 230 in two steps. The second transfer unit 200 may include a powder metering valve to be described later.
좀더 자세하게, 제2이송유닛(200)의 분체가 높이 방향으로 길게 형성된 제2수직관(230)에서 상승될 때, 제2이송량 중 일부의 분체는 제2수직관(230)의 상단부 쪽에서 작용하는 흡입력을 이용한 흡송 방식으로 제2수직관(230)을 통과할 수 있다. 다음으로, 제2이송량 중 나머지의 분체는 제2수직관(230)의 하단부 쪽에서 작용하는 가압력을 이용한 압송 방식으로 제2수직관(230)을 통과할 수 있다.In more detail, when the powder of the second conveying unit 200 is raised in the second vertical pipe 230 formed long in the height direction, some of the powder in the second conveying amount acts on the upper end of the second vertical pipe 230. It can pass through the second vertical pipe 230 in a suction method using a suction force. Next, the remaining powder in the second transport amount may pass through the second upright pipe 230 in a pressure feeding method using a pressing force acting on the lower end of the second upright pipe 230 .
이와 같이 제2이송유닛(200)에서 이송되는 분체는 제2수직관(230)을 기준으로 흡송 방식과 압송 방식이 차례로 적용되어 제2수직관(230)을 통과하므로, 제2수직관(230)에서 분체의 완전한 통과를 구현할 수 있고, 분체가 제2수직관(230)에 정체되는 것을 방지하며, 분체에 의해 제2수직관(230)이 막히는 것을 방지할 수 있다.In this way, the powder transferred from the second transfer unit 200 passes through the second upright pipe 230 by sequentially applying the suction method and the pressure feeding method based on the second upright pipe 230. ), it is possible to implement complete passage of the powder, prevent the powder from being stagnant in the second upright pipe 230, and prevent the second upright pipe 230 from being blocked by the powder.
제2이송유닛(200)은 아래와 같이 4가지 방식으로 동작 가능하다.The second transfer unit 200 can be operated in four ways as follows.
제1예에서 제2이송유닛(200)은 제2투입모듈(210)과 제2계량모듈(240)을 분체가 순차적으로 이송되는 방식을 채택할 수 있다.In the first example, the second transfer unit 200 may adopt a method in which powder is sequentially transferred through the second input module 210 and the second measurement module 240 .
제2이송유닛(200)은 분체가 저장되고 분체를 제2이송량으로 계량하여 배출시키는 제2투입모듈(210)과, 제2투입모듈(210)에서 배출되는 분체가 가압력을 이용한 압송 방식으로 이송되도록 공정가스 또는 압축공기를 이용하여 제2투입모듈(210)에서 배출되는 분체를 가압하는 제2-1압송모듈(220)과, 제2투입모듈(210)에서 배출되는 분체가 상승되는 경로를 형성하도록 높이 방향으로 길게 형성되는 제2수직관(230)과, 제2투입모듈(210)에서 배출되는 분체가 흡입력을 이용한 흡송 방식으로 이송되도록 공정가스 또는 압축공기를 이용하여 제2투입모듈(210)에서 배출되는 분체 또는 제2수직관(230)의 분체를 흡입하여 저장하였다가 로터리밸브 방식을 이용하여 분체를 제2계량량으로 계량하여 배출시키는 제2계량모듈(240)과, 제2계량모듈(240)에서 배출되는 분체가 가압력을 이용한 압송 방식으로 이송되도록 공정가스 또는 압축공기를 이용하여 제2계량모듈(240)에서 배출되는 분체를 가압하는 제2-2압송모듈(250)을 포함할 수 있다. 제2투입모듈(210)과, 제2계량모듈(240) 중 적어도 어느 하나에는 후술하는 분체계량밸브가 포함될 수 있다.The second transfer unit 200 stores powder, measures and discharges the powder in a second transfer amount, and transfers the powder discharged from the second input module 210 in a pressure-feeding method using pressurized force. The 2-1 pressure feeding module 220 that pressurizes the powder discharged from the second input module 210 using process gas or compressed air as much as possible and the path on which the powder discharged from the second input module 210 rises The second vertical pipe 230 formed long in the height direction to form and the powder discharged from the second input module 210 using a process gas or compressed air so that the powder discharged from the suction power is transferred to the second input module ( 210) or the second metering module 240 that absorbs and stores the powder discharged from the second vertical pipe 230 and then measures and discharges the powder at a second metering amount using a rotary valve method; The 2-2 pressure transfer module 250 pressurizes the powder discharged from the second metering module 240 using process gas or compressed air so that the powder discharged from the metering module 240 is transported by a pressure transfer method using a pressurized force. can include At least one of the second input module 210 and the second metering module 240 may include a powder metering valve to be described later.
이때, 제2수직관(230)을 기준으로 제2수직관(230)의 하단부 쪽에는 제2-1압송모듈(220)이 연결되고, 제2-1압송모듈(220)에는 제2투입모듈(210)이 연결되도록 한다. 또한, 제2수직관(230)을 기준으로 제2수직관(230)의 상단부 쪽에는 제2계량모듈(240)이 연결되고, 제2계량모듈(240)에는 제2-2압송모듈(250)이 연결되도록 한다.At this time, the 2-1 pressure feeding module 220 is connected to the lower end of the second vertical pipe 230 based on the second vertical pipe 230, and the second input module is connected to the 2-1 pressure feeding module 220. (210) to be connected. In addition, the second measuring module 240 is connected to the upper end of the second vertical pipe 230 based on the second vertical pipe 230, and the second measuring module 240 has a 2-2 pressure feeding module 250 ) to be connected.
제2투입모듈(210)은 분체가 저장되는 제2투입호퍼(211)와, 분체가 제2투입호퍼(211)에 투입될 때 분체로부터 자성을 갖는 이물질을 필터링하는 제2자석필터(212)와, 분체가 제2투입호퍼(211)에 투입될 때 분체로부터 자성이 없는 이물질을 필터링하는 제2메쉬필터(213)와, 로터리밸브 방식을 이용하여 제2투입호퍼(211)에 저장되는 분체를 제2이송량으로 계량하여 배출시키는 제2투입밸브(214)를 포함할 수 있다. 제2투입밸브(214)은 후술하는 분체계량밸브를 포함할 수 있다.The second input module 210 includes a second input hopper 211 in which powder is stored, and a second magnetic filter 212 for filtering foreign substances having magnetic properties from the powder when the powder is put into the second input hopper 211. And, when the powder is put into the second input hopper 211, the second mesh filter 213 for filtering non-magnetic foreign substances from the powder and the powder stored in the second input hopper 211 using a rotary valve method It may include a second input valve 214 that measures and discharges the second transfer amount. The second input valve 214 may include a powder metering valve to be described later.
제2투입호퍼(211)는 외부로부터 분체운반모듈(410)을 통해 전달되는 분체주머니에 보관된 전체 분체가 수용 가능하다. 제2투입호퍼(211)의 용량은 분체의 이송속도, 분체의 단위이송량에 따라 다양하게 변경 가능하다.The second input hopper 211 can accommodate all the powders stored in the powder bag delivered from the outside through the powder transport module 410 . The capacity of the second input hopper 211 can be changed in various ways according to the powder transfer speed and the powder unit transfer amount.
제2자석필터(212)와 제2메쉬필터(213)는 상호 이격되어 제2투입호퍼(211)의 상단부에 배치되어 분체주머니로부터 공급되는 분체에서 이물질을 필터링할 수 있다.The second magnetic filter 212 and the second mesh filter 213 are spaced apart from each other and disposed at the upper end of the second input hopper 211 to filter foreign substances from the powder supplied from the powder bag.
본 발명의 일 실시예에서 제2메쉬필터(213)는 제2자석필터(212)보다 상측에 배치되므로, 뭉쳐진 분체의 파쇄 효과를 나타내고, 뭉쳐진 분체의 크기를 원상태로 복귀시킬 수 있으며, 분체주머니로부터 전달되는 분체에서 자성을 띄는 이물질의 필터링 효과를 향상시킬 수 있다.In one embodiment of the present invention, since the second mesh filter 213 is disposed above the second magnetic filter 212, it exhibits a crushing effect of the agglomerated powder, can restore the size of the agglomerated powder to its original state, and powder bag It is possible to improve the filtering effect of foreign substances that are magnetic in the powder delivered from the powder.
제2투입밸브(214)는 간헐적으로 회전되는 회전축을 중심으로 원주 방향을 따라 등간격으로 배치되는 다수의 포켓이 구비되므로, 해당 포켓에는 정량의 분체가 수용될 수 있다. 제2투입밸브(214)에서 하나의 포켓에는 제2이송량에 대응하여 정량의 분체가 수용될 수 있다. 제2투입밸브(214)에서 하나의 포켓의 용량은 제2이송량에 대응하여 분체의 이송속도, 분체의 단위이송량에 따라 다양하게 변경 가능하다.Since the second input valve 214 is provided with a plurality of pockets arranged at equal intervals along the circumferential direction around the intermittently rotated rotation shaft, a fixed amount of powder can be accommodated in the pockets. In the second input valve 214, a quantity of powder may be accommodated in one pocket corresponding to the second transfer amount. The capacity of one pocket in the second input valve 214 can be variously changed according to the powder transfer speed and the powder unit transfer amount corresponding to the second transfer amount.
제2-1압송모듈(220)은 제2투입모듈(210)의 제2투입호퍼(211)에서 간헐적으로 배출되는 분체에 시스템에서 발생되는 공정가스 또는 압축공기를 공급하므로, 제2분체라인에서 분체를 안정되게 가압할 수 있다.Since the 2-1 pressure feeding module 220 supplies process gas or compressed air generated in the system to the powder intermittently discharged from the second input hopper 211 of the second input module 210, in the second powder line Powder can be pressurized stably.
제2투입모듈(210)의 제2투입밸브(214)와 제2-1압송모듈(220) 사이에는 제2분체라인의 내부 압력을 조절하기 위해 제2투입밸브(214)와 제2-1압송모듈(220) 사이의 가스를 배출시키거나 외부 가스가 주입되는 벤트가 구비될 수 있다.Between the second input valve 214 of the second input module 210 and the 2-1 pressure feeding module 220, the second input valve 214 and the 2-1 A vent for discharging gas between the pressure transfer modules 220 or for injecting external gas may be provided.
제2수직관(230)은 분체이송라인 중 제2분체라인의 일부를 형성한다. 제2수직관(230)은 제2분체라인에서 분체가 시스템의 높이 방향으로 상승되는 경로를 형성한다. 제2수직관(230)은 시스템의 높이 방향으로 길게 형성될 수 있다.The second vertical pipe 230 forms a part of the second powder line among the powder transfer lines. The second vertical pipe 230 forms a path through which the powder rises in the height direction of the system in the second powder line. The second vertical pipe 230 may be formed long in the height direction of the system.
제2계량모듈(240)은 제2수직관(230)을 거쳐 이송되는 분체가 저장되는 제2계량호퍼(241)와, 제2투입모듈(210)로부터 배출되는 분체를 흡입력을 이용한 흡송 방식으로 흡입하여 제2계량호퍼(241)에 전달하는 제2진공이젝터(243)와, 로터리밸브 방식을 이용하여 제2계량호퍼(241)에 저장되는 분체를 제2계량량으로 계량하여 배출시키는 제2계량밸브(244)를 포함할 수 있다. 제2계량밸브(244)는 후술하는 분체계량밸브를 포함할 수 있다.The second metering module 240 is a second metering hopper 241 in which the powder transported through the second vertical pipe 230 is stored, and the powder discharged from the second input module 210 is suctioned using a suction force. A second vacuum ejector 243 that sucks and delivers to the second metering hopper 241, and a second metering unit that measures and discharges powder stored in the second metering hopper 241 at a second metering amount by using a rotary valve method. A metering valve 244 may be included. The second metering valve 244 may include a powder metering valve to be described later.
제2계량호퍼(241)는 제2-1압송모듈(220)을 통해 전달되는 분체를 순차적으로 수용 가능하다. 제2계량호퍼(241)의 용량은 분체의 이송속도, 분체의 단위이송량에 따라 다양하게 변경 가능하다.The second metering hopper 241 can sequentially accommodate the powder delivered through the 2-1 pressure transfer module 220 . The capacity of the second metering hopper 241 can be variously changed according to the powder transfer speed and the unit transfer amount of the powder.
제2계량호퍼(241)에는 공정가스를 이용하여 제2계량호퍼(241)에 수용되는 분체를 분산시키는 제2공기유닛(242)이 구비될 수 있다. 제2공기유닛(242)은 공정가스를 제2계량호퍼(241)에 주입하여 제2계량호퍼(241)에 수용되는 분체의 뭉침을 방지할 수 있다. 제2계량호퍼(241)에는 제2계량호퍼(241)의 내부 압력을 조절하기 위해 제2계량호퍼(241)의 가스를 배출시키거나 외부 가스가 주입되는 벤트가 구비될 수 있다.A second air unit 242 may be provided in the second metering hopper 241 to disperse the powder accommodated in the second metering hopper 241 using process gas. The second air unit 242 injects process gas into the second metering hopper 241 to prevent agglomeration of powders accommodated in the second metering hopper 241 . The second metering hopper 241 may be provided with a vent through which gas from the second metering hopper 241 is discharged or external gas is injected in order to adjust the internal pressure of the second metering hopper 241 .
제2진공이젝터(243)는 공정가스 또는 압축공기에 의해 내부가 진공 상태로 유지되는 진공탱크부(420)와, 진공탱크부(420)의 내부를 진공 상태로 유지하기 위해 공정가스 또는 압축공기가 입력됨에 따라 흡입력을 발생시키는 진공헤드부(430)와, 제2수직관(230)과 진공탱크부(420)가 연통되도록 제2수직관(230)이 연결되는 분체투입부(440)와, 진공탱크부(420)와 제2계량호퍼(241)를 개폐 가능하게 연통시키는 연결밸브부(450)와, 제2투입모듈(210)과 제2-1압송모듈(220)과 진공헤드부(430) 사이의 동작 관계를 제어하는 제어유닛(460)을 포함할 수 있다.The second vacuum ejector 243 includes a vacuum tank unit 420 in which the inside is maintained in a vacuum state by process gas or compressed air, and a process gas or compressed air to maintain the inside of the vacuum tank unit 420 in a vacuum state. The powder input unit 440 to which the second vertical tube 230 is connected so that the vacuum head unit 430 that generates a suction force as is input, and the second vertical tube 230 and the vacuum tank unit 420 communicate with each other. , The connection valve unit 450, which connects the vacuum tank unit 420 and the second metering hopper 241 in an open and close manner, the second input module 210, the 2-1 pressure transfer module 220, and the vacuum head unit It may include a control unit 460 that controls the operational relationship between (430).
제2진공이젝터(243)는 상술한 제1진공이젝터(143)와 동일한 구성으로 동일한 도면부호를 부여하기로 한다.The second vacuum ejector 243 has the same configuration as the above-described first vacuum ejector 143 and is given the same reference numerals.
진공탱크부(420)는 흡입력을 지탱하도록 원통 형상을 나타내는 것이 바람직하다. 진공자켓부(421)가 진공탱크부(420)를 감싸 지지하므로, 진공탱크부(420)의 변형을 방지하고, 진공탱크부(420)를 보호할 수 있다.The vacuum tank unit 420 preferably has a cylindrical shape to support suction force. Since the vacuum jacket part 421 surrounds and supports the vacuum tank part 420 , deformation of the vacuum tank part 420 can be prevented and the vacuum tank part 420 can be protected.
진공헤드부(430)는 진공탱크부(420)의 상단부에 구비되는 것이 유리하다. 진공헤드부(430)에는 공정가스 또는 압축공기가 주입되는 가스주입부(431)가 구비되고, 가스주입부(431)에서 이격되어 흡입력의 발생에 따라 생성되는 공정가스가 배출되는 가스배출부가 구비될 수 있다.It is advantageous that the vacuum head part 430 is provided at the upper end of the vacuum tank part 420 . The vacuum head unit 430 includes a gas injection unit 431 into which process gas or compressed air is injected, and a gas discharge unit spaced from the gas injection unit 431 and discharging process gas generated according to the generation of suction force. It can be.
진공헤드부(430)에는 주입되는 공정가스 또는 압축공기를 이용한 벤츄리 효과를 이용하여 분체에 흡입력을 제공하기 위한 벤츄리부(미도시)가 구비되어 분체의 흡송을 안정화시키고 흡송 주기를 간편하게 조절할 수 있다.The vacuum head unit 430 is provided with a venturi unit (not shown) for providing a suction force to the powder by using the venturi effect using the injected process gas or compressed air, thereby stabilizing the suction of the powder and conveniently adjusting the suction cycle. .
분체투입부(440)는 진공탱크부(420)의 측면 또는 진공탱크부(420)의 상단부에 구비되어 제2수직관(230)으로부터 분체의 이송을 원활하게 할 수 있다.The powder introduction unit 440 is provided on the side of the vacuum tank unit 420 or on the upper end of the vacuum tank unit 420 to facilitate the transfer of powder from the second vertical pipe 230 .
연결밸브부(450)는 진공탱크부(420)의 하단부에 구비되는 것이 유리하다. 연결밸브부(450)는 진공탱크부(420)의 진공 상태가 유지되도록 진공탱크부(420)의 하단부에 구비되는 진공버퍼부와, 진공버퍼부의 하단부에 구비되고 제2계량모듈(240)의 제2계량호퍼(241)와 연통되는 밸브바디부(451)와, 밸브바디부(451)에 구비되어 밸브바디부(451)를 개폐하거나 밸브바디부(451)의 개도를 조절하는 밸브개폐부와, 밸브개폐부를 동작시키는 개폐구동부(452)를 포함할 수 있다.It is advantageous that the connection valve unit 450 is provided at the lower end of the vacuum tank unit 420 . The connection valve unit 450 includes a vacuum buffer unit provided at the lower end of the vacuum tank unit 420 so that the vacuum state of the vacuum tank unit 420 is maintained, and a vacuum buffer unit provided at the lower end of the vacuum buffer unit and the second measurement module 240. A valve body part 451 communicating with the second metering hopper 241, and a valve opening and closing part provided on the valve body part 451 to open and close the valve body part 451 or to adjust the opening degree of the valve body part 451 , It may include an opening/closing driver 452 for operating the valve opening/closing unit.
제어유닛(460)은 제2투입모듈(210)에서 분체가 배출됨에 따라 분체의 일부가 흡입력에 의한 흡송 방식으로 제2수직관(230)을 통과하도록 제2-1압송모듈(220)을 정지시킨 상태에서 진공헤드부(430)를 동작시키고, 다음으로, 분체의 나머지가 가압력에 의한 압송 방식으로 제2수직관(230)을 통과하도록 진공헤드부(430)의 정지와 함께 제2-1압송모듈(220)을 동작시키므로, 제2수직관(230)에서 분체를 안정되게 배출시킬 수 있다.As the powder is discharged from the second input module 210, the control unit 460 stops the 2-1 pressure feeding module 220 so that a part of the powder passes through the second vertical pipe 230 in a suction method by suction force. 2-1 with the stop of the vacuum head 430 so that the rest of the powder passes through the second vertical pipe 230 in a pressure-feeding method by pressing force. Since the pressure feeding module 220 is operated, the powder can be stably discharged from the second vertical pipe 230.
좀더 자세하게, 제어유닛(460)의 동작을 살펴보면, 다음과 같다.In more detail, the operation of the control unit 460 will be described as follows.
제2투입밸브(214)에서 회전축의 회전에 따라 하나의 포켓이 제2분체라인과 연통되면, 흡송 방식의 분체의 이송과 압송의 방식의 분체 이송과 잔여 가압력에 따른 분체와 가스의 리턴이 순차적으로 이루어지도록 한다.When one pocket communicates with the second powder line according to the rotation of the rotary shaft in the second input valve 214, the powder transfer of the suction method, the powder transfer of the pressure feed method, and the return of the powder and gas according to the remaining pressure are sequentially performed. to be done with
제2-1압송모듈(220)을 통한 가압력으로 분체가 제2수직관(230)을 모두 통과하고 나면, 회전축의 회전에 따라 후속하는 다른 포켓이 제2수직관(230)의 하단부 쪽에서 제2분체라인과 연통되어 흡송 방식이 진행되기 까지 공백시간이 부여될 수 있다. 이때, 제2-1압송모듈(220)과 제2수직관(230) 사이에는 제2분체라인의 개폐를 위한 제2투입개폐밸브가 구비되고, 제2-1압송모듈(220)과 제2투입개폐밸브 사이에는 제2분체라인과 제2투입호퍼(211)를 연결하는 제2투입리턴라인이 구비되며, 제2투입리턴라인에는 제2투입리턴밸브가 구비될 수 있다.After all the powders pass through the second upright pipe 230 by the pressing force through the 2-1 pressure delivery module 220, the second upright pipe 230 follows the rotation of the rotating shaft, and another pocket follows the second upright pipe 230. A blank time may be given until the suction method proceeds in communication with the powder line. At this time, a second input opening/closing valve for opening and closing the second powder line is provided between the 2-1 pressure feeding module 220 and the second vertical pipe 230, and the 2-1 pressure feeding module 220 and the second A second input return line connecting the second powder line and the second input hopper 211 is provided between the input shutoff valves, and a second input return valve may be provided in the second input return line.
그러면, 회전축의 회전에 따라 하나의 포켓이 제2분체라인과 연통되기 시작하면, 제2투입리턴밸브로 제2투입리턴라인을 폐쇄 또는 밀폐시키고 제2투입개폐밸브로 제2분체라인을 개방시키며 제2계량모듈(240)의 제2진공이젝터(243)를 동작시켜 흡송 방식으로 분체의 일부를 이송시킨다. 계속해서 제2투입리턴밸브로 제2투입리턴라인을 폐쇄 또는 밀폐시키고 제2투입개폐밸브로 제2분체라인을 개방시킨 상태에서 제2-1압송모듈(220)을 이용하여 압송 방식으로 분체의 나머지를 이송시킨다.Then, when one pocket starts to communicate with the second powder line according to the rotation of the rotating shaft, the second input return valve closes or closes the second input return line, and the second input shut-off valve opens the second powder line. By operating the second vacuum ejector 243 of the second measurement module 240, a part of the powder is transported in a suction method. Subsequently, the second input return line is closed or closed with the second input return valve and the second powder line is opened with the second input shut-off valve, and the powder is supplied by the pressure transfer method using the 2-1 pressure transfer module 220. transport the rest
다음으로, 하나의 포켓이 계속해서 제2분체라인과 연통되며 제2투입개폐밸브로 제2분체라인을 폐쇄 또는 밀폐시키고 제2투입리턴밸브로 제2투입리턴라인을 개방시킨 상태에서 제2-1압송모듈(220)을 정지시키면, 제2투입밸브(214)와 제2투입개폐밸브 사이의 분체와 가스는 잔류 가압력에 의해 제2투입리턴라인을 거쳐 제2투입호퍼(211)에 전달된다. 또한, 하나의 포켓이 계속해서 제2분체라인과 연통되며 제2투입개폐밸브로 제2분체라인을 폐쇄 또는 밀폐시키고 제2투입리턴밸브로 제2투입리턴라인을 개방시킨 상태에서 제2진공이젝터(243)를 동작시키면 제2수직관(230)에서의 흡입력을 향상시킬 수 있다.Next, one pocket continues to communicate with the second powder line, and in a state where the second powder line is closed or sealed with the second input shut-off valve and the second input return line is opened with the second input return valve, the second When the first pressure transfer module 220 is stopped, the powder and gas between the second input valve 214 and the second input on/off valve are transferred to the second input hopper 211 via the second input return line by the residual pressure. . In addition, one pocket continues to communicate with the second powder line, and the second vacuum ejector in a state in which the second powder line is closed or sealed with the second input shut-off valve and the second input return line is opened with the second input return valve When the 243 is operated, the suction force in the second upright pipe 230 can be improved.
그리고 회전축의 회전에 따라 후속하는 다른 포켓이 제2분체라인과 연통되기 시작하면, 상술한 동작을 반복하게 된다.And when another pocket following the rotation of the rotating shaft starts to communicate with the second powder line, the above-described operation is repeated.
제2계량밸브(244)는 간헐적으로 회전되는 회전축을 중심으로 원주 방향을 따라 등간격으로 배치되는 다수의 포켓이 구비되므로, 해당 포켓에는 정량의 분체가 수용될 수 있다. 제2계량밸브(244)에서 하나의 포켓에는 제2계량량에 대응하여 정량의 분체가 수용될 수 있다. 제2계량밸브(244)에서 하나의 포켓의 용량은 제2계량량에 분체의 이송속도, 분체의 단위이송량에 따라 다양하게 변경 가능하다.Since the second metering valve 244 is provided with a plurality of pockets arranged at equal intervals along the circumferential direction around the intermittently rotated rotation shaft, a fixed amount of powder can be accommodated in the pockets. In one pocket of the second metering valve 244, a quantity of powder corresponding to the second metering amount may be accommodated. The capacity of one pocket in the second metering valve 244 can be variously changed according to the second metering amount, the powder transfer speed, and the powder unit transfer amount.
제2-2압송모듈(250)은 제2계량모듈(240)의 제2계량호퍼(241)에서 간헐적으로 배출되는 분체에 시스템에서 발생되는 공정가스 또는 압축공기를 공급하므로, 제2분체라인에서 분체를 안정되게 가압할 수 있다.The 2-2 pressure feeding module 250 supplies process gas or compressed air generated in the system to the powder intermittently discharged from the second metering hopper 241 of the second metering module 240, so that in the second powder line Powder can be pressurized stably.
제2계량모듈(240)의 제2계량밸브(244)와 제2-2압송모듈(250) 사이에는 제2분체라인의 내부 압력을 조절하기 위해 제2계량밸브(244)와 제2-2압송모듈(250) 사이의 가스를 배출시키거나 외부 가스가 주입되는 벤트가 구비될 수 있다.Between the second metering valve 244 of the second metering module 240 and the 2-2 pressure feeding module 250, the second metering valve 244 and the 2-2 A vent for discharging gas between the pressure transfer modules 250 or for injecting external gas may be provided.
제2예에서 제2이송유닛(200)은 제2투입모듈(210)과 사일로모듈(260)을 분체가 순차적으로 이송되는 방식을 채택할 수 있다.In the second example, the second transfer unit 200 may adopt a method in which powder is sequentially transferred through the second input module 210 and the silo module 260 .
제2이송유닛(200)은 분체가 저장되고 분체를 제2이송량으로 계량하여 배출시키는 제2투입모듈(210)과, 제2투입모듈(210)에서 배출되는 분체가 가압력을 이용한 압송 방식으로 이송되도록 공정가스 또는 압축공기를 이용하여 제2투입모듈(210)에서 배출되는 분체를 가압하는 제2-1압송모듈(220)과, 제2투입모듈(210)에서 배출되는 분체가 상승되는 경로를 형성하도록 높이 방향으로 길게 형성되는 제2수직관(230)과, 제2투입모듈(210)에서 배출되는 분체가 흡입력을 이용한 흡송 방식으로 이송되도록 공정가스 또는 압축공기를 이용하여 제2투입모듈(210)에서 배출되는 분체 또는 제2수직관(230)의 분체를 흡입하여 저장하였다가 피딩 방식을 이용하여 분체를 제2계량량으로 계량하여 배출시키는 사일로모듈(260)과, 사일로모듈(260)에서 배출되는 분체가 가압력을 이용한 압송 방식으로 이송되도록 공정가스 또는 압축공기를 이용하여 사일로모듈(260)에서 배출되는 분체를 가압하는 사일로압송모듈(270)을 포함할 수 있다. 제2투입모듈(210)에는 후술하는 분체계량밸브가 포함될 수 있다.The second transfer unit 200 stores powder, measures and discharges the powder in a second transfer amount, and transfers the powder discharged from the second input module 210 in a pressure-feeding method using pressurized force. The 2-1 pressure feeding module 220 that pressurizes the powder discharged from the second input module 210 using process gas or compressed air as much as possible and the path on which the powder discharged from the second input module 210 rises The second vertical pipe 230 formed long in the height direction to form and the powder discharged from the second input module 210 using a process gas or compressed air so that the powder discharged from the suction power is transferred to the second input module ( 210) or the powder of the second vertical pipe 230 is sucked in and stored, and the silo module 260 measures and discharges the powder in a second metered amount using a feeding method, and the silo module 260 It may include a silo pressure transfer module 270 that pressurizes the powder discharged from the silo module 260 using a process gas or compressed air so that the powder discharged from is transferred in a pressure transfer method using a pressurizing force. The second injection module 210 may include a powder metering valve to be described later.
이때, 제2수직관(230)을 기준으로 제2수직관(230)의 하단부 쪽에는 제2-1압송모듈(220)이 연결되고, 제2-1압송모듈(220)에는 제2투입모듈(210)이 연결되도록 한다. 또한, 제2수직관(230)을 기준으로 제2수직관(230)의 상단부 쪽에는 사일로모듈(260)이 연결되고, 사일로모듈(260)에는 사일로압송모듈(270)이 연결되도록 한다.At this time, the 2-1 pressure feeding module 220 is connected to the lower end of the second vertical pipe 230 based on the second vertical pipe 230, and the second input module is connected to the 2-1 pressure feeding module 220. (210) to be connected. In addition, the silo module 260 is connected to the upper end of the second upright pipe 230 based on the second upright pipe 230, and the silo pressure transfer module 270 is connected to the silo module 260.
제2투입모듈(210)은 분체가 저장되는 제2투입호퍼(211)와, 분체가 제2투입호퍼(211)에 투입될 때 분체로부터 자성을 갖는 이물질을 필터링하는 제2자석필터(212)와, 분체가 제2투입호퍼(211)에 투입될 때 분체로부터 자성이 없는 이물질을 필터링하는 제2메쉬필터(213)와, 로터리밸브 방식을 이용하여 제2투입호퍼(211)에 저장되는 분체를 제2이송량으로 계량하여 배출시키는 제2투입밸브(214)를 포함할 수 있다. 제2투입밸브(214)는 후술하는 분체계량밸브를 포함할 수 있다.The second input module 210 includes a second input hopper 211 in which powder is stored, and a second magnetic filter 212 for filtering foreign substances having magnetic properties from the powder when the powder is put into the second input hopper 211. And, when the powder is put into the second input hopper 211, the second mesh filter 213 for filtering non-magnetic foreign substances from the powder and the powder stored in the second input hopper 211 using a rotary valve method It may include a second input valve 214 that measures and discharges the second transfer amount. The second input valve 214 may include a powder metering valve to be described later.
제2투입호퍼(211)는 외부로부터 분체운반모듈(410)을 통해 전달되는 분체주머니에 보관된 전체 분체가 수용 가능하다. 제2투입호퍼(211)의 용량은 분체의 이송속도, 분체의 단위이송량에 따라 다양하게 변경 가능하다.The second input hopper 211 can accommodate all the powders stored in the powder bag delivered from the outside through the powder transport module 410 . The capacity of the second input hopper 211 can be changed in various ways according to the powder transfer speed and the powder unit transfer amount.
제2자석필터(212)와 제2메쉬필터(213)는 상호 이격되어 제2투입호퍼(211)의 상단부에 배치되어 분체주머니로부터 공급되는 분체에서 이물질을 필터링할 수 있다.The second magnetic filter 212 and the second mesh filter 213 are spaced apart from each other and disposed at the upper end of the second input hopper 211 to filter foreign substances from the powder supplied from the powder bag.
본 발명의 일 실시예에서 제2메쉬필터(213)는 제2자석필터(212)보다 상측에 배치되므로, 뭉쳐진 분체의 파쇄 효과를 나타내고, 뭉쳐진 분체의 크기를 원상태로 복귀시킬 수 있으며, 분체주머니로부터 전달되는 분체에서 자성을 띄는 이물질의 필터링 효과를 향상시킬 수 있다.In one embodiment of the present invention, since the second mesh filter 213 is disposed above the second magnetic filter 212, it exhibits a crushing effect of the agglomerated powder, can restore the size of the agglomerated powder to its original state, and powder bag It is possible to improve the filtering effect of foreign substances that are magnetic in the powder delivered from the powder.
제2투입밸브(214)는 간헐적으로 회전되는 회전축을 중심으로 원주 방향을 따라 등간격으로 배치되는 다수의 포켓이 구비되므로, 해당 포켓에는 정량의 분체가 수용될 수 있다. 제2투입밸브(214)에서 하나의 포켓에는 제2이송량에 대응하여 정량의 분체가 수용될 수 있다. 제2투입밸브(214)에서 하나의 포켓의 용량은 제2이송량에 대응하여 분체의 이송속도, 분체의 단위이송량에 따라 다양하게 변경 가능하다.Since the second input valve 214 is provided with a plurality of pockets arranged at equal intervals along the circumferential direction around the intermittently rotated rotation shaft, a fixed amount of powder can be accommodated in the pockets. In the second input valve 214, a quantity of powder may be accommodated in one pocket corresponding to the second transfer amount. The capacity of one pocket in the second input valve 214 can be variously changed according to the powder transfer speed and the powder unit transfer amount corresponding to the second transfer amount.
제2-1압송모듈(220)은 제2투입모듈(210)의 제2투입호퍼(211)에서 간헐적으로 배출되는 분체에 시스템에서 발생되는 공정가스 또는 압축공기를 공급하므로, 제2분체라인에서 분체를 안정되게 가압할 수 있다.Since the 2-1 pressure feeding module 220 supplies process gas or compressed air generated in the system to the powder intermittently discharged from the second input hopper 211 of the second input module 210, in the second powder line Powder can be pressurized stably.
제2투입모듈(210)의 제2투입밸브(214)와 제2-1압송모듈(220) 사이에는 제2분체라인의 내부 압력을 조절하기 위해 제2투입밸브(214)와 제2-1압송모듈(220) 사이의 가스를 배출시키거나 외부 가스가 주입되는 벤트가 구비될 수 있다.Between the second input valve 214 of the second input module 210 and the 2-1 pressure feeding module 220, the second input valve 214 and the 2-1 A vent for discharging gas between the pressure transfer modules 220 or for injecting external gas may be provided.
제2수직관(230)은 분체이송라인 중 제2분체라인의 일부를 형성한다. 제2수직관(230)은 제2분체라인에서 분체가 시스템의 높이 방향으로 상승되는 경로를 형성한다. 제2수직관(230)은 시스템의 높이 방향으로 길게 형성될 수 있다.The second vertical pipe 230 forms a part of the second powder line among the powder transfer lines. The second vertical pipe 230 forms a path through which the powder rises in the height direction of the system in the second powder line. The second vertical pipe 230 may be formed long in the height direction of the system.
사일로모듈(260)은 제2수직관(230)을 거쳐 이송되는 분체가 저장되는 분체사일로(261)와, 제2투입모듈(210)로부터 배출되는 분체를 흡입력을 이용한 흡송 방식으로 흡입하여 분체사일로(261)에 전달하는 사일로진공이젝터(262)와, 피딩 방식을 이용하여 본체사일로에 저장되는 분체를 제2계량량으로 계량하여 배출시키는 테이블피더(263)를 포함할 수 있다.The silo module 260 includes a powder silo 261 in which the powder transported through the second vertical pipe 230 is stored, and the powder discharged from the second input module 210 is sucked into the powder silo by a suction method using suction force. It may include a silo vacuum ejector 262 that delivers to 261, and a table feeder 263 that measures and discharges the powder stored in the main silo by using a feeding method.
분체사일로(261)는 제2-1압송모듈(220)을 통해 전달되는 분체를 순차적으로 수용 가능하다. 분체사일로(261)에는 다수의 분체주머니에 수용된 분체가 수용되도록 한다.The powder silo 261 can sequentially accommodate the powder delivered through the 2-1 pressure transfer module 220 . The powder silo 261 accommodates the powders contained in the plurality of powder bags.
분체사일로(261)에는 공정가스가 주입되어 분체사일로(261)에 수용되는 분체를 분산시킬수 있다. 분체사일로(261)에 주입되는 공정가스는 분체사일로(261)에 수용되는 분체의 뭉침을 방지할 수 있다. 분체사일로(261)에는 분체사일로(261)의 내부 압력을 조절하기 위해 분체사일로(261)의 가스를 배출시키거나 외부 가스가 주입되는 벤트가 구비될 수 있다.Process gas may be injected into the powder silo 261 to disperse the powder accommodated in the powder silo 261 . The process gas injected into the powder silo 261 can prevent agglomeration of the powders accommodated in the powder silo 261 . The powder silo 261 may be provided with a vent through which gas from the powder silo 261 is discharged or external gas is injected in order to adjust the internal pressure of the powder silo 261 .
사일로진공이젝터(262)는 공정가스 또는 압축공기에 의해 내부가 진공 상태로 유지되는 진공탱크부(420)와, 진공탱크부(420)의 내부를 진공 상태로 유지하기 위해 공정가스 또는 압축공기가 입력됨에 따라 흡입력을 발생시키는 진공헤드부(430)와, 제2수직관(230)과 진공탱크부(420)가 연통되도록 제2수직관(230)이 연결되는 분체투입부(440)와, 진공탱크부(420)와 분체사일로(261)를 개폐 가능하게 연통시키는 연결밸브부(450)와, 제2투입모듈(210)과 제2-1압송모듈(220)과 진공헤드부(430) 사이의 동작 관계를 제어하는 제어유닛(460)을 포함할 수 있다.The silo vacuum ejector 262 includes a vacuum tank unit 420 in which the inside is maintained in a vacuum state by process gas or compressed air, and a process gas or compressed air to maintain the inside of the vacuum tank unit 420 in a vacuum state. A vacuum head unit 430 generating suction force according to input, and a powder input unit 440 to which the second vertical tube 230 is connected so that the second vertical tube 230 and the vacuum tank unit 420 communicate with each other, A connection valve unit 450 for opening and closing communication between the vacuum tank unit 420 and the powder silo 261, the second input module 210, the 2-1 pressure transfer module 220, and the vacuum head unit 430 It may include a control unit 460 for controlling the operational relationship between.
사일로진공이젝터(262)는 상술한 제1진공이젝터(143)와 동일한 구성으로 동일한 도면부호를 부여하기로 한다.The silo vacuum ejector 262 has the same configuration as the above-described first vacuum ejector 143 and is given the same reference numerals.
진공탱크부(420)는 흡입력을 지탱하도록 원통 형상을 나타내는 것이 바람직하다. 진공자켓부(421)가 진공탱크부(420)를 감싸 지지하므로, 진공탱크부(420)의 변형을 방지하고, 진공탱크부(420)를 보호할 수 있다.The vacuum tank unit 420 preferably has a cylindrical shape to support suction force. Since the vacuum jacket part 421 surrounds and supports the vacuum tank part 420 , deformation of the vacuum tank part 420 can be prevented and the vacuum tank part 420 can be protected.
진공헤드부(430)는 진공탱크부(420)의 상단부에 구비되는 것이 유리하다. 진공헤드부(430)에는 공정가스 또는 압축공기가 주입되는 가스주입부(431)가 구비되고, 가스주입부(431)에서 이격되어 흡입력의 발생에 따라 생성되는 공정가스가 배출되는 가스배출부가 구비될 수 있다.It is advantageous that the vacuum head part 430 is provided at the upper end of the vacuum tank part 420 . The vacuum head unit 430 includes a gas injection unit 431 into which process gas or compressed air is injected, and a gas discharge unit spaced from the gas injection unit 431 and discharging process gas generated according to the generation of suction force. It can be.
진공헤드부(430)에는 주입되는 공정가스 또는 압축공기를 이용한 벤츄리 효과를 이용하여 분체에 흡입력을 제공하기 위한 벤츄리부(미도시)가 구비되어 분체의 흡송을 안정화시키고 흡송 주기를 간편하게 조절할 수 있다.The vacuum head unit 430 is provided with a venturi unit (not shown) for providing a suction force to the powder by using the venturi effect using the injected process gas or compressed air, thereby stabilizing the suction of the powder and conveniently adjusting the suction cycle. .
분체투입부(440)는 진공탱크부(420)의 측면 또는 진공탱크부(420)의 상단부에 구비되어 제2수직관(230)으로부터 분체의 이송을 원활하게 할 수 있다.The powder introduction unit 440 is provided on the side of the vacuum tank unit 420 or on the upper end of the vacuum tank unit 420 to facilitate the transfer of powder from the second vertical pipe 230 .
연결밸브부(450)는 진공탱크부(420)의 하단부에 구비되는 것이 유리하다. 연결밸브부(450)는 진공탱크부(420)의 진공 상태가 유지되도록 진공탱크부(420)의 하단부에 구비되는 진공버퍼부와, 진공버퍼부의 하단부에 구비되고 사일로모듈(260)의 분체사일로(261)와 연통되는 밸브바디부(451)와, 밸브바디부(451)에 구비되어 밸브바디부(451)를 개폐하거나 밸브바디부(451)의 개도를 조절하는 밸브개폐부와, 밸브개폐부를 동작시키는 개폐구동부(452)를 포함할 수 있다.It is advantageous that the connection valve unit 450 is provided at the lower end of the vacuum tank unit 420 . The connection valve unit 450 includes a vacuum buffer unit provided at the lower end of the vacuum tank unit 420 to maintain the vacuum state of the vacuum tank unit 420 and a powder silo of the silo module 260 provided at the lower end of the vacuum buffer unit. A valve body portion 451 communicating with 261, a valve opening/closing portion provided on the valve body portion 451 to open and close the valve body portion 451 or adjusting the opening degree of the valve body portion 451, and a valve opening/closing portion It may include an opening/closing driving unit 452 for operation.
제어유닛(460)은 제2투입모듈(210)에서 분체가 배출됨에 따라 분체의 일부가 흡입력에 의한 흡송 방식으로 제2수직관(230)을 통과하도록 제2-1압송모듈(220)을 정지시킨 상태에서 진공헤드부(430)를 동작시키고, 다음으로, 분체의 나머지가 가압력에 의한 압송 방식으로 제2수직관(230)을 통과하도록 진공헤드부(430)의 정지와 함께 제2-1압송모듈(220)을 동작시시키므로, 제2수직관(230)에서 분체를 안정되게 배출시킬 수 있다.As the powder is discharged from the second input module 210, the control unit 460 stops the 2-1 pressure feeding module 220 so that a part of the powder passes through the second vertical pipe 230 in a suction method by suction force. 2-1 with the stop of the vacuum head 430 so that the rest of the powder passes through the second vertical pipe 230 in a pressure-feeding method by pressing force. Since the pressure feeding module 220 is operated, the powder can be stably discharged from the second vertical pipe 230.
좀더 자세하게, 제어유닛(460)의 동작을 살펴보면, 다음과 같다.In more detail, the operation of the control unit 460 will be described as follows.
제2투입밸브(214)에서 회전축의 회전에 따라 하나의 포켓이 제2분체라인과 연통되면, 흡송 방식의 분체의 이송과 압송의 방식의 분체 이송과 잔여 가압력에 따른 분체와 가스의 리턴이 순차적으로 이루어지도록 한다.When one pocket communicates with the second powder line according to the rotation of the rotary shaft in the second input valve 214, the powder transfer of the suction method, the powder transfer of the pressure feed method, and the return of the powder and gas according to the remaining pressure are sequentially performed. to be done with
제2-1압송모듈(220)을 통한 가압력으로 분체가 제2수직관(230)을 모두 통과하고 나면, 회전축의 회전에 따라 후속하는 다른 포켓이 제2수직관(230)의 하단부 쪽에서 제2분체라인과 연통되어 흡송 방식이 진행되기 까지 공백시간이 부여될 수 있다. 이때, 제2-1압송모듈(220)과 제2수직관(230) 사이에는 제2분체라인의 개폐를 위한 제2투입개폐밸브가 구비되고, 제2-1압송모듈(220)과 제2투입개폐밸브 사이에는 제2분체라인과 제2투입호퍼(211)를 연결하는 제2투입리턴라인이 구비되며, 제2투입리턴라인에는 제2투입리턴밸브가 구비될 수 있다.After all the powders pass through the second upright pipe 230 by the pressing force through the 2-1 pressure delivery module 220, the second upright pipe 230 follows the rotation of the rotating shaft, and another pocket follows the second upright pipe 230. A blank time may be given until the suction method proceeds in communication with the powder line. At this time, a second input opening/closing valve for opening and closing the second powder line is provided between the 2-1 pressure feeding module 220 and the second vertical pipe 230, and the 2-1 pressure feeding module 220 and the second A second input return line connecting the second powder line and the second input hopper 211 is provided between the input shutoff valves, and a second input return valve may be provided in the second input return line.
그러면, 회전축의 회전에 따라 하나의 포켓이 제2분체라인과 연통되기 시작하면, 제2투입리턴밸브로 제2투입리턴라인을 폐쇄 또는 밀폐시키고 제2투입개폐밸브로 제2분체라인을 개방시키며 제2계량모듈(240)의 제2진공이젝터(243)를 동작시켜 흡송 방식으로 분체의 일부를 이송시킨다. 계속해서 제2투입리턴밸브로 제2투입리턴라인을 폐쇄 또는 밀폐시키고 제2투입개폐밸브로 제2분체라인을 개방시킨 상태에서 제2-1압송모듈(220)을 이용하여 압송 방식으로 분체의 나머지를 이송시킨다.Then, when one pocket starts to communicate with the second powder line according to the rotation of the rotating shaft, the second input return valve closes or closes the second input return line, and the second input shut-off valve opens the second powder line. By operating the second vacuum ejector 243 of the second measurement module 240, a part of the powder is transported in a suction method. Subsequently, the second input return line is closed or closed with the second input return valve and the second powder line is opened with the second input shut-off valve, and the powder is supplied by the pressure transfer method using the 2-1 pressure transfer module 220. transport the rest
다음으로, 하나의 포켓이 계속해서 제2분체라인과 연통되며 제2투입개폐밸브로 제2분체라인을 폐쇄 또는 밀폐시키고 제2투입리턴밸브로 제2투입리턴라인을 개방시킨 상태에서 제2-1압송모듈(220)을 정지시키면, 제2투입밸브(214)와 제2투입개폐밸브 사이의 분체와 가스는 잔류 가압력에 의해 제2투입리턴라인을 거쳐 제2투입호퍼(211)에 전달된다. 또한, 하나의 포켓이 계속해서 제2분체라인과 연통되며 제2투입개폐밸브로 제2분체라인을 폐쇄 또는 밀폐시키고 제2투입리턴밸브로 제2투입리턴라인을 개방시킨 상태에서 제2진공이젝터(243)를 동작시키면 제2수직관(230)에서의 흡입력을 향상시킬 수 있다.Next, one pocket continues to communicate with the second powder line, and in a state where the second powder line is closed or sealed with the second input shut-off valve and the second input return line is opened with the second input return valve, the second When the first pressure transfer module 220 is stopped, the powder and gas between the second input valve 214 and the second input on/off valve are transferred to the second input hopper 211 via the second input return line by the residual pressure. . In addition, one pocket continues to communicate with the second powder line, and the second vacuum ejector in a state in which the second powder line is closed or sealed with the second input shut-off valve and the second input return line is opened with the second input return valve When the 243 is operated, the suction force in the second upright pipe 230 can be improved.
그리고 회전축의 회전에 따라 후속하는 다른 포켓이 제2분체라인과 연통되기 시작하면, 상술한 동작을 반복하게 된다.And when another pocket following the rotation of the rotating shaft starts to communicate with the second powder line, the above-described operation is repeated.
테이블피더(263)는 분체사일로(261)의 하단부에 구비되는 제1피더밸브부와, 피더밸브부의 하단부에 구비되어 제2계량량에 대응하여 분체가 수용되는 분체저장소와, 분체저장소의 하단부에 구비되는 제2피더밸브부를 포함할 수 있다.The table feeder 263 includes a first feeder valve part provided at the lower end of the powder silo 261, a powder storage provided at the lower end of the feeder valve part to receive powder in response to the second weighing amount, and a powder storage provided at the lower end of the powder storage. It may include a second feeder valve unit provided.
그러면, 제2피더밸브부로 분체저장소의 하단부를 폐쇄 또는 밀폐한 상태에서 제1피더밸브부를 개방하면, 분체사일로(261)의 분체가 분체저장소로 이동되어 분체저장소에는 제2계량량에 대응되는 분체가 수용된다. 제1피더밸브부를 폐쇄 또는 밀폐한 상태에서 제2피더밸브부를 개방하면, 제2계량량에 대응하여 분체저장소에 수용된 분체를 제2분체라인에 전달할 수 있다. 그리고 제2피더밸브부를 폐쇄 또는 밀폐한 다음, 사일로압송모듈(270)로 제2분체라인의 분체를 압송 방식으로 이송시킬 수 있다.Then, when the first feeder valve is opened in a state where the lower end of the powder storage is closed or sealed with the second feeder valve, powder in the powder silo 261 is moved to the powder storage, and the powder corresponding to the second weighing amount is stored in the powder storage. is accepted When the second feeder valve unit is opened while the first feeder valve unit is closed or sealed, the powder stored in the powder storage can be delivered to the second powder line in response to the second weighing amount. Then, after closing or sealing the second feeder valve unit, the powder in the second powder line may be transferred to the silo pressure feeding module 270 by a pressure feeding method.
사일로압송모듈(270)은 사일로모듈(260)의 분체사일로(261)에서 간헐적으로 배출되는 분체에 시스템에서 발생되는 공정가스 또는 압축공기를 공급하므로, 제2분체라인에서 분체를 안정되게 가압할 수 있다.Since the silo pressure feeding module 270 supplies process gas or compressed air generated in the system to the powder intermittently discharged from the powder silo 261 of the silo module 260, the powder can be stably pressurized in the second powder line. have.
사일로모듈(260)의 테이블피더(263)와 사일로압송모듈(270) 사이에는 제2분체라인의 내부 압력을 조절하기 위해 테이블피더(263)와 사일로압송모듈(270) 사이의 가스를 배출시키거나 외부 가스가 주입되는 벤트가 구비될 수 있다.Between the table feeder 263 of the silo module 260 and the silo pressure feed module 270, gas between the table feeder 263 and the silo pressure feed module 270 is discharged to adjust the internal pressure of the second powder line, or A vent through which external gas is injected may be provided.
제3예에서 제2이송유닛(200)은 사일로모듈(260)과 제2계량모듈(240)을 분체가 순차적으로 이송되는 방식을 채택할 수 있다.In the third example, the second transfer unit 200 may adopt a method in which powder is sequentially transferred through the silo module 260 and the second weighing module 240 .
제2이송유닛(200)은 분체가 저장되고 피딩 방식을 이용하여 분체를 제2이송량으로 계량하여 배출시키는 사일로모듈(260)과, 제2계량모듈(240)에서 배출되는 분체가 가압력을 이용한 압송 방식으로 이송되도록 공정가스 또는 압축공기를 이용하여 사일로모듈(260)에서 배출되는 분체를 가압하는 사일로압송모듈(270)과, 사일로모듈(260)에서 배출되는 분체가 상승되는 경로를 형성하도록 높이 방향으로 길게 형성되는 제2수직관(230)과, 사일로모듈(260)에서 배출되는 분체가 흡입력을 이용한 흡송 방식으로 이송되도록 공정가스 또는 압축공기를 이용하여 사일로모듈(260)에서 배출되는 분체 또는 제2수직관(230)의 분체를 흡입하여 저장하였다가 로터리밸브 방식을 이용하여 분체를 제2계량량으로 계량하여 배출시키는 제2계량모듈(240)과, 제2계량모듈(240)에서 배출되는 분체가 가압력을 이용한 압송 방식으로 이송되도록 공정가스 또는 압축공기를 이용하여 제2계량모듈(240)에서 배출되는 분체를 가압하는 제2-2압송모듈(250)을 포함할 수 있다. 제2계량모듈(240)에는 후술하는 분체계량밸브가 포함될 수 있다.The second transfer unit 200 includes a silo module 260 that stores powder and measures and discharges the powder at a second transfer amount using a feeding method, and pressurizes the powder discharged from the second metering module 240 using a pressing force. The silo pressure transfer module 270 pressurizes the powder discharged from the silo module 260 using process gas or compressed air to be transported in a height direction to form a path for the powder discharged from the silo module 260 to rise. The second vertical pipe 230 formed long and the powder discharged from the silo module 260 by using process gas or compressed air so that the powder discharged from the silo module 260 is transferred in a suction method using suction force. The second metering module 240 that sucks and stores the powder of the second vertical pipe 230 and measures and discharges the powder in a second metering amount using a rotary valve method, and the second metering module 240 discharges the powder It may include a 2-2 pressure transfer module 250 that pressurizes the powder discharged from the second metering module 240 by using process gas or compressed air so that the powder is transferred in a pressure transfer method using a pressurized force. The second metering module 240 may include a powder metering valve to be described later.
이때, 제2수직관(230)을 기준으로 제2수직관(230)의 하단부 쪽에는 사일로압송모듈(270)이 연결되고, 사일로압송모듈(270)에는 사일로모듈(260)이 연결되도록 한다. 또한, 제2수직관(230)을 기준으로 제2수직관(230)의 상단부 쪽에는 제2계량모듈(240)이 연결되고, 제2계량모듈(240)에는 제2-2압송모듈(250)이 연결되도록 한다.At this time, the silo pressure feeding module 270 is connected to the lower end of the second vertical pipe 230 based on the second vertical pipe 230, and the silo module 260 is connected to the silo pressure feeding module 270. In addition, the second measuring module 240 is connected to the upper end of the second vertical pipe 230 based on the second vertical pipe 230, and the second measuring module 240 has a 2-2 pressure feeding module 250 ) to be connected.
사일로모듈(260)은 제2수직관(230)을 거쳐 이송되는 분체가 저장되는 분체사일로(261)와, 피딩 방식을 이용하여 본체사일로에 저장되는 분체를 제2계량량으로 계량하여 배출시키는 테이블피더(263)를 포함할 수 있다.The silo module 260 includes a powder silo 261 in which the powder transported through the second vertical pipe 230 is stored, and a table for measuring and discharging the powder stored in the main silo by a second weighing amount by using a feeding method. A feeder 263 may be included.
사일로모듈(260)은 분체가 분체사일로(261)에 투입될 때 분체로부터 자성을 갖는 이물질을 필터링하는 사일로자석필터와, 분체가 분체사일로(261)에 투입될 때 분체로부터 자성이 없는 이물질을 필터링하는 사일로메쉬필터를 더 포함할 수 있다.The silo module 260 includes a silo magnet filter for filtering foreign substances having magnetism from the powder when the powder is introduced into the powder silo 261, and filtering non-magnetic foreign substances from the powder when the powder is introduced into the powder silo 261. It may further include a silomesh filter to.
제3예에서 사일로모듈(260)은 상술한 사일로진공이젝터(262)가 생략되는 것이 바람직하다.In the third example, in the silo module 260, it is preferable that the above-described silo vacuum ejector 262 is omitted.
분체사일로(261)는 외부로부터 분체운반모듈(410)을 통해 전달되는 분체주머니에 보관된 전체 분체가 수용 가능하다. 분체사일로(261)에는 다수의 분체주머니에 수용된 분체가 수용되도록 한다.The powder silo 261 can accommodate all the powder stored in the powder bag delivered from the outside through the powder transport module 410 . The powder silo 261 accommodates the powders contained in the plurality of powder bags.
분체사일로(261)에는 공정가스가 주입되어 분체사일로(261)에 수용되는 분체를 분산시킬 수 있다. 분체사일로(261)에 주입되는 공정가스는 분체사일로(261)에 수용되는 분체의 뭉침을 방지할 수 있다. 분체사일로(261)에는 분체사일로(261)의 내부 압력을 조절하기 위해 분체사일로(261)의 가스를 배출시키거나 외부 가스가 주입되는 벤트가 구비될 수 있다.Process gas may be injected into the powder silo 261 to disperse the powder accommodated in the powder silo 261 . The process gas injected into the powder silo 261 can prevent agglomeration of the powders accommodated in the powder silo 261 . The powder silo 261 may be provided with a vent through which gas from the powder silo 261 is discharged or external gas is injected in order to adjust the internal pressure of the powder silo 261 .
사일로자석필터와 사일로메쉬필터는 상호 이격되어 분체사일로(261)의 상단부에 배치되어 분체주머니로부터 공급되는 분체에서 이물질을 필터링할 수 있다.The silo magnet filter and the silo mesh filter are spaced apart from each other and disposed at the upper end of the powder silo 261 to filter foreign substances from the powder supplied from the powder bag.
본 발명의 일 실시예에서 사일로메쉬필터는 사일로자석필터보다 상측에 배치되므로, 뭉쳐진 분체의 파쇄 효과를 나타내고, 뭉쳐진 분체의 크기를 원상태로 복귀시킬 수 있으며, 분체주머니로부터 전달되는 분체에서 자성을 띄는 이물질의 필터링 효과를 향상시킬 수 있다.In one embodiment of the present invention, since the silo mesh filter is disposed above the silo magnet filter, it exhibits a crushing effect of the agglomerated powder, can return the size of the agglomerated powder to its original state, and is magnetic in the powder delivered from the powder bag. The filtering effect of foreign substances can be improved.
테이블피더(263)는 분체사일로(261)의 하단부에 구비되는 제1피더밸브부와, 피더밸브부의 하단부에 구비되어 제2이송량에 대응하여 분체가 수용되는 분체저장소와, 분체저장소의 하단부에 구비되는 제2피더밸브부를 포함할 수 있다.The table feeder 263 includes a first feeder valve part provided at the lower end of the powder silo 261, a powder storage provided at the lower end of the feeder valve part to receive powder in response to the second transfer amount, and a powder storage provided at the lower end of the powder storage. It may include a second feeder valve unit that is.
그러면, 제2피더밸브부로 분체저장소의 하단부를 폐쇄 또는 밀폐한 상태에서 제1피더밸브부를 개방하면, 분체사일로(261)의 분체가 분체저장소로 이동되어 분체저장소에는 제2이송량에 대응되는 분체가 수용된다. 제1피더밸브부를 폐쇄 또는 밀폐한 상태에서 제2피더밸브부를 개방하면, 제2이송량에 대응하여 분체저장소에 수용된 분체를 제2분체라인에 전달할 수 있다. 그리고 제2피더밸브부를 폐쇄 또는 밀폐한 다음, 사일로압송모듈(270)로 제2분체라인의 분체를 압송 방식으로 이송시킬 수 있다.Then, when the first feeder valve unit is opened in a state where the lower end of the powder storage unit is closed or sealed with the second feeder valve unit, the powder in the powder silo 261 is moved to the powder storage unit, and the powder corresponding to the second transfer amount is transferred to the powder storage unit. Accepted. When the second feeder valve unit is opened while the first feeder valve unit is closed or sealed, the powder stored in the powder storage can be transferred to the second powder line in response to the second transfer amount. Then, after closing or sealing the second feeder valve unit, the powder in the second powder line may be transferred to the silo pressure feeding module 270 by a pressure feeding method.
사일로압송모듈(270)은 사일로모듈(260)의 분체사일로(261)에서 간헐적으로 배출되는 분체에 시스템에서 발생되는 공정가스 또는 압축공기를 공급하므로, 제2분체라인에서 분체를 안정되게 가압할 수 있다.Since the silo pressure feeding module 270 supplies process gas or compressed air generated in the system to the powder intermittently discharged from the powder silo 261 of the silo module 260, the powder can be stably pressurized in the second powder line. have.
사일로모듈(260)의 테이블피더(263)와 사일로압송모듈(270) 사이에는 제2분체라인의 내부 압력을 조절하기 위해 테이블피더(263)와 사일로압송모듈(270) 사이의 가스를 배출시키거나 외부 가스가 주입되는 벤트가 구비될 수 있다.Between the table feeder 263 of the silo module 260 and the silo pressure feed module 270, gas between the table feeder 263 and the silo pressure feed module 270 is discharged to adjust the internal pressure of the second powder line, or A vent through which external gas is injected may be provided.
제2수직관(230)은 분체이송라인 중 제2분체라인의 일부를 형성한다. 제2수직관(230)은 제2분체라인에서 분체가 시스템의 높이 방향으로 상승되는 경로를 형성한다. 제2수직관(230)은 시스템의 높이 방향으로 길게 형성될 수 있다.The second vertical pipe 230 forms a part of the second powder line among the powder transfer lines. The second vertical pipe 230 forms a path through which the powder rises in the height direction of the system in the second powder line. The second vertical pipe 230 may be formed long in the height direction of the system.
제2계량모듈(240)은 제2수직관(230)을 거쳐 이송되는 분체가 저장되는 제2계량호퍼(241)와, 제2투입모듈(210)로부터 배출되는 분체를 흡입력을 이용한 흡송 방식으로 흡입하여 제2계량호퍼(241)에 전달하는 제2진공이젝터(243)와, 로터리밸브 방식을 이용하여 제2계량호퍼(241)에 저장되는 분체를 제2계량량으로 계량하여 배출시키는 제2계량밸브(244)를 포함할 수 있다. 제2계량밸브(244)는 후술하는 분체계량밸브를 포함할 수 있다.The second metering module 240 is a second metering hopper 241 in which the powder transported through the second vertical pipe 230 is stored, and the powder discharged from the second input module 210 is suctioned using a suction force. A second vacuum ejector 243 that sucks and delivers to the second metering hopper 241, and a second metering unit that measures and discharges powder stored in the second metering hopper 241 at a second metering amount by using a rotary valve method. A metering valve 244 may be included. The second metering valve 244 may include a powder metering valve to be described later.
제2계량호퍼(241)는 사일로압송모듈(270)을 통해 전달되는 분체를 순차적으로 수용 가능하다. 제2계량호퍼(241)의 용량은 분체의 이송속도, 분체의 단위이송량에 따라 다양하게 변경 가능하다.The second metering hopper 241 can sequentially accommodate the powder delivered through the silo pressure transfer module 270 . The capacity of the second metering hopper 241 can be variously changed according to the powder transfer speed and the unit transfer amount of the powder.
제2계량호퍼(241)에는 공정가스를 이용하여 제2계량호퍼(241)에 수용되는 분체를 분산시키는 제2공기유닛(242)이 구비될 수 있다. 제2공기유닛(242)은 공정가스를 제2계량호퍼(241)에 주입하여 제2계량호퍼(241)에 수용되는 분체의 뭉침을 방지할 수 있다. 제2계량호퍼(241)에는 제2계량호퍼(241)의 내부 압력을 조절하기 위해 제2계량호퍼(241)의 가스를 배출시키거나 외부 가스가 주입되는 벤트가 구비될 수 있다.A second air unit 242 may be provided in the second metering hopper 241 to disperse the powder accommodated in the second metering hopper 241 using process gas. The second air unit 242 injects process gas into the second metering hopper 241 to prevent agglomeration of powders accommodated in the second metering hopper 241 . The second metering hopper 241 may be provided with a vent through which gas from the second metering hopper 241 is discharged or external gas is injected in order to adjust the internal pressure of the second metering hopper 241 .
제2진공이젝터(243)는 공정가스 또는 압축공기에 의해 내부가 진공 상태로 유지되는 진공탱크부(420)와, 진공탱크부(420)의 내부를 진공 상태로 유지하기 위해 공정가스 또는 압축공기가 입력됨에 따라 흡입력을 발생시키는 진공헤드부(430)와, 제2수직관(230)과 진공탱크부(420)가 연통되도록 제2수직관(230)이 연결되는 분체투입부(440)와, 진공탱크부(420)와 제2계량호퍼(241)를 개폐 가능하게 연통시키는 연결밸브부(450)와, 사일로모듈(260)과 사일로압송모듈(270)과 진공헤드부(430) 사이의 동작 관계를 제어하는 제어유닛(460)을 포함할 수 있다.The second vacuum ejector 243 includes a vacuum tank unit 420 in which the inside is maintained in a vacuum state by process gas or compressed air, and a process gas or compressed air to maintain the inside of the vacuum tank unit 420 in a vacuum state. The powder input unit 440 to which the second vertical tube 230 is connected so that the vacuum head unit 430 that generates a suction force as is input, and the second vertical tube 230 and the vacuum tank unit 420 communicate with each other. Between the connection valve unit 450, which connects the vacuum tank unit 420 and the second metering hopper 241 so as to be able to open and close, the silo module 260, the silo pressure feeding module 270, and the vacuum head unit 430 It may include a control unit 460 that controls the operational relationship.
제2진공이젝터(243)는 상술한 제1진공이젝터(143)와 동일한 구성으로 동일한 도면부호를 부여하기로 한다.The second vacuum ejector 243 has the same configuration as the above-described first vacuum ejector 143 and is given the same reference numerals.
진공탱크부(420)는 흡입력을 지탱하도록 원통 형상을 나타내는 것이 바람직하다. 진공자켓부(421)가 진공탱크부(420)를 감싸 지지하므로, 진공탱크부(420)의 변형을 방지하고, 진공탱크부(420)를 보호할 수 있다.The vacuum tank unit 420 preferably has a cylindrical shape to support suction force. Since the vacuum jacket part 421 surrounds and supports the vacuum tank part 420 , deformation of the vacuum tank part 420 can be prevented and the vacuum tank part 420 can be protected.
진공헤드부(430)는 진공탱크부(420)의 상단부에 구비되는 것이 유리하다. 진공헤드부(430)에는 공정가스 또는 압축공기가 주입되는 가스주입부(431)가 구비되고, 가스주입부(431)에서 이격되어 흡입력의 발생에 따라 생성되는 공정가스가 배출되는 가스배출부가 구비될 수 있다.It is advantageous that the vacuum head part 430 is provided at the upper end of the vacuum tank part 420 . The vacuum head unit 430 includes a gas injection unit 431 into which process gas or compressed air is injected, and a gas discharge unit spaced from the gas injection unit 431 and discharging process gas generated according to the generation of suction force. It can be.
진공헤드부(430)에는 주입되는 공정가스 또는 압축공기를 이용한 벤츄리 효과를 이용하여 분체에 흡입력을 제공하기 위한 벤츄리부(미도시)가 구비되어 분체의 흡송을 안정화시키고 흡송 주기를 간편하게 조절할 수 있다.The vacuum head unit 430 is provided with a venturi unit (not shown) for providing a suction force to the powder by using the venturi effect using the injected process gas or compressed air, thereby stabilizing the suction of the powder and conveniently adjusting the suction cycle. .
분체투입부(440)는 진공탱크부(420)의 측면 또는 진공탱크부(420)의 상단부에 구비되어 제2수직관(230)으로부터 분체의 이송을 원활하게 할 수 있다.The powder introduction unit 440 is provided on the side of the vacuum tank unit 420 or on the upper end of the vacuum tank unit 420 to facilitate the transfer of powder from the second vertical pipe 230 .
연결밸브부(450)는 진공탱크부(420)의 하단부에 구비되는 것이 유리하다. 연결밸브부(450)는 진공탱크부(420)의 진공 상태가 유지되도록 진공탱크부(420)의 하단부에 구비되는 진공버퍼부와, 진공버퍼부의 하단부에 구비되고 제2계량모듈(240)의 제2계량호퍼(241)와 연통되는 밸브바디부(451)와, 밸브바디부(451)에 구비되어 밸브바디부(451)를 개폐하거나 밸브바디부(451)의 개도를 조절하는 밸브개폐부와, 밸브개폐부를 동작시키는 개폐구동부(452)를 포함할 수 있다.It is advantageous that the connection valve unit 450 is provided at the lower end of the vacuum tank unit 420 . The connection valve unit 450 includes a vacuum buffer unit provided at the lower end of the vacuum tank unit 420 so that the vacuum state of the vacuum tank unit 420 is maintained, and a vacuum buffer unit provided at the lower end of the vacuum buffer unit and the second measurement module 240. A valve body part 451 communicating with the second metering hopper 241, and a valve opening and closing part provided on the valve body part 451 to open and close the valve body part 451 or to adjust the opening degree of the valve body part 451 , It may include an opening/closing driver 452 for operating the valve opening/closing unit.
제어유닛(460)은 사일로모듈(260)에서 분체가 배출됨에 따라 분체의 일부가 흡입력에 의한 흡송 방식으로 제2수직관(230)을 통과하도록 사일로압송모듈(270)을 정지시킨 상태에서 진공헤드부(430)를 동작시키고, 다음으로, 분체의 나머지가 가압력에 의한 압송 방식으로 제2수직관(230)을 통과하도록 진공헤드부(430)의 정지와 함께 사일로압송모듈(270)을 동작시키므로, 제2수직관(230)에서 분체를 안정되게 배출시킬 수 있다.As the powder is discharged from the silo module 260, the control unit 460 stops the silo pressure feeding module 270 so that a part of the powder passes through the second vertical pipe 230 in a suction method by suction force, and the vacuum head The unit 430 is operated, and then the silo pressure feeding module 270 is operated together with the vacuum head unit 430 stopped so that the rest of the powder passes through the second vertical pipe 230 in a pressure feeding method by pressing force. , Powder can be stably discharged from the second vertical pipe 230.
좀더 자세하게, 제어유닛(460)의 동작을 살펴보면, 다음과 같다.In more detail, the operation of the control unit 460 will be described as follows.
사일로피더에서 제2피더밸브부의 개방에 따라 분체저장소와 제2분체라인이 연통되면, 흡송 방식의 분체의 이송과 압송의 방식의 분체 이송이 순차적으로 이루어지도록 한다.In the silo feeder, when the powder storage and the second powder line communicate with each other according to the opening of the second feeder valve, the suction type powder transfer and the pressure transfer type powder transfer are sequentially performed.
사일로압송모듈(270)을 통한 가압력으로 분체가 제2수직관(230)을 모두 통과하고 나면, 제2피더밸브부가 개방되므로, 분체저장소와 제2수직관(230)이 연통되고, 분체저장소의 분체가 제2분체라인으로 배출된다. 이때, 사일로압송모듈(270)과 제2수직관(230) 사이에는 제2분체라인의 개폐를 위한 투입개폐밸브가 구비될 수 있다.After all of the powders pass through the second vertical pipe 230 by the pressing force through the silo pressure feeding module 270, the second feeder valve is opened, so that the powder storage and the second vertical pipe 230 are in communication, The powder is discharged to the second powder line. At this time, between the silo pressure feeding module 270 and the second vertical pipe 230, an input opening/closing valve for opening and closing the second powder line may be provided.
그러면, 분체저장소의 분체가 제2분체라인으로 배출되면, 투입개폐밸브로 제2분체라인을 개방시키고 제2계량모듈(240)의 제2진공이젝터(243)를 동작시켜 흡송 방식으로 분체의 일부를 이송시킨다. 이때, 분체의 흡송 과정에서 분체저장소의 분체가 모두 제2분체라인으로 배출되므로, 제2피더밸브부를 폐쇄 또는 밀폐한 상태로 전환시킨다. 계속해서, 투입개폐밸브로 제2분체라인을 개방시키고 제2피더밸브부를 폐쇄 또는 밀폐한 상태에서 사일로압송모듈(270)을 이용하여 압송 방식으로 분체의 나머지를 이송시킨다.Then, when the powder in the powder storage is discharged to the second powder line, the second powder line is opened with the input opening/closing valve and the second vacuum ejector 243 of the second measurement module 240 is operated to suction some of the powder. transfer At this time, since all of the powder in the powder storage is discharged to the second powder line during the powder suction process, the second feeder valve unit is switched to a closed or sealed state. Subsequently, the second powder line is opened with the input opening/closing valve, and the remainder of the powder is transferred by the pressure feeding method using the silo pressure feeding module 270 in a state where the second feeder valve is closed or sealed.
다음으로, 사일로압송모듈(270)의 정지와 함께 투입개폐밸브로 제2분체라인을 폐쇄 또는 밀폐시키고, 제2피더밸브부가 개방되면, 제2피더밸브부와 투입개폐밸브 사이의 분체와 가스는 잔류 가압력에 의해 분체사일로(261)에 전달되고, 후속 동작을 위해 제2피더밸브부를 폐쇄 또는 밀폐시킨 다음, 제1피더밸브부를 개방하면 후속하는 분체를 분체사일로(261)에 투입할 수 있다. 또한, 사일로압송모듈(270)의 정지와 함께 투입개폐밸브로 제2분체라인을 폐쇄 또는 밀폐시킨 상태에서 제2진공이젝터(243)를 동작시키면, 제2수직관(230)에서의 흡입력을 향상시킬 수 있다.Next, with the stop of the silo pressure feeding module 270, the second powder line is closed or sealed with the input on-off valve, and when the second feeder valve is opened, the powder and gas between the second feeder valve and the input on-off valve When the residual pressure is transmitted to the powder silo 261, the second feeder valve part is closed or closed for subsequent operation, and the first feeder valve part is opened, subsequent powder can be introduced into the powder silo 261. In addition, when the second vacuum ejector 243 is operated in a state in which the second powder line is closed or sealed by the input opening/closing valve together with the stop of the silo pressure feeding module 270, the suction force in the second vertical pipe 230 is improved. can make it
제2계량밸브(244)는 간헐적으로 회전되는 회전축을 중심으로 원주 방향을 따라 등간격으로 배치되는 다수의 포켓이 구비되므로, 해당 포켓에는 정량의 분체가 수용될 수 있다. 제2계량밸브(244)에서 하나의 포켓에는 제2계량량에 대응하여 정량의 분체가 수용될 수 있다. 제2계량밸브(244)에서 하나의 포켓의 용량은 제2계량량에 분체의 이송속도, 분체의 단위이송량에 따라 다양하게 변경 가능하다.Since the second metering valve 244 is provided with a plurality of pockets arranged at equal intervals along the circumferential direction around the intermittently rotated rotation shaft, a fixed amount of powder can be accommodated in the pockets. In one pocket of the second metering valve 244, a quantity of powder corresponding to the second metering amount may be accommodated. The capacity of one pocket in the second metering valve 244 can be variously changed according to the second metering amount, the powder transfer speed, and the powder unit transfer amount.
제2-2압송모듈(250)은 제2계량모듈(240)의 제2계량호퍼(241)에서 간헐적으로 배출되는 분체에 시스템에서 발생되는 공정가스 또는 압축공기를 공급하므로, 제2분체라인에서 분체를 안정되게 가압할 수 있다.The 2-2 pressure feeding module 250 supplies process gas or compressed air generated in the system to the powder intermittently discharged from the second metering hopper 241 of the second metering module 240, so that in the second powder line Powder can be pressurized stably.
제2계량모듈(240)의 제2계량밸브(244)와 제2-2압송모듈(250) 사이에는 제2분체라인의 내부 압력을 조절하기 위해 제2계량밸브(244)와 제2-2압송모듈(250) 사이의 가스를 배출시키거나 외부 가스가 주입되는 벤트가 구비될 수 있다.Between the second metering valve 244 of the second metering module 240 and the 2-2 pressure feeding module 250, the second metering valve 244 and the 2-2 A vent for discharging gas between the pressure transfer modules 250 or for injecting external gas may be provided.
제4예에서 제2이송유닛(200)은 제2투입모듈(210)과 사일로모듈(260)과 제2계량모듈(240)을 분체가 순차적으로 이송되는 방식을 채택할 수 있다. 이때, 제2수직관(230)은 제2-1수직관과 제2-2수직관으로 구분할 수 있다.In the fourth example, the second transfer unit 200 may adopt a method in which powder is sequentially transferred through the second input module 210, the silo module 260, and the second weighing module 240. At this time, the second vertical pipe 230 can be divided into a 2-1 vertical pipe and a 2-2 vertical pipe.
제2이송유닛(200)은 분체가 저장되고 분체를 제2이송량으로 계량하여 배출시키는 제2투입모듈(210)과, 제2투입모듈(210)에서 배출되는 분체가 가압력을 이용한 압송 방식으로 이송되도록 공정가스 또는 압축공기를 이용하여 제2투입모듈(210)에서 배출되는 분체를 가압하는 제2-1압송모듈(220)과, 제2투입모듈(210)에서 배출되는 분체가 상승되는 경로를 형성하도록 높이 방향으로 길게 형성되는 제2-1수직관과, 분체가 저장되고 피딩 방식을 이용하여 분체를 제2이송량으로 계량하여 배출시키는 사일로모듈(260)과, 사일로모듈(260)에서 배출되는 분체가 가압력을 이용한 압송 방식으로 이송되도록 공정가스 또는 압축공기를 이용하여 사일로모듈(260)에서 배출되는 분체를 가압하는 사일로압송모듈(270)과, 사일로모듈(260)에서 배출되는 분체가 상승되는 경로를 형성하도록 높이 방향으로 길게 형성되는 제2-2수직관과, 사일로모듈(260)에서 배출되는 분체가 흡입력을 이용한 흡송 방식으로 이송되도록 공정가스 또는 압축공기를 이용하여 사일로모듈(260)에서 배출되는 분체 또는 제2수직관(230)의 분체를 흡입하여 저장하였다가 로터리밸브 방식을 이용하여 분체를 제2계량량으로 계량하여 배출시키는 제2계량모듈(240)과, 제2계량모듈(240)에서 배출되는 분체가 가압력을 이용한 압송 방식으로 이송되도록 공정가스 또는 압축공기를 이용하여 제2계량모듈(240)에서 배출되는 분체를 가압하는 제2-2압송모듈(250)을 포함할 수 있다. 제2투입모듈(210)과, 제2계량모듈(240) 중 적어도 어느 하나에는 후술하는 분체계량밸브가 포함될 수 있다.The second transfer unit 200 stores powder, measures and discharges the powder in a second transfer amount, and transfers the powder discharged from the second input module 210 in a pressure-feeding method using pressurized force. The 2-1 pressure feeding module 220 that pressurizes the powder discharged from the second input module 210 using process gas or compressed air as much as possible and the path on which the powder discharged from the second input module 210 rises A 2-1 vertical pipe formed long in the height direction to form, a silo module 260 in which powder is stored and discharged by measuring the powder in a second transfer amount using a feeding method, and discharged from the silo module 260 A silo pressure transfer module 270 that pressurizes the powder discharged from the silo module 260 using process gas or compressed air so that the powder is transferred by a pressure transfer method using a pressurizing force, and the powder discharged from the silo module 260 is raised The 2-2 vertical pipe formed long in the height direction to form a path, and the silo module 260 using process gas or compressed air so that the powder discharged from the silo module 260 is transferred in a suction method using suction force. A second metering module 240 that sucks and stores the powder discharged or the powder of the second vertical pipe 230 and then measures and discharges the powder at a second metering amount using a rotary valve method, and the second metering module ( 240) may include a 2-2 pressure transfer module 250 that pressurizes the powder discharged from the second measurement module 240 using process gas or compressed air so that the powder discharged from the pressure is transported using a pressurized force. have. At least one of the second input module 210 and the second metering module 240 may include a powder metering valve to be described later.
이때, 제2-1수직관을 기준으로 제2-1수직관의 하단부 쪽에는 제2-1압송모듈(220)이 연결되고, 제2-1압송모듈(220)에는 제2투입모듈(210)이 연결되도록 한다. 또한, 제2-1수직관을 기준으로 제2-1수직관의 상단부 쪽에는 사일로모듈(260)이 연결되고, 사일로모듈(260)에는 사일로압송모듈(270)이 연결되도록 한다. 또한, 제2-2수직관을 기준으로 제2-2수직관의 하단부 쪽에는 사일로압송모듈(270)이 연결되고, 사일로압송모듈(270)에는 사일로모듈(260)이 연결되도록 한다. 또한, 제2-2수직관을 기준으로 제2-2수직관의 상단부 쪽에는 제2계량모듈(240)이 연결되고, 제2계량모듈(240)에는 제2-2압송모듈(250)이 연결되도록 한다.At this time, the 2-1 pressure feeding module 220 is connected to the lower end of the 2-1 vertical pipe based on the 2-1 vertical pipe, and the second input module 210 is connected to the 2-1 pressure feeding module 220. ) to be connected. In addition, the silo module 260 is connected to the upper end of the 2-1 vertical pipe based on the 2-1 vertical pipe, and the silo pressure transfer module 270 is connected to the silo module 260. In addition, the silo pressure feeding module 270 is connected to the lower end of the 2-2 vertical pipe based on the 2-2 vertical pipe, and the silo module 260 is connected to the silo pressure feeding module 270. In addition, the second measuring module 240 is connected to the upper end of the 2-2 vertical pipe based on the 2-2 vertical pipe, and the 2-2 pressure feeding module 250 is connected to the second measuring module 240. make it connect
그러면, 제2투입모듈(210)부터 사일로모듈(260)까지의 분체의 이송 구조와 분체의 이송 관계는 제2예에 따른 제2이송유닛(200)의 구조와 동작이 적용되고, 사일로모듈(260)부터 제2-2압송모듈(250)까지의 분체의 이송 구조와 분체의 이송 관계는 제3예에 따른 제2이송유닛(200)의 구조와 동작이 적용되는 것으로 제4예에 따른 제2이송유닛(200)의 설명은 생략하기로 한다.Then, the structure and operation of the second transfer unit 200 according to the second example is applied to the powder transfer structure and the powder transfer relationship from the second input module 210 to the silo module 260, and the silo module ( 260) to the 2-2 pressure transfer module 250, the structure and operation of the second transfer unit 200 according to the third example is applied to the powder transfer structure and the powder transfer relationship according to the fourth example. Description of the two transfer units 200 will be omitted.
다만, 제2-1수직관은 분체이송라인 중 제2분체라인의 일부를 형성한다. 제2-1수직관은 제2분체라인에서 분체가 시스템의 높이 방향으로 상승되는 경로를 형성한다. 제2-1수직관은 시스템의 높이 방향으로 길게 형성될 수 있다.However, the 2-1 vertical pipe forms part of the second powder line among the powder transfer lines. The 2-1 vertical pipe forms a path in which the powder in the second powder line rises in the height direction of the system. The 2-1 vertical pipe may be formed long in the height direction of the system.
또한, 제2-2수직관은 제2-1수직관에서 이격되어 분체이송라인 중 제2분체라인의 일부를 형성한다. 제2-2수직관은 제2분체라인에서 분체가 시스템의 높이 방향으로 상승되는 경로를 형성한다. 제2-2수직관은 시스템의 높이 방향으로 길게 형성될 수 있다.In addition, the 2-2 vertical pipe is spaced apart from the 2-1 vertical pipe to form a part of the second powder line among the powder transfer lines. The 2-2 vertical pipe forms a path in which the powder in the second powder line rises in the height direction of the system. The 2-2 vertical pipe may be formed long in the height direction of the system.
또한, 제4예에 따른 테이블피더(263)에서 배출되는 분체는 제2이송량으로 계량하여 배출시킬 수 있다.In addition, the powder discharged from the table feeder 263 according to the fourth example may be measured and discharged at the second transfer amount.
또한, 제4예에 따른 제2이송유닛(200)은 연결관과 제1삼방밸브와 제2삼방밸브를 더 포함할 수 있다. 연결관의 양단부는 각각 제2-1수직관의 상단부과 제2-2수직관의 중간에 연결되거나, 제2-1수직관의 상단부와 제2-2수직관의 상단부에 연결된다. 제1삼방밸브에는 제2-1수직관과 연결관과 사일로모듈(260)의 사일로진공이젝터(262)에 연결된 제2분체라인이 각각 연결되고, 제2삼방밸브에는 연결관과 제2-2수직관과 제2계량모듈(240)의 제2진공이젝터(243)에 연결된 제2분체라인이 각각 연결된다.In addition, the second transfer unit 200 according to the fourth example may further include a connection pipe, a first three-way valve, and a second three-way valve. Both ends of the connecting pipe are connected to the upper end of the 2-1 vertical pipe and the middle of the 2-2 vertical pipe, or connected to the upper end of the 2-1 vertical pipe and the upper end of the 2-2 vertical pipe. The 1st three-way valve is connected to the 2-1 vertical pipe, the connecting pipe, and the 2nd powder line connected to the silo vacuum ejector 262 of the silo module 260, respectively, and to the 2nd three-way valve, the connecting pipe and the 2-2 The vertical tube and the second powder line connected to the second vacuum ejector 243 of the second metering module 240 are respectively connected.
그러면, 제1삼방밸브가 제2-1수직관과 사일로모듈(260)의 사일로진공이젝터(262)에 연결된 제2분체라인을 연결시키고, 제2삼방밸브가 제2-2수직관과 제2계량모듈(240)의 제2진공이젝터(243)에 연결된 제2분체라인을 연결시키면, 제4예에 따른 분체는 제2투입모듈(210)과 사일로모듈(260)과 제2계량모듈(240)을 차례로 거치는 분체 이송 구조를 나타낼 수 있다. 또한, 제1삼방밸브가 제2-1수직관과 연결관을 연결시키고, 제2삼방밸브가 연결관과 제2계량모듈(240)의 제2진공이젝터(243)에 연결된 제2분체라인을 연결시키면, 제4예에 따른 분체는 제1예에 따른 분체와 같이 사일로모듈(260)을 거치지 않고 제2투입모듈(210)과 제2계량모듈(240)을 거치는 분체 이송 구조를 나타낼 수 있다.Then, the first three-way valve connects the 2-1 vertical pipe and the second powder line connected to the silo vacuum ejector 262 of the silo module 260, and the second three-way valve connects the 2-2 vertical pipe and the second When the second powder line connected to the second vacuum ejector 243 of the metering module 240 is connected, the powder according to the fourth example is the second input module 210, the silo module 260, and the second metering module 240 ) can represent a powder transport structure that sequentially goes through. In addition, the first three-way valve connects the 2-1 vertical pipe and the connecting pipe, and the second three-way valve connects the second powder line connected to the connecting pipe and the second vacuum ejector 243 of the second metering module 240. When connected, the powder according to the fourth example may show a powder transport structure that passes through the second input module 210 and the second metering module 240 without passing through the silo module 260 like the powder according to the first example. .
셋째, 제3이송유닛(300)은 제3수직관의 분체를 압송 방식으로 이송시킬 수 있다.Third, the third transfer unit 300 may transfer the powder of the third vertical pipe in a pressure transfer method.
제3이송유닛(300)은 제1이송유닛(100)과 제2이송유닛(200) 중 어느 하나에 의해 이송되는 분체에 대응하여 분체를 추가로 투입할 때 사용할 수 있다. 제3이송유닛(300)은 제1이송유닛(100)과 제2이송유닛(200)의 유지보수에 대응하여 분체를 제1이송량 또는 제2이송량으로 투입할 때 사용할 수 있다.The third transfer unit 300 can be used when additionally inputting powder in response to the powder transferred by any one of the first transfer unit 100 and the second transfer unit 200 . The third transfer unit 300 can be used when inputting powder at a first transfer amount or a second transfer amount corresponding to maintenance of the first transfer unit 100 and the second transfer unit 200 .
제3이송유닛(300)은 제1이송유닛(100)과 제2이송유닛(200) 중 어느 하나와 병행하여 설치되는 것이 유리하다.It is advantageous that the third transfer unit 300 is installed in parallel with any one of the first transfer unit 100 and the second transfer unit 200 .
제3이송유닛(300)은 분체가 저장되고 분체를 제3이송량으로 계량하여 배출시키는 제3투입모듈(310)과, 제3투입모듈(310)에서 배출되는 분체가 가압력을 이용한 압송 방식으로 이송되도록 공정가스 또는 압축공기를 이용하여 제3투입모듈(310)에서 배출되는 분체를 가압하는 제3압송모듈(320)을 포함할 수 있다.The third transfer unit 300 is a third input module 310 that stores powder and measures and discharges the powder in a third transfer amount, and the powder discharged from the third input module 310 is transferred by a pressure transfer method using pressurized force. It may include a third pressure transfer module 320 that pressurizes the powder discharged from the third input module 310 using process gas or compressed air as much as possible.
제3투입모듈(310)은 분체가 저장되는 제3투입호퍼(311)와, 분체가 제3투입호퍼(311)에 투입될 때 분체로부터 자성을 갖는 이물질을 필터링하는 제3자석필터(312)와, 분체가 제3투입호퍼(311)에 투입될 때 분체로부터 자성이 없는 이물질을 필터링하는 제3메쉬필터(313)를 포함하고, 로터리밸브 방식을 이용하여 제3투입호퍼(311)에 저장되는 분체를 제3이송량으로 계량하여 배출시키는 제3투입밸브를 더 포함할 수 있다. 제3투입밸브는 후술하는 분체계량밸브를 포함할 수 있다.The third input module 310 includes a third input hopper 311 in which powder is stored, and a third magnetic filter 312 for filtering foreign substances having magnetic properties from the powder when the powder is put into the third input hopper 311. And, when the powder is put into the third input hopper 311, it includes a third mesh filter 313 for filtering non-magnetic foreign substances from the powder, and stored in the third input hopper 311 using a rotary valve method It may further include a third input valve for metering and discharging the powder to be a third transfer amount. The third input valve may include a powder metering valve to be described later.
제3투입호퍼(311)는 외부로부터 분체운반모듈(410)을 통해 전달되는 분체주머니에 보관된 전체 분체가 수용 가능하다. 제3투입호퍼(311)에는 별도로 전달되는 분체가 수용될 수 있다. 제3투입호퍼(311)의 용량은 분체의 이송속도, 분체의 단위이송량에 따라 다양하게 변경 가능하다.The third input hopper 311 can accommodate all the powders stored in the powder bag delivered from the outside through the powder transport module 410 . Powders to be delivered separately may be accommodated in the third input hopper 311 . The capacity of the third input hopper 311 can be variously changed according to the powder transfer speed and the powder unit transfer amount.
제3자석필터(312)와 제3메쉬필터(313)는 상호 이격되어 제3투입호퍼(311)의 상단부에 배치되어 분체주머니로부터 공급되는 분체에서 이물질을 필터링할 수 있다.The third magnetic filter 312 and the third mesh filter 313 are spaced apart from each other and disposed at the upper end of the third input hopper 311 to filter foreign substances from the powder supplied from the powder bag.
본 발명의 일 실시예에서 제3메쉬필터(313)는 제3자석필터(312)보다 상측에 배치되므로, 뭉쳐진 분체의 파쇄 효과를 나타내고, 뭉쳐진 분체의 크기를 원상태로 복귀시킬 수 있으며, 분체주머니로부터 전달되는 분체 또는 별도로 전달되는 분체에서 자성을 띄는 이물질의 필터링 효과를 향상시킬 수 있다.In one embodiment of the present invention, since the third mesh filter 313 is disposed above the third magnetic filter 312, it exhibits a crushing effect of the agglomerated powder, can restore the size of the agglomerated powder to its original state, and It is possible to improve the filtering effect of foreign substances that are magnetic in the powder delivered from the powder or separately delivered.
제3투입밸브는 간헐적으로 회전되는 회전축을 중심으로 원주 방향을 따라 등간격으로 배치되는 다수의 포켓이 구비되므로, 해당 포켓에는 정량의 분체가 수용될 수 있다. 제3투입밸브에서 하나의 포켓에는 제3이송량에 대응하여 정량의 분체가 수용될 수 있다. 제3투입밸브에서 하나의 포켓의 용량은 제3이송량에 대응하여 분체의 이송속도, 분체의 단위이송량에 따라 다양하게 변경 가능하다.Since the third injection valve is provided with a plurality of pockets arranged at equal intervals along the circumferential direction around the intermittently rotated rotation shaft, a fixed amount of powder can be accommodated in the pockets. In the third input valve, a fixed quantity of powder may be accommodated in one pocket corresponding to the third transfer amount. The capacity of one pocket in the third input valve can be changed in various ways according to the powder transfer speed and the powder unit transfer amount corresponding to the third transfer amount.
제3압송모듈(320)은 제3투입모듈(310)의 제3투입호퍼(311)에서 간헐적으로 배출되는 분체에 시스템에서 발생되는 공정가스 또는 압축공기를 공급하므로, 제3분체라인에서 분체를 안정되게 가압할 수 있다.The third pressure transfer module 320 supplies process gas or compressed air generated in the system to the powder intermittently discharged from the third input hopper 311 of the third input module 310, so that the powder is removed from the third powder line. It can pressurize stably.
제3투입모듈(310)의 제3투입밸브와 제3압송모듈(320) 사이에는 제3분체라인의 내부 압력을 조절하기 위해 제3투입밸브와 제3압송모듈(320) 사이의 가스를 배출시키거나 외부 가스가 주입되는 벤트가 구비될 수 있다.Between the third input valve of the third input module 310 and the third pressure transfer module 320, the gas between the third input valve and the third pressure transfer module 320 is discharged to adjust the internal pressure of the third powder line. or a vent through which external gas is injected.
제3이송유닛(300)은 제3투입모듈(310)에서 배출되는 분체가 상승되는 경로를 형성하도록 높이 방향으로 길게 형성되는 제3수직관을 더 포함할 수 있다. 제3수직관의 높이는 제1수직관(130) 또는 제2수직관(230) 보다 작게 형성되므로, 제3압송모듈(320)만으로도 분체를 이송시킬 수 있다.The third transfer unit 300 may further include a third vertical pipe formed long in the height direction to form a path on which the powder discharged from the third input module 310 rises. Since the height of the third vertical pipe is smaller than that of the first vertical pipe 130 or the second vertical pipe 230, the powder can be transported only by the third pressure conveying module 320.
제3수직관은 분체이송라인 중 제3분체라인의 일부를 형성한다. 제3수직관은 제3분체라인에서 분체가 시스템의 높이 방향으로 상승되는 경로를 형성한다. 제3수직관은 시스템의 높이 방향으로 길게 형성될 수 있다.The third vertical pipe forms a part of the third powder line in the powder transfer line. The third vertical pipe forms a path through which the powder is raised in the height direction of the system in the third powder line. The third vertical pipe may be formed long in the height direction of the system.
본 발명의 일 실시예에 따른 스마트 분체원료 이송시스템은 바인더이송유닛(500)과 용매이송유닛(600)을 더 포함할 수 있다. 이때, 분체는 전극의 원료인 활물질로 이루어질 수 있다.The smart powder raw material conveying system according to an embodiment of the present invention may further include a binder conveying unit 500 and a solvent conveying unit 600. At this time, the powder may be made of an active material that is a raw material of the electrode.
바인더이송유닛(500)은 바인더이송량에 대응하여 활물질과 혼합되는 바인더를 액상의 솔루션으로 변환하여 이송시킨다.The binder transfer unit 500 converts and transfers the binder mixed with the active material into a liquid solution in response to the binder transfer amount.
바인더이송유닛(500)은 바인더가 저장되고 바인더를 바인더이송량으로 계량하여 배출시키는 바인더투입모듈(510)과, 바인더투입모듈(510)에서 배출되는 바인더가 가압력을 이용한 압송 방식으로 이송되도록 공정가스 또는 압축공기를 이용하여 바인더투입모듈(510)에서 배출되는 바인더를 가압하는 바인더압송모듈(520)과, 솔루션이 형성되도록 바인더압송모듈(520)을 거쳐 전달되는 바인더와 용매이송유닛(600)을 통해 전달되는 용매를 혼합시키는 바인더믹싱모듈(530)과, 솔루션을 펌핑하는 솔루션이송모듈과, 솔루션이송모듈로부터 전달되는 솔루션이 저장되되 솔루션의 이송량에 대응하여 솔루션의 정량 배출이 가능한 솔루션호퍼스케일(560)과, 솔루션의 이송량에 대응하여 솔루션호퍼스케일(560)의 솔루션을 펌핑하는 솔루션공급펌프(570)를 포함할 수 있다.The binder transfer unit 500 includes a binder input module 510 for storing a binder and metering and discharging the binder by a binder transfer amount, and a process gas or a process gas or Through the binder pressure feeding module 520 that pressurizes the binder discharged from the binder input module 510 using compressed air, and the binder and solvent transport unit 600 delivered through the binder pressure feeding module 520 to form a solution. A binder mixing module 530 for mixing the delivered solvent, a solution transfer module for pumping the solution, and a solution hopper scale (560) that stores the solution transferred from the solution transfer module and enables quantitative discharge of the solution in response to the transfer amount of the solution. ), and a solution supply pump 570 for pumping the solution of the solution hopper scale 560 in response to the transfer amount of the solution.
바인더투입모듈(510)은 분체가 저장되는 바인더투입호퍼(511)와, 분체가 바인더투입호퍼(511)에 투입될 때 분체로부터 자성을 갖는 이물질을 필터링하는 바인더자석필터(512)와, 분체가 바인더투입호퍼(511)에 투입될 때 분체로부터 자성이 없는 이물질을 필터링하는 바인더메쉬필터(513)와, 로터리밸브 방식을 이용하여 바인더투입호퍼(511)에 저장되는 분체를 바인더이송량으로 계량하여 배출시키는 바인더투입밸브(514)를 포함할 수 있다.The binder input module 510 includes a binder input hopper 511 in which powder is stored, a binder magnetic filter 512 for filtering foreign substances having magnetism from the powder when the powder is put into the binder input hopper 511, and a powder When put into the binder input hopper 511, the powder stored in the binder input hopper 511 is measured and discharged by using a binder mesh filter 513 that filters non-magnetic foreign substances from the powder and a rotary valve method A binder input valve 514 may be included.
바인더투입호퍼(511)는 외부로부터 바인더운반모듈을 통해 전달되는 바인더주머니에 보관된 전체 바인더가 수용 가능하다. 바인더투입호퍼(511)의 용량은 바인더의 이송속도, 바인더의 단위이송량에 따라 다양하게 변경 가능하다. 바인더투입호퍼(511)에는 공정가스 또는 압축공기가 공급되어 바인더의 저장 상태를 안정화시킬 수 있다.The binder input hopper 511 can accommodate all the binders stored in the binder bag delivered from the outside through the binder transport module. The capacity of the binder input hopper 511 can be variously changed according to the binder transfer speed and the unit transfer amount of the binder. Process gas or compressed air may be supplied to the binder input hopper 511 to stabilize the storage state of the binder.
바인더자석필터(512)와 바인더메쉬필터(513)는 상호 이격되어 바인더투입호퍼(511)의 상단부에 배치되어 바인더주머니로부터 공급되는 바인더에서 이물질을 필터링할 수 있다.The binder magnetic filter 512 and the binder mesh filter 513 are spaced apart from each other and disposed at the upper end of the binder input hopper 511 to filter foreign substances from the binder supplied from the binder bag.
본 발명의 일 실시예에서 바인더메쉬필터(513)는 바인더자석필터(512)(541)보다 상측에 배치되므로, 뭉쳐진 바인더의 파쇄 효과를 나타내고, 뭉쳐진 바인더의 크기를 원상태로 복귀시킬 수 있으며, 바인더주머니로부터 전달되는 바인더에서 자성을 띄는 이물질의 필터링 효과를 향상시킬 수 있다.In one embodiment of the present invention, since the binder mesh filter 513 is disposed above the binder magnet filters 512 and 541, it exhibits a crushing effect of the agglomerated binder, can restore the size of the agglomerated binder to its original state, and binder It is possible to improve the filtering effect of foreign substances that are magnetic in the binder delivered from the bag.
바인더투입밸브(514)는 간헐적으로 회전되는 회전축을 중심으로 원주 방향을 따라 등간격으로 배치되는 다수의 포켓이 구비되므로, 해당 포켓에는 정량의 분체가 수용될 수 있다. 바인더투입밸브(514)에서 하나의 포켓에는 바인더이송량에 대응하여 정량의 바인더가 수용될 수 있다. 바인더투입밸브(514)에서 하나의 포켓의 용량은 바인더이송량에 대응하여 바인더의 이송속도, 바인더의 단위이송량에 따라 다양하게 변경 가능하다.Since the binder input valve 514 is provided with a plurality of pockets arranged at equal intervals along the circumferential direction around the rotating shaft that rotates intermittently, a fixed amount of powder can be accommodated in the pockets. In the binder input valve 514, a fixed amount of binder may be accommodated in one pocket corresponding to the binder transfer amount. The capacity of one pocket in the binder input valve 514 can be variously changed according to the binder transfer rate and the unit transfer amount of the binder corresponding to the binder transfer amount.
바인더압송모듈(520)은 바인더투입모듈(510)의 바인더투입호퍼(511)에서 간헐적으로 배출되는 바인더에 시스템에서 발생되는 공정가스 또는 압축공기를 공급하므로, 바인더이송라인에서 바인더를 안정되게 가압할 수 있다.Since the binder pressure feeding module 520 supplies process gas or compressed air generated in the system to the binder discharged intermittently from the binder input hopper 511 of the binder input module 510, the binder can be stably pressurized in the binder transfer line. can
바인더투입모듈(510)의 바인더투입밸브(514)와 바인더압송모듈(520) 사이에는 바인더이송라인 내부 압력을 조절하기 위해 바인더투입밸브(514)와 바인더압송모듈(520) 사이의 가스를 배출시키거나 외부 가스가 주입되는 벤트가 구비될 수 있다.Between the binder input valve 514 of the binder input module 510 and the binder pressure transfer module 520, gas is discharged between the binder input valve 514 and the binder pressure transfer module 520 to adjust the pressure inside the binder transfer line. Alternatively, a vent through which external gas is injected may be provided.
바인더믹싱모듈(530)에는 용매이송유닛(600)의 믹싱조절모듈(650)을 통해 공급되는 용매가 바인더와 함께 수용된다.The solvent supplied through the mixing control module 650 of the solvent transfer unit 600 is accommodated together with the binder in the binder mixing module 530 .
바인더믹싱모듈(530)은 바인더와 용매가 각각 기설정된 비율로 수용되는 바인더믹서(531)와, 액상의 솔루션이 형성되도록 바인더믹서(531)의 내부에서 회전되면서 바인더와 용매를 혼합시키는 바인더교반기(532)를 포함할 수 있다.The binder mixing module 530 includes a binder mixer 531 in which a binder and a solvent are accommodated in a predetermined ratio, and a binder stirrer for mixing the binder and the solvent while rotating inside the binder mixer 531 to form a liquid solution ( 532) may be included.
바인더믹싱모듈(530)은 바인더믹서(531)로부터 용매 또는 솔루션을 공급받아 가열한 다음 바인더믹서(531)에 재공급하는 온조기(533)를 더 포함할 수 있다. 온조기(533)에는 슬러리로 전극을 형성하는 메인공정유닛으로부터 전달되는 칠러워터가 공급되어 솔루션의 농도를 조절하거나 온조기(533)의 온도를 조절할 수 있다.The binder mixing module 530 may further include a temperature controller 533 that receives the solvent or solution from the binder mixer 531, heats it, and supplies the solvent or solution to the binder mixer 531 again. The temperature controller 533 is supplied with chiller water delivered from a main process unit that forms an electrode with slurry to adjust the concentration of the solution or the temperature of the temperature controller 533 .
바인더믹싱모듈(530)에는 바인더믹서(531)의 가스가 포집 배출되는 바인더벤트부(580)가 구비될 수 있다. 그러면, 바인더믹서(531)의 내부 압력 조절이 가능하고, 솔루션을 안정화시킬 수 있다. 바인더벤트부(580)는 바인더믹서(531)와 별도의 저장공간을 연결시키는 바인더벤트라인(581)과, 바인더벤트라인(581)에서 이격되어 바인더믹서(531)와 바인더벤트라인(581)을 연결시키는 바인더필터라인(582)과, 바인더필터라인(582)에 구비되어 바인더믹서(531)의 가스를 필터링하는 바인더벤트필터(583)를 포함할 수 있다.The binder mixing module 530 may include a binder vent unit 580 in which gas from the binder mixer 531 is collected and discharged. Then, the internal pressure of the binder mixer 531 can be adjusted and the solution can be stabilized. The binder vent part 580 is spaced apart from the binder vent line 581 connecting the binder mixer 531 and a separate storage space, and the binder vent line 581 to separate the binder mixer 531 and the binder vent line 581. A binder filter line 582 connected to the binder filter line 582 and a binder vent filter 583 provided in the binder filter line 582 to filter the gas of the binder mixer 531 may be included.
이때, 바인더벤트라인(581)과 바인더필터라인(582)에는 각각 바인더개폐밸브가 구비되므로, 바인더개폐밸브의 개폐 여부에 따라 바인더믹서(531)의 가스가 통과하는 라인을 선택할 수 있다.At this time, since binder opening/closing valves are provided in each of the binder vent line 581 and the binder filter line 582, a line through which the gas of the binder mixer 531 passes can be selected depending on whether the binder opening/closing valve is opened or closed.
솔루션이송모듈은 바인더믹싱모듈(530)의 솔루션을 펌핑하는 솔루션이송펌프(542)를 포함할 수 있다. 솔루션이송펌프(542)에는 공정가스 또는 압축공기가 공급되어 솔루션의 이송을 원활하게 할 수 있다.The solution transfer module may include a solution transfer pump 542 for pumping the solution of the binder mixing module 530 . A process gas or compressed air is supplied to the solution transfer pump 542 to smoothly transfer the solution.
솔루션이송모듈은 솔루션이 솔루션호퍼스케일(560)에 전달될 때 솔루션으로부터 자성을 갖는 이물질을 필터링하는 솔루션자석필터(541)와, 솔루션이 솔루션호펴스케일에 전달될 때 솔루션으로부터 자성이 없는 이물질을 필터링하는 코베터필터(543) 중 적어도 어느 하나를 더 포함할 수 있다. 본 발명의 일 실시예에서 솔루션자석필터(541)는 바인더믹싱모듈(530)과 솔루션이송펌프(542) 사이에 구비되어 자성을 갖는 이물질에 의한 솔루션이송펌프(542)의 파손을 방지하고, 코베터필터(543)는 솔루션이송펌프(542)와 솔루션호퍼스케일(560) 사이에 구비되어 솔루션호퍼스케일(560)로 이물질이 전달되는 것을 방지할 수 있다.The solution transfer module includes a solution magnetic filter 541 that filters foreign substances having magnetism from the solution when the solution is delivered to the solution hopper scale 560, and filters non-magnetic foreign substances from the solution when the solution is delivered to the solution hopper scale. At least one of the cobetter filters 543 may be further included. In one embodiment of the present invention, the solution magnetic filter 541 is provided between the binder mixing module 530 and the solution transfer pump 542 to prevent damage to the solution transfer pump 542 due to foreign substances having magnetism. The better filter 543 is provided between the solution transfer pump 542 and the solution hopper scale 560 to prevent foreign matter from being transferred to the solution hopper scale 560.
코베터필터(543)는 상술한 메쉬필터로 이루어질 수 있다. 코베터필터(543)는 액상의 솔루션에서 자성이 없는 이물질을 필터링할 수 있다.The cobetter filter 543 may be formed of the above-described mesh filter. The coveter filter 543 may filter non-magnetic foreign substances in the liquid solution.
바인더이송유닛(500)은 솔루션이송펌프(542)와 코베터필터(543) 사이에 구비되는 솔루션을 바인더믹싱모듈(530)로 리턴시키는 제1솔루션라인(501)을 더 포함할 수 있다. 그리고 각 라인에 구비되는 개폐밸브 또는 솔루션이송펌프(542)와 코베터필터(543)와 제1솔루션라인(501)을 연결시키는 솔루션삼방밸브의 개폐 동작에 따라 솔루션이 솔루션호퍼스케일(560)에 전달되거나 제1솔루션라인(501)에 전달되도록 할 수 있다.The binder transfer unit 500 may further include a first solution line 501 for returning the solution provided between the solution transfer pump 542 and the cobetter filter 543 to the binder mixing module 530 . In addition, according to the opening and closing operation of the solution three-way valve connecting the on-off valve or the solution transfer pump 542, the cobetter filter 543, and the first solution line 501 provided in each line, the solution is transferred to the solution hopper scale 560. It can be delivered or be delivered to the first solution line 501.
솔루션호퍼스케일(560)은 액상의 솔루션의 양을 자동으로 계량한다. 솔루션호퍼스케일(560)에는 압축공기 또는 공정가스가 공급되어 솔루션의 혼합 상태를 안정되게 유지시킬 수 있다. 솔루션호퍼스케일(560)에는 내부 가스가 원활하게 배출될 수 있도록 한다. 솔루션호퍼스케일(560)에는 후술하는 용매이송유닛(600)의 보조조절모듈(660)을 거쳐 전달되는 용매가 공급될 수 있다. 솔루션호퍼스케일(560)과 더불어 바인더이송유닛(500)은 후술하는 믹싱유닛(900)에 공급되는 솔루션을 다시 솔루션호퍼스케일(560)에 공급하는 바인더벌크이송모듈을 더 포함할 수 있다.The solution hopper scale 560 automatically measures the amount of the liquid solution. Compressed air or process gas may be supplied to the solution hopper scale 560 to maintain a stable mixed state of the solution. The solution hopper scale 560 allows the internal gas to be smoothly discharged. Solvent delivered through the auxiliary control module 660 of the solvent transfer unit 600 to be described below may be supplied to the solution hopper scale 560. In addition to the solution hopper scale 560, the binder transfer unit 500 may further include a binder bulk transfer module for supplying the solution supplied to the mixing unit 900 to be described later to the solution hopper scale 560 again.
바인더벌크이송모듈은 후술하는 믹싱유닛(900)에 공급되는 솔루션의 잔류물이 저장되는 벌크바인더(551)와, 벌크바인더(551)의 솔루션을 솔루션호퍼스케일(560)에 공급하는 바인더벌크이송펌프(552)를 포함할 수 있다. 바인더벌크이송펌프(552)에는 공정가스 또는 압축공기가 공급되어 바인더벌크이송펌프(552)의 동작을 원활하게 할 수 있다.The binder bulk transfer module includes a bulk binder 551 in which the remainder of the solution supplied to the mixing unit 900 to be described later is stored, and a binder bulk transfer pump that supplies the solution of the bulk binder 551 to the solution hopper scale 560 (552). Process gas or compressed air may be supplied to the binder bulk transfer pump 552 to smoothly operate the binder bulk transfer pump 552 .
솔루션공급펌프(570)는 솔루션호퍼스케일(560)의 솔루션을 후술하는 믹싱유닛(900)에 전달할 수 있다. 솔루션공급펌프(570)에는 공정가스 또는 압축공기가 공급되어 솔루션이 안정되게 이송되도록 할 수 있다.The solution supply pump 570 may deliver the solution of the solution hopper scale 560 to the mixing unit 900 to be described later. Process gas or compressed air is supplied to the solution supply pump 570 so that the solution can be stably transferred.
바인더이송유닛(500)은 솔루션공급펌프(570)와 후술하는 믹싱유닛(900) 사이에 구비되는 솔루션을 솔루션호퍼스케일(560)로 리턴시키는 제2솔루션라인(502)을 더 포함할 수 있다. 바인더이송유닛(500)은 솔루션호퍼스케일(560)에서 배출되는 솔루션이 후술하는 믹싱유닛(900)에 직접 전달되도록 솔루션호퍼스케일(560)과 후술하는 믹싱유닛(900)을 직접 연결시키는 제3솔루션라인(503)을 더 포함할 수 있다.The binder transfer unit 500 may further include a second solution line 502 for returning the solution provided between the solution supply pump 570 and the mixing unit 900 to the solution hopper scale 560 . The binder transfer unit 500 is a third solution that directly connects the solution hopper scale 560 and the mixing unit 900 to be described later so that the solution discharged from the solution hopper scale 560 is directly delivered to the mixing unit 900 described later It may further include line 503.
용매이송유닛(600)은 용매이송량에 대응하여 바인더를 용해시켜 솔루션을 형성하기 위한 용매를 이송시킨다.The solvent transfer unit 600 transfers the solvent for forming a solution by dissolving the binder in response to the amount of transfer of the solvent.
용매이송유닛(600)은 용매가 저장되는 용매탱크(610)와, 용매탱크(610)에 저장되는 용매를 펌핑하는 용매펌핑모듈과, 바인더의 용해를 위해 바인더에 혼합되는 용매를 조절하는 믹싱조절모듈(650)과, 전극을 형성하기 위한 슬러리의 농도 조절을 위해 슬러리에 혼합되는 용매를 조절하는 슬러리조절모듈(670)을 포함할 수 있다The solvent transport unit 600 includes a solvent tank 610 in which the solvent is stored, a solvent pumping module for pumping the solvent stored in the solvent tank 610, and mixing control for adjusting the solvent mixed with the binder for dissolution of the binder. It may include a module 650 and a slurry control module 670 for adjusting the solvent mixed with the slurry to adjust the concentration of the slurry for forming the electrode.
용매탱크(610)에는 내부 가스가 원활하게 배출될 수 있도록 한다.The solvent tank 610 allows the internal gas to be smoothly discharged.
용매펌핑모듈은 용매탱크(610)의 용매를 펌핑하는 용매펌프(640)를 포함할 수 있다. 용매펌프(640)에는 공정가스 또는 압축공기가 공급되어 용매의 이송을 원활하게 할 수 있다.The solvent pumping module may include a solvent pump 640 for pumping the solvent in the solvent tank 610 . A process gas or compressed air is supplied to the solvent pump 640 to smoothly transfer the solvent.
용매펌핑모듈은 용매를 펌핑할 때 용매로부터 자성을 갖는 이물질을 필터링하는 용매자석필터(620)와, 용매를 펌핑할 때, 용매로부터 자성이 없는 이물질을 필터링하는 용매메쉬필터(630) 중 적어도 어느 하나를 더 포함 할 수 있다.The solvent pumping module includes at least one of a solvent magnet filter 620 for filtering foreign substances having magnetism from the solvent when the solvent is pumped, and a solvent mesh filter 630 for filtering non-magnetic substances from the solvent when the solvent is pumped. You can include one more.
본 발명의 일 실시예에서 용매자석필터(620)는 용매탱크(610)와 용매펌프(640) 사이에 구비되어 자성을 갖는 이물질에 의한 용매펌프(640)의 파손을 방지하고, 용매메쉬필터(630)는 용매자석필터(620)와 용매펌프(640) 사이에 구비되어 용매펌프(640)로 이물질이 전달되는 것을 방지할 수 있다.In one embodiment of the present invention, the solvent magnet filter 620 is provided between the solvent tank 610 and the solvent pump 640 to prevent damage to the solvent pump 640 by foreign substances having magnetism, and the solvent mesh filter ( 630) is provided between the solvent magnet filter 620 and the solvent pump 640 to prevent foreign substances from being transferred to the solvent pump 640.
믹싱조절모듈(650)은 바인더이송유닛(500)의 바인더믹싱모듈(530)에 전달되는 용매의 양을 조절하므로, 바인더의 용해를 안정화시킬 수 있다.Since the mixing control module 650 controls the amount of the solvent delivered to the binder mixing module 530 of the binder transfer unit 500, dissolution of the binder can be stabilized.
슬러리조절모듈(670)은 후술하는 믹싱유닛(900)에 전달되는 용매의 양을 조절하므로, 슬러리의 안정화시키고, 슬러리의 농도를 조절할 수 있다.Since the slurry control module 670 controls the amount of the solvent delivered to the mixing unit 900 to be described later, the slurry can be stabilized and the concentration of the slurry can be adjusted.
용매이송유닛(600)은 후술하는 도전재이송유닛(700)과 분산재이송유닛(800)과 바인더이송유닛(500)의 솔루션호퍼스케일(560) 중 적어도 어느 하나에 전달되는 용매를 조절하는 보조조절모듈(660)을 더 포함할 수 있다.The solvent transfer unit 600 is auxiliary control for controlling the solvent delivered to at least one of the conductive material transfer unit 700, the dispersion material transfer unit 800, and the solution hopper scale 560 of the binder transfer unit 500. A module 660 may be further included.
용매펌프(640)를 통해 배출되는 용매는 용매이송라인에서 분기되는 제1용매라인(601)을 통해 용매탱크(610)로 리턴될 수 있다.The solvent discharged through the solvent pump 640 may be returned to the solvent tank 610 through the first solvent line 601 branched from the solvent transfer line.
용매펌프(640)를 통해 배출되는 용매는 용매이송라인과 연결되는 제2용매라인(602)을 통해 믹싱조절모듈(650)과 보조조절모듈(660)과 슬러리조절모듈(670) 중 적어도 어느 하나에 전달되도록 한다.At least one of the mixing control module 650, the auxiliary control module 660, and the slurry control module 670 passes through the second solvent line 602 connected to the solvent transfer line. to be passed on to
보조조절모듈(660)을 통과한 용매는 제3용매라인(603)을 통해 도전재이송유닛(700)과 분산재이송유닛(800)과 바인더이송유닛(500)의 솔루션호퍼스케일(560) 중 적어도 어느 하나에 전달되도록 한다.The solvent that has passed through the auxiliary control module 660 is at least one of the solution hopper scale 560 of the conductive material transfer unit 700, the dispersed material transfer unit 800, and the binder transfer unit 500 through the third solvent line 603. to be passed on to either one.
상술한 각각의 조절모듈에는 조절밸브가 구비되어 용매의 전달 여부를 선택하거나, 용매의 이송량을 조절할 수 있다.Each of the control modules described above is equipped with a control valve to select whether or not to transfer the solvent or to control the transfer amount of the solvent.
상술한 각각의 조절모듈을 통과한 용매에는 압축공기가 공급되어 용매의 이송을 원활하게 할 수 있다.Compressed air is supplied to the solvent that has passed through each of the above-described control modules, so that the solvent can be smoothly transported.
본 발명의 일 실시예에 따른 스마트 분체원료 이송시스템은 도전재이송유닛(700)과 분산재이송유닛(800) 중 적어도 어느 하나를 더 포함할 수 있다.The smart powder raw material conveying system according to an embodiment of the present invention may further include at least one of the conductive material conveying unit 700 and the dispersed material conveying unit 800.
도전재이송유닛(700)은 도전재이송량에 대응하여 전극을 형성하기 위한 슬러리에 혼합되는 도전재를 이송시킬 수 있다.The conductive material transfer unit 700 may transfer the conductive material mixed with the slurry for forming the electrode in response to the transfer amount of the conductive material.
도전재이송유닛(700)은 도전재가 저장되는 도전재호퍼스케일(710)과, 도전재이송량에 대응하여 도전재호퍼스케일(710)에 저장되는 도전재를 정량으로 펌핑하는 도전재공급펌프(720)를 포함할 수 있다. 도전재이송라인은 도전재호퍼스케일(710)과 도전재공급펌프(720)를 연결시킨다.The conductive material transfer unit 700 includes a conductive material hopper scale 710 in which the conductive material is stored, and a conductive material supply pump 720 for pumping the conductive material stored in the conductive material hopper scale 710 in a quantitative amount in response to the amount of conductive material transported. ) may be included. The conductive material transfer line connects the conductive material hopper scale 710 and the conductive material supply pump 720.
본 발명의 일 실시예에서 도전재는 분말 또는 필렛 형태의 탄소나노튜브로 이루어질 수 있다.In one embodiment of the present invention, the conductive material may be made of carbon nanotubes in a powder or fillet form.
도전재호퍼스케일(710)은 외부로부터 도전재운반모듈을 통해 전달되는 도전재주머니에 보관된 전체 도전재가 수용 가능하다. 도전재호퍼스케일(710)에는 도전재조절정보에 대응하여 용매가 공급되도록 한다. 도전재호퍼스케일(710)에는 용매유닛의 보조조절모듈(660)을 거쳐 전달되는 용매가 공급될 수 있다.The conductive material hopper scale 710 can accommodate the entire conductive material stored in the conductive material bag delivered from the outside through the conductive material transport module. A solvent is supplied to the conductive material hopper scale 710 in response to the conductive material control information. The solvent delivered through the auxiliary control module 660 of the solvent unit may be supplied to the conductive material hopper scale 710 .
도전재호퍼스케일(710)은 액상의 도전재의 양을 자동으로 계량한다. 도전재호퍼스케일(710)에는 압축공기 또는 공정가스가 공급되어 액상의 도전재의 혼합 상태를 안정되게 유지시킬 수 있다. 도전재호퍼스케일(710)에는 내부 가스가 원활하게 배출될 수 있도록 한다.The conductive material hopper scale 710 automatically measures the amount of liquid conductive material. Compressed air or process gas is supplied to the conductive material hopper scale 710 to stably maintain a mixed state of the liquid conductive material. The conductive material hopper scale 710 allows the internal gas to be smoothly discharged.
도전재호퍼스케일(710)과 더불어 도전재이송유닛(700)은 후술하는 믹싱유닛(900)에 공급되는 액상의 도전재를 다시 도전재호퍼스케일(710)에 공급하는 도전재벌크이송모듈을 더 포함할 수 있다.In addition to the conductive material hopper scale 710, the conductive material transfer unit 700 further includes a conductive material bulk transfer module for supplying the liquid conductive material supplied to the mixing unit 900 to the conductive material hopper scale 710 again. can include
도전재벌크이송모듈은 후술하는 믹싱유닛(900)에 공급되는 액상의 도전재의 잔류물이 저장되는 벌크도전재(730)와, 벌크도전재(730)의 도전재를 도전재호퍼스케일(710)에 공급하는 도전재벌크이송펌프(740)를 포함할 수 있다. 도전재벌크이송펌프(740)에는 공정가스 또는 압축공기가 공급되어 도전재벌크이송펌프(740)의 동작을 원활하게 할 수 있다.The conductive material bulk transfer module transfers the bulk conductive material 730 in which the residue of the liquid conductive material supplied to the mixing unit 900 to be described later is stored, and the conductive material of the bulk conductive material 730 to the conductive material hopper scale 710 It may include a conductive material bulk transfer pump 740 to supply. Process gas or compressed air may be supplied to the conductive material bulk transfer pump 740 to smoothly operate the conductive material bulk transfer pump 740 .
도전재공급펌프(720)는 도전재호퍼스케일(710)의 도전재를 후술하는 믹싱유닛(900)에 전달할 수 있다. 도전재공급펌프(720)에는 공정가스 또는 압축공기가 공급되어 액상의 도전재가 안정되게 이송되도록 할 수 있다.The conductive material supply pump 720 may transfer the conductive material of the conductive material hopper scale 710 to the mixing unit 900 to be described later. A process gas or compressed air is supplied to the conductive material supply pump 720 so that the liquid conductive material can be stably transferred.
도전재이송유닛(700)은 도전재공급펌프(720)와 후술하는 믹싱유닛(900) 사이에 구비되는 도전재를 도전재호퍼스케일(710)로 리턴시키는 제1도전재라인(701)을 더 포함할 수 있다. 도전재이송유닛(700)은 도전재호퍼스케일(710)에서 배출되는 도전재가 후술하는 믹싱유닛(900)에 직접 전달되도록 도전재호퍼스케일(710)과 후술하는 믹싱유닛(900)을 직접 연결시키는 제2도전재라인(702)을 더 포함할 수 있다.The conductive material transfer unit 700 further includes a first conductive material line 701 for returning the conductive material provided between the conductive material supply pump 720 and the mixing unit 900 to be described later to the conductive material hopper scale 710 can include The conductive material transfer unit 700 directly connects the conductive material hopper scale 710 and the mixing unit 900 to be described later so that the conductive material discharged from the conductive material hopper scale 710 is directly transferred to the mixing unit 900 described later. A second conductive material line 702 may be further included.
분산재이송유닛(800)은 분산재이송량에 대응하여 전극을 형성하기 위한 슬러리에 혼합되는 분산재를 이송시킬 수 있다.The dispersion material transfer unit 800 may transfer the dispersion material mixed with the slurry for forming the electrode in response to the transfer amount of the dispersion material.
분산재이송유닛(800)은 분산재가 저장하는 분산재호퍼스케일(810)과, 분산재이송량에 대응하여 분산재호퍼스케일(810)에 저장되는 분산재를 정량으로 펌핑하는 분산재공급펌프(820)를 포함할 수 있다. 분산재이송라인은 분산재호퍼스케일(810)과 분산재공급펌프(820)를 연결시킨다.The dispersion ash transport unit 800 may include a dispersion ash hopper scale 810 for storing the dispersion ash, and a dispersion ash supply pump 820 for pumping the dispersion ash stored in the dispersion ash hopper scale 810 in a quantitative amount corresponding to the amount of the dispersion ash transfer. . The dispersion ash transfer line connects the dispersion ash hopper scale 810 and the dispersion ash supply pump 820.
분산재호퍼스케일(810)에는 분산재조절정보에 대응하여 용매가 공급되도록 한다. 분산재호퍼스케일(810)에는 용매유닛의 보조조절모듈(660)을 거쳐 전달되는 용매가 공급될 수 있다.Solvent is supplied to the dispersion ash hopper scale 810 in response to the dispersion readjustment information. The solvent delivered through the auxiliary control module 660 of the solvent unit may be supplied to the dispersion ash hopper scale 810.
분산재호퍼스케일(810)은 액상의 분산재의 양을 자동으로 계량한다. 분산재호퍼스케일(810)에는 압축공기 또는 공정가스가 공급되어 액상의 분산재의 혼합 상태를 안정되게 유지시킬 수 있다. 분산재호퍼스케일(810)에는 내부 가스가 원활하게 배출될 수 있도록 한다.The dispersion ash hopper scale 810 automatically measures the amount of the liquid dispersion ash. Compressed air or process gas is supplied to the dispersion material hopper scale 810 to stably maintain the mixed state of the liquid dispersion material. The dispersion ash hopper scale 810 allows the internal gas to be smoothly discharged.
분산재호퍼스케일(810)과 더불어 분산재이송유닛(800)은 후술하는 믹싱유닛(900)에 공급되는 액상의 분산재를 다시 분산재호퍼스케일(810)에 공급하는 분산재벌크이송모듈을 더 포함할 수 있다.In addition to the dispersion ash hopper scale 810, the dispersion ash transfer unit 800 may further include a dispersion ash bulk transfer module for supplying the liquid dispersion material supplied to the mixing unit 900 to be described later to the dispersion ash hopper scale 810 again.
분산재벌크이송모듈은 후술하는 믹싱유닛(900)에 공급되는 액상의 분산재의 잔류물이 저장되는 벌크분산재(830)와, 벌크분산재(830)의 분산재를 분산재호퍼스케일(810)에 공급하는 분산재벌크이송펌프(840)를 포함할 수 있다. 분산재벌크이송펌프(840)에는 공정가스 또는 압축공기가 공급되어 분산재벌크이송펌프(840)의 동작을 원활하게 할 수 있다.The dispersion material bulk transport module is a bulk dispersion material 830 in which the residue of the liquid dispersion material supplied to the mixing unit 900 to be described later is stored, and a dispersion material bulk supplying the dispersion material of the bulk dispersion material 830 to the dispersion material hopper scale 810 A transfer pump 840 may be included. Process gas or compressed air may be supplied to the dispersion ash bulk transfer pump 840 to smoothly operate the dispersion ash bulk transfer pump 840 .
분산재공급펌프(820)는 분산재호퍼스케일(810)의 분산재를 후술하는 믹싱유닛(900)에 전달할 수 있다. 분산재공급펌프(820)에는 공정가스 또는 압축공기가 공급되어 액상의 도전재가 안정되게 이송되도록 할 수 있다.The dispersion material supply pump 820 may transfer the dispersion material of the dispersion material hopper scale 810 to the mixing unit 900 to be described later. Process gas or compressed air may be supplied to the dispersion material supply pump 820 to stably transfer the liquid conductive material.
분산재이송유닛(800)은 분산재공급펌프(820)와 후술하는 믹싱유닛(900) 사이에 구비되는 분산재를 분산재호퍼스케일(810)로 리턴시키는 제1분산재라인(801)을 더 포함할 수 있다. 분산재이송유닛(800)은 분산재호퍼스케일(810)에서 배출되는 분산재가 후술하는 믹싱유닛(900)에 직접 전달되도록 분산재호퍼스케일(810)과 후술하는 믹싱유닛(900)을 직접 연결시키는 제2분산재라인(802)을 더 포함할 수 있다.The dispersion ash transfer unit 800 may further include a first dispersion ash line 801 for returning the dispersion material provided between the dispersion ash supply pump 820 and the mixing unit 900 to be described later to the dispersion ash hopper scale 810. The dispersion ash transfer unit 800 directly connects the dispersion ash hopper scale 810 and the mixing unit 900 to be described later so that the dispersion material discharged from the dispersion ash hopper scale 810 is directly transferred to the mixing unit 900 to be described later. It may further include line 802.
본 발명의 일 실시예에 따른 스마트 분체원료 이송시스템은 믹싱유닛(900)을 더 포함할 수 있다.The smart powder material conveying system according to an embodiment of the present invention may further include a mixing unit 900.
믹싱유닛(900)은 분체이송유닛(400)을 거쳐 전달되는 분체와 바인더이송유닛(500)을 거쳐 전달되는 솔루션과 용매이송유닛(600)의 슬러리조절모듈(670)을 거쳐 전달되는 용매를 혼합할 수 있다. 분체는 제1이송유닛(100)과 제2이송유닛(200)과 제3이송유닛(300) 중 적어도 어느 하나에서 전달될 수 있다. 믹싱유닛(900)은 도전재이송유닛(700)을 거쳐 전달되는 도전재와 분산재이송유닛(800)을 거쳐 전달되는 분산재 중 적어도 어느 하나를 더 혼합할 수 있다.The mixing unit 900 mixes the powder delivered through the powder transport unit 400, the solution delivered through the binder transport unit 500, and the solvent delivered through the slurry control module 670 of the solvent transport unit 600 can do. The powder may be delivered from at least one of the first transfer unit 100, the second transfer unit 200, and the third transfer unit 300. The mixing unit 900 may further mix at least one of the conductive material transferred through the conductive material transfer unit 700 and the dispersant material transferred through the dispersion material transfer unit 800 .
여기서, 솔루션의 잔류물은 벌크바인더(551)에 저장되고, 도전재의 잔류물은 벌크도전재(730)에 저장되며, 분산재의 잔류물은 벌크분산재(830)에 저장된다.Here, the remainder of the solution is stored in the bulk binder 551, the remainder of the conductive material is stored in the bulk conductive material 730, and the remainder of the dispersing material is stored in the bulk dispersing material 830.
믹싱유닛(900)은 슬러리의 형성을 위해 적어도 분체와 솔루션과 용매를 각각 기설정된 비율로 혼합하는 슬러리믹싱모듈(910)을 포함할 수 있다.The mixing unit 900 may include a slurry mixing module 910 that mixes at least powder, a solution, and a solvent in predetermined ratios to form a slurry.
슬러리믹싱모듈(910)은 적어도 분체와 솔루션과 용매가 각각 기설정된 비율로 수용되는 슬러리믹서(911)와, 액상의 슬러리가 형성되도록 슬러리믹서(911)의 내부에서 회전되면서 적어도 분체와 솔루션과 용매를 혼합시키는 슬러리교반기(912)를 포함할 수 있다.The slurry mixing module 910 rotates inside the slurry mixer 911 to form a slurry mixer 911 in which at least powder, a solution, and a solvent are accommodated at a predetermined ratio, and a liquid slurry, so that at least powder, a solution, and a solvent It may include a slurry agitator 912 for mixing.
슬러리믹서(911)에는 압축공기 또는 공정가스가 공급되는 슬러리의 형성을 안정화시킬 수 있다. 슬러리믹서(911)에는 유압유닛(913)이 구비되어 주변 부품의 동작을 안정화시킬 수 있다.Compressed air or process gas may be supplied to the slurry mixer 911 to stabilize the formation of the slurry. A hydraulic unit 913 is provided in the slurry mixer 911 to stabilize the operation of peripheral parts.
슬러리믹싱모듈(910)에는 슬러리믹서(911)의 가스가 포집 배출되는 슬러리벤트부(980)가 구비될 수 있다. 그러면, 슬러리믹서(911)의 내부 압력 조절이 가능하고, 슬러리를 안정화시킬 수 있다. 슬러리벤트부(980)는 슬러리믹서(911)와 별도의 저장공간을 연결시키는 슬러리벤트라인(981)과, 슬러리벤트라인(981)에서 이격되어 슬러리믹서(911)와 슬러리벤트라인(981)을 연결시키는 슬러리필터라인(982)과, 슬러리필터라인(982)에 구비되어 슬러리믹서(911)의 가스를 필터링하는 슬러리벤트필터(983)를 포함할 수 있다.The slurry mixing module 910 may include a slurry vent unit 980 in which gas from the slurry mixer 911 is collected and discharged. Then, the internal pressure of the slurry mixer 911 can be adjusted and the slurry can be stabilized. The slurry vent unit 980 has a slurry vent line 981 connecting the slurry mixer 911 and a separate storage space, and is spaced apart from the slurry vent line 981 to separate the slurry mixer 911 and the slurry vent line 981. A slurry filter line 982 connected to the slurry filter line 982 and a slurry vent filter 983 provided in the slurry filter line 982 to filter the gas of the slurry mixer 911 may be included.
이때, 슬러리벤트라인(981)과 슬러리필터라인(982)에는 각각 슬러리개폐밸브가 구비되므로, 슬러리개폐밸브의 개폐 여부에 따라 슬러리믹서(911)의 가스가 통과하는 라인을 선택할 수 있다.At this time, since the slurry vent line 981 and the slurry filter line 982 are provided with slurry opening/closing valves, the line through which the gas of the slurry mixer 911 passes can be selected depending on whether the slurry opening/closing valves are opened or closed.
믹싱유닛(900)은 슬러리믹서(911)의 슬러리를 펌핑하는 슬러리이송펌프(930)를 더 포함할 수 있다. 슬러리이송펌프(930)에는 공정가스 또는 압축공기가 공급되어 슬러리의 이송을 원활하게 할 수 있다.The mixing unit 900 may further include a slurry transfer pump 930 for pumping the slurry of the slurry mixer 911 . Process gas or compressed air is supplied to the slurry transfer pump 930 to smoothly transfer the slurry.
믹싱유닛(900)은 슬러리가 슬러리믹서(911)에서 배출될 때 슬러리로부터 자성을 갖는 이물질을 필터링하는 슬러리자석필터(920)와, 슬러리가 슬러리믹서(911)에서 배출될 때 슬ㄹ러리로부터 자성이 없는 이물질을 필터링하는 슬러리메쉬필터(940) 중 적어도 어느 하나를 더 포함할 수 있다. 본 발명의 일 실시예에서 슬러리자석필터(920)는 슬러리믹서(911)와 슬러리이송펌프(930) 사이에 구비되어 자성을 갖는 이물질에 의한 슬러리이송펌프(930)의 파손을 방지하고, 슬러리메쉬필터(940)는 슬러리이송펌프(930)에서 배출되는 슬러리를 필터링하여 후속 공정으로 이물질이 전달되는 것을 방지할 수 있다.The mixing unit 900 includes a slurry magnetic filter 920 for filtering foreign substances having magnetism from the slurry when the slurry is discharged from the slurry mixer 911, and a magnetic filter 920 from the slurry when the slurry is discharged from the slurry mixer 911. At least one of the slurry mesh filters 940 for filtering out foreign matter may be further included. In one embodiment of the present invention, the slurry magnetic filter 920 is provided between the slurry mixer 911 and the slurry transfer pump 930 to prevent damage to the slurry transfer pump 930 due to foreign substances having magnetism, and the slurry mesh The filter 940 may filter the slurry discharged from the slurry transfer pump 930 to prevent foreign matter from being transferred to a subsequent process.
믹싱유닛(900)은 유지보수모듈(950)을 통해 슬러리믹서(911)의 탈부착을 용이하게 하고, 슬러리믹서(911)의 유지보수를 간편하게 할 수 있다. 유지보수모듈(950)은 크레인 또는 체인블럭으로 이루어질 수 있다.The mixing unit 900 facilitates attachment and detachment of the slurry mixer 911 through the maintenance module 950 and can simplify maintenance of the slurry mixer 911 . The maintenance module 950 may be made of a crane or a chain block.
믹싱유닛(900)을 통과한 슬러리는 후속 공정에 전달되어 집전체의 표면에 코팅되도록 한다.The slurry that has passed through the mixing unit 900 is transferred to a subsequent process to be coated on the surface of the current collector.
미설명부호 960은 믹싱유닛(900)에 기설정된 양의 전해액을 공급하는 전해액공급유닛이다. 전해액공급유닛(960)은 슬러리에 전해액을 공급하므로, 최종 완성되는 전극에서 활물질의 이온화를 활발하게 하고, 전극의 성능이 저하되는 것을 방지할 수 있다. 미설명부호 971은 믹싱유닛(900)의 슬러리믹서(911)의 내부 가스를 흡입하는 진공챔버이다. 진공챔버(971)로 이동된 슬러리믹서(911)의 내부 가스는 별도 배출되도록 한다. 미설명부호 972는 진공챔버(971)에 흡입력을 제공하는 진공펌프이다. 진공펌프(972)가 흡입한 가스는 별도 배출되도록 한다. Reference numeral 960 is an electrolyte supply unit that supplies a predetermined amount of electrolyte to the mixing unit 900 . Since the electrolyte supply unit 960 supplies the electrolyte to the slurry, ionization of the active material in the final electrode can be actively performed and performance of the electrode can be prevented from deteriorating. Reference numeral 971 is a vacuum chamber for sucking gas inside the slurry mixer 911 of the mixing unit 900 . The internal gas of the slurry mixer 911 moved to the vacuum chamber 971 is discharged separately. Reference numeral 972 denotes a vacuum pump that provides a suction force to the vacuum chamber 971 . The gas sucked by the vacuum pump 972 is discharged separately.
도 1 내지 도 7과 도 8을 참조하면, 본 발명의 일 실시예에 따른 스마트 분체원료 이송방법은 분말 형태의 분체가 분체이송라인을 따라 이송될 때, 분체이송라인 중 수직으로 설치되는 해당 수직관에서 정밀 계량된 분체를 원활하게 통과시키는 한편, 분체가 해당 수직관에 잔류하거나 정체되는 것을 방지할 수 있다.1 to 7 and 8, in the smart powder material transfer method according to an embodiment of the present invention, when powder in powder form is transferred along the powder transfer line, the corresponding number of vertically installed powder transfer lines It is possible to smoothly pass the precisely-measured powder in the straight pipe, while preventing the powder from remaining or being stagnant in the vertical pipe.
본 발명의 일 실시예에 따른 스마트 분체원료 이송방법은 본 발명의 일 실시예에 따른 스마트 분체원료 이송시스템을 이용하여 분체를 이송하는 방법으로 설명한다.A smart powder material transfer method according to an embodiment of the present invention will be described as a method of transferring powder using a smart powder material transfer system according to an embodiment of the present invention.
본 발명의 일 실시예에 따른 스마트 분체원료 이송방법은 분체이송단계(S1)를 포함할 수 있다. 분체이송단계(S1)는 제1이송량에 대응하여 분체를 이송시키는 제1이송단계와, 제1이송량과 같거나 다른 제2이송량에 대응하여 분체를 이송시키는 제2이송단계와, 제1이송량 또는 제2이송량과 같거나 작은 제3이송량에 대응하여 분체를 이송시키는 제3이송단계 중 적어도 어느 하나를 포함할 수 있다.The smart powder raw material transfer method according to an embodiment of the present invention may include a powder transfer step (S1). The powder transfer step (S1) includes a first transfer step of transferring powder corresponding to a first transfer amount, a second transfer step of transferring powder corresponding to a second transfer amount equal to or different from the first transfer amount, and a first transfer amount or At least one of a third transfer step of transferring the powder in response to a third transfer amount equal to or smaller than the second transfer amount may be included.
제1이송단계는 제1이송유닛(100)의 분체가 높이 방향으로 길게 형성된 제1수직관(130)에서 상승될 때 제1수직관(130)에서 제1이송량 중 일부의 분체를 제1수직관(130)의 상단부 쪽에서 작용하는 흡입력을 이용한 흡송 방식으로 통과시키는 제1흡송단계와, 제1흡송단계를 거친 다음, 제1수직관(130)에서 제1이송량 중 나머지의 분체를 제1수직관(130)의 하단부 쪽에서 작용하는 가압력을 이용한 압송 방식으로 통과시키는 제1압송단계를 포함할 수 있다.In the first transfer step, when the powder of the first transfer unit 100 is raised in the first vertical tube 130 formed long in the height direction, the powder of a part of the first transfer amount is transferred from the first vertical tube 130 to the first number. The first suction step of passing through the suction method using the suction force acting at the upper end of the straight pipe 130, and after the first suction step, the remaining powder of the first transfer amount in the first vertical pipe 130 is transferred to the first number. It may include a first pressure-feeding step of passing through the pressure-feeding method using the pressing force acting on the lower end of the straight pipe 130.
제1이송단계의 세부 구성은 상술한 제1이송유닛(100)의 결합 관계 및 동작으로 대신한다.The detailed configuration of the first transfer step is replaced by the coupling relationship and operation of the first transfer unit 100 described above.
제2이송단계는 제2이송유닛(200)의 분체가 높이 방향으로 길게 형성된 제2수직관(230)에서 상승될 때 제2수직관(230)에서 제2이송량 중 일부의 분체를 제2수직관(230)의 상단부 쪽에서 작용하는 흡입력을 이용한 흡송 방식으로 통과시키는 제2흡송단계와, 제2흡송단계를 거친 다음, 제2이송량 중 나머지의 분체는 제2수직관(230)의 하단부 쪽에서 작용하는 가압력을 이용한 압송 방식으로 제2수직관(230)을 통과시키는 제2압송단계를 포함할 수 있다.In the second transfer step, when the powder of the second transfer unit 200 is elevated in the second vertical tube 230 formed long in the height direction, the powder of a part of the second transfer amount is transferred from the second vertical tube 230 to the second number. After passing through the second suction step using the suction method using the suction force acting on the upper end of the straight pipe 230, and after the second suction step, the remaining powder of the second transport amount acts on the lower end of the second vertical pipe 230. It may include a second pressure feeding step of passing the second vertical pipe 230 by a pressure feeding method using a pressing force.
제2이송단계의 세부 구성은 상술한 제2이송유닛(200)의 결합 관계 및 동작으로 대신한다.The detailed configuration of the second transfer step is replaced by the coupling relationship and operation of the second transfer unit 200 described above.
제3이송단계는 제3투입모듈(310)에 저장된 분체를 제3이송량으로 계량하여 배출시키는 제3투입단계와, 제3투입단계를 거쳐 배출되는 분체가 가압력을 이용한 압송 방식으로 이송되도록 공정가스 또는 압축공기를 이용하여 제3투입모듈(310)에서 배출되는 분체를 가압하는 제3압송단계를 포함할 수 있다.The third transfer step includes a third input step of measuring and discharging the powder stored in the third input module 310 by a third transfer amount, and a process gas so that the powder discharged through the third input step is transferred by a pressure transfer method using pressurized force. Alternatively, a third pressure feeding step of pressurizing the powder discharged from the third input module 310 using compressed air may be included.
제3이송단계의 세부 구성은 상술한 제3이송유닛(300)의 결합 관계 및 동작으로 대신한다.The detailed configuration of the third transfer step is replaced by the coupling relationship and operation of the third transfer unit 300 described above.
본 발명의 일 실시예에 따른 스마트 분체원료 이송방법은 바인더이송단계(S2)와, 용매이송단계(S3)를 더 포함할 수 있다. 이때, 분체는 전극의 원료인 활물질로 이루어질 수 있다.The smart powder raw material transfer method according to an embodiment of the present invention may further include a binder transfer step (S2) and a solvent transfer step (S3). At this time, the powder may be made of an active material that is a raw material of the electrode.
바인더이송단계(S2)는 바인더이송량에 대응하여 활물질과 혼합되는 바인더를 액상의 솔루션으로 변환하여 이송시킨다.In the binder transfer step (S2), the binder mixed with the active material is converted into a liquid solution in response to the binder transfer amount and transferred.
바인더이송단계(S2)의 세부 구성은 상술한 바인더이송유닛(500)의 결합 관계 및 동작으로 대신한다.The detailed configuration of the binder transfer step (S2) is replaced by the above-described coupling relationship and operation of the binder transfer unit 500.
용매이송단계(S3)는 용매이송량에 대응하여 바인더를 용해시켜 솔루션을 형성하기 위한 용매를 이송시킨다.In the solvent transfer step (S3), a solvent is transferred to form a solution by dissolving the binder in response to the amount of solvent transfer.
용매이송단계(S3)의 세부 구성은 상술한 용매이송유닛(600)의 결합 관계 및 동작으로 대신한다.The detailed configuration of the solvent transfer step (S3) is replaced by the coupling relationship and operation of the solvent transfer unit 600 described above.
본 발명의 일 실시예에 따른 스마트 분체원료 이송방법은 도전재이송단계(S4)와 분산재이송단계(S5) 중 적어도 어느 하나를 더 포함할 수 있다.The smart powder raw material transfer method according to an embodiment of the present invention may further include at least one of a conductive material transfer step (S4) and a dispersion material transfer step (S5).
도전재이송단계(S4)는 도전재이송량에 대응하여 전극을 형성하기 위한 슬러리에 혼합되는 도전재를 이송시킨다.In the conductive material transfer step (S4), the conductive material mixed with the slurry for forming the electrode is transferred in response to the amount of the conductive material transferred.
도전재이송단계(S4)의 세부 구성은 상술한 도전재이송유닛(700)의 결합 관계 및 동작으로 대신한다.The detailed configuration of the conductive material transfer step (S4) is replaced by the above-described coupling relationship and operation of the conductive material transfer unit 700.
분산재이송단계(S5)는 분산재이송량에 대응하여 전극을 형성하기 위한 슬러리에 혼합되는 분산재를 이송시킨다.In the dispersion material transfer step (S5), the dispersion material mixed with the slurry for forming the electrode is transferred in response to the amount of the dispersion material transported.
분산재이송단계(S5)의 세부 구성은 상술한 분산재이송유닛(800)의 결합 관계 및 동작으로 대신한다.The detailed configuration of the dispersion ash transfer step (S5) is replaced by the above-described coupling relationship and operation of the dispersion ash transfer unit 800.
본 발명의 일 실시예에 따른 스마트 분체원료 이송방법은 믹싱단계(S6)를 더 포함할 수 있다.The smart powder raw material transfer method according to an embodiment of the present invention may further include a mixing step (S6).
믹싱단계(S6)는 전극을 형성하기 위한 슬러리를 형성하도록 분체이송단계(S1)를 거쳐 전달되는 분체와 바인더이송단계(S2)를 거쳐 전달되는 솔루션과 용매이송단계(S3)를 거쳐 전달되는 용매를 혼합한다.In the mixing step (S6), the powder transferred through the powder transfer step (S1) and the solution transferred through the binder transfer step (S2) and the solvent transferred through the solvent transfer step (S3) to form the slurry for forming the electrode mix
믹싱단계(S6)의 세부 구성은 상술한 믹싱유닛(900)에서 슬러리믹서(911)와 슬러리교반기(912)의 결합 관계 및 동작으로 대신한다.The detailed configuration of the mixing step (S6) is replaced by the coupling relationship and operation of the slurry mixer 911 and the slurry stirrer 912 in the mixing unit 900 described above.
본 발명의 일 실시예에 따른 스마트 분체원료 이송방법은 슬러리이송단계(S7)를 더 포함할 수 있다.The smart powder raw material transfer method according to an embodiment of the present invention may further include a slurry transfer step (S7).
슬러리이송단계(S7)는 믹싱단계(S6)를 거쳐 배출되는 슬러리를 후속 공정으로 이송시킨다. 슬러리이송단계(S7)의 세부 구성은 상술한 슬러리이송펌프(930)와 슬러리자석필터(920)와 슬러리메쉬필터(940)의 결합 관계 및 동작으로 대신한다.In the slurry transfer step (S7), the slurry discharged through the mixing step (S6) is transferred to a subsequent process. The detailed configuration of the slurry transfer step (S7) is replaced by the coupling relationship and operation of the slurry transfer pump 930, the slurry magnet filter 920, and the slurry mesh filter 940 described above.
미설명부호 S8은 믹싱유닛(900)에 기설정된 양의 전해액을 공급하는 전해액공급단계이다. 슬러리에 전해액이 공급됨에 따라 최종 완성되는 전극에서 활물질의 이온화를 활발하게 하고, 전극의 성능이 저하되는 것을 방지할 수 있다.Reference numeral S8 is an electrolyte supplying step of supplying a preset amount of electrolyte to the mixing unit 900 . As the electrolyte solution is supplied to the slurry, ionization of the active material in the finally completed electrode can be actively performed, and the performance of the electrode can be prevented from deteriorating.
공정투입단계에서는 최종 완성된 슬러리를 집전체의 표면에 코팅할 수 있다.In the process introduction step, the final slurry may be coated on the surface of the current collector.
도 9 내지 도 17을 참조하면, 본 발명의 일 실시예에 따른 분체계량밸브는 분말 형태를 나타내어 해당 호퍼로부터 연속적으로 공급되는 분말 형태의 분체를 기계적으로 명확하게 정량 계량하여 순차적으로 배출하기 위한 것으로, 계량하우징(10)과, 분배모듈(20)을 포함하고, 상기 분체계량밸브는 동력발생모듈(50)을 더 포함할 수 있다. 여기에, 본 발명의 일 실시예에 따른 분체계량밸브는 회전센싱모듈(60)과 속도제어모듈(70) 중 적어도 하나를 더 포함할 수 있다. 여기에, 본 발명의 일 실시예에 따른 분체계량밸브는 축이음모듈(30)과, 변환모듈(40) 중 적어도 어느 하나를 더 포함할 수 있다.9 to 17, the powder metering valve according to an embodiment of the present invention is for sequentially discharging by mechanically clearly metering and clearly measuring powder in the form of powder continuously supplied from a corresponding hopper in the form of powder. , a metering housing 10 and a distribution module 20, and the powder metering valve may further include a power generation module 50. Here, the powder metering valve according to an embodiment of the present invention may further include at least one of the rotation sensing module 60 and the speed control module 70. Here, the powder metering valve according to an embodiment of the present invention may further include at least one of the shaft coupling module 30 and the conversion module 40.
그러면, 분배모듈(20)이 회전함에 따라 입구(11)로 유입되는 분체는 분배모듈(20)의 단위배출홈부(22)마다 기설정된 정량으로 분리 수용되었다가 선입선출 방식으로 출구(12)를 통해 배출된다.Then, as the distribution module 20 rotates, the powder introduced into the inlet 11 is separated and accommodated in a predetermined amount in each unit discharge groove 22 of the distribution module 20, and then passes through the outlet 12 in a first-in-first-out manner. emitted through
계량하우징(10)은 중공의 함체로 형성된다. 계량하우징(10)의 상부에는 호퍼가 결합되는 입구(11)가 개구되고, 계량하우징(10)의 하부에는 입구(11)와 대향 배치되는 출구(12)가 개구된다.The metering housing 10 is formed as a hollow enclosure. An inlet 11 to which a hopper is coupled is opened at an upper portion of the metering housing 10, and an outlet 12 disposed opposite to the inlet 11 is opened at a lower portion of the metering housing 10.
여기서, 가상의 선은 입구(11)와 출구(12)를 연결하는 선이고, 가상의 제1축은 가상의 선에 수직인 축이며, 가상의 제2축은 가상의 선과 가상의 제1축에 모두 수직인 축일 수 있다. 다만, 여기에 한정되는 것은 아니고, 가상의 제2축은 가상의 선과 평행할 수도 있다.Here, the imaginary line is a line connecting the inlet 11 and the outlet 12, the imaginary first axis is an axis perpendicular to the imaginary line, and the imaginary second axis is both the imaginary line and the imaginary first axis. It can be a vertical axis. However, it is not limited thereto, and the virtual second axis may be parallel to the virtual line.
계량하우징(10)에는 가상의 제1축에 수직인 가상의 제2축을 기준으로 계량하우징(10)의 일측에 관통 형성되는 분배개구부와, 가상의 제1축에 수직인 가상의 제2축을 기준으로 계량하우징(10)의 타측에 관통 형성되는 점검구와, 점검구를 개폐하는 개폐부재(15)가 포함될 수 있다. 분배개구부는 개폐이음부재(31)에 의해 개폐될 수 있다.The metering housing 10 includes a distribution opening formed through one side of the metering housing 10 based on a second axis perpendicular to the first axis, and a second axis perpendicular to the first axis. As such, an inspection port formed through the other side of the metering housing 10 and an opening/closing member 15 for opening and closing the inspection port may be included. The distribution opening may be opened and closed by the opening and closing joint member 31 .
입구(11)와 출구(12) 중 적어도 어느 하나에는 환기를 위한 퍼지부(13)가 구비될 수 있다.At least one of the inlet 11 and the outlet 12 may be provided with a purge unit 13 for ventilation.
계량하우징(10)에는 개폐부재(15)가 회전 가능하게 결합되는 개폐힌지부(16)와, 사용자의 파지를 위해 개폐부재(15)에 구비되는 개폐손잡이(17)와, 개폐부재(15)를 계량하우징(10)의 타측에 탈부착 가능하게 결합시키는 개폐고정부(18) 중 적어도 어느 하나가 더 포함될 수 있다.The metering housing 10 includes an opening/closing hinge 16 to which the opening/closing member 15 is rotatably coupled, an opening/closing handle 17 provided on the opening/closing member 15 for a user's grip, and an opening/closing member 15 At least one of the opening and closing fixing parts 18 detachably coupled to the other side of the metering housing 10 may be further included.
미설명부호 19는 개폐부재(15)에 의한 점검구의 개폐 상태를 감지하는 리미트스위치이다. Reference numeral 19 is a limit switch that senses the open/closed state of the inspection door by the opening/closing member 15 .
분배모듈(20)은 입구(11)와 출구(12)를 연결하는 가상의 선에 수직인 가상의 제1축을 기준으로 계량하우징(10)에 회전 가능하게 내장된다. 분배모듈(20)에는 회전 방향을 따라 다수의 단위배출홈부(22)가 등간격으로 배치된다. 단위배출홈부(22)에는 기설정된 정량의 분체가 수용되도록 한다. 분배모듈(20)은 입구(11)로 유입되는 분체를 출구(12)로 전달한다.The distribution module 20 is rotatably embedded in the metering housing 10 with respect to a first virtual axis perpendicular to a virtual line connecting the inlet 11 and the outlet 12. In the distribution module 20, a plurality of unit discharge grooves 22 are arranged at regular intervals along the rotation direction. A predetermined amount of powder is accommodated in the unit discharge groove 22. The distribution module 20 delivers the powder introduced through the inlet 11 to the outlet 12 .
분배모듈(20)은 가상의 제1축과 동축으로 분배홀부(21-1)가 관통 형성된 원통 형상의 분배바디(21)와, 상호 인접한 두 단위배출홈부(22)가 구획되도록 분배바디(21)의 외주면에서 분배바디(21)의 법선 방향으로 돌출 형성되는 다수의 구획날개(23)를 포함할 수 있다.The distribution module 20 is divided into a distribution body 21 having a cylindrical shape through which distribution holes 21-1 are formed coaxially with a virtual first axis, and two unit discharge grooves 22 adjacent to each other. ) It may include a plurality of partition blades 23 protruding in the normal direction of the distribution body 21 from the outer circumferential surface.
분배바디(21)에서 분배홀부(21-1)에는 가상의 제1축과 동축을 이루는 전달구동축부(43)가 삽입된 상태에서 걸림 지지되므로, 일측에는 축지지홈부(21-2)가 구비되고, 타측에는 축결합홈부(21-3)가 구비되도록 한다.In the distribution body 21, the distribution hole 21-1 is supported while the delivery drive shaft 43 coaxial with the virtual first shaft is inserted and supported, so that one side has a shaft support groove 21-2. And, the other side is provided with a shaft coupling groove (21-3).
가상의 제1축에 수직인 면으로 분배모듈(20)을 절단했을 때, 단위배출홈부(22)의 형상을 한정하는 것은 아니고, 다양한 형태를 나타낼 수 있고, 분배바디(21)의 외주면을 따라 등간격으로 배치되는 것이 바람직하다.When the distribution module 20 is cut in a plane perpendicular to the first imaginary axis, the shape of the unit discharge groove 22 is not limited, and various forms may be shown, along the outer circumferential surface of the distribution body 21. It is preferable to arrange them at equal intervals.
구획날개(23)는 분배바디(21)의 외주면에서 법선 방향으로 돌출 형성되어 계량하우징(10)의 내부에 밀착 또는 접촉 지지된다. 계량하우징(10)의 내벽에 밀착 또는 접촉 지지되는 스크래퍼(23-1)가 구비되어 밀착력을 향상시킬 수 있다. 스크래퍼(23-1)에는 도 12에 도시된 바와 같이 모따기부가 형성되어 계량하우징(10)의 내부와 구획날개(23)의 마찰을 줄이고, 구획날개(23)의 이동을 원활하게 할 수 있다.The partition blades 23 protrude in a normal direction from the outer circumferential surface of the distribution body 21 and are supported in close contact with or in contact with the inside of the metering housing 10. A scraper 23-1 that is supported in close contact with or in contact with the inner wall of the metering housing 10 is provided to improve adhesion. As shown in FIG. 12, the scraper 23-1 is chamfered to reduce friction between the inside of the metering housing 10 and the partition blades 23, and to facilitate the movement of the partition blades 23.
축이음모듈(30)은 가상의 제1축과 동축을 이루도록 배치된다. 축이음모듈(30)은 가상의 제1축을 회전 가능하게 지지한다. 축이음모듈(30)은 계량하우징(10)에 결합되어 분배개구부를 개폐할 수 있다. 축이음모듈(30)은 가상의 제1축과 동축을 이루어 분배모듈(20)과 변환모듈(40)을 연결시킬 수 있다. Shaft coupling module 30 is arranged to form a virtual first shaft and coaxial. The shaft coupling module 30 rotatably supports a virtual first shaft. The shaft coupling module 30 is coupled to the metering housing 10 to open and close the distribution opening. The shaft coupling module 30 may connect the distribution module 20 and the conversion module 40 by being coaxial with the virtual first shaft.
축이음모듈(30)은 계량하우징(10)에 결합되고 가상의 제1축을 회전 가능하게 지지하는 개폐이음부재(31)와, 변환모듈(40)에 결합되고 가상의 제1축을 회전 가능하게 지지하는 축이음부재(32)중 적어도 어느 하나를 포함할 수 있다.The shaft coupling module 30 is coupled to the metering housing 10 and rotatably supports the virtual first shaft, the opening and closing joint member 31, and the conversion module 40 and rotatably supports the virtual first shaft. It may include at least one of the shaft joint member 32 to.
개폐이음부재(31)에는 계량하우징(10)의 일측으로 개구된 분배개구부와 연통되어 가상의 제1축이 통과하도록 관통 형성되는 개폐홀부(31-1)가 포함될 수 있다. 여기에, 개폐이음부재(31)에는 분배개구부가 밀폐되도록 개폐홀부(31-1)에서 가상의 제1축을 회전 가능하게 지지하는 부싱부재(31-2)와, 가상의 제1축과 개폐홀부(31-1)의 중심이 동축을 이루도록 부싱부재(31-2)와 축이음부재(32) 사이의 개폐홀부(31-1)에서 가상의 제1축을 회전 가능하게 지지하는 리테이너(31-3)중 적어도 어느 하나가 더 포함될 수 있다.The opening/closing joint member 31 may include an opening/closing hole 31 - 1 that communicates with a distribution opening opened to one side of the metering housing 10 and is formed through a virtual first axis. Here, the opening/closing joint member 31 includes a bushing member 31-2 rotatably supporting the virtual first shaft in the opening/closing hole 31-1 so that the distribution opening is sealed, and the virtual first shaft and the opening/closing hole. A retainer 31-3 rotatably supporting a virtual first shaft in the opening/closing hole 31-1 between the bushing member 31-2 and the shaft joint member 32 so that the center of the 31-1 is coaxial. ) At least one of them may be further included.
축이음부재(32)에는 가상의 제1축이 통과하도록 관통 형성되는 축이음홀부(32-1)와, 축이음홀부(32-1)에서 가상의 제1축을 회전 가능하게 지지하는 베어링부재가 포함될 수 있다. 도 10을 참조하면, 베어링부재는 축이음홀부(32-1)의 일측에 구비되는 제1베어링(32-2)과 축이음홀부(32-1)의 타측에 구비되는 제2베어링(32-3)을 포함하는 것으로 도시하였지만, 여기에 한정하는 것은 아니고, 베어링부재의 개수는 조정될 수 있다.The shaft joint member 32 has a shaft joint hole 32-1 through which the imaginary first shaft passes, and a bearing member rotatably supporting the virtual first shaft in the shaft joint hole 32-1. can be included 10, the bearing member includes a first bearing 32-2 provided on one side of the shaft joint hole 32-1 and a second bearing 32-2 provided on the other side of the shaft joint hole 32-1. Although shown as including 3), it is not limited thereto, and the number of bearing members can be adjusted.
변환모듈(40)은 가상의 제1축과 동축 또는 평행을 이루도록 배치된다. 변환모듈(40)은 분배모듈(20)을 회전시키기 위한 회전력을 변환하여 분배모듈(20)에 전달한다. 본 발명의 일 실시예에서 변환모듈(40)은 가상의 제1축과 동축을 이루어 축이음모듈(30)에 결합되는 것으로 도시하였다. 하지만, 여기에 한정하는 것은 아니고, 축이음모듈(30)이 생략되는 경우, 변환모듈(40)은 계량하우징(10)의 일측에 결합될 수 있다.The conversion module 40 is disposed to be coaxial or parallel to the first imaginary axis. The conversion module 40 converts rotational force for rotating the distribution module 20 and transmits it to the distribution module 20 . In one embodiment of the present invention, the conversion module 40 is shown as being coupled to the shaft joint module 30 made coaxial with the virtual first shaft. However, it is not limited thereto, and when the shaft coupling module 30 is omitted, the conversion module 40 may be coupled to one side of the metering housing 10.
변환모듈(40)은 계량하우징(10)의 일측에 배치되고 축이음모듈(30) 또는 계량하우징(10)과 결합되는 변환바디(41)와, 가상의 제1축과 동축을 이루어 변환바디(41)에 회전 가능하게 결합되는 전달구동축부(43)와, 가상의 제1축과 수직인 가상의 제2축과 동축 또는 평행을 이루어 전달구동축부(43)와 치합된 상태에서 변환바디(41)에 회전 가능하게 결합되는 구동연결축부를 포함할 수 있다. 이때, 전달구동축부(43)는 분배모듈(20)과 함께 회전되도록 분배모듈(20)에 탈부착 가능하게 결합되도록 한다.The conversion module 40 is disposed on one side of the metering housing 10 and is coaxial with a conversion body 41 coupled to the shaft coupling module 30 or the metering housing 10 and a virtual first axis to form a conversion body ( 41) in a state in which the transmission drive shaft portion 43 rotatably coupled to the transmission drive shaft portion 43 and the imaginary second axis perpendicular to the first virtual axis are coaxial or parallel to the transmission drive shaft portion 43 and meshed with the conversion body 41 ) It may include a driving connecting shaft rotatably coupled to. At this time, the transmission drive shaft portion 43 is detachably coupled to the distribution module 20 so as to rotate together with the distribution module 20 .
전달구동축부(43)는 변환바디(41)에 회전 가능하게 결합되는 변환연결부(431)와, 분배모듈(20)에 구비된 분배홀부(21-1)에 삽입 지지되도록 변환연결부(43-1)에 동축으로 연장되는 분배이음연결부(43-3)를 포함할 수 있다.The transmission drive shaft part 43 is connected to the conversion connection part 431 rotatably coupled to the conversion body 41 and the conversion connection part 43-1 to be inserted and supported in the distribution hole part 21-1 provided in the distribution module 20. ) may include a distribution joint connection portion 43-3 extending coaxially.
전달구동축부(43)는 축이음모듈(30)에 회전 가능하게 삽입 지지되도록 변환연결부(43-1)와 분배이음연결부(43-3)를 동축으로 연결시키는 축이음연결부(43-2)를 더 포함할 수 있다. 축이음연결부(43-2)는 축이음모듈(30)에 회전 가능하게 지지된다.The transmission drive shaft portion 43 uses a shaft joint connection portion 43-2 that coaxially connects the conversion connection portion 43-1 and the distribution joint connection portion 43-3 so as to be rotatably inserted and supported in the shaft joint module 30. can include more. The shaft joint connection portion 43-2 is rotatably supported by the shaft joint module 30.
전달구동축부(43)는 분배이음연결부(433)의 일측에 형성되고 분배모듈(20)의 일측에 걸림 지지되는 지지돌부(43-4)와, 분배이음연결부(43-3)의 타측에 탈부착 가능하게 결합되고 분배모듈(20)의 타측에 걸림 지지되는 축고정부재를 더 포함할 수 있다.The transmission drive shaft portion 43 is formed on one side of the distribution joint connection portion 433 and is attached and detachable to the other side of the distribution joint connection portion 43-3 and the supporting protrusion 43-4 hooked on one side of the distribution module 20. Possibly coupled and may further include a shaft fixing member that is engaged and supported on the other side of the distribution module 20 .
그러면, 지지돌부(43-4)는 축지지홈부(21-2)에 걸림 지지되고, 축고정부재는 축결합홈부(21-3)에 걸림 지지된다.Then, the support protrusion 43-4 is caught and supported by the shaft support groove 21-2, and the shaft fixing member is caught and supported by the shaft coupling groove 21-3.
축고정부재는 전달구동축부(43)의 단부와 마주보도록 분배모듈(20)의 타측에서 축결합홈부(213)에 걸림 지지되는 고정브라켓(43-5)과, 고정브라켓(43-5)을 전달구동축부(43)의 단부에 탈부착 가능하게 결합시키는 고정결합부(43-6)를 포함할 수 있다. 본 발명의 일 실시예에서 고정결합부(43-6)는 고정브라켓(435)을 통과하여 전달구동축부(43)에 나사 결합되는 것으로 도시하였다.The shaft fixing member includes a fixing bracket 43-5 engaged in the shaft coupling groove 213 on the other side of the distribution module 20 so as to face the end of the transmission drive shaft 43, and a fixing bracket 43-5. A fixed coupling portion 43-6 detachably coupled to the end of the transmission drive shaft portion 43 may be included. In one embodiment of the present invention, the fixed coupling portion 43-6 is shown as being screwed to the transmission drive shaft portion 43 through the fixed bracket 435.
동력발생모듈(50)은 가상의 제1축과 동축 또는 평행 또는 교차를 이루도록 배치된다. 동력발생모듈(50)은 인가되는 전원에 의해 분배모듈(20)을 회전시키기 위한 회전력을 발생시킨다. 본 발명의 일 실시예에서 동력발생모듈(50)은 가상의 제1축에 수직인 가상의 제2축과 동축 또는 평행을 이루어 변환모듈(40)에 결합되는 것으로 도시하였다.The power generation module 50 is arranged to form a first imaginary axis coaxial, parallel or intersecting. The power generation module 50 generates rotational force for rotating the distribution module 20 by applied power. In one embodiment of the present invention, the power generation module 50 is illustrated as being coupled to the conversion module 40 coaxially or parallel to a virtual second axis perpendicular to the first virtual axis.
동력발생모듈(50)은 인가되는 전원에 의해 회전력을 발생시키는 동력발생부(51)와, 동력발생부(51)의 중심에서 회전력에 의해 회전되고 변환모듈(40)의 구동연결축부에 동축으로 연결되는 동력축부를 포함할 수 있다.The power generation module 50 is rotated by the rotational force at the center of the power generation unit 51 and the power generation unit 51 that generates rotational force by applied power and is coaxial with the driving connection shaft of the conversion module 40. It may include a connected power shaft.
동력발생모듈(50)은 동력축부를 구동연결축부에 연결시키는 동력축이음(52)을 더 포함할 수 있다.The power generation module 50 may further include a power shaft joint 52 connecting the power shaft unit to the driving connection shaft unit.
회전센싱모듈(60)은 가상의 제1축과 동축을 이루도록 배치된다. 회전센싱모듈(60)은 계량하우징(10)에서 단위배출홈부(22)의 위치를 감지한다. 본 발명의 일 실시예에서 회전센싱모듈(60)은 가상의 제1축과 동축을 이루어 변환모듈(40)에 결합되는 것으로 도시하였다. 하지만, 변환모듈(40)이 생략되는 경우, 축이음모듈(30) 또는 계량하우징(10)에 결합될 수 있다.The rotation sensing module 60 is arranged coaxially with the virtual first axis. The rotation sensing module 60 detects the position of the unit discharge groove 22 in the metering housing 10 . In one embodiment of the present invention, the rotation sensing module 60 is illustrated as being coupled to the conversion module 40 coaxially with the first virtual axis. However, when the conversion module 40 is omitted, it may be coupled to the shaft coupling module 30 or the metering housing 10.
종래의 로터리밸브를 이용한 분체 계량 방식에서는 기계 구조적 특석상 작동이 정지했을 때, 단위배출홈부(22)의 정지 위치를 정확하게 파악하지 못하고, 설정 계량값 도달 시 계량하우징(10)의 출구(12) 쪽 폐쇄가 부정확하여 배출량의 변동이 심한 문제점이 있었다.In the conventional powder metering method using a rotary valve, when the operation is stopped due to mechanical structural characteristics, the stop position of the unit discharge groove 22 cannot be accurately grasped, and when the set metering value is reached, the outlet 12 of the metering housing 10 There was a problem in that the discharge volume fluctuated greatly due to the inaccurate side closure.
하지만, 본 발명의 일 실시예에 따른 분배모듈(20)과 회전센싱모듈(60) 사이의 결합 관계 및 회전센싱모듈(60)의 세부 결합 상태에 따라 상술한 문제점을 해결하고, 작동 정지 상태에서 입구(11)와 단위배출홈부(22)의 연통 및 출구(12)와 단위배출홈부(22)의 연통을 명확하게 하여 단위배출홈부(22)의 정지 위치를 안정화시키고, 분배모듈(20)에 의한 출구(12)의 폐쇄를 간편하게 할 수 있다.However, according to the coupling relationship between the distribution module 20 and the rotation sensing module 60 and the detailed coupling state of the rotation sensing module 60 according to an embodiment of the present invention, the above problems are solved, and the operation is stopped. The communication between the inlet 11 and the unit discharge groove 22 and the communication between the outlet 12 and the unit discharge groove 22 are clarified to stabilize the stop position of the unit discharge groove 22, and to the distribution module 20 It is possible to conveniently close the outlet 12 by the
또한, 본 발명의 일 실시예에 따른 분배모듈(20)에서 입구(11)와 단위배출홈부(22)의 연통 및 출구(12)와 단위배출홈부(22)의 연통에 대응하여 출구(12)와 연통된 단위배출홈부(22)의 양쪽에 배치되는 단위배출홈부(22) 중 적어도 어느 하나는 출구(12)와 연통되지 못하여 출구(12)의 폐쇄 및 밀폐를 안정되게 유지시킬 수 있고, 상호 인접한 한 쌍의 감지날개(62-3) 사이의 공간과 단위배출홈부(22)에 의해 결정되는 분체의 단위 수용공간에서 분체 수용량에 대한 오차를 최소화시킬 수 있게 된다.In addition, in the distribution module 20 according to an embodiment of the present invention, the outlet 12 corresponds to the communication between the inlet 11 and the unit discharge groove 22 and the communication between the outlet 12 and the unit discharge groove 22 At least one of the unit discharge grooves 22 disposed on both sides of the unit discharge groove 22 communicating with the outlet 12 does not communicate with each other so that the outlet 12 can be closed and sealed stably, and mutually It is possible to minimize the error in the powder capacity in the powder unit accommodation space determined by the space between the pair of adjacent sensing blades 62-3 and the unit discharge groove 22.
회전센싱모듈(60)은 가상의 제1축과 동축을 이루는 패들축부(62-1)를 매개로 변환모듈(40) 또는 축이음모듈(30) 또는 계량하우징(10)에 회전 가능하게 결합되고 가상의 제1축과 함께 회전 가능한 센싱패들(62)과, 센싱패들(62)을 감지하는 스피드센서(63)를 포함할 수 있다.The rotation sensing module 60 is rotatably coupled to the conversion module 40 or the shaft coupling module 30 or the metering housing 10 via the paddle shaft portion 62-1 coaxial with the virtual first axis, and It may include a sensing paddle 62 rotatable along a virtual first axis, and a speed sensor 63 for sensing the sensing paddle 62 .
여기서, 센싱패들(62)은 패들축부(62-1)에 결합되는 패들바디(62-2)와, 단위배출홈부(22)에 대응하여 패들바디(62-2)의 외주면을 따라 패들바디(62-2)에 등간격으로 배치되는 감지날개(62-3)를 포함할 수 있다. 그러면, 스피드센서(63)는 감지날개(62-3)를 감지함에 따라 분배모듈의 회전량을 감지할 수 있다.Here, the sensing paddle 62 is a paddle body 62-2 coupled to the paddle shaft portion 62-1 and a paddle body along the outer circumferential surface of the paddle body 62-2 corresponding to the unit discharge groove portion 22. (62-2) may include sensing blades 62-3 disposed at equal intervals. Then, the speed sensor 63 can detect the amount of rotation of the distribution module by sensing the sensing blades 62-3.
센싱패들(62)에서 패들바디(62-2) 또는 감지날개(62-3) 중 어느 하나에는 디폴트설정부(62-4)가 구비되어 계량하우징(10)의 입구(11)에서 단위배출홈부(22)가 안정되게 개구된 상태를 유지하도록 할 수 있고, 분배모듈(20)의 초기화를 도모할 수 있다.In the sensing paddle 62, one of the paddle body 62-2 or the sensing wing 62-3 is provided with a default setting unit 62-4 to discharge unit from the inlet 11 of the metering housing 10. It is possible to keep the groove part 22 in a stable open state, and it is possible to promote initialization of the distribution module 20 .
회전센싱모듈(60)은 센싱패들(62)과 스피트센서의 일부 또는 전체가 내장되도록 변환모듈(40) 또는 축이음모듈(30) 또는 계량하우징(10)에 결합되는 센싱바디(61)를 더 포함할 수 있다.The rotation sensing module 60 includes a sensing body 61 coupled to the conversion module 40 or the shaft coupling module 30 or the metering housing 10 so that some or all of the sensing paddle 62 and the speed sensor are embedded. can include more.
제1결합 상태를 참조하면, 도 14에 도시된 바와 같이 감지날개(62-3)는 패들바디(62-2)의 가장자리로부터 절곡 형성될 수 있다. 그리고 스피드센서(63)는 감지날개(62-3)를 연결하는 가상의 원통의 외측으로 이격되어 센싱바디(61)에 결합된다. 그러면, 스피드센서(63)는 패들바디(62-2)에서 이격되어 감지날개(62-3)만을 바라보도록 배치되므로, 패들축부(62-1)의 회전에 따라 감지날개(62-3)를 간헐적으로 감지할 수 있다. 패들축부(62-1)의 회전 방향에 대응한 감지날개(62-3)의 폭이 기설정된 제1감지폭을 형성하므로, 입구(11) 또는 출구(12)에 대응하여 단위배출홈부(22)의 위치 파악을 명확하게 하고, 속도제어모듈(70)에 해 분배모듈(20)의 회전력이 조절될 때, 기설정된 정량의 분체가 단위배출홈부(22)에 안정되게 수용되도록 한다.Referring to the first coupled state, as shown in FIG. 14 , the sensing blades 62-3 may be bent from the edge of the paddle body 62-2. And the speed sensor 63 is spaced apart from the outside of the imaginary cylinder connecting the sensing wings 62-3 and coupled to the sensing body 61. Then, since the speed sensor 63 is spaced apart from the paddle body 62-2 and is disposed to face only the sensing blades 62-3, the sensing blades 62-3 are moved according to the rotation of the paddle shaft portion 62-1. Can be detected intermittently. Since the width of the sensing blades 62-3 corresponding to the rotational direction of the paddle shaft portion 62-1 forms the preset first sensing width, the unit discharge groove 22 corresponds to the inlet 11 or the outlet 12. ), and when the rotational force of the distribution module 20 is controlled by the speed control module 70, a predetermined amount of powder is stably accommodated in the unit discharge groove 22.
제2결합 상태를 참조하면, 도 15와 도 16에 도시된 바와 같이 감지날개(62-3)는 패들바디(62-2)의 둘레면으로부터 법선 방향으로 돌출 형성될 수 있다. 그리고 스피드센서(63)는 감지날개(62-3)를 연결하는 가상의 원통의 외측으로 이격되어 센싱바디(61)에 결합된다. 그러면, 스피드센서(63)는 패들바디(62-2)의 둘레면과 감지날개(62-3)를 모두 바라보도록 배치되므로, 패들축부(62-1)의 회전에 따라 감지날개(62-3)를 간헐적으로 감지할 수 있다. 패들축부(62-1)의 회전 방향에 대응한 감지날개(62-3)의 폭이 기설정된 제1감지폭보다 작은 제2감지폭을 형성하므로, 입구(11) 또는 출구(12)에 대응하여 단위배출홈부(22)의 위치 파악을 명확하게 하고, 속도제어모듈(70)에 해 분배모듈(20)의 회전력이 조절될 때, 기설정된 정량의 분체가 단위배출홈부(22)에 안정되게 수용되도록 한다.Referring to the second coupled state, as shown in FIGS. 15 and 16 , the sensing blades 62-3 may protrude from the circumferential surface of the paddle body 62-2 in a normal direction. And the speed sensor 63 is spaced apart from the outside of the imaginary cylinder connecting the sensing wings 62-3 and coupled to the sensing body 61. Then, since the speed sensor 63 is arranged to look at both the circumferential surface of the paddle body 62-2 and the sensing blades 62-3, the sensing blades 62-3 are rotated according to the rotation of the paddle shaft portion 62-1. ) can be detected intermittently. Since the width of the sensing blades 62-3 corresponding to the rotational direction of the paddle shaft portion 62-1 forms a second sensing width smaller than the preset first sensing width, it corresponds to the inlet 11 or the outlet 12. to clarify the location of the unit discharge groove 22, and when the rotational force of the distribution module 20 is controlled by the speed control module 70, a predetermined amount of powder is stably in the unit discharge groove 22 make it acceptable
제3결합 상태를 참조하면, 도 17에 도시된 바와 같이 감지날개(62-3)는 패들바디(62-2)의 둘레면으로부터 법선 방향으로 돌출 형성될 수 있다. 그리고 스피드센서(63)는 패들바디(62-2)의 측면과 마주보도록 센싱바디(61)에 결합된다. 그러면, 스피드센서(63)는 패들축부(62-1)와 평행한 방향에서 감지날개(62-3)만을 바라보도록 배치되므로, 패들축부(62-1)의 회전에 따라 감지날개(62-3)를 간헐적으로 감지할 수 있다. 패들축부(62-1)의 회전 방향에 대응한 감지날개(62-3)의 폭이 기설정된 제1감지폭을 형성하므로, 입구(11) 또는 출구(12)에 대응하여 단위배출홈부(22)의 위치 파악을 명확하게 하고, 속도제어모듈(70)에 해 분배모듈(20)의 회전력이 조절될 때, 기설정된 정량의 분체가 단위배출홈부(22)에 안정되게 수용되도록 한다.Referring to the third coupled state, as shown in FIG. 17 , the sensing blades 62-3 may protrude from the circumferential surface of the paddle body 62-2 in a normal direction. And the speed sensor 63 is coupled to the sensing body 61 so as to face the side of the paddle body 62-2. Then, since the speed sensor 63 is arranged to look only at the sensing blades 62-3 in a direction parallel to the paddle shaft portion 62-1, the sensing blades 62-3 are rotated according to the rotation of the paddle shaft portion 62-1. ) can be detected intermittently. Since the width of the sensing blades 62-3 corresponding to the rotational direction of the paddle shaft portion 62-1 forms the preset first sensing width, the unit discharge groove 22 corresponds to the inlet 11 or the outlet 12. ), and when the rotational force of the distribution module 20 is controlled by the speed control module 70, a predetermined amount of powder is stably accommodated in the unit discharge groove 22.
회전센싱모듈(60)의 세부 결합 관계를 참조하면, 패들축부(62-1)의 회전 방향에 대응한 감지날개(62-3)의 폭과, 인접한 두 감지날개(62-3) 사이의 간격을 이용하여 스피드센서(63)가 감지날개(62-3)를 감지하는 시간, 동력발생모듈(50)에서 발생되는 회전력이 조절되는 시간 등을 조절할 수 있고, 단위분배홈부(22)에 수용되는 분체를 명확하게 조절할 수 있다.Referring to the detailed coupling relationship of the rotation sensing module 60, the width of the sensing blades 62-3 corresponding to the rotation direction of the paddle shaft portion 62-1 and the distance between the two adjacent sensing blades 62-3 It is possible to adjust the time for the speed sensor 63 to detect the sensing blades 62-3, the time for adjusting the rotational force generated in the power generation module 50, etc., and accommodated in the unit distribution groove 22 The powder can be clearly controlled.
속도제어모듈(70)은 회전센싱모듈(60)에서 감지되는 분배모듈(20)의 단위배출홈부(22)의 위치에 따라 동력발생모듈(50)에서 발생되는 회전력을 조절한다. 속도제어모듈(70)에서 회전력의 조절 방식은 미세감속방식과 수용가속방식으로 구분할 수 있다. 그러면, 회전센싱모듈(60)을 통해 단위배출홈부()의 위치를 감지하고, 속도제어모듈(70)의 제어에 따라 단위배출홈부(22)에 누적되는 분체의 계량값을 연산하고, 단위배출홈부(22) 당 분체의 무게를 환산하여 정밀 계량에 따른 오차값을 최소한으로 적용할 수 있게 된다.The speed control module 70 adjusts the rotational force generated in the power generation module 50 according to the position of the unit discharge groove 22 of the distribution module 20 detected by the rotation sensing module 60. The control method of rotational force in the speed control module 70 can be divided into a fine deceleration method and an accommodating acceleration method. Then, the position of the unit discharge groove ( ) is detected through the rotation sensing module 60, and the weight value of the powder accumulated in the unit discharge groove 22 is calculated according to the control of the speed control module 70, and the unit discharge By converting the weight of the powder per groove 22, it is possible to minimize the error value according to precise measurement.
미세감속방식에 따르면, 속도제어모듈(70)은 분배모듈(20)의 회전량에 대응하여 감지신호의 발생여부를 체크하는 감지확인부(71)와, 감지확인부(71)의 체크 결과 감지신호가 발생되지 않으면 동력발생모듈(50)에서 발생되는 회전력을 유지시키는 수용제어부(72)와, 감지확인부(71)의 체크 결과 감지신호가 발생되면 동력발생모듈(50)에서 발생되는 회전력을 기설정된 감속력으로 감소시키는 조정제어부(73)를 포함할 수 있다.According to the fine deceleration method, the speed control module 70 includes a detection confirmation unit 71 that checks whether a detection signal is generated in response to the amount of rotation of the distribution module 20, and detects the check result of the detection confirmation unit 71. If the signal is not generated, the acceptance control unit 72 that maintains the rotational force generated in the power generation module 50 and the detection confirmation unit 71 check the detection signal to generate the rotational force generated in the power generation module 50. It may include an adjustment control unit 73 that reduces the deceleration force to a predetermined level.
수용가속방식에 따르면, 속도제어모듈(70)은 분배모듈(20)의 회전량에 대응하여 감지신호의 발생여부를 체크하는 감지확인부(71)와, 감지확인부(71)의 체크 결과 감지신호가 발생되면 동력발생모듈(50)에서 발생되는 회전력을 유지시키는 수용제어부(72)와, 감지확인부(71)의 체크 결과 감지신호가 발생되지 않으면 동력발생모듈(50)에서 발생되는 회전력을 기설정된 가속력으로 증가시키는 조정제어부(73)를 포함할 수 있다.According to the acceptance acceleration method, the speed control module 70 includes a detection confirmation unit 71 that checks whether a detection signal is generated in response to the amount of rotation of the distribution module 20, and detects the check result of the detection confirmation unit 71. When a signal is generated, the acceptance control unit 72 that maintains the rotational force generated from the power generation module 50 and the detection confirmation unit 71 check that if the detection signal is not generated, the rotational force generated from the power generation module 50 is checked. It may include an adjustment control unit 73 that increases the acceleration to a predetermined acceleration.
일예로, 스피드센서(63)가 센싱패들(62)의 감지날개(62-3)를 감지하는 동안, 속도제어모듈(70)은 동력발생모듈(50)의 회전력을 상대적으로 작게 하고, 상대적으로 분배모듈(20)이 천천이 회전되도록 하므로, 입구(11)에서 단위배출홈부(22)의 연통시간이 상대적으로 길어지고, 입구(11)에서 단위배출홈부(22)의 85%~90%가 연통 상태를 유지하여 분체가 단위배출홈부(22)에 충분히 공급되도록 할 수 있다. 또한, 스피드센서(63)가 센싱패들(62)의 감지날개(62-3)를 감지하지 않으면, 속도제어모듈(70)은 동력발생모듈(50)의 회전력을 상대적으로 크게 하고, 상대적으로 분배모듈(20)이 빠르게 회전되도록 하므로, 입구(11)에서 단위배출홈부(22)의 연통시간이 상대적으로 짧아지고, 호퍼에서 전달되는 분체의 일부(단위배출홈부(22) 당 수용되는 분체의 10%~15%)만을 단위배출홈부(22)에 공급할 수 있다.For example, while the speed sensor 63 detects the sensing blades 62-3 of the sensing paddle 62, the speed control module 70 relatively reduces the rotational force of the power generation module 50 and Since the distribution module 20 rotates slowly, the communication time of the unit discharge groove 22 at the inlet 11 is relatively long, and 85% to 90% of the unit discharge groove 22 at the inlet 11 It is possible to maintain the communication state so that the powder is sufficiently supplied to the unit discharge groove 22. In addition, when the speed sensor 63 does not detect the sensing blades 62-3 of the sensing paddle 62, the speed control module 70 relatively increases the rotational force of the power generation module 50 and Since the distribution module 20 rotates quickly, the communication time of the unit discharge groove 22 at the inlet 11 is relatively shortened, and a portion of the powder delivered from the hopper (of the powder accommodated per unit discharge groove 22) 10% to 15%) can be supplied to the unit discharge groove (22).
다른 예로, 스피드센서(63)가 센싱패들(62)의 감지날개(62-3)를 감지하는 동안, 속도제어모듈(70)은 동력발생모듈(50)의 회전력을 상대적으로 작게 하고, 상대적으로 분배모듈(20)이 천천이 회전되도록 하므로, 인접한 두 단위배출홈부(22)에 각각 분체가 전달되도록 할 수 있다. 또한, 스피드센서(63)가 센싱패들(62)의 감지날개(62-3)를 감지하지 않으면, 속도제어모듈(70)은 동력발생모듈(50)의 회전력을 상대적으로 크게 하고, 상대적으로 분배모듈(20)이 빠르게 회전되도록 하므로, 입구(11)에서 단위배출홈부(22)의 연통시간이 상대적으로 짧아지고, 인접한 두 단위배출홈부(22) 중 어느 하나는 출구(12)로 빠르게 이동되고, 인접한 두 단위배출홈부(22) 중 다른 하나는 입구(11)와의 연통면적이 증가하지만, 호퍼에서 전달되는 분체의 일부(단위배출홈부(22) 당 수용되는 분체의 10%~15%)만을 단위배출홈부(22)에 공급할 수 있다.As another example, while the speed sensor 63 detects the sensing blades 62-3 of the sensing paddle 62, the speed control module 70 relatively reduces the rotational force of the power generation module 50 and Since the distribution module 20 rotates slowly, powder can be delivered to each of the two adjacent unit discharge grooves 22. In addition, when the speed sensor 63 does not detect the sensing blades 62-3 of the sensing paddle 62, the speed control module 70 relatively increases the rotational force of the power generation module 50 and Since the distribution module 20 rotates quickly, the communication time of the unit discharge groove 22 at the inlet 11 is relatively short, and one of the two adjacent unit discharge grooves 22 moves quickly to the outlet 12. And, the other one of the two adjacent unit discharge grooves 22 increases the communication area with the inlet 11, but part of the powder delivered from the hopper (10% to 15% of the powder accommodated per unit discharge groove 22) Only can be supplied to the unit discharge groove (22).
상술한 스마트 분체원료 이송시스템과 스마트 분체원료 이송방법에 따르면, 분말 형태의 분체가 분체이송라인을 따라 이송될 때, 분체이송라인 중 수직으로 설치되는 해당 수직관에서 정밀 계량된 분체를 원활하게 통과시키는 한편, 분체가 해당 수직관에 잔류하거나 정체되는 것을 방지할 수 있다.According to the above-described smart powder raw material conveying system and smart powder raw material conveying method, when powder in the form of powder is transferred along the powder conveying line, precisely-measured powder smoothly passes through the corresponding vertical pipe installed vertically in the powder conveying line. On the other hand, it is possible to prevent the powder from remaining or stagnation in the vertical pipe.
또한, 분체이송라인 중 제1분체라인에서 분체의 흡송 이후에 분체의 압송이 이루어짐에 따라, 제1수직관(130)에 작용하는 부하를 최소화시키고, 제1수직관(130)의 두께를 줄일 수 있으며, 유지보수 비용 및 재료비 절감을 통해 원가절감 효과를 기대할 수 있다.In addition, as the powder is pumped after the powder is sucked in the first powder line among the powder transfer lines, the load acting on the first vertical pipe 130 is minimized and the thickness of the first vertical pipe 130 is reduced. Cost reduction can be expected through maintenance cost and material cost reduction.
또한, 제1이송유닛(100)의 세부 구성을 통해 제1투입모듈(110)과 제1계량모듈(140) 사이에서 분체의 이송을 원활하게 하고, 분체이송라인 중 제1분체라인에서 분체의 흡송과 분체의 압송을 명확하게 할 수 있다.In addition, through the detailed configuration of the first transfer unit 100, the powder is smoothly transferred between the first input module 110 and the first weighing module 140, and the first powder line among the powder transfer lines Suction and pressurization of powder can be clarified.
또한, 제1계량모듈(140)의 세부 구성을 통해 분체이송라인 중 제1분체라인에서 분체의 흡송을 위한 흡입력을 안정되게 발생시키고, 일체화된 제1계량모듈(140)에서 제1수직관(130)과 제1계량호퍼(141) 사이의 분체 이송을 원활하게 할 수 있다.In addition, through the detailed configuration of the first metering module 140, the suction power for the suction of powder is stably generated in the first powder line of the powder transfer line, and the first vertical pipe ( 130) and the first weighing hopper 141 can smoothly transfer the powder.
또한, 제1진공이젝터(143)의 세부 구성을 통해 분체에 안정된 흡입력을 제공하는 한편, 제1이송량에 대응하여 본체의 연속 이송을 명확하게 할 수 있고, 분체가 제1수직관(130)에 잔류하거나 정체되는 것을 방지하여 제1분체라인 또는 제1수직관(130)의 막힘을 해소할 수 있다.In addition, the detailed configuration of the first vacuum ejector 143 provides a stable suction force to the powder, while the continuous transfer of the main body can be made clear in response to the first transfer amount, and the powder is placed in the first vertical pipe 130. Residual or stagnation can be prevented to solve the clogging of the first powder line or the first vertical pipe 130.
또한, 제1투입모듈(110)의 세부 구성을 통해 외부에서 전달되는 분체의 전달을 용이하게 하고, 분체에 혼합되는 이물질을 제거하여 분체의 순도를 향상시킬 수 있다.In addition, through the detailed configuration of the first input module 110, it is possible to facilitate the delivery of powder delivered from the outside and to improve the purity of the powder by removing foreign substances mixed with the powder.
또한, 분체이송라인 중 제2분체라인에서 분체의 흡송 이후에 분체의 압송이 이루어짐에 따라, 제2수직관(230)에 작용하는 부하를 최소화시키고, 제2수직관(230)의 두께를 줄일 수 있으며, 유지보수 비용 및 재료비 절감을 통해 원가절감 효과를 기대할 수 있다.In addition, as the powder is pumped after the powder is sucked in the second powder line among the powder transfer lines, the load acting on the second vertical pipe 230 is minimized and the thickness of the second vertical pipe 230 is reduced. Cost reduction can be expected through maintenance cost and material cost reduction.
또한, 제2이송유닛(200)의 세부 구성을 통해 제2투입모듈(210)과 제2계량모듈(240) 사이에서 분체의 이송을 원활하게 하고, 분체이송라인 중 제2분체라인에서 분체의 흡송과 분체의 압송을 명확하게 할 수 있다.In addition, through the detailed configuration of the second transfer unit 200, the powder is smoothly transferred between the second input module 210 and the second weighing module 240, and the second powder line among the powder transfer lines Suction and pressurization of powder can be clarified.
또한, 제2계량모듈(240)의 세부 구성을 통해 분체이송라인 중 제2분체라인에서 분체의 흡송을 위한 흡입력을 안정되게 발생시키고, 일체화된 제2계량모듈(240)에서 제2수직관(230)과 제2계량호퍼(241) 사이의 분체 이송을 원활하게 할 수 있다.In addition, through the detailed configuration of the second metering module 240, the suction power for powder suction is stably generated in the second powder line of the powder transfer line, and the second vertical pipe ( 230) and the second weighing hopper 241 can smoothly transfer the powder.
또한, 제2진공이젝터(243)의 세부 구성을 통해 분체에 안정된 흡입력을 제공하는 한편, 제2이송량에 대응하여 본체의 연속 이송을 명확하게 할 수 있고, 분체가 제2수직관(230)에 잔류하거나 정체되는 것을 방지하여 제2분체라인 또는 제2수직관(230)의 막힘을 해소할 수 있다.In addition, the detailed configuration of the second vacuum ejector 243 provides a stable suction force to the powder, while the continuous transfer of the main body can be made clear in response to the second transfer amount, and the powder is placed in the second vertical pipe 230. Residual or stagnation can be prevented to solve the clogging of the second powder line or the second vertical pipe 230.
또한, 제2이송유닛(200)의 세부 구성을 통해 제2투입모듈(210)과 사일로모듈(260) 사이에서 분체의 이송을 원활하게 하고, 분체이송라인 중 제2분체라인에서 분체의 흡송과 분체의 압송을 명확하게 할 수 있다.In addition, through the detailed configuration of the second transfer unit 200, the powder is smoothly transported between the second input module 210 and the silo module 260, and the powder is sucked in the second powder line among the powder transfer lines. The pressure feeding of powder can be made clear.
또한, 사일로모듈(260)의 세부 구성을 통해 분체이송라인 중 제2분체라인에서 분체의 흡송을 위한 흡입력을 안정되게 발생시키고, 일체화된 사일로모듈(260)에서 제2수직관(230)과 분체사일로(261) 사이의 분체 이송을 원활하게 할 수 있다.In addition, through the detailed configuration of the silo module 260, the suction force for the suction of powder is stably generated in the second powder line of the powder transfer line, and the second vertical pipe 230 and the powder in the integrated silo module 260 It is possible to smoothly transfer the powder between the silos 261.
또한, 사일로진공이젝터(262)의 세부 구성을 통해 분체에 안정된 흡입력을 제공하는 한편, 제2이송량에 대응하여 본체의 연속 이송을 명확하게 할 수 있고, 분체가 제2수직관(230)에 잔류하거나 정체되는 것을 방지하여 제2분체라인 또는 제2수직관(230)의 막힘을 해소할 수 있다.In addition, the detailed configuration of the silo vacuum ejector 262 provides a stable suction power to the powder, while the continuous transfer of the main body can be made clear in response to the second transfer amount, and the powder remains in the second vertical pipe 230. It is possible to solve the blockage of the second powder line or the second vertical pipe 230 by preventing stagnation.
또한, 제2이송유닛(200)의 세부 구성을 통해 사일로모듈(260)과 제2계량모듈(240) 사이에서 분체의 이송을 원활하게 하고, 분체이송라인 중 제2분체라인에서 분체의 흡송과 분체의 압송을 명확하게 할 수 있다.In addition, through the detailed configuration of the second transfer unit 200, the powder is smoothly transferred between the silo module 260 and the second weighing module 240, and the powder is sucked in the second powder line among the powder transfer lines. The pressure feeding of powder can be made clear.
또한, 사일로모듈(260)을 통해 외부에서 전달되는 분체을 대량으로 보관하였다가 간헐적으로 배출시킬 수 있다.In addition, powder delivered from the outside through the silo module 260 can be stored in large quantities and then discharged intermittently.
또한, 제2투입모듈(210)의 세부 구성을 통해 외부에서 전달되는 분체의 전달을 용이하게 하고, 분체에 혼합되는 이물질을 제거하여 분체의 순도를 향상시킬 수 있다.In addition, the detailed configuration of the second input module 210 facilitates the delivery of powder delivered from the outside and removes foreign substances mixed with the powder to improve the purity of the powder.
또한, 제3이송유닛(300)의 세부 구성을 통해 분체의 최종 목적지인 믹싱유닛(900)에서 최종 완성되는 슬러리의 상태에 따라 분체의 양을 조절하여 추가 투입할 수 있다.In addition, through the detailed configuration of the third transfer unit 300, the amount of powder can be additionally added by adjusting the amount of powder according to the state of the finally completed slurry in the mixing unit 900, which is the final destination of the powder.
또한, 바인더이송유닛(500)과 용매이송유닛(600)의 부가 구성을 통해 활물질로 이루어진 분체를 이용하여 전극 형성을 위한 슬러리를 안정되게 제조할 수 있다.In addition, through the additional configuration of the binder transfer unit 500 and the solvent transfer unit 600, it is possible to stably prepare a slurry for electrode formation using powder made of an active material.
또한, 바인더이송유닛(500)의 세부 구성을 통해 분말 형태 또는 필렛 형태의 바인더를 안정되게 용해시키고, 바인더의 용해에 따라 형성되는 솔류션의 농도 조절을 간편하게 할 수 있다.In addition, through the detailed configuration of the binder transfer unit 500, it is possible to stably dissolve the binder in the form of powder or fillet, and conveniently adjust the concentration of the solution formed according to the dissolution of the binder.
또한, 용매이송유닛(600)의 세부 구성을 통해 필요한 유닛에 정량의 용매를 안정되게 공급할 수 있다.In addition, through the detailed configuration of the solvent transfer unit 600, a fixed amount of solvent can be stably supplied to the required unit.
또한, 도전재이송유닛(700)의 부가 구성을 통해 최종 완성되는 슬러리에 정량의 도전재를 안정되게 공급하고, 슬러리의 전기전도도를 향상시킬 수 있다.In addition, through the additional configuration of the conductive material conveying unit 700, it is possible to stably supply a quantity of conductive material to the finally completed slurry and improve the electrical conductivity of the slurry.
또한, 도전재이송유닛(700)의 세부 구성을 통해 도전재의 액상화를 도모하여 도전재의 이송을 원활하게 하고, 도전재와 활물질이 안전된 균일 혼합물을 형성하도록 한다.In addition, through the detailed configuration of the conductive material transfer unit 700, liquefaction of the conductive material is promoted to facilitate the transfer of the conductive material and to form a safe uniform mixture between the conductive material and the active material.
또한, 분산재이송유닛(800)의 부가 구성을 통해 활물질인 분체의 분산을 원활하게 하고, 최종 완성되는 슬러리의 상품성을 향상시킬 수 있다.In addition, through the additional configuration of the dispersion material transfer unit 800, it is possible to smoothly disperse the powder as an active material and improve the marketability of the final slurry.
또한, 분산재이송유닛(800)의 세부 구성을 통해 분산재의 액상화를 도모하여 분산재의 이송을 원활하게 하고, 분산재를 통한 활물질의 선분산이 원활하게 이루어지도록 하며, 분산재와 활물질이 안정된 균일 혼합물을 형성하도록 한다.In addition, the liquefaction of the dispersion material is promoted through the detailed configuration of the dispersion material transport unit 800 to facilitate the transport of the dispersion material, to ensure that the active material is smoothly pre-dispersed through the dispersion material, and to form a stable uniform mixture of the dispersion material and the active material. let it do
또한, 믹싱유닛(900)의 부가 구성을 통해 전극을 형성하기 위해 최종 완성되는 슬러리를 안정화시킬 수 있다.In addition, through the additional configuration of the mixing unit 900, it is possible to stabilize the finally completed slurry to form an electrode.
또한, 믹싱유닛(900)의 세부 구성을 통해 슬러리가 안정된 균일 혼합물로 형성되도록 하고, 슬러리의 농도 조절을 간편하게 할 수 있다.In addition, through the detailed configuration of the mixing unit 900, the slurry can be formed as a stable and uniform mixture, and the concentration of the slurry can be easily controlled.
또한, 스마트 분체원료 이송방법의 세부 구성들을 통해 스마트 분체원료 이송시스템의 결합관계를 명확하게 하고, 안정된 스마트 분체원료 이송시스템을 구현할 수 있으며, 상술한 유닛들의 효과를 명확하게 표출시킬 수 있다.In addition, through detailed configurations of the smart powder raw material conveying method, the coupling relationship of the smart powder raw material conveying system can be clarified, a stable smart powder raw material conveying system can be implemented, and the effects of the above-mentioned units can be clearly expressed.
또한, 분체계량밸브에 따르면, 분말 형태의 분체를 기계적으로 명확하게 정량 계량하여 순차적으로 배출할 수 있다.In addition, according to the powder metering valve, the powder in the form of powder can be mechanically clearly metered and discharged sequentially.
또한, 계량하우징(10)을 통해 분배모듈(20)을 회전 가능하게 지지하고, 내부에 단위배출홈부(22)를 형성하여 기설정된 정량의 분체가 분리 수용되도록 한다.In addition, the distribution module 20 is rotatably supported through the metering housing 10, and a unit discharge groove 22 is formed therein so that a predetermined amount of powder is separately accommodated.
또한, 계량하우징(10)의 세부 구성을 통해 분배개구부와 점검구 중 적어도 하나의 개폐를 가능하게 하고, 계량하우징(10)에서 분배모듈(20)의 탈부착을 간편하게 하며, 계량하우징(10)에서 분배모듈(20)의 유지 보수를 안정화시킬 수 있다.In addition, the detailed configuration of the metering housing 10 enables opening and closing of at least one of the distribution opening and the inspection port, simplifies attachment and detachment of the distribution module 20 from the metering housing 10, and distributes from the metering housing 10. Maintenance of the module 20 can be stabilized.
또한, 퍼지부(13)의 구성을 통해 입구(11)와 출구(12) 중 적어도 어느 하나에 서 분진 폭발을 방지하고, 분체의 이송을 원활하게 하며, 분체가 분배모듈(20)에 정량공급되도록 하고, 분배모듈(20)에서 분체가 정량 배출되도록 한다.In addition, through the configuration of the purge unit 13, dust explosion is prevented from at least one of the inlet 11 and the outlet 12, the powder is smoothly transported, and the powder is supplied to the distribution module 20 in a fixed amount. and the powder is discharged in a fixed amount from the distribution module 20.
또한, 분배모듈(20)을 통해 계량하우징(10)의 내부에 기설정된 정량의 분체가 수용 가능한 단위배출홈부(22)를 형성하고, 분체의 이송을 원활하게 할 수 있다.In addition, through the distribution module 20, a unit discharge groove 22 capable of accommodating a predetermined amount of powder is formed inside the metering housing 10, and the powder can be smoothly transported.
또한, 분배모듈(20)의 세부 구성을 통해 단위배출홈부(22)를 안정되게 구획하여 단위배출홈부(22)의 분체를 명확하게 이송시킬 수 있다.In addition, the unit discharge groove 22 is stably partitioned through the detailed configuration of the distribution module 20, so that powder in the unit discharge groove 22 can be clearly transported.
또한, 스크래퍼(23-1)를 통해 계량하우징(10)의 내부에서 분체가 늘러붙는 것을 방지하고, 단위배출홈부(22) 사이에서 분체의 전달을 방지할 수 있다.In addition, it is possible to prevent powder from sticking inside the metering housing 10 through the scraper 23-1, and to prevent powder from being transferred between the unit discharge grooves 22.
또한, 축이음모듈(30)을 통해 분배개구부와 점검구 중 적어도 하나의 개폐를 가능하게 하고, 계량하우징(10)에서 분배모듈(20)의 탈부착을 간편하게 하며, 계량하우징(10)에서 분배모듈(20)의 유지보수를 안정화시킬 수 있다.In addition, it is possible to open and close at least one of the distribution opening and the inspection hole through the shaft joint module 30, and the distribution module 20 is easily attached and detached from the metering housing 10, and the distribution module in the metering housing 10 ( 20) can be stabilized.
또한, 개폐이음부재(31)를 통해 계량하우징(10) 내부의 분체가 외부로 누출되는 것을 방지하고, 분배모듈(20)의 회전을 명확하게 하며, 분배모듈(20)의 회전에 따른 유동을 방지할 수 있다.In addition, through the opening and closing joint member 31, the powder inside the metering housing 10 is prevented from leaking to the outside, the rotation of the distribution module 20 is made clear, and the flow according to the rotation of the distribution module 20 is reduced. It can be prevented.
또한, 축이음부재(32)를 통해 가상의 제1축인 전달구동축부(43)를 안정되게 지지하고, 전달구동축부(43)의 회전을 부드럽게 할 수 있다.In addition, the transmission drive shaft portion 43, which is a virtual first axis, can be stably supported through the shaft coupling member 32, and rotation of the transmission drive shaft portion 43 can be smoothed.
또한, 변환모듈(40)을 통해 회전력을 조절하여 균일한 회전력으로 분배모듈(20)을 안정되게 회전시킬 수 있다.In addition, the distribution module 20 can be stably rotated with a uniform rotational force by adjusting the rotational force through the conversion module 40 .
또한, 변환모듈(40)의 세부 구성을 통해 회전력의 전달 방향을 간편하게 변경할 수 있다.In addition, the transfer direction of the rotational force can be easily changed through the detailed configuration of the conversion module 40 .
또한, 전달구동축부(43)의 결합 관계를 통해 분배모듈(20)과 축이음모듈(30)과 변환모듈(40)을 동축에 배치하여 전달구동축부(43)의 회전을 원활하게 하고, 분배모듈(20)에서 전달구동축부(43)의 결합력을 향상시켜 전달구동축부(43)에 분배모듈(20)을 안정되게 고정시킬 수 있으며, 축이음모듈(30)에서 전달구동축부(43)가 원활하게 회전되도록 한다.In addition, the distribution module 20, the shaft joint module 30, and the conversion module 40 are coaxially arranged through the coupling relationship of the transmission drive shaft portion 43 to smoothly rotate the transmission drive shaft portion 43 and distribute The distribution module 20 can be stably fixed to the transmission drive shaft portion 43 by improving the coupling force of the transmission drive shaft portion 43 in the module 20, and the transmission drive shaft portion 43 in the shaft joint module 30 to rotate smoothly.
또한, 동력발생모듈(50)을 통해 안정된 회전력이 발생되도록 하고, 변환모듈(40)로의 회전력 전달을 명확하게 할 수 있다.In addition, stable rotational force is generated through the power generation module 50, and transmission of rotational force to the conversion module 40 can be made clear.
또한, 회전센싱모듈(60)을 통해 단위배출홈부(22)에 대응하여 분배모듈(20)의 회전량을 간편하게 확인할 수 있고, 입구(11)와 출구(12)를 기준으로 단위배출홈부(22)의 위치 파악을 간편하고 명확하게 할 수 있다.In addition, the rotation amount of the distribution module 20 can be easily checked in correspondence with the unit discharge groove 22 through the rotation sensing module 60, and the unit discharge groove 22 based on the inlet 11 and the outlet 12 ) can be easily and clearly identified.
또한, 회전센싱모듈(60)의 세부 구성을 통해 분배모듈(20)의 회전 속도 조절에 필요한 위치 검출을 명확하게 하고, 입구(11)와 단위배출홈부(22)와 출구(12) 사이의 연통 관계를 조절하여 분체가 안정되게 이송되도록 한다.In addition, through the detailed configuration of the rotation sensing module 60, the position detection necessary for adjusting the rotation speed of the distribution module 20 is clarified, and the communication between the inlet 11, the unit discharge groove 22, and the outlet 12 is made clear. Adjust the relationship so that the powder is transported stably.
또한, 센싱패들(62)의 세부 구성을 통해 단위배출홈부(22)의 회전폭에 대응하여 센싱 위치를 안정되게 특정시키고, 스피드센서(63)의 감도를 향상시켜 회전력의 조절을 명확하게 할 수 있다.In addition, through the detailed configuration of the sensing paddle 62, the sensing position can be stably specified in response to the rotational width of the unit discharge groove 22, and the sensitivity of the speed sensor 63 can be improved to clearly control the rotational force. can
또한, 디폴트설정부(62-4)를 통해 입구(11)에 대응하여 단위배출홈부(22)를 초기에 정위치할 수 있고, 분체계량밸브의 초기화를 간편하게 할 수 있다.In addition, the unit discharge groove 22 can be initially positioned in correspondence with the inlet 11 through the default setting unit 62-4, and the powder metering valve can be easily initialized.
또한, 속도제어모듈(70)을 통해 분배모듈(20)에 전달되는 분체의 전달량을 명확하게 조절하고, 단위분배홈부마다 기설정된 정량의 분체가 투입되도록 한다.In addition, the amount of powder delivered to the distribution module 20 is clearly controlled through the speed control module 70, and a predetermined amount of powder is injected into each unit distribution groove.
또한, 미세감속방식을 통해 기준 회전력보다 작은 감속력을 제공하므로, 동력발생모듈(50)에서의 에너지 낭비를 방지할 수 있고, 회전력 제어를 원활하게 할 수 있다.In addition, since a deceleration force smaller than the reference rotational force is provided through the fine deceleration method, energy waste in the power generation module 50 can be prevented and rotational force control can be smoothly performed.
또한, 수용가속방식을 통해 기준 회전력보다 큰 가속력을 제공하므로, 분배모듈(20)의 회전에 따른 제어를 간편하게 하고, 회전력 제어를 원활하게 할 수 있다.In addition, since the accelerating force greater than the reference rotational force is provided through the acceptance acceleration method, control according to the rotation of the distribution module 20 can be simplified and the rotational force can be smoothly controlled.
상술한 바와 같이 도면을 참조하여 본 발명의 바람직한 실시예를 설명하였지만, 해당 기술분야의 숙련된 당업자라면, 하기의 청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 또는 변경시킬 수 있다.As described above, the preferred embodiments of the present invention have been described with reference to the drawings, but those skilled in the art can make various modifications to the present invention within the scope not departing from the spirit and scope of the present invention described in the claims below. may be modified or changed.
본 발명에 따른 스마트 분체원료 이송시스템과 스마트 분체원료 이송방법에 따르면, 분말 형태의 분체가 분체이송라인을 따라 이송될 때, 분체이송라인 중 수직으로 설치되는 해당 수직관에서 정밀 계량된 분체를 원활하게 통과시키는 한편, 분체가 해당 수직관에 잔류하거나 정체되는 것을 방지할 수 있다.According to the smart powder raw material conveying system and the smart powder raw material conveying method according to the present invention, when powder in the form of powder is transferred along the powder conveying line, the powder accurately measured in the vertical pipe installed vertically in the powder conveying line is smoothly transported. while allowing the powder to pass through, it is possible to prevent the powder from remaining or being stagnant in the riser.

Claims (35)

  1. 제1이송량에 대응하여 분체를 이송시키는 제1이송유닛과, 상기 제1이송유닛에서 이격되어 상기 제1이송량과 같거나 다른 제2이송량에 대응하여 상기 분체를 이송시키는 제2이송유닛과, 상기 제1이송유닛과 상기 제2이송유닛에서 이격되어 상기 제1이송량 또는 상기 제2이송량과 같거나 작은 제3이송량에 대응하여 상기 분체를 이송시키는 제3이송유닛 중 적어도 어느 하나를 포함하는 분체이송유닛;을 포함하되,A first transfer unit that transfers powder in response to a first transfer amount, and a second transfer unit that is spaced apart from the first transfer unit and transfers the powder in response to a second transfer amount equal to or different from the first transfer amount; Powder transfer including at least one of a first transfer unit and a third transfer unit that is spaced apart from the second transfer unit and transfers the powder in response to a third transfer amount equal to or smaller than the first transfer amount or the second transfer amount. unit; including,
    상기 제1이송유닛에는,In the first transfer unit,
    상기 제1이송량에 대응하여 상기 분체를 기설정된 정량으로 계량하는 분체계량밸브;가 포함되고,A powder metering valve for measuring the powder in a predetermined amount in response to the first transfer amount; included,
    상기 분체계량밸브는,The powder metering valve,
    호퍼가 결합되는 입구가 개구되고, 상기 입구와 대향 배치되는 출구가 개구된 중공의 계량하우징; 및a hollow metering housing having an open inlet to which the hopper is coupled and an open outlet facing the inlet; and
    상기 입구와 상기 출구를 연결하는 가상의 선에 수직인 가상의 제1축을 기준으로 상기 계량하우징에 회전 가능하게 내장되고, 회전 방향을 따라 다수의 단위배출홈부가 등간격으로 배치된 분배모듈;을 포함하고,A distribution module rotatably embedded in the metering housing with respect to a virtual first axis perpendicular to a virtual line connecting the inlet and the outlet and having a plurality of unit discharge grooves arranged at equal intervals along the rotational direction; include,
    상기 분배모듈의 회전에 따라 상기 입구로 유입되는 상기 분체는, 상기 단위배출홈부마다 기설정된 정량으로 분리 수용되었다가 선입선출 방식으로 상기 출구를 통해 배출되며,As the distribution module rotates, the powder introduced into the inlet is separated and accommodated in a predetermined amount for each unit discharge groove and then discharged through the outlet in a first-in-first-out method,
    상기 제1이송유닛의 분체가 높이 방향으로 길게 형성된 제1수직관에서 상승될 때, 상기 제1이송량 중 일부의 분체는 상기 제1수직관의 상단부 쪽에서 작용하는 흡입력을 이용한 흡송 방식으로 상기 제1수직관을 통과하고,When the powder of the first conveying unit rises in the first vertical pipe formed long in the height direction, some of the powder of the first conveying amount is suctioned by using the suction force acting toward the upper end of the first vertical pipe. pass through the vertical tube,
    다음으로, 상기 제1이송량 중 나머지의 분체는 상기 제1수직관의 하단부 쪽에서 작용하는 가압력을 이용한 압송 방식으로 상기 제1수직관을 통과하는 것을 특징으로 하는 스마트 분체원료 이송시스템.Next, the smart powder raw material conveying system, characterized in that the remaining powder of the first conveying amount passes through the first vertical pipe in a pressure conveying method using a pressing force acting at the lower end of the first vertical pipe.
  2. 제1항에 있어서,According to claim 1,
    상기 제1이송유닛은,The first transfer unit,
    상기 분체가 저장되고, 상기 분체를 상기 제1이송량으로 계량하여 배출시키는 제1투입모듈;a first input module that stores the powder and measures and discharges the powder at the first transfer amount;
    상기 제1투입모듈에서 배출되는 분체가 가압력을 이용한 압송 방식으로 이송되도록 공정가스 또는 압축공기를 이용하여 상기 제1투입모듈에서 배출되는 분체를 가압하는 제1-1압송모듈;a 1-1 pressure transfer module that pressurizes the powder discharged from the first input module using a process gas or compressed air so that the powder discharged from the first input module is transferred in a pressure transfer method using a pressurizing force;
    상기 제1투입모듈에서 배출되는 분체가 상승되는 경로를 형성하도록 높이 방향으로 길게 형성되는 제1수직관;a first vertical pipe formed long in a height direction to form a path through which the powder discharged from the first input module rises;
    상기 제1투입모듈에서 배출되는 분체가 흡입력을 이용한 흡송 방식으로 이송되도록 공정가스 또는 압축공기를 이용하여 상기 제1투입모듈에서 배출되는 분체 또는 상기 제1수직관의 분체를 흡입하여 저장하였다가 로터리밸브 방식을 이용하여 상기 분체를 제1계량량으로 계량하여 배출시키는 제1계량모듈; 및Process gas or compressed air is used to suction and store the powder discharged from the first input module or the powder from the first upright pipe so that the powder discharged from the first input module is transferred in a suction method using suction power, and stored in a rotary A first measuring module for measuring and discharging the powder in a first weighing amount by using a valve method; and
    상기 제1계량모듈에서 배출되는 분체가 가압력을 이용한 압송 방식으로 이송되도록 공정가스 또는 압축공기를 이용하여 상기 제1계량모듈에서 배출되는 분체를 가압하는 제1-2압송모듈;을 포함하며,A 1-2 pressure transfer module for pressurizing the powder discharged from the first metering module using a process gas or compressed air so that the powder discharged from the first metering module is transferred by a pressure transfer method using a pressurizing force; and
    상기 제1투입모듈과 상기 제1계량모듈 중 적어도 어느 하나에는, 상기 분체계량밸브가 포함되고,At least one of the first input module and the first metering module includes the powder metering valve,
    상기 제1수직관을 기준으로 상기 제1수직관의 하단부 쪽에는 상기 제1-1압송모듈이 연결되고, 상기 제1-1압송모듈에는 상기 제1투입모듈이 연결되며,Based on the first vertical pipe, the 1-1 pressure feeding module is connected to the lower end of the first vertical pipe, and the 1 input module is connected to the 1-1 pressure feeding module,
    상기 제1수직관을 기준으로 상기 제1수직관의 상단부 쪽에는 상기 제1계량모듈이 연결되고, 상기 제1계량모듈에는 상기 제1-2압송모듈이 연결되는 것을 특징으로 하는 스마트 분체원료 이송시스템.Based on the first vertical pipe, the first measuring module is connected to the upper end of the first vertical pipe, and the first measuring module is connected to the 1-2 pressure transfer module. system.
  3. 제2항에 있어서,According to claim 2,
    상기 제1계량모듈은,The first weighing module,
    상기 제1수직관을 거쳐 이송되는 분체가 저장되는 제1계량호퍼;a first metering hopper in which the powder transported through the first vertical pipe is stored;
    상기 제1투입모듈로부터 배출되는 분체를 흡입력을 이용한 흡송 방식으로 흡입하여 상기 제1계량호퍼에 전달하는 제1진공이젝터; 및a first vacuum ejector that sucks the powder discharged from the first input module in a suction method using a suction force and delivers it to the first metering hopper; and
    로터리밸브 방식을 이용하여 상기 제1계량호퍼에 저장되는 분체를 상기 제1계량량으로 계량하여 배출시키는 제1계량밸브;를 포함하고,A first metering valve for measuring and discharging the powder stored in the first metering hopper at the first metering amount using a rotary valve method; includes,
    상기 제1계량밸브는, 상기 분체계량밸브를 포함하는 것을 특징으로 하는 스마트 분체원료 이송시스템.The first metering valve is a smart powder raw material transfer system, characterized in that it comprises the powder metering valve.
  4. 제3항에 있어서,According to claim 3,
    상기 제1진공이젝터는,The first vacuum ejector,
    공정가스 또는 압축공기에 의해 내부가 진공 상태로 유지되는 진공탱크부;A vacuum tank unit in which a vacuum is maintained inside by process gas or compressed air;
    상기 진공탱크부의 내부를 진공 상태로 유지하기 위해 상기 공정가스 또는 상기 압축공기가 입력됨에 따라 상기 흡입력을 발생시키는 진공헤드부;a vacuum head unit generating the suction force as the process gas or the compressed air is input to maintain the inside of the vacuum tank unit in a vacuum state;
    상기 제1수직관과 상기 진공탱크부가 연통되도록 상기 제1수직관이 연결되는 분체투입부;a powder input unit to which the first vertical tube is connected so that the first vertical tube communicates with the vacuum tank unit;
    상기 진공탱크부와 상기 제1계량호퍼를 개폐 가능하게 연통시키는 연결밸브부; 및a connection valve unit that connects the vacuum tank unit and the first metering hopper in an open and close manner; and
    상기 제1투입모듈과 상기 제1-1압송모듈과 상기 진공헤드부 사이의 동작 관계를 제어하는 제어유닛;을 포함하되,A control unit for controlling an operating relationship between the first injection module, the 1-1 pressure feeding module, and the vacuum head unit; including,
    상기 제어유닛은,The control unit,
    상기 제1투입모듈에서 상기 분체가 배출됨에 따라 상기 분체의 일부가 흡입력에 의한 흡송 방식으로 상기 제1수직관을 통과하도록 상기 제1-1압송모듈을 정지시킨 상태에서 상기 진공헤드부를 동작시키고,As the powder is discharged from the first input module, the vacuum head unit is operated while the 1-1 pressure feeding module is stopped so that a part of the powder passes through the first vertical pipe in a suction method by suction force,
    다음으로, 상기 분체의 나머지가 가압력에 의한 압송 방식으로 상기 제1수직관을 통과하도록 상기 진공헤드부의 정지와 함께 상기 제1-1압송모듈을 동작시키는 것을 특징으로 하는 스마트 분체원료 이송시스템.Next, the smart powder raw material conveying system, characterized in that for operating the 1-1 pressure conveying module together with the stop of the vacuum head so that the rest of the powder passes through the first vertical pipe in a pressure conveying method by pressing force.
  5. 제2항에 있어서,According to claim 2,
    상기 제1투입모듈은,The first input module,
    상기 분체가 저장되는 제1투입호퍼;a first input hopper in which the powder is stored;
    상기 분체가 상기 제1투입호퍼에 투입될 때, 상기 분체로부터 자성을 갖는 이물질을 필터링하는 제1자석필터;a first magnetic filter for filtering foreign substances having magnetism from the powder when the powder is put into the first input hopper;
    상기 분체가 상기 제1투입호퍼에 투입될 때, 상기 분체로부터 자성이 없는 이물질을 필터링하는 제1메쉬필터; 및a first mesh filter filtering non-magnetic foreign substances from the powder when the powder is put into the first input hopper; and
    로터리밸브 방식을 이용하여 상기 제1투입호퍼에 저장되는 분체를 상기 제1이송량으로 계량하여 배출시키는 제1투입밸브;를 포함하고,Including; a first input valve for metering and discharging the powder stored in the first input hopper at the first transfer amount using a rotary valve method;
    상기 제1투입밸브는, 상기 분체계량밸브를 포함하는 것을 특징으로 하는 스마트 분체원료 이송시스템.The first input valve includes the powder metering valve.
  6. 제1이송량에 대응하여 분체를 이송시키는 제1이송유닛과, 상기 제1이송유닛에서 이격되어 상기 제1이송량과 같거나 다른 제2이송량에 대응하여 상기 분체를 이송시키는 제2이송유닛과, 상기 제1이송유닛과 상기 제2이송유닛에서 이격되어 상기 제1이송량 또는 상기 제2이송량과 같거나 작은 제3이송량에 대응하여 상기 분체를 이송시키는 제3이송유닛 중 적어도 어느 하나를 포함하는 분체이송유닛;을 포함하되,A first transfer unit that transfers powder in response to a first transfer amount, and a second transfer unit that is spaced apart from the first transfer unit and transfers the powder in response to a second transfer amount equal to or different from the first transfer amount; Powder transfer including at least one of a first transfer unit and a third transfer unit that is spaced apart from the second transfer unit and transfers the powder in response to a third transfer amount equal to or smaller than the first transfer amount or the second transfer amount. unit; including,
    상기 제2이송유닛에는,In the second transfer unit,
    상기 제2이송량에 대응하여 상기 분체를 기설정된 정량으로 계량하는 분체계량밸브;가 포함되고,A powder metering valve for measuring the powder in a predetermined amount in response to the second transfer amount; included,
    상기 분체계량밸브는,The powder metering valve,
    호퍼가 결합되는 입구가 개구되고, 상기 입구와 대향 배치되는 출구가 개구된 중공의 계량하우징; 및a hollow metering housing having an open inlet to which the hopper is coupled and an open outlet facing the inlet; and
    상기 입구와 상기 출구를 연결하는 가상의 선에 수직인 가상의 제1축을 기준으로 상기 계량하우징에 회전 가능하게 내장되고, 회전 방향을 따라 다수의 단위배출홈부가 등간격으로 배치된 분배모듈;을 포함하고,A distribution module rotatably embedded in the metering housing with respect to a virtual first axis perpendicular to a virtual line connecting the inlet and the outlet and having a plurality of unit discharge grooves arranged at equal intervals along the rotational direction; include,
    상기 분배모듈의 회전에 따라 상기 입구로 유입되는 상기 분체는, 상기 단위배출홈부마다 기설정된 정량으로 분리 수용되었다가 선입선출 방식으로 상기 출구를 통해 배출되며,As the distribution module rotates, the powder introduced into the inlet is separated and accommodated in a predetermined amount for each unit discharge groove and then discharged through the outlet in a first-in-first-out method,
    상기 제2이송유닛의 분체가 높이 방향으로 길게 형성된 제2수직관에서 상승될 때, 상기 제2이송량 중 일부의 분체는 상기 제2수직관의 상단부 쪽에서 작용하는 흡입력을 이용한 흡송 방식으로 상기 제2수직관을 통과하고,When the powder of the second transfer unit rises in the second vertical tube formed long in the height direction, some of the powder of the second transfer amount is suctioned by a suction force acting toward the upper end of the second vertical tube to the second vertical tube. pass through the vertical tube,
    다음으로, 상기 제2이송량 중 나머지의 분체는 상기 제2수직관의 하단부 쪽에서 작용하는 가압력을 이용한 압송 방식으로 상기 제2수직관을 통과하는 것을 특징으로 하는 스마트 분체원료 이송시스템.Next, the smart powder raw material conveying system, characterized in that the remaining powder of the second conveying amount passes through the second vertical pipe in a pressure conveying method using a pressing force acting at the lower end of the second vertical pipe.
  7. 제6항에 있어서,According to claim 6,
    상기 제2이송유닛은,The second transfer unit,
    상기 분체가 저장되고, 상기 분체를 상기 제2이송량으로 계량하여 배출시키는 제2투입모듈;a second input module that stores the powder and measures and discharges the powder at the second transfer amount;
    상기 제2투입모듈에서 배출되는 분체가 가압력을 이용한 압송 방식으로 이송되도록 공정가스 또는 압축공기를 이용하여 상기 제2투입모듈에서 배출되는 분체를 가압하는 제2-1압송모듈;a 2-1 pressure transfer module that pressurizes the powder discharged from the second input module using a process gas or compressed air so that the powder discharged from the second input module is transferred by a pressure transfer method using a pressing force;
    상기 제2투입모듈에서 배출되는 분체가 상승되는 경로를 형성하도록 높이 방향으로 길게 형성되는 제2수직관;a second vertical pipe formed long in a height direction to form a path through which the powder discharged from the second input module rises;
    상기 제2투입모듈에서 배출되는 분체가 흡입력을 이용한 흡송 방식으로 이송되도록 공정가스 또는 압축공기를 이용하여 상기 제2투입모듈에서 배출되는 분체 또는 상기 제2수직관의 분체를 흡입하여 저장하였다가 로터리밸브 방식을 이용하여 상기 분체를 제2계량량으로 계량하여 배출시키는 제2계량모듈; 및The powder discharged from the second input module or the powder from the second vertical pipe is sucked and stored using process gas or compressed air so that the powder discharged from the second input module is transferred in a suction method using suction power, and stored in the rotary A second measuring module for measuring and discharging the powder in a second measuring amount using a valve method; and
    상기 제2계량모듈에서 배출되는 분체가 가압력을 이용한 압송 방식으로 이송되도록 공정가스 또는 압축공기를 이용하여 상기 제2계량모듈에서 배출되는 분체를 가압하는 제2-2압송모듈;을 포함하며,A 2-2 pressure transfer module for pressurizing the powder discharged from the second metering module using a process gas or compressed air so that the powder discharged from the second metering module is transferred by a pressure transfer method using a pressurizing force; and
    상기 제2투입모듈과 제2계량모듈 중 적어도 어느 하나에는, 상기 분체계량밸브가 포함되고,At least one of the second input module and the second metering module includes the powder metering valve,
    상기 제2수직관을 기준으로 상기 제2수직관의 하단부 쪽에는 상기 제2-1압송모듈이 연결되고, 상기 제2-1압송모듈에는 상기 제2투입모듈이 연결되며,Based on the second vertical pipe, the 2-1 pressure feeding module is connected to the lower end of the second vertical pipe, and the second input module is connected to the 2-1 pressure feeding module,
    상기 제2수직관을 기준으로 상기 제2수직관의 상단부 쪽에는 상기 제2계량모듈이 연결되고, 상기 제2계량모듈에는 상기 제2-2압송모듈이 연결되는 것을 특징으로 하는 스마트 분체원료 이송시스템.Based on the second vertical pipe, the second measuring module is connected to the upper end of the second vertical pipe, and the 2-2 pressure feeding module is connected to the second measuring module. system.
  8. 제7항에 있어서,According to claim 7,
    상기 제2계량모듈은,The second weighing module,
    상기 제2수직관을 거쳐 이송되는 분체가 저장되는 제2계량호퍼;a second metering hopper in which the powder transported through the second vertical pipe is stored;
    상기 제2투입모듈로부터 배출되는 분체를 흡입력을 이용한 흡송 방식으로 흡입하여 상기 제2계량호퍼에 전달하는 제2진공이젝터; 및a second vacuum ejector that sucks the powder discharged from the second input module in a suction method using a suction force and delivers it to the second metering hopper; and
    로터리밸브 방식을 이용하여 상기 제2계량호퍼에 저장되는 분체를 상기 제2계량량으로 계량하여 배출시키는 제2계량밸브;를 포함하고,A second metering valve for measuring and discharging the powder stored in the second metering hopper by the second metering amount using a rotary valve method; includes,
    상기 제2계량밸브는, 상기 분체계량밸브를 포함하는 것을 특징으로 하는 스마트 분체원료 이송시스템.The second metering valve is a smart powder raw material transfer system, characterized in that it comprises the powder metering valve.
  9. 제8항에 있어서,According to claim 8,
    상기 제2진공이젝터는,The second vacuum ejector,
    공정가스 또는 압축공기에 의해 내부가 진공 상태로 유지되는 진공탱크부;A vacuum tank unit in which a vacuum is maintained inside by process gas or compressed air;
    상기 진공탱크부의 내부를 진공 상태로 유지하기 위해 상기 공정가스 또는 상기 압축공기가 입력됨에 따라 상기 흡입력을 발생시키는 진공헤드부;a vacuum head unit generating the suction force as the process gas or the compressed air is input to maintain the inside of the vacuum tank unit in a vacuum state;
    상기 제2수직관과 상기 진공탱크부가 연통되도록 상기 제2수직관이 연결되는 분체투입부;a powder input unit to which the second vertical tube is connected so that the second vertical tube communicates with the vacuum tank unit;
    상기 진공탱크부와 상기 제2계량호퍼를 개폐 가능하게 연통시키는 연결밸브부; 및a connection valve unit that connects the vacuum tank unit and the second metering hopper in an open and close manner; and
    상기 제2투입모듈과 상기 제2-1압송모듈과 상기 진공헤드부 사이의 동작 관계를 제어하는 제어유닛;을 포함하되,A control unit for controlling an operating relationship between the second injection module, the 2-1 pressure feeding module, and the vacuum head unit; including,
    상기 제어유닛은,The control unit,
    상기 제2투입모듈에서 상기 분체가 배출됨에 따라 상기 분체의 일부가 흡입력에 의한 흡송 방식으로 상기 제2수직관을 통과하도록 상기 제2-1압송모듈을 정지시킨 상태에서 상기 진공헤드부를 동작시키고,As the powder is discharged from the second input module, the vacuum head unit is operated while the 2-1 pressure feeding module is stopped so that a part of the powder passes through the second vertical pipe in a suction method by suction force,
    다음으로, 상기 분체의 나머지가 가압력에 의한 압송 방식으로 상기 제2수직관을 통과하도록 상기 진공헤드부의 정지와 함께 상기 제2-1압송모듈을 동작시키는 것을 특징으로 하는 스마트 분체원료 이송시스템.Next, the smart powder raw material conveying system, characterized in that for operating the 2-1 pressure conveying module together with the stop of the vacuum head so that the remainder of the powder passes through the second vertical pipe in a pressure conveying method by pressing force.
  10. 제6항에 있어서,According to claim 6,
    상기 제2이송유닛은,The second transfer unit,
    상기 분체가 저장되고, 상기 분체를 상기 제2이송량으로 계량하여 배출시키는 제2투입모듈;a second input module that stores the powder and measures and discharges the powder at the second transfer amount;
    상기 제2투입모듈에서 배출되는 분체가 가압력을 이용한 압송 방식으로 이송되도록 공정가스 또는 압축공기를 이용하여 상기 제2투입모듈에서 배출되는 분체를 가압하는 제2-1압송모듈;a 2-1 pressure transfer module that pressurizes the powder discharged from the second input module using a process gas or compressed air so that the powder discharged from the second input module is transferred by a pressure transfer method using a pressing force;
    상기 제2투입모듈에서 배출되는 분체가 상승되는 경로를 형성하도록 높이 방향으로 길게 형성되는 제2수직관;a second vertical pipe formed long in a height direction to form a path through which the powder discharged from the second input module rises;
    상기 제2투입모듈에서 배출되는 분체가 흡입력을 이용한 흡송 방식으로 이송되도록 공정가스 또는 압축공기를 이용하여 상기 제2투입모듈에서 배출되는 분체 또는 상기 제2수직관의 분체를 흡입하여 저장하였다가 피딩 방식을 이용하여 상기 분체를 제2계량량으로 계량하여 배출시키는 사일로모듈; 및Process gas or compressed air is used to suction the powder discharged from the second input module or the powder from the second upright pipe so that the powder discharged from the second input module is transferred in a suction method using suction power, and then stored and then fed. A silo module that measures and discharges the powder by a second weighing method using a method; and
    상기 사일로모듈에서 배출되는 분체가 가압력을 이용한 압송 방식으로 이송되도록 공정가스 또는 압축공기를 이용하여 상기 사일로모듈에서 배출되는 분체를 가압하는 사일로압송모듈;을 포함하며,A silo pressure transfer module that pressurizes the powder discharged from the silo module using a process gas or compressed air so that the powder discharged from the silo module is transferred by a pressure transfer method using a pressurizing force;
    상기 제2투입모듈에는, 상기 분체계량밸브가 포함되고,The second input module includes the powder metering valve,
    상기 제2수직관을 기준으로 상기 제2수직관의 하단부 쪽에는 상기 제2-1압송모듈이 연결되고, 상기 제2-1압송모듈에는 상기 제2투입모듈이 연결되며,Based on the second vertical pipe, the 2-1 pressure feeding module is connected to the lower end of the second vertical pipe, and the second input module is connected to the 2-1 pressure feeding module,
    상기 제2수직관을 기준으로 상기 제2수직관의 상단부 쪽에는 상기 사일로모듈이 연결되고, 상기 사일로모듈에는 상기 사일로압송모듈이 연결되는 것을 특징으로 하는 스마트 분체원료 이송시스템.Smart powder raw material conveying system, characterized in that the silo module is connected to the upper end of the second vertical pipe based on the second vertical pipe, and the silo pressure transfer module is connected to the silo module.
  11. 제10항에 있어서,According to claim 10,
    상기 사일로모듈은,The silo module,
    상기 제2수직관을 거쳐 이송되는 분체가 저장되는 분체사일로;a powder silo in which the powder transported through the second vertical pipe is stored;
    상기 제2투입모듈로부터 배출되는 분체를 흡입력을 이용한 흡송 방식으로 흡입하여 상기 분체사일로에 전달하는 사일로진공이젝터; 및a silo vacuum ejector that sucks the powder discharged from the second input module by a suction method using a suction force and delivers it to the powder silo; and
    피딩 방식을 이용하여 상기 본체사일로에 저장되는 분체를 상기 제2계량량으로 계량하여 배출시키는 테이블피더;를 포함하는 것을 특징으로 하는 스마트 분체원료 이송시스템.Smart powder raw material transport system comprising a; table feeder for measuring and discharging the powder stored in the main body silo by the second weighing amount by using a feeding method.
  12. 제11항에 있어서,According to claim 11,
    상기 사일로진공이젝터는,The silo vacuum ejector,
    공정가스 또는 압축공기에 의해 내부가 진공 상태로 유지되는 진공탱크부;A vacuum tank unit in which a vacuum is maintained inside by process gas or compressed air;
    상기 진공탱크부의 내부를 진공 상태로 유지하기 위해 상기 공정가스 또는 상기 압축공기가 입력됨에 따라 상기 흡입력을 발생시키는 진공헤드부;a vacuum head unit generating the suction force as the process gas or the compressed air is input to maintain the inside of the vacuum tank unit in a vacuum state;
    상기 제2수직관과 상기 진공탱크부가 연통되도록 상기 제2수직관이 연결되는 분체투입부;a powder input unit to which the second vertical tube is connected so that the second vertical tube communicates with the vacuum tank unit;
    상기 진공탱크부와 상기 분체사일로를 개폐 가능하게 연통시키는 연결밸브부; 및a connection valve unit for opening and closing communication between the vacuum tank unit and the powder silo; and
    상기 제2투입모듈과 상기 제2-1압송모듈과 상기 진공헤드부 사이의 동작 관계를 제어하는 제어유닛;을 포함하되,A control unit for controlling an operating relationship between the second injection module, the 2-1 pressure feeding module, and the vacuum head unit; including,
    상기 제어유닛은,The control unit,
    상기 제2투입모듈에서 상기 분체가 배출됨에 따라 상기 분체의 일부가 흡입력에 의한 흡송 방식으로 상기 제2수직관을 통과하도록 상기 제2-1압송모듈을 정지시킨 상태에서 상기 진공헤드부를 동작시키고,As the powder is discharged from the second input module, the vacuum head unit is operated while the 2-1 pressure feeding module is stopped so that a part of the powder passes through the second vertical pipe in a suction method by suction force,
    다음으로, 상기 분체의 나머지가 가압력에 의한 압송 방식으로 상기 제2수직관을 통과하도록 상기 진공헤드부의 정지와 함께 상기 제2-1압송모듈을 동작시키는 것을 특징으로 하는 스마트 분체원료 이송시스템.Next, the smart powder raw material conveying system, characterized in that for operating the 2-1 pressure conveying module together with the stop of the vacuum head so that the remainder of the powder passes through the second vertical pipe in a pressure conveying method by pressing force.
  13. 제6항에 있어서,According to claim 6,
    상기 제2이송유닛은,The second transfer unit,
    상기 분체가 저장되고, 피딩 방식을 이용하여 상기 분체를 제2이송량으로 계량하여 배출시키는 사일로모듈;a silo module that stores the powder and measures and discharges the powder at a second transfer amount using a feeding method;
    상기 제2계량모듈에서 배출되는 분체가 가압력을 이용한 압송 방식으로 이송되도록 공정가스 또는 압축공기를 이용하여 상기 사일로모듈에서 배출되는 분체를 가압하는 사일로압송모듈;A silo pressure transfer module that pressurizes the powder discharged from the silo module using a process gas or compressed air so that the powder discharged from the second weighing module is transferred by a pressure transfer method using a pressurizing force;
    상기 사일로모듈에서 배출되는 분체가 상승되는 경로를 형성하도록 높이 방향으로 길게 형성되는 제2수직관;a second vertical pipe formed long in a height direction to form a path through which the powder discharged from the silo module rises;
    상기 사일로모듈에서 배출되는 분체가 흡입력을 이용한 흡송 방식으로 이송되도록 공정가스 또는 압축공기를 이용하여 상기 사일로모듈에서 배출되는 분체 또는 상기 제2수직관의 분체를 흡입하여 저장하였다가 로터리밸브 방식을 이용하여 상기 분체를 제2계량량으로 계량하여 배출시키는 제2계량모듈; 및Process gas or compressed air is used to suction and store the powder discharged from the silo module or the powder of the second vertical pipe using a rotary valve method so that the powder discharged from the silo module is transported in a suction method using suction force. a second measurement module for measuring and discharging the powder by a second measurement amount; and
    상기 제2계량모듈에서 배출되는 분체가 가압력을 이용한 압송 방식으로 이송되도록 공정가스 또는 압축공기를 이용하여 상기 제2계량모듈에서 배출되는 분체를 가압하는 제2-2압송모듈;을 포함하며,A 2-2 pressure transfer module for pressurizing the powder discharged from the second metering module using a process gas or compressed air so that the powder discharged from the second metering module is transferred by a pressure transfer method using a pressurizing force; and
    상기 제2계량모듈에는, 상기 분체계량밸브가 포함되고,The second metering module includes the powder metering valve,
    상기 제2수직관을 기준으로 상기 제2수직관의 하단부 쪽에는 상기 사일로압송모듈이 연결되고, 상기 사일로압송모듈에는 상기 사일로모듈이 연결되며,Based on the second vertical pipe, the silo pressure feeding module is connected to the lower end of the second vertical pipe, and the silo module is connected to the silo pressure feeding module,
    상기 제2수직관을 기준으로 상기 제2수직관의 상단부 쪽에는 상기 제2계량모듈이 연결되고, 상기 제2계량모듈에는 상기 제2-2압송모듈이 연결되는 것을 특징으로 하는 스마트 분체원료 이송시스템.Based on the second vertical pipe, the second measuring module is connected to the upper end of the second vertical pipe, and the 2-2 pressure feeding module is connected to the second measuring module. system.
  14. 제13항에 있어서,According to claim 13,
    상기 제2계량모듈은,The second weighing module,
    상기 제2수직관을 거쳐 이송되는 분체가 저장되는 제2계량호퍼;a second metering hopper in which the powder transported through the second vertical pipe is stored;
    상기 제2투입모듈로부터 배출되는 분체를 흡입력을 이용한 흡송 방식으로 흡입하여 상기 제2계량호퍼에 전달하는 제2진공이젝터; 및a second vacuum ejector that sucks the powder discharged from the second input module in a suction method using a suction force and delivers it to the second metering hopper; and
    로터리밸브 방식을 이용하여 상기 제2계량호퍼에 저장되는 분체를 상기 제2계량량으로 계량하여 배출시키는 제2계량밸브;를 포함하고,A second metering valve for measuring and discharging the powder stored in the second metering hopper by the second metering amount using a rotary valve method; includes,
    상기 제2계량밸브는, 상기 분체계량밸브를 포함하는 것을 특징으로 하는 스마트 분체원료 이송시스템.The second metering valve is a smart powder raw material transfer system, characterized in that it comprises the powder metering valve.
  15. 제14항에 있어서,According to claim 14,
    상기 제2진공이젝터는,The second vacuum ejector,
    공정가스 또는 압축공기에 의해 내부가 진공 상태로 유지되는 진공탱크부;A vacuum tank unit in which a vacuum is maintained inside by process gas or compressed air;
    상기 진공탱크부의 내부를 진공 상태로 유지하기 위해 상기 공정가스 또는 상기 압축공기가 입력됨에 따라 상기 흡입력을 발생시키는 진공헤드부;a vacuum head unit generating the suction force as the process gas or the compressed air is input to maintain the inside of the vacuum tank unit in a vacuum state;
    상기 제2수직관과 상기 진공탱크부가 연통되도록 상기 제2수직관이 연결되는 분체투입부;a powder input unit to which the second vertical tube is connected so that the second vertical tube communicates with the vacuum tank unit;
    상기 진공탱크부와 상기 제2계량호퍼를 개폐 가능하게 연통시키는 연결밸브부; 및a connection valve unit that connects the vacuum tank unit and the second metering hopper in an open and close manner; and
    상기 사일로모듈과 상기 사일로압송모듈과 상기 진공헤드부 사이의 동작 관계를 제어하는 제어유닛;을 포함하되,A control unit for controlling an operating relationship between the silo module, the silo pressure transfer module, and the vacuum head; including,
    상기 제어유닛은,The control unit,
    상기 사일로모듈에서 상기 분체가 배출됨에 따라 상기 분체의 일부가 흡입력에 의한 흡송 방식으로 상기 제2수직관을 통과하도록 상기 사일로압송모듈을 정지시킨 상태에서 상기 진공헤드부를 동작시키고,As the powder is discharged from the silo module, the vacuum head unit is operated while the silo pressure feeding module is stopped so that a part of the powder passes through the second vertical pipe in a suction method by suction force,
    다음으로, 상기 분체의 나머지가 가압력에 의한 압송 방식으로 상기 제2수직관을 통과하도록 상기 진공헤드부의 정지와 함께 상기 사일로압송모듈을 동작시키는 것을 특징으로 하는 스마트 분체원료 이송시스템.Next, the smart powder raw material conveying system characterized in that the silo pressure feeding module is operated together with the stop of the vacuum head so that the rest of the powder passes through the second vertical pipe in a pressure feeding method by pressing force.
  16. 제7항 또는 제10항에 있어서,The method of claim 7 or 10,
    상기 제2투입모듈은,The second input module,
    상기 분체가 저장되는 제2투입호퍼;a second input hopper in which the powder is stored;
    상기 분체가 상기 제2투입호퍼에 투입될 때, 상기 분체로부터 자성을 갖는 이물질을 필터링하는 제2자석필터;a second magnetic filter for filtering foreign substances having magnetism from the powder when the powder is put into the second input hopper;
    상기 분체가 상기 제2투입호퍼에 투입될 때, 상기 분체로부터 자성이 없는 이물질을 필터링하는 제2메쉬필터; 및a second mesh filter for filtering non-magnetic foreign substances from the powder when the powder is put into the second input hopper; and
    로터리밸브 방식을 이용하여 상기 제2투입호퍼에 저장되는 분체를 상기 제2이송량으로 계량하여 배출시키는 제2투입밸브;를 포함하고,A second input valve for metering and discharging the powder stored in the second input hopper at the second transfer amount using a rotary valve method; including,
    상기 제2투입밸브는, 상기 분체계량밸브를 포함하는 것을 특징으로 하는 스마트 분체원료 이송시스템.The second input valve includes the powder metering valve.
  17. 제1항 내지 제15항 중 어느 한 항에 있어서,According to any one of claims 1 to 15,
    상기 제3이송유닛은,The third transfer unit,
    상기 분체가 저장되고, 상기 분체를 상기 제3이송량으로 계량하여 배출시키는 제3투입모듈; 및a third input module that stores the powder and measures and discharges the powder at the third transfer amount; and
    상기 제3투입모듈에서 배출되는 분체가 가압력을 이용한 압송 방식으로 이송되도록 공정가스 또는 압축공기를 이용하여 상기 제3투입모듈에서 배출되는 분체를 가압하는 제3압송모듈;을 포함하는 것을 특징으로 하는 스마트 분체원료 이송시스템.A third pressure transfer module for pressurizing the powder discharged from the third input module using a process gas or compressed air so that the powder discharged from the third input module is transferred by a pressure transfer method using a pressurizing force. Smart powder material conveying system.
  18. 제1항 내지 제15항 중 어느 한 항에 있어서,According to any one of claims 1 to 15,
    바인더이송량에 대응하여 상기 활물질과 혼합되는 바인더를 액상의 솔루션으로 변환하여 이송시키는 바인더이송유닛; 및a binder transfer unit that converts and transfers the binder mixed with the active material into a liquid solution in response to the binder transfer amount; and
    용매이송량에 대응하여 상기 바인더를 용해시켜 상기 솔루션을 형성하기 위한 용매를 이송시키는 용매이송유닛;을 더 포함하고,A solvent conveying unit for dissolving the binder in response to the conveying amount of the solvent and conveying the solvent for forming the solution; further comprising,
    상기 분체는, 전극의 원료인 활물질로 이루어지는 것을 특징으로 하는 스마트 분체원료 이송시스템.The powder is a smart powder raw material conveying system, characterized in that made of an active material that is a raw material of the electrode.
  19. 제18항에 있어서,According to claim 18,
    상기 바인더이송유닛은,The binder conveying unit,
    상기 바인더가 저장되고, 상기 바인더를 상기 바인더이송량으로 계량하여 배출시키는 바인더투입모듈;a binder input module that stores the binder and measures and discharges the binder according to the binder transfer amount;
    상기 바인더투입모듈에서 배출되는 바인더가 가압력을 이용한 압송 방식으로 이송되도록 공정가스 또는 압축공기를 이용하여 상기 바인더투입모듈에서 배출되는 바인더를 가압하는 바인더압송모듈;a binder pressure feeding module that pressurizes the binder discharged from the binder feeding module using a process gas or compressed air so that the binder discharged from the binder feeding module is transported by a pressure feeding method;
    상기 솔루션이 형성되도록 상기 바인더압송모듈을 거쳐 전달되는 바인더와 상기 용매이송유닛을 통해 전달되는 용매를 혼합시키는 바인더믹싱모듈;a binder mixing module for mixing the binder delivered through the binder pressure delivery module and the solvent delivered through the solvent delivery unit to form the solution;
    상기 솔루션을 펌핑하는 솔루션이송모듈;A solution transfer module for pumping the solution;
    솔루션이송모듈로부터 전달되는 솔루션이 저장되되, 상기 솔루션의 이송량에 대응하여 상기 솔루션의 정량 배출이 가능한 솔루션호퍼스케일; 및A solution hopper scale capable of storing the solution delivered from the solution transfer module and discharging the fixed amount of the solution in response to the transfer amount of the solution; and
    상기 솔루션의 이송량에 대응하여 상기 솔루션호퍼스케일의 솔루션을 펌핑하는 솔루션공급펌프;를 포함하는 것을 특징으로 하는 스마트 분체원료 이송시스템.Smart powder raw material conveying system comprising a; solution supply pump for pumping the solution of the solution hopper scale in response to the conveying amount of the solution.
  20. 제18항에 있어서,According to claim 18,
    상기 용매이송유닛은,The solvent transport unit,
    상기 용매가 저장되는 용매탱크;a solvent tank in which the solvent is stored;
    상기 용매탱크에 저장되는 용매를 펌핑하는 용매펌핑모듈;a solvent pumping module for pumping the solvent stored in the solvent tank;
    상기 바인더에 혼합되는 용매를 조절하는 믹싱조절모듈; 및a mixing control module for adjusting the solvent mixed with the binder; and
    상기 슬러리에 혼합되는 용매를 조절하는 슬러리조절모듈;을 포함하는 것을 특징으로 하는 스마트 분체원료 이송시스템.Smart powder raw material transport system comprising a; slurry control module for adjusting the solvent mixed with the slurry.
  21. 제18항에 있어서,According to claim 18,
    도전재이송량에 대응하여 전극을 형성하기 위한 슬러리에 혼합되는 도전재를 이송시키는 도전재이송유닛; 및a conductive material conveying unit for conveying the conductive material mixed with the slurry for forming the electrode in response to the amount of the conductive material conveyed; and
    분산재이송량에 대응하여 전극을 형성하기 위한 슬러리에 혼합되는 분산재를 이송시키는 분산재이송유닛; 중 적어도 어느 하나를 더 포함하는 것을 특징으로 하는 스마트 분체원료 이송시스템.a dispersion material transport unit for transporting the dispersion material mixed with the slurry for forming the electrode in response to the transport amount of the dispersion material; A smart powder raw material conveying system, characterized in that it further comprises at least one of.
  22. 제21항에 있어서,According to claim 21,
    상기 도전재이송유닛은,The conductive material conveying unit,
    상기 도전재가 저장되는 도전재호퍼스케일; 및a conductive material hopper scale in which the conductive material is stored; and
    상기 도전재이송량에 대응하여 상기 도전재호퍼스케일에 저장되는 도전재를 정량으로 펌핑하는 도전재공급펌프;를 포함하는 것을 특징으로 하는 스마트 분체원료 이송시스템.A smart powder raw material conveying system comprising a; conductive material supply pump for pumping the conductive material stored in the conductive material hopper scale in a quantitative amount in response to the amount of the conductive material conveyed.
  23. 제21항에 있어서,According to claim 21,
    상기 분산재이송유닛은,The dispersion ash transfer unit,
    상기 분산재가 저장하는 분산재호퍼스케일; 및a dispersion ash hopper scale in which the dispersion ash is stored; and
    상기 분산재이송량에 대응하여 상기 분산재호퍼스케일에 저장되는 분산재를 정량으로 펌핑하는 분산재공급펌프;를 포함하는 것을 특징으로 하는 스마트 분체원료 이송시스템.A smart powder raw material conveying system comprising a; dispersion material supply pump for pumping the dispersed material stored in the dispersed material hopper scale in a quantitative amount in response to the amount of the dispersed material transported.
  24. 제18항에 있어서,According to claim 18,
    상기 분체이송유닛을 거쳐 전달되는 분체와 상기 바인더이송유닛을 거쳐 전달되는 솔루션과 상기 용매이송유닛을 거쳐 전달되는 용매를 혼합하는 믹싱유닛;을 더 포함하는 것을 특징으로 하는 스마트 분체원료 이송시스템.A mixing unit for mixing the powder delivered through the powder transport unit, the solution delivered through the binder transport unit, and the solvent delivered through the solvent transport unit; Smart powder raw material transport system characterized in that it further comprises.
  25. 제1항 내지 제15항 중 어느 한 항에 있어서,According to any one of claims 1 to 15,
    상기 분체계량밸브는,The powder metering valve,
    상기 가상의 제1축과 동축 또는 평행 또는 교차를 이루도록 배치되고, 상기 분배모듈을 회전시키기 위한 회전력을 발생시키는 동력발생모듈;을 더 포함하는 것을 특징으로 하는 스마트 분체원료 이송시스템.The smart powder raw material conveying system further comprising a; power generation module disposed to be coaxial, parallel, or intersecting with the virtual first axis and generating rotational force for rotating the distribution module.
  26. 제25항에 있어서,According to claim 25,
    상기 분체계량밸브는,The powder metering valve,
    상기 가상의 제1축과 동축을 이루도록 배치되고, 상기 계량하우징에서 상기 단위배출홈부의 위치를 감지하는 회전센싱모듈; 및a rotation sensing module disposed coaxially with the virtual first axis and sensing a position of the unit discharge groove in the weighing housing; and
    상기 회전센싱모듈에서 감지되는 상기 단위배출홈부의 위치에 따라 상기 동력발생모듈에서 발생되는 회전력을 조절하는 속도제어모듈;a speed control module for adjusting rotational force generated from the power generation module according to the position of the unit discharge groove detected by the rotation sensing module;
    중 적어도 회전센싱모듈;을 더 포함하는 것을 특징으로 하는 스마트 분체원료 이송시스템.Smart powder raw material conveying system characterized in that it further comprises; at least a rotation sensing module of.
  27. 제26항에 있어서,The method of claim 26,
    상기 회전센싱모듈은,The rotation sensing module,
    상기 가상의 제1축과 동축을 이루는 패들축부를 매개로 상기 계량하우징에 회전 가능하게 결합되고, 상기 가상의 제1축과 함께 회전 가능한 센싱패들; 및a sensing paddle rotatably coupled to the metering housing via a paddle shaft part coaxial with the virtual first shaft and rotatable with the virtual first shaft; and
    상기 센싱패들을 감지하는 스피드센서;를 포함하고,Including; a speed sensor for sensing the sensing paddle,
    상기 센싱패들은,The sensing pads,
    상기 패들축부에 결합되는 패들바디; 및a paddle body coupled to the paddle shaft; and
    상기 단위배출홈부에 대응하여 상기 패들바디의 외주면을 따라 상기 패들바디에 등간격으로 배치되는 감지날개;를 포함하며,Including; sensing blades arranged at equal intervals on the paddle body along the outer circumferential surface of the paddle body in correspondence with the unit discharge groove,
    상기 스피드센서는,The speed sensor,
    상기 감지날개를 감지하는 것을 특징으로 하는 스마트 분체원료 이송시스템.Smart powder raw material conveying system, characterized in that for detecting the sensing blades.
  28. 제1항 내지 제15항 중 어느 한 항에 있어서,According to any one of claims 1 to 15,
    상기 분배모듈은,The distribution module,
    상기 가상의 제1축과 동축으로 분배홀부가 관통 형성된 원통 형상의 분배바디; 및a distribution body having a cylindrical shape through which distribution holes are formed coaxially with the virtual first axis; and
    상호 인접한 두 단위배출홈부가 구획되도록 상기 분배바디의 외주면에서 상기 분배바디의 법선 방향으로 돌출 형성되는 다수의 구획날개;를 포함하는 것을 특징으로 하는 스마트 분체원료 이송시스템.A smart powder raw material transport system comprising: a plurality of partition blades protruding from the outer circumferential surface of the distribution body in the normal direction of the distribution body so as to partition two mutually adjacent unit discharge grooves.
  29. 제28항에 있어서,According to claim 28,
    상기 구획날개의 단부에는,At the end of the partition wing,
    상기 계량하우징의 내벽에 밀착 또는 접촉 지지되는 스크래퍼;가 구비되는 것을 특징으로 하는 스마트 분체원료 이송시스템.A smart powder raw material conveying system characterized in that it is provided; a scraper that is supported in close contact with or in contact with the inner wall of the metering housing.
  30. 제1항에 기재된 스마트 분체원료 이송시스템을 이용하여 상기 분체를 이송하는 방법이고,A method of transporting the powder using the smart powder raw material transport system according to claim 1,
    제1이송량에 대응하여 분체를 이송시키는 제1이송단계와, 상기 제1이송량과 같거나 다른 제2이송량에 대응하여 상기 분체를 이송시키는 제2이송단계와, 상기 제1이송량 또는 상기 제2이송량보다 작은 제3이송량에 대응하여 상기 분체를 이송시키는 제3이송단계 중 적어도 어느 하나를 포함하는 분체이송단계;를 포함하되,A first transfer step of transferring powder in response to a first transfer amount, a second transfer step of transferring the powder in response to a second transfer amount equal to or different from the first transfer amount, and either the first transfer amount or the second transfer amount. A powder transfer step including at least one of a third transfer step of transferring the powder in response to a smaller third transfer amount; including,
    상기 제1이송단계는,In the first transfer step,
    상기 제1이송유닛의 분체가 높이 방향으로 길게 형성된 제1수직관에서 상승될 때, 상기 제1수직관에서 상기 제1이송량 중 일부의 분체를 상기 제1수직관의 상단부 쪽에서 작용하는 흡입력을 이용한 흡송 방식으로 통과시키는 제1흡송단계; 및When the powder of the first transfer unit rises in the first vertical tube formed long in the height direction, the powder of a part of the first transfer amount in the first vertical tube is removed by using the suction force acting at the upper end of the first vertical tube. A first suction step of passing through the suction method; and
    상기 제1흡송단계를 거친 다음, 상기 제1수직관에서 상기 제1이송량 중 나머지의 분체를 상기 제1수직관의 하단부 쪽에서 작용하는 가압력을 이용한 압송 방식으로 통과시키는 제1압송단계;를 포함하는 것을 특징으로 하는 스마트 분체원료 이송방법.After passing through the first suction step, a first pressure conveying step of passing the remaining powder of the first conveying amount in the first vertical pipe by a pressure conveying method using a pressing force acting toward the lower end of the first vertical pipe; Smart powder raw material transfer method, characterized in that.
  31. 제6항에 기재된 스마트 분체원료 이송시스템을 이용하여 상기 분체를 이송하는 방법이고,A method of transporting the powder using the smart powder raw material transport system according to claim 6,
    제1이송량에 대응하여 분체를 이송시키는 제1이송단계와, 상기 제1이송량과 같거나 다른 제2이송량에 대응하여 상기 분체를 이송시키는 제2이송단계와, 상기 제1이송량 또는 상기 제2이송량보다 작은 제3이송량에 대응하여 상기 분체를 이송시키는 제3이송단계 중 적어도 어느 하나를 포함하는 분체이송단계;를 포함하되,A first transfer step of transferring the powder in response to the first transfer amount, a second transfer step of transferring the powder in response to a second transfer amount equal to or different from the first transfer amount, and either the first transfer amount or the second transfer amount. A powder transfer step including at least one of a third transfer step of transferring the powder in response to a smaller third transfer amount; including,
    상기 제2이송단계는,In the second transfer step,
    상기 제2이송유닛의 분체가 높이 방향으로 길게 형성된 제2수직관에서 상승될 때, 상기 제2수직관에서 상기 제2이송량 중 일부의 분체를 상기 제2수직관의 상단부 쪽에서 작용하는 흡입력을 이용한 흡송 방식으로 통과시키는 제2흡송단계; 및When the powder of the second transfer unit rises in the second vertical tube formed long in the height direction, a part of the powder of the second transfer amount is removed from the second vertical tube using the suction force acting at the upper end of the second vertical tube. A second suction step of passing through the suction method; and
    상기 제2흡송단계를 거친 다음, 상기 제2이송량 중 나머지의 분체는 상기 제2수직관의 하단부 쪽에서 작용하는 가압력을 이용한 압송 방식으로 상기 제2수직관을 통과시키는 제2압송단계;를 포함하는 것을 특징으로 하는 스마트 분체원료 이송방법.After passing through the second suction step, the second pressure conveying step of passing the remaining powder of the second conveying amount through the second vertical pipe in a pressure conveying method using a pressing force acting at the lower end of the second vertical pipe; Smart powder raw material transfer method, characterized in that.
  32. 제30항 또는 제31항에 있어서,The method of claim 30 or 31,
    상기 제3이송단계는,In the third transfer step,
    상기 제3투입모듈에 저장된 분체를 상기 제3이송량으로 계량하여 배출시키는 제3투입단계; 및a third inputting step of measuring and discharging the powder stored in the third input module according to the third transfer amount; and
    상기 제3투입단계를 거쳐 배출되는 분체가 가압력을 이용한 압송 방식으로 이송되도록 공정가스 또는 압축공기를 이용하여 상기 제3투입모듈에서 배출되는 분체를 가압하는 제3압송단계;를 포함하는 것을 특징으로 하는 스마트 분체원료 이송방법.A third pressure transfer step of pressurizing the powder discharged from the third input module using a process gas or compressed air so that the powder discharged through the third input step is transferred by a pressure transfer method using a pressurizing force. Smart powder raw material transfer method.
  33. 제30항 또는 제31항에 있어서,The method of claim 30 or 31,
    바인더이송량에 대응하여 상기 활물질과 혼합되는 바인더를 액상의 솔루션으로 변환하여 이송시키는 바인더이송단계; 및A binder transfer step of converting and transferring the binder mixed with the active material into a liquid solution in response to the binder transfer amount; and
    용매이송량에 대응하여 상기 바인더를 용해시켜 상기 솔루션을 형성하기 위한 용매를 이송시키는 용매이송단계;를 더 포함하고,A solvent transfer step of transferring the solvent for forming the solution by dissolving the binder in response to the amount of solvent transfer; further comprising,
    상기 분체는, 전극의 원료인 활물질로 이루어지는 것을 특징으로 하는 스마트 분체원료 이송방법.The powder is a smart powder raw material transfer method, characterized in that consisting of an active material that is a raw material of the electrode.
  34. 제33항에 있어서,34. The method of claim 33,
    도전재이송량에 대응하여 전극을 형성하기 위한 슬러리에 혼합되는 도전재를 이송시키는 도전재이송단계; 및Conductive material transfer step of transferring the conductive material mixed with the slurry for forming the electrode in response to the conductive material transfer amount; and
    분산재이송량에 대응하여 전극을 형성하기 위한 슬러리에 혼합되는 분산재를 이송시키는 분산재이송단계; 중 적어도 어느 하나를 더 포함하는 것을 특징으로 하는 스마트 분체원료 이송방법.a dispersion material transfer step of transferring the dispersion material mixed with the slurry for forming an electrode in response to the amount of the dispersion material transport; Smart powder raw material transfer method characterized in that it further comprises at least one of.
  35. 제33항에 있어서,34. The method of claim 33,
    전극을 형성하기 위한 슬러리를 형성하도록 상기 분체이송단계를 거쳐 전달되는 분체와 상기 바인더이송단계를 거쳐 전달되는 솔루션과 상기 용매이송단계를 거쳐 전달되는 용매를 혼합하는 믹싱단계;를 더 포함하는 것을 특징으로 하는 스마트 분체원료 이송방법.Further comprising a mixing step of mixing the powder delivered through the powder transfer step, the solution delivered through the binder transfer step, and the solvent delivered through the solvent transfer step to form a slurry for forming the electrode. Smart powder raw material transfer method.
PCT/KR2022/007340 2021-05-25 2022-05-24 Smart granular raw material conveyance system and smart granular raw material conveyance method WO2022250411A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22811604.2A EP4349473A1 (en) 2021-05-25 2022-05-24 Smart granular raw material conveyance system and smart granular raw material conveyance method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0067117 2021-05-25
KR1020210067117A KR102543772B1 (en) 2021-05-25 2021-05-25 Smart powder feeding system and smart powder feeding method

Publications (1)

Publication Number Publication Date
WO2022250411A1 true WO2022250411A1 (en) 2022-12-01

Family

ID=84228809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/007340 WO2022250411A1 (en) 2021-05-25 2022-05-24 Smart granular raw material conveyance system and smart granular raw material conveyance method

Country Status (3)

Country Link
EP (1) EP4349473A1 (en)
KR (1) KR102543772B1 (en)
WO (1) WO2022250411A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980073322A (en) * 1997-03-13 1998-11-05 정도섭 Powder feeder
KR20140010033A (en) * 2011-02-18 2014-01-23 게마 스위스 게엠베하 Device for pneumatically conveying powder and method for cleaning such a device
KR101730298B1 (en) * 2016-08-11 2017-04-25 주식회사 제일기공 Dissolving Device of Active Material and Solvent, and Dissolving Method of Active Material and Solvent Using the same
JP2017222095A (en) * 2016-06-15 2017-12-21 前澤給装工業株式会社 Mixed material producing device and mixed material producing method
KR101943380B1 (en) * 2018-05-29 2019-02-01 주식회사 신텍 Integrated multi sorting apparatus and method thereof
KR102199868B1 (en) * 2019-12-27 2021-01-08 주식회사 맥스로텍 Powder feeder with multi supply line
KR20210048102A (en) * 2019-10-23 2021-05-03 엘지전자 주식회사 Powder providing device)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100544107B1 (en) * 1999-01-22 2006-01-23 삼성에스디아이 주식회사 Electrode making device used in secondary battery
KR20200045368A (en) 2018-10-22 2020-05-04 주식회사 엘지화학 Method for producing a slurry composition for forming an electrode active material layer, Electrode for a lithium secondary battery including an active material layer formed of the slurry composition, and Lithium secondary battery including the electrode

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980073322A (en) * 1997-03-13 1998-11-05 정도섭 Powder feeder
KR20140010033A (en) * 2011-02-18 2014-01-23 게마 스위스 게엠베하 Device for pneumatically conveying powder and method for cleaning such a device
JP2017222095A (en) * 2016-06-15 2017-12-21 前澤給装工業株式会社 Mixed material producing device and mixed material producing method
KR101730298B1 (en) * 2016-08-11 2017-04-25 주식회사 제일기공 Dissolving Device of Active Material and Solvent, and Dissolving Method of Active Material and Solvent Using the same
KR101943380B1 (en) * 2018-05-29 2019-02-01 주식회사 신텍 Integrated multi sorting apparatus and method thereof
KR20210048102A (en) * 2019-10-23 2021-05-03 엘지전자 주식회사 Powder providing device)
KR102199868B1 (en) * 2019-12-27 2021-01-08 주식회사 맥스로텍 Powder feeder with multi supply line

Also Published As

Publication number Publication date
KR20220159132A (en) 2022-12-02
KR102543772B1 (en) 2023-06-16
EP4349473A1 (en) 2024-04-10

Similar Documents

Publication Publication Date Title
WO2019212189A1 (en) Nozzle of cleaner
WO2015030450A1 (en) Content receiving device, opening/closing mechanism, and packaging container comprising same
WO2020027524A1 (en) Vacuum cleaner nozzle
WO2022035041A1 (en) Vacuum cleaner
WO2021080099A1 (en) Conversion member and electric cleaner comprising same
WO2016099145A2 (en) Smart blender and operation method thereof
WO2022163997A1 (en) Particle transfer system and particle transfer method
WO2022010198A1 (en) Cleaner station
WO2022250411A1 (en) Smart granular raw material conveyance system and smart granular raw material conveyance method
WO2019212195A1 (en) Vacuum cleaner nozzle
WO2019013506A1 (en) Efem and efem system
WO2022114636A1 (en) Cleaning apparatus including vacuum cleaner and docking station, and control method therefor
WO2022075580A1 (en) Vacuum cleaner
WO2020153560A1 (en) Inverter device and inverter panel including same
WO2020004839A1 (en) Air purifier comprising bidirectional discharge channels and method for controlling same
WO2020027469A1 (en) Nozzle of cleaner and method for controlling same
WO2022270920A1 (en) Aerosol-generating device
WO2022270676A1 (en) Automated liquid sampling device and automated liquid sampling system comprising same
WO2022010335A1 (en) Cleaner station
WO2020153559A1 (en) Inverter apparatus and power conversion apparatus comprising same
WO2022186556A1 (en) Device for receiving electricity, device for transmitting electricity, and electrical connection device including same
WO2023014136A1 (en) Dust collecting device, cleaner, and cleaner station
WO2021157942A1 (en) System for producing microparticles, comprising carrier fluid, and method for controlling same
WO2024147485A1 (en) Air conditioner
WO2023229247A1 (en) Cleaner station

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22811604

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2022811604

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022811604

Country of ref document: EP

Effective date: 20240102