WO2022250339A1 - Compound for organic electric element, organic electric element using same, and electronic device thereof - Google Patents

Compound for organic electric element, organic electric element using same, and electronic device thereof Download PDF

Info

Publication number
WO2022250339A1
WO2022250339A1 PCT/KR2022/006762 KR2022006762W WO2022250339A1 WO 2022250339 A1 WO2022250339 A1 WO 2022250339A1 KR 2022006762 W KR2022006762 W KR 2022006762W WO 2022250339 A1 WO2022250339 A1 WO 2022250339A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
ring
represented
compound
Prior art date
Application number
PCT/KR2022/006762
Other languages
French (fr)
Korean (ko)
Inventor
오경환
박종광
장재완
이선희
문성윤
정원준
정연석
이형동
이윤석
Original Assignee
덕산네오룩스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220029174A external-priority patent/KR102441537B1/en
Application filed by 덕산네오룩스 주식회사 filed Critical 덕산네오룩스 주식회사
Priority to CN202280037164.4A priority Critical patent/CN117377659A/en
Publication of WO2022250339A1 publication Critical patent/WO2022250339A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/14Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom
    • C07D251/24Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom to three ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/04Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a compound for an organic electric device, an organic electric device using the same, and an electronic device thereof.
  • the organic light emitting phenomenon refers to a phenomenon in which electrical energy is converted into light energy using an organic material.
  • An organic electric device using an organic light emitting phenomenon usually has a structure including an anode, a cathode, and an organic material layer therebetween.
  • the organic material layer is often composed of a multi-layer structure composed of different materials in order to increase the efficiency and stability of the organic electric device, and may include, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer.
  • Materials used as organic layers in organic electric devices may be classified into light emitting materials and charge transport materials, such as hole injection materials, hole transport materials, electron transport materials, and electron injection materials, according to their functions.
  • an auxiliary light emitting layer must be present between the hole transport layer and the light emitting layer, and different light emission auxiliary layers according to each light emitting layer (R, G, B) It is time to develop the layer.
  • electrons are transferred from the electron transport layer to the light emitting layer, and holes are transferred from the hole transport layer to the light emitting layer to generate excitons by recombination.
  • the material used in the hole transport layer must have a low HOMO value, most of them have a low T1 value, and as a result, excitons generated in the light emitting layer are transferred to the hole transport layer, resulting in charge unbalance in the light emitting layer resulting in light emission at the interface of the hole transport layer.
  • OLED devices are mainly formed by a deposition method, and there is a need to develop materials that can endure for a long time during deposition, that is, materials with strong heat resistance.
  • materials constituting the organic material layer in the device such as hole injection materials, hole transport materials, light emitting materials, electron transport materials, electron injection materials, and light emitting auxiliary layer materials, etc. are stable and efficient. Although supporting by materials should precede, the development of stable and efficient organic material layer materials for organic electric devices has not yet been sufficiently achieved. Therefore, the development of new materials continues to be required.
  • the present invention has discovered a compound having a novel structure, and also the fact that when this compound is applied to an organic electric device, the luminous efficiency, stability and lifespan of the device can be greatly improved. has revealed
  • an object of the present invention is to provide a novel compound, an organic electric device using the same, and an electronic device thereof.
  • the present invention provides a compound represented by the following formula (1).
  • the present invention provides an organic electric device including a first electrode, a second electrode, and an organic material layer formed between the first electrode and the second electrode, wherein the organic material layer includes a light emitting layer and the light emitting layer is phosphorescent.
  • An organic electric device including a first host compound represented by Chemical Formula (1) and a second host compound represented by Chemical Formula (3) or Chemical Formula (4) as a light emitting layer is provided.
  • the present invention provides an electronic device including the organic electric element.
  • 1 to 3 are exemplary views of an organic electroluminescent device according to the present invention.
  • organic electric element 110 first electrode
  • first hole transport layer 340 first light emitting layer
  • second charge generation layer 420 second hole injection layer
  • first, second, A, B, (a), and (b) may be used in describing the components of the present invention. These terms are only used to distinguish the component from other components, and the nature, order, or order of the corresponding component is not limited by the term.
  • an element is described as being “connected,” “coupled to,” or “connected” to another element, that element is or may be directly connected to the other element, but there is another element between the elements. It will be understood that elements may be “connected”, “coupled” or “connected”.
  • halo or halogen is fluorine (F), bromine (Br), chlorine (Cl), or iodine (I) unless otherwise specified.
  • alkyl or “alkyl group” has a single bond of 1 to 60 carbon atoms, and includes a straight-chain alkyl group, a branched-chain alkyl group, a cycloalkyl (alicyclic) group, an alkyl-substituted cycloalkyl group, and the like.
  • alkenyl group has a double bond or triple bond of 2 to 60 carbon atoms, respectively, and includes a straight or branched chain group, unless otherwise specified. , but is not limited thereto.
  • cycloalkyl refers to an alkyl forming a ring having 3 to 60 carbon atoms, but is not limited thereto.
  • alkoxyl group refers to an alkyl group to which an oxygen radical is attached, and has 1 to 60 carbon atoms, unless otherwise specified, and is limited thereto. It is not.
  • aryloxyl group refers to an aryl group to which an oxygen radical is attached, and has 6 to 60 carbon atoms unless otherwise specified, but is not limited thereto.
  • aryl group and arylene group used herein have 6 to 60 carbon atoms, respectively, unless otherwise specified, but are not limited thereto.
  • an aryl group or an arylene group refers to a single-ring or multi-ring aromatic ring, and includes an aromatic ring formed by bonding or reacting with adjacent substituents.
  • the aryl group may be a phenyl group, a biphenyl group, a fluorene group, or a spirofluorene group.
  • aryl refers to a radical substituted with an aryl group.
  • an arylalkyl group is an alkyl group substituted with an aryl group
  • an arylalkenyl group is an alkenyl group substituted with an aryl group
  • a radical substituted with an aryl group has carbon atoms described herein.
  • an arylalkoxy group means an alkoxy group substituted with an aryl group
  • an alkoxylcarbonyl group means a carbonyl group substituted with an alkoxyl group
  • an arylcarbonylalkenyl group means an alkenyl group substituted with an arylcarbonyl group.
  • the arylcarbonyl group is a carbonyl group substituted with an aryl group.
  • heterocyclic group includes at least one heteroatom, has 2 to 60 carbon atoms, includes at least one of a single ring and multiple rings, and includes a heteroaliphatic ring and a heterocyclic group, unless otherwise specified. Contains an aromatic ring. It may also be formed by combining adjacent functional groups.
  • heteroatom refers to N, O, S, P or Si unless otherwise specified.
  • heterocyclic group may include a ring containing SO 2 instead of carbon forming the ring.
  • heterocyclic group includes the following compounds.
  • fluorenyl group or “fluorenylene group” means a monovalent or divalent functional group in which R, R' and R" are all hydrogen in the following structure, respectively, unless otherwise specified, " Substituted fluorenyl group” or “substituted fluorenyl group” means that at least one of the substituents R, R', R" is a substituent other than hydrogen, and R and R' are bonded to each other to form a This includes cases where they form a spy compound together.
  • spiro compound has a 'spiro union', which means a connection formed by two rings sharing only one atom. At this time, the atoms shared by the two rings are called 'spiro atoms', and according to the number of spiro atoms in a compound, they are called 'monospiro-', 'dispiro-', and 'trispiro-', respectively. ' It's called a compound.
  • aliphatic as used herein means an aliphatic hydrocarbon ring having 1 to 60 carbon atoms
  • aliphatic ring means an aliphatic hydrocarbon ring having 3 to 60 carbon atoms.
  • ring refers to a fused ring composed of an aliphatic ring having 3 to 60 carbon atoms, an aromatic ring having 6 to 60 carbon atoms, a heterocyclic ring having 2 to 60 carbon atoms, or a combination thereof, Contains saturated or unsaturated rings.
  • hetero compounds or heteroradicals other than the aforementioned hetero compounds include, but are not limited to, one or more heteroatoms.
  • substituted in the term “substituted or unsubstituted” as used herein means deuterium, halogen, amino group, nitrile group, nitro group, C 1 ⁇ C 20 alkyl group, C 1 ⁇ C 20 alkoxyl group, C 1 ⁇ C 20 alkylamine group, C 1 ⁇ C 20 alkylthiophene group, C 6 ⁇ C 20 arylthiophene group, C 2 ⁇ C 20 alkenyl group, C 2 ⁇ C 20 alkynyl group, C 3 ⁇ C 20 cycloalkyl group, C 6 ⁇ C 20 aryl group, deuterium-substituted C 6 ⁇ C 20 aryl group, C 8 ⁇ C 20 arylalkenyl group, silane group, boron group, germanium group, and C 2 ⁇ C 20 means substituted with one or more substituents selected from the group consisting of heterocyclic groups, but is not limited
  • substituent R 1 when a is an integer of 0, substituent R 1 does not exist, and when a is an integer of 1, one substituent R 1 is bonded to any one of the carbon atoms forming the benzene ring, and when a is an integer of 2 or 3
  • R 1 may be the same or different from each other, and when a is an integer of 4 to 6, it is bonded to the carbon of the benzene ring in a similar manner, while indicating the hydrogen bonded to the carbon forming the benzene ring. is omitted.
  • the present invention provides a compound represented by the following formula (1).
  • each symbol may be defined as follows.
  • Ar 1 and Ar 2 are each independently a C 6 ⁇ C 60 aryl group; preferably a C 6 ⁇ C 30 aryl group, more preferably a C 6 ⁇ C 25 aryl group, such as phenylene , biphenyl, naphthalene, terphenyl, and the like.
  • L 1 is a single bond; Or a C 6 ⁇ C 60 arylene group;
  • L 1 is an arylene group, it may be preferably a C 6 ⁇ C 30 arylene group, more preferably a C 6 ⁇ C 24 arylene group, for example, phenylene, biphenyl, naphthalene, terphenyl, etc. can
  • each R 1 is the same or different and is hydrogen; heavy hydrogen; C 1 ⁇ C 60 Alkyl group; A C 2 ⁇ C 20 alkenyl group; A C 2 ⁇ C 20 alkynyl group; C 1 ⁇ C 30 alkoxy group; And C 6 ⁇ C 30 aryloxy group; is selected from the group consisting of,
  • R 1 is an alkyl group, it may be preferably a C 1 to C 30 alkyl group, more preferably a C 1 to C 24 alkyl group.
  • R 1 is an alkoxy group, it may be preferably a C 1 to C 24 alkoxy group.
  • R 1 is an aryloxy group, it may be preferably a C 6 -C 24 aryloxy group.
  • a is an integer from 0 to 9;
  • the aryl group, arylene group, alkyl group, alkenyl group, alkynyl group, alkoxy group and aryloxy group are each deuterium; halogen; silane group; Siloxane group; boron group; Germanium group; cyano group; nitro group; C 1 ⁇ C 20 Alkylthio group; A C 1 ⁇ C 20 alkoxy group; C 1 ⁇ C 20 Alkyl group; A C 2 ⁇ C 20 alkenyl group; A C 2 ⁇ C 20 alkynyl group; C 6 ⁇ C 20 aryl group; A deuterium-substituted C 6 ⁇ C 20 aryl group; fluorenyl group; C 2 ⁇ C 20 heterocyclic group; A C 3 ⁇ C 20 cycloalkyl group; C 7 ⁇ C 20 arylalkyl group; And a C 8 ⁇ C 20 arylalkenyl group; may be further substituted with one or more substituents selected from
  • the present invention provides a compound in which the above formula (1) is represented by the following formula (1-1) or formula (1-2).
  • the present invention provides a compound in which the above formula (1) is represented by the following formula (1-3) or formula (1-4).
  • the present invention provides a compound in which Formula (1) is represented by any one of Formulas (1-9) to Formula (1-12) below.
  • the present invention provides a compound wherein L 1 is represented by any one of Formulas a-1 to a-3 below.
  • the present invention provides a compound represented by any one of the following formulas (2-6) to (2-10) in which the formula (1) is represented.
  • the present invention provides a compound represented by any one of the following compounds P-1 to P-84 in which the compound represented by Formula (1) is represented.
  • the present invention provides an organic electric device including a first electrode, a second electrode, and an organic material layer formed between the first electrode and the second electrode, wherein the organic material layer includes a light emitting layer and the light emitting layer is phosphorescent.
  • An organic electric device including a first host compound represented by Chemical Formula (1) and a second host compound represented by Chemical Formula (3) or Chemical Formula (4) as an active light emitting layer is provided.
  • X and Y are independently of each other O, S, NR a or CR'R";
  • Ar 4 , Ar 5 , Ar 6 and R a are each independently a C 6 to C 60 aryl group; fluorenyl group; A C 2 ⁇ C 60 heterocyclic group containing at least one heteroatom selected from O, N, S, Si, and P; C 3 ⁇ C 60 aliphatic ring and C 6 ⁇ C 60 aromatic ring fused ring group; C 1 ⁇ C 60 Alkyl group; A C 2 ⁇ C 20 alkenyl group; A C 2 ⁇ C 20 alkynyl group; C 1 ⁇ C 30 alkoxy group; And a C 6 ⁇ C 30 aryloxy group; is selected from the group consisting of.
  • Ar 4 , Ar 5 , Ar 6 and R a are aryl groups, preferably C 6 -C 30 aryl groups, more preferably C 6 -C 25 aryl groups such as phenylene, biphenyl, naphthalene , terphenyl and the like.
  • Ar 4 , Ar 5 , Ar 6 and R a are heterocyclic groups, they may be preferably C 2 ⁇ C 30 heterocyclic groups, more preferably C 2 ⁇ C 24 heterocyclic groups, and exemplarily Pyrazine, thiophene, pyridine, pyrimidoindole, 5-phenyl-5H-pyrimido[5,4-b]indole, quinazoline, benzoquinazoline, carbazole, dibenzoquinazole, dibenzofuran, dibenzocy It may be opene, benzothienopyrimidine, benzofuropyrimidine, phenothiazine, phenylphenothiazine and the like.
  • Ar 4 , Ar 5 , Ar 6 and R a are fused ring groups, preferably C 3 ⁇ C 30 aliphatic ring and C 6 ⁇ C 30 aromatic ring fused ring group, more preferably C 3 ⁇ It may be a fused ring group of a C 24 aliphatic ring and a C 6 ⁇ C 24 aromatic ring.
  • Ar 4 , Ar 5 , Ar 6 and R a are alkyl groups, they may be preferably C 1 -C 30 alkyl groups, more preferably C 1 -C 24 alkyl groups.
  • Ar 4 , Ar 5 , Ar 6 and R a are alkoxy groups, they may preferably be C 1 to C 24 alkoxy groups.
  • Ar 4 , Ar 5 , Ar 6 and R a are aryloxy groups, they are preferably C 6 to C 24 aryloxy groups.
  • R' and R" are each independently hydrogen; heavy hydrogen; C 6 ⁇ C 60 aryl group; fluorenyl group; C 2 ⁇ C containing at least one heteroatom of O, N, S, Si and P; Heterocyclic group of 60 ; C 3 ⁇ C 60 aliphatic ring and C 6 ⁇ C 60 aromatic ring fused ring group; C 1 ⁇ C 60 alkyl group; C 2 ⁇ C 20 alkenyl group; C 2 ⁇ C 20 Alkynyl group; C 1 ⁇ C 30 Alkoxy group; And C 6 ⁇ C 30 It is selected from the group consisting of aryloxy group, or R' and R" may combine with each other to form a spiro ring,
  • L 2 , L 3 and L 4 are each independently a single bond; C 6 ⁇ C 60 arylene group; Fluorenylene group; and a C 2 ⁇ C 60 heteroarylene group containing at least one heteroatom selected from O, N, S, Si, and P.
  • L 2 , L 3 and L 4 are arylene groups, they may be preferably C 6 -C 30 arylene groups, more preferably C 6 -C 24 arylene groups, for example, phenylene, biphenyl , naphthalene, terphenyl, and the like.
  • L 2 , L 3 and L 4 are heterocyclic groups, they may be preferably C 2 ⁇ C 30 heterocyclic groups, more preferably C 2 ⁇ C 24 heterocyclic groups, and examples include pyrazine, psy Opene, pyridine, pyrimidoindole, 5-phenyl-5H-pyrimido[5,4-b]indole, quinazoline, benzoquinazoline, carbazole, dibenzoquinazole, dibenzofuran, dibenzothiophene, benzo thienopyrimidine, benzofuropyrimidine, phenothiazine, phenylphenothiazine and the like.
  • B is a C 6 ⁇ C 20 aryl group
  • R 2 and R 3 are the same or different, and each independently hydrogen; heavy hydrogen; halogen; C 6 ⁇ C 60 aryl group; A C 2 ⁇ C 60 heterocyclic group containing at least one heteroatom selected from O, N, S, Si, and P; C 3 ⁇ C 60 aliphatic ring and C 6 ⁇ C 60 aromatic ring fused ring group; C 1 ⁇ C 60 Alkyl group; A C 2 ⁇ C 20 alkenyl group; A C 2 ⁇ C 20 alkynyl group; C 1 ⁇ C 30 alkoxy group; And a C 6 ⁇ C 30 aryloxy group; is selected from the group consisting of.
  • R 2 and R 3 are aryl groups, they are preferably C 6 -C 30 aryl groups, more preferably C 6 -C 25 aryl groups, such as phenylene, biphenyl, naphthalene, terphenyl, etc. .
  • R 2 and R 3 are heterocyclic groups, they may be preferably C 2 ⁇ C 30 heterocyclic groups, more preferably C 2 ⁇ C 24 heterocyclic groups, and examples include pyrazine, thiophene, and pyridine.
  • pyrimidoindole 5-phenyl-5H-pyrimido[5,4-b]indole, quinazoline, benzoquinazoline, carbazole, dibenzoquinazole, dibenzofuran, dibenzothiophene, benzothieno pyrimidine, benzofuropyrimidine, phenothiazine, phenylphenothiazine and the like.
  • R 2 and R 3 are fused ring groups, preferably C 3 ⁇ C 30 aliphatic ring and C 6 ⁇ C 30 aromatic ring fused ring group, more preferably C 3 ⁇ C 24 aliphatic ring and It may be a fused ring group of C 6 ⁇ C 24 aromatic rings.
  • R 2 and R 3 are alkyl groups, they may be preferably C 1 to C 30 alkyl groups, more preferably C 1 to C 24 alkyl groups.
  • R 2 and R 3 are alkoxy groups, they may preferably be C 1 to C 24 alkoxy groups.
  • R 2 and R 3 are aryloxy groups, they may be preferably C 6 -C 24 aryloxy groups.
  • R 8 and R 10 are the same or different, and each independently hydrogen; heavy hydrogen; halogen; C 6 ⁇ C 60 aryl group; A C 2 ⁇ C 60 heterocyclic group containing at least one heteroatom selected from O, N, S, Si, and P; C 3 ⁇ C 60 aliphatic ring and C 6 ⁇ C 60 aromatic ring fused ring group; C 1 ⁇ C 60 Alkyl group; A C 2 ⁇ C 20 alkenyl group; A C 2 ⁇ C 20 alkynyl group; C 1 ⁇ C 30 alkoxy group; And a C 6 ⁇ C 30 aryloxy group; selected from the group consisting of, or adjacent groups may be bonded to each other to form a ring.
  • R 8 and R 10 are aryl groups, they are preferably C 6 -C 30 aryl groups, more preferably C 6 -C 25 aryl groups, such as phenylene, biphenyl, naphthalene, terphenyl, etc. .
  • R 8 and R 10 are heterocyclic groups, they may be preferably C 2 ⁇ C 30 heterocyclic groups, more preferably C 2 ⁇ C 24 heterocyclic groups, and examples thereof include pyrazine, thiophene, and pyridine.
  • pyrimidoindole 5-phenyl-5H-pyrimido[5,4-b]indole, quinazoline, benzoquinazoline, carbazole, dibenzoquinazole, dibenzofuran, dibenzothiophene, benzothieno pyrimidine, benzofuropyrimidine, phenothiazine, phenylphenothiazine and the like.
  • R 8 and R 10 are fused ring groups, preferably C 3 ⁇ C 30 aliphatic ring and C 6 ⁇ C 30 aromatic ring fused ring group, more preferably C 3 ⁇ C 24 aliphatic ring and It may be a fused ring group of C 6 ⁇ C 24 aromatic rings.
  • R 8 and R 10 are alkyl groups, they may be preferably C 1 to C 30 alkyl groups, more preferably C 1 to C 24 alkyl groups.
  • R 8 and R 10 are alkoxy groups, they may preferably be C 1 to C 24 alkoxy groups.
  • R 8 and R 10 are aryloxy groups, they may be preferably C 6 -C 24 aryloxy groups.
  • b, h and j are each independently an integer from 0 to 4
  • c is an integer from 0 to 3
  • the aryl group, arylene group, heterocyclic group, fluorenyl group, fluorenylene group, aliphatic ring group, fused ring group, alkyl group, alkenyl group, alkynyl group, alkoxyl group, and aryloxy group are each deuterium; halogen; silane group; Siloxane group; boron group; Germanium group; cyano group; nitro group; C 1 ⁇ C 20 Alkylthio group; A C 1 ⁇ C 20 alkoxy group; C 1 ⁇ C 20 Alkyl group; A C 2 ⁇ C 20 alkenyl group; A C 2 ⁇ C 20 alkynyl group; C 6 ⁇ C 20 aryl group; A deuterium-substituted C 6 ⁇ C 20 aryl group; fluorenyl group; C 2 ⁇ C 20 heterocyclic group; A C 3 ⁇ C 20 cycloalkyl group; C 7 ⁇ C 20 arylalkyl group;
  • the present invention provides an organic electric device in which Chemical Formula (3) is represented by Chemical Formula (3-1) or Chemical Formula (3-2) below.
  • R 4 , R 5 , R 6 and R 7 are the same as the definition of R 2 above,
  • d and f are independently integers from 0 to 3
  • e and g are independently integers from 0 to 4. ⁇
  • the present invention provides an organic electric device in which Chemical Formula (4) is represented by any one of Chemical Formulas (4-1) to (4-6) below.
  • R 9 is the same as the definition of R 8 above,
  • i is an integer from 0 to 2 ⁇
  • the present invention provides an organic electric device in which the compound represented by Chemical Formula (3) is represented by any one of the following compounds N-1 to N-144.
  • the present invention provides an organic electric device in which the compound represented by Chemical Formula (4) is represented by any one of the following compounds S-1 to S-84.
  • the present invention provides a compound represented by the following formula (3-3).
  • C ring is an aromatic hydrocarbon group of C 10 unsubstituted or substituted with deuterium
  • Z is O or S
  • R 11 , R 12 and R 13 are the same or different, and each independently represent hydrogen or deuterium;
  • k and n are each independently an integer from 0 to 3
  • m is an integer from 0 to 4
  • Ar 7 and Ar 8 are each independently a C 6 ⁇ C 60 aryl group; fluorenyl group; Or a C 2 ⁇ C 60 heterocyclic group,
  • Ar 7 and Ar 8 are aryl groups, preferably C 6 ⁇ C 30 aryl groups, more preferably C 6 ⁇ C 25 aryl groups, C 6 ⁇ C 18 aryl groups, C 6 ⁇ C 12 aryl groups such as phenyl, biphenyl, naphthyl, terphenyl, phenanthrenyl, phenyl-naphthyl, phenyl-phenanthrenyl, biphenyl-naphthyl, biphenyl-phenanthrenyl, and the like.
  • Examples of the aryl groups of Ar 7 and Ar 8 are as follows, but are not limited thereto.
  • Hydrogens bonded to the structure may be replaced by deuterium.
  • Ar 7 and Ar 8 are heterocyclic groups, preferably C 6 ⁇ C 30 heterocyclic groups, more preferably C 6 ⁇ C 25 heterocyclic groups, C 6 ⁇ C 18 heterocyclic groups, C 6 It may be a ⁇ C 12 heterocyclic group, such as dibenzofuran, dibenzothiophene, and the like.
  • the aryl group, fluorenyl group, heterocyclic group and aromatic hydrocarbon group are each deuterium; halogen; silane group; Siloxane group; boron group; Germanium group; cyano group; nitro group; C 1 ⁇ C 20 Alkylthio group; A C 1 ⁇ C 20 alkoxy group; C 1 ⁇ C 20 Alkyl group; A C 2 ⁇ C 20 alkenyl group; A C 2 ⁇ C 20 alkynyl group; C 6 ⁇ C 20 aryl group; A deuterium-substituted C 6 ⁇ C 20 aryl group; fluorenyl group; C 2 ⁇ C 20 heterocyclic group; A C 3 ⁇ C 20 cycloalkyl group; C 7 ⁇ C 20 arylalkyl group; And a C 8 ⁇ C 20 arylalkenyl group; may be further substituted with one or more substituents selected from the group consisting of, and these substituents may combine with each other to
  • R 11 , R 12 , R 13 , k, m, n, Ar 7 , Ar 8 and Z are as defined above,
  • R 14 is hydrogen or deuterium
  • l is an integer from 0 to 6 ⁇
  • R 11 , R 12 , R 13 , k, m, n, Ar 7 , Ar 8 , Z and C ring are the same as defined above.
  • R 11 , R 12 , R 13 , R 14 , k, m, n, l, Ar 7 , Ar 8 and Z are as defined above same.
  • the present invention provides a compound containing at least one deuterium in the formula (3-3). More preferably, at least one of Ar 7 and Ar 8 in Formula (3-3) contains deuterium.
  • the present invention provides a compound having a Reorganization Energy value of 0.170 to 0.190 in Formula (3-3).
  • the Reorganization Energy value may be 0.175 to 0.188.
  • RE Reorganization energy
  • AO opt Anion geometry of an anion molecule
  • CO opt Cation geometry of a cation molecule
  • Reorganization energy value and mobility are in inverse proportion, and the RE value of each material directly affects mobility under the condition that they have the same r and T values.
  • the relationship between RE value and mobility is expressed as follows.
  • the reorganization energy value requires a simulation tool capable of calculating potential energy according to the molecular structure, and in the present invention, Gaussian09 (hereinafter referred to as G09) and Schrodinger Materials Science's Jaguar (hereinafter referred to as JG) module were used. Both G09 and JG are tools that analyze molecular properties through quantum mechanical (QM) calculations, and have functions of optimizing molecular structures or calculating energy for a given molecular structure (Single-point energy).
  • QM quantum mechanical
  • Each cluster server consists of 4 node workstations and 1 master workstation, and each node uses a CPU with 36 or more cores to perform parallel computing through Symmetric Multi-processing (SMP). Molecular QM calculations were performed.
  • SMP Symmetric Multi-processing
  • the optimized molecular structure and its potential energy (NONE/COCE) in the neutral/charged state required for rearrangement energy were calculated using G09.
  • the charge state potential energy (NOCE) of the structure optimized for the neutral state and the neutral state potential energy (CONE) of the structure optimized for the charge state were calculated by changing only the charge to the two optimized structures. Then, the rearrangement energy was calculated according to the relational expression below.
  • Bond-Dissociation Energy is a calculation of the bond energy for an acyclic bond in a molecule. To this end, the electric potential energy of the target molecule is calculated and divided into two radical molecules based on the acyclic bond, and the electrical potential energy for each is calculated, and the bond dissociation energy can be expressed by the following formula.
  • the term “average bond - dissociation energy in solid state amorphous” refers to the quantum mechanical average binding energy of molecules in an amorphous solid phase through molecular dynamics simulation (Quantum -Mechanics-based Average Bond-dissociation Energy of Molecules in Molecular Dynamically simulated solid-state amorphous).
  • the average bond dissociation energy in the amorphous solid phase is a statistical data set (a set of multiple energy values), the value may be digitized differently depending on the data processing method. Therefore, in this specification, the average value of the bond dissociation energy distribution in the amorphous solid phase, which is statistically reliable because of the large number of samples and clearly shows the difference in properties between materials, was used for quantification, and the value is obtained through the following process. do.
  • the average bond dissociation energy in an amorphous solid phase is a value derived by arranging a certain number of single molecules in a unit cell with periodic boundary conditions (PBC) and performing molecular dynamics simulation on them,
  • PBC periodic boundary conditions
  • the number of single molecules in a unit cell may be tens to thousands.
  • the molecular dynamics simulation was conducted in four steps, and the first step proceeds at a temperature of 10 Kelvin under conditions with a constant volume according to Brownian dynamics.
  • the second step proceeds according to Brownian dynamics as well, but proceeds at a temperature of 100 Kelvin under conditions of constant atmospheric pressure (1.01325 bar).
  • molecular dynamics according to the force field are calculated, and similarly, it proceeds by 0.1 nanoseconds (ns) at a constant pressure (atmospheric pressure) and temperature (room temperature).
  • the molecular dynamics process proceeds in units of 2 femtoseconds (fs), and the simulation proceeds until a certain amount of time is required.
  • the certain time means the time for the amorphous solid structure to reach a sufficient equilibrium state, and may be preferably hundreds of nanoseconds to thousands of nanoseconds, more preferably 100 nanoseconds to 150 nanoseconds, and even more preferably At most, it may be 120 nanoseconds.
  • structural data at the final time point is extracted and some single molecules are extracted (sampled) from the structure.
  • Average bond dissociation energy value in the amorphous solid phase herein The unit of is eV, and it can be converted into kcal/mol by multiplying the eV value by 23.061.
  • the term “bulk density of solid -state amorphous ” means, unless otherwise specified , the bulk density of molecular dynamically simulated amorphous solid-state molecular structure obtained through molecular dynamics simulation. solid-state amorphous ), and obtaining its value proceeds through the following process.
  • the single molecule in the unit cell is It can be dozens or thousands.
  • the molecular dynamics simulation was conducted in four steps, and the first step proceeds at a temperature of 10 Kelvin under conditions with a constant volume according to Brownian dynamics.
  • the second step proceeds according to Brownian dynamics as well, but proceeds at a temperature of 100 Kelvin under conditions of constant atmospheric pressure (1.01325 bar).
  • molecular dynamics according to the force field are calculated, and similarly, it proceeds by 0.1 nanoseconds (ns) at a constant pressure (atmospheric pressure) and temperature (room temperature).
  • the molecular dynamics process proceeds in units of 2 femtoseconds (fs), and the simulation proceeds until a certain amount of time is required.
  • the certain time means the time for the amorphous solid structure to reach a sufficient equilibrium state, and may be preferably hundreds of nanoseconds to thousands of nanoseconds, more preferably 100 nanoseconds to 150 nanoseconds, and even more preferably may be 120 nanoseconds.
  • the average bulk density was calculated for the final 20% of the time, and the final 20% of the time may preferably be tens of nanoseconds to thousands of nanoseconds, more preferably 80 nanoseconds to 150 nanoseconds. , and even more preferably may be 120 nanoseconds.
  • the volume density value unit of the amorphous solid phase molecular structure is g/cm 3 .
  • radial distribution function RDF g(r) .
  • RDF radial distribution function
  • g(r) means the probability of finding another molecule separated by a certain distance r from one molecule.
  • the radial distribution function is expressed as a function according to distance, and the expression is defined as follows.
  • is the bulk density
  • dr is the microscopic thickness of a sphere having a radius r
  • dn r is the number of molecules included in the shell of a sphere having a microscopic thickness dr .
  • the distance at which the radial distribution function has the largest value in the amorphous solid phase is used as an indicator, and the center-of-mass distance of each molecule is used as the distance r between molecules.
  • the amorphous solid-state structure for obtaining the radial distribution function is obtained through molecular dynamics simulation, and at this time, the distribution function is calculated using only the structure for the final 20% of the total simulation time, and the final 20% of the time is preferably several tens. It may be nanoseconds to thousands of nanoseconds, more preferably 80 nanoseconds to 150 nanoseconds, and even more preferably 120 nanoseconds.
  • the unit of the radial distribution function value is ⁇ .
  • the average bond dissociation energy in the amorphous solid phase, the volume density of the molecular structure of the amorphous solid phase, and the radial distribution function values described in this specification were obtained through molecular simulation (Gaussian09 Rev. C.01, Schrodinger Materials Science Suite 4.1.161).
  • the Desmond package was used for the dynamics simulation. Single molecules were extracted from structures obtained through molecular dynamics simulations, and quantum chemical properties based on the first principle were calculated. Gaussian and Jaguar packages were used in this process.
  • Charge mobility is an analytical method of the master equation according to the effective medium approximation in the generalized effective medium model (GEMM). It can be obtained from the solution, and the expression is expressed as follows.
  • e is the charge
  • is the thermodynamic constant given by the reciprocal of the Boltzmann constant and the temperature (1/k B T)
  • M is the average number of nearest-neighbor molecules
  • H ab is the charge transfer matrix element
  • is the Planck constant
  • is the reorganization energy
  • is the disorder parameter
  • C is the correction constant. Therefore, the charge mobility has the following proportional relationship.
  • the charge mobility has an exponential decay proportional to the intermolecular distance, and the shorter the intermolecular distance, the higher the charge mobility.
  • the volume density is inversely proportional to the volume ( ⁇ ⁇ 1/ V )
  • the average intermolecular distance ( ) can be derived, and the smaller the volume density, the shorter the intermolecular distance, which means that a material with a small volume density can have high charge mobility.
  • the present invention provides a compound in which the compound represented by Formula (3-3) is represented by any one of the following compounds N-93 to N-144.
  • the present invention is an organic electric device including a first electrode, a second electrode, and an organic material layer formed between the first electrode and the second electrode, wherein the organic material layer includes the compound represented by the above formula (3-3) It provides an organic electric element that does.
  • the present invention provides an organic electric device including at least one of a hole injection layer, a hole transport layer, a light emitting auxiliary layer, a light emitting layer, an electron transport auxiliary layer, an electron transport layer, and an electron injection layer as the organic material layer.
  • the present invention provides a light emitting layer composition including the compound represented by the formula (3-3), and provides an organic electric device including the light emitting layer.
  • the organic electric element 100 has a first electrode 110, a second electrode 170, and a chemical formula ( 1) or an organic material layer containing a single compound or two or more compounds represented by Formula (3-3).
  • the first electrode 110 may be an anode or an anode
  • the second electrode 170 may be a cathode or a cathode
  • the first electrode may be a cathode and the second electrode may be an anode.
  • the organic material layer may sequentially include a hole injection layer 120 , a hole transport layer 130 , a light emitting layer 140 , an electron transport layer 150 , and an electron injection layer 160 on the first electrode 110 . At this time, other layers except for the light emitting layer 140 may not be formed.
  • a hole blocking layer, an electron blocking layer, a light emitting auxiliary layer 220, a buffer layer 210, and the like may be further included, and the electron transport layer 150 may serve as a hole blocking layer. (See Fig. 2)
  • the organic electric element according to an embodiment of the present invention may further include a protective layer or a light efficiency improvement layer 180 .
  • the light efficiency improving layer may be formed on a surface of both surfaces of the first electrode not in contact with the organic material layer or on a surface of both surfaces of the second electrode not in contact with the organic material layer.
  • the compound according to an embodiment of the present invention applied to the organic layer is a hole injection layer 120, a hole transport layer 130, a light emitting auxiliary layer 220, an electron transport auxiliary layer, an electron transport layer 150, an electron injection layer ( 160), a host or dopant of the light emitting layer 140, or a material of a light efficiency improving layer.
  • compounds according to formula (1), formula (3) or formula (4) of the present invention can be used as a material for the light emitting layer host.
  • the organic material layer may include two or more stacks including a hole transport layer, a light emitting layer, and an electron transport layer sequentially formed on the anode, and may further include a charge generation layer formed between the two or more stacks. (See Fig. 3)
  • the selection of the core and the combination of sub-substituents bonded thereto are also very important. It is important, especially when the optimal combination of the energy level and T1 value between each organic material layer and the intrinsic properties of the material (mobility, interfacial properties, etc.) is achieved, long life and high efficiency can be achieved at the same time.
  • An organic electroluminescent device may be manufactured using a physical vapor deposition (PVD) method.
  • PVD physical vapor deposition
  • an anode is formed by depositing a metal or a metal oxide having conductivity or an alloy thereof on a substrate, and a hole injection layer 120, a hole transport layer 130, a light emitting layer 140, an electron transport layer 150 and After forming an organic material layer including the electron injection layer 160, it can be manufactured by depositing a material that can be used as a cathode thereon.
  • the organic material layer is formed by any one of a spin coating process, a nozzle printing process, an inkjet printing process, a slot coating process, a dip coating process, and a roll-to-roll process, and the organic material layer includes the compound as an electron transport material. It provides an organic electric element characterized in that.
  • the present invention provides an organic electric device characterized in that a compound of the same type or a different type of the compound represented by the formula (1) is mixed and used in the organic material layer.
  • the present invention provides a light emitting layer composition including the compound represented by the formula (1), and provides an organic electric device including the light emitting layer.
  • the present invention provides a light emitting layer composition including the compound represented by Formula (1) and the compound represented by Formula (3) or Formula (4), and provides an organic electric device including the light emitting layer.
  • the present invention is a display device including the above organic electric element; and a controller for driving the display device.
  • the present invention provides an electronic device characterized in that the organic electric device is at least one of an organic light emitting device, an organic solar cell, an organic photoreceptor, an organic transistor, and a device for monochromatic or white lighting.
  • the electronic device may be a current or future wired/wireless communication terminal, and includes all electronic devices such as a mobile communication terminal such as a mobile phone, a PDA, an electronic dictionary, a PMP, a remote control, a navigation device, a game machine, various TVs, and various computers.
  • Sub 1 of Reaction Scheme 1 may be synthesized by the reaction pathway of Reaction Scheme 2 below, but is not limited thereto.
  • Sub1-1b (55 g, 0.17 mol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) (41.0 g, 0.17 mol), Pd 2 (dba) 3 (4.5 g, 0.005 mol) and AcOK (47.7 g, 0.5 mol) were added to DMF (330 mL) and stirred at 160 °C for 8 h. After the reaction was completed, the reaction solvent was removed, and the concentrated organic material was separated using a silica gel column or a recrystallization method to obtain 60 g (86%) of the product Sub1-1.
  • Sub1-8b (35 g, 0.08 mol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) (21.4 g, 0.08 mol), Pd 2 (dba) 3 (2.3 g, 0.003 mol) and AcOK (24.8 g, 0.25 mol) were added to DMF (170 mL) and stirred at 160 °C for 8 h. When the reaction was completed, 35 g (81.9%) of the product Sub1-8 was obtained using the separation method of Sub1-1 described above.
  • Sub1-23b (40 g, 0.12 mol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) (30 g, 0.12 mol), Pd 2 (dba) 3 (3.2 g, 0.004 mol) and AcOK (34.7 g, 0.4 mol) were added to DMF (240 mL) and stirred at 160 °C for 8 h. After the reaction was completed, 45 g (88.6%) of the product Sub1-23 was obtained using the above-described separation method for Sub1-1.
  • Sub1-41b (45 g, 0.13 mol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) (33.6 g, 0.13 mol), Pd 2 (dba) 3 (3.7 g, 0.004 mol) and AcOK (39 g, 0.40 mol) were added to DMF (265 mL) and stirred at 160 °C for 8 h. After the reaction was completed, 50 g (87.5%) of the product Sub1-41 was obtained using the separation method of Sub1-1 described above.
  • the compound belonging to Sub 1 may be the following compounds, but is not limited thereto, and Table 1 below shows the FD-MS values of the compounds belonging to Sub 1.
  • the compound belonging to Sub 2 may be the following compounds, but is not limited thereto, and Table 2 below shows the FD-MS values of the compounds belonging to Sub 2.
  • N-12a (30 g, 0.08 mol), N-12b (34.8 g, 0.08 mol), Pd 2 (dba) 3 (2.3 g, 0.003 mol), NaOt-Bu (24.5 g, 0.25 mol), P(t -Bu) 3 (2.1 g, 0.005 mol) and Toluene (170 mL) were added and reacted at 135°C for 6 hours.
  • 53 g (85.8%) of product N-12 was obtained using the separation method of P-1 described above.
  • N-19a 50 g, 0.13 mol
  • N-19b 35 g, 0.13 mol
  • Pd 2 (dba) 3 3.6 g, 0.004 mol
  • NaOt-Bu 37.6 g, 0.40 mol
  • P(t -Bu) 3 3.2 g, 0.008 mol
  • Toluene 260 mL
  • N-93-a (23.7 g, 0.051 mol), N-93-b (16.5 g, 0.051 mol), Pd 2 (dba) 3 (1.41 g, 0.002 mol), NaOt-Bu (9.9 g, 0.103 mol) , P(t-Bu) 3 (0.62 g, 0.003 mol), and Toluene (260 mL) were added and reacted at 80°C for 6 hours.
  • 28.2 g (78.4%) of product N-93 was obtained using the separation method of P-1 described above.
  • N-108-a (24.0 g, 0.052 mol), N-108-b (18.2 g, 0.052 mol), Pd 2 (dba) 3 (1.43 g, 0.002 mol), NaOt-Bu (10.0 g, 0.104 mol) , P(t-Bu) 3 (0.63 g, 0.003 mol), and Toluene (260 mL) were added, and reacted at 80°C for 6 hours. After the reaction was completed, 29.3 g (76.9%) of product N-108 was obtained using the separation method of P-1 described above.
  • N-113-a (25.6 g, 0.055 mol), N-113-b (13.6 g, 0.055 mol), Pd 2 (dba) 3 (1.52 g, 0.002 mol), NaOt-Bu (10.6 g, 0.111 mol) , P(t-Bu) 3 (0.67 g, 0.003 mol), and Toluene (280 mL) were added and reacted at 80°C for 6 hours.
  • 27.2 g (78.4%) of product N-113 was obtained using the separation method of P-1 described above.
  • N-113-a (10.0 g, 0.022 mol), N-116-b (5.4 g, 0.022 mol), Pd 2 (dba) 3 (0.59 g, 0.001 mol), NaOt-Bu (4.2 g, 0.043 mol) , P(t-Bu) 3 (0.26 g, 0.001 mol), and Toluene (110 mL) were added and reacted at 80°C for 6 hours.
  • 10.7 g (78.2%) of product N-116 was obtained using the separation method of P-1 described above.
  • N-132-a (25.4 g, 0.055 mol), N-132-b (13.7 g, 0.055 mol), Pd 2 (dba) 3 (1.51 g, 0.002 mol), NaOt-Bu (10.5 g, 0.110 mol) , P(t-Bu) 3 (0.67 g, 0.003 mol), and Toluene (275 mL) were added and reacted at 80°C for 6 hours.
  • 27.3 g (78.8%) of product N-132 was obtained using the separation method of P-1 described above.
  • An organic light emitting device was fabricated according to a conventional method using the compound obtained through synthesis as a light emitting host material for the light emitting layer.
  • 2-TNATA a ,4-diamine
  • 4-TNATA 4,4-bis[N-(1-naphthyl) as a hole transport compound on the hole injection layer )-N-phenylamino]biphenyl
  • -NPD 4,4-bis[N-(1-naphthyl) as a hole transport compound on the hole injection layer )-N-phenylamino]biphenyl
  • the present invention compound (P-2) represented by Formula (1) was used as a host on the hole transport layer, and (piq)2Ir(acac) [bis-(1-phenylisoquinolyl)iridium(III)acetylacetonate] was used as a dopant material. was doped in a weight ratio of 95:5 to deposit a light emitting layer with a thickness of 30 nm. Subsequently, (1,1'-bisphenyl)-4-oleato)bis(2-methyl-8-quinolinolato)aluminum (hereinafter abbreviated as BAlq) was vacuum-deposited to a thickness of 10 nm as a hole-blocking layer.
  • BAlq (1,1'-bisphenyl)-4-oleato)bis(2-methyl-8-quinolinolato)aluminum
  • Alq3 tris(8-quinolinol) aluminum
  • LiF an alkali metal halide
  • Al was deposited to a thickness of 150 nm and used as a cathode, thereby manufacturing an organic light emitting device.
  • An organic electroluminescent device was manufactured in the same manner as in Example 1, except that the compound of the present invention shown in Table 6 was used instead of the compound (P-2) of the present invention as a host material of the light emitting layer.
  • An organic light emitting device was fabricated according to a conventional method using the compound obtained through synthesis as a light emitting host material for the light emitting layer.
  • 2-TNATA a ,4-diamine
  • 4-TNATA 4,4-bis[N-(1-naphthyl) as a hole transport compound on the hole injection layer )-N-phenylamino]biphenyl
  • -NPD 4,4-bis[N-(1-naphthyl) as a hole transport compound on the hole injection layer )-N-phenylamino]biphenyl
  • the compound of the present invention represented by formula (1) and the compound (N-8) represented by formulas (3) to (4) were used in a weight ratio of 5:5,
  • BAlq (1,1'-bisphenyl)-4-oleato)bis(2-methyl-8-quinolinolato)aluminum
  • BAlq tris(8-quinolinol) aluminum
  • Alq3 tris(8-quinolinol) aluminum
  • LiF an alkali metal halide
  • Al was deposited to a thickness of 150 nm and used as a cathode, thereby manufacturing an organic light emitting device.
  • An organic electroluminescent device was prepared in the same manner as in Example 1, except that the compounds of the present invention listed in Table 6 were used instead of the compounds (P-2) and (N-8) of the present invention as the host material of the light emitting layer. was produced.
  • An organic electroluminescent device was manufactured in the same manner as in Example 1, except that Comparative Compounds A to F were used as host materials for the light emitting layer.
  • electroluminescence (EL) was performed with PR-650 of photo research. Characteristics were measured, and as a result of the measurement, T95 life was measured at a standard luminance of 2500 cd/m 2 through life measurement equipment manufactured by McScience. Table 6 below shows the results of device fabrication and evaluation.
  • the driving voltage is lowered and the efficiency and lifespan are significantly improved compared to the case where comparative compounds A to F are used alone.
  • the phenanthrene compound is located at the terminal, has a naphthyl group as a linking group, and the type of substituent substituted for triazine is composed of only aryl. More specifically, the compound of the present invention When phenanthren is located at the distal end, it has an appropriate HOMO level.
  • the HOMO level value is determined by the phenanthren configuration, and this HOMO value corresponds to an intermediate position between the hole transfer layer and the dopant layer.
  • a material that is excessively condensed or has electronic properties such as a comparative compound
  • a large difference is shown in the HOMO value.
  • the naphthyl linker it has a higher planarity than simple linking groups such as phenyl and biphenyl groups, and serves to block electronic properties with triazine. This plays a big role in having more smooth electron mobility.
  • simple aryl group substitution serves to make the electronic characteristics of triazine stronger by not substituting a substituent having electronic characteristics of the material.
  • the driving voltage was lowered, the efficiency was increased, and the lifespan was also increased.
  • the device results were significantly improved when the mixture was used rather than when a single compound was used, which was also shown in the comparative example results.
  • the composition of core triazine, 2-naphthyl, and phenanthren has a positive effect on overall mobility, resulting in overall improved results by acting as a ratio of electrons to electrons (e.g., energy balance, stability, etc.). have.
  • An organic light emitting device was fabricated according to a conventional method using the compound obtained through synthesis as a light emitting host material for the light emitting layer.
  • a 2-TNATA film was vacuum-deposited on the ITO layer (anode) formed on the glass substrate to form a 60 nm-thick hole injection layer, and then -NPD as a hole transport compound was vacuum-deposited to a thickness of 60 nm on the hole injection layer to form a hole injection layer.
  • a transport layer was formed.
  • the compound (P-2) of the present invention represented by formula (1) and the compound (N-89) represented by formula (3) were used in a weight ratio of 5:5, and as a dopant material (piq ) 2 Ir(acac) was doped in a weight ratio of 95:5 to deposit a light emitting layer with a thickness of 30 nm. Subsequently, BAlq was vacuum deposited to a thickness of 10 nm as a hole blocking layer, and Alq3 was deposited to a thickness of 40 nm as an electron transport layer.
  • LiF an alkali metal halide
  • Al was deposited to a thickness of 150 nm and used as a cathode, thereby manufacturing an organic light emitting device.
  • An organic electroluminescent device was manufactured in the same manner as in Example 48, except that the compound of the present invention shown in Table 7 was used instead of the compound (N-89) of the present invention as a host material of the light emitting layer.
  • a forward bias DC voltage was applied to the organic electric elements prepared in Examples 48 to 62 prepared as described above to measure electroluminescence (EL) characteristics with PR-650 of photo research, and the measurement results At 2500 cd/m 2 standard luminance, T95 life was measured using life measurement equipment manufactured by McScience. Table 7 below shows the results of device fabrication and evaluation.
  • Example 48 P-2 N-89 5.0 10.3 2500 24.3 112.2
  • Example 49 N-90 4.9 11.5 2500 22.8 109.3
  • Example 50 N-93 4.8 8.7 2500 28.8 122.4
  • Example 51 N-98 4.8 8.5 2500 29.4 125.5
  • Example 52 N-104 4.7 8.6 2500 29.2 124.9
  • Example 53 N-108 4.7 8.9 2500 28.1 120.2
  • Example 54 N-112 4.8 8.5 2500 29.3 128.7
  • Example 55 N-113 4.8 7.9 2500 31.8 132.2
  • Example 56 N-116 4.7 7.8 2500 32.0 134.8
  • Example 57 N-117 4.8 8.2 2500 30.6 130.5
  • Example 58 N-129 4.8 8.0 2500 31.2 133.0
  • Example 59 N-132 4.8 7.9 2500 31.4 135.5
  • Example 60 N-136 4.7 8.3 2500 30.1 131.3
  • Example 61 N-142
  • Example 7 it can be seen that the driving voltage is low and the efficiency and lifetime are remarkably high when the compound of the present invention is used. Upon closer examination, it can be seen that the efficiency and lifetime of Examples 50 to 62 are more remarkably improved than Examples 48 and 49. This is because the performance of the device varies depending on the type of the second compound, and in particular, compared to Example 48 in which dibenzofuran was substituted with N-89 as a substituent of carbazole, naphthobenzofuran or naphtho as a substituent of carbazole. It can be seen that the efficiency and lifetime of Examples 50 to 62 in which the benzothiophene-substituted compound is applied are significantly improved.
  • Example 50 to 62 in which a compound in which an amine group was directly bonded to the 2-position of carbazole were applied were effective in efficiency and lifespan. Significant improvement was observed.
  • Table 8 below describes the calculated Reorganization Energy values of N-89, N-90, N-113, and N-129.
  • the RE values listed in Table 8 below refer to values obtained by calculating RE holes .
  • N-113 and N-129 have higher RE values than N-89 and N-90. It can be seen that a higher RE value is obtained when an amine group is bonded to position 2 of carbazole and naphthobenzofuran or naphthobenzothiophene is bonded as a substituent of carbazole.
  • a high RE value means low mobility and slow HOD.
  • the light emitting layer is composed of a plurality of mixtures
  • driving, efficiency, and lifespan are determined according to the degree of ease of injection of holes and electrons into dopants. It has the effect of dramatically increasing the efficiency and lifespan.
  • the compound of the present invention represented by the formula (3-3) exhibits high efficiency and long lifespan with a synergistic effect with the compound of the present invention represented by the formula (1) You can check.
  • Example 56 in which deuterium was substituted showed excellent results in life, which will be described in Table 9 below.
  • Table 9 shows data obtained by measuring bond dissociation energies (BDE) of compounds N-113 and N-116 using molecular simulation (Gaussian09 Rev. C.01, Schrodinger Materials Science Suite 4.1.161).
  • the BDEs shown in Table 9 below are the results measured in the oxidation state in which electrons in the molecule are released, and when the electrons in N-113 and N-116 are in the oxidation state, +Charge is injected into the tertiary amine.
  • the BDE value is higher in N-116 than in N-113.
  • the lower the crystallinity of the thin film the more amorphous state can be created.
  • This amorphous state reduces the grain boundary and increases the mobility of charges and holes through isotropic and homogeneous characteristics. it can be faster
  • the quantum mechanical BDE of the solid-state molecule in the amorphous state may differ due to the intermolecular interaction in the solid state, and the higher the value, the higher the stability of the compound itself. Therefore, it is expected that when N-116 is used as a host of an organic electric device, the stability of holes passing from the hole transport layer is significantly increased, thereby maximizing the lifetime of the device.
  • the present invention it is possible to manufacture an organic device having excellent device characteristics of high luminance, high luminescence and long lifespan, so there is industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The present invention provides: a novel compound which can improve the luminous efficiency, stability, and service life of an element; an organic electric element using same; and an electronic device thereof.

Description

유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치Compounds for organic electric devices, organic electric devices using the same and electronic devices thereof
본 발명은 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치에 관한 것이다.The present invention relates to a compound for an organic electric device, an organic electric device using the same, and an electronic device thereof.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기전기소자는 통상 양극과 음극 및 이 사이에 유기물층을 포함하는 구조를 가진다. 여기서 유기물층은 유기전기소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층 및 전자주입층 등으로 이루어질 수 있다.In general, the organic light emitting phenomenon refers to a phenomenon in which electrical energy is converted into light energy using an organic material. An organic electric device using an organic light emitting phenomenon usually has a structure including an anode, a cathode, and an organic material layer therebetween. Here, the organic material layer is often composed of a multi-layer structure composed of different materials in order to increase the efficiency and stability of the organic electric device, and may include, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer.
유기전기소자에서 유기물층으로 사용되는 재료는 기능에 따라, 발광 재료와 전하수송 재료, 예컨대 정공주입 재료, 정공수송 재료, 전자수송 재료, 전자주입 재료 등으로 분류될 수 있다.Materials used as organic layers in organic electric devices may be classified into light emitting materials and charge transport materials, such as hole injection materials, hole transport materials, electron transport materials, and electron injection materials, according to their functions.
유기전기발광소자에 있어 가장 문제시되는 것은 수명과 효율인데, 디스플레이가 대면적화되면서 이러한 효율이나 수명 문제는 반드시 해결해야 하는 상황이다. 효율과 수명, 구동전압 등은 서로 연관이 있으며, 효율이 증가되면 상대적으로 구동전압이 떨어지고, 구동전압이 떨어지면서 구동시 발생되는 주울열(Joule heating)에 의한 유기물질의 결정화가 적어져 결과적으로 수명이 높아지는 경향을 나타낸다.Lifespan and efficiency are the most problematic issues in organic light emitting devices, and as displays become larger, these efficiency and lifespan problems must be solved. Efficiency, lifespan, driving voltage, etc. are related to each other. As the efficiency increases, the driving voltage relatively decreases. indicates a tendency to increase life expectancy.
하지만 상기 유기물층을 단순히 개선한다고 하여 효율을 극대화시킬 수는 없다. 왜냐하면 각 유기물층 간의 에너지 준위 및 T1 값, 물질의 고유특성(이동도, 계면특성 등) 등이 최적의 조합을 이루었을 때 긴 수명과 높은 효율을 동시에 달성할 수 있기 때문이다.However, efficiency cannot be maximized by simply improving the organic layer. This is because long life and high efficiency can be achieved at the same time when the optimal combination of the energy level and T1 value between each organic material layer and the intrinsic properties (mobility, interfacial property, etc.) of the material is achieved.
또한, 최근 유기전기발광소자에 있어 정공수송층에서의 발광 문제를 해결하기 위해서는 반드시 정공수송층과 발광층 사이에 발광보조층이 존재하여야 하며, 각각의 발광층(R, G, B)에 따른 서로 다른 발광보조층의 개발이 필요한 시점이다.In addition, in order to solve the light emission problem in the hole transport layer in recent organic light emitting devices, an auxiliary light emitting layer must be present between the hole transport layer and the light emitting layer, and different light emission auxiliary layers according to each light emitting layer (R, G, B) It is time to develop the layer.
일반적으로 전자수송층에서 발광층으로 전자(electron)가 전달되고 정공(hole)이 정공수송층에서 발광층으로 전달되어 재조합(recombination)에 의해 엑시톤(exciton)이 생성된다.In general, electrons are transferred from the electron transport layer to the light emitting layer, and holes are transferred from the hole transport layer to the light emitting layer to generate excitons by recombination.
하지만 정공수송층에 사용되는 물질의 경우 낮은 HOMO 값을 가져야 하기 때문에 대부분 낮은 T1 값을 가지며, 이로 인해 발광층에서 생성된 엑시톤(exciton)이 정공수송층으로 넘어가게 되어 결과적으로 발광층 내 전하 불균형(charge unbalance)을 초래하여 정공수송층 계면에서 발광하게 된다.However, since the material used in the hole transport layer must have a low HOMO value, most of them have a low T1 value, and as a result, excitons generated in the light emitting layer are transferred to the hole transport layer, resulting in charge unbalance in the light emitting layer resulting in light emission at the interface of the hole transport layer.
정공수송층 계면에서 발광될 경우, 유기전기소자의 색순도 및 효율이 저하되고 수명이 짧아지는 문제점이 발생하게 된다. 따라서 높은 T1 값을 가지며, 정공 수송층 HOMO 에너지 준위와 발광층의 HOMO 에너지 준위 사이의 HOMO 준위를 갖는 발광보조층의 개발이 절실히 요구된다.When light is emitted from the interface of the hole transport layer, the color purity and efficiency of the organic electric element are lowered and the lifetime is shortened. Therefore, there is an urgent need to develop a light emitting auxiliary layer having a high T1 value and a HOMO level between the HOMO energy level of the hole transport layer and the HOMO energy level of the light emitting layer.
한편, 유기전기소자의 수명단축 원인 중 하나인 양극전극(ITO)으로부터 금속 산화물이 유기층으로 침투확산되는 것을 지연시키면서, 소자 구동시 발생되는 주울열(Joule heating)에 대해서도 안정된 특성, 즉 높은 유리 전이온도를 갖는 정공 주입층 재료에 대한 개발이 필요하다. 정공수송층 재료의 낮은 유리전이 온도는 소자 구동시, 박막 표면의 균일도를 저하시키는 특성이 있는바, 이는 소자수명에 큰 영향을 미치는 것으로 보고되고 있다. 또한, OLED 소자는 주로 증착 방법에 의해 형성되는데, 증착시 오랫동안 견딜 수 있는 재료, 즉 내열특성이 강한 재료 개발이 필요한 실정이다.On the other hand, it delays the penetration and diffusion of metal oxide into the organic layer from the anode electrode (ITO), which is one of the causes of life shortening of organic electric devices, and has stable characteristics against Joule heating generated during device operation, that is, high glass transition. It is necessary to develop a hole injection layer material having a temperature. The low glass transition temperature of the hole transport layer material has a property of reducing the uniformity of the surface of the thin film when the device is driven, which is reported to have a great effect on the lifespan of the device. In addition, OLED devices are mainly formed by a deposition method, and there is a need to develop materials that can endure for a long time during deposition, that is, materials with strong heat resistance.
즉, 유기전기소자가 갖는 우수한 특징들을 충분히 발휘하기 위해서는 소자 내 유기물층을 이루는 물질, 예컨대 정공주입 물질, 정공수송 물질, 발광 물질, 전자수송 물질, 전자주입 물질, 발광보조층 물질 등이 안정하고 효율적인 재료에 의하여 뒷받침되는 것이 선행되어야 하나, 아직까지 안정되고 효율적인 유기전기소자용 유기물층 재료의 개발이 충분히 이루어지지 않은 상태이다. 따라서, 새로운 재료의 개발이 계속 요구되고 있다.That is, in order to fully exhibit the excellent characteristics of organic electric devices, materials constituting the organic material layer in the device, such as hole injection materials, hole transport materials, light emitting materials, electron transport materials, electron injection materials, and light emitting auxiliary layer materials, etc. are stable and efficient. Although supporting by materials should precede, the development of stable and efficient organic material layer materials for organic electric devices has not yet been sufficiently achieved. Therefore, the development of new materials continues to be required.
상술한 배경기술의 문제점을 해결하기 위해 본 발명은, 신규한 구조를 갖는 화합물을 밝혀내었으며, 또한 이 화합물을 유기전기소자에 적용시 소자의 발광효율, 안정성 및 수명을 크게 향상시킬 수 있다는 사실을 밝혀내었다.In order to solve the problems of the background art described above, the present invention has discovered a compound having a novel structure, and also the fact that when this compound is applied to an organic electric device, the luminous efficiency, stability and lifespan of the device can be greatly improved. has revealed
이에 본 발명은 신규한 화합물, 이를 이용한 유기전기소자 및 그 전자 장치를 제공하는 것을 목적으로 한다.Accordingly, an object of the present invention is to provide a novel compound, an organic electric device using the same, and an electronic device thereof.
본 발명은 하기 화학식 (1)로 표시되는 화합물을 제공한다.The present invention provides a compound represented by the following formula (1).
화학식 (1) Formula (1)
Figure PCTKR2022006762-appb-img-000001
Figure PCTKR2022006762-appb-img-000001
다른 측면에서, 본 발명은 제 1전극, 제 2전극, 및 상기 제 1전극과 상기 제 2전극 사이에 형성된 유기물층을 포함하는 유기전기소자에 있어서, 상기 유기물층은 발광층을 포함하고 상기 발광층은 인광성 발광층으로서 상기 화학식 (1)로 표시되는 제 1호스트 화합물 및 하기 화학식 (3) 또는 화학식 (4)로 표시되는 제 2호스트 화합물을 포함하는 유기전기소자를 제공한다.In another aspect, the present invention provides an organic electric device including a first electrode, a second electrode, and an organic material layer formed between the first electrode and the second electrode, wherein the organic material layer includes a light emitting layer and the light emitting layer is phosphorescent. An organic electric device including a first host compound represented by Chemical Formula (1) and a second host compound represented by Chemical Formula (3) or Chemical Formula (4) as a light emitting layer is provided.
화학식 (3) 화학식 (4) Formula (3) Formula (4)
Figure PCTKR2022006762-appb-img-000002
Figure PCTKR2022006762-appb-img-000002
다른 측면에서, 본 발명은 상기 유기전기소자를 포함하는 전자 장치를 제공한다.In another aspect, the present invention provides an electronic device including the organic electric element.
본 발명에 따른 화합물을 이용함으로써 소자의 높은 발광효율, 낮은 구동전압 및 고내열성을 달성할 수 있으며, 소자의 색순도 및 수명을 크게 향상시킬 수 있다.By using the compound according to the present invention, high luminous efficiency, low driving voltage and high heat resistance of the device can be achieved, and the color purity and lifespan of the device can be greatly improved.
도 1 내지 도 3은 본 발명에 따른 유기전기발광소자의 예시도이다.1 to 3 are exemplary views of an organic electroluminescent device according to the present invention.
100, 200, 300 : 유기전기소자 110 : 제1 전극100, 200, 300: organic electric element 110: first electrode
120 : 정공주입층 130 : 정공수송층120: hole injection layer 130: hole transport layer
140 : 발광층 150 : 전자수송층140: light emitting layer 150: electron transport layer
160 : 전자주입층 170 : 제2 전극160: electron injection layer 170: second electrode
180 : 광효율 개선층 210 : 버퍼층180: light efficiency improvement layer 210: buffer layer
220 : 발광보조층 320 : 제1 정공주입층220: light emitting auxiliary layer 320: first hole injection layer
330 : 제1 정공수송층 340 : 제1 발광층330: first hole transport layer 340: first light emitting layer
350 : 제1 전자수송층 360 : 제1 전하생성층350: first electron transport layer 360: first charge generation layer
361 : 제2 전하생성층 420 : 제2 정공주입층361: second charge generation layer 420: second hole injection layer
430 : 제2 정공수송층 440 : 제2 발광층430: second hole transport layer 440: second light emitting layer
450 : 제2 전자수송층 CGL : 전하생성층450: second electron transport layer CGL: charge generation layer
ST1 : 제1 스택 ST2 : 제2 스택ST1: first stack ST2: second stack
이하, 본 발명의 실시예를 참조하여 상세하게 설명한다. 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, it will be described in detail with reference to embodiments of the present invention. In describing the present invention, if it is determined that a detailed description of a related known configuration or function may obscure the gist of the present invention, the detailed description will be omitted.
또한, 본 발명의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성 요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성 요소에 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.Also, terms such as first, second, A, B, (a), and (b) may be used in describing the components of the present invention. These terms are only used to distinguish the component from other components, and the nature, order, or order of the corresponding component is not limited by the term. When an element is described as being “connected,” “coupled to,” or “connected” to another element, that element is or may be directly connected to the other element, but there is another element between the elements. It will be understood that elements may be “connected”, “coupled” or “connected”.
본 명세서 및 첨부된 청구의 범위에서 사용된 바와 같이, 달리 언급하지 않는 한, 하기 용어의 의미는 하기와 같다:As used in this specification and the appended claims, unless otherwise stated, the following terms have the following meanings:
본 명세서에서 사용된 용어 "할로" 또는 "할로겐"은 다른 설명이 없는 한 불소(F), 브롬(Br), 염소(Cl) 또는 요오드(I)이다.As used herein, the term “halo” or “halogen” is fluorine (F), bromine (Br), chlorine (Cl), or iodine (I) unless otherwise specified.
본 발명에 사용된 용어 "알킬" 또는 "알킬기"는 다른 설명이 없는 한 1 내지 60의 탄소수의 단일결합을 가지며, 직쇄 알킬기, 분지쇄 알킬기, 사이클로알킬(지환족)기, 알킬-치환된 사이클로알킬기, 사이클로알킬-치환된 알킬기를 비롯한 포화 지방족 작용기의 라디칼을 의미한다.As used herein, unless otherwise specified, the term "alkyl" or "alkyl group" has a single bond of 1 to 60 carbon atoms, and includes a straight-chain alkyl group, a branched-chain alkyl group, a cycloalkyl (alicyclic) group, an alkyl-substituted cycloalkyl group, and the like. A radical of a saturated aliphatic functional group, including an alkyl group, a cycloalkyl-substituted alkyl group.
본 발명에 사용된 용어 "알켄일기", "알케닐기" 또는 "알킨일기"는 다른 설명이 없는 한 각각 2 내지 60의 탄소수의 이중결합 또는 삼중결합을 가지며, 직쇄형 또는 측쇄형 사슬기를 포함하며, 여기에 제한되는 것은 아니다.As used herein, the term "alkenyl group", "alkenyl group" or "alkynyl group" has a double bond or triple bond of 2 to 60 carbon atoms, respectively, and includes a straight or branched chain group, unless otherwise specified. , but is not limited thereto.
본 발명에 사용된 용어 "시클로알킬"은 다른 설명이 없는 한 3 내지 60의 탄소수를 갖는 고리를 형성하는 알킬을 의미하며, 여기에 제한되는 것은 아니다.As used herein, unless otherwise specified, the term "cycloalkyl" refers to an alkyl forming a ring having 3 to 60 carbon atoms, but is not limited thereto.
본 발명에 사용된 용어 "알콕실기", "알콕시기", 또는 "알킬옥시기"는 산소 라디칼이 부착된 알킬기를 의미하며, 다른 설명이 없는 한 1 내지 60의 탄소수를 가지며, 여기에 제한되는 것은 아니다.As used herein, the term "alkoxyl group", "alkoxy group", or "alkyloxy group" refers to an alkyl group to which an oxygen radical is attached, and has 1 to 60 carbon atoms, unless otherwise specified, and is limited thereto. It is not.
본 발명에 사용된 용어 "아릴옥실기" 또는 "아릴옥시기"는 산소 라디칼이 부착된 아릴기를 의미하며, 다른 설명이 없는 한 6 내지 60의 탄소수를 가지며, 여기에 제한되는 것은 아니다.As used herein, the term "aryloxyl group" or "aryloxy group" refers to an aryl group to which an oxygen radical is attached, and has 6 to 60 carbon atoms unless otherwise specified, but is not limited thereto.
본 발명에 사용된 용어 "아릴기" 및 "아릴렌기"는 다른 설명이 없는 한 각각 6 내지 60의 탄소수를 가지며, 이에 제한되는 것은 아니다. 본 발명에서 아릴기 또는 아릴렌기는 단일 고리 또는 다중 고리의 방향족을 의미하며, 이웃한 치환기가 결합 또는 반응에 참여하여 형성된 방향족 고리를 포함한다. 예컨대, 아릴기는 페닐기, 비페닐기, 플루오렌기, 스파이로플루오렌기일 수 있다.The terms "aryl group" and "arylene group" used herein have 6 to 60 carbon atoms, respectively, unless otherwise specified, but are not limited thereto. In the present invention, an aryl group or an arylene group refers to a single-ring or multi-ring aromatic ring, and includes an aromatic ring formed by bonding or reacting with adjacent substituents. For example, the aryl group may be a phenyl group, a biphenyl group, a fluorene group, or a spirofluorene group.
접두사 "아릴" 또는 "아르"는 아릴기로 치환된 라디칼을 의미한다. 예를 들어 아릴알킬기는 아릴기로 치환된 알킬기이며, 아릴알켄일기는 아릴기로 치환된 알켄일기이며, 아릴기로 치환된 라디칼은 본 명세서에서 설명한 탄소수를 가진다. The prefix “aryl” or “ar” refers to a radical substituted with an aryl group. For example, an arylalkyl group is an alkyl group substituted with an aryl group, an arylalkenyl group is an alkenyl group substituted with an aryl group, and a radical substituted with an aryl group has carbon atoms described herein.
또한 접두사가 연속으로 명명되는 경우 먼저 기재된 순서대로 치환기가 나열되는 것을 의미한다. 예를 들어, 아릴알콕시기의 경우 아릴기로 치환된 알콕시기를 의미하며, 알콕실카르보닐기의 경우 알콕실기로 치환된 카르보닐기를 의미하며, 또한 아릴카르보닐알켄일기의 경우 아릴카르보닐기로 치환된 알켄일기를 의미하며 여기서 아릴카르보닐기는 아릴기로 치환된 카르보닐기이다.Also, when the prefixes are named consecutively, it means that the substituents are listed in the order listed first. For example, an arylalkoxy group means an alkoxy group substituted with an aryl group, an alkoxylcarbonyl group means a carbonyl group substituted with an alkoxyl group, and an arylcarbonylalkenyl group means an alkenyl group substituted with an arylcarbonyl group. Wherein the arylcarbonyl group is a carbonyl group substituted with an aryl group.
본 발명에 사용된 용어 "헤테로고리기"는 다른 설명이 없는 한 하나 이상의 헤테로원자를 포함하고, 2 내지 60의 탄소수를 가지며, 단일 고리 및 다중 고리 중 적어도 하나를 포함하며, 헤테로지방족 고리 및 헤테로방향족 고리를 포함한다. 이웃한 작용기가 결합하여 형성될 수도 있다.As used herein, the term "heterocyclic group" includes at least one heteroatom, has 2 to 60 carbon atoms, includes at least one of a single ring and multiple rings, and includes a heteroaliphatic ring and a heterocyclic group, unless otherwise specified. Contains an aromatic ring. It may also be formed by combining adjacent functional groups.
본 명세서에서 사용된 용어 "헤테로원자"는 다른 설명이 없는 한 N, O, S, P 또는 Si를 나타낸다.As used herein, the term "heteroatom" refers to N, O, S, P or Si unless otherwise specified.
또한 "헤테로고리기"는 고리를 형성하는 탄소 대신 SO2를 포함하는 고리도 포함할 수 있다. 예컨대, "헤테로고리기"는 다음 화합물을 포함한다. In addition, the "heterocyclic group" may include a ring containing SO 2 instead of carbon forming the ring. For example, "heterocyclic group" includes the following compounds.
Figure PCTKR2022006762-appb-img-000003
Figure PCTKR2022006762-appb-img-000003
본 발명에 사용된 용어 "플루오렌일기" 또는 "플루오렌일렌기"는 다른 설명이 없는 한 각각 하기 구조에서 R, R' 및 R"이 모두 수소인 1가 또는 2가 작용기를 의미하며, "치환된 플루오렌일기" 또는 "치환된 플루오렌일렌기"는 치환기 R, R', R" 중 적어도 하나가 수소 이외의 치환기인 것을 의미하며, R과 R'이 서로 결합되어 이들이 결합된 탄소와 함께 스파이로 화합물을 형성한 경우를 포함한다.As used herein, the term "fluorenyl group" or "fluorenylene group" means a monovalent or divalent functional group in which R, R' and R" are all hydrogen in the following structure, respectively, unless otherwise specified, " Substituted fluorenyl group" or "substituted fluorenyl group" means that at least one of the substituents R, R', R" is a substituent other than hydrogen, and R and R' are bonded to each other to form a This includes cases where they form a spy compound together.
Figure PCTKR2022006762-appb-img-000004
Figure PCTKR2022006762-appb-img-000004
본 발명에서 사용된 용어 "스파이로 화합물"은 '스파이로 연결(spiro union)'을 가지며, 스파이로 연결은 2개의 고리가 오로지 1개의 원자를 공유함으로써 이루어지는 연결을 의미한다. 이때, 두 고리에 공유된 원자를 '스파이로 원자'라 하며, 한 화합물에 들어 있는 스파이로 원자의 수에 따라 이들을 각각 '모노스파이로-', '다이스파이로-', '트라이스파이로-' 화합물이라 한다.As used herein, the term "spiro compound" has a 'spiro union', which means a connection formed by two rings sharing only one atom. At this time, the atoms shared by the two rings are called 'spiro atoms', and according to the number of spiro atoms in a compound, they are called 'monospiro-', 'dispiro-', and 'trispiro-', respectively. ' It's called a compound.
다른 설명이 없는 한, 본 발명에 사용된 용어 "지방족"은 탄소수 1 내지 60의 지방족 탄화수소를 의미하며, "지방족고리"는 탄소수 3 내지 60의 지방족 탄화수소 고리를 의미한다.Unless otherwise specified, the term "aliphatic" as used herein means an aliphatic hydrocarbon ring having 1 to 60 carbon atoms, and "aliphatic ring" means an aliphatic hydrocarbon ring having 3 to 60 carbon atoms.
다른 설명이 없는 한, 본 발명에 사용된 용어 "고리"는 탄소수 3 내지 60의 지방족고리 또는 탄소수 6 내지 60의 방향족고리 또는 탄소수 2 내지 60의 헤테로고리 또는 이들의 조합으로 이루어진 융합 고리를 말하며, 포화 또는 불포화고리를 포함한다.Unless otherwise specified, the term "ring" used herein refers to a fused ring composed of an aliphatic ring having 3 to 60 carbon atoms, an aromatic ring having 6 to 60 carbon atoms, a heterocyclic ring having 2 to 60 carbon atoms, or a combination thereof, Contains saturated or unsaturated rings.
전술한 헤테로화합물 이외의 그 밖의 다른 헤테로화합물 또는 헤테로라디칼은 하나 이상의 헤테로원자를 포함하며, 여기에 제한되는 것은 아니다.Other hetero compounds or heteroradicals other than the aforementioned hetero compounds include, but are not limited to, one or more heteroatoms.
또한 명시적인 설명이 없는 한, 본 발명에서 사용된 용어 "치환 또는 비치환된"에서 "치환"은 중수소, 할로겐, 아미노기, 니트릴기, 니트로기, C1~C20의 알킬기, C1~C20의 알콕실기, C1~C20의 알킬아민기, C1~C20의 알킬티오펜기, C6~C20의 아릴티오펜기, C2~C20의 알켄일기, C2~C20의 알킨일기, C3~C20의 시클로알킬기, C6~C20의 아릴기, 중수소로 치환된 C6~C20의 아릴기, C8~C20의 아릴알켄일기, 실란기, 붕소기, 게르마늄기, 및 C2~C20의 헤테로고리기로 이루어진 군으로부터 선택되는 1개 이상의 치환기로 치환됨을 의미하며, 이들 치환기에 제한되는 것은 아니다.In addition, unless explicitly stated otherwise, “substituted” in the term “substituted or unsubstituted” as used herein means deuterium, halogen, amino group, nitrile group, nitro group, C 1 ~ C 20 alkyl group, C 1 ~ C 20 alkoxyl group, C 1 ~ C 20 alkylamine group, C 1 ~ C 20 alkylthiophene group, C 6 ~ C 20 arylthiophene group, C 2 ~ C 20 alkenyl group, C 2 ~ C 20 alkynyl group, C 3 ~ C 20 cycloalkyl group, C 6 ~ C 20 aryl group, deuterium-substituted C 6 ~ C 20 aryl group, C 8 ~ C 20 arylalkenyl group, silane group, boron group, germanium group, and C 2 ~ C 20 means substituted with one or more substituents selected from the group consisting of heterocyclic groups, but is not limited to these substituents.
또한 명시적인 설명이 없는 한, 본 발명에서 사용되는 화학식은 하기 화학식의 지수 정의에 의한 치환기 정의와 동일하게 적용된다.In addition, unless explicitly stated otherwise, the chemical formula used in the present invention applies the same as the substituent definition by the exponential definition of the following chemical formula.
Figure PCTKR2022006762-appb-img-000005
Figure PCTKR2022006762-appb-img-000005
여기서, a가 0의 정수인 경우 치환기 R1은 부존재하며, a가 1의 정수인 경우 하나의 치환기 R1은 벤젠 고리를 형성하는 탄소 중 어느 하나의 탄소에 결합하며, a가 2 또는 3의 정수인 경우 각각 다음과 같이 결합하며 이때 R1은 서로 동일하거나 다를 수 있으며, a가 4 내지 6의 정수인 경우 이와 유사한 방식으로 벤젠 고리의 탄소에 결합하며, 한편 벤젠 고리를 형성하는 탄소에 결합된 수소의 표시는 생략한다.Here, when a is an integer of 0, substituent R 1 does not exist, and when a is an integer of 1, one substituent R 1 is bonded to any one of the carbon atoms forming the benzene ring, and when a is an integer of 2 or 3 Each is combined as follows, wherein R 1 may be the same or different from each other, and when a is an integer of 4 to 6, it is bonded to the carbon of the benzene ring in a similar manner, while indicating the hydrogen bonded to the carbon forming the benzene ring. is omitted.
Figure PCTKR2022006762-appb-img-000006
Figure PCTKR2022006762-appb-img-000006
이하, 본 발명의 일 측면에 따른 화합물 및 이를 포함하는 유기전기소자에 대하여 설명한다.Hereinafter, a compound according to an aspect of the present invention and an organic electric device including the same will be described.
본 발명은 하기 화학식 (1)로 표시되는 화합물을 제공한다.The present invention provides a compound represented by the following formula (1).
화학식 (1) Formula (1)
Figure PCTKR2022006762-appb-img-000007
Figure PCTKR2022006762-appb-img-000007
상기 화학식 (1)에서, 각 기호는 하기와 같이 정의될 수 있다.In the above formula (1), each symbol may be defined as follows.
1) Ar1 및 Ar2는 서로 독립적으로 C6~C60의 아릴기;이며, 바람직하게는 C6~C30의 아릴기, 더욱 바람직하게는 C6~C25의 아릴기, 예컨대 페닐렌, 바이페닐, 나프탈렌, 터페닐 등일 수 있다.1) Ar 1 and Ar 2 are each independently a C 6 ~ C 60 aryl group; preferably a C 6 ~ C 30 aryl group, more preferably a C 6 ~ C 25 aryl group, such as phenylene , biphenyl, naphthalene, terphenyl, and the like.
2) L1은 단일결합; 또는 C6~C60의 아릴렌기;이며,2) L 1 is a single bond; Or a C 6 ~ C 60 arylene group;
상기 L1이 아릴렌기인 경우, 바람직하게는 C6~C30의 아릴렌기, 더욱 바람직하게는 C6~C24의 아릴렌기일 수 있으며, 예컨대, 페닐렌, 바이페닐, 나프탈렌, 터페닐 등일 수 있다.When L 1 is an arylene group, it may be preferably a C 6 ~ C 30 arylene group, more preferably a C 6 ~ C 24 arylene group, for example, phenylene, biphenyl, naphthalene, terphenyl, etc. can
3) R1은 각각 동일하거나 상이하며, 수소; 중수소; C1~C60의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C1~C30의 알콕시기; 및 C6~C30의 아릴옥시기;로 이루어진 군에서 선택되고,3) each R 1 is the same or different and is hydrogen; heavy hydrogen; C 1 ~ C 60 Alkyl group; A C 2 ~C 20 alkenyl group; A C 2 ~C 20 alkynyl group; C 1 ~ C 30 alkoxy group; And C 6 ~ C 30 aryloxy group; is selected from the group consisting of,
상기 R1이 알킬기인 경우, 바람직하게는 C1~C30의 알킬기일 수 있으며, 더욱 바람직하게는 C1~C24의 알킬기일 수 있다.When R 1 is an alkyl group, it may be preferably a C 1 to C 30 alkyl group, more preferably a C 1 to C 24 alkyl group.
상기 R1이 알콕시기인 경우, 바람직하게는 C1~C24의 알콕시기일 수 있다.When R 1 is an alkoxy group, it may be preferably a C 1 to C 24 alkoxy group.
상기 R1이 아릴옥시기인 경우, 바람직하게는 C6~C24의 아릴옥시기일 수 있다.When R 1 is an aryloxy group, it may be preferably a C 6 -C 24 aryloxy group.
4) a는 0 내지 9의 정수이며,4) a is an integer from 0 to 9;
5) 여기서, 상기 아릴기, 아릴렌기, 알킬기, 알켄일기, 알킨일기, 알콕시기 및 아릴옥시기는 각각 중수소; 할로겐; 실란기; 실록산기; 붕소기; 게르마늄기; 시아노기; 니트로기; C1~C20의 알킬싸이오기; C1~C20의 알콕시기; C1~C20의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C6~C20의 아릴기; 중수소로 치환된 C6~C20의 아릴기; 플루오렌일기; C2~C20의 헤테로고리기; C3~C20의 시클로알킬기; C7~C20의 아릴알킬기; 및 C8~C20의 아릴알켄일기;로 이루어진 군에서 선택된 하나 이상의 치환기로 더욱 치환될 수 있으며, 또한 이들 치환기들은 서로 결합하여 고리를 형성할 수도 있으며, 여기서 '고리'란 C3~C60의 지방족고리 또는 C6~C60의 방향족고리 또는 C2~C60의 헤테로고리 또는 이들의 조합으로 이루어진 융합 고리를 말하며, 포화 또는 불포화 고리를 포함한다.5) Here, the aryl group, arylene group, alkyl group, alkenyl group, alkynyl group, alkoxy group and aryloxy group are each deuterium; halogen; silane group; Siloxane group; boron group; Germanium group; cyano group; nitro group; C 1 ~ C 20 Alkylthio group; A C 1 ~ C 20 alkoxy group; C 1 ~ C 20 Alkyl group; A C 2 ~C 20 alkenyl group; A C 2 ~C 20 alkynyl group; C 6 ~ C 20 aryl group; A deuterium-substituted C 6 ~C 20 aryl group; fluorenyl group; C 2 ~C 20 heterocyclic group; A C 3 ~C 20 cycloalkyl group; C 7 ~ C 20 arylalkyl group; And a C 8 ~ C 20 arylalkenyl group; may be further substituted with one or more substituents selected from the group consisting of, and these substituents may combine with each other to form a ring, wherein 'ring' means C 3 ~C 60 It refers to an aliphatic ring or a C 6 ~ C 60 aromatic ring or a C 2 ~ C 60 hetero ring or a fused ring composed of a combination thereof, and includes a saturated or unsaturated ring.
또한, 본 발명은 상기 화학식 (1)이 하기 화학식 (1-1) 또는 화학식 (1-2)로 표시되는 화합물을 제공한다.In addition, the present invention provides a compound in which the above formula (1) is represented by the following formula (1-1) or formula (1-2).
화학식 (1-1) 화학식 (1-2) Formula (1-1) Formula (1-2)
Figure PCTKR2022006762-appb-img-000008
Figure PCTKR2022006762-appb-img-000008
{상기 화학식 (1-1) 및 화학식 (1-2)에서, Ar1, Ar2, L1, R1 및 a는 상기 화학식 (1)에서 정의된 바와 동일하다.}{In Formula (1-1) and Formula (1-2), Ar 1 , Ar 2 , L 1 , R 1 and a are the same as defined in Formula (1).}
또한, 본 발명은 상기 화학식 (1)이 하기 화학식 (1-3) 또는 화학식 (1-4)로 표시되는 화합물을 제공한다.In addition, the present invention provides a compound in which the above formula (1) is represented by the following formula (1-3) or formula (1-4).
화학식 (1-3) 화학식 (1-4) Formula (1-3) Formula (1-4)
Figure PCTKR2022006762-appb-img-000009
Figure PCTKR2022006762-appb-img-000009
{상기 화학식 (1-3) 및 화학식 (1-4)에서, Ar1, Ar2, L1, R1 및 a는 상기 화학식 (1)에서 정의된 바와 동일하다.}{In Formula (1-3) and Formula (1-4), Ar 1 , Ar 2 , L 1 , R 1 and a are the same as defined in Formula (1).}
또한, 본 발명은 상기 화학식 (1)이 하기 화학식 (1-5) 내지 화학식 (1-8) 중 어느 하나로 표시되는 것을 화합물을 제공한다.In addition, the present invention provides a compound in which Formula (1) is represented by any one of Formulas (1-5) to Formula (1-8) below.
화학식 (1-5) 화학식 (1-6) Formula (1-5) Formula (1-6)
Figure PCTKR2022006762-appb-img-000010
Figure PCTKR2022006762-appb-img-000010
화학식 (1-7) 화학식 (1-8) Formula (1-7) Formula (1-8)
Figure PCTKR2022006762-appb-img-000011
Figure PCTKR2022006762-appb-img-000011
{상기 화학식 (1-5) 내지 화학식 (1-8)에서, Ar1, Ar2, L1, R1 및 a는 상기 화학식 (1)에서 정의된 바와 동일하다.}{In Formula (1-5) to Formula (1-8), Ar 1 , Ar 2 , L 1 , R 1 and a are the same as defined in Formula (1).}
또한, 본 발명은 상기 화학식 (1)이 하기 화학식 (1-9) 내지 화학식 (1-12) 중 어느 하나로 표시되는 화합물을 제공한다.In addition, the present invention provides a compound in which Formula (1) is represented by any one of Formulas (1-9) to Formula (1-12) below.
화학식 (1-9) 화학식 (1-10) Formula (1-9) Formula (1-10)
Figure PCTKR2022006762-appb-img-000012
Figure PCTKR2022006762-appb-img-000012
화학식 (1-11) 화학식 (1-12) Formula (1-11) Formula (1-12)
Figure PCTKR2022006762-appb-img-000013
Figure PCTKR2022006762-appb-img-000013
{상기 화학식 (1-9) 내지 화학식 (1-12)에서, Ar1, Ar2, L1, R1 및 a는 상기 화학식 (1)에서 정의된 바와 동일하다.}{In Formula (1-9) to Formula (1-12), Ar 1 , Ar 2 , L 1 , R 1 and a are the same as defined in Formula (1).}
또한, 본 발명은 상기 화학식 (1)이 하기 화학식 (2-1) 내지 화학식 (2-5) 중 어느 하나로 표시되는 화합물을 제공한다.In addition, the present invention provides a compound in which Formula (1) is represented by any one of Formulas (2-1) to (2-5) below.
화학식 (2-1) 화학식 (2-2) Formula (2-1) Formula (2-2)
Figure PCTKR2022006762-appb-img-000014
Figure PCTKR2022006762-appb-img-000014
화학식 (2-3) 화학식 (2-4) Formula (2-3) Formula (2-4)
Figure PCTKR2022006762-appb-img-000015
Figure PCTKR2022006762-appb-img-000015
화학식 (2-5) Formula (2-5)
Figure PCTKR2022006762-appb-img-000016
Figure PCTKR2022006762-appb-img-000016
{상기 화학식 (2-1) 내지 화학식 (2-5)에서, Ar1, Ar2, L1, R1 및 a는 상기 화학식 (1)에서 정의된 바와 동일하다.}{In Formula (2-1) to Formula (2-5), Ar 1 , Ar 2 , L 1 , R 1 and a are the same as defined in Formula (1).}
또한, 본 발명은 상기 L1이 하기 화학식 a-1 내지 a-3 중 어느 하나로 표시되는 화합물을 제공한다.In addition, the present invention provides a compound wherein L 1 is represented by any one of Formulas a-1 to a-3 below.
a-1 a-2 a-3 a-1 a-2 a-3
Figure PCTKR2022006762-appb-img-000017
Figure PCTKR2022006762-appb-img-000017
{상기 화학식 a-1 내지 a-3에서, *는 결합되는 위치를 나타낸다.}{In Formulas a-1 to a-3, * represents a bonded position.}
또한, 본 발명은 상기 화학식 (1)이 하기 화학식 (2-6) 내지 화학식 (2-10) 중 어느 하나로 표시되는 화합물을 제공한다.In addition, the present invention provides a compound represented by any one of the following formulas (2-6) to (2-10) in which the formula (1) is represented.
화학식 (2-6) 화학식 (2-7) Formula (2-6) Formula (2-7)
Figure PCTKR2022006762-appb-img-000018
Figure PCTKR2022006762-appb-img-000018
화학식 (2-8) 화학식 (2-9) Formula (2-8) Formula (2-9)
Figure PCTKR2022006762-appb-img-000019
Figure PCTKR2022006762-appb-img-000019
화학식 (2-10) Formula (2-10)
Figure PCTKR2022006762-appb-img-000020
Figure PCTKR2022006762-appb-img-000020
{상기 화학식 (2-6) 내지 화학식 (2-10)에서, Ar1, Ar2, L1, R1 및 a는 상기 화학식 (1)에서 정의된 바와 동일하다.}{In Formula (2-6) to Formula (2-10), Ar 1 , Ar 2 , L 1 , R 1 and a are the same as defined in Formula (1).}
또한, 본 발명은 상기 화학식 (1)로 나타낸 화합물이 하기 화합물 P-1 내지 P-84 중 어느 하나로 표시되는 화합물을 제공한다.In addition, the present invention provides a compound represented by any one of the following compounds P-1 to P-84 in which the compound represented by Formula (1) is represented.
Figure PCTKR2022006762-appb-img-000021
Figure PCTKR2022006762-appb-img-000021
Figure PCTKR2022006762-appb-img-000022
Figure PCTKR2022006762-appb-img-000022
Figure PCTKR2022006762-appb-img-000023
Figure PCTKR2022006762-appb-img-000023
Figure PCTKR2022006762-appb-img-000024
Figure PCTKR2022006762-appb-img-000024
Figure PCTKR2022006762-appb-img-000025
Figure PCTKR2022006762-appb-img-000025
Figure PCTKR2022006762-appb-img-000026
Figure PCTKR2022006762-appb-img-000026
Figure PCTKR2022006762-appb-img-000027
Figure PCTKR2022006762-appb-img-000027
Figure PCTKR2022006762-appb-img-000028
Figure PCTKR2022006762-appb-img-000028
Figure PCTKR2022006762-appb-img-000029
Figure PCTKR2022006762-appb-img-000029
Figure PCTKR2022006762-appb-img-000030
Figure PCTKR2022006762-appb-img-000030
Figure PCTKR2022006762-appb-img-000031
Figure PCTKR2022006762-appb-img-000031
Figure PCTKR2022006762-appb-img-000032
Figure PCTKR2022006762-appb-img-000032
Figure PCTKR2022006762-appb-img-000033
Figure PCTKR2022006762-appb-img-000033
Figure PCTKR2022006762-appb-img-000034
Figure PCTKR2022006762-appb-img-000034
Figure PCTKR2022006762-appb-img-000035
Figure PCTKR2022006762-appb-img-000035
Figure PCTKR2022006762-appb-img-000036
Figure PCTKR2022006762-appb-img-000036
Figure PCTKR2022006762-appb-img-000037
Figure PCTKR2022006762-appb-img-000037
Figure PCTKR2022006762-appb-img-000038
Figure PCTKR2022006762-appb-img-000038
Figure PCTKR2022006762-appb-img-000039
Figure PCTKR2022006762-appb-img-000039
Figure PCTKR2022006762-appb-img-000040
Figure PCTKR2022006762-appb-img-000040
Figure PCTKR2022006762-appb-img-000041
Figure PCTKR2022006762-appb-img-000041
또한, 다른 측면에서 본 발명은 제 1전극, 제 2전극, 및 상기 제 1전극과 상기 제 2전극 사이에 형성된 유기물층을 포함하는 유기전기소자에 있어서, 상기 유기물층은 발광층을 포함하고 상기 발광층은 인광성 발광층으로서 상기 화학식 (1)로 표시되는 제 1호스트 화합물 및 하기 화학식 (3) 또는 화학식 (4)로 표시되는 제 2호스트 화합물을 포함하는 유기전기소자를 제공한다.In another aspect, the present invention provides an organic electric device including a first electrode, a second electrode, and an organic material layer formed between the first electrode and the second electrode, wherein the organic material layer includes a light emitting layer and the light emitting layer is phosphorescent. An organic electric device including a first host compound represented by Chemical Formula (1) and a second host compound represented by Chemical Formula (3) or Chemical Formula (4) as an active light emitting layer is provided.
화학식 (3) 화학식 (4) Formula (3) Formula (4)
Figure PCTKR2022006762-appb-img-000042
Figure PCTKR2022006762-appb-img-000042
상기 화학식 (3) 및 화학식 (4)에서, 각 기호는 하기와 같이 정의될 수 있다.In the above formula (3) and formula (4), each symbol may be defined as follows.
1) X 및 Y는 서로 독립적으로 O, S, NRa 또는 CR'R"이며,1) X and Y are independently of each other O, S, NR a or CR'R";
2) Ar4, Ar5, Ar6 및 Ra는 서로 독립적으로 C6~C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C3~C60의 지방족고리와 C6~C60의 방향족고리의 융합고리기; C1~C60의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C1~C30의 알콕시기; 및 C6~C30의 아릴옥시기;로 이루어진 군에서 선택된다.2) Ar 4 , Ar 5 , Ar 6 and R a are each independently a C 6 to C 60 aryl group; fluorenyl group; A C 2 ~C 60 heterocyclic group containing at least one heteroatom selected from O, N, S, Si, and P; C 3 ~ C 60 aliphatic ring and C 6 ~ C 60 aromatic ring fused ring group; C 1 ~ C 60 Alkyl group; A C 2 ~C 20 alkenyl group; A C 2 ~C 20 alkynyl group; C 1 ~ C 30 alkoxy group; And a C 6 ~ C 30 aryloxy group; is selected from the group consisting of.
상기 Ar4, Ar5, Ar6 및 Ra가 아릴기인 경우, 바람직하게는 C6~C30의 아릴기, 더욱 바람직하게는 C6~C25의 아릴기, 예컨대 페닐렌, 바이페닐, 나프탈렌, 터페닐 등일 수 있다.When Ar 4 , Ar 5 , Ar 6 and R a are aryl groups, preferably C 6 -C 30 aryl groups, more preferably C 6 -C 25 aryl groups such as phenylene, biphenyl, naphthalene , terphenyl and the like.
상기 Ar4, Ar5, Ar6 및 Ra가 헤테로고리기인 경우, 바람직하게는 C2~C30의 헤테로고리기, 더욱 바람직하게는 C2~C24의 헤테로고리기일 수 있으며, 예시적으로 피라진, 싸이오펜, 피리딘, 피리미도인돌, 5-페닐-5H-피리미도[5,4-b]인돌, 퀴나졸린, 벤조퀴나졸린, 카바졸, 다이벤조퀴나졸, 다이벤조퓨란, 다이벤조싸이오펜, 벤조싸이에노피리미딘, 벤조퓨로피리미딘, 페노싸이아진, 페닐페노싸이아진 등일 수 있다.When Ar 4 , Ar 5 , Ar 6 and R a are heterocyclic groups, they may be preferably C 2 ~ C 30 heterocyclic groups, more preferably C 2 ~ C 24 heterocyclic groups, and exemplarily Pyrazine, thiophene, pyridine, pyrimidoindole, 5-phenyl-5H-pyrimido[5,4-b]indole, quinazoline, benzoquinazoline, carbazole, dibenzoquinazole, dibenzofuran, dibenzocy It may be opene, benzothienopyrimidine, benzofuropyrimidine, phenothiazine, phenylphenothiazine and the like.
상기 Ar4, Ar5, Ar6 및 Ra가 융합고리기인 경우, 바람직하게는 C3~C30의 지방족고리와 C6~C30의 방향족고리의 융합고리기, 더욱 바람직하게는 C3~C24의 지방족고리와 C6~C24의 방향족고리의 융합고리기일 수 있다.When Ar 4 , Ar 5 , Ar 6 and R a are fused ring groups, preferably C 3 ~ C 30 aliphatic ring and C 6 ~ C 30 aromatic ring fused ring group, more preferably C 3 ~ It may be a fused ring group of a C 24 aliphatic ring and a C 6 ~ C 24 aromatic ring.
상기 Ar4, Ar5, Ar6 및 Ra가 알킬기인 경우, 바람직하게는 C1~C30의 알킬기일 수 있으며, 더욱 바람직하게는 C1~C24의 알킬기일 수 있다.When Ar 4 , Ar 5 , Ar 6 and R a are alkyl groups, they may be preferably C 1 -C 30 alkyl groups, more preferably C 1 -C 24 alkyl groups.
상기 Ar4, Ar5, Ar6 및 Ra가 알콕시기인 경우, 바람직하게는 C1~C24의 알콕시기일 수 있다.When Ar 4 , Ar 5 , Ar 6 and R a are alkoxy groups, they may preferably be C 1 to C 24 alkoxy groups.
상기 Ar4, Ar5, Ar6 및 Ra가 아릴옥시기인 경우, 바람직하게는 C6~C24의 아릴옥시기일 수 있다.When Ar 4 , Ar 5 , Ar 6 and R a are aryloxy groups, they are preferably C 6 to C 24 aryloxy groups.
3) R' 및 R"은 서로 독립적으로 수소; 중수소; C6~C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C3~C60의 지방족고리와 C6~C60의 방향족고리의 융합고리기; C1~C60의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C1~C30의 알콕시기; 및 C6~C30의 아릴옥시기;로 이루어진 군에서 선택되며, 또는 R' 및 R"은 서로 결합하여 스파이로 고리를 형성할 수 있고,3) R' and R" are each independently hydrogen; heavy hydrogen; C 6 ~ C 60 aryl group; fluorenyl group; C 2 ~ C containing at least one heteroatom of O, N, S, Si and P; Heterocyclic group of 60 ; C 3 ~ C 60 aliphatic ring and C 6 ~ C 60 aromatic ring fused ring group; C 1 ~ C 60 alkyl group; C 2 ~ C 20 alkenyl group; C 2 ~ C 20 Alkynyl group; C 1 ~ C 30 Alkoxy group; And C 6 ~ C 30 It is selected from the group consisting of aryloxy group, or R' and R" may combine with each other to form a spiro ring,
4) L2, L3 및 L4는 서로 독립적으로 단일결합; C6~C60의 아릴렌기; 플루오렌일렌기; 및 O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로아릴렌기;로 이루어진 군에서 선택된다.4) L 2 , L 3 and L 4 are each independently a single bond; C 6 ~ C 60 arylene group; Fluorenylene group; and a C 2 ~C 60 heteroarylene group containing at least one heteroatom selected from O, N, S, Si, and P.
상기 L2, L3 및 L4가 아릴렌기인 경우, 바람직하게는 C6~C30의 아릴렌기, 더욱 바람직하게는 C6~C24의 아릴렌기일 수 있으며, 예컨대, 페닐렌, 바이페닐, 나프탈렌, 터페닐 등일 수 있다.When L 2 , L 3 and L 4 are arylene groups, they may be preferably C 6 -C 30 arylene groups, more preferably C 6 -C 24 arylene groups, for example, phenylene, biphenyl , naphthalene, terphenyl, and the like.
상기 L2, L3 및 L4가 헤테로고리기인 경우, 바람직하게는 C2~C30의 헤테로고리기, 더욱 바람직하게는 C2~C24의 헤테로고리기일 수 있으며, 예시적으로 피라진, 싸이오펜, 피리딘, 피리미도인돌, 5-페닐-5H-피리미도[5,4-b]인돌, 퀴나졸린, 벤조퀴나졸린, 카바졸, 다이벤조퀴나졸, 다이벤조퓨란, 다이벤조싸이오펜, 벤조싸이에노피리미딘, 벤조퓨로피리미딘, 페노싸이아진, 페닐페노싸이아진 등일 수 있다.When L 2 , L 3 and L 4 are heterocyclic groups, they may be preferably C 2 ~ C 30 heterocyclic groups, more preferably C 2 ~ C 24 heterocyclic groups, and examples include pyrazine, psy Opene, pyridine, pyrimidoindole, 5-phenyl-5H-pyrimido[5,4-b]indole, quinazoline, benzoquinazoline, carbazole, dibenzoquinazole, dibenzofuran, dibenzothiophene, benzo thienopyrimidine, benzofuropyrimidine, phenothiazine, phenylphenothiazine and the like.
5) B는 C6~C20의 아릴기이고,5) B is a C 6 ~ C 20 aryl group,
6) R2 및 R3은 각각 동일하거나 상이하며, 서로 독립적으로 수소; 중수소; 할로겐; C6~C60의 아릴기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C3~C60의 지방족고리와 C6~C60의 방향족고리의 융합고리기; C1~C60의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C1~C30의 알콕시기; 및 C6~C30의 아릴옥시기;로 이루어진 군에서 선택된다.6) R 2 and R 3 are the same or different, and each independently hydrogen; heavy hydrogen; halogen; C 6 ~ C 60 aryl group; A C 2 ~C 60 heterocyclic group containing at least one heteroatom selected from O, N, S, Si, and P; C 3 ~ C 60 aliphatic ring and C 6 ~ C 60 aromatic ring fused ring group; C 1 ~ C 60 Alkyl group; A C 2 ~C 20 alkenyl group; A C 2 ~C 20 alkynyl group; C 1 ~ C 30 alkoxy group; And a C 6 ~ C 30 aryloxy group; is selected from the group consisting of.
상기 R2 및 R3이 아릴기인 경우, 바람직하게는 C6~C30의 아릴기, 더욱 바람직하게는 C6~C25의 아릴기, 예컨대 페닐렌, 바이페닐, 나프탈렌, 터페닐 등일 수 있다.When R 2 and R 3 are aryl groups, they are preferably C 6 -C 30 aryl groups, more preferably C 6 -C 25 aryl groups, such as phenylene, biphenyl, naphthalene, terphenyl, etc. .
상기 R2 및 R3이 헤테로고리기인 경우, 바람직하게는 C2~C30의 헤테로고리기, 더욱 바람직하게는 C2~C24의 헤테로고리기일 수 있으며, 예시적으로 피라진, 싸이오펜, 피리딘, 피리미도인돌, 5-페닐-5H-피리미도[5,4-b]인돌, 퀴나졸린, 벤조퀴나졸린, 카바졸, 다이벤조퀴나졸, 다이벤조퓨란, 다이벤조싸이오펜, 벤조싸이에노피리미딘, 벤조퓨로피리미딘, 페노싸이아진, 페닐페노싸이아진 등일 수 있다.When R 2 and R 3 are heterocyclic groups, they may be preferably C 2 ~ C 30 heterocyclic groups, more preferably C 2 ~ C 24 heterocyclic groups, and examples include pyrazine, thiophene, and pyridine. , pyrimidoindole, 5-phenyl-5H-pyrimido[5,4-b]indole, quinazoline, benzoquinazoline, carbazole, dibenzoquinazole, dibenzofuran, dibenzothiophene, benzothieno pyrimidine, benzofuropyrimidine, phenothiazine, phenylphenothiazine and the like.
상기 R2 및 R3이 융합고리기인 경우, 바람직하게는 C3~C30의 지방족고리와 C6~C30의 방향족고리의 융합고리기, 더욱 바람직하게는 C3~C24의 지방족고리와 C6~C24의 방향족고리의 융합고리기일 수 있다.When R 2 and R 3 are fused ring groups, preferably C 3 ~ C 30 aliphatic ring and C 6 ~ C 30 aromatic ring fused ring group, more preferably C 3 ~ C 24 aliphatic ring and It may be a fused ring group of C 6 ~ C 24 aromatic rings.
상기 R2 및 R3이 알킬기인 경우, 바람직하게는 C1~C30의 알킬기일 수 있으며, 더욱 바람직하게는 C1~C24의 알킬기일 수 있다.When R 2 and R 3 are alkyl groups, they may be preferably C 1 to C 30 alkyl groups, more preferably C 1 to C 24 alkyl groups.
상기 R2 및 R3이 알콕시기인 경우, 바람직하게는 C1~C24의 알콕시기일 수 있다.When R 2 and R 3 are alkoxy groups, they may preferably be C 1 to C 24 alkoxy groups.
상기 R2 및 R3이 아릴옥시기인 경우, 바람직하게는 C6~C24의 아릴옥시기일 수 있다.When R 2 and R 3 are aryloxy groups, they may be preferably C 6 -C 24 aryloxy groups.
7) R8 및 R10은 각각 동일하거나 상이하며, 서로 독립적으로 수소; 중수소; 할로겐; C6~C60의 아릴기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C3~C60의 지방족고리와 C6~C60의 방향족고리의 융합고리기; C1~C60의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C1~C30의 알콕시기; 및 C6~C30의 아릴옥시기;로 이루어진 군에서 선택되고, 또는 이웃한 기끼리 서로 결합하여 고리를 형성할 수 있다.7) R 8 and R 10 are the same or different, and each independently hydrogen; heavy hydrogen; halogen; C 6 ~ C 60 aryl group; A C 2 ~C 60 heterocyclic group containing at least one heteroatom selected from O, N, S, Si, and P; C 3 ~ C 60 aliphatic ring and C 6 ~ C 60 aromatic ring fused ring group; C 1 ~ C 60 Alkyl group; A C 2 ~C 20 alkenyl group; A C 2 ~C 20 alkynyl group; C 1 ~ C 30 alkoxy group; And a C 6 ~ C 30 aryloxy group; selected from the group consisting of, or adjacent groups may be bonded to each other to form a ring.
상기 R8 및 R10이 아릴기인 경우, 바람직하게는 C6~C30의 아릴기, 더욱 바람직하게는 C6~C25의 아릴기, 예컨대 페닐렌, 바이페닐, 나프탈렌, 터페닐 등일 수 있다.When R 8 and R 10 are aryl groups, they are preferably C 6 -C 30 aryl groups, more preferably C 6 -C 25 aryl groups, such as phenylene, biphenyl, naphthalene, terphenyl, etc. .
상기 R8 및 R10이 헤테로고리기인 경우, 바람직하게는 C2~C30의 헤테로고리기, 더욱 바람직하게는 C2~C24의 헤테로고리기일 수 있으며, 예시적으로 피라진, 싸이오펜, 피리딘, 피리미도인돌, 5-페닐-5H-피리미도[5,4-b]인돌, 퀴나졸린, 벤조퀴나졸린, 카바졸, 다이벤조퀴나졸, 다이벤조퓨란, 다이벤조싸이오펜, 벤조싸이에노피리미딘, 벤조퓨로피리미딘, 페노싸이아진, 페닐페노싸이아진 등일 수 있다.When R 8 and R 10 are heterocyclic groups, they may be preferably C 2 ~ C 30 heterocyclic groups, more preferably C 2 ~ C 24 heterocyclic groups, and examples thereof include pyrazine, thiophene, and pyridine. , pyrimidoindole, 5-phenyl-5H-pyrimido[5,4-b]indole, quinazoline, benzoquinazoline, carbazole, dibenzoquinazole, dibenzofuran, dibenzothiophene, benzothieno pyrimidine, benzofuropyrimidine, phenothiazine, phenylphenothiazine and the like.
상기 R8 및 R10이 융합고리기인 경우, 바람직하게는 C3~C30의 지방족고리와 C6~C30의 방향족고리의 융합고리기, 더욱 바람직하게는 C3~C24의 지방족고리와 C6~C24의 방향족고리의 융합고리기일 수 있다.When R 8 and R 10 are fused ring groups, preferably C 3 ~ C 30 aliphatic ring and C 6 ~ C 30 aromatic ring fused ring group, more preferably C 3 ~ C 24 aliphatic ring and It may be a fused ring group of C 6 ~ C 24 aromatic rings.
상기 R8 및 R10이 알킬기인 경우, 바람직하게는 C1~C30의 알킬기일 수 있으며, 더욱 바람직하게는 C1~C24의 알킬기일 수 있다.When R 8 and R 10 are alkyl groups, they may be preferably C 1 to C 30 alkyl groups, more preferably C 1 to C 24 alkyl groups.
상기 R8 및 R10이 알콕시기인 경우, 바람직하게는 C1~C24의 알콕시기일 수 있다.When R 8 and R 10 are alkoxy groups, they may preferably be C 1 to C 24 alkoxy groups.
상기 R8 및 R10이 아릴옥시기인 경우, 바람직하게는 C6~C24의 아릴옥시기일 수 있다.When R 8 and R 10 are aryloxy groups, they may be preferably C 6 -C 24 aryloxy groups.
8) b, h 및 j는 서로 독립적으로 0 내지 4의 정수이고, c는 0 내지 3의 정수이며,8) b, h and j are each independently an integer from 0 to 4, c is an integer from 0 to 3,
9) 여기서, 상기 아릴기, 아릴렌기, 헤테로고리기, 플루오렌일기, 플루오렌일렌기, 지방족고리기, 융합고리기, 알킬기, 알켄일기, 알킨일기, 알콕실기 및 아릴옥시기는 각각 중수소; 할로겐; 실란기; 실록산기; 붕소기; 게르마늄기; 시아노기; 니트로기; C1~C20의 알킬싸이오기; C1~C20의 알콕시기; C1~C20의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C6~C20의 아릴기; 중수소로 치환된 C6~C20의 아릴기; 플루오렌일기; C2~C20의 헤테로고리기; C3~C20의 시클로알킬기; C7~C20의 아릴알킬기; 및 C8~C20의 아릴알켄일기;로 이루어진 군에서 선택된 하나 이상의 치환기로 더욱 치환될 수 있으며, 또한 이들 치환기들은 서로 결합하여 고리를 형성할 수도 있으며, 여기서 '고리'란 C3~C60의 지방족고리 또는 C6~C60의 방향족고리 또는 C2~C60의 헤테로고리 또는 이들의 조합으로 이루어진 융합 고리를 말하며, 포화 또는 불포화 고리를 포함한다.9) Here, the aryl group, arylene group, heterocyclic group, fluorenyl group, fluorenylene group, aliphatic ring group, fused ring group, alkyl group, alkenyl group, alkynyl group, alkoxyl group, and aryloxy group are each deuterium; halogen; silane group; Siloxane group; boron group; Germanium group; cyano group; nitro group; C 1 ~ C 20 Alkylthio group; A C 1 ~ C 20 alkoxy group; C 1 ~ C 20 Alkyl group; A C 2 ~C 20 alkenyl group; A C 2 ~C 20 alkynyl group; C 6 ~ C 20 aryl group; A deuterium-substituted C 6 ~C 20 aryl group; fluorenyl group; C 2 ~C 20 heterocyclic group; A C 3 ~C 20 cycloalkyl group; C 7 ~ C 20 arylalkyl group; And a C 8 ~ C 20 arylalkenyl group; may be further substituted with one or more substituents selected from the group consisting of, and these substituents may combine with each other to form a ring, wherein 'ring' means C 3 ~C 60 It refers to an aliphatic ring or a C 6 ~ C 60 aromatic ring or a C 2 ~ C 60 hetero ring or a fused ring composed of a combination thereof, and includes a saturated or unsaturated ring.
또한, 본 발명은 상기 화학식 (3)이 하기 화학식 (3-1) 또는 화학식 (3-2)로 표시되는 유기전기소자를 제공한다.In addition, the present invention provides an organic electric device in which Chemical Formula (3) is represented by Chemical Formula (3-1) or Chemical Formula (3-2) below.
화학식 (3-1) 화학식 (3-2) Formula (3-1) Formula (3-2)
Figure PCTKR2022006762-appb-img-000043
Figure PCTKR2022006762-appb-img-000043
{상기 화학식 (3-1) 및 화학식 (3-2)에서,{In the above formula (3-1) and formula (3-2),
1) X, L2, L3, L4, Ar4, R2, R3, b 및 c는 상기 화학식 (3) 내지 화학식 (4)에서 정의된 바와 동일하며,1) X, L 2 , L 3 , L 4 , Ar 4 , R 2 , R 3 , b and c are as defined in Formulas (3) to (4) above,
2) X1 및 X2는 상기 X의 정의와 동일하고,2) X 1 and X 2 are the same as the definition of X above,
3) R4, R5, R6 및 R7은 상기 R2의 정의와 동일하며,3) R 4 , R 5 , R 6 and R 7 are the same as the definition of R 2 above,
4) d 및 f는 서로 독립적으로 0 내지 3의 정수이고, e 및 g는 서로 독립적으로 0 내지 4의 정수이다.}4) d and f are independently integers from 0 to 3, and e and g are independently integers from 0 to 4.}
또한, 본 발명은 상기 화학식 (4)가 하기 화학식 (4-1) 내지 화학식 (4-6) 중 어느 하나로 표시되는 유기전기소자를 제공한다.In addition, the present invention provides an organic electric device in which Chemical Formula (4) is represented by any one of Chemical Formulas (4-1) to (4-6) below.
화학식 (4-1) 화학식 (4-2) Formula (4-1) Formula (4-2)
Figure PCTKR2022006762-appb-img-000044
Figure PCTKR2022006762-appb-img-000044
화학식 (4-3) 화학식 (4-4) Formula (4-3) Formula (4-4)
Figure PCTKR2022006762-appb-img-000045
Figure PCTKR2022006762-appb-img-000045
화학식 (4-5) 화학식 (4-6) Formula (4-5) Formula (4-6)
Figure PCTKR2022006762-appb-img-000046
Figure PCTKR2022006762-appb-img-000046
{상기 화학식 (4-1) 내지 화학식 (4-6)에서,{In the above formula (4-1) to formula (4-6),
1) Y, Ar6, R8, R10, h 및 j는 상기 화학식 (3) 내지 화학식 (4)에서 정의된 바와 동일하며,1) Y, Ar 6 , R 8 , R 10 , h and j are as defined in Formulas (3) to (4) above,
2) R9는 상기 R8의 정의와 동일하고,2) R 9 is the same as the definition of R 8 above,
3) i는 0 내지 2의 정수이다.}3) i is an integer from 0 to 2}
또한, 본 발명은 상기 화학식 (3)으로 나타낸 화합물이 하기 화합물 N-1 내지 N-144 중 어느 하나로 표시되는 유기전기소자를 제공한다.In addition, the present invention provides an organic electric device in which the compound represented by Chemical Formula (3) is represented by any one of the following compounds N-1 to N-144.
Figure PCTKR2022006762-appb-img-000047
Figure PCTKR2022006762-appb-img-000047
Figure PCTKR2022006762-appb-img-000048
Figure PCTKR2022006762-appb-img-000048
Figure PCTKR2022006762-appb-img-000049
Figure PCTKR2022006762-appb-img-000049
Figure PCTKR2022006762-appb-img-000050
Figure PCTKR2022006762-appb-img-000050
Figure PCTKR2022006762-appb-img-000051
Figure PCTKR2022006762-appb-img-000051
Figure PCTKR2022006762-appb-img-000052
Figure PCTKR2022006762-appb-img-000052
Figure PCTKR2022006762-appb-img-000053
Figure PCTKR2022006762-appb-img-000053
Figure PCTKR2022006762-appb-img-000054
Figure PCTKR2022006762-appb-img-000054
Figure PCTKR2022006762-appb-img-000055
Figure PCTKR2022006762-appb-img-000055
Figure PCTKR2022006762-appb-img-000056
Figure PCTKR2022006762-appb-img-000056
Figure PCTKR2022006762-appb-img-000057
Figure PCTKR2022006762-appb-img-000057
Figure PCTKR2022006762-appb-img-000058
Figure PCTKR2022006762-appb-img-000058
Figure PCTKR2022006762-appb-img-000059
Figure PCTKR2022006762-appb-img-000059
Figure PCTKR2022006762-appb-img-000060
Figure PCTKR2022006762-appb-img-000060
Figure PCTKR2022006762-appb-img-000061
Figure PCTKR2022006762-appb-img-000061
Figure PCTKR2022006762-appb-img-000062
Figure PCTKR2022006762-appb-img-000062
Figure PCTKR2022006762-appb-img-000063
Figure PCTKR2022006762-appb-img-000063
Figure PCTKR2022006762-appb-img-000064
Figure PCTKR2022006762-appb-img-000064
Figure PCTKR2022006762-appb-img-000065
Figure PCTKR2022006762-appb-img-000065
Figure PCTKR2022006762-appb-img-000066
Figure PCTKR2022006762-appb-img-000066
Figure PCTKR2022006762-appb-img-000067
Figure PCTKR2022006762-appb-img-000067
Figure PCTKR2022006762-appb-img-000068
Figure PCTKR2022006762-appb-img-000068
Figure PCTKR2022006762-appb-img-000069
Figure PCTKR2022006762-appb-img-000069
Figure PCTKR2022006762-appb-img-000070
Figure PCTKR2022006762-appb-img-000070
Figure PCTKR2022006762-appb-img-000071
Figure PCTKR2022006762-appb-img-000071
Figure PCTKR2022006762-appb-img-000072
Figure PCTKR2022006762-appb-img-000072
Figure PCTKR2022006762-appb-img-000073
Figure PCTKR2022006762-appb-img-000073
Figure PCTKR2022006762-appb-img-000074
Figure PCTKR2022006762-appb-img-000074
Figure PCTKR2022006762-appb-img-000075
Figure PCTKR2022006762-appb-img-000075
Figure PCTKR2022006762-appb-img-000076
Figure PCTKR2022006762-appb-img-000076
Figure PCTKR2022006762-appb-img-000077
Figure PCTKR2022006762-appb-img-000077
Figure PCTKR2022006762-appb-img-000078
Figure PCTKR2022006762-appb-img-000078
Figure PCTKR2022006762-appb-img-000079
Figure PCTKR2022006762-appb-img-000079
Figure PCTKR2022006762-appb-img-000080
Figure PCTKR2022006762-appb-img-000080
Figure PCTKR2022006762-appb-img-000081
Figure PCTKR2022006762-appb-img-000081
Figure PCTKR2022006762-appb-img-000082
Figure PCTKR2022006762-appb-img-000082
또한, 본 발명은 상기 화학식 (4)로 나타낸 화합물이 하기 화합물 S-1 내지 S-84 중 어느 하나로 표시되는 유기전기소자를 제공한다.In addition, the present invention provides an organic electric device in which the compound represented by Chemical Formula (4) is represented by any one of the following compounds S-1 to S-84.
Figure PCTKR2022006762-appb-img-000083
Figure PCTKR2022006762-appb-img-000083
Figure PCTKR2022006762-appb-img-000084
Figure PCTKR2022006762-appb-img-000084
Figure PCTKR2022006762-appb-img-000085
Figure PCTKR2022006762-appb-img-000085
Figure PCTKR2022006762-appb-img-000086
Figure PCTKR2022006762-appb-img-000086
Figure PCTKR2022006762-appb-img-000087
Figure PCTKR2022006762-appb-img-000087
Figure PCTKR2022006762-appb-img-000088
Figure PCTKR2022006762-appb-img-000088
Figure PCTKR2022006762-appb-img-000089
Figure PCTKR2022006762-appb-img-000089
Figure PCTKR2022006762-appb-img-000090
Figure PCTKR2022006762-appb-img-000090
Figure PCTKR2022006762-appb-img-000091
Figure PCTKR2022006762-appb-img-000091
Figure PCTKR2022006762-appb-img-000092
Figure PCTKR2022006762-appb-img-000092
Figure PCTKR2022006762-appb-img-000093
Figure PCTKR2022006762-appb-img-000093
Figure PCTKR2022006762-appb-img-000094
Figure PCTKR2022006762-appb-img-000094
Figure PCTKR2022006762-appb-img-000095
Figure PCTKR2022006762-appb-img-000095
Figure PCTKR2022006762-appb-img-000096
Figure PCTKR2022006762-appb-img-000096
Figure PCTKR2022006762-appb-img-000097
Figure PCTKR2022006762-appb-img-000097
Figure PCTKR2022006762-appb-img-000098
Figure PCTKR2022006762-appb-img-000098
Figure PCTKR2022006762-appb-img-000099
Figure PCTKR2022006762-appb-img-000099
Figure PCTKR2022006762-appb-img-000100
Figure PCTKR2022006762-appb-img-000100
Figure PCTKR2022006762-appb-img-000101
Figure PCTKR2022006762-appb-img-000101
Figure PCTKR2022006762-appb-img-000102
Figure PCTKR2022006762-appb-img-000102
Figure PCTKR2022006762-appb-img-000103
Figure PCTKR2022006762-appb-img-000103
본 발명은 하기 화학식 (3-3)으로 표시되는 화합물을 제공한다.The present invention provides a compound represented by the following formula (3-3).
화학식 (3-3) Formula (3-3)
Figure PCTKR2022006762-appb-img-000104
Figure PCTKR2022006762-appb-img-000104
상기 화학식 (3-3)에서, 각 기호는 하기와 같이 정의될 수 있다.In the above formula (3-3), each symbol may be defined as follows.
1) C환은 중수소로 치환 또는 비치환된 C10의 방향족탄화수소기이며,1) C ring is an aromatic hydrocarbon group of C 10 unsubstituted or substituted with deuterium,
2) Z는 O 또는 S이고,2) Z is O or S;
3) R11, R12 및 R13은 각각 동일하거나 상이하며, 서로 독립적으로 수소 또는 중수소이고,3) R 11 , R 12 and R 13 are the same or different, and each independently represent hydrogen or deuterium;
4) k 및 n은 서로 독립적으로 0 내지 3의 정수이며, m은 0 내지 4의 정수이고,4) k and n are each independently an integer from 0 to 3, m is an integer from 0 to 4,
5) Ar7 및 Ar8은 서로 독립적으로 C6~C60의 아릴기; 플루오렌일기; 또는 C2~C60의 헤테로고리기이며,5) Ar 7 and Ar 8 are each independently a C 6 ~ C 60 aryl group; fluorenyl group; Or a C 2 ~ C 60 heterocyclic group,
상기 Ar7 및 Ar8이 아릴기인 경우 바람직하게는 C6~C30의 아릴기, 더 바람직하게는 C6~C25의 아릴기, C6~C18의 아릴기, C6~C12의 아릴기, 예컨대 페닐, 바이페닐, 나프틸, 터페닐, 페난트레닐, 페닐-나프틸, 페닐-페난트레닐, 바이페닐-나프틸, 바이페닐-페난트레닐 등일 수 있다.When Ar 7 and Ar 8 are aryl groups, preferably C 6 ~ C 30 aryl groups, more preferably C 6 ~ C 25 aryl groups, C 6 ~ C 18 aryl groups, C 6 ~ C 12 aryl groups such as phenyl, biphenyl, naphthyl, terphenyl, phenanthrenyl, phenyl-naphthyl, phenyl-phenanthrenyl, biphenyl-naphthyl, biphenyl-phenanthrenyl, and the like.
Ar7 및 Ar8의 아릴기의 예시로는 하기와 같으나, 이에 한정된 것은 아니다.Examples of the aryl groups of Ar 7 and Ar 8 are as follows, but are not limited thereto.
Figure PCTKR2022006762-appb-img-000105
Figure PCTKR2022006762-appb-img-000105
Figure PCTKR2022006762-appb-img-000106
Figure PCTKR2022006762-appb-img-000106
Figure PCTKR2022006762-appb-img-000107
Figure PCTKR2022006762-appb-img-000107
Figure PCTKR2022006762-appb-img-000108
Figure PCTKR2022006762-appb-img-000108
Figure PCTKR2022006762-appb-img-000109
Figure PCTKR2022006762-appb-img-000109
Figure PCTKR2022006762-appb-img-000110
Figure PCTKR2022006762-appb-img-000110
Figure PCTKR2022006762-appb-img-000111
Figure PCTKR2022006762-appb-img-000111
Figure PCTKR2022006762-appb-img-000112
Figure PCTKR2022006762-appb-img-000112
상기 구조에 결합된 수소는 중수소로 대체될 수 있다.Hydrogens bonded to the structure may be replaced by deuterium.
상기 Ar7 및 Ar8이 헤테로고리기인 경우 바람직하게는 C6~C30의 헤테로고리기, 더 바람직하게는 C6~C25의 헤테로고리기, C6~C18의 헤테로고리기, C6~C12의 헤테로고리기, 예컨대 다이벤조퓨란, 다이벤조싸이오펜 등일 수 있다.When Ar 7 and Ar 8 are heterocyclic groups, preferably C 6 ~ C 30 heterocyclic groups, more preferably C 6 ~ C 25 heterocyclic groups, C 6 ~ C 18 heterocyclic groups, C 6 It may be a ~C 12 heterocyclic group, such as dibenzofuran, dibenzothiophene, and the like.
6) 여기서, 상기 아릴기, 플루오렌일기, 헤테로고리기 및 방향족탄화수소기는 각각 중수소; 할로겐; 실란기; 실록산기; 붕소기; 게르마늄기; 시아노기; 니트로기; C1~C20의 알킬싸이오기; C1~C20의 알콕시기; C1~C20의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C6~C20의 아릴기; 중수소로 치환된 C6~C20의 아릴기; 플루오렌일기; C2~C20의 헤테로고리기; C3~C20의 시클로알킬기; C7~C20의 아릴알킬기; 및 C8~C20의 아릴알켄일기;로 이루어진 군에서 선택된 하나 이상의 치환기로 더욱 치환될 수 있으며, 또한 이들 치환기들은 서로 결합하여 고리를 형성할 수도 있으며, 여기서 '고리'란 C3~C60의 지방족고리 또는 C6~C60의 방향족고리 또는 C2~C60의 헤테로고리 또는 이들의 조합으로 이루어진 융합 고리를 말하며, 포화 또는 불포화 고리를 포함한다.6) Here, the aryl group, fluorenyl group, heterocyclic group and aromatic hydrocarbon group are each deuterium; halogen; silane group; Siloxane group; boron group; Germanium group; cyano group; nitro group; C 1 ~ C 20 Alkylthio group; A C 1 ~ C 20 alkoxy group; C 1 ~ C 20 Alkyl group; A C 2 ~C 20 alkenyl group; A C 2 ~C 20 alkynyl group; C 6 ~ C 20 aryl group; A deuterium-substituted C 6 ~C 20 aryl group; fluorenyl group; C 2 ~C 20 heterocyclic group; A C 3 ~C 20 cycloalkyl group; C 7 ~ C 20 arylalkyl group; And a C 8 ~ C 20 arylalkenyl group; may be further substituted with one or more substituents selected from the group consisting of, and these substituents may combine with each other to form a ring, wherein 'ring' means C 3 ~C 60 It refers to an aliphatic ring or a C 6 ~ C 60 aromatic ring or a C 2 ~ C 60 hetero ring or a fused ring composed of a combination thereof, and includes a saturated or unsaturated ring.
또한, 본 발명은 상기 화학식 (3-3)이 하기 화학식 (3-4) 내지 (3-6) 중 어느 하나로 표시되는 화합물을 제공한다.In addition, the present invention provides a compound in which Formula (3-3) is represented by any one of Formulas (3-4) to (3-6) below.
화학식 (3-4) 화학식 (3-5) Formula (3-4) Formula (3-5)
Figure PCTKR2022006762-appb-img-000113
Figure PCTKR2022006762-appb-img-000113
화학식 (3-6) Formula (3-6)
Figure PCTKR2022006762-appb-img-000114
Figure PCTKR2022006762-appb-img-000114
{상기 화학식 (3-4) 내지 화학식 (3-6)에서,{In the formula (3-4) to formula (3-6),
1) R11, R12, R13, k, m, n, Ar7, Ar8 및 Z는 상기에서 정의된 바와 동일하며,1) R 11 , R 12 , R 13 , k, m, n, Ar 7 , Ar 8 and Z are as defined above,
2) R14는 수소 또는 중수소이고,2) R 14 is hydrogen or deuterium;
3) l은 0 내지 6의 정수이다.}3) l is an integer from 0 to 6}
또한, 본 발명은 상기 화학식 (3-3)이 하기 화학식 (3-7) 내지 화학식 (3-10) 중 어느 하나로 표시되는 화합물을 제공한다.In addition, the present invention provides a compound in which Formula (3-3) is represented by any one of Formulas (3-7) to Formula (3-10) below.
화학식 (3-7) 화학식 (3-8) Formula (3-7) Formula (3-8)
Figure PCTKR2022006762-appb-img-000115
Figure PCTKR2022006762-appb-img-000115
화학식 (3-9) 화학식 (3-10) Formula (3-9) Formula (3-10)
Figure PCTKR2022006762-appb-img-000116
Figure PCTKR2022006762-appb-img-000116
{상기 화학식 (3-7) 내지 화학식 (3-10)에서, R11, R12, R13, k, m, n, Ar7, Ar8, Z 및 C환은 상기에서 정의된 바와 동일하다.}{In Formula (3-7) to Formula (3-10), R 11 , R 12 , R 13 , k, m, n, Ar 7 , Ar 8 , Z and C ring are the same as defined above. }
또한, 본 발명은 상기 화학식 (3-3)이 하기 화학식 (3-11) 내지 (3-22) 중 어느 하나로 표시되는 화합물을 제공한다.In addition, the present invention provides a compound in which Formula (3-3) is represented by any one of Formulas (3-11) to (3-22) below.
화학식 (3-11) 화학식 (3-12) Formula (3-11) Formula (3-12)
Figure PCTKR2022006762-appb-img-000117
Figure PCTKR2022006762-appb-img-000117
화학식 (3-13) 화학식 (3-14) Formula (3-13) Formula (3-14)
Figure PCTKR2022006762-appb-img-000118
Figure PCTKR2022006762-appb-img-000118
화학식 (3-15) 화학식 (3-16) Formula (3-15) Formula (3-16)
Figure PCTKR2022006762-appb-img-000119
Figure PCTKR2022006762-appb-img-000119
화학식 (3-17) 화학식 (3-18) Formula (3-17) Formula (3-18)
Figure PCTKR2022006762-appb-img-000120
Figure PCTKR2022006762-appb-img-000120
화학식 (3-19) 화학식 (3-20) Formula (3-19) Formula (3-20)
Figure PCTKR2022006762-appb-img-000121
Figure PCTKR2022006762-appb-img-000121
화학식 (3-21) 화학식 (3-22) Formula (3-21) Formula (3-22)
Figure PCTKR2022006762-appb-img-000122
Figure PCTKR2022006762-appb-img-000122
{상기 화학식 (3-11) 내지 화학식 (3-22)에서, R11, R12, R13, R14, k, m, n, l, Ar7, Ar8 및 Z는 상기에서 정의된 바와 동일하다.}{In Formula (3-11) to Formula (3-22), R 11 , R 12 , R 13 , R 14 , k, m, n, l, Ar 7 , Ar 8 and Z are as defined above same.}
또한, 본 발명은 상기 화학식 (3-3)에서, 적어도 하나의 중수소를 포함하는 화합물을 제공한다. 더 바람직하게는 상기 화학식 (3-3)의 Ar7 및 Ar8 중 적어도 하나는 중수소를 포함하는 것이 바람직하다.In addition, the present invention provides a compound containing at least one deuterium in the formula (3-3). More preferably, at least one of Ar 7 and Ar 8 in Formula (3-3) contains deuterium.
또한, 본 발명은 상기 화학식 (3-3)에서, Reorganization Energy 값이 0.170 내지 0.190인 화합물을 제공한다. 바람직하게는 Reorganization Energy 값이 0.175 내지 0.188일 수 있다.In addition, the present invention provides a compound having a Reorganization Energy value of 0.170 to 0.190 in Formula (3-3). Preferably, the Reorganization Energy value may be 0.175 to 0.188.
재배열 에너지(Reorganization Energy; 이하, RE로 약기함)란 전하(전자, 정공) 이동 시 분자 구조 배치 변화에 따라 손실되는 에너지를 말한다. 분자 기하학(Molecular geometry)에 의존하며, 중성 상태의 PES(Potential Energy Surface)와 전하 상태의 PES의 차이가 작을수록 그 값이 작아지는 특징을 가진다. RE값은 아래와 같은 계산식에 의해 구할 수 있다.Reorganization energy (hereinafter abbreviated as RE) refers to energy lost due to changes in molecular structure arrangement during charge (electron, hole) movement. It depends on molecular geometry, and has a characteristic that the value becomes smaller as the difference between the potential energy surface (PES) of the neutral state and the PES of the charged state is small. The RE value can be obtained by the following formula.
Figure PCTKR2022006762-appb-img-000123
Figure PCTKR2022006762-appb-img-000123
각각의 인자는 하기와 같이 정의될 수 있다.Each factor can be defined as follows.
- NONE: 중성(Neutral) 분자의 중성 기하학(Neutral geometry) (이하, NO opt.)- NONE: Neutral geometry of a neutral molecule (hereinafter referred to as NO opt.)
- NOAE: 중성(Neutral) 분자의 음이온 기하학(Anion geometry)- NOAE: Anion geometry of neutral molecules
- NOCE: 중성(Neutral) 분자의 양이온 기하학(Cation geometry)- NOCE: Cation geometry of neutral molecules
- AONE: 음이온(Anion) 분자의 중성 기하학(Neutral geometry)- AONE: Neutral geometry of an anion molecule
- AOAE: 음이온(Anion) 분자의 음이온 기하학(Anion geometry) (이하, AO opt.)- AOAE: Anion geometry of an anion molecule (hereinafter referred to as AO opt.)
- CONE: 양이온(Cation) 분자의 중성 기하학(Neutral geometry)- CONE: Neutral geometry of cation molecules
- COCE: 양이온(Cation) 분자의 양이온 기하학(Cation geometry) (이하, CO opt.)-COCE: Cation geometry of a cation molecule (hereinafter referred to as CO opt.)
재배열 에너지(Reorganization Energy) 값과 이동도(mobility)는 반비례 관계에 있으며, 동일한 r, T값을 가진다는 조건에서 각각의 재료는 RE값이 mobility에 직접 영향을 준다. RE값과 mobility의 관계식은 아래와 같이 표현된다.Reorganization energy value and mobility are in inverse proportion, and the RE value of each material directly affects mobility under the condition that they have the same r and T values. The relationship between RE value and mobility is expressed as follows.
Figure PCTKR2022006762-appb-img-000124
Figure PCTKR2022006762-appb-img-000124
각각의 인자는 하기와 같이 정의될 수 있다.Each factor can be defined as follows.
- λ : 재배열 에너지(Reorganization energy)- λ : Reorganization energy
- μ : 이동도(mobility)- μ : mobility
- r : 이량체 변위(dimer displacement)- r: dimer displacement
- t : 분자간 전하 이동 매트릭스 요소(intermolecular charge transfer matrix element)- t: intermolecular charge transfer matrix element
상기 식에 의해서 RE값이 낮은 값을 가질수록 mobility는 빨라진다는 것을 알 수 있다.From the above equation, it can be seen that the lower the RE value, the faster the mobility.
Reorganization energy 값은 분자 구조에 따른 퍼텐셜 에너지를 계산할 수 있는 시뮬레이션 툴을 필요로 하며, 본 발명에서는 Gaussian09 (이하 G09)와 Schrodinger Materials Science의 Jaguar (이하 JG) 모듈을 사용하였다. G09와 JG 모두 양자역학적(QM) 계산을 통해 분자의 특성을 분석하는 툴이며, 분자 구조를 최적화(Optimization)하거나 주어진 분자 구조에 대한 에너지를 계산하는(Single-point energy) 기능을 가지고 있다.The reorganization energy value requires a simulation tool capable of calculating potential energy according to the molecular structure, and in the present invention, Gaussian09 (hereinafter referred to as G09) and Schrodinger Materials Science's Jaguar (hereinafter referred to as JG) module were used. Both G09 and JG are tools that analyze molecular properties through quantum mechanical (QM) calculations, and have functions of optimizing molecular structures or calculating energy for a given molecular structure (Single-point energy).
분자 구조에서 QM 계산을 하는 과정은 큰 계산 자원을 요구하며 본 발명에서는 이러한 계산을 위해 2개의 클러스터 서버를 사용하고 있다. 각 클러스터 서버는 4개의 노드 워크스테이션과 1개의 마스터 워크스테이션으로 구성되어 있으며, 각 노드는 36 코어 이상의 CPU를 사용하여 대칭형 멀티프로세싱(Symmetric Multi-processing; SMP)을 통한 병렬 연산(Parallel computing)으로 분자 QM 계산을 진행하였다.The process of QM calculation in the molecular structure requires a lot of computing resources, and two cluster servers are used in the present invention for this calculation. Each cluster server consists of 4 node workstations and 1 master workstation, and each node uses a CPU with 36 or more cores to perform parallel computing through Symmetric Multi-processing (SMP). Molecular QM calculations were performed.
G09를 활용하여 재배치 에너지에 필요한 중성/전하 상태에서 최적화된 분자 구조와 그 퍼텐셜 에너지(NONE / COCE)를 계산하였다. 2개의 최적화 구조에 전하만을 바꾸어 중성 상태에 최적화된 구조의 전하 상태 퍼텐셜 에너지(NOCE)와 전하 상태에 최적화된 구조의 중성 상태 퍼텐셜 에너지(CONE)를 계산하였다. 이후 아래 관계식에 따라 재배치 에너지를 계산하였다.The optimized molecular structure and its potential energy (NONE/COCE) in the neutral/charged state required for rearrangement energy were calculated using G09. The charge state potential energy (NOCE) of the structure optimized for the neutral state and the neutral state potential energy (CONE) of the structure optimized for the charge state were calculated by changing only the charge to the two optimized structures. Then, the rearrangement energy was calculated according to the relational expression below.
Figure PCTKR2022006762-appb-img-000125
Figure PCTKR2022006762-appb-img-000125
슈뢰딩거는 이와 같은 계산 과정을 자동으로 진행하는 기능을 제공하기 때문에 기본 상태의 분자 구조(NO)를 제공하는 것만으로 JG 모듈을 통해 각 상태에 따른 퍼텐셜 에너지를 순차적으로 계산하고 RE값을 계산하였다.Since Schrödinger provides a function that automatically proceeds with such a calculation process, the potential energy of each state was sequentially calculated through the JG module and the RE value was calculated simply by providing the molecular structure (NO) of the basic state.
결합 해리 에너지(Bond-Dissociation Energy)는 분자 내 비순환결합에 대한 결합 에너지를 계산한 것이다. 이를 위해 대상 분자의 전기적 퍼텐셜 에너지(Electric potential energy)를 계산하고 비순환결합을 기준으로 2개의 래디컬 분자로 나누어 각각에 대한 전기적 퍼텐셜 에너지를 계산하며, 결합 해리 에너지는 아래와 같은 식으로 표현할 수 있다. Bond-Dissociation Energy is a calculation of the bond energy for an acyclic bond in a molecule. To this end, the electric potential energy of the target molecule is calculated and divided into two radical molecules based on the acyclic bond, and the electrical potential energy for each is calculated, and the bond dissociation energy can be expressed by the following formula.
Figure PCTKR2022006762-appb-img-000126
Figure PCTKR2022006762-appb-img-000126
모든 계산은 전기적 중성 상태를 가정하여 진행하고, 분자동역학 시뮬레이션을 통해 추출한 고체상 분자의 경우 기체상 분자와 다르게 최적화된 구조를 갖지 않으므로 모든 계산은 단일점 에너지(Single-point energy, SPE) 계산으로 진행하여 구조를 유지한 채 결합 해리 에너지를 계산한다.All calculations are performed assuming an electrical neutral state, and solid-phase molecules extracted through molecular dynamics simulation do not have an optimized structure unlike gas-phase molecules, so all calculations are performed with single -point energy (SPE) calculations. to calculate the bond dissociation energy while maintaining the structure.
Figure PCTKR2022006762-appb-img-000127
Figure PCTKR2022006762-appb-img-000127
본 명세서에서 사용된 용어 “비결정질 고체상에서의 평균 결합해리에너지(Average Bond-dissociation energy in solid state amorphous)”는 다른 설명이 없는 한, 분자동역학 시뮬레이션을 통한 비결정질 고체상 분자의 양자역학적 평균 결합에너지(Quantum-Mechanics-based Average Bond-dissociation Energy of Molecules in Molecular Dynamically simulated solid-state amorphous)를 의미한다.As used herein, the term “average bond - dissociation energy in solid state amorphous” refers to the quantum mechanical average binding energy of molecules in an amorphous solid phase through molecular dynamics simulation (Quantum -Mechanics-based Average Bond-dissociation Energy of Molecules in Molecular Dynamically simulated solid-state amorphous).
상기 비결정질 고체상에서의 평균 결합해리에너지는 통계적인 데이터 집합(다수의 에너지 값의 집합)이기 때문에 데이터 가공 방법에 따라 그 값이 다르게 수치화될 수 있다. 따라서 본 명세서에서는 수치화를 위해 표본이 많아 통계적으로 신뢰도가 높고, 물질 간 특성 차이가 명확하게 나타나는 비결정질 고체상에서의 결합해리에너지 분포의 평균값을 사용하였으며, 그 값을 구하는 것은 하기와 같은 과정을 통해 진행된다.Since the average bond dissociation energy in the amorphous solid phase is a statistical data set (a set of multiple energy values), the value may be digitized differently depending on the data processing method. Therefore, in this specification, the average value of the bond dissociation energy distribution in the amorphous solid phase, which is statistically reliable because of the large number of samples and clearly shows the difference in properties between materials, was used for quantification, and the value is obtained through the following process. do.
비결정질 고체상에서의 평균 결합해리에너지는 주기 반복 경계 조건(Periodic Boundary Condition, PBC)을 가진 단위 정(Unit cell) 내에 일정한 개수의 단분자를 배치하고 이에 대해 분자동역학 시뮬레이션을 시행하여 도출된 값이며, 바람직하게는 단위 정(Unit cell) 내의 단분자는 수십 개 내지 수천 개일 수 있다.The average bond dissociation energy in an amorphous solid phase is a value derived by arranging a certain number of single molecules in a unit cell with periodic boundary conditions (PBC) and performing molecular dynamics simulation on them, Preferably, the number of single molecules in a unit cell may be tens to thousands.
분자동역학 시뮬레이션은 총 4단계로 진행되었으며, 첫 단계는 Brownian 역학에 따라 일정한 부피를 갖는 조건에서 10 켈빈의 온도로 진행한다. 두 번째 단계도 마찬가지로 Brownian 역학에 따라 진행하되, 일정한 대기압(1.01325 bar) 조건에서 100 켈빈의 온도로 진행한다. 이후 세 번째 단계에서 역장(Force Field)에 따른 분자동역학을 계산하게 되며, 마찬가지로 일정한 압력(대기압)과 온도(상온)에서 0.1나노초(ns) 만큼 진행시킨다. 마지막으로 세 번째 단계와 같은 조건(대기압, 상온)에서 2펨토초(fs) 단위로 분자 동역학 과정을 진행시키며, 일정 시간이 소요될 때까지 시뮬레이션을 진행한다. 이때 일정 시간은 비결정질 고체 구조가 충분히 평형상태(Equilibrium state)에 이르는 시간을 의미하며, 바람직하게는 수백나노초 내지 수천나노초 일 수 있으며, 더욱 바람직하게는 100나노초 내지 150나노초 일 수 있고, 더욱 더 바람직하게는 120나노초 일 수 있다. 이후 최종 시점에서의 구조 데이터를 추출하고 해당 구조에서 일부 단분자들을 추출(샘플링)한다. 양자역학(Quantum Mechanics) 시뮬레이션을 통해 추출한 단분자에 대한 단일시점 에너지 계산(Single-point energy calculation)을 진행하고 분자 내 비순환결합(Acyclic bond)에 대한 결합해리에너지(Bond-dissociation energy; BDE)를 계산한다. 얻어낸 모든 결합해리에너지 값을 취하여 결합해리에너지 집합 G={E1 … EN}을 구성하고 결합해리에너지 집합의 평균값
Figure PCTKR2022006762-appb-img-000128
을 고체 상태 물질의 결합해리에너지 지표로 사용한다.
The molecular dynamics simulation was conducted in four steps, and the first step proceeds at a temperature of 10 Kelvin under conditions with a constant volume according to Brownian dynamics. The second step proceeds according to Brownian dynamics as well, but proceeds at a temperature of 100 Kelvin under conditions of constant atmospheric pressure (1.01325 bar). After that, in the third step, molecular dynamics according to the force field are calculated, and similarly, it proceeds by 0.1 nanoseconds (ns) at a constant pressure (atmospheric pressure) and temperature (room temperature). Finally, under the same conditions as the third step (atmospheric pressure, room temperature), the molecular dynamics process proceeds in units of 2 femtoseconds (fs), and the simulation proceeds until a certain amount of time is required. In this case, the certain time means the time for the amorphous solid structure to reach a sufficient equilibrium state, and may be preferably hundreds of nanoseconds to thousands of nanoseconds, more preferably 100 nanoseconds to 150 nanoseconds, and even more preferably At most, it may be 120 nanoseconds. Afterwards, structural data at the final time point is extracted and some single molecules are extracted (sampled) from the structure. Single-point energy calculation is performed for single molecules extracted through quantum mechanics simulation, and bond-dissociation energy (BDE) for acyclic bonds in molecules is calculated. Calculate. Take all the obtained bond dissociation energies and obtain the set of bond dissociation energies G = {E 1 . . . E N } and the average value of the set of bond dissociation energies
Figure PCTKR2022006762-appb-img-000128
is used as an indicator of the bond dissociation energy of solid-state materials.
본 명세서에서 비결정질 고체상에서의 평균 결합해리에너지 값
Figure PCTKR2022006762-appb-img-000129
의 단위는 eV이며, eV 값에 23.061을 곱하여 kcal/mol 단위로 환산할 수 있다.
Average bond dissociation energy value in the amorphous solid phase herein
Figure PCTKR2022006762-appb-img-000129
The unit of is eV, and it can be converted into kcal/mol by multiplying the eV value by 23.061.
본 명세서에서 사용된 용어 “비결정질 고체상 분자 구조의 체적 밀도(Bulk density of solid-state amorphous)”는 다른 설명이 없는 한 분자동역학 시뮬레이션을 통해 얻은 비결정질 고체상 분자 구조의 체적 밀도(Bulk density of Molecular Dynamically simulated solid-state amorphous)를 의미하며, 그 값을 구하는 것은 하기와 같은 과정을 통해 진행된다.As used herein, the term “bulk density of solid -state amorphous ” means, unless otherwise specified , the bulk density of molecular dynamically simulated amorphous solid-state molecular structure obtained through molecular dynamics simulation. solid-state amorphous ), and obtaining its value proceeds through the following process.
주기 반복 경계 조건(PBC)을 가진 단위 정(Unit cell) 내에 일정한 개수의 단분자를 배치하고 이에 대해 분자동역학 시뮬레이션을 시행하여 도출된 값이며, 바람직하게는 단위 정(Unit cell) 내의 단분자는 수십 개 내지 수천 개일 수 있다.It is a value derived by arranging a certain number of single molecules in a unit cell with a periodic repetition boundary condition (PBC) and performing molecular dynamics simulation on it. Preferably, the single molecule in the unit cell is It can be dozens or thousands.
분자동역학 시뮬레이션은 총 4단계로 진행되었으며, 첫 단계는 Brownian 역학에 따라 일정한 부피를 갖는 조건에서 10 켈빈의 온도로 진행한다. 두 번째 단계도 마찬가지로 Brownian 역학에 따라 진행하되, 일정한 대기압(1.01325 bar) 조건에서 100 켈빈의 온도로 진행한다. 이후 세 번째 단계에서 역장(Force Field)에 따른 분자동역학을 계산하게 되며, 마찬가지로 일정한 압력(대기압)과 온도(상온)에서 0.1나노초(ns) 만큼 진행시킨다. 마지막으로 세 번째 단계와 같은 조건(대기압, 상온)에서 2펨토초(fs) 단위로 분자 동역학 과정을 진행시키며, 일정 시간이 소요될 때까지 시뮬레이션을 진행한다. 이때 일정 시간은 비결정질 고체 구조가 충분히 평형상태(Equilibrium state)에 이르는 시간을 의미하며 바람직하게는 수백나노초 내지 수천나노초 일 수 있으며, 더욱 바람직하게는 100나노초 내지 150나노초일 수 있고, 더욱 더 바람직하게는 120나노초 일 수 있다. 이후 최종 20%의 시간 동안의 평균 체적 밀도(Average bulk density)를 계산하였으며, 상기 최종 20%의 시간은 바람직하게는 수십나노초 내지 수천나노초일 수 있으며, 더욱 바람직하게는 80나노초 내지 150나노초 일 수 있고, 더욱 더 바람직하게는 120나노초 일 수 있다.The molecular dynamics simulation was conducted in four steps, and the first step proceeds at a temperature of 10 Kelvin under conditions with a constant volume according to Brownian dynamics. The second step proceeds according to Brownian dynamics as well, but proceeds at a temperature of 100 Kelvin under conditions of constant atmospheric pressure (1.01325 bar). After that, in the third step, molecular dynamics according to the force field are calculated, and similarly, it proceeds by 0.1 nanoseconds (ns) at a constant pressure (atmospheric pressure) and temperature (room temperature). Finally, under the same conditions as the third step (atmospheric pressure, room temperature), the molecular dynamics process proceeds in units of 2 femtoseconds (fs), and the simulation proceeds until a certain amount of time is required. At this time, the certain time means the time for the amorphous solid structure to reach a sufficient equilibrium state, and may be preferably hundreds of nanoseconds to thousands of nanoseconds, more preferably 100 nanoseconds to 150 nanoseconds, and even more preferably may be 120 nanoseconds. Afterwards, the average bulk density was calculated for the final 20% of the time, and the final 20% of the time may preferably be tens of nanoseconds to thousands of nanoseconds, more preferably 80 nanoseconds to 150 nanoseconds. , and even more preferably may be 120 nanoseconds.
본 명세서에서 비결정질 고체상 분자 구조의 체적 밀도값 단위는 g/cm3이다.In the present specification, the volume density value unit of the amorphous solid phase molecular structure is g/cm 3 .
본 명세서에서 사용된 용어 “방사 분포 함수(Radial Distribution Function, RDF) g(r)”는 하나의 분자로부터 일정한 거리 r만큼 떨어진 다른 분자를 발견할 확률을 의미한다. 방사 분포 함수는 거리에 따른 함수로 표현되며, 그 식은 다음과 같이 정의한다.As used herein, the term “radial distribution function (RDF) g(r) ” means the probability of finding another molecule separated by a certain distance r from one molecule. The radial distribution function is expressed as a function according to distance, and the expression is defined as follows.
Figure PCTKR2022006762-appb-img-000130
Figure PCTKR2022006762-appb-img-000130
상기 화학식에서 ρ는 체적 밀도(bulk density), dr은 반지름 r을 갖는 구의 미소 두께이며, dnrdr의 미소 두께를 가지는 구 껍질에 포함되는 분자의 개수이다. 방사 분포 함수를 수치화하기 위하여 비결정질 고체상에서 방사 분포 함수가 가장 큰 값을 가지는 거리를 지표로 사용하며, 이때 분자간 거리 r은 각 분자의 질량 중심 거리(Center-of-mass distance)를 사용하였다. 방사 분포 함수를 얻기 위한 비결정질 고체상 구조는 분자동역학 시뮬레이션을 통해 구하고, 이때 총 시뮬레이션 시간 중 최종 20%의 시간 동안의 구조만을 사용하여 분포 함수를 계산하였으며, 상기 최종 20%의 시간은 바람직하게는 수십나노초 내지 수천나노초일 수 있으며, 더욱 바람직하게는 80나노초 내지 150나노초일 수 있고, 더욱 더 바람직하게는 120나노초일 수 있다.In the above formula, ρ is the bulk density, dr is the microscopic thickness of a sphere having a radius r , and dn r is the number of molecules included in the shell of a sphere having a microscopic thickness dr . In order to quantify the radial distribution function, the distance at which the radial distribution function has the largest value in the amorphous solid phase is used as an indicator, and the center-of-mass distance of each molecule is used as the distance r between molecules. The amorphous solid-state structure for obtaining the radial distribution function is obtained through molecular dynamics simulation, and at this time, the distribution function is calculated using only the structure for the final 20% of the total simulation time, and the final 20% of the time is preferably several tens. It may be nanoseconds to thousands of nanoseconds, more preferably 80 nanoseconds to 150 nanoseconds, and even more preferably 120 nanoseconds.
본 명세서에서 방사 분포 함수값의 단위는 Å이다.In this specification, the unit of the radial distribution function value is Å.
본 명세서에서 기재된 비결정질 고체상에서의 평균 결합해리에너지, 비결정질 고체상 분자 구조의 체적 밀도 및 방사 분포 함수값은 분자 시뮬레이션(Gaussian09 Rev. C.01, Schrodinger Materials Science Suite 4.1.161)을 통해 얻어졌으며, 분자동역학 시뮬레이션을 위해 Desmond 패키지를 사용하였다. 분자동역학 시뮬레이션을 통해 얻어진 구조에서 단분자를 추출하여 제1원리에 입각한 양자화학적 특성을 계산하였으며 이 과정에서 Gaussian과 Jaguar 패키지를 사용하였다.The average bond dissociation energy in the amorphous solid phase, the volume density of the molecular structure of the amorphous solid phase, and the radial distribution function values described in this specification were obtained through molecular simulation (Gaussian09 Rev. C.01, Schrodinger Materials Science Suite 4.1.161). The Desmond package was used for the dynamics simulation. Single molecules were extracted from structures obtained through molecular dynamics simulations, and quantum chemical properties based on the first principle were calculated. Gaussian and Jaguar packages were used in this process.
전하이동도(Charge Mobility)는 일반화된 유효매질모델(Generalized effective medium model, GEMM)에서 균일한 매질에 대한 전하이동도는 유효매질근사(Effective medium approximation)에 따른 마스터 방정식(Master equation)의 해석적 해로부터 구할 수 있으며, 그 식은 다음과 같이 표현된다.Charge mobility is an analytical method of the master equation according to the effective medium approximation in the generalized effective medium model (GEMM). It can be obtained from the solution, and the expression is expressed as follows.
Figure PCTKR2022006762-appb-img-000131
Figure PCTKR2022006762-appb-img-000131
여기서 e는 전하량, β는 볼츠만 상수와 온도의 역수(1/kBT)로 주어지는 열역학적 상수, M은 평균 이웃분자(Nearest-neighbor molecules) 개수, Hab는 전하 전달 행렬 요소(Charge transfer matrix element), n은 전하 전달 차원(3차원계에서 n=3), ħ는 플랑크 상수, λ는 재배치 에너지(Reorganization energy), σ는 무질서도 지표(disorder parameter), C는 보정상수이다. 따라서 전하이동도는 다음과 같은 비례관계를 갖는다.where e is the charge, β is the thermodynamic constant given by the reciprocal of the Boltzmann constant and the temperature (1/k B T), M is the average number of nearest-neighbor molecules, H ab is the charge transfer matrix element ), n is the charge transfer dimension ( n = 3 in a three-dimensional system), ħ is the Planck constant, λ is the reorganization energy, σ is the disorder parameter, and C is the correction constant. Therefore, the charge mobility has the following proportional relationship.
Figure PCTKR2022006762-appb-img-000132
Figure PCTKR2022006762-appb-img-000132
비결정질 고체상태의 분자들이 충분히 균일하게 분포되어 있다고 가정할 경우(σ≪1), 각 이분자(Dimer) 사이의 전하 전달 행렬 요소(Hab)는 일정하므로 위 비례식은 다음과 같이 나타낼 수 있다.Assuming that the molecules in the amorphous solid state are sufficiently uniformly distributed (σ≪1), the charge transfer matrix element (H ab ) between each dimer is constant, so the above proportional equation can be expressed as:
Figure PCTKR2022006762-appb-img-000133
Figure PCTKR2022006762-appb-img-000133
이때, 전하 전달 행렬 요소는 선험적으로 분자간 거리와 아래와 같은 비례 관계를 가지고 있음이 알려져 있다.At this time, it is known that the charge transfer matrix elements have the following proportional relationship with the intermolecular distance a priori.
Figure PCTKR2022006762-appb-img-000134
Figure PCTKR2022006762-appb-img-000134
여기서 η는 감쇠상수(decay constant), r은 분자간 거리이다. 따라서 균일한 매질에 대해 전하이동도는 분자간 거리에 대해 지수적 감쇠 비례하는 관계를 가지고 있으며, 분자간 거리가 짧을수록 전하이동도는 증가하는 추세를 보이게 된다.where η is the decay constant and r is the intermolecular distance. Therefore, for a uniform medium, the charge mobility has an exponential decay proportional to the intermolecular distance, and the shorter the intermolecular distance, the higher the charge mobility.
또한 체적 밀도가 부피에 반비례하므로(ρ∝1/V) 이를 이용해 평균 분자간 거리(
Figure PCTKR2022006762-appb-img-000135
)를 도출할 수 있으며, 체적 밀도가 작을수록 분자간 거리는 짧아지게 되므로 이는 체적 밀도가 작은 물질이 높은 전하이동도를 가질 수 있음을 의미한다.
In addition, since the volume density is inversely proportional to the volume ( ρ ∝1/ V ), the average intermolecular distance (
Figure PCTKR2022006762-appb-img-000135
) can be derived, and the smaller the volume density, the shorter the intermolecular distance, which means that a material with a small volume density can have high charge mobility.
따라서 분자동역학 시뮬레이션을 통해 얻은 비결정질 고체상 구조에서 방사 분포 함수를 조사하는 것으로 분자간 거리가 최대로 밀집된 분포 구간을 확인할 수 있으며, 방사 분포 함수의 피크 값 위치를 전하이동도를 비교할 수 있는 분자간 거리 지표로서 활용할 수 있다.Therefore, by examining the radial distribution function in the amorphous solid-phase structure obtained through molecular dynamics simulation, it is possible to check the distribution section where the intermolecular distance is maximally dense, and the peak value position of the radial distribution function is used as an intermolecular distance index to compare charge mobility. can be utilized
상기 전하이동도는 문헌 [Friederich, Pascal, et al. "Ab initio treatment of disorder effects in amorphous organic materials: Toward parameter free materials simulation", Journal of chemical theory and computation 10.9 (2014): 3720-3725], [Friederich, Pascal, et al. "Molecular origin of the charge carrier mobility in small molecule organic semiconductors", Advanced Functional Materials 26.31 (2016): 5757-5763], [Oberhofer, Harald, and Jochen Blumberger. "Electronic coupling matrix elements from charge constrained density functional theory calculations using a plane wave basis set", The Journal of Chemical Physics 133.24 (2010): 244105], [Albinsson, Bo, et al. "Electron and energy transfer in donor-acceptor systems with conjugated molecular bridges", Physical Chemistry Chemical Physics 9.44 (2007): 5847-5864] 및 [Cave, Robert J., and Marshall D. Newton. "Calculation of electronic coupling matrix elements for ground and excited state electron transfer reactions: comparison of the generalized Mulliken-Hush and block diagonalization methods", The Journal of chemical physics 106.22 (1997): 9213-9226]을 참조하며, 이들 문헌은 그 전문이 본원에 참고로 포함된다.The charge mobility was described by Friederich, Pascal, et al. "Ab initio treatment of disorder effects in amorphous organic materials: Toward parameter free materials simulation", Journal of chemical theory and computation 10.9 (2014): 3720-3725], [Friederich, Pascal, et al. "Molecular origin of the charge carrier mobility in small molecule organic semiconductors", Advanced Functional Materials 26.31 (2016): 5757-5763], [Oberhofer, Harald, and Jochen Blumberger. "Electronic coupling matrix elements from charge constrained density functional theory calculations using a plane wave basis set", The Journal of Chemical Physics 133.24 (2010): 244105, [Albinsson, Bo, et al. "Electron and energy transfer in donor-acceptor systems with conjugated molecular bridges", Physical Chemistry Chemical Physics 9.44 (2007): 5847-5864 and [Cave, Robert J., and Marshall D. Newton. See "Calculation of electronic coupling matrix elements for ground and excited state electron transfer reactions: comparison of the generalized Mulliken-Hush and block diagonalization methods", The Journal of chemical physics 106.22 (1997): 9213-9226, which are Its entirety is incorporated herein by reference.
또한, 본 발명은 상기 화학식 (3-3)으로 나타낸 화합물이 하기 화합물 N-93 내지 N-144 중 어느 하나로 표시되는 화합물을 제공한다.In addition, the present invention provides a compound in which the compound represented by Formula (3-3) is represented by any one of the following compounds N-93 to N-144.
Figure PCTKR2022006762-appb-img-000136
Figure PCTKR2022006762-appb-img-000136
Figure PCTKR2022006762-appb-img-000137
Figure PCTKR2022006762-appb-img-000137
Figure PCTKR2022006762-appb-img-000138
Figure PCTKR2022006762-appb-img-000138
Figure PCTKR2022006762-appb-img-000139
Figure PCTKR2022006762-appb-img-000139
Figure PCTKR2022006762-appb-img-000140
Figure PCTKR2022006762-appb-img-000140
Figure PCTKR2022006762-appb-img-000141
Figure PCTKR2022006762-appb-img-000141
Figure PCTKR2022006762-appb-img-000142
Figure PCTKR2022006762-appb-img-000142
Figure PCTKR2022006762-appb-img-000143
Figure PCTKR2022006762-appb-img-000143
Figure PCTKR2022006762-appb-img-000144
Figure PCTKR2022006762-appb-img-000144
Figure PCTKR2022006762-appb-img-000145
Figure PCTKR2022006762-appb-img-000145
Figure PCTKR2022006762-appb-img-000146
Figure PCTKR2022006762-appb-img-000146
Figure PCTKR2022006762-appb-img-000147
Figure PCTKR2022006762-appb-img-000147
Figure PCTKR2022006762-appb-img-000148
Figure PCTKR2022006762-appb-img-000148
또한, 본 발명은 제 1전극, 제 2전극, 및 제 1전극과 제 2전극 사이에 형성된 유기물층을 포함하는 유기전기소자에 있어서, 상기 유기물층으로 상기 화학식 (3-3)으로 표시되는 화합물을 포함하는 유기전기소자를 제공한다.In addition, the present invention is an organic electric device including a first electrode, a second electrode, and an organic material layer formed between the first electrode and the second electrode, wherein the organic material layer includes the compound represented by the above formula (3-3) It provides an organic electric element that does.
또한, 본 발명은 상기 유기물층으로 정공주입층, 정공수송층, 발광보조층, 발광층, 전자수송보조층, 전자수송층 및 전자주입층 중 적어도 하나를 포함하는 유기전기소자를 제공한다.In addition, the present invention provides an organic electric device including at least one of a hole injection layer, a hole transport layer, a light emitting auxiliary layer, a light emitting layer, an electron transport auxiliary layer, an electron transport layer, and an electron injection layer as the organic material layer.
또한, 본 발명은 상기 화학식 (3-3)으로 표시되는 화합물을 포함하는 발광층 조성물을 제공하고, 상기 발광층을 포함하는 유기전기소자를 제공한다.In addition, the present invention provides a light emitting layer composition including the compound represented by the formula (3-3), and provides an organic electric device including the light emitting layer.
도 1을 참조하여 설명하면, 본 발명에 따른 유기전기소자(100)는 제 1전극(110), 제 2전극(170) 및 제 1전극(110)과 제 2전극(170) 사이에 화학식 (1) 또는 화학식 (3-3)으로 표시되는 단독화합물 또는 2종 이상의 화합물을 포함하는 유기물층을 구비한다. 이때, 제 1전극(110)은 애노드 또는 양극이고, 제 2전극(170)은 캐소드 또는 음극일 수 있으며, 인버트형의 경우에는 제 1전극이 캐소드이고 제 2전극이 애노드일 수 있다.Referring to FIG. 1, the organic electric element 100 according to the present invention has a first electrode 110, a second electrode 170, and a chemical formula ( 1) or an organic material layer containing a single compound or two or more compounds represented by Formula (3-3). In this case, the first electrode 110 may be an anode or an anode, the second electrode 170 may be a cathode or a cathode, and in the case of an invert type, the first electrode may be a cathode and the second electrode may be an anode.
유기물층은 제 1전극(110) 상에 순차적으로 정공주입층(120), 정공수송층(130), 발광층(140), 전자수송층(150) 및 전자주입층(160)을 포함할 수 있다. 이때, 발광층(140)을 제외한 나머지 층들이 형성되지 않을 수 있다. 정공저지층, 전자저지층, 발광보조층(220), 버퍼층(210) 등을 더 포함할 수도 있고, 전자수송층(150) 등이 정공저지층의 역할을 할 수도 있을 것이다. (도 2 참조)The organic material layer may sequentially include a hole injection layer 120 , a hole transport layer 130 , a light emitting layer 140 , an electron transport layer 150 , and an electron injection layer 160 on the first electrode 110 . At this time, other layers except for the light emitting layer 140 may not be formed. A hole blocking layer, an electron blocking layer, a light emitting auxiliary layer 220, a buffer layer 210, and the like may be further included, and the electron transport layer 150 may serve as a hole blocking layer. (See Fig. 2)
또한, 본 발명의 일 실시예에 따른 유기전기소자는 보호층 또는 광효율 개선층(180)을 더 포함할 수 있다. 이러한 광효율 개선층은 제 1전극의 양면 중 유기물층과 접하지 않는 면 또는 제 2전극의 양면 중 유기물층과 접하지 않는 면에 형성될 수 있다. 상기 유기물층에 적용되는 본 발명의 일 실시예에 따른 화합물은 정공주입층(120), 정공수송층(130), 발광보조층(220), 전자수송보조층, 전자수송층(150), 전자주입층(160), 발광층(140)의 호스트 또는 도펀트, 또는 광효율 개선층의 재료로 사용될 수 있을 것이다. 바람직하게는 예컨대, 본 발명의 화학식 (1) 및 화학식 (3) 또는 화학식 (4)에 따른 화합물은 발광층 호스트의 재료로 사용될 수 있다.In addition, the organic electric element according to an embodiment of the present invention may further include a protective layer or a light efficiency improvement layer 180 . The light efficiency improving layer may be formed on a surface of both surfaces of the first electrode not in contact with the organic material layer or on a surface of both surfaces of the second electrode not in contact with the organic material layer. The compound according to an embodiment of the present invention applied to the organic layer is a hole injection layer 120, a hole transport layer 130, a light emitting auxiliary layer 220, an electron transport auxiliary layer, an electron transport layer 150, an electron injection layer ( 160), a host or dopant of the light emitting layer 140, or a material of a light efficiency improving layer. Preferably, for example, compounds according to formula (1), formula (3) or formula (4) of the present invention can be used as a material for the light emitting layer host.
상기 유기물층은 상기 양극 상에 순차적으로 형성된 정공수송층, 발광층 및 전자수송층을 포함하는 스택을 둘 이상 포함할 수 있으며, 상기 둘 이상의 스택 사이에 형성된 전하생성층을 더 포함할 수 있다. (도 3 참조)The organic material layer may include two or more stacks including a hole transport layer, a light emitting layer, and an electron transport layer sequentially formed on the anode, and may further include a charge generation layer formed between the two or more stacks. (See Fig. 3)
한편, 동일한 코어일지라도 어느 위치에 어느 치환기를 결합시키냐에 따라 밴드갭(band gap), 전기적 특성, 계면 특성 등이 달라질 수 있으므로, 코어의 선택 및 이에 결합된 서브(sub)-치환체의 조합도 아주 중요하며, 특히 각 유기물층 간의 에너지 level 및 T1 값, 물질의 고유특성(mobility, 계면특성 등) 등이 최적의 조합을 이루었을 때 긴 수명과 높은 효율을 동시에 달성할 수 있다.On the other hand, even in the same core, since the band gap, electrical properties, interface properties, etc. may vary depending on which substituent is attached to which position, the selection of the core and the combination of sub-substituents bonded thereto are also very important. It is important, especially when the optimal combination of the energy level and T1 value between each organic material layer and the intrinsic properties of the material (mobility, interfacial properties, etc.) is achieved, long life and high efficiency can be achieved at the same time.
본 발명의 일 실시예에 따른 유기전기발광소자는 PVD(physical vapor deposition) 방법을 이용하여 제조될 수 있다. 예컨대, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공주입층(120), 정공수송층(130), 발광층(140), 전자수송층(150) 및 전자주입층(160)을 포함하는 유기물층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시킴으로써 제조될 수 있다.An organic electroluminescent device according to an embodiment of the present invention may be manufactured using a physical vapor deposition (PVD) method. For example, an anode is formed by depositing a metal or a metal oxide having conductivity or an alloy thereof on a substrate, and a hole injection layer 120, a hole transport layer 130, a light emitting layer 140, an electron transport layer 150 and After forming an organic material layer including the electron injection layer 160, it can be manufactured by depositing a material that can be used as a cathode thereon.
또한, 본 발명에서 상기 유기물층은 스핀코팅 공정, 노즐 프린팅 공정, 잉크젯 프린팅 공정, 슬롯코팅 공정, 딥코팅 공정 및 롤투롤 공정 중 어느 하나에 의해 형성되며, 상기 유기물층은 전자수송재료로 상기 화합물을 포함하는 것을 특징으로 하는 유기전기소자를 제공한다.Further, in the present invention, the organic material layer is formed by any one of a spin coating process, a nozzle printing process, an inkjet printing process, a slot coating process, a dip coating process, and a roll-to-roll process, and the organic material layer includes the compound as an electron transport material. It provides an organic electric element characterized in that.
또 다른 구체적인 예로서, 본 발명은 상기 유기물층에 상기 화학식 (1)로 표시되는 화합물의 동종 또는 이종의 화합물이 혼합되어 사용되는 것을 특징으로 하는 유기전기소자를 제공한다.As another specific example, the present invention provides an organic electric device characterized in that a compound of the same type or a different type of the compound represented by the formula (1) is mixed and used in the organic material layer.
또한, 본 발명은 상기 화학식 (1)로 표시되는 화합물을 포함하는 발광층 조성물을 제공하고, 상기 발광층을 포함하는 유기전기소자를 제공한다.In addition, the present invention provides a light emitting layer composition including the compound represented by the formula (1), and provides an organic electric device including the light emitting layer.
또한, 본 발명은 상기 화학식 (1)로 표시되는 화합물 및 상기 화학식 (3) 또는 화학식 (4)로 표시되는 화합물을 포함하는 발광층 조성물을 제공하고, 상기 발광층을 포함하는 유기전기소자를 제공한다.In addition, the present invention provides a light emitting layer composition including the compound represented by Formula (1) and the compound represented by Formula (3) or Formula (4), and provides an organic electric device including the light emitting layer.
또한, 본 발명은 상기한 유기전기소자를 포함하는 디스플레이장치; 및 상기 디스플레이장치를 구동하는 제어부;를 포함하는 전자 장치를 제공한다.In addition, the present invention is a display device including the above organic electric element; and a controller for driving the display device.
또 다른 측면에서 상기 유기전기소자는 유기전기발광소자, 유기태양전지, 유기감광체, 유기트랜지스터, 및 단색 또는 백색 조명용 소자 중 적어도 하나인 것을 특징으로 하는 전자 장치를 본 발명에서 제공한다. 이때, 전자 장치는 현재 또는 장래의 유무선 통신단말기일 수 있으며, 휴대폰 등의 이동 통신 단말기, PDA, 전자사전, PMP, 리모콘, 네비게이션, 게임기, 각종 TV, 각종 컴퓨터 등 모든 전자 장치를 포함한다.In another aspect, the present invention provides an electronic device characterized in that the organic electric device is at least one of an organic light emitting device, an organic solar cell, an organic photoreceptor, an organic transistor, and a device for monochromatic or white lighting. At this time, the electronic device may be a current or future wired/wireless communication terminal, and includes all electronic devices such as a mobile communication terminal such as a mobile phone, a PDA, an electronic dictionary, a PMP, a remote control, a navigation device, a game machine, various TVs, and various computers.
이하에서, 본 발명 화합물의 합성예 및 본 발명의 유기전기소자의 제조예에 관하여 실시예를 들어 구체적으로 설명하지만, 본 발명의 하기 실시예로 한정되는 것은 아니다.Hereinafter, examples of the synthesis of the compound of the present invention and the production example of the organic electric device of the present invention will be described in detail, but the present invention is not limited to the following examples.
[합성예][Synthesis Example]
본 발명에 따른 화학식 (1)로 표시되는 화합물(final products)은 하기 반응식 1과 같이 Sub 1과 Sub 2를 반응시켜 합성되며, 이에 한정되는 것은 아니다.The compound represented by Chemical Formula (1) according to the present invention (final products) is synthesized by reacting Sub 1 and Sub 2 as in Scheme 1 below, but is not limited thereto.
<반응식 1><Scheme 1>
Figure PCTKR2022006762-appb-img-000149
Figure PCTKR2022006762-appb-img-000149
I. Sub 1의 합성I. Synthesis of Sub 1
상기 반응식 1의 Sub 1은 하기 반응식 2의 반응경로에 의해 합성될 수 있으나, 이에 한정되는 것은 아니다.Sub 1 of Reaction Scheme 1 may be synthesized by the reaction pathway of Reaction Scheme 2 below, but is not limited thereto.
<반응식 2><Scheme 2>
Figure PCTKR2022006762-appb-img-000150
Figure PCTKR2022006762-appb-img-000150
Sub 1에 속하는 구체적 화합물의 합성예는 다음과 같다.Synthesis examples of specific compounds belonging to Sub 1 are as follows.
1. Sub1-1 합성예1. Sub1-1 Synthesis Example
Figure PCTKR2022006762-appb-img-000151
Figure PCTKR2022006762-appb-img-000151
(1) Sub1-1b 합성(1) Synthesis of Sub1-1b
Sub 1-1a (50.0 g, 0.21 mol)에 4,4,5,5-tetramethyl-2-(phenanthren-4-yl)-1,3,2-dioxaborolane (63.1 g, 0.21 mol), Pd(PPh3)4 (7.2 g, 0.006 mol), NaOH (24.8 g, 0.62 mol), THF (415 mL) 및 물 (120 mL)을 첨가하고, 70℃에서 6시간 반응시켰다. 반응이 종료되면, 반응물의 온도를 상온으로 식히고, 반응용매를 제거한다. 이후 농축된 반응물을 실리카겔 컬럼 또는 재결정 방법을 이용하여 분리하여 생성물 Sub 1-1b 62 g (88.2%)을 얻었다.4,4,5,5-tetramethyl-2-(phenanthren-4-yl)-1,3,2-dioxaborolane (63.1 g, 0.21 mol), Pd (PPh) in Sub 1-1a (50.0 g, 0.21 mol) 3 ) 4 (7.2 g, 0.006 mol), NaOH (24.8 g, 0.62 mol), THF (415 mL) and water (120 mL) were added and reacted at 70°C for 6 hours. When the reaction is completed, the temperature of the reactant is cooled to room temperature, and the reaction solvent is removed. Thereafter, the concentrated reactant was separated using a silica gel column or a recrystallization method to obtain 62 g (88.2%) of Sub 1-1b.
(2) Sub1-1 합성(2) Synthesis of Sub1-1
Sub1-1b (55 g, 0.17 mol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) (41.0 g, 0.17 mol), Pd2(dba)3 (4.5 g, 0.005 mol), AcOK (47.7 g, 0.5 mol)을 DMF (330 mL)에 첨가하고, 160℃에서 8h 교반하였다. 반응이 종료되면, 반응용매를 제거한 뒤 농축된 유기물을 실리카겔 컬럼 또는 재결정 방법을 이용하여 분리하여 생성물 Sub1-1 60 g (86%)을 얻었다.Sub1-1b (55 g, 0.17 mol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) (41.0 g, 0.17 mol), Pd 2 (dba) 3 (4.5 g, 0.005 mol) and AcOK (47.7 g, 0.5 mol) were added to DMF (330 mL) and stirred at 160 °C for 8 h. After the reaction was completed, the reaction solvent was removed, and the concentrated organic material was separated using a silica gel column or a recrystallization method to obtain 60 g (86%) of the product Sub1-1.
2. Sub1-2 합성예2. Sub1-2 Synthesis Example
Figure PCTKR2022006762-appb-img-000152
Figure PCTKR2022006762-appb-img-000152
(1) Sub1-2b 합성(1) Synthesis of Sub1-2b
Sub 1-1a (50.0 g, 0.21 mol)에 4,4,5,5-tetramethyl-2-(phenanthren-3-yl)-1,3,2-dioxaborolane (63.1 g, 0.21 mol), Pd(PPh3)4 (7.2 g, 0.006 mol), NaOH (24.8 g, 0.62 mol), THF (415 mL) 및 물 (120 mL)을 첨가하고, 70℃에서 6시간 반응시켰다. 반응이 종료되면 상기 표기된 Sub1-1b의 분리방법을 이용하여 생성물 Sub1-2b 62.5g (88.9%)을 얻었다. 4,4,5,5-tetramethyl-2-(phenanthren-3-yl)-1,3,2-dioxaborolane (63.1 g, 0.21 mol), Pd (PPh) in Sub 1-1a (50.0 g, 0.21 mol) 3 ) 4 (7.2 g, 0.006 mol), NaOH (24.8 g, 0.62 mol), THF (415 mL) and water (120 mL) were added and reacted at 70°C for 6 hours. When the reaction was completed, 62.5 g (88.9%) of the product Sub1-2b was obtained using the separation method of Sub1-1b described above.
(2) Sub1-2 합성(2) Synthesis of Sub1-2
Sub1-2b (60 g, 0.18 mol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) (45 g, 0.17 mol), Pd2(dba)3 (4.3 g, 0.005 mol), AcOK (52.1 g, 0.53 mol)을 DMF (350 mL)에 첨가하고, 160℃에서 8h 교반하였다. 반응이 종료되면 상기 표기된 Sub1-1의 분리방법을 이용하여 생성물 Sub1-2 70 g (91.9%)을 얻었다.Sub1-2b (60 g, 0.18 mol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) (45 g, 0.17 mol), Pd 2 (dba) 3 (4.3 g, 0.005 mol) and AcOK (52.1 g, 0.53 mol) were added to DMF (350 mL) and stirred at 160 °C for 8 h. When the reaction was completed, 70 g (91.9%) of the product Sub1-2 was obtained using the above-described separation method for Sub1-1.
3. Sub1-8 합성예3. Sub1-8 Synthesis Example
Figure PCTKR2022006762-appb-img-000153
Figure PCTKR2022006762-appb-img-000153
(1) Sub1-8b 합성(1) Synthesis of Sub1-8b
Sub 1-8a (33.0 g, 0.10 mol)에 4,4,5,5-tetramethyl-2-(phenanthren-2-yl)-1,3,2-dioxaborolane (31.8 g, 0.10 mol), Pd(PPh3)4 (3.6 g, 0.003 mol), NaOH (12.5 g, 0.31 mol), THF (210 mL) 및 물 (70 mL)을 첨가하고, 70℃에서 6시간 반응시켰다. 반응이 종료되면 상기 표기된 Sub1-1b의 분리방법을 이용하여 생성물 Sub1-8b 35g (80.8%)을 얻었다. 4,4,5,5-tetramethyl-2-(phenanthren-2-yl)-1,3,2-dioxaborolane (31.8 g, 0.10 mol), Pd (PPh) to Sub 1-8a (33.0 g, 0.10 mol) 3 ) 4 (3.6 g, 0.003 mol), NaOH (12.5 g, 0.31 mol), THF (210 mL) and water (70 mL) were added and reacted at 70°C for 6 hours. When the reaction was completed, 35 g (80.8%) of the product Sub1-8b was obtained using the above-described separation method for Sub1-1b.
(2) Sub1-8 합성(2) Synthesis of Sub1-8
Sub1-8b (35 g, 0.08 mol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) (21.4 g, 0.08 mol), Pd2(dba)3 (2.3 g, 0.003 mol), AcOK (24.8 g, 0.25 mol)을 DMF (170 mL)에 첨가하고, 160℃에서 8h 교반하였다. 반응이 종료되면 상기 표기된 Sub1-1의 분리방법을 이용하여 생성물 Sub1-8 35 g (81.9%)을 얻었다.Sub1-8b (35 g, 0.08 mol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) (21.4 g, 0.08 mol), Pd 2 (dba) 3 (2.3 g, 0.003 mol) and AcOK (24.8 g, 0.25 mol) were added to DMF (170 mL) and stirred at 160 °C for 8 h. When the reaction was completed, 35 g (81.9%) of the product Sub1-8 was obtained using the separation method of Sub1-1 described above.
4. Sub1-23 합성예4. Sub1-23 Synthesis Example
Figure PCTKR2022006762-appb-img-000154
Figure PCTKR2022006762-appb-img-000154
(1) Sub1-23b 합성(1) Synthesis of Sub1-23b
Sub 1-23a (40 g, 0.17 mol)에 4,4,5,5-tetramethyl-2-(phenanthren-3-yl)-1,3,2-dioxaborolane (50.9 g, 0.17 mol), Pd(PPh3)4 (5.8 g, 0.005 mol), NaOH (20.1 g, 0.5 mol), THF (330 mL) 및 물 (110 mL)을 첨가하고, 70℃에서 6시간 반응시켰다. 반응이 종료되면 상기 표기된 Sub1-1b의 분리방법을 이용하여 생성물 Sub1-23b 47 g (82.9%)을 얻었다.4,4,5,5-tetramethyl-2-(phenanthren-3-yl)-1,3,2-dioxaborolane (50.9 g, 0.17 mol), Pd (PPh) to Sub 1-23a (40 g, 0.17 mol) 3 ) 4 (5.8 g, 0.005 mol), NaOH (20.1 g, 0.5 mol), THF (330 mL) and water (110 mL) were added and reacted at 70°C for 6 hours. When the reaction was completed, 47 g (82.9%) of the product Sub1-23b was obtained using the above-described separation method for Sub1-1b.
(2) Sub1-23 합성(2) Synthesis of Sub1-23
Sub1-23b (40 g, 0.12 mol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) (30 g, 0.12 mol), Pd2(dba)3 (3.2 g, 0.004 mol), AcOK (34.7 g, 0.4 mol)을 DMF (240 mL)에 첨가하고, 160℃에서 8h 교반하였다. 반응이 종료되면 상기 표기된 Sub1-1의 분리방법을 이용하여 생성물 Sub1-23 45 g (88.6%)을 얻었다.Sub1-23b (40 g, 0.12 mol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) (30 g, 0.12 mol), Pd 2 (dba) 3 (3.2 g, 0.004 mol) and AcOK (34.7 g, 0.4 mol) were added to DMF (240 mL) and stirred at 160 °C for 8 h. After the reaction was completed, 45 g (88.6%) of the product Sub1-23 was obtained using the above-described separation method for Sub1-1.
5. Sub1-41 합성예5. Sub1-41 Synthesis Example
Figure PCTKR2022006762-appb-img-000155
Figure PCTKR2022006762-appb-img-000155
(1) Sub1-41b 합성(1) Synthesis of Sub1-41b
Sub 1-41a (40 g, 0.17 mol)에 4,4,5,5-tetramethyl-2-(phenanthren-1-yl)-1,3,2-dioxaborolane (50.7 g, 0.17 mol), Pd(PPh3)4 (4.6 g, 0.005 mol), NaOH (20 g, 0.50 mol), THF (333 mL) 및 물 (111 mL)을 첨가하고, 70℃에서 6시간 반응시켰다. 반응이 종료되면, 상기 표기된 Sub1-1b의 분리방법을 이용하여 생성물 Sub 1-41b 45 g (79.7%)을 얻었다.4,4,5,5-tetramethyl-2-(phenanthren-1-yl)-1,3,2-dioxaborolane (50.7 g, 0.17 mol), Pd (PPh) to Sub 1-41a (40 g, 0.17 mol) 3 ) 4 (4.6 g, 0.005 mol), NaOH (20 g, 0.50 mol), THF (333 mL) and water (111 mL) were added and reacted at 70°C for 6 hours. After the reaction was completed, 45 g (79.7%) of the product Sub 1-41b was obtained using the separation method for Sub1-1b described above.
(2) Sub1-41 합성(2) Synthesis of Sub1-41
Sub1-41b (45 g, 0.13 mol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) (33.6 g, 0.13 mol), Pd2(dba)3 (3.7 g, 0.004 mol), AcOK (39 g, 0.40 mol)을 DMF (265 mL)에 첨가하고, 160℃에서 8h 교반하였다. 반응이 종료되면, 상기 표기된 Sub1-1의 분리방법을 이용하여 생성물 Sub1-41 50 g (87.5%)을 얻었다.Sub1-41b (45 g, 0.13 mol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) (33.6 g, 0.13 mol), Pd 2 (dba) 3 (3.7 g, 0.004 mol) and AcOK (39 g, 0.40 mol) were added to DMF (265 mL) and stirred at 160 °C for 8 h. After the reaction was completed, 50 g (87.5%) of the product Sub1-41 was obtained using the separation method of Sub1-1 described above.
6. Sub1-47 합성예6. Synthesis of Sub1-47
Figure PCTKR2022006762-appb-img-000156
Figure PCTKR2022006762-appb-img-000156
(1) Sub1-47b 합성(1) Synthesis of Sub1-47b
Sub 1-47a (50 g, 0.13 mol)에 4,4,5,5-tetramethyl-2-(phenanthren-9-yl)-1,3,2-dioxaborolane (38.8 g, 0.13 mol), Pd(PPh3)4 (3.5 g, 0.004 mol), NaOH (15.3 g, 0.4 mol), THF (250 mL) 및 물 (80 mL)을 첨가하고, 70℃에서 6시간 반응시켰다. 반응이 종료되면, 상기 표기된 Sub1-1b의 분리방법을 이용하여 생성물 Sub 1-47b 50 g (80%)을 얻었다.4,4,5,5-tetramethyl-2-(phenanthren-9-yl)-1,3,2-dioxaborolane (38.8 g, 0.13 mol), Pd (PPh) in Sub 1-47a (50 g, 0.13 mol) 3 ) 4 (3.5 g, 0.004 mol), NaOH (15.3 g, 0.4 mol), THF (250 mL) and water (80 mL) were added and reacted at 70°C for 6 hours. After the reaction was completed, 50 g (80%) of the product Sub 1-47b was obtained using the separation method of Sub1-1b described above.
(2) Sub1-47 합성(2) Synthesis of Sub1-47
Sub1-47b (50 g, 0.10 mol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) (25.9 g, 0.10 mol), Pd2(dba)3 (2.8 g, 0.003 mol), AcOK (30 g, 0.31 mol)을 DMF (200 mL)에 첨가하고, 160℃에서 8h 교반하였다. 반응이 종료되면, 상기 표기된 Sub1-1의 분리방법을 이용하여 생성물 Sub1-47 53 g (89.2%)을 얻었다.Sub1-47b (50 g, 0.10 mol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) (25.9 g, 0.10 mol), Pd 2 (dba) 3 (2.8 g, 0.003 mol) and AcOK (30 g, 0.31 mol) were added to DMF (200 mL) and stirred at 160 °C for 8 h. After the reaction was completed, 53 g (89.2%) of the product Sub1-47 was obtained using the separation method of Sub1-1 described above.
한편, Sub 1에 속하는 화합물은 아래와 같은 화합물일 수 있으나, 이에 한정되는 것은 아니며, 하기 표 1은 Sub 1에 속하는 화합물의 FD-MS 값을 나타낸 것이다.Meanwhile, the compound belonging to Sub 1 may be the following compounds, but is not limited thereto, and Table 1 below shows the FD-MS values of the compounds belonging to Sub 1.
Figure PCTKR2022006762-appb-img-000157
Figure PCTKR2022006762-appb-img-000157
Figure PCTKR2022006762-appb-img-000158
Figure PCTKR2022006762-appb-img-000158
Figure PCTKR2022006762-appb-img-000159
Figure PCTKR2022006762-appb-img-000159
Figure PCTKR2022006762-appb-img-000160
Figure PCTKR2022006762-appb-img-000160
Figure PCTKR2022006762-appb-img-000161
Figure PCTKR2022006762-appb-img-000161
Figure PCTKR2022006762-appb-img-000162
Figure PCTKR2022006762-appb-img-000162
Figure PCTKR2022006762-appb-img-000163
Figure PCTKR2022006762-appb-img-000163
Figure PCTKR2022006762-appb-img-000164
Figure PCTKR2022006762-appb-img-000164
Figure PCTKR2022006762-appb-img-000165
Figure PCTKR2022006762-appb-img-000165
Figure PCTKR2022006762-appb-img-000166
Figure PCTKR2022006762-appb-img-000166
화합물compound FD-MSFD-MS 화합물compound FD-MSFD-MS
Sub1-1Sub1-1 m/z=430.21(C30H27BO2=430.35)m/z=430.21 (C 30 H 27 BO 2 =430.35) Sub1-2Sub1-2 m/z=430.21(C30H27BO2=430.35)m/z=430.21 (C 30 H 27 BO 2 =430.35)
Sub1-3Sub1-3 m/z=430.21(C30H27BO2=430.35)m/z=430.21 (C 30 H 27 BO 2 =430.35) Sub1-4Sub1-4 m/z=430.21(C30H27BO2=430.35)m/z=430.21 (C 30 H 27 BO 2 =430.35)
Sub1-5Sub1-5 m/z=430.21(C30H27BO2=430.35)m/z=430.21 (C 30 H 27 BO 2 =430.35) Sub1-6Sub1-6 m/z=506.24(C36H31BO2=506.45)m/z=506.24 (C 36 H 31 BO 2 =506.45)
Sub1-7Sub1-7 m/z=506.24(C36H31BO2=506.45)m/z=506.24 (C 36 H 31 BO 2 =506.45) Sub1-8Sub1-8 m/z=506.24(C36H31BO2=506.45)m/z=506.24 (C 36 H 31 BO 2 =506.45)
Sub1-9Sub1-9 m/z=506.24(C36H31BO2=506.45)m/z=506.24 (C 36 H 31 BO 2 =506.45) Sub1-10Sub1-10 m/z=556.26(C40H33BO2=556.51)m/z=556.26 (C 40 H 33 BO 2 =556.51)
Sub1-11Sub1-11 m/z=556.26(C40H33BO2=556.51)m/z=556.26 (C 40 H 33 BO 2 =556.51) Sub1-12Sub1-12 m/z=556.26(C40H33BO2=556.51)m/z=556.26 (C 40 H 33 BO 2 =556.51)
Sub1-13Sub1-13 m/z=556.26(C40H33BO2=556.51)m/z=556.26 (C 40 H 33 BO 2 =556.51) Sub1-14Sub1-14 m/z=582.27(C42H35BO2=582.55)m/z=582.27 (C 42 H 35 BO 2 =582.55)
Sub1-15Sub1-15 m/z=582.27(C42H35BO2=582.55)m/z=582.27 (C 42 H 35 BO 2 =582.55) Sub1-16Sub1-16 m/z=582.27(C42H35BO2=582.55)m/z=582.27 (C 42 H 35 BO 2 =582.55)
Sub1-17Sub1-17 m/z=556.26(C40H33BO2=556.51)m/z=556.26 (C 40 H 33 BO 2 =556.51) Sub1-18Sub1-18 m/z=430.21(C30H27BO2=430.35)m/z=430.21 (C 30 H 27 BO 2 =430.35)
Sub1-19Sub1-19 m/z=430.21(C30H27BO2=430.35)m/z=430.21 (C 30 H 27 BO 2 =430.35) Sub1-20Sub1-20 m/z=430.21(C30H27BO2=430.35)m/z=430.21 (C 30 H 27 BO 2 =430.35)
Sub1-21Sub1-21 m/z=430.21(C30H27BO2=430.35)m/z=430.21 (C 30 H 27 BO 2 =430.35) Sub1-22Sub1-22 m/z=430.21(C30H27BO2=430.35)m/z=430.21 (C 30 H 27 BO 2 =430.35)
Sub1-23Sub1-23 m/z=430.21(C30H27BO2=430.35)m/z=430.21 (C 30 H 27 BO 2 =430.35) Sub1-24Sub1-24 m/z=430.21(C30H27BO2=430.35)m/z=430.21 (C 30 H 27 BO 2 =430.35)
Sub1-25Sub1-25 m/z=430.21(C30H27BO2=430.35)m/z=430.21 (C 30 H 27 BO 2 =430.35) Sub1-26Sub1-26 m/z=430.21(C30H27BO2=430.35)m/z=430.21 (C 30 H 27 BO 2 =430.35)
Sub1-27Sub1-27 m/z=430.21(C30H27BO2=430.35)m/z=430.21 (C 30 H 27 BO 2 =430.35) Sub1-28Sub1-28 m/z=430.21(C30H27BO2=430.35)m/z=430.21 (C 30 H 27 BO 2 =430.35)
Sub1-29Sub1-29 m/z=556.26(C40H33BO2=556.51)m/z=556.26 (C 40 H 33 BO 2 =556.51) Sub1-30Sub1-30 m/z=430.21(C30H27BO2=430.35)m/z=430.21 (C 30 H 27 BO 2 =430.35)
Sub1-31Sub1-31 m/z=430.21(C30H27BO2=430.35)m/z=430.21 (C 30 H 27 BO 2 =430.35) Sub1-32Sub1-32 m/z=430.21(C30H27BO2=430.35)m/z=430.21 (C 30 H 27 BO 2 =430.35)
Sub1-33Sub1-33 m/z=430.21(C30H27BO2=430.35)m/z=430.21 (C 30 H 27 BO 2 =430.35) Sub1-34Sub1-34 m/z=430.21(C30H27BO2=430.35)m/z=430.21 (C 30 H 27 BO 2 =430.35)
Sub1-35Sub1-35 m/z=506.24(C36H31BO2=506.45)m/z=506.24 (C 36 H 31 BO 2 =506.45) Sub1-36Sub1-36 m/z=430.21(C30H27BO2=430.35)m/z=430.21 (C 30 H 27 BO 2 =430.35)
Sub1-37Sub1-37 m/z=430.21(C30H27BO2=430.35)m/z=430.21 (C 30 H 27 BO 2 =430.35) Sub1-38Sub1-38 m/z=430.21(C30H27BO2=430.35)m/z=430.21 (C 30 H 27 BO 2 =430.35)
Sub1-39Sub1-39 m/z=430.21(C30H27BO2=430.35)m/z=430.21 (C 30 H 27 BO 2 =430.35) Sub1-40Sub1-40 m/z=430.21(C30H27BO2=430.35)m/z=430.21 (C 30 H 27 BO 2 =430.35)
Sub1-41Sub1-41 m/z=430.21(C30H27BO2=430.35)m/z=430.21 (C 30 H 27 BO 2 =430.35) Sub1-42Sub1-42 m/z=506.24(C36H31BO2=506.45)m/z=506.24 (C 36 H 31 BO 2 =506.45)
Sub1-43Sub1-43 m/z=430.21(C30H27BO2=430.35)m/z=430.21 (C 30 H 27 BO 2 =430.35) Sub1-44Sub1-44 m/z=582.27(C42H35BO2=582.55)m/z=582.27 (C 42 H 35 BO 2 =582.55)
Sub1-45Sub1-45 m/z=430.21(C30H27BO2=430.35)m/z=430.21 (C 30 H 27 BO 2 =430.35) Sub1-46Sub1-46 m/z=556.26(C40H33BO2=556.51)m/z=556.26 (C 40 H 33 BO 2 =556.51)
Sub1-47Sub1-47 m/z=582.27(C42H35BO2=582.55)m/z=582.27 (C 42 H 35 BO 2 =582.55) Sub1-48Sub1-48 m/z=506.24(C36H31BO2=506.45)m/z=506.24 (C 36 H 31 BO 2 =506.45)
Sub1-49Sub1-49 m/z=430.21(C30H27BO2=430.35)m/z=430.21 (C 30 H 27 BO 2 =430.35) Sub1-50Sub1-50 m/z=430.21(C30H27BO2=430.35)m/z=430.21 (C 30 H 27 BO 2 =430.35)
Sub1-51Sub1-51 m/z=430.21(C30H27BO2=430.35)m/z=430.21 (C 30 H 27 BO 2 =430.35) Sub1-52Sub1-52 m/z=430.21(C30H27BO2=430.35)m/z=430.21 (C 30 H 27 BO 2 =430.35)
Sub1-53Sub1-53 m/z=430.21(C30H27BO2=430.35)m/z=430.21 (C 30 H 27 BO 2 =430.35) Sub1-54Sub1-54 m/z=430.21(C30H27BO2=430.35)m/z=430.21 (C 30 H 27 BO 2 =430.35)
Sub1-55Sub1-55 m/z=556.26(C40H33BO2=556.51)m/z=556.26 (C 40 H 33 BO 2 =556.51)    
한편, Sub 2에 속하는 화합물은 아래와 같은 화합물일 수 있으나, 이에 한정되는 것은 아니며, 하기 표 2는 Sub 2에 속하는 화합물의 FD-MS 값을 나타낸 것이다.Meanwhile, the compound belonging to Sub 2 may be the following compounds, but is not limited thereto, and Table 2 below shows the FD-MS values of the compounds belonging to Sub 2.
Figure PCTKR2022006762-appb-img-000167
Figure PCTKR2022006762-appb-img-000167
Figure PCTKR2022006762-appb-img-000168
Figure PCTKR2022006762-appb-img-000168
Figure PCTKR2022006762-appb-img-000169
Figure PCTKR2022006762-appb-img-000169
Figure PCTKR2022006762-appb-img-000170
Figure PCTKR2022006762-appb-img-000170
Figure PCTKR2022006762-appb-img-000171
Figure PCTKR2022006762-appb-img-000171
Figure PCTKR2022006762-appb-img-000172
Figure PCTKR2022006762-appb-img-000172
화합물compound FD-MSFD-MS 화합물compound FD-MSFD-MS
Sub2-1Sub2-1 m/z=267.06(C15H10ClN3=267.72)m/z=267.06 (C 15 H 10 ClN 3 =267.72) Sub2-2Sub2-2 m/z=317.07(C19H12ClN3=317.78)m/z=317.07 (C 19 H 12 ClN 3 =317.78)
Sub2-3Sub2-3 m/z=317.07(C19H12ClN3=317.78)m/z=317.07 (C 19 H 12 ClN 3 =317.78) Sub2-4Sub2-4 m/z=367.09(C23H14ClN3=367.84)m/z=367.09 (C 23 H 14 ClN 3 =367.84)
Sub2-5Sub2-5 m/z=367.09(C23H14ClN3=367.84)m/z=367.09 (C 23 H 14 ClN 3 =367.84) Sub2-6Sub2-6 m/z=393.1(C25H16ClN3=393.87)m/z=393.1 (C 25 H 16 ClN 3 =393.87)
Sub2-7Sub2-7 m/z=393.1(C25H16ClN3=393.87)m/z=393.1 (C 25 H 16 ClN 3 =393.87) Sub2-8Sub2-8 m/z=343.09(C21H14ClN3=343.81)m/z=343.09 (C 21 H 14 ClN 3 =343.81)
Sub2-9Sub2-9 m/z=419.12(C27H18ClN3=419.91)m/z=419.12 (C 27 H 18 ClN 3 =419.91) Sub2-10Sub2-10 m/z=343.09(C21H14ClN3=343.81)m/z=343.09 (C 21 H 14 ClN 3 =343.81)
Sub2-11Sub2-11 m/z=393.1(C25H16ClN3=393.87)m/z=393.1 (C 25 H 16 ClN 3 =393.87) Sub2-12Sub2-12 m/z=367.09(C23H14ClN3=367.84)m/z=367.09 (C 23 H 14 ClN 3 =367.84)
Sub2-13Sub2-13 m/z=367.09(C23H14ClN3=367.84)m/z=367.09 (C 23 H 14 ClN 3 =367.84) Sub2-14Sub2-14 m/z=393.1(C25H16ClN3=393.87)m/z=393.1 (C 25 H 16 ClN 3 =393.87)
Sub2-15Sub2-15 m/z=419.12(C27H18ClN3=419.91)m/z=419.12 (C 27 H 18 ClN 3 =419.91) Sub2-16Sub2-16 m/z=367.09(C23H14ClN3=367.84)m/z=367.09 (C 23 H 14 ClN 3 =367.84)
Sub2-17Sub2-17 m/z=443.12(C29H18ClN3=443.93)m/z=443.12 (C 29 H 18 ClN 3 =443.93) Sub2-18Sub2-18 m/z=393.1(C25H16ClN3=393.87)m/z=393.1 (C 25 H 16 ClN 3 =393.87)
Sub2-19Sub2-19 m/z=343.09(C21H14ClN3=343.81)m/z=343.09 (C 21 H 14 ClN 3 =343.81) Sub2-20Sub2-20 m/z=383.12(C24H18ClN3=383.88)m/z=383.12 (C 24 H 18 ClN 3 =383.88)
Sub2-21Sub2-21 m/z=367.09(C23H14ClN3=367.84)m/z=367.09 (C 23 H 14 ClN 3 =367.84) Sub2-22Sub2-22 m/z=419.12(C27H18ClN3=419.91)m/z=419.12 (C 27 H 18 ClN 3 =419.91)
Sub2-23Sub2-23 m/z=443.12(C29H18ClN3=443.93)m/z=443.12 (C 29 H 18 ClN 3 =443.93) Sub2-24Sub2-24 m/z=367.09(C23H14ClN3=367.84)m/z=367.09 (C 23 H 14 ClN 3 =367.84)
Sub2-25Sub2-25 m/z=393.1(C25H16ClN3=393.87)m/z=393.1 (C 25 H 16 ClN 3 =393.87) Sub2-26Sub2-26 m/z=383.12(C24H18ClN3=383.88)m/z=383.12 (C 24 H 18 ClN 3 =383.88)
Sub2-27Sub2-27 m/z=393.1(C25H16ClN3=393.87)m/z=393.1 (C 25 H 16 ClN 3 =393.87) Sub2-28Sub2-28 m/z=419.12(C27H18ClN3=419.91)m/z=419.12 (C 27 H 18 ClN 3 =419.91)
Sub2-29Sub2-29 m/z=417.1(C27H16ClN3=417.9)m/z=417.1 (C 27 H 16 ClN 3 =417.9) Sub2-30Sub2-30 m/z=419.12(C27H18ClN3=419.91)m/z=419.12 (C 27 H 18 ClN 3 =419.91)
Sub2-31Sub2-31 m/z=419.12(C27H18ClN3=419.91)m/z=419.12 (C 27 H 18 ClN 3 =419.91) Sub2-32Sub2-32 m/z=507.15(C34H22ClN3=508.02)m/z=507.15 (C 34 H 22 ClN 3 =508.02)
Sub2-33Sub2-33 m/z=443.12(C29H18ClN3=443.93)m/z=443.12 (C 29 H 18 ClN 3 =443.93) Sub2-34Sub2-34 m/z=505.13(C34H20ClN3=506.01)m/z=505.13 (C 34 H 20 ClN 3 =506.01)
Sub2-35Sub2-35 m/z=417.1(C27H16ClN3=417.9)m/z=417.1 (C 27 H 16 ClN 3 =417.9)    
II. Final products의 합성II. Synthesis of final products
1. P-2 합성예1. P-2 Synthesis Example
Figure PCTKR2022006762-appb-img-000173
Figure PCTKR2022006762-appb-img-000173
Sub1-2 (20 g, 0.05 mol), Sub2-1 (12.4 g, 0.05 mol), Pd(PPh3)4 (1.6 g, 0.001 mol), NaOH (5.6 g, 0.14 mol), THF (93 mL) 및 물 (25 mL)을 첨가하고, 70℃에서 6시간 반응시켰다. 반응이 종료되면, 반응물의 온도를 상온으로 식히고, 반응용매를 제거한다. 이후 농축된 반응물을 실리카겔 컬럼 또는 재결정 방법을 이용하여 분리하여 생성물 P-2 22 g (88.4%)을 얻었다.Sub1-2 (20 g, 0.05 mol), Sub2-1 (12.4 g, 0.05 mol), Pd(PPh 3 ) 4 (1.6 g, 0.001 mol), NaOH (5.6 g, 0.14 mol), THF (93 mL) and water (25 mL) were added and reacted at 70°C for 6 hours. When the reaction is completed, the temperature of the reactant is cooled to room temperature, and the reaction solvent is removed. Thereafter, the concentrated reactant was separated using a silica gel column or a recrystallization method to obtain 22 g (88.4%) of product P-2.
2. P-7 합성예2. P-7 Synthesis Example
Figure PCTKR2022006762-appb-img-000174
Figure PCTKR2022006762-appb-img-000174
Sub1-2 (20 g, 0.05 mol), Sub2-2 (14.7 g, 0.05 mol), Pd(PPh3)4 (1.6 g, 0.001 mol), NaOH (5.6 g, 0.14 mol), THF (93 mL) 및 물 (25 mL)을 첨가하고, 70℃에서 6시간 반응시켰다. 반응이 종료되면, 상기 표기된 P-1의 분리방법을 이용하여 생성물 P-7 24 g (88.2%)을 얻었다.Sub1-2 (20 g, 0.05 mol), Sub2-2 (14.7 g, 0.05 mol), Pd(PPh 3 ) 4 (1.6 g, 0.001 mol), NaOH (5.6 g, 0.14 mol), THF (93 mL) and water (25 mL) were added and reacted at 70°C for 6 hours. When the reaction was completed, 24 g (88.2%) of product P-7 was obtained using the separation method of P-1 described above.
3. P-16 합성예3. Synthesis of P-16
Figure PCTKR2022006762-appb-img-000175
Figure PCTKR2022006762-appb-img-000175
Sub1-1 (50 g, 0.12 mol), Sub2-4 (42.7 g, 0.12 mol), Pd(PPh3)4 (4.0 g, 0.003 mol), NaOH (14 g, 0.35 mol), THF (240 mL) 및 물 (70 mL)을 첨가하고, 70℃에서 6시간 반응시켰다. 반응이 종료되면, 상기 표기된 P-1의 분리방법을 이용하여 생성물 P-16 62 g (84%)을 얻었다.Sub1-1 (50 g, 0.12 mol), Sub2-4 (42.7 g, 0.12 mol), Pd(PPh 3 ) 4 (4.0 g, 0.003 mol), NaOH (14 g, 0.35 mol), THF (240 mL) and water (70 mL) were added and reacted at 70°C for 6 hours. When the reaction was completed, 62 g (84%) of product P-16 was obtained using the separation method of P-1 described above.
4. P-32 합성예4. Synthesis of P-32
Figure PCTKR2022006762-appb-img-000176
Figure PCTKR2022006762-appb-img-000176
Sub1-9 (10 g, 0.02 mol), Sub2-1 (5.3 g, 0.02 mol), Pd(PPh3)4 (0.7 g, 0.001 mol), NaOH (2.4 g, 0.06 mol), THF (40 mL) 및 물 (10 mL)을 첨가하고, 70℃에서 6시간 반응시켰다. 반응이 종료되면, 상기 표기된 P-1의 분리방법을 이용하여 생성물 P-32 9.8 g (81.2%)을 얻었다.Sub1-9 (10 g, 0.02 mol), Sub2-1 (5.3 g, 0.02 mol), Pd(PPh 3 ) 4 (0.7 g, 0.001 mol), NaOH (2.4 g, 0.06 mol), THF (40 mL) and water (10 mL) were added and reacted at 70°C for 6 hours. When the reaction was completed, 9.8 g (81.2%) of product P-32 was obtained using the separation method of P-1 described above.
5. P-42 합성예5. Synthesis of P-42
Figure PCTKR2022006762-appb-img-000177
Figure PCTKR2022006762-appb-img-000177
Sub1-19 (20 g, 0.05 mol), Sub2-3 (14.7 g, 0.05 mol), Pd(PPh3)4 (1.6 g, 0.001 mol), NaOH (5.6 g, 0.14 mol), THF (90 mL) 및 물 (30 mL)을 첨가하고, 70℃에서 6시간 반응시켰다. 반응이 종료되면, 상기 표기된 P-1의 분리방법을 이용하여 생성물 P-42 25 g (91.9%)을 얻었다.Sub1-19 (20 g, 0.05 mol), Sub2-3 (14.7 g, 0.05 mol), Pd(PPh 3 ) 4 (1.6 g, 0.001 mol), NaOH (5.6 g, 0.14 mol), THF (90 mL) and water (30 mL) were added and reacted at 70°C for 6 hours. When the reaction was completed, 25 g (91.9%) of product P-42 was obtained using the separation method of P-1 described above.
6. P-58 합성예6. P-58 Synthesis Example
Figure PCTKR2022006762-appb-img-000178
Figure PCTKR2022006762-appb-img-000178
Sub1-35 (20 g, 0.04 mol), Sub2-32 (20 g, 0.04 mol), Pd(PPh3)4 (1.4 g, 0.001 mol), NaOH (4.7 g, 0.12 mol), THF (80 mL) 및 물 (40 mL)을 첨가하고, 70℃에서 6시간 반응시켰다. 반응이 종료되면, 상기 표기된 P-1의 분리방법을 이용하여 생성물 P-58 30 g (89.2%)을 얻었다.Sub1-35 (20 g, 0.04 mol), Sub2-32 (20 g, 0.04 mol), Pd(PPh 3 ) 4 (1.4 g, 0.001 mol), NaOH (4.7 g, 0.12 mol), THF (80 mL) and water (40 mL) were added and reacted at 70°C for 6 hours. When the reaction was completed, 30 g (89.2%) of product P-58 was obtained using the separation method of P-1 described above.
7. P-62 합성예7. Synthesis of P-62
Figure PCTKR2022006762-appb-img-000179
Figure PCTKR2022006762-appb-img-000179
Sub1-39 (30 g, 0.07 mol), Sub2-6 (27.4 g, 0.07 mol), Pd(PPh3)4 (2.4 g, 0.002 mol), NaOH (8.4 g, 0.21 mol), THF (140 mL) 및 물 (40 mL)을 첨가하고, 70℃에서 6시간 반응시켰다. 반응이 종료되면, 상기 표기된 P-1의 분리방법을 이용하여 생성물 P-62 41.5 g (90%)을 얻었다.Sub1-39 (30 g, 0.07 mol), Sub2-6 (27.4 g, 0.07 mol), Pd(PPh 3 ) 4 (2.4 g, 0.002 mol), NaOH (8.4 g, 0.21 mol), THF (140 mL) and water (40 mL) were added and reacted at 70°C for 6 hours. When the reaction was completed, 41.5 g (90%) of product P-62 was obtained using the separation method of P-1 described above.
8. N-12 합성예8. Synthesis of N-12
Figure PCTKR2022006762-appb-img-000180
Figure PCTKR2022006762-appb-img-000180
N-12a (30 g, 0.08 mol), N-12b (34.8 g, 0.08 mol), Pd2(dba)3 (2.3 g, 0.003 mol), NaOt-Bu (24.5 g, 0.25 mol), P(t-Bu)3 (2.1 g, 0.005 mol), Toluene (170 mL) 첨가하고, 135℃에서 6시간 반응시켰다. 반응이 종료되면, 상기 표기된 P-1의 분리방법을 이용하여 생성물 N-12 53 g (85.8%)을 얻었다.N-12a (30 g, 0.08 mol), N-12b (34.8 g, 0.08 mol), Pd 2 (dba) 3 (2.3 g, 0.003 mol), NaOt-Bu (24.5 g, 0.25 mol), P(t -Bu) 3 (2.1 g, 0.005 mol) and Toluene (170 mL) were added and reacted at 135°C for 6 hours. When the reaction was completed, 53 g (85.8%) of product N-12 was obtained using the separation method of P-1 described above.
9. N-19 합성예9. Synthesis of N-19
Figure PCTKR2022006762-appb-img-000181
Figure PCTKR2022006762-appb-img-000181
N-19a (50 g, 0.13 mol), N-19b (35 g, 0.13 mol), Pd2(dba)3 (3.6 g, 0.004 mol), NaOt-Bu (37.6 g, 0.40 mol), P(t-Bu)3 (3.2 g, 0.008 mol), Toluene (260 mL) 첨가하고, 135℃에서 6시간 반응시켰다. 반응이 종료되면, 상기 표기된 P-1의 분리방법을 이용하여 생성물 N-19 67 g (83.4%)을 얻었다.N-19a (50 g, 0.13 mol), N-19b (35 g, 0.13 mol), Pd 2 (dba) 3 (3.6 g, 0.004 mol), NaOt-Bu (37.6 g, 0.40 mol), P(t -Bu) 3 (3.2 g, 0.008 mol) and Toluene (260 mL) were added and reacted at 135°C for 6 hours. When the reaction was completed, 67 g (83.4%) of product N-19 was obtained using the separation method of P-1 described above.
10. S-32 합성예10. S-32 Synthesis Example
Figure PCTKR2022006762-appb-img-000182
Figure PCTKR2022006762-appb-img-000182
S-32a (10 g, 0.04 mol), S-32b (15.6 g, 0.04 mol), Pd2(dba)3 (1.1 g, 0.001 mol), NaOt-Bu (11.7 g, 0.12 mol), P(t-Bu)3 (1.0 g, 0.002 mol), Toluene (80 mL) 첨가하고, 135℃에서 6시간 반응시켰다. 반응이 종료되면, 상기 표기된 P-1의 분리방법을 이용하여 생성물 S-32 18 g (80.8%)을 얻었다.S-32a (10 g, 0.04 mol), S-32b (15.6 g, 0.04 mol), Pd 2 (dba) 3 (1.1 g, 0.001 mol), NaOt-Bu (11.7 g, 0.12 mol), P(t -Bu) 3 (1.0 g, 0.002 mol) and Toluene (80 mL) were added and reacted at 135°C for 6 hours. When the reaction was completed, 18 g (80.8%) of product S-32 was obtained using the separation method of P-1 described above.
11. S-74 합성예11. S-74 Synthesis Example
Figure PCTKR2022006762-appb-img-000183
Figure PCTKR2022006762-appb-img-000183
S-74a (15 g, 0.06 mol), S-74b (20.9 g, 0.06 mol), Pd2(dba)3 (1.6 g, 0.002 mol), NaOt-Bu (16.9 g, 0.18 mol), P(t-Bu)3 (1.4 g, 0.004 mol), Toluene (120 mL) 첨가하고, 135℃에서 6시간 반응시켰다. 반응이 종료되면, 상기 표기된 P-1의 분리방법을 이용하여 생성물 S-74 27 g (86.4%)을 얻었다.S-74a (15 g, 0.06 mol), S-74b (20.9 g, 0.06 mol), Pd 2 (dba) 3 (1.6 g, 0.002 mol), NaOt-Bu (16.9 g, 0.18 mol), P(t -Bu) 3 (1.4 g, 0.004 mol) and Toluene (120 mL) were added and reacted at 135°C for 6 hours. When the reaction was completed, 27 g (86.4%) of product S-74 was obtained using the separation method of P-1 described above.
12. N-93 합성예12. N-93 Synthesis Example
Figure PCTKR2022006762-appb-img-000184
Figure PCTKR2022006762-appb-img-000184
(1) N-93-a 합성예시(1) Synthesis example of N-93-a
7-bromonaphtho[1,2-b]benzofuran (20.0 g, 0.067 mol), 2-bromo-9H-carbazole (16.6 g, 0.067 mol), Pd2(dba)3 (1.85 g, 0.002 mol), NaOt-Bu (12.9 g, 0.135 mol), P(t-Bu)3 (0.82 g, 0.004 mol), Toluene (340 mL)을 첨가하고, 80℃에서 6시간 반응시켰다. 반응이 종료되면, 상기 표기된 P-1의 분리방법을 이용하여 생성물 N-93-a 23.7 g (76.2%)을 얻었다.7-bromonaphtho[1,2-b]benzofuran (20.0 g, 0.067 mol), 2-bromo-9H-carbazole (16.6 g, 0.067 mol), Pd 2 (dba) 3 (1.85 g, 0.002 mol), NaOt- Bu (12.9 g, 0.135 mol), P(t-Bu) 3 (0.82 g, 0.004 mol), and Toluene (340 mL) were added and reacted at 80°C for 6 hours. When the reaction was completed, 23.7 g (76.2%) of product N-93-a was obtained by using the separation method of P-1 described above.
(2) N-93 합성예시(2) Synthesis example of N-93
N-93-a (23.7 g, 0.051 mol), N-93-b (16.5 g, 0.051 mol), Pd2(dba)3 (1.41 g, 0.002 mol), NaOt-Bu (9.9 g, 0.103 mol), P(t-Bu)3 (0.62 g, 0.003 mol), Toluene (260 mL)을 첨가하고, 80℃에서 6시간 반응시켰다. 반응이 종료되면, 상기 표기된 P-1의 분리방법을 이용하여 생성물 N-93 28.2 g (78.4%)을 얻었다.N-93-a (23.7 g, 0.051 mol), N-93-b (16.5 g, 0.051 mol), Pd 2 (dba) 3 (1.41 g, 0.002 mol), NaOt-Bu (9.9 g, 0.103 mol) , P(t-Bu) 3 (0.62 g, 0.003 mol), and Toluene (260 mL) were added and reacted at 80°C for 6 hours. When the reaction was completed, 28.2 g (78.4%) of product N-93 was obtained using the separation method of P-1 described above.
13. N-108 합성예13. Synthesis of N-108
Figure PCTKR2022006762-appb-img-000185
Figure PCTKR2022006762-appb-img-000185
Figure PCTKR2022006762-appb-img-000186
Figure PCTKR2022006762-appb-img-000186
(1) N-108-a 합성예시(1) Synthesis example of N-108-a
10-bromonaphtho[1,2-b]benzofuran (20.0 g, 0.067 mol), 2-bromo-9H-carbazole (16.6 g, 0.067 mol), Pd2(dba)3 (1.85 g, 0.002 mol), NaOt-Bu (12.9 g, 0.135 mol), P(t-Bu)3 (0.82 g, 0.004 mol), Toluene (340 mL)을 첨가하고, 80℃에서 6시간 반응시켰다. 반응이 종료되면, 상기 표기된 P-1의 분리방법을 이용하여 생성물 N-108-a 24.0 g (77.1%)을 얻었다.10-bromonaphtho[1,2-b]benzofuran (20.0 g, 0.067 mol), 2-bromo-9H-carbazole (16.6 g, 0.067 mol), Pd 2 (dba) 3 (1.85 g, 0.002 mol), NaOt- Bu (12.9 g, 0.135 mol), P(t-Bu) 3 (0.82 g, 0.004 mol), and Toluene (340 mL) were added and reacted at 80°C for 6 hours. After the reaction was completed, 24.0 g (77.1%) of product N-108-a was obtained using the separation method of P-1 described above.
(2) N-108 합성예시(2) Synthesis example of N-108
N-108-a (24.0 g, 0.052 mol), N-108-b (18.2 g, 0.052 mol), Pd2(dba)3 (1.43 g, 0.002 mol), NaOt-Bu (10.0 g, 0.104 mol), P(t-Bu)3 (0.63 g, 0.003 mol), Toluene (260 mL)을 첨가하고, 80℃에서 6시간 반응시켰다. 반응이 종료되면, 상기 표기된 P-1의 분리방법을 이용하여 생성물 N-108 29.3 g (76.9%)을 얻었다.N-108-a (24.0 g, 0.052 mol), N-108-b (18.2 g, 0.052 mol), Pd 2 (dba) 3 (1.43 g, 0.002 mol), NaOt-Bu (10.0 g, 0.104 mol) , P(t-Bu) 3 (0.63 g, 0.003 mol), and Toluene (260 mL) were added, and reacted at 80°C for 6 hours. After the reaction was completed, 29.3 g (76.9%) of product N-108 was obtained using the separation method of P-1 described above.
14. N-113 합성예14. N-113 Synthesis Example
Figure PCTKR2022006762-appb-img-000187
Figure PCTKR2022006762-appb-img-000187
(1) N-113-a 합성예시(1) Synthesis example of N-113-a
2-bromonaphtho[2,3-b]benzofuran (20.0 g, 0.067 mol), 2-bromo-9H-carbazole (16.6 g, 0.067 mol), Pd2(dba)3 (1.85 g, 0.002 mol), NaOt-Bu (12.9 g, 0.135 mol), P(t-Bu)3 (0.82 g, 0.004 mol), Toluene (340 mL)을 첨가하고, 80℃에서 6시간 반응시켰다. 반응이 종료되면, 상기 표기된 P-1의 분리방법을 이용하여 생성물 N-113-a 25.6 g (82.3%)을 얻었다.2-bromonaphtho[2,3-b]benzofuran (20.0 g, 0.067 mol), 2-bromo-9H-carbazole (16.6 g, 0.067 mol), Pd 2 (dba) 3 (1.85 g, 0.002 mol), NaOt- Bu (12.9 g, 0.135 mol), P(t-Bu) 3 (0.82 g, 0.004 mol), and Toluene (340 mL) were added and reacted at 80°C for 6 hours. After the reaction was completed, 25.6 g (82.3%) of product N-113-a was obtained using the separation method of P-1 described above.
(2) N-113 합성예시(2) Synthesis example of N-113
N-113-a (25.6 g, 0.055 mol), N-113-b (13.6 g, 0.055 mol), Pd2(dba)3 (1.52 g, 0.002 mol), NaOt-Bu (10.6 g, 0.111 mol), P(t-Bu)3 (0.67 g, 0.003 mol), Toluene (280 mL)을 첨가하고, 80℃에서 6시간 반응시켰다. 반응이 종료되면, 상기 표기된 P-1의 분리방법을 이용하여 생성물 N-113 27.2 g (78.4%)을 얻었다.N-113-a (25.6 g, 0.055 mol), N-113-b (13.6 g, 0.055 mol), Pd 2 (dba) 3 (1.52 g, 0.002 mol), NaOt-Bu (10.6 g, 0.111 mol) , P(t-Bu) 3 (0.67 g, 0.003 mol), and Toluene (280 mL) were added and reacted at 80°C for 6 hours. When the reaction was completed, 27.2 g (78.4%) of product N-113 was obtained using the separation method of P-1 described above.
15. N-116 합성예15. Synthesis of N-116
Figure PCTKR2022006762-appb-img-000188
Figure PCTKR2022006762-appb-img-000188
N-113-a (10.0 g, 0.022 mol), N-116-b (5.4 g, 0.022 mol), Pd2(dba)3 (0.59 g, 0.001mol), NaOt-Bu (4.2 g, 0.043 mol), P(t-Bu)3 (0.26 g, 0.001 mol), Toluene (110 mL)을 첨가하고, 80℃에서 6시간 반응시켰다. 반응이 종료되면, 상기 표기된 P-1의 분리방법을 이용하여 생성물 N-116 10.7 g (78.2%)을 얻었다.N-113-a (10.0 g, 0.022 mol), N-116-b (5.4 g, 0.022 mol), Pd 2 (dba) 3 (0.59 g, 0.001 mol), NaOt-Bu (4.2 g, 0.043 mol) , P(t-Bu) 3 (0.26 g, 0.001 mol), and Toluene (110 mL) were added and reacted at 80°C for 6 hours. When the reaction was completed, 10.7 g (78.2%) of product N-116 was obtained using the separation method of P-1 described above.
16. N-132 합성예16. N-132 Synthesis Example
Figure PCTKR2022006762-appb-img-000189
Figure PCTKR2022006762-appb-img-000189
(1) N-132-a 합성예시(1) Synthesis example of N-132-a
10-bromonaphtho[2,1-b]benzofuran (20.0 g, 0.067 mol), 2-bromo-9H-carbazole (16.6 g, 0.067 mol), Pd2(dba)3 (1.85 g, 0.002 mol), NaOt-Bu (12.9 g, 0.135 mol), P(t-Bu)3 (0.82 g, 0.004 mol), Toluene (340 mL)을 첨가하고, 80℃에서 6시간 반응시켰다. 반응이 종료되면, 상기 표기된 P-1의 분리방법을 이용하여 생성물 N-132-a 25.4 g (81.5%)을 얻었다.10-bromonaphtho[2,1-b]benzofuran (20.0 g, 0.067 mol), 2-bromo-9H-carbazole (16.6 g, 0.067 mol), Pd 2 (dba) 3 (1.85 g, 0.002 mol), NaOt- Bu (12.9 g, 0.135 mol), P(t-Bu) 3 (0.82 g, 0.004 mol), and Toluene (340 mL) were added and reacted at 80°C for 6 hours. After the reaction was completed, 25.4 g (81.5%) of product N-132-a was obtained using the separation method of P-1 described above.
(2) N-132 합성예시(2) Synthesis example of N-132
N-132-a (25.4 g, 0.055 mol), N-132-b (13.7 g, 0.055 mol), Pd2(dba)3 (1.51 g, 0.002 mol), NaOt-Bu (10.5 g, 0.110 mol), P(t-Bu)3 (0.67 g, 0.003 mol), Toluene (275 mL)을 첨가하고, 80℃에서 6시간 반응시켰다. 반응이 종료되면, 상기 표기된 P-1의 분리방법을 이용하여 생성물 N-132 27.3 g (78.8%)을 얻었다.N-132-a (25.4 g, 0.055 mol), N-132-b (13.7 g, 0.055 mol), Pd 2 (dba) 3 (1.51 g, 0.002 mol), NaOt-Bu (10.5 g, 0.110 mol) , P(t-Bu) 3 (0.67 g, 0.003 mol), and Toluene (275 mL) were added and reacted at 80°C for 6 hours. When the reaction was completed, 27.3 g (78.8%) of product N-132 was obtained using the separation method of P-1 described above.
한편, 상기와 같은 합성예에 따라 제조된 본 발명의 화합물 P-1 내지 P-84의 FD-MS 값은 하기 표 3과 같다.On the other hand, the FD-MS values of the compounds P-1 to P-84 of the present invention prepared according to the Synthesis Example as described above are shown in Table 3 below.
화합물compound FD-MSFD-MS 화합물compound FD-MSFD-MS
P-1P-1 m/z=535.2(C39H25N3=535.65)m/z=535.2 (C 39 H 25 N 3 =535.65) P-2P-2 m/z=535.2(C39H25N3=535.65)m/z=535.2 (C 39 H 25 N 3 =535.65)
P-3P-3 m/z=535.2(C39H25N3=535.65)m/z=535.2 (C 39 H 25 N 3 =535.65) P-4P-4 m/z=535.2(C39H25N3=535.65)m/z=535.2 (C 39 H 25 N 3 =535.65)
P-5P-5 m/z=535.2(C39H25N3=535.65)m/z=535.2 (C 39 H 25 N 3 =535.65) P-6P-6 m/z=585.22(C43H27N3=585.71)m/z=585.22 (C 43 H 27 N 3 =585.71)
P-7P-7 m/z=585.22(C43H27N3=585.71)m/z=585.22 (C 43 H 27 N 3 =585.71) P-8P-8 m/z=585.22(C43H27N3=585.71)m/z=585.22 (C 43 H 27 N 3 =585.71)
P-9P-9 m/z=585.22(C43H27N3=585.71)m/z=585.22 (C 43 H 27 N 3 =585.71) P-10P-10 m/z=585.22(C43H27N3=585.71)m/z=585.22 (C 43 H 27 N 3 =585.71)
P-11P-11 m/z=585.22(C43H27N3=585.71)m/z=585.22 (C 43 H 27 N 3 =585.71) P-12P-12 m/z=585.22(C43H27N3=585.71)m/z=585.22 (C 43 H 27 N 3 =585.71)
P-13P-13 m/z=585.22(C43H27N3=585.71)m/z=585.22 (C 43 H 27 N 3 =585.71) P-14P-14 m/z=585.22(C43H27N3=585.71)m/z=585.22 (C 43 H 27 N 3 =585.71)
P-15P-15 m/z=585.22(C43H27N3=585.71)m/z=585.22 (C 43 H 27 N 3 =585.71) P-16P-16 m/z=635.24(C47H29N3=635.77)m/z = 635.24 (C 47 H 29 N 3 =635.77)
P-17P-17 m/z=635.24(C47H29N3=635.77)m/z = 635.24 (C 47 H 29 N 3 =635.77) P-18P-18 m/z=661.25(C49H31N3=661.81)m/z=661.25 (C 49 H 31 N 3 =661.81)
P-19P-19 m/z=611.24(C45H29N3=611.75)m/z = 611.24 (C 45 H 29 N 3 =611.75) P-20P-20 m/z=687.27(C51H33N3=687.85)m/z = 687.27 (C 51 H 33 N 3 =687.85)
P-21P-21 m/z=611.24(C45H29N3=611.75)m/z = 611.24 (C 45 H 29 N 3 =611.75) P-22P-22 m/z=635.24(C47H29N3=635.77)m/z = 635.24 (C 47 H 29 N 3 =635.77)
P-23P-23 m/z=635.24(C47H29N3=635.77)m/z = 635.24 (C 47 H 29 N 3 =635.77) P-24P-24 m/z=661.25(C49H31N3=661.81)m/z=661.25 (C 49 H 31 N 3 =661.81)
P-25P-25 m/z=687.27(C51H33N3=687.85)m/z = 687.27 (C 51 H 33 N 3 =687.85) P-26P-26 m/z=635.24(C47H29N3=635.77)m/z = 635.24 (C 47 H 29 N 3 =635.77)
P-27P-27 m/z=711.27(C53H33N3=711.87)m/z = 711.27 (C 53 H 33 N 3 =711.87) P-28P-28 m/z=661.25(C49H31N3=661.81)m/z=661.25 (C 49 H 31 N 3 =661.81)
P-29P-29 m/z=611.24(C45H29N3=611.75)m/z = 611.24 (C 45 H 29 N 3 =611.75) P-30P-30 m/z=611.24(C45H29N3=611.75)m/z = 611.24 (C 45 H 29 N 3 =611.75)
P-31P-31 m/z=611.24(C45H29N3=611.75)m/z = 611.24 (C 45 H 29 N 3 =611.75) P-32P-32 m/z=611.24(C45H29N3=611.75)m/z = 611.24 (C 45 H 29 N 3 =611.75)
P-33P-33 m/z=661.25(C49H31N3=661.81)m/z=661.25 (C 49 H 31 N 3 =661.81) P-34P-34 m/z=661.25(C49H31N3=661.81)m/z=661.25 (C 49 H 31 N 3 =661.81)
P-35P-35 m/z=661.25(C49H31N3=661.81)m/z=661.25 (C 49 H 31 N 3 =661.81) P-36P-36 m/z=661.25(C49H31N3=661.81)m/z=661.25 (C 49 H 31 N 3 =661.81)
P-37P-37 m/z=687.27(C51H33N3=687.85)m/z = 687.27 (C 51 H 33 N 3 =687.85) P-38P-38 m/z=687.27(C51H33N3=687.85)m/z = 687.27 (C 51 H 33 N 3 =687.85)
P-39P-39 m/z=687.27(C51H33N3=687.85)m/z = 687.27 (C 51 H 33 N 3 =687.85) P-40P-40 m/z=661.25(C49H31N3=661.81)m/z=661.25 (C 49 H 31 N 3 =661.81)
P-41P-41 m/z=535.2(C39H25N3=535.65)m/z=535.2 (C 39 H 25 N 3 =535.65) P-42P-42 m/z=585.22(C43H27N3=585.71)m/z=585.22 (C 43 H 27 N 3 =585.71)
P-43P-43 m/z=585.22(C43H27N3=585.71)m/z=585.22 (C 43 H 27 N 3 =585.71) P-44P-44 m/z=535.2(C39H25N3=535.65)m/z=535.2 (C 39 H 25 N 3 =535.65)
P-45P-45 m/z=611.24(C45H29N3=611.75)m/z = 611.24 (C 45 H 29 N 3 =611.75) P-46P-46 m/z=611.24(C45H29N3=611.75)m/z = 611.24 (C 45 H 29 N 3 =611.75)
P-47P-47 m/z=651.27(C48H33N3=651.81)m/z=651.27 (C 48 H 33 N 3 =651.81) P-48P-48 m/z=585.22(C43H27N3=585.71)m/z=585.22 (C 43 H 27 N 3 =585.71)
P-49P-49 m/z=535.2(C39H25N3=535.65)m/z=535.2 (C 39 H 25 N 3 =535.65) P-50P-50 m/z=635.24(C47H29N3=635.77)m/z = 635.24 (C 47 H 29 N 3 =635.77)
P-51P-51 m/z=635.24(C47H29N3=635.77)m/z = 635.24 (C 47 H 29 N 3 =635.77) P-52P-52 m/z=813.31(C61H39N3=814)m/z=813.31 (C 61 H 39 N 3 =814)
P-53P-53 m/z=711.27(C53H33N3=711.87)m/z = 711.27 (C 53 H 33 N 3 =711.87) P-54P-54 m/z=635.24(C47H29N3=635.77)m/z = 635.24 (C 47 H 29 N 3 =635.77)
P-55P-55 m/z=535.2(C39H25N3=535.65)m/z=535.2 (C 39 H 25 N 3 =535.65) P-56P-56 m/z=687.27(C51H33N3=687.85)m/z = 687.27 (C 51 H 33 N 3 =687.85)
P-57P-57 m/z=535.2(C39H25N3=535.65)m/z=535.2 (C 39 H 25 N 3 =535.65) P-58P-58 m/z=851.33(C64H41N3=852.05)m/z = 851.33 (C 64 H 41 N 3 =852.05)
P-59P-59 m/z=711.27(C53H33N3=711.87)m/z = 711.27 (C 53 H 33 N 3 =711.87) P-60P-60 m/z=773.28(C58H35N3=773.94)m/z = 773.28 (C 58 H 35 N 3 =773.94)
P-61P-61 m/z=585.22(C43H27N3=585.71)m/z=585.22 (C 43 H 27 N 3 =585.71) P-62P-62 m/z=661.25(C49H31N3=661.81)m/z=661.25 (C 49 H 31 N 3 =661.81)
P-63P-63 m/z=535.2(C39H25N3=535.65)m/z=535.2 (C 39 H 25 N 3 =535.65) P-64P-64 m/z=535.2(C39H25N3=535.65)m/z=535.2 (C 39 H 25 N 3 =535.65)
P-65P-65 m/z=611.24(C45H29N3=611.75)m/z = 611.24 (C 45 H 29 N 3 =611.75) P-66P-66 m/z=585.22(C43H27N3=585.71)m/z=585.22 (C 43 H 27 N 3 =585.71)
P-67P-67 m/z=687.27(C51H33N3=687.85)m/z = 687.27 (C 51 H 33 N 3 =687.85) P-68P-68 m/z=611.24(C45H29N3=611.75)m/z = 611.24 (C 45 H 29 N 3 =611.75)
P-69P-69 m/z=661.25(C49H31N3=661.81)m/z=661.25 (C 49 H 31 N 3 =661.81) P-70P-70 m/z=661.25(C49H31N3=661.81)m/z=661.25 (C 49 H 31 N 3 =661.81)
P-71P-71 m/z=611.24(C45H29N3=611.75)m/z = 611.24 (C 45 H 29 N 3 =611.75) P-72P-72 m/z=661.25(C49H31N3=661.81)m/z=661.25 (C 49 H 31 N 3 =661.81)
P-73P-73 m/z=687.27(C51H33N3=687.85)m/z = 687.27 (C 51 H 33 N 3 =687.85) P-74P-74 m/z=651.27(C48H33N3=651.81)m/z=651.27 (C 48 H 33 N 3 =651.81)
P-75P-75 m/z=661.25(C49H31N3=661.81)m/z=661.25 (C 49 H 31 N 3 =661.81) P-76P-76 m/z=687.27(C51H33N3=687.85)m/z = 687.27 (C 51 H 33 N 3 =687.85)
P-77P-77 m/z=687.27(C51H33N3=687.85)m/z = 687.27 (C 51 H 33 N 3 =687.85) P-78P-78 m/z=585.22(C43H27N3=585.71)m/z=585.22 (C 43 H 27 N 3 =585.71)
P-79P-79 m/z=685.25(C51H31N3=685.83)m/z=685.25 (C 51 H 31 N 3 =685.83) P-80P-80 m/z=811.3(C61H37N3=811.99)m/z = 811.3 (C 61 H 37 N 3 =811.99)
P-81P-81 m/z=544.26(C39H16D9N3=544.70)m/z = 544.26 (C 39 H 16 D 9 N 3 =544.70) P-82P-82 m/z=658.38(C47H6D23N3=658.91)m/z = 658.38 (C 47 H 6 D 23 N 3 = 658.91)
P-83P-83 m/z=599.24(C44H29N3=599.74)m/z=599.24 (C 44 H 29 N 3 =599.74) P-84P-84 m/z=817.35(C61H43N3=818.04)m/z = 817.35 (C 61 H 43 N 3 =818.04)
한편, 상기와 같은 합성예에 따라 제조된 본 발명의 화합물 N-1 내지 N-144의 FD-MS 값은 하기 표 4와 같다.On the other hand, the FD-MS values of the compounds N-1 to N-144 of the present invention prepared according to the Synthesis Example as described above are shown in Table 4 below.
화합물compound FD-MSFD-MS 화합물compound FD-MSFD-MS
N-1N-1 m/z=487.19(C36H25NO=487.6)m/z=487.19 (C 36 H 25 NO=487.6) N-2N-2 m/z=553.19(C40H27NS=553.72)m/z = 553.19 (C 40 H 27 NS = 553.72)
N-3N-3 m/z=563.26(C43H33N=563.74)m/z=563.26 (C 43 H 33 N=563.74) N-4N-4 m/z=602.27(C45H34N2=602.78)m/z=602.27 (C 45 H 34 N 2 =602.78)
N-5N-5 m/z=517.15(C36H23NOS=517.65)m/z=517.15 (C 36 H 23 NOS=517.65) N-6N-6 m/z=603.2(C44H29NS=603.78)m/z = 603.2 (C 44 H 29 NS = 603.78)
N-7N-7 m/z=735.29(C57H37N=735.93)m/z=735.29 (C 57 H 37 N=735.93) N-8N-8 m/z=562.24(C42H30N2=562.72)m/z=562.24 (C 42 H 30 N 2 =562.72)
N-9N-9 m/z=515.15(C36H21NO3=515.57)m/z = 515.15 (C 36 H 21 NO 3 =515.57) N-10N-10 m/z=531.13(C36H21NO2S=531.63)m/z=531.13 (C 36 H 21 NO 2 S=531.63)
N-11N-11 m/z=773.22(C55H35NS2=774.01)m/z = 773.22 (C 55 H 35 NS 2 =774.01) N-12N-12 m/z=727.3(C54H37N3=727.91)m/z = 727.3 (C 54 H 37 N 3 =727.91)
N-13N-13 m/z=627.22(C46H29NO2=627.74)m/z = 627.22 (C 46 H 29 NO 2 =627.74) N-14N-14 m/z=633.16(C44H27NS2=633.83)m/z = 633.16 (C 44 H 27 NS 2 =633.83)
N-15N-15 m/z=675.29(C52H37N=675.88)m/z=675.29 (C 52 H 37 N=675.88) N-16N-16 m/z=678.3(C51H38N2=678.88)m/z=678.3 (C 51 H 38 N 2 =678.88)
N-17N-17 m/z=669.21(C48H31NOS=669.84)m/z=669.21 (C 48 H 31 NOS=669.84) N-18N-18 m/z=785.22(C56H35NS2=786.02)m/z = 785.22 (C 56 H 35 NS 2 =786.02)
N-19N-19 m/z=617.18(C44H27NOS=617.77)m/z=617.18 (C 44 H 27 NOS=617.77) N-20N-20 m/z=601.2(C44H27NO2=601.71)m/z = 601.2 (C 44 H 27 NO 2 =601.71)
N-21N-21 m/z=779.32(C59H41NO=779.98)m/z = 779.32 (C 59 H 41 NO = 779.98) N-22N-22 m/z=583.23(C42H33NS=583.79)m/z=583.23 (C 42 H 33 NS=583.79)
N-23N-23 m/z=679.32(C52H41N=679.91)m/z=679.32 (C 52 H 41 N=679.91) N-24N-24 m/z=726.27(C54H34N2O=726.88)m/z=726.27 (C 54 H 34 N 2 O=726.88)
N-25N-25 m/z=593.18(C42H27NOS=593.74)m/z=593.18 (C 42 H 27 NOS=593.74) N-26N-26 m/z=774.22(C54H34N2S2=775)m/z=774.22 (C 54 H 34 N 2 S 2 =775)
N-27N-27 m/z=557.24(C40H31NO2=557.69)m/z = 557.24 (C 40 H 31 NO 2 =557.69) N-28N-28 m/z=652.25(C48H32N2O=652.8)m/z=652.25 (C 48 H 32 N 2 O=652.8)
N-29N-29 m/z=619.29(C46H37NO=619.81)m/z = 619.29 (C 46 H 37 NO = 619.81) N-30N-30 m/z=603.2(C44H29NS=603.78)m/z = 603.2 (C 44 H 29 NS = 603.78)
N-31N-31 m/z=813.3(C62H39NO=814)m/z=813.3 (C 62 H 39 NO=814) N-32N-32 m/z=784.29(C57H40N2S=785.02)m/z=784.29 (C 57 H 40 N 2 S=785.02)
N-33N-33 m/z=577.2(C42H27NO2=577.68)m/z = 577.2 (C 42 H 27 NO 2 =577.68) N-34N-34 m/z=607.14(C42H25NS2=607.79)m/z = 607.14 (C 42 H 25 NS 2 =607.79)
N-35N-35 m/z=801.34(C62H43N=802.03)m/z=801.34 (C 62 H 43 N=802.03) N-36N-36 m/z=575.24(C42H29N3=575.72)m/z=575.24 (C 42 H 29 N 3 =575.72)
N-37N-37 m/z=577.2(C42H27NO2=577.68)m/z = 577.2 (C 42 H 27 NO 2 =577.68) N-38N-38 m/z=607.14(C42H25NS2=607.79)m/z = 607.14 (C 42 H 25 NS 2 =607.79)
N-39N-39 m/z=801.34(C62H43N=802.03)m/z=801.34 (C 62 H 43 N=802.03) N-40N-40 m/z=575.24(C42H29N3=575.72)m/z=575.24 (C 42 H 29 N 3 =575.72)
N-41N-41 m/z=601.2(C44H27NO2=601.71)m/z = 601.2 (C 44 H 27 NO 2 =601.71) N-42N-42 m/z=471.11(C31H21NS2=471.64)m/z=471.11 (C 31 H 21 NS 2 =471.64)
N-43N-43 m/z=675.29(C52H37N=675.88)m/z=675.29 (C 52 H 37 N=675.88) N-44N-44 m/z=727.3(C54H37N3=727.91)m/z = 727.3 (C 54 H 37 N 3 =727.91)
N-45N-45 m/z=603.2(C44H29NS=603.78)m/z = 603.2 (C 44 H 29 NS = 603.78) N-46N-46 m/z=561.16(C38H27NS2=561.76)m/z=561.16 (C 38 H 27 NS 2 =561.76)
N-47N-47 m/z=799.32(C62H41N=800.02)m/z=799.32 (C 62 H 41 N=800.02) N-48N-48 m/z=702.27(C52H34N2O=702.86)m/z=702.27 (C 52 H 34 N 2 O=702.86)
N-49N-49 m/z=729.27(C54H35NO2=729.88)m/z = 729.27 (C 54 H 35 NO 2 =729.88) N-50N-50 m/z=785.22(C56H35NS2=786.02)m/z = 785.22 (C 56 H 35 NS 2 =786.02)
N-51N-51 m/z=812.32(C62H40N2=813.02)m/z = 812.32 (C 62 H 40 N 2 =813.02) N-52N-52 m/z=681.22(C48H31N3S=681.86)m/z=681.22 (C 48 H 31 N 3 S=681.86)
N-53N-53 m/z=515.15(C36H21NO3=515.57)m/z = 515.15 (C 36 H 21 NO 3 =515.57) N-54N-54 m/z=563.08(C36H21NS3=563.75)m/z = 563.08 (C 36 H 21 NS 3 =563.75)
N-55N-55 m/z=593.31(C45H39N=593.81)m/z=593.31 (C 45 H 39 N=593.81) N-56N-56 m/z=740.29(C54H36N4=740.91)m/z = 740.29 (C 54 H 36 N 4 =740.91)
N-57N-57 m/z=607.16(C42H25NO2S=607.73)m/z = 607.16 (C 42 H 25 NO 2 S = 607.73) N-58N-58 m/z=774.22(C54H34N2S2=775)m/z=774.22 (C 54 H 34 N 2 S 2 =775)
N-59N-59 m/z=1145.41(C87H55NS=1146.46)m/z = 1145.41 (C 87 H 55 NS = 1146.46) N-60N-60 m/z=606.18(C42H26N2OS=606.74)m/z=606.18 (C 42 H 26 N 2 OS=606.74)
N-61N-61 m/z=607.16(C42H25NO2S=607.73)m/z = 607.16 (C 42 H 25 NO 2 S = 607.73) N-62N-62 m/z=773.2(C54H31NO3S=773.91)m/z = 773.2 (C 54 H 31 NO 3 S = 773.91)
N-63N-63 m/z=963.39(C75H49N=964.22)m/z = 963.39 (C 75 H 49 N = 964.22) N-64N-64 m/z=758.24(C54H34N2OS=758.94)m/z=758.24 (C 54 H 34 N 2 OS=758.94)
N-65N-65 m/z=623.14(C42H25NOS2=623.79)m/z = 623.14 (C 42 H 25 NOS 2 =623.79) N-66N-66 m/z=713.15(C48H27NO2S2=713.87)m/z = 713.15 (C 48 H 27 NO 2 S 2 =713.87)
N-67N-67 m/z=749.18(C52H31NOS2=749.95)m/z = 749.18 (C 52 H 31 NOS 2 =749.95) N-68N-68 m/z=743.23(C54H33NOS=743.92)m/z=743.23 (C 54 H 33 NOS=743.92)
N-69N-69 m/z=772.22(C54H32N2O2S=772.92)m/z=772.22 (C 54 H 32 N 2 O 2 S=772.92) N-70N-70 m/z=772.22(C54H32N2O2S=772.92)m/z=772.22 (C 54 H 32 N 2 O 2 S=772.92)
N-71N-71 m/z=830.28(C61H38N2S=831.05)m/z=830.28 (C 61 H 38 N 2 S=831.05) N-72N-72 m/z=701.22(C49H29F2NO2=701.77)m/z = 701.22 (C 49 H 29 F 2 NO 2 =701.77)
N-73N-73 m/z=879.19(C60H33NO3S2=880.05)m/z = 879.19 (C 60 H 33 NO 3 S 2 =880.05) N-74N-74 m/z=913.26(C64H39N3S2=914.16)m/z = 913.26 (C 64 H 39 N 3 S 2 =914.16)
N-75N-75 m/z=759.22(C54H33NO2S=759.92)m/z = 759.22 (C 54 H 33 NO 2 S = 759.92) N-76N-76 m/z=793.26(C58H35NO3=793.92)m/z = 793.26 (C 58 H 35 NO 3 =793.92)
N-77N-77 m/z=794.28(C58H38N2S=795.02)m/z=794.28 (C 58 H 38 N 2 S=795.02) N-78N-78 m/z=850.25(C60H38N2S2=851.1)m/z = 850.25 (C 60 H 38 N 2 S 2 =851.1)
N-79N-79 m/z=708.26(C51H36N2S=708.92)m/z=708.26 (C 51 H 36 N 2 S=708.92) N-80N-80 m/z=982.34(C73H46N2S=983.25)m/z=982.34 (C 73 H 46 N 2 S=983.25)
N-81N-81 m/z=639.26(C48H33NO=639.8)m/z=639.26 (C 48 H 33 NO=639.8) N-82N-82 m/z=765.25(C57H35NS=765.97)m/z=765.25 (C 57 H 35 NS=765.97)
N-83N-83 m/z=677.31(C52H39N=677.89)m/z=677.31 (C 52 H 39 N=677.89) N-84N-84 m/z=727.3(C54H37N3=727.91)m/z = 727.3 (C 54 H 37 N 3 =727.91)
N-85N-85 m/z=543.26(C40H33NO=543.71)m/z=543.26 (C 40 H 33 NO=543.71) N-86N-86 m/z=500.19(C34H12D9NOS=500.66)m/z=500.19 (C 34 H 12 D 9 NOS=500.66)
N-87N-87 m/z=700.33(C52H33D5FN=700.91)m/z=700.33 (C 52 H 33 D 5 FN=700.91) N-88N-88 m/z=755.33(C56H41N3=755.97)m/z = 755.33 (C 56 H 41 N 3 =755.97)
N-89N-89 m/z=652.25(C48H32N2O=652.8)m/z=652.25 (C 48 H 32 N 2 O=652.8) N-90N-90 m/z=778.3(C58H38N2O=778.96)m/z = 778.3 (C 58 H 38 N 2 O = 778.96)
N-91N-91 m/z=666.23(C48H30N2O2=666.78)m/z=666.23 (C 48 H 30 N 2 O 2 =666.78) N-92N-92 m/z=728.28(C54H36N2O=728.9)m/z=728.28 (C 54 H 36 N 2 O=728.9)
N-93N-93 m/z=702.27(C52H34N2O=702.86)m/z=702.27 (C 52 H 34 N 2 O=702.86) N-94N-94 m/z=692.23(C50H32N2S=692.88)m/z=692.23 (C 50 H 32 N 2 S=692.88)
N-95N-95 m/z=631.27(C46H25D5N2O=631.79)m/z=631.27 (C 46 H 25 D 5 N 2 O=631.79) N-96N-96 m/z=616.2(C44H28N2S=616.78)m/z=616.2 (C 44 H 28 N 2 S=616.78)
N-97N-97 m/z=739.27(C52H25D7N2OS=739.94)m/z=739.27 (C 52 H 25 D 7 N 2 OS=739.94) N-98N-98 m/z=752.28(C56H36N2O=752.92)m/z=752.28 (C 56 H 36 N 2 O=752.92)
N-99N-99 m/z=794.28(C58H38N2S=795.02)m/z=794.28 (C 58 H 38 N 2 S=795.02) N-100N-100 m/z=752.28(C56H36N2O=752.92)m/z=752.28 (C 56 H 36 N 2 O=752.92)
N-101N-101 m/z=711.32(C52H25D9N2O=711.91)m/z=711.32 (C 52 H 25 D 9 N 2 O=711.91) N-102N-102 m/z=692.23(C50H32N2S=692.88)m/z=692.23 (C 50 H 32 N 2 S=692.88)
N-103N-103 m/z=752.28(C56H36N2O=752.92)m/z=752.28 (C 56 H 36 N 2 O=752.92) N-104N-104 m/z=718.24(C52H34N2S=718.92)m/z=718.24 (C 52 H 34 N 2 S=718.92)
N-105N-105 m/z=768.26(C56H36N2S=768.98)m/z=768.26 (C 56 H 36 N 2 S=768.98) N-106N-106 m/z=752.28(C56H36N2O=752.92)m/z=752.28 (C 56 H 36 N 2 O=752.92)
N-107N-107 m/z=799.31(C58H33D5N2S=800.05)m/z=799.31 (C 58 H 33 D 5 N 2 S=800.05) N-108N-108 m/z=732.22(C52H32N2OS=732.9)m/z=732.22 (C 52 H 32 N 2 OS=732.9)
N-109N-109 m/z=802.3(C60H38N2O=802.98)m/z = 802.3 (C 60 H 38 N 2 O = 802.98) N-110N-110 m/z=718.24(C52H34N2S=718.92)m/z=718.24 (C 52 H 34 N 2 S=718.92)
N-111N-111 m/z=576.24(C40H16D10N2S=576.78)m/z=576.24 (C 40 H 16 D 10 N 2 S=576.78) N-112N-112 m/z=854.33(C64H42N2O=855.05)m/z = 854.33 (C 64 H 42 N 2 O = 855.05)
N-113N-113 m/z=626.24(C46H30N2O=626.76)m/z=626.24 (C 46 H 30 N 2 O=626.76) N-114N-114 m/z=656.19(C46H28N2OS=656.8)m/z=656.19 (C 46 H 28 N 2 OS=656.8)
N-115N-115 m/z=718.24(C52H34N2S=718.92)m/z=718.24 (C 52 H 34 N 2 S=718.92) N-116N-116 m/z=631.27(C46H25D5N2O=631.79)m/z=631.27 (C 46 H 25 D 5 N 2 O=631.79)
N-117N-117 m/z=702.27(C52H34N2O=702.86)m/z=702.27 (C 52 H 34 N 2 O=702.86) N-118N-118 m/z=666.21(C48H30N2S=666.84)m/z=666.21 (C 48 H 30 N 2 S=666.84)
N-119N-119 m/z=672.17(C46H28N2S2=672.86)m/z = 672.17 (C 46 H 28 N 2 S 2 =672.86) N-120N-120 m/z=631.27(C46H25D5N2O=631.79)m/z=631.27 (C 46 H 25 D 5 N 2 O=631.79)
N-121N-121 m/z=633.28(C46H23D7N2O=633.8)m/z=633.28 (C 46 H 23 D 7 N 2 O=633.8) N-122N-122 m/z=692.23(C50H32N2S=692.88)m/z=692.23 (C 50 H 32 N 2 S=692.88)
N-123N-123 m/z=718.24(C52H34N2S=718.92)m/z=718.24 (C 52 H 34 N 2 S=718.92) N-124N-124 m/z=656.19(C46H28N2OS=656.8)m/z=656.19 (C 46 H 28 N 2 OS=656.8)
N-125N-125 m/z=712.33(C52H24D10N2O=712.92)m/z=712.33 (C 52 H 24 D 10 N 2 O=712.92) N-126N-126 m/z=702.27(C52H34N2O=702.86)m/z=702.27 (C 52 H 34 N 2 O=702.86)
N-127N-127 m/z=718.24(C52H34N2S=718.92)m/z=718.24 (C 52 H 34 N 2 S=718.92) N-128N-128 m/z=732.22(C52H32N2OS=732.9)m/z=732.22 (C 52 H 32 N 2 OS=732.9)
N-129N-129 m/z=626.24(C46H30N2O=626.76)m/z=626.24 (C 46 H 30 N 2 O=626.76) N-130N-130 m/z=718.24(C52H34N2S=718.92)m/z=718.24 (C 52 H 34 N 2 S=718.92)
N-131N-131 m/z=768.26(C56H36N2S=768.98)m/z=768.26 (C 56 H 36 N 2 S=768.98) N-132N-132 m/z=631.27(C46H25D5N2O=631.79)m/z=631.27 (C 46 H 25 D 5 N 2 O=631.79)
N-133N-133 m/z=828.31(C62H40N2O=829.02)m/z=828.31 (C 62 H 40 N 2 O=829.02) N-134N-134 m/z=692.23(C50H32N2S=692.88)m/z=692.23 (C 50 H 32 N 2 S=692.88)
N-135N-135 m/z=768.26(C56H36N2S=768.98)m/z=768.26 (C 56 H 36 N 2 S=768.98) N-136N-136 m/z=631.27(C46H25D5N2O=631.79)m/z=631.27 (C 46 H 25 D 5 N 2 O=631.79)
N-137N-137 m/z=702.27(C52H34N2O=702.86)m/z=702.27 (C 52 H 34 N 2 O=702.86) N-138N-138 m/z=768.26(C56H36N2S=768.98)m/z=768.26 (C 56 H 36 N 2 S=768.98)
N-139N-139 m/z=718.24(C52H34N2S=718.92)m/z=718.24 (C 52 H 34 N 2 S=718.92) N-140N-140 m/z=802.3(C60H38N2O=802.98)m/z = 802.3 (C 60 H 38 N 2 O = 802.98)
N-141N-141 m/z=702.27(C52H34N2O=702.86)m/z=702.27 (C 52 H 34 N 2 O=702.86) N-142N-142 m/z=702.27(C52H34N2O=702.86)m/z=702.27 (C 52 H 34 N 2 O=702.86)
N-143N-143 m/z=604.22(C46H28N2O2=604.74)m/z=604.22 (C 46 H 28 N 2 O 2 =604.74) N-144N-144 m/z=702.27(C52H34N2O=702.86)m/z=702.27 (C 52 H 34 N 2 O=702.86)
한편, 상기와 같은 합성예에 따라 제조된 본 발명의 화합물 S-1 내지 S-84의 FD-MS 값은 하기 표 5와 같다.On the other hand, the FD-MS values of the compounds S-1 to S-84 of the present invention prepared according to the Synthesis Example as described above are shown in Table 5 below.
화합물compound FD-MSFD-MS 화합물compound FD-MSFD-MS
S-1S-1 m/z=408.16(C30H20N2=408.5)m/z=408.16 (C 30 H 20 N 2 =408.5) S-2S-2 m/z=534.21(C40H26N2=534.66)m/z=534.21 (C 40 H 26 N 2 =534.66)
S-3S-3 m/z=560.23(C42H28N2=560.7)m/z=560.23 (C 42 H 28 N 2 =560.7) S-4S-4 m/z=584.23(C44H28N2=584.72)m/z=584.23 (C 44 H 28 N 2 =584.72)
S-5S-5 m/z=560.23(C42H28N2=560.7)m/z=560.23 (C 42 H 28 N 2 =560.7) S-6S-6 m/z=634.24(C48H30N2=634.78)m/z=634.24 (C 48 H 30 N 2 =634.78)
S-7S-7 m/z=610.24(C46H30N2=610.76)m/z=610.24 (C 46 H 30 N 2 =610.76) S-8S-8 m/z=498.17(C36H22N2O=498.59)m/z=498.17 (C 36 H 22 N 2 O=498.59)
S-9S-9 m/z=574.2(C42H26N2O=574.68)m/z=574.2 (C 42 H 26 N 2 O=574.68) S-10S-10 m/z=660.26(C50H32N2=660.82)m/z=660.26 (C 50 H 32 N 2 =660.82)
S-11S-11 m/z=686.27(C52H34N2=686.86)m/z=686.27 (C 52 H 34 N 2 =686.86) S-12S-12 m/z=620.14(C42H24N2S2=620.79)m/z = 620.14 (C 42 H 24 N 2 S 2 =620.79)
S-13S-13 m/z=640.2(C46H28N2S=640.8)m/z=640.2 (C 46 H 28 N 2 S=640.8) S-14S-14 m/z=560.23(C42H28N2=560.7)m/z=560.23 (C 42 H 28 N 2 =560.7)
S-15S-15 m/z=558.21(C42H26N2=558.68)m/z=558.21 (C 42 H 26 N 2 =558.68) S-16S-16 m/z=548.19(C40H24N2O=548.65)m/z=548.19 (C 40 H 24 N 2 O=548.65)
S-17S-17 m/z=573.22(C42H27N3=573.7)m/z=573.22 (C 42 H 27 N 3 =573.7) S-18S-18 m/z=564.17(C40H24N2S=564.71)m/z=564.17 (C 40 H 24 N 2 S=564.71)
S-19S-19 m/z=574.2(C42H26N2O=574.68)m/z=574.2 (C 42 H 26 N 2 O=574.68) S-20S-20 m/z=564.17(C40H24N2S=564.71)m/z=564.17 (C 40 H 24 N 2 S=564.71)
S-21S-21 m/z=564.17(C40H24N2S=564.71)m/z=564.17 (C 40 H 24 N 2 S=564.71) S-22S-22 m/z=813.31(C61H39N3=814)m/z=813.31 (C 61 H 39 N 3 =814)
S-23S-23 m/z=696.26(C53H32N2=696.85)m/z=696.26 (C 53 H 32 N 2 =696.85) S-24S-24 m/z=691.23(C49H29N3O2=691.79)m/z=691.23 (C 49 H 29 N 3 O 2 =691.79)
S-25S-25 m/z=710.27(C54H34N2=710.88)m/z=710.27 (C 54 H 34 N 2 =710.88) S-26S-26 m/z=610.24(C46H30N2=610.76)m/z=610.24 (C 46 H 30 N 2 =610.76)
S-27S-27 m/z=670.15(C46H26N2S2=670.85)m/z=670.15 (C 46 H 26 N 2 S 2 =670.85) S-28S-28 m/z=640.29(C48H36N2=640.83)m/z=640.29 (C 48 H 36 N 2 =640.83)
S-29S-29 m/z=598.2(C44H26N2O=598.71)m/z=598.2 (C 44 H 26 N 2 O=598.71) S-30S-30 m/z=623.24(C46H29N3=623.76)m/z=623.24 (C 46 H 29 N 3 =623.76)
S-31S-31 m/z=458.18(C34H22N2=458.56)m/z=458.18 (C 34 H 22 N 2 =458.56) S-32S-32 m/z=548.19(C40H24N2O=548.65)m/z=548.19 (C 40 H 24 N 2 O=548.65)
S-33S-33 m/z=508.19(C38H24N2=508.62)m/z=508.19 (C 38 H 24 N 2 =508.62) S-34S-34 m/z=508.19(C38H24N2=508.62)m/z=508.19 (C 38 H 24 N 2 =508.62)
S-35S-35 m/z=623.24(C46H29N3=623.76)m/z=623.24 (C 46 H 29 N 3 =623.76) S-36S-36 m/z=564.17(C40H24N2S=564.71)m/z=564.17 (C 40 H 24 N 2 S=564.71)
S-37S-37 m/z=627.2(C46H29NS=627.81)m/z = 627.2 (C 46 H 29 NS = 627.81) S-38S-38 m/z=505.1(C34H19NS2=505.65)m/z = 505.1 (C 34 H 19 NS 2 =505.65)
S-39S-39 m/z=514.15(C36H22N2S=514.65)m/z=514.15 (C 36 H 22 N 2 S=514.65) S-40S-40 m/z=575.17(C42H25NS=575.73)m/z=575.17 (C 42 H 25 NS=575.73)
S-41S-41 m/z=642.21(C46H30N2S=642.82)m/z=642.21 (C 46 H 30 N 2 S=642.82) S-42S-42 m/z=575.17(C42H25NS=575.73)m/z=575.17 (C 42 H 25 NS=575.73)
S-43S-43 m/z=606.18(C42H26N2OS=606.74)m/z=606.18 (C 42 H 26 N 2 OS=606.74) S-44S-44 m/z=575.17(C42H25NS=575.73)m/z=575.17 (C 42 H 25 NS=575.73)
S-45S-45 m/z=551.17(C40H25NS=551.71)m/z=551.17 (C 40 H 25 NS=551.71) S-46S-46 m/z=607.14(C42H25NS2=607.79)m/z = 607.14 (C 42 H 25 NS 2 =607.79)
S-47S-47 m/z=525.16(C38H23NS=525.67)m/z=525.16 (C 38 H 23 NS=525.67) S-48S-48 m/z=642.21(C46H30N2S=642.82)m/z=642.21 (C 46 H 30 N 2 S=642.82)
S-49S-49 m/z=548.19(C40H24N2O=548.65)m/z=548.19 (C 40 H 24 N 2 O=548.65) S-50S-50 m/z=473.14(C34H19NO2=473.53)m/z=473.14 (C 34 H 19 NO 2 =473.53)
S-51S-51 m/z=566.15(C39H22N2OS=566.68)m/z=566.15 (C 39 H 22 N 2 OS=566.68) S-52S-52 m/z=459.16(C34H21NO=459.55)m/z=459.16 (C 34 H 21 NO=459.55)
S-53S-53 m/z=473.14(C34H19NO2=473.53)m/z=473.14 (C 34 H 19 NO 2 =473.53) S-54S-54 m/z=523.16(C38H21NO2=523.59)m/z = 523.16 (C 38 H 21 NO 2 =523.59)
S-55S-55 m/z=539.13(C38H21NOS=539.65)m/z=539.13 (C 38 H 21 NOS=539.65) S-56S-56 m/z=548.19(C40H24N2O=548.65)m/z=548.19 (C 40 H 24 N 2 O=548.65)
S-57S-57 m/z=489.12(C34H19NOS=489.59)m/z=489.12 (C 34 H 19 NOS=489.59) S-58S-58 m/z=545.09(C36H19NOS2=545.67)m/z=545.09 (C 36 H 19 NOS 2 =545.67)
S-59S-59 m/z=549.17(C40H23NO2=549.63)m/z=549.17 (C 40 H 23 NO 2 =549.63) S-60S-60 m/z=565.15(C40H23NOS=565.69)m/z=565.15 (C 40 H 23 NOS=565.69)
S-61S-61 m/z=523.16(C38H21NO2=523.59)m/z = 523.16 (C 38 H 21 NO 2 =523.59) S-62S-62 m/z=598.2(C44H26N2O=598.71)m/z=598.2 (C 44 H 26 N 2 O=598.71)
S-63S-63 m/z=539.13(C38H21NOS=539.65)m/z=539.13 (C 38 H 21 NOS=539.65) S-64S-64 m/z=589.15(C42H23NOS=589.71)m/z=589.15 (C 42 H 23 NOS=589.71)
S-65S-65 m/z=498.17(C36H22N2O=498.59)m/z=498.17 (C 36 H 22 N 2 O=498.59) S-66S-66 m/z=509.18(C38H23NO=509.61)m/z=509.18 (C 38 H 23 NO=509.61)
S-67S-67 m/z=548.19(C40H24N2O=548.65)m/z=548.19 (C 40 H 24 N 2 O=548.65) S-68S-68 m/z=549.17(C40H23NO2=549.63)m/z=549.17 (C 40 H 23 NO 2 =549.63)
S-69S-69 m/z=449.12(C32H19NS=449.57)m/z=449.12 (C 32 H 19 NS=449.57) S-70S-70 m/z=439.1(C30H17NOS=439.53)m/z=439.1 (C 30 H 17 NOS=439.53)
S-71S-71 m/z=647.22(C49H29NO=647.78)m/z = 647.22 (C 49 H 29 NO = 647.78) S-72S-72 m/z=717.28(C52H35N3O=717.87)m/z = 717.28 (C 52 H 35 N 3 O = 717.87)
S-73S-73 m/z=459.16(C34D21NO=459.55)m/z=459.16 (C 34 D 21 NO=459.55) S-74S-74 m/z=533.18(C40H23NO=533.63)m/z = 533.18 (C 40 H 23 NO = 533.63)
S-75S-75 m/z=525.16(C38H23NS=525.67)m/z=525.16 (C 38 H 23 NS=525.67) S-76S-76 m/z=564.17(C40H24N2S=564.71)m/z=564.17 (C 40 H 24 N 2 S=564.71)
S-77S-77 m/z=575.19(C42H25NO2=575.67)m/z = 575.19 (C 42 H 25 NO 2 =575.67) S-78S-78 m/z=663.22(C49H29NO2=663.78)m/z = 663.22 (C 49 H 29 NO 2 =663.78)
S-79S-79 m/z=647.22(C49H24D5NO=647.78)m/z = 647.22 (C 49 H 24 D 5 NO = 647.78) S-80S-80 m/z=496.16(C36H20N2O=496.57)m/z=496.16 (C 36 H 20 N 2 O=496.57)
S-81S-81 m/z=565.15(C40H23NOS=565.69)m/z=565.15 (C 40 H 23 NOS=565.69) S-82S-82 m/z=505.1(C34H19NS2=505.65)m/z = 505.1 (C 34 H 19 NS 2 =505.65)
S-83S-83 m/z=765.25(C56H35NOSi=765.99)m/z = 765.25 (C 56 H 35 NOSi = 765.99) S-84S-84 m/z=615.17(C44H25NOS=615.75)m/z=615.17 (C 44 H 25 NOS=615.75)
[실시예 1] 적색유기발광소자 (인광호스트)[Example 1] Red organic light emitting device (phosphorescent host)
합성을 통해 얻은 화합물을 발광층의 발광 호스트 물질로 사용하여 통상적인 방법에 따라 유기전계 발광소자를 제작하였다. 먼저, 유리 기판에 형성된 ITO층(양극) 상에 N1-(naphthalen-2-yl)-N4, N4-bis(4-(naphthalen-2-yl(phenyl)amino)phenyl)-N1-phenylbenzene-1,4-diamine (이하 2-TNATA로 약기함) 막을 진공증착하여 60 nm 두께의 정공주입층을 형성한 후, 정공주입층 위에 정공수송 화합물로서 4,4-비스[N-(1-나프틸)-N-페닐아미노]비페닐 (이하 -NPD로 약기함) 60 nm 두께로 진공증착하여 정공수송층을 형성하였다. 정공수송층 상부에 호스트로서는 화학식 (1)로 표시되는 본 발명화합물 (P-2)를 사용하였으며, 도판트 물질로 (piq)2Ir(acac) [bis-(1-phenylisoquinolyl)iridium(III)acetylacetonate]를 95:5 중량비로 도핑하여 30 nm 두께로 발광층을 증착하였다. 이어서 홀저지층으로 (1,1’-비스페닐)-4-올레이토)비스(2-메틸-8-퀴놀린올레이토)알루미늄(이하 BAlq로 약기함)을 10 nm 두께로 진공증착하고, 전자수송층으로 트리스(8-퀴놀리놀)알루미늄(이하 Alq3로 약칭함)을 40 nm 두께로 성막하였다. 이후, 전자주입층으로 할로젠화 알칼리 금속인 LiF를 0.2 nm 두께로 증착하고, 이어서 Al을 150 nm의 두께로 증착하여 음극으로 사용함으로써 유기전계 발광소자를 제조하였다.An organic light emitting device was fabricated according to a conventional method using the compound obtained through synthesis as a light emitting host material for the light emitting layer. First, on the ITO layer (anode) formed on the glass substrate, N1-(naphthalen-2-yl)-N4, N4-bis(4-(naphthalen-2-yl(phenyl)amino)phenyl)-N1-phenylbenzene-1 After vacuum depositing a ,4-diamine (hereinafter abbreviated as 2-TNATA) film to form a 60 nm thick hole injection layer, 4,4-bis[N-(1-naphthyl) as a hole transport compound on the hole injection layer )-N-phenylamino]biphenyl (hereinafter abbreviated as -NPD) was vacuum deposited to a thickness of 60 nm to form a hole transport layer. The present invention compound (P-2) represented by Formula (1) was used as a host on the hole transport layer, and (piq)2Ir(acac) [bis-(1-phenylisoquinolyl)iridium(III)acetylacetonate] was used as a dopant material. was doped in a weight ratio of 95:5 to deposit a light emitting layer with a thickness of 30 nm. Subsequently, (1,1'-bisphenyl)-4-oleato)bis(2-methyl-8-quinolinolato)aluminum (hereinafter abbreviated as BAlq) was vacuum-deposited to a thickness of 10 nm as a hole-blocking layer. As a transport layer, tris(8-quinolinol) aluminum (hereinafter abbreviated as Alq3) was formed to a thickness of 40 nm. Thereafter, LiF, an alkali metal halide, was deposited to a thickness of 0.2 nm as an electron injection layer, and then Al was deposited to a thickness of 150 nm and used as a cathode, thereby manufacturing an organic light emitting device.
[실시예 2] 내지 [실시예 11][Example 2] to [Example 11]
발광층의 호스트 물질로 본 발명의 화합물 (P-2) 대신 하기 표 6에 기재된 본 발명의 화합물을 사용한 점을 제외하고는 상기 실시예 1과 동일한 방법으로 유기전기 발광소자를 제작하였다.An organic electroluminescent device was manufactured in the same manner as in Example 1, except that the compound of the present invention shown in Table 6 was used instead of the compound (P-2) of the present invention as a host material of the light emitting layer.
[실시예 12] [Example 12]
합성을 통해 얻은 화합물을 발광층의 발광 호스트 물질로 사용하여 통상적인 방법에 따라 유기전계 발광소자를 제작하였다. 먼저, 유리 기판에 형성된 ITO층(양극) 상에 N1-(naphthalen-2-yl)-N4, N4-bis(4-(naphthalen-2-yl(phenyl)amino)phenyl)-N1-phenylbenzene-1,4-diamine (이하 2-TNATA로 약기함) 막을 진공증착하여 60 nm 두께의 정공주입층을 형성한 후, 정공주입층 위에 정공수송 화합물로서 4,4-비스[N-(1-나프틸)-N-페닐아미노]비페닐 (이하 -NPD로 약기함) 60 nm 두께로 진공증착하여 정공수송층을 형성하였다. 정공수송층 상부에 호스트로서는 화학식 (1)로 표시되는 본 발명화합물 (P-7)과 화학식 (3) 내지 화학식 (4)로 표시되는 화합물 (N-8)을 5:5 중량비로 사용하였으며, 도판트 물질로 (piq)2Ir(acac) [bis-(1-phenylisoquinolyl)iridium(III)acetylacetonate]를 95:5 중량비로 도핑하여 30 nm 두께로 발광층을 증착하였다. 이어서 홀저지층으로 (1,1’-비스페닐)-4-올레이토)비스(2-메틸-8-퀴놀린올레이토)알루미늄(이하 BAlq로 약기함)을 10 nm 두께로 진공증착하고, 전자수송층으로 트리스(8-퀴놀리놀)알루미늄(이하 Alq3로 약칭함)을 40 nm 두께로 성막하였다. 이후, 전자주입층으로 할로젠화 알칼리 금속인 LiF를 0.2 nm 두께로 증착하고, 이어서 Al을 150 nm의 두께로 증착하여 음극으로 사용함으로써 유기전계 발광소자를 제조하였다.An organic light emitting device was fabricated according to a conventional method using the compound obtained through synthesis as a light emitting host material for the light emitting layer. First, on the ITO layer (anode) formed on the glass substrate, N1-(naphthalen-2-yl)-N4, N4-bis(4-(naphthalen-2-yl(phenyl)amino)phenyl)-N1-phenylbenzene-1 After vacuum depositing a ,4-diamine (hereinafter abbreviated as 2-TNATA) film to form a 60 nm thick hole injection layer, 4,4-bis[N-(1-naphthyl) as a hole transport compound on the hole injection layer )-N-phenylamino]biphenyl (hereinafter abbreviated as -NPD) was vacuum deposited to a thickness of 60 nm to form a hole transport layer. As a host on the hole transport layer, the compound of the present invention (P-7) represented by formula (1) and the compound (N-8) represented by formulas (3) to (4) were used in a weight ratio of 5:5, A light emitting layer having a thickness of 30 nm was deposited by doping (piq) 2 Ir(acac) [bis-(1-phenylisoquinolyl)iridium(III)acetylacetonate] in a weight ratio of 95:5. Subsequently, (1,1'-bisphenyl)-4-oleato)bis(2-methyl-8-quinolinolato)aluminum (hereinafter abbreviated as BAlq) was vacuum-deposited to a thickness of 10 nm as a hole-blocking layer. As a transport layer, tris(8-quinolinol) aluminum (hereinafter abbreviated as Alq3) was formed to a thickness of 40 nm. Thereafter, LiF, an alkali metal halide, was deposited to a thickness of 0.2 nm as an electron injection layer, and then Al was deposited to a thickness of 150 nm and used as a cathode, thereby manufacturing an organic light emitting device.
[실시예 13] 내지 [실시예 47][Example 13] to [Example 47]
발광층의 호스트 물질로 본 발명의 화합물 (P-2)와 화합물 (N-8) 대신 하기 표 6에 기재된 본 발명의 화합물을 사용한 점을 제외하고는 상기 실시예 1과 동일한 방법으로 유기전기 발광소자를 제작하였다.An organic electroluminescent device was prepared in the same manner as in Example 1, except that the compounds of the present invention listed in Table 6 were used instead of the compounds (P-2) and (N-8) of the present invention as the host material of the light emitting layer. was produced.
[비교예 1] 내지 [비교예 8][Comparative Example 1] to [Comparative Example 8]
발광층의 호스트 물질로 비교화합물 A 내지 비교화합물 F를 사용하는 점을 제외하고는 상기 실시예 1과 동일한 방법으로 유기전기 발광소자를 제작하였다.An organic electroluminescent device was manufactured in the same manner as in Example 1, except that Comparative Compounds A to F were used as host materials for the light emitting layer.
<비교화합물 A> <비교화합물 B> <Comparative compound A> <Comparative compound B>
Figure PCTKR2022006762-appb-img-000190
Figure PCTKR2022006762-appb-img-000190
<비교화합물 C> <비교화합물 D> <Comparative compound C> <Comparative compound D>
Figure PCTKR2022006762-appb-img-000191
Figure PCTKR2022006762-appb-img-000191
<비교화합물 E> <비교화합물 F> <Comparative compound E> <Comparative compound F>
Figure PCTKR2022006762-appb-img-000192
Figure PCTKR2022006762-appb-img-000192
이와 같이 제조된 실시예 1 내지 실시예 47과 비교예 1 내지 비교예 8에 의해 제조된 유기전기소자들에 순바이어스 직류전압을 가하여 포토리서치(photo research)사의 PR-650으로 전기발광(EL) 특성을 측정하였으며, 그 측정 결과 2500cd/m2 기준 휘도에서 맥사이언스사에서 제조된 수명 측정 장비를 통해 T95 수명을 측정하였다. 하기 표 6은 소자 제작 및 평가한 결과를 나타낸다.By applying a forward bias DC voltage to the organic electric elements prepared in Examples 1 to 47 and Comparative Examples 1 to 8 prepared as described above, electroluminescence (EL) was performed with PR-650 of photo research. Characteristics were measured, and as a result of the measurement, T95 life was measured at a standard luminance of 2500 cd/m 2 through life measurement equipment manufactured by McScience. Table 6 below shows the results of device fabrication and evaluation.
제1 화합물first compound 제2 화합물second compound 구동전압(V)Driving voltage (V) 전류(mA/cm2)Current (mA/cm 2 ) 휘도(cd/m2)Luminance (cd/m 2 ) 효율(cd/A)Efficiency (cd/A) T(95)T(95)
비교예(1)Comparative Example (1) 비교화합물AComparative Compound A -- 6.8 6.8 13.7 13.7 2500 2500 18.2 18.2 61.0 61.0
비교예(2)Comparative example (2) 비교화합물BComparative Compound B -- 5.9 5.9 15.2 15.2 2500 2500 16.4 16.4 50.8 50.8
비교예(3)Comparative Example (3) 비교화합물CComparative Compound C -- 6.1 6.1 13.0 13.0 2500 2500 19.2 19.2 90.9 90.9
비교예(4)Comparative Example (4) 비교화합물DComparative Compound D -- 6.0 6.0 14.0 14.0 2500 2500 17.9 17.9 89.4 89.4
비교예(5)Comparative Example (5) 비교화합물EComparative Compound E -- 6.8 6.8 13.5 13.5 2500 2500 18.5 18.5 55.7 55.7
비교예(6)Comparative Example (6) 비교화합물FComparative Compound F -- 6.0 6.0 13.4 13.4 2500 2500 18.7 18.7 60.2 60.2
비교예(7)Comparative Example (7) 비교화합물CComparative Compound C N-18N-18 5.8 5.8 12.0 12.0 2500 2500 20.820.8 100.4 100.4
비교예(8)Comparative Example (8) 비교화합물CComparative Compound C S-50S-50 5.9 5.9 12.6 12.6 2500 2500 19.919.9 108.9 108.9
실시예(1)Example (1) P-2P-2 -- 5.0 5.0 9.5 9.5 2500 2500 26.2926.29 122.4 122.4
실시예(2)Example (2) P-7P-7 -- 4.9 4.9 9.3 9.3 2500 2500 26.826.8 121.0 121.0
실시예(3)Example (3) P-13P-13 -- 4.8 4.8 9.7 9.7 2500 2500 25.7825.78 118.3 118.3
실시예(4)Example (4) P-15P-15 -- 5.1 5.1 10.3 10.3 2500 2500 24.2524.25 112.8 112.8
실시예(5)Example (5) P-25P-25 -- 5.0 5.0 9.9 9.9 2500 2500 25.2725.27 119.7 119.7
실시예(6)Example (6) P-40P-40 -- 5.3 5.3 11.5 11.5 2500 2500 21.721.7 110.1 110.1
실시예(7)Example (7) P-43P-43 -- 5.2 5.2 10.1 10.1 2500 2500 24.7624.76 116.9 116.9
실시예(8)Example (8) P-47P-47 -- 5.5 5.5 10.8 10.8 2500 2500 23.2323.23 108.7 108.7
실시예(9)Example (9) P-49P-49 -- 5.4 5.4 11.0 11.0 2500 2500 22.7222.72 114.2 114.2
실시예(10)Example (10) P-54P-54 -- 5.3 5.3 10.5 10.5 2500 2500 23.7423.74 115.6 115.6
실시예(11)Example (11) P-58P-58 -- 5.5 5.5 11.3 11.3 2500 2500 22.2122.21 111.4 111.4
실시예(12)Example (12) P-7P-7 N-8N-8 4.7 4.7 8.5 8.5 2500 2500 29.3 29.3 132.2 132.2
실시예(13)Example (13) N-12N-12 4.6 4.6 7.8 7.8 2500 2500 31.9 31.9 129.8 129.8
실시예(14)Example (14) N-14N-14 4.5 4.5 7.6 7.6 2500 2500 32.8 32.8 135.3 135.3
실시예(15)Example (15) N-18N-18 4.6 4.6 7.4 7.4 2500 2500 33.7 33.7 138.0 138.0
실시예(16)Example (16) N-43N-43 4.7 4.7 8.3 8.3 2500 2500 30.1 30.1 124.5 124.5
실시예(17)Example (17) N-83N-83 4.8 4.8 8.1 8.1 2500 2500 31.0 31.0 126.2 126.2
실시예(18)Example (18) P-40P-40 N-8N-8 5.1 5.1 10.5 10.5 2500 2500 23.7 23.7 120.8 120.8
실시예(19)Example (19) N-12N-12 5.0 5.0 9.4 9.4 2500 2500 26.5 26.5 118.2 118.2
실시예(20)Example (20) N-14N-14 4.8 4.8 9.1 9.1 2500 2500 27.5 27.5 123.6 123.6
실시예(21)Example (21) N-18N-18 4.9 4.9 8.8 8.8 2500 2500 28.3 28.3 127.0 127.0
실시예(22)Example (22) N-43N-43 5.1 5.1 10.2 10.2 2500 2500 24.6 24.6 112.1 112.1
실시예(23)Example (23) N-83N-83 5.2 5.2 9.9 9.9 2500 2500 25.2 25.2 115.5 115.5
실시예(24)Example (24) P-43P-43 N-8N-8 5.0 5.0 9.1 9.1 2500 2500 27.4 27.4 127.2 127.2
실시예(25)Example (25) N-12N-12 4.9 4.9 8.3 8.3 2500 2500 30.0 30.0 124.5 124.5
실시예(26)Example (26) N-14N-14 4.8 4.8 8.1 8.1 2500 2500 30.9 30.9 129.9 129.9
실시예(27)Example (27) N-18N-18 4.9 4.9 7.9 7.9 2500 2500 31.8 31.8 132.6 132.6
실시예(28)Example (28) N-43N-43 5.0 5.0 8.9 8.9 2500 2500 28.2 28.2 119.1 119.1
실시예(29)Example (29) N-83N-83 5.1 5.1 8.6 8.6 2500 2500 29.1 29.1 121.8 121.8
실시예(30)Example (30) P-2P-2 S-20S-20 4.8 4.8 8.2 8.2 2500 2500 30.5 30.5 141.8 141.8
실시예(31)Example (31) S-32S-32 4.6 4.6 7.5 7.5 2500 2500 33.3 33.3 144.7 144.7
실시예(32)Example (32) S-43S-43 4.9 4.9 7.9 7.9 2500 2500 31.5 31.5 139.4 139.4
실시예(33)Example (33) S-56S-56 4.7 4.7 7.6 7.6 2500 2500 33.0 33.0 133.7 133.7
실시예(34)Example (34) S-74S-74 4.8 4.8 8.1 8.1 2500 2500 31.0 31.0 136.4 136.4
실시예(35)Example (35) S-79S-79 4.9 4.9 7.7 7.7 2500 2500 32.3 32.3 131.2 131.2
실시예(36)Example (36) P-49P-49 S-20S-20 5.2 5.2 9.3 9.3 2500 2500 26.9 26.9 133.8 133.8
실시예(37)Example (37) S-32S-32 5.0 5.0 8.2 8.2 2500 2500 30.6 30.6 136.5 136.5
실시예(38)Example (38) S-43S-43 5.3 5.3 8.9 8.9 2500 2500 28.1 28.1 131.1 131.1
실시예(39)Example (39) S-56S-56 5.1 5.1 8.5 8.5 2500 2500 29.5 29.5 125.7 125.7
실시예(40)Example (40) S-74S-74 5.2 5.2 9.5 9.5 2500 2500 26.5 26.5 128.4 128.4
실시예(41)Example (41) S-79S-79 5.3 5.3 8.7 8.7 2500 2500 28.7 28.7 123.1 123.1
실시예(42)Example (42) P-54P-54 S-20S-20 5.1 5.1 8.9 8.9 2500 2500 28.2 28.2 135.0 135.0
실시예(43)Example (43) S-32S-32 4.8 4.8 8.0 8.0 2500 2500 31.3 31.3 137.2 137.2
실시예(44)Example (44) S-43S-43 5.1 5.1 8.6 8.6 2500 2500 29.0 29.0 132.2 132.2
실시예(45)Example (45) S-56S-56 4.9 4.9 8.2 8.2 2500 2500 30.5 30.5 126.7 126.7
실시예(46)Example (46) S-74S-74 5.0 5.0 9.1 9.1 2500 2500 27.4 27.4 129.5 129.5
실시예(47)Example (47) S-79S-79 5.3 5.3 8.4 8.4 2500 2500 29.8 29.8 124.1 124.1
상기 표 6의 결과로부터 알 수 있듯이, 본 발명의 화합물을 단독 발광층 재료로 사용할 경우, 비교화합물 A 내지 비교화합물 F를 단독으로 사용한 경우에 비해 구동전압이 낮아지고 효율과 수명이 현저히 개선되는 것을 알 수 있다. 본 발명과 비교화합물들의 구성요소를 비교해보면 phenanthrene 화합물이 말단에 위치하고 연결기로는 나프틸기를 가지며 트리아진에 치환된 치환기의 종류가 아릴기만으로 구성된다는 점이다.보다 상세히 설명하면, 본 발명의 화합물과 같이 phenanthren이 말단에 위치하게 되면 적절한 HOMO level을 가지게 된다. 여기서 HOMO level 값은 phenanthren 구성에 의해 결정되게 되며 이러한 HOMO값은 정공 이동층과 도펀트의 층 중간 위치에 해당하게 된다. 비교화합물과 같이 과도하게 축합이 되거나 전자적 특성을 가지는 물질의 경우 HOMO값에서 큰 차이를 보이게 된다. 두 번째 구성요소인 나프틸 링커의 경우 페닐, 바이페닐기 등의 단순 연결기에 비해서 평면도가 높고 트리아진으로 전자적 특성을 막아주는 역할을 한다. 이는 보다 원활한 전자이동도를 가지는데 큰 역할을 한다. 마지막으로 단순 아릴기 치환은 물질의 전자적인 특성을 가지는 치환기를 치환하지 않음으로써 트리아진의 전자적 특성을 더욱 강하게 만들어주는 역할을 한다. 결론적으로 전자적 특성과 정공적 특성을 나눠 보다 전자적인 특성을 강화하여 전자이동도 및 홀이동에 용이한 발명이라고 할 수 있다.상기 표 6에서의 비교예 7과 비교예 8의 결과와 본 발명의 실시예 12 내지 실시예 47의 결과를 비교해보면, 단독 화합물에서의 특성이 2종의 화합물을 섞어서 사용한 소자의 결과에도 유사 경향성을 보인다는 것을 알 수 있다.As can be seen from the results of Table 6, when the compound of the present invention is used as a single light emitting layer material, the driving voltage is lowered and the efficiency and lifespan are significantly improved compared to the case where comparative compounds A to F are used alone. can Comparing the components of the present invention and comparative compounds, it is found that the phenanthrene compound is located at the terminal, has a naphthyl group as a linking group, and the type of substituent substituted for triazine is composed of only aryl. More specifically, the compound of the present invention When phenanthren is located at the distal end, it has an appropriate HOMO level. Here, the HOMO level value is determined by the phenanthren configuration, and this HOMO value corresponds to an intermediate position between the hole transfer layer and the dopant layer. In the case of a material that is excessively condensed or has electronic properties, such as a comparative compound, a large difference is shown in the HOMO value. In the case of the second component, the naphthyl linker, it has a higher planarity than simple linking groups such as phenyl and biphenyl groups, and serves to block electronic properties with triazine. This plays a big role in having more smooth electron mobility. Finally, simple aryl group substitution serves to make the electronic characteristics of triazine stronger by not substituting a substituent having electronic characteristics of the material. In conclusion, it can be said that it is an invention that facilitates electron mobility and hole transfer by dividing electronic characteristics and hole characteristics to enhance electronic characteristics. The results of Comparative Examples 7 and 8 in Table 6 and the results of the present invention Comparing the results of Examples 12 to 47, it can be seen that the characteristics of the single compound show similar tendencies to the results of the device using the mixture of the two compounds.
비교예 화합물과 비교하여 구동전압은 낮아지고 효율을 상승하며, 수명 역시 상승하는 효과를 보였다. 단독 화합물을 사용할 때보다 혼합물을 사용하였을 경우에 소자결과가 현저히 개선되었는데 이는 비교예 결과에서도 마찬가지로 나타났다.Compared to the comparative example compound, the driving voltage was lowered, the efficiency was increased, and the lifespan was also increased. The device results were significantly improved when the mixture was used rather than when a single compound was used, which was also shown in the comparative example results.
복수의 혼합물로서의 발광층을 구성했을 경우 그 특성이 다르게 나타났으며, 이러한 결과는 도펀트로의 정공과 전자의 주입특성이 용이한 정도에 따라 구동, 효율, 수명이 결정되는 것을 알 수 있다. 뿐만 아니라 핵심 트리아진과 2번 나프틸, 그리고 phenanthren 구성에 의해 전체적인 mobility에 긍정적인 효과를 주어 전공과 전자의 비율(예를 들면 energy balance, 안정성 등)로 작용하여 전체적으로 개선된 결과를 보여주는 것을 알 수 있다.When the light emitting layer is composed of a plurality of mixtures, the characteristics are different, and these results show that the drive, efficiency, and lifespan are determined according to the degree of ease of injection of holes and electrons into the dopant. In addition, it can be seen that the composition of core triazine, 2-naphthyl, and phenanthren has a positive effect on overall mobility, resulting in overall improved results by acting as a ratio of electrons to electrons (e.g., energy balance, stability, etc.). have.
실시예 화합물을 비교해보면 동일 골격 내에 치환되는 결합위치의 종류에 따라서 mobility가 결정되게 되며, 서로 다른 치환기의 종류 및 결합위치에 따라 정공과 전자의 주입 및 이동 특성이 달라지게 된다. 그러므로 치환기의 종류에 따라 실시예 화합물은 서로 각기 다른 특성을 보이게 된다.Comparing the Example compounds, mobility is determined according to the type of bonding site substituted in the same skeleton, and hole and electron injection and transfer characteristics vary according to the type and binding site of different substituents. Therefore, depending on the type of substituent, the exemplary compounds show different characteristics.
[실시예 48] 적색유기발광소자 (인광호스트)[Example 48] Red organic light emitting device (phosphorescent host)
합성을 통해 얻은 화합물을 발광층의 발광 호스트 물질로 사용하여 통상적인 방법에 따라 유기전계 발광소자를 제작하였다. 먼저, 유리 기판에 형성된 ITO층(양극) 상에 2-TNATA 막을 진공증착하여 60 nm 두께의 정공주입층을 형성한 후, 정공주입층 위에 정공수송 화합물로서 -NPD 60 nm 두께로 진공증착하여 정공수송층을 형성하였다. 정공수송층 상부에 호스트로서는 화학식 (1)로 표시되는 본 발명화합물 (P-2)와 화학식 (3)으로 표시되는 화합물 (N-89)를 5:5 중량비로 사용하였으며, 도판트 물질로 (piq)2Ir(acac)를 95:5 중량비로 도핑하여 30 nm 두께로 발광층을 증착하였다. 이어서 홀저지층으로 BAlq를 10 nm 두께로 진공증착하고, 전자수송층으로 Alq3를 40 nm 두께로 성막하였다. 이후, 전자주입층으로 할로젠화 알칼리 금속인 LiF를 0.2 nm 두께로 증착하고, 이어서 Al을 150 nm 두께로 증착하여 음극으로 사용함으로써 유기전계 발광소자를 제조하였다.An organic light emitting device was fabricated according to a conventional method using the compound obtained through synthesis as a light emitting host material for the light emitting layer. First, a 2-TNATA film was vacuum-deposited on the ITO layer (anode) formed on the glass substrate to form a 60 nm-thick hole injection layer, and then -NPD as a hole transport compound was vacuum-deposited to a thickness of 60 nm on the hole injection layer to form a hole injection layer. A transport layer was formed. As a host on the hole transport layer, the compound (P-2) of the present invention represented by formula (1) and the compound (N-89) represented by formula (3) were used in a weight ratio of 5:5, and as a dopant material (piq ) 2 Ir(acac) was doped in a weight ratio of 95:5 to deposit a light emitting layer with a thickness of 30 nm. Subsequently, BAlq was vacuum deposited to a thickness of 10 nm as a hole blocking layer, and Alq3 was deposited to a thickness of 40 nm as an electron transport layer. Thereafter, LiF, an alkali metal halide, was deposited to a thickness of 0.2 nm as an electron injection layer, and then Al was deposited to a thickness of 150 nm and used as a cathode, thereby manufacturing an organic light emitting device.
[실시예 49] 내지 [실시예 62][Example 49] to [Example 62]
발광층의 호스트 물질로 본 발명의 화합물 (N-89) 대신 하기 표 7에 기재된 본 발명의 화합물을 사용한 점을 제외하고는 상기 실시예 48과 동일한 방법으로 유기전기 발광소자를 제작하였다.An organic electroluminescent device was manufactured in the same manner as in Example 48, except that the compound of the present invention shown in Table 7 was used instead of the compound (N-89) of the present invention as a host material of the light emitting layer.
이와 같이 제조된 실시예 48 내지 실시예 62에 의해 제조된 유기전기소자들에 순바이어스 직류전압을 가하여 포토리서치(photo research)사의 PR-650으로 전기발광(EL) 특성을 측정하였으며, 그 측정 결과 2500cd/m2 기준 휘도에서 맥사이언스사에서 제조된 수명 측정 장비를 통해 T95 수명을 측정하였다. 하기 표7은 소자 제작 및 평가한 결과를 나타낸다.A forward bias DC voltage was applied to the organic electric elements prepared in Examples 48 to 62 prepared as described above to measure electroluminescence (EL) characteristics with PR-650 of photo research, and the measurement results At 2500 cd/m 2 standard luminance, T95 life was measured using life measurement equipment manufactured by McScience. Table 7 below shows the results of device fabrication and evaluation.
제1 화합물first compound 제2 화합물second compound 구동전압drive voltage 전류(mA/cm2)Current (mA/cm 2 ) 휘도(cd/m2)Luminance (cd/m 2 ) 효율(cd/A)Efficiency (cd/A) T(95)T(95)
실시예48Example 48 P-2P-2 N-89N-89 5.0 5.0 10.3 10.3 2500 2500 24.3 24.3 112.2 112.2
실시예49Example 49 N-90N-90 4.9 4.9 11.5 11.5 2500 2500 22.8 22.8 109.3 109.3
실시예50Example 50 N-93N-93 4.8 4.8 8.7 8.7 2500 2500 28.8 28.8 122.4 122.4
실시예51Example 51 N-98N-98 4.8 4.8 8.5 8.5 2500 2500 29.4 29.4 125.5 125.5
실시예52Example 52 N-104N-104 4.7 4.7 8.6 8.6 2500 2500 29.2 29.2 124.9 124.9
실시예53Example 53 N-108N-108 4.7 4.7 8.9 8.9 2500 2500 28.1 28.1 120.2 120.2
실시예54Example 54 N-112N-112 4.8 4.8 8.5 8.5 2500 2500 29.3 29.3 128.7 128.7
실시예55Example 55 N-113N-113 4.8 4.8 7.9 7.9 2500 2500 31.8 31.8 132.2 132.2
실시예56Example 56 N-116N-116 4.7 4.7 7.8 7.8 2500 2500 32.0 32.0 134.8 134.8
실시예57Example 57 N-117N-117 4.8 4.8 8.2 8.2 2500 2500 30.6 30.6 130.5 130.5
실시예58Example 58 N-129N-129 4.8 4.8 8.0 8.0 2500 2500 31.2 31.2 133.0 133.0
실시예59Example 59 N-132N-132 4.8 4.8 7.9 7.9 2500 2500 31.4 31.4 135.5 135.5
실시예60Example 60 N-136N-136 4.7 4.7 8.3 8.3 2500 2500 30.1 30.1 131.3 131.3
실시예61Example 61 N-142N-142 4.8 4.8 8.0 8.0 2500 2500 31.4 31.4 131.9 131.9
실시예62Example 62 N-143N-143 4.8 4.8 8.1 8.1 2500 2500 31.0 31.0 131.1 131.1
상기 표 7에서 볼 수 있듯이, 본 발명의 화합물을 사용한 경우 구동전압이 낮고, 효율 및 수명이 현저히 높은 것을 확인할 수 있다. 자세히 살펴보면 실시예 48 및 실시예 49보다 실시예 50 내지 실시예 62가 효율 및 수명이 더욱 현저히 개선되는 것을 확인할 수 있다. 이는 제2 화합물의 종류에 따라 소자의 성능이 달라지게 되며, 특히 카바졸의 치환기로 다이벤조퓨란이 치환된 N-89를 적용한 실시예 48에 비해 카바졸의 치환기로 나프토벤조퓨란 또는 나프토벤조싸이오펜이 치환된 화합물을 적용한 실시예 50 내지 실시예 62가 효율 및 수명에서 현저히 개선되는 것을 확인할 수 있다.As can be seen in Table 7, it can be seen that the driving voltage is low and the efficiency and lifetime are remarkably high when the compound of the present invention is used. Upon closer examination, it can be seen that the efficiency and lifetime of Examples 50 to 62 are more remarkably improved than Examples 48 and 49. This is because the performance of the device varies depending on the type of the second compound, and in particular, compared to Example 48 in which dibenzofuran was substituted with N-89 as a substituent of carbazole, naphthobenzofuran or naphtho as a substituent of carbazole. It can be seen that the efficiency and lifetime of Examples 50 to 62 in which the benzothiophene-substituted compound is applied are significantly improved.
또한, 카바졸의 3번위치에 아민기가 결합된 N-90을 적용한 실시예 49에 비해 카바졸의 2번위치에 아민기가 직접결합된 화합물을 적용한 실시예 50 내지 실시예 62가 효율 및 수명에서 현저히 개선되는 것을 확인할 수 있었다.In addition, compared to Example 49 in which N-90 having an amine group bonded to the 3-position of carbazole was applied, Examples 50 to 62 in which a compound in which an amine group was directly bonded to the 2-position of carbazole were applied were effective in efficiency and lifespan. Significant improvement was observed.
하기 표 8에 N-89, N-90, N-113, N-129의 계산된 Reorganization Energy 값을 기술하였다. 하기 표 8에 기재된 RE 값은 REhole을 계산한 값을 의미한다.Table 8 below describes the calculated Reorganization Energy values of N-89, N-90, N-113, and N-129. The RE values listed in Table 8 below refer to values obtained by calculating RE holes .
화합물compound Reorganization Energy (REhole ) Reorganization Energy ( RE hole )
N-89N-89 0.15020.1502
N-90N-90 0.16970.1697
N-113N-113 0.18670.1867
N-129N-129 0.17920.1792
상기 표 8을 상세히 설명하면, N-89 및 N-90에 비해 N-113 및 N-129가 더 높은 RE값을 가지게 된다. 카바졸의 2번위치에 아민기가 결합되고 카바졸의 치환기로 나프토벤조퓨란 또는 나프토벤조싸이오펜이 결합되었을 때 더 높은 RE값을 가지게 되는 것을 확인할 수 있다. 높은 RE 값은 낮은 Mobility, 느린 HOD를 의미하게 된다.Referring to Table 8 in detail, N-113 and N-129 have higher RE values than N-89 and N-90. It can be seen that a higher RE value is obtained when an amine group is bonded to position 2 of carbazole and naphthobenzofuran or naphthobenzothiophene is bonded as a substituent of carbazole. A high RE value means low mobility and slow HOD.
복수의 혼합물로서 발광층을 구성할 경우, 도펀트로의 정공과 전자의 주입특성이 용이한 정도에 따라 구동, 효율, 수명이 결정되는데, 정공과 전자의 비율 (Charge balance)이 적절하게 유지될 경우, 효율과 수명이 비약적으로 상승하는 효과를 보이게 된다.When the light emitting layer is composed of a plurality of mixtures, driving, efficiency, and lifespan are determined according to the degree of ease of injection of holes and electrons into dopants. It has the effect of dramatically increasing the efficiency and lifespan.
즉, 상대적으로 높은 RE값을 가짐으로써 화학식 (1)로 표시되는 본 발명의 화합물과 Charge Balance가 더 우수한 것으로 예상된다.That is, it is expected that the compound of the present invention represented by Formula (1) and the charge balance are more excellent by having a relatively high RE value.
다시 말해, 화학식 (3)으로 표시되는 본 발명의 화합물 중에서 화학식 (3-3)으로 표시되는 본 발명의 화합물이 화학식 (1)로 표시되는 본 발명의 화합물과 시너지 효과로 고효율, 장수명을 보이는 것을 확인할 수 있다.In other words, among the compounds of the present invention represented by the formula (3), the compound of the present invention represented by the formula (3-3) exhibits high efficiency and long lifespan with a synergistic effect with the compound of the present invention represented by the formula (1) You can check.
또한, N-113과 N-116을 적용한 실시예 55 및 실시예 56을 살펴보면 중수소를 치환한 실시예 56이 수명에서 우수한 결과를 나타내고 있는데, 이는 하기 표 9를 통해 설명하고자 한다.In addition, looking at Examples 55 and 56 in which N-113 and N-116 were applied, Example 56 in which deuterium was substituted showed excellent results in life, which will be described in Table 9 below.
하기 표 9는 화합물 N-113과 N-116의 결합 해리 에너지(이하 BDE)를 분자 시뮬레이션(Gaussian09 Rev. C.01, Schrodinger Materials Science Suite 4.1.161)을 이용하여 측정한 데이터이다.Table 9 below shows data obtained by measuring bond dissociation energies (BDE) of compounds N-113 and N-116 using molecular simulation (Gaussian09 Rev. C.01, Schrodinger Materials Science Suite 4.1.161).
하기 표 9에 제시된 BDE는 분자 내 전자가 이탈한 Oxidation 상태에서 측정한 결과이고, N-113 및 N-116에 전자가 이탈된 Oxidation 상태가 되면 +Charge가 3차 아민에 주입되게 된다.The BDEs shown in Table 9 below are the results measured in the oxidation state in which electrons in the molecule are released, and when the electrons in N-113 and N-116 are in the oxidation state, +Charge is injected into the tertiary amine.
즉, Oxidation 상태에서 측정하면 정공에 대한 안정성을 확인할 수 있으며, BDE가 높을수록 정공에 대한 안정성이 높다고 판단된다.That is, when measured in the oxidation state, the stability to holes can be confirmed, and the higher the BDE, the higher the stability to holes.
구조명rescue name N-113N-113 N-116N-116
BDE (eV)BDE (eV) 61.961.9 63.963.9
상기 표 9를 살펴보면, N-113에 비해 N-116에서 BDE의 값이 높은 것을 확인할 수 있다. 유기전기소자에서는 박막의 결정화도가 낮을수록 비결정질 상태를 만들 수 있으며, 이러한 비결정질 상태는 등방성(isotropic)과 균등질(Homogeneous) 특성을 통해서 결정립의 경계(Grain Boundary)를 줄이고 전하와 정공의 이동도가 빨라지게 될 수 있다. 그러나, 분자의 구조에 따라 동일한 비결정질 상태라고 하더라도 비결정질 상태의 고체상 분자의 양자역학적 BDE는 고체상일 때의 분자간 상호작용에 의해 차이가 날 수 있으며, 높은 값을 가질수록 화합물 자체의 안정성이 증가한다. 따라서, 유기전기소자의 호스트로서 N-113을 사용하는 경우보다 N-116을 사용하는 경우 정공수송층에서 넘어오는 정공에 대한 안정성이 현저하게 증가하여 소자의 수명을 극대화시켜 주는 것으로 예상된다.Looking at Table 9, it can be seen that the BDE value is higher in N-116 than in N-113. In organic electric devices, the lower the crystallinity of the thin film, the more amorphous state can be created. This amorphous state reduces the grain boundary and increases the mobility of charges and holes through isotropic and homogeneous characteristics. it can be faster However, even in the same amorphous state, depending on the structure of the molecule, the quantum mechanical BDE of the solid-state molecule in the amorphous state may differ due to the intermolecular interaction in the solid state, and the higher the value, the higher the stability of the compound itself. Therefore, it is expected that when N-116 is used as a host of an organic electric device, the stability of holes passing from the hole transport layer is significantly increased, thereby maximizing the lifetime of the device.
이상의 설명은 본 발명을 예시적으로 설명한 것에 불과한 것으로, 본 발명에 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 변형이 가능할 것이다. 따라서, 본 명세서에 개시된 실시예들은 본 발명을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 사상과 범위가 한정되는 것은 아니다. 본 발명의 보호범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 모든 기술은 본 발명의 권리범위에 포함하는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the present invention, and those skilled in the art will be able to make various modifications without departing from the essential characteristics of the present invention. Accordingly, the embodiments disclosed in this specification are intended to explain, not limit, the present invention, and the spirit and scope of the present invention are not limited by these embodiments. The protection scope of the present invention should be construed according to the following claims, and all technologies within the equivalent range should be construed as being included in the scope of the present invention.
본 발명에 따르면, 고휘도, 고발광 및 장수명의 우수한 소자특성을 갖는 유기소자를 제조할 수 있어 산업상 이용가능성이 있다.According to the present invention, it is possible to manufacture an organic device having excellent device characteristics of high luminance, high luminescence and long lifespan, so there is industrial applicability.

Claims (28)

  1. 하기 화학식 (1)로 표시되는 화합물A compound represented by the following formula (1)
    화학식 (1) Formula (1)
    Figure PCTKR2022006762-appb-img-000193
    Figure PCTKR2022006762-appb-img-000193
    {상기 화학식 (1)에서,{In the formula (1),
    1) Ar1 및 Ar2는 서로 독립적으로 C6~C60의 아릴기;이며,1) Ar 1 and Ar 2 are each independently a C 6 ~ C 60 aryl group;
    2) L1은 단일결합; 또는 C6~C60의 아릴렌기;이고,2) L 1 is a single bond; Or a C 6 ~ C 60 arylene group;
    3) R1은 각각 동일하거나 상이하며, 수소; 중수소; C1~C60의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C1~C30의 알콕시기; 및 C6~C30의 아릴옥시기;로 이루어진 군에서 선택되고,3) each R 1 is the same or different and is hydrogen; heavy hydrogen; C 1 ~ C 60 Alkyl group; A C 2 ~C 20 alkenyl group; A C 2 ~C 20 alkynyl group; C 1 ~ C 30 alkoxy group; And C 6 ~ C 30 aryloxy group; is selected from the group consisting of,
    4) a는 0 내지 9의 정수이며,4) a is an integer from 0 to 9;
    5) 여기서, 상기 아릴기, 아릴렌기, 알킬기, 알켄일기, 알킨일기, 알콕시기 및 아릴옥시기는 각각 중수소; 할로겐; 실란기; 실록산기; 붕소기; 게르마늄기; 시아노기; 니트로기; C1~C20의 알킬싸이오기; C1~C20의 알콕시기; C1~C20의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C6~C20의 아릴기; 중수소로 치환된 C6~C20의 아릴기; 플루오렌일기; C2~C20의 헤테로고리기; C3~C20의 시클로알킬기; C7~C20의 아릴알킬기; 및 C8~C20의 아릴알켄일기;로 이루어진 군에서 선택된 하나 이상의 치환기로 더욱 치환될 수 있으며, 또한 이들 치환기들은 서로 결합하여 고리를 형성할 수도 있으며, 여기서 '고리'란 C3~C60의 지방족고리 또는 C6~C60의 방향족고리 또는 C2~C60의 헤테로고리 또는 이들의 조합으로 이루어진 융합 고리를 말하며, 포화 또는 불포화 고리를 포함한다.}5) Here, the aryl group, arylene group, alkyl group, alkenyl group, alkynyl group, alkoxy group and aryloxy group are each deuterium; halogen; silane group; Siloxane group; boron group; Germanium group; cyano group; nitro group; C 1 ~ C 20 Alkylthio group; A C 1 ~ C 20 alkoxy group; C 1 ~ C 20 Alkyl group; A C 2 ~C 20 alkenyl group; A C 2 ~C 20 alkynyl group; C 6 ~ C 20 aryl group; A deuterium-substituted C 6 ~C 20 aryl group; fluorenyl group; C 2 ~C 20 heterocyclic group; A C 3 ~C 20 cycloalkyl group; C 7 ~ C 20 arylalkyl group; And a C 8 ~ C 20 arylalkenyl group; may be further substituted with one or more substituents selected from the group consisting of, and these substituents may combine with each other to form a ring, wherein 'ring' means C 3 ~C 60 It refers to an aliphatic ring or a C 6 ~ C 60 aromatic ring or a C 2 ~ C 60 heterocyclic ring or a fused ring composed of a combination thereof, and includes a saturated or unsaturated ring.}
  2. 제1항에 있어서, 상기 화학식 (1)이 하기 화학식 (1-1) 또는 화학식 (1-2)로 표시되는 것을 특징으로 하는 화합물The compound according to claim 1, wherein the formula (1) is represented by the following formula (1-1) or formula (1-2)
    화학식 (1-1) 화학식 (1-2) Formula (1-1) Formula (1-2)
    Figure PCTKR2022006762-appb-img-000194
    Figure PCTKR2022006762-appb-img-000194
    {상기 화학식 (1-1) 및 화학식 (1-2)에서, Ar1, Ar2, L1, R1 및 a는 상기 청구항 1에서 정의된 바와 동일하다.} {In Formula (1-1) and Formula (1-2), Ar 1 , Ar 2 , L 1 , R 1 and a are the same as defined in claim 1.}
  3. 제1항에 있어서, 상기 화학식 (1)이 하기 화학식 (1-3) 또는 화학식 (1-4)로 표시되는 것을 특징으로 하는 화합물The compound according to claim 1, wherein the formula (1) is represented by the following formula (1-3) or formula (1-4)
    화학식 (1-3) 화학식 (1-4) Formula (1-3) Formula (1-4)
    Figure PCTKR2022006762-appb-img-000195
    Figure PCTKR2022006762-appb-img-000195
    {상기 화학식 (1-3) 및 화학식 (1-4)에서, Ar1, Ar2, L1, R1 및 a는 상기 청구항 1에서 정의된 바와 동일하다.} {In Formula (1-3) and Formula (1-4), Ar 1 , Ar 2 , L 1 , R 1 and a are the same as defined in claim 1.}
  4. 제1항에 있어서, 상기 화학식 (1)이 하기 화학식 (1-5) 내지 화학식 (1-8) 중 어느 하나로 표시되는 것을 특징으로 하는 화합물The compound according to claim 1, wherein the formula (1) is represented by any one of the following formulas (1-5) to (1-8)
    화학식 (1-5) 화학식 (1-6) Formula (1-5) Formula (1-6)
    Figure PCTKR2022006762-appb-img-000196
    Figure PCTKR2022006762-appb-img-000196
    화학식 (1-7) 화학식 (1-8) Formula (1-7) Formula (1-8)
    Figure PCTKR2022006762-appb-img-000197
    Figure PCTKR2022006762-appb-img-000197
    {상기 화학식 (1-5) 내지 화학식 (1-8)에서, Ar1, Ar2, L1, R1 및 a는 상기 청구항 1에서 정의된 바와 동일하다.}{In Formula (1-5) to Formula (1-8), Ar 1 , Ar 2 , L 1 , R 1 and a are the same as defined in claim 1.}
  5. 제1항에 있어서, 상기 화학식 (1)이 하기 화학식 (1-9) 내지 화학식 (1-12) 중 어느 하나로 표시되는 것을 특징으로 하는 화합물The compound according to claim 1, wherein the formula (1) is represented by any one of the following formulas (1-9) to (1-12)
    화학식 (1-9) 화학식 (1-10) Formula (1-9) Formula (1-10)
    Figure PCTKR2022006762-appb-img-000198
    Figure PCTKR2022006762-appb-img-000198
    화학식 (1-11) 화학식 (1-12) Formula (1-11) Formula (1-12)
    Figure PCTKR2022006762-appb-img-000199
    Figure PCTKR2022006762-appb-img-000199
    {상기 화학식 (1-9) 내지 화학식 (1-12)에서, Ar1, Ar2, L1, R1 및 a는 상기 청구항 1에서 정의된 바와 동일하다.}{In Formula (1-9) to Formula (1-12), Ar 1 , Ar 2 , L 1 , R 1 and a are the same as defined in claim 1.}
  6. 제1항에 있어서, 상기 화학식 (1)이 하기 화학식 (2-1) 내지 화학식 (2-5) 중 어느 하나로 표시되는 것을 특징으로 하는 화합물The compound according to claim 1, wherein the formula (1) is represented by any one of the following formulas (2-1) to (2-5)
    화학식 (2-1) 화학식 (2-2) Formula (2-1) Formula (2-2)
    Figure PCTKR2022006762-appb-img-000200
    Figure PCTKR2022006762-appb-img-000200
    화학식 (2-3) 화학식 (2-4) Formula (2-3) Formula (2-4)
    Figure PCTKR2022006762-appb-img-000201
    Figure PCTKR2022006762-appb-img-000201
    화학식 (2-5) Formula (2-5)
    Figure PCTKR2022006762-appb-img-000202
    Figure PCTKR2022006762-appb-img-000202
    {상기 화학식 (2-1) 내지 화학식 (2-5)에서, Ar1, Ar2, L1, R1 및 a는 상기 청구항 1에서 정의된 바와 동일하다.}{In Formula (2-1) to Formula (2-5), Ar 1 , Ar 2 , L 1 , R 1 and a are the same as defined in claim 1.}
  7. 제1항에 있어서, 상기 L1은 하기 화학식 a-1 내지 a-3 중 어느 하나로 표시되는 것을 특징으로 하는 화합물The compound according to claim 1, wherein L 1 is represented by one of the following formulas a-1 to a-3
    a-1 a-2 a-3 a-1 a-2 a-3
    Figure PCTKR2022006762-appb-img-000203
    Figure PCTKR2022006762-appb-img-000203
    {상기 화학식 a-1 내지 a-3에서, *는 결합되는 위치를 나타낸다.}{In Formulas a-1 to a-3, * represents a bonded position.}
  8. 제1항에 있어서, 상기 화학식 (1)이 하기 화학식 (2-6) 내지 화학식 (2-10) 중 어느 하나로 표시되는 것을 특징으로 하는 화합물The compound according to claim 1, wherein the formula (1) is represented by any one of the following formulas (2-6) to (2-10)
    화학식 (2-6) 화학식 (2-7) Formula (2-6) Formula (2-7)
    Figure PCTKR2022006762-appb-img-000204
    Figure PCTKR2022006762-appb-img-000204
    화학식 (2-8) 화학식 (2-9) Formula (2-8) Formula (2-9)
    Figure PCTKR2022006762-appb-img-000205
    Figure PCTKR2022006762-appb-img-000205
    화학식 (2-10) Formula (2-10)
    Figure PCTKR2022006762-appb-img-000206
    Figure PCTKR2022006762-appb-img-000206
    {상기 화학식 (2-6) 내지 화학식 (2-10)에서, Ar1, Ar2, L1, R1 및 a는 상기 청구항 1에서 정의된 바와 동일하다.}{In Formula (2-6) to Formula (2-10), Ar 1 , Ar 2 , L 1 , R 1 and a are the same as defined in claim 1.}
  9. 제1항에 있어서, 상기 화학식 (1)로 나타낸 화합물은 하기 화합물 P-1 내지 P-84 중 어느 하나로 표시되는 것을 특징으로 하는 화합물The compound according to claim 1, wherein the compound represented by Formula (1) is represented by any one of the following compounds P-1 to P-84
    Figure PCTKR2022006762-appb-img-000207
    Figure PCTKR2022006762-appb-img-000207
    Figure PCTKR2022006762-appb-img-000208
    Figure PCTKR2022006762-appb-img-000208
    Figure PCTKR2022006762-appb-img-000209
    Figure PCTKR2022006762-appb-img-000209
    Figure PCTKR2022006762-appb-img-000210
    Figure PCTKR2022006762-appb-img-000210
    Figure PCTKR2022006762-appb-img-000211
    Figure PCTKR2022006762-appb-img-000211
    Figure PCTKR2022006762-appb-img-000212
    Figure PCTKR2022006762-appb-img-000212
    Figure PCTKR2022006762-appb-img-000213
    Figure PCTKR2022006762-appb-img-000213
    Figure PCTKR2022006762-appb-img-000214
    Figure PCTKR2022006762-appb-img-000214
    Figure PCTKR2022006762-appb-img-000215
    Figure PCTKR2022006762-appb-img-000215
    Figure PCTKR2022006762-appb-img-000216
    Figure PCTKR2022006762-appb-img-000216
    Figure PCTKR2022006762-appb-img-000217
    Figure PCTKR2022006762-appb-img-000217
    Figure PCTKR2022006762-appb-img-000218
    Figure PCTKR2022006762-appb-img-000218
    Figure PCTKR2022006762-appb-img-000219
    Figure PCTKR2022006762-appb-img-000219
    Figure PCTKR2022006762-appb-img-000220
    Figure PCTKR2022006762-appb-img-000220
    Figure PCTKR2022006762-appb-img-000221
    Figure PCTKR2022006762-appb-img-000221
    Figure PCTKR2022006762-appb-img-000222
    Figure PCTKR2022006762-appb-img-000222
    Figure PCTKR2022006762-appb-img-000223
    Figure PCTKR2022006762-appb-img-000223
    Figure PCTKR2022006762-appb-img-000224
    Figure PCTKR2022006762-appb-img-000224
    Figure PCTKR2022006762-appb-img-000225
    Figure PCTKR2022006762-appb-img-000225
    Figure PCTKR2022006762-appb-img-000226
    Figure PCTKR2022006762-appb-img-000226
    Figure PCTKR2022006762-appb-img-000227
    Figure PCTKR2022006762-appb-img-000227
  10. 제 1전극, 제 2전극, 및 상기 제 1전극과 상기 제 2전극 사이에 형성된 유기물층을 포함하는 유기전기소자에 있어서, 상기 유기물층은 발광층을 포함하고 상기 발광층은 인광성 발광층으로서 상기 청구항 1의 화학식 (1)로 표시되는 제 1호스트 화합물 및 하기 화학식 (3) 또는 화학식 (4)로 표시되는 제 2호스트 화합물을 포함하는 것을 특징으로 하는 유기전기소자An organic electric device including a first electrode, a second electrode, and an organic material layer formed between the first electrode and the second electrode, wherein the organic material layer includes a light emitting layer, and the light emitting layer is a phosphorescent light emitting layer having the chemical formula of claim 1 An organic electric device comprising a first host compound represented by (1) and a second host compound represented by the following formula (3) or formula (4)
    화학식 (3) 화학식 (4) Formula (3) Formula (4)
    Figure PCTKR2022006762-appb-img-000228
    Figure PCTKR2022006762-appb-img-000228
    {상기 화학식 (3) 및 화학식 (4)에서,{In the formula (3) and formula (4),
    1) X 및 Y는 서로 독립적으로 O, S, NRa 또는 CR'R"이며,1) X and Y are independently of each other O, S, NR a or CR'R";
    2) Ar4, Ar5, Ar6 및 Ra는 서로 독립적으로 C6~C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C3~C60의 지방족고리와 C6~C60의 방향족고리의 융합고리기; C1~C60의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C1~C30의 알콕시기; 및 C6~C30의 아릴옥시기;로 이루어진 군에서 선택되고,2) Ar 4 , Ar 5 , Ar 6 and R a are each independently a C 6 to C 60 aryl group; fluorenyl group; A C 2 ~C 60 heterocyclic group containing at least one heteroatom selected from O, N, S, Si, and P; A fused ring group of C 3 ~ C 60 aliphatic ring and C 6 ~ C 60 aromatic ring; C 1 ~ C 60 Alkyl group; A C 2 ~C 20 alkenyl group; A C 2 ~C 20 alkynyl group; C 1 ~ C 30 alkoxy group; And C 6 ~ C 30 aryloxy group; is selected from the group consisting of,
    3) R' 및 R"은 서로 독립적으로 수소; 중수소; C6~C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C3~C60의 지방족고리와 C6~C60의 방향족고리의 융합고리기; C1~C60의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C1~C30의 알콕시기; 및 C6~C30의 아릴옥시기;로 이루어진 군에서 선택되며, 또는 R' 및 R"은 서로 결합하여 스파이로 고리를 형성할 수 있고,3) R' and R" are each independently hydrogen; heavy hydrogen; C 6 ~ C 60 aryl group; fluorenyl group; C 2 ~ C containing at least one heteroatom of O, N, S, Si and P; Heterocyclic group of 60 ; C 3 ~ C 60 aliphatic ring and C 6 ~ C 60 aromatic ring fused ring group; C 1 ~ C 60 alkyl group; C 2 ~ C 20 alkenyl group; C 2 ~ C 20 Alkynyl group; C 1 ~ C 30 Alkoxy group; And C 6 ~ C 30 It is selected from the group consisting of aryloxy group, or R' and R" may combine with each other to form a spiro ring,
    4) L2, L3 및 L4는 서로 독립적으로 단일결합; C6~C60의 아릴렌기; 플루오렌일렌기; 및 O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로아릴렌기;로 이루어진 군에서 선택되며,4) L 2 , L 3 and L 4 are each independently a single bond; C 6 ~ C 60 arylene group; Fluorenylene group; And a C 2 ~C 60 heteroarylene group containing at least one heteroatom of O, N, S, Si and P; selected from the group consisting of,
    5) B는 C6~C20의 아릴기이고,5) B is a C 6 ~ C 20 aryl group,
    6) R2 및 R3은 각각 동일하거나 상이하며, 서로 독립적으로 수소; 중수소; 할로겐; C6~C60의 아릴기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C3~C60의 지방족고리와 C6~C60의 방향족고리의 융합고리기; C1~C60의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C1~C30의 알콕시기; 및 C6~C30의 아릴옥시기;로 이루어진 군에서 선택되고,6) R 2 and R 3 are the same or different, and each independently hydrogen; heavy hydrogen; halogen; C 6 ~ C 60 aryl group; A C 2 ~C 60 heterocyclic group containing at least one heteroatom selected from O, N, S, Si, and P; C 3 ~ C 60 aliphatic ring and C 6 ~ C 60 aromatic ring fused ring group; C 1 ~ C 60 Alkyl group; A C 2 ~C 20 alkenyl group; A C 2 ~C 20 alkynyl group; C 1 ~ C 30 alkoxy group; And C 6 ~ C 30 aryloxy group; is selected from the group consisting of,
    7) R8 및 R10은 각각 동일하거나 상이하며, 서로 독립적으로 수소; 중수소; 할로겐; C6~C60의 아릴기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C3~C60의 지방족고리와 C6~C60의 방향족고리의 융합고리기; C1~C60의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C1~C30의 알콕시기; 및 C6~C30의 아릴옥시기;로 이루어진 군에서 선택되고, 또는 이웃한 기끼리 서로 결합하여 고리를 형성할 수 있으며,7) R 8 and R 10 are the same or different, and each independently hydrogen; heavy hydrogen; halogen; C 6 ~ C 60 aryl group; A C 2 ~C 60 heterocyclic group containing at least one heteroatom selected from O, N, S, Si, and P; C 3 ~ C 60 aliphatic ring and C 6 ~ C 60 aromatic ring fused ring group; C 1 ~ C 60 Alkyl group; A C 2 ~C 20 alkenyl group; A C 2 ~C 20 alkynyl group; C 1 ~ C 30 alkoxy group; And C 6 ~ C 30 aryloxy group; is selected from the group consisting of, or adjacent groups may be bonded to each other to form a ring,
    8) b, h 및 j는 서로 독립적으로 0 내지 4의 정수이고, c는 0 내지 3의 정수이며,8) b, h and j are each independently an integer from 0 to 4, c is an integer from 0 to 3,
    9) 여기서, 상기 아릴기, 아릴렌기, 헤테로고리기, 플루오렌일기, 플루오렌일렌기, 지방족고리기, 융합고리기, 알킬기, 알켄일기, 알킨일기, 알콕실기 및 아릴옥시기는 각각 중수소; 할로겐; 실란기; 실록산기; 붕소기; 게르마늄기; 시아노기; 니트로기; C1~C20의 알킬싸이오기; C1~C20의 알콕시기; C1~C20의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C6~C20의 아릴기; 중수소로 치환된 C6~C20의 아릴기; 플루오렌일기; C2~C20의 헤테로고리기; C3~C20의 시클로알킬기; C7~C20의 아릴알킬기; 및 C8~C20의 아릴알켄일기;로 이루어진 군에서 선택된 하나 이상의 치환기로 더욱 치환될 수 있으며, 또한 이들 치환기들은 서로 결합하여 고리를 형성할 수도 있으며, 여기서 '고리'란 C3~C60의 지방족고리 또는 C6~C60의 방향족고리 또는 C2~C60의 헤테로고리 또는 이들의 조합으로 이루어진 융합 고리를 말하며, 포화 또는 불포화 고리를 포함한다.}9) Here, the aryl group, arylene group, heterocyclic group, fluorenyl group, fluorenylene group, aliphatic ring group, fused ring group, alkyl group, alkenyl group, alkynyl group, alkoxyl group, and aryloxy group are each deuterium; halogen; silane group; Siloxane group; boron group; Germanium group; cyano group; nitro group; C 1 ~ C 20 Alkylthio group; A C 1 ~ C 20 alkoxy group; C 1 ~ C 20 Alkyl group; A C 2 ~C 20 alkenyl group; A C 2 ~C 20 alkynyl group; C 6 ~ C 20 aryl group; A deuterium-substituted C 6 ~C 20 aryl group; fluorenyl group; C 2 ~C 20 heterocyclic group; A C 3 ~C 20 cycloalkyl group; C 7 ~ C 20 arylalkyl group; And a C 8 ~ C 20 arylalkenyl group; may be further substituted with one or more substituents selected from the group consisting of, and these substituents may combine with each other to form a ring, wherein 'ring' means C 3 ~C 60 It refers to an aliphatic ring or a C 6 ~ C 60 aromatic ring or a C 2 ~ C 60 heterocyclic ring or a fused ring composed of a combination thereof, and includes a saturated or unsaturated ring.}
  11. 제10항에 있어서, 상기 화학식 (3)이 하기 화학식 (3-1) 또는 화학식 (3-2)로 표시되는 것을 특징으로 하는 유기전기소자The organic electric device according to claim 10, wherein the formula (3) is represented by the following formula (3-1) or formula (3-2)
    화학식 (3-1) 화학식 (3-2) Formula (3-1) Formula (3-2)
    Figure PCTKR2022006762-appb-img-000229
    Figure PCTKR2022006762-appb-img-000229
    {상기 화학식 (3-1) 및 화학식 (3-2)에서,{In the above formula (3-1) and formula (3-2),
    1) X, L2, L3, L4, Ar4, R2, R3, b 및 c는 상기 청구항 10에서 정의된 바와 동일하며,1) X, L 2 , L 3 , L 4 , Ar 4 , R 2 , R 3 , b and c are the same as defined in claim 10,
    2) X1 및 X2는 상기 청구항 10의 X의 정의와 동일하고,2) X 1 and X 2 are the same as the definition of X in claim 10,
    3) R4, R5, R6 및 R7은 상기 청구항 10의 R2의 정의와 동일하며,3) R 4 , R 5 , R 6 and R 7 are the same as the definition of R 2 in claim 10,
    4) d 및 f는 서로 독립적으로 0 내지 3의 정수이고, e 및 g는 서로 독립적으로 0 내지 4의 정수이다.}4) d and f are independently integers from 0 to 3, and e and g are independently integers from 0 to 4.}
  12. 제10항에 있어서, 상기 화학식 (4)가 하기 화학식 (4-1) 내지 화학식 (4-6) 중 어느 하나로 표시되는 것을 특징으로 하는 유기전기소자11. The organic electric device according to claim 10, wherein the formula (4) is represented by any one of the following formulas (4-1) to (4-6)
    화학식 (4-1) 화학식 (4-2) Formula (4-1) Formula (4-2)
    Figure PCTKR2022006762-appb-img-000230
    Figure PCTKR2022006762-appb-img-000230
    화학식 (4-3) 화학식 (4-4) Formula (4-3) Formula (4-4)
    Figure PCTKR2022006762-appb-img-000231
    Figure PCTKR2022006762-appb-img-000231
    화학식 (4-5) 화학식 (4-6) Formula (4-5) Formula (4-6)
    Figure PCTKR2022006762-appb-img-000232
    Figure PCTKR2022006762-appb-img-000232
    {상기 화학식 (4-1) 내지 화학식 (4-6)에서,{In the above formula (4-1) to formula (4-6),
    1) Y, Ar6, R8, R10, h 및 j는 상기 청구항 10에서 정의된 바와 동일하며,1) Y, Ar 6 , R 8 , R 10 , h and j are the same as defined in claim 10,
    2) R9는 상기 청구항 10의 R8의 정의와 동일하고,2) R 9 is the same as the definition of R 8 in claim 10,
    3) i는 0 내지 2의 정수이다.}3) i is an integer from 0 to 2}
  13. 제10항에 있어서, 상기 화학식 (3)으로 나타낸 화합물은 하기 화합물 N-1 내지 N-144 중 어느 하나로 표시되는 것을 특징으로 하는 유기전기소자11. The organic electric device according to claim 10, wherein the compound represented by Formula (3) is represented by any one of the following compounds N-1 to N-144
    Figure PCTKR2022006762-appb-img-000233
    Figure PCTKR2022006762-appb-img-000233
    Figure PCTKR2022006762-appb-img-000234
    Figure PCTKR2022006762-appb-img-000234
    Figure PCTKR2022006762-appb-img-000235
    Figure PCTKR2022006762-appb-img-000235
    Figure PCTKR2022006762-appb-img-000236
    Figure PCTKR2022006762-appb-img-000236
    Figure PCTKR2022006762-appb-img-000237
    Figure PCTKR2022006762-appb-img-000237
    Figure PCTKR2022006762-appb-img-000238
    Figure PCTKR2022006762-appb-img-000238
    Figure PCTKR2022006762-appb-img-000239
    Figure PCTKR2022006762-appb-img-000239
    Figure PCTKR2022006762-appb-img-000240
    Figure PCTKR2022006762-appb-img-000240
    Figure PCTKR2022006762-appb-img-000241
    Figure PCTKR2022006762-appb-img-000241
    Figure PCTKR2022006762-appb-img-000242
    Figure PCTKR2022006762-appb-img-000242
    Figure PCTKR2022006762-appb-img-000243
    Figure PCTKR2022006762-appb-img-000243
    Figure PCTKR2022006762-appb-img-000244
    Figure PCTKR2022006762-appb-img-000244
    Figure PCTKR2022006762-appb-img-000245
    Figure PCTKR2022006762-appb-img-000245
    Figure PCTKR2022006762-appb-img-000246
    Figure PCTKR2022006762-appb-img-000246
    Figure PCTKR2022006762-appb-img-000247
    Figure PCTKR2022006762-appb-img-000247
    Figure PCTKR2022006762-appb-img-000248
    Figure PCTKR2022006762-appb-img-000248
    Figure PCTKR2022006762-appb-img-000249
    Figure PCTKR2022006762-appb-img-000249
    Figure PCTKR2022006762-appb-img-000250
    Figure PCTKR2022006762-appb-img-000250
    Figure PCTKR2022006762-appb-img-000251
    Figure PCTKR2022006762-appb-img-000251
    Figure PCTKR2022006762-appb-img-000252
    Figure PCTKR2022006762-appb-img-000252
    Figure PCTKR2022006762-appb-img-000253
    Figure PCTKR2022006762-appb-img-000253
    Figure PCTKR2022006762-appb-img-000254
    Figure PCTKR2022006762-appb-img-000254
    Figure PCTKR2022006762-appb-img-000255
    Figure PCTKR2022006762-appb-img-000255
    Figure PCTKR2022006762-appb-img-000256
    Figure PCTKR2022006762-appb-img-000256
    Figure PCTKR2022006762-appb-img-000257
    Figure PCTKR2022006762-appb-img-000257
    Figure PCTKR2022006762-appb-img-000258
    Figure PCTKR2022006762-appb-img-000258
    Figure PCTKR2022006762-appb-img-000259
    Figure PCTKR2022006762-appb-img-000259
    Figure PCTKR2022006762-appb-img-000260
    Figure PCTKR2022006762-appb-img-000260
    Figure PCTKR2022006762-appb-img-000261
    Figure PCTKR2022006762-appb-img-000261
    Figure PCTKR2022006762-appb-img-000262
    Figure PCTKR2022006762-appb-img-000262
    Figure PCTKR2022006762-appb-img-000263
    Figure PCTKR2022006762-appb-img-000263
    Figure PCTKR2022006762-appb-img-000264
    Figure PCTKR2022006762-appb-img-000264
    Figure PCTKR2022006762-appb-img-000265
    Figure PCTKR2022006762-appb-img-000265
    Figure PCTKR2022006762-appb-img-000266
    Figure PCTKR2022006762-appb-img-000266
    Figure PCTKR2022006762-appb-img-000267
    Figure PCTKR2022006762-appb-img-000267
    Figure PCTKR2022006762-appb-img-000268
    Figure PCTKR2022006762-appb-img-000268
  14. 제10항에 있어서, 상기 화학식 (4)로 나타낸 화합물은 하기 화합물 S-1 내지 S-84 중 어느 하나로 표시되는 것을 특징으로 하는 유기전기소자11. The organic electric device according to claim 10, wherein the compound represented by Formula (4) is represented by any one of the following compounds S-1 to S-84
    Figure PCTKR2022006762-appb-img-000269
    Figure PCTKR2022006762-appb-img-000269
    Figure PCTKR2022006762-appb-img-000270
    Figure PCTKR2022006762-appb-img-000270
    Figure PCTKR2022006762-appb-img-000271
    Figure PCTKR2022006762-appb-img-000271
    Figure PCTKR2022006762-appb-img-000272
    Figure PCTKR2022006762-appb-img-000272
    Figure PCTKR2022006762-appb-img-000273
    Figure PCTKR2022006762-appb-img-000273
    Figure PCTKR2022006762-appb-img-000274
    Figure PCTKR2022006762-appb-img-000274
    Figure PCTKR2022006762-appb-img-000275
    Figure PCTKR2022006762-appb-img-000275
    Figure PCTKR2022006762-appb-img-000276
    Figure PCTKR2022006762-appb-img-000276
    Figure PCTKR2022006762-appb-img-000277
    Figure PCTKR2022006762-appb-img-000277
    Figure PCTKR2022006762-appb-img-000278
    Figure PCTKR2022006762-appb-img-000278
    Figure PCTKR2022006762-appb-img-000279
    Figure PCTKR2022006762-appb-img-000279
    Figure PCTKR2022006762-appb-img-000280
    Figure PCTKR2022006762-appb-img-000280
    Figure PCTKR2022006762-appb-img-000281
    Figure PCTKR2022006762-appb-img-000281
    Figure PCTKR2022006762-appb-img-000282
    Figure PCTKR2022006762-appb-img-000282
    Figure PCTKR2022006762-appb-img-000283
    Figure PCTKR2022006762-appb-img-000283
    Figure PCTKR2022006762-appb-img-000284
    Figure PCTKR2022006762-appb-img-000284
    Figure PCTKR2022006762-appb-img-000285
    Figure PCTKR2022006762-appb-img-000285
    Figure PCTKR2022006762-appb-img-000286
    Figure PCTKR2022006762-appb-img-000286
    Figure PCTKR2022006762-appb-img-000287
    Figure PCTKR2022006762-appb-img-000287
    Figure PCTKR2022006762-appb-img-000288
    Figure PCTKR2022006762-appb-img-000288
    Figure PCTKR2022006762-appb-img-000289
    Figure PCTKR2022006762-appb-img-000289
  15. 하기 화학식 (3-3)으로 표시되는 화합물A compound represented by the following formula (3-3)
    화학식 (3-3) Formula (3-3)
    Figure PCTKR2022006762-appb-img-000290
    Figure PCTKR2022006762-appb-img-000290
    {상기 화학식 (3-3)에서,{In the above formula (3-3),
    1) C환은 중수소로 치환 또는 비치환된 C10의 방향족탄화수소기이며,1) C ring is an aromatic hydrocarbon group of C 10 unsubstituted or substituted with deuterium,
    2) Z는 O 또는 S이고,2) Z is O or S;
    3) R11, R12 및 R13은 각각 동일하거나 상이하며, 서로 독립적으로 수소 또는 중수소이고,3) R 11 , R 12 and R 13 are the same or different, and each independently represent hydrogen or deuterium;
    4) k 및 n은 서로 독립적으로 0 내지 3의 정수이며, m은 0 내지 4의 정수이고,4) k and n are each independently an integer from 0 to 3, m is an integer from 0 to 4,
    5) Ar7 및 Ar8은 서로 독립적으로 C6~C60의 아릴기; 플루오렌일기; 또는 C2~C60의 헤테로고리기이며,5) Ar 7 and Ar 8 are each independently a C 6 ~ C 60 aryl group; fluorenyl group; Or a C 2 ~ C 60 heterocyclic group,
    6) 여기서, 상기 아릴기, 플루오렌일기, 헤테로고리기 및 방향족탄화수소기는 각각 중수소; 할로겐; 실란기; 실록산기; 붕소기; 게르마늄기; 시아노기; 니트로기; C1~C20의 알킬싸이오기; C1~C20의 알콕시기; C1~C20의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C6~C20의 아릴기; 중수소로 치환된 C6~C20의 아릴기; 플루오렌일기; C2~C20의 헤테로고리기; C3~C20의 시클로알킬기; C7~C20의 아릴알킬기; 및 C8~C20의 아릴알켄일기;로 이루어진 군에서 선택된 하나 이상의 치환기로 더욱 치환될 수 있으며, 또한 이들 치환기들은 서로 결합하여 고리를 형성할 수도 있으며, 여기서 '고리'란 C3~C60의 지방족고리 또는 C6~C60의 방향족고리 또는 C2~C60의 헤테로고리 또는 이들의 조합으로 이루어진 융합 고리를 말하며, 포화 또는 불포화 고리를 포함한다.}6) Here, the aryl group, fluorenyl group, heterocyclic group and aromatic hydrocarbon group are each deuterium; halogen; silane group; Siloxane group; boron group; Germanium group; cyano group; nitro group; C 1 ~ C 20 Alkylthio group; A C 1 ~ C 20 alkoxy group; C 1 ~ C 20 Alkyl group; A C 2 ~C 20 alkenyl group; A C 2 ~C 20 alkynyl group; C 6 ~ C 20 aryl group; A deuterium-substituted C 6 ~C 20 aryl group; fluorenyl group; C 2 ~C 20 heterocyclic group; A C 3 ~C 20 cycloalkyl group; C 7 ~ C 20 arylalkyl group; And a C 8 ~ C 20 arylalkenyl group; may be further substituted with one or more substituents selected from the group consisting of, and these substituents may combine with each other to form a ring, wherein 'ring' means C 3 ~C 60 It refers to an aliphatic ring or a C 6 ~ C 60 aromatic ring or a C 2 ~ C 60 hetero ring or a fused ring composed of a combination thereof, and includes a saturated or unsaturated ring.}
  16. 제15항에 있어서, 상기 화학식 (3-3)이 하기 화학식 (3-4) 내지 (3-6) 중 어느 하나로 표시되는 것을 특징으로 하는 화합물The compound according to claim 15, wherein the formula (3-3) is represented by one of the following formulas (3-4) to (3-6)
    화학식 (3-4) 화학식 (3-5) Formula (3-4) Formula (3-5)
    Figure PCTKR2022006762-appb-img-000291
    Figure PCTKR2022006762-appb-img-000291
    화학식 (3-6) Formula (3-6)
    Figure PCTKR2022006762-appb-img-000292
    Figure PCTKR2022006762-appb-img-000292
    {상기 화학식 (3-4) 내지 화학식 (3-6)에서,{In the formula (3-4) to formula (3-6),
    1) R11, R12, R13, k, m, n, Ar7, Ar8 및 Z는 상기 청구항 15에서 정의된 바와 동일하며,1) R 11 , R 12 , R 13 , k, m, n, Ar 7 , Ar 8 and Z are the same as defined in claim 15,
    2) R14는 수소 또는 중수소이고,2) R 14 is hydrogen or deuterium;
    3) l은 0 내지 6의 정수이다.}3) l is an integer from 0 to 6}
  17. 제15항에 있어서, 상기 화학식 (3-3)이 하기 화학식 (3-7) 내지 화학식 (3-10) 중 어느 하나로 표시되는 것을 특징으로 하는 화합물The compound according to claim 15, wherein the formula (3-3) is represented by any one of the following formulas (3-7) to formulas (3-10)
    화학식 (3-7) 화학식 (3-8) Formula (3-7) Formula (3-8)
    Figure PCTKR2022006762-appb-img-000293
    Figure PCTKR2022006762-appb-img-000293
    화학식 (3-9) 화학식 (3-10) Formula (3-9) Formula (3-10)
    Figure PCTKR2022006762-appb-img-000294
    Figure PCTKR2022006762-appb-img-000294
    {상기 화학식 (3-7) 내지 화학식 (3-10)에서, R11, R12, R13, k, m, n, Ar7, Ar8, Z 및 C환은 상기 청구항 15에서 정의된 바와 동일하다.}{In Formula (3-7) to Formula (3-10), R 11 , R 12 , R 13 , k, m, n, Ar 7 , Ar 8 , Z and C rings are the same as defined in claim 15 above. do.}
  18. 제15항에 있어서, 상기 화학식 (3-3)이 하기 화학식 (3-11) 내지 (3-22) 중 어느 하나로 표시되는 것을 특징으로 하는 화합물The compound according to claim 15, wherein the formula (3-3) is represented by one of the following formulas (3-11) to (3-22)
    화학식 (3-11) 화학식 (3-12) Formula (3-11) Formula (3-12)
    Figure PCTKR2022006762-appb-img-000295
    Figure PCTKR2022006762-appb-img-000295
    화학식 (3-13) 화학식 (3-14) Formula (3-13) Formula (3-14)
    Figure PCTKR2022006762-appb-img-000296
    Figure PCTKR2022006762-appb-img-000296
    화학식 (3-15) 화학식 (3-16) Formula (3-15) Formula (3-16)
    Figure PCTKR2022006762-appb-img-000297
    Figure PCTKR2022006762-appb-img-000297
    화학식 (3-17) 화학식 (3-18) Formula (3-17) Formula (3-18)
    Figure PCTKR2022006762-appb-img-000298
    Figure PCTKR2022006762-appb-img-000298
    화학식 (3-19) 화학식 (3-20) Formula (3-19) Formula (3-20)
    Figure PCTKR2022006762-appb-img-000299
    Figure PCTKR2022006762-appb-img-000299
    화학식 (3-21) 화학식 (3-22) Formula (3-21) Formula (3-22)
    Figure PCTKR2022006762-appb-img-000300
    Figure PCTKR2022006762-appb-img-000300
    {상기 화학식 (3-11) 내지 화학식 (3-22)에서,{In the formula (3-11) to formula (3-22),
    1) R11, R12, R13, k, m, n, Ar7, Ar8 및 Z는 상기 청구항 15에서 정의된 바와 동일하며,1) R 11 , R 12 , R 13 , k, m, n, Ar 7 , Ar 8 and Z are the same as defined in claim 15,
    2) R14 및 l은 상기 청구항 16에서 정의된 바와 동일하다.}2) R 14 and l are the same as defined in claim 16 above.}
  19. 제15항에 있어서, 상기 화학식 (3-3)에서, 적어도 하나의 중수소를 포함하는 것을 특징으로 하는 화합물16. The compound according to claim 15, characterized in that it contains at least one deuterium in the formula (3-3).
  20. 제15항에 있어서, 상기 화학식 (3-3)에서, Reorganization Energy 값이 0.170 내지 0.190인 것을 특징으로 하는 화합물The compound according to claim 15, characterized in that the Reorganization Energy value in Formula (3-3) is 0.170 to 0.190.
  21. 제15항에 있어서, 상기 화학식 (3-3)으로 나타낸 화합물은 하기 화합물 N-93 내지 N-144 중 어느 하나로 표시되는 것을 특징으로 하는 화합물The compound according to claim 15, wherein the compound represented by Formula (3-3) is represented by any one of the following compounds N-93 to N-144
    Figure PCTKR2022006762-appb-img-000301
    Figure PCTKR2022006762-appb-img-000301
    Figure PCTKR2022006762-appb-img-000302
    Figure PCTKR2022006762-appb-img-000302
    Figure PCTKR2022006762-appb-img-000303
    Figure PCTKR2022006762-appb-img-000303
    Figure PCTKR2022006762-appb-img-000304
    Figure PCTKR2022006762-appb-img-000304
    Figure PCTKR2022006762-appb-img-000305
    Figure PCTKR2022006762-appb-img-000305
    Figure PCTKR2022006762-appb-img-000306
    Figure PCTKR2022006762-appb-img-000306
    Figure PCTKR2022006762-appb-img-000307
    Figure PCTKR2022006762-appb-img-000307
    Figure PCTKR2022006762-appb-img-000308
    Figure PCTKR2022006762-appb-img-000308
    Figure PCTKR2022006762-appb-img-000309
    Figure PCTKR2022006762-appb-img-000309
    Figure PCTKR2022006762-appb-img-000310
    Figure PCTKR2022006762-appb-img-000310
    Figure PCTKR2022006762-appb-img-000311
    Figure PCTKR2022006762-appb-img-000311
    Figure PCTKR2022006762-appb-img-000312
    Figure PCTKR2022006762-appb-img-000312
    Figure PCTKR2022006762-appb-img-000313
    Figure PCTKR2022006762-appb-img-000313
  22. 제 1전극, 제 2전극, 및 제 1전극과 제 2전극 사이에 형성된 유기물층을 포함하는 유기전기소자에 있어서, 상기 유기물층은 제1항의 화학식 (3-3)으로 표시되는 화합물을 포함하는 것을 특징으로 하는 유기전기소자An organic electric device including a first electrode, a second electrode, and an organic material layer formed between the first electrode and the second electrode, wherein the organic material layer includes a compound represented by Chemical Formula (3-3) of claim 1 organic electric element made of
  23. 제22항에 있어서, 상기 유기물층은 발광층인 것을 특징으로 하는 유기전기소자23. The organic electric device according to claim 22, wherein the organic material layer is a light emitting layer.
  24. 제10항 또는 제22항에 있어서, 상기 제 1전극과 상기 제 2전극의 일면 중 상기 유기물층과 반대되는 적어도 일면에 형성되는 광효율 개선층을 더 포함하는 유기전기소자The organic electric device according to claim 10 or 22, further comprising a light efficiency improvement layer formed on at least one surface of the first electrode and the second electrode opposite to the organic material layer.
  25. 제10항 또는 제22항에 있어서, 상기 유기물층은 제 1전극 상에 순차적으로 형성된 정공수송층, 발광층 및 전자수송층을 포함하는 스택을 둘 이상 포함하는 것을 특징으로 하는 유기전기소자The organic electric device according to claim 10 or 22, wherein the organic material layer includes two or more stacks including a hole transport layer, a light emitting layer, and an electron transport layer sequentially formed on the first electrode.
  26. 제25항에 있어서, 상기 유기물층은 상기 둘 이상의 스택 사이에 형성된 전하생성층을 더 포함하는 것을 특징으로 하는 유기전기소자26. The organic electric device according to claim 25, wherein the organic material layer further comprises a charge generation layer formed between the two or more stacks.
  27. 제10항 또는 제22항의 유기전기소자를 포함하는 디스플레이장치; 및 상기 디스플레이장치를 구동하는 제어부;를 포함하는 전자 장치A display device comprising the organic electric element of claim 10 or claim 22; and a controller for driving the display device.
  28. 제27항에 있어서, 상기 유기전기소자는 유기전기발광소자, 유기태양전지, 유기감광체, 유기트랜지스터, 및 단색 또는 백색 조명용소자 중 적어도 하나인 것을 특징으로 하는 전자 장치28. The electronic device of claim 27, wherein the organic electric device is at least one of an organic light emitting device, an organic solar cell, an organic photoreceptor, an organic transistor, and a device for monochromatic or white light.
PCT/KR2022/006762 2021-05-24 2022-05-11 Compound for organic electric element, organic electric element using same, and electronic device thereof WO2022250339A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280037164.4A CN117377659A (en) 2021-05-24 2022-05-11 Compound for organic electric element, organic electric element using the same, and electronic device using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0066354 2021-05-24
KR20210066354 2021-05-24
KR10-2022-0029174 2022-03-08
KR1020220029174A KR102441537B1 (en) 2021-05-24 2022-03-08 Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof

Publications (1)

Publication Number Publication Date
WO2022250339A1 true WO2022250339A1 (en) 2022-12-01

Family

ID=83114536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/006762 WO2022250339A1 (en) 2021-05-24 2022-05-11 Compound for organic electric element, organic electric element using same, and electronic device thereof

Country Status (2)

Country Link
KR (1) KR102438159B1 (en)
WO (1) WO2022250339A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150031892A (en) * 2013-09-17 2015-03-25 덕산네오룩스 주식회사 Organic electronic element using a compound for organic electronic element, and an electronic device thereof
KR20160111780A (en) * 2015-03-17 2016-09-27 주식회사 엘지화학 Organic light emitting device
KR20170083765A (en) * 2016-01-11 2017-07-19 덕산네오룩스 주식회사 Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
KR20200017727A (en) * 2018-08-09 2020-02-19 덕산네오룩스 주식회사 Organic electronic element comprising mixture mixed with different compounds as host material and an electronic device thereof
KR20200129334A (en) * 2019-05-08 2020-11-18 덕산네오룩스 주식회사 An organic electronic element comprising compound for organic electronic element and an electronic device thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190035503A (en) * 2017-09-25 2019-04-03 롬엔드하스전자재료코리아유한회사 Organic electroluminescent compound and organic electroluminescent device comprising the same
CN111253377B (en) * 2020-02-28 2023-03-24 武汉天马微电子有限公司 Compound, display panel and display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150031892A (en) * 2013-09-17 2015-03-25 덕산네오룩스 주식회사 Organic electronic element using a compound for organic electronic element, and an electronic device thereof
KR20160111780A (en) * 2015-03-17 2016-09-27 주식회사 엘지화학 Organic light emitting device
KR20170083765A (en) * 2016-01-11 2017-07-19 덕산네오룩스 주식회사 Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
KR20200017727A (en) * 2018-08-09 2020-02-19 덕산네오룩스 주식회사 Organic electronic element comprising mixture mixed with different compounds as host material and an electronic device thereof
KR20200129334A (en) * 2019-05-08 2020-11-18 덕산네오룩스 주식회사 An organic electronic element comprising compound for organic electronic element and an electronic device thereof

Also Published As

Publication number Publication date
KR102438159B1 (en) 2022-08-30

Similar Documents

Publication Publication Date Title
WO2019151682A1 (en) Compound for organic electric device, organic electric device using same, and electronic device thereof
WO2019212289A1 (en) Compound for organic electronic element, organic electronic element using same and electronic device thereof
WO2018004187A1 (en) Compound for organic electrical element, organic electrical element using same, and electronic device therefor
WO2023113381A1 (en) Compound for organic electrical element, organic electrical element using same, and electronic device thereof
WO2017010726A1 (en) Organic electronic element using compound for organic electronic element, and electronic device thereof
WO2022010305A1 (en) Compound for organic electronic element, organic electronic element using same, and electronic device thereof
WO2021112403A1 (en) Organic electronic element comprising organic compound, and electronic device comprising same
WO2023003234A1 (en) Compound for organic electric element, organic electric element using same, and electronic device thereof
WO2020130392A1 (en) Compound for organic electric element, organic electric element using same, and electronic device comprising organic electric element
WO2023177216A1 (en) Organic electric element including compound for organic electric element, and electronic device thereof
WO2021101247A1 (en) Compound for organic electrical element, organic electrical element using same and electronic device thereof
WO2020149711A1 (en) Compound for organic electric element, organic electric element using same, and electronic device therefor
WO2021206477A1 (en) Compound for organic electric element, organic electric element using same, and electronic device thereof
WO2020032428A1 (en) Organic electric element comprising compound for organic electric element and electronic device using same
WO2020149710A1 (en) Compound for organic electronic element, organic electronic element using same, and electronic device thereof
WO2023282535A1 (en) Organic electric element containing compound for organic electric element, and electronic device thereof
WO2021080333A1 (en) Compound for organic electric element, organic electric element using same, and electronic device therefor
WO2022075746A1 (en) Compound for organic electrical element, organic electrical element using same, and electronic device thereof
WO2019022435A1 (en) Compound for organic electronic device, organic electronic device using same, and electronic apparatus thereof
WO2021145651A1 (en) Compound for organic electrical element, organic electrical element using same, and electronic device thereof
WO2021107680A1 (en) Compound and organic light-emitting element comprising same
WO2023085606A1 (en) Organic electric element comprising compound for organic electric element, and electronic device thereof
WO2024080655A1 (en) Compound for organic electric element, organic electric element using same, and electronic device having same
WO2022191466A1 (en) Organic electric element using compound for organic electric element, and electronic device thereof
WO2022004994A1 (en) Compound for organic electronic element, organic electronic element using same, and electronic device comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22811532

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280037164.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE