WO2022249850A1 - User equipment and base station - Google Patents

User equipment and base station Download PDF

Info

Publication number
WO2022249850A1
WO2022249850A1 PCT/JP2022/019147 JP2022019147W WO2022249850A1 WO 2022249850 A1 WO2022249850 A1 WO 2022249850A1 JP 2022019147 W JP2022019147 W JP 2022019147W WO 2022249850 A1 WO2022249850 A1 WO 2022249850A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
user equipment
base station
valid
uplink
Prior art date
Application number
PCT/JP2022/019147
Other languages
French (fr)
Japanese (ja)
Inventor
恒夫 中田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2022249850A1 publication Critical patent/WO2022249850A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present disclosure relates to user equipment and base stations.
  • a mobile communication technology has been proposed in the 3GPP (3rd Generation Partnership Project) and standardized as a Technical Specification (TS). Especially now, 5G (5th Generation) technology has been proposed and standardized.
  • a base station transmits an SRS to the base station for each of a plurality of UEs that transmit data to the base station.
  • the following problems were found. That is, as the number of UEs increases, the resources used for SRS increase.
  • An object of the present disclosure is to provide a user equipment and a base station that can suppress an increase in resources used for uplink reference signals even if the number of UEs communicating on the uplink increases.
  • a user equipment (100) provides a measurement result based on an uplink reference signal transmitted by a first user equipment (100) valid for a second user equipment (100).
  • an information acquisition unit (131) for acquiring useful information about a result of a measurement and user equipment information indicative of said second user equipment; and transmitting said useful information and said user equipment information in uplink using control information.
  • a communication processing unit (133) for transmission.
  • a base station (200) provides a measurement result based on an uplink reference signal transmitted by a first user equipment (100) valid for a second user equipment (100).
  • a communication processing unit (243) for receiving on the uplink, using control information, useful information about a result of a measurement and user equipment information of said second user equipment;
  • an information acquisition unit (241) for acquiring device information;
  • the present disclosure even if the number of UEs communicating on the uplink increases, it is possible to suppress an increase in resources used for uplink reference signals. It should be noted that the present disclosure may provide other effects instead of or in addition to the above effects.
  • FIG. 1 is a diagram illustrating an example of a schematic configuration of a system according to a first embodiment of the present disclosure
  • FIG. 3 is a block diagram showing an example of a schematic functional configuration of a user device according to the embodiment
  • FIG. 2 is a block diagram showing an example of a schematic hardware configuration of a user device according to the embodiment
  • FIG. 3 is a block diagram showing an example of a schematic functional configuration of a base station according to this embodiment
  • FIG. It is a block diagram showing an example of a schematic hardware configuration of a base station according to the present embodiment.
  • FIG. 4 is an explanatory diagram for explaining an example of a measurement result regarding the position of the user equipment and the channel used according to the present embodiment
  • FIG. 4 is an explanatory diagram for explaining an example of a measurement result regarding the position of the user equipment and the channel used according to the present embodiment
  • FIG. 4 is an explanatory diagram for explaining an example of a measurement result regarding the position of the user equipment and the channel used according to the present embodiment
  • FIG. 4 is an explanatory diagram for explaining an example of identification of an uplink reference signal related to the measurement result based on the effective information according to the present embodiment;
  • FIG. 4 is a sequence diagram for explaining an example of a schematic flow of processing according to the embodiment;
  • FIG. 11 is an explanatory diagram for explaining an example of a period indicated by timing information according to a second modification of the embodiment;
  • FIG. 11 is a sequence diagram for explaining an example of a schematic flow of processing for configuring a user equipment to transmit valid information and user equipment information according to a third modification of the present embodiment;
  • FIG. 14 is a sequence diagram for explaining an example of transmission of valid information and user equipment information according to another form of the third modification of the present embodiment;
  • FIG. 21 is a sequence diagram for explaining an example of transmission of valid information and user equipment information according to the fourth modification of the embodiment;
  • FIG. 21 is a sequence diagram for explaining an example of transmission of valid information and user equipment information according to another form of the fourth modification of the present embodiment;
  • FIG. 10 is a diagram showing an example of a schematic configuration of a system according to a second embodiment of the present disclosure;
  • FIG. 4 is a sequence diagram for explaining an example of a schematic flow of processing according to the embodiment;
  • FIG. 4 is an explanatory diagram for explaining an example of the position of the user equipment and the results of the above-mentioned measurement used according to the present embodiment;
  • FIG. 5 is a diagram for explaining application example 1 according to each embodiment of the present disclosure;
  • FIG. 5 is a diagram for explaining application example 1 according to each embodiment of the present disclosure;
  • FIG. 5 is a diagram for explaining application example 1 according to each embodiment of the present disclosure;
  • FIG. 11 is a diagram for explaining an application example 2 according to each embodiment of the present disclosure;
  • FIG. 11 is a diagram for explaining an application example 2 according to each embodiment of the present disclosure;
  • FIG. 11 is a diagram for explaining an application example 2 according to each embodiment of the present disclosure;
  • a UE transmits data on the uplink using uplink reference signals transmitted by other UEs.
  • system configuration> An example of the configuration of a system 1 according to the first embodiment of the present disclosure will be described with reference to FIG. Referring to FIG. 1 , system 1 includes UE 100 (UE 100A and UE 100B) and base station 200 .
  • system 1 is a system that complies with the Technical Specifications (TS) of 3GPP (Third Generation Partnership Project). More specifically, for example, the system 1 is a system conforming to 5G or NR (New Radio) TS. Naturally, the system 1 is not limited to this example.
  • TS Technical Specifications
  • 3GPP Third Generation Partnership Project
  • NR New Radio
  • Base station 200 is a node of a radio access network (RAN) and communicates with UEs (eg, UE 100A and UE 100B) located within the coverage area of base station 200.
  • RAN radio access network
  • the base station 200 communicates with UEs (eg, UE 100A and UE 100B) using the RAN protocol stack.
  • the protocol stack includes RRC (Radio Resource Control), SDAP (Service Data Adaptation Protocol), PDCP (Packet Data Convergence Protocol), RLC (Radio Link Control), MAC (Medium Access Control), and Physical: PHY) layer protocol.
  • the protocol stack may not include all of these protocols, but some of these protocols.
  • the base station 200 is a gNB.
  • a gNB is a node that provides NR user plane and control plane protocol terminations towards the UE and is connected to the 5GC (5G Core Network) via the NG interface.
  • base station 200 may be an en-gNB.
  • An en-gNB is a node that provides NR user plane and control plane protocol termination for UEs and acts as a secondary node in EN-DC (E-UTRA-NR Dual Connectivity).
  • the base station 200 may include multiple nodes.
  • the plurality of nodes may include a first node that hosts a higher layer included in the protocol stack and a second node that hosts a lower layer included in the protocol stack. good.
  • the upper layers may include an RRC layer, an SDAP layer and a PDCP layer, and the lower layers may include an RLC layer, a MAC layer and a PHY layer.
  • the first node may be a CU (central unit), and the second node may be a DU (Distributed Unit).
  • the plurality of nodes may include a third node that performs lower-level processing of the PHY layer, and the second node may perform higher-level processing of the PHY layer.
  • the third node may be an RU (Radio Unit).
  • the base station 200 may be one of the plurality of nodes, or may be connected to another unit of the plurality of nodes.
  • the base station 200 may be an IAB (Integrated Access and Backhaul) donor or an IAB node.
  • IAB Integrated Access and Backhaul
  • UE 100 UE 100 communicates with base station 200 when located within the coverage area of base station 200 .
  • the UE 100 receives signals from the base station 200 on the downlink and transmits signals to the base station 200 on the uplink.
  • the UE 100 communicates with the base station 200 via the Uu interface.
  • the UE 100 communicates with the base station 200 using the above protocol stack.
  • UE 100 communicates with other UEs using the above protocol stack.
  • the UE 100 communicates directly with other UEs without going through the base station 200. Specifically, the UE 100 communicates with other UEs on the sidelink. In other words, UE 100 communicates with other UEs via the PC5 interface. Also, the UE 100 may communicate with other UEs via a communication path including multiple sidelinks.
  • direct communication refers to communication through a route that does not go through the base station 200, and includes communication through a single link and communication through a route consisting of multiple links.
  • a communication path consisting of a plurality of links is provided, for example, by relaying communications by the UE 100C, which is capable of communicating with both the UE 100A and the UE 100B through a single link.
  • Such communication via relay by the UE 100C is generally called multi-hop communication.
  • the UE 100 (eg, UE 100A) operates in sidelink resource allocation mode 2. That is, the UE 100A selects a radio resource within the sidelink resource pool, and uses the selected radio resource to transmit a signal on the sidelink. For example, UE 100A transmits a signal to other UE 100 (for example, UE 100B) on the sidelink.
  • the UE 100 may directly communicate with another UE using a communication scheme other than the sidelink.
  • the UE 100 communicates with other UEs using a wireless LAN (Local Area Network) such as Wi-Fi (registered trademark) or a wireless PAN (Personal Area Network) such as Bluetooth (registered trademark) or Zigbee (registered trademark).
  • a wireless LAN Local Area Network
  • Wi-Fi registered trademark
  • a wireless PAN Personal Area Network
  • Bluetooth registered trademark
  • Zigbee registered trademark
  • the UE 100 may communicate with other UEs using multi-hop communication including relay.
  • the UE 100 may be mounted on a mobile object.
  • the mobile object is a vehicle.
  • a vehicle uses UE 100 to communicate with base station 200 .
  • the UE 100 is an in-vehicle device that can be mounted on a vehicle.
  • the mobile object may be an aircraft or a ship.
  • the UE 100 includes a wireless communication unit 110, a storage unit 120 and a processing unit .
  • the wireless communication unit 110 wirelessly transmits and receives signals.
  • the wireless communication unit 110 receives signals from base stations and transmits signals to the base stations.
  • the radio communication unit 110 receives signals from other UEs and transmits signals to other UEs.
  • the storage unit 120 stores various information.
  • the processing unit 130 provides various functions of the UE 100.
  • the processing unit 130 includes an information acquisition unit 131 and a communication processing unit 133 .
  • the processing unit 130 may further include components other than these components. That is, the processing unit 130 can perform operations other than those of these components. Specific operations of the information acquisition unit 131 and the communication processing unit 133 will be described later in detail.
  • the processing unit 130 communicates with a base station (for example, the base station 200) or another UE via the wireless communication unit 110.
  • a base station for example, the base station 200
  • another UE via the wireless communication unit 110.
  • UE 100 comprises antenna 181 , RF (radio frequency) circuitry 183 , processor 185 , memory 187 and storage 189 .
  • RF radio frequency
  • Antenna 181 converts a signal into radio waves and radiates the radio waves into space. Also, the antenna 181 receives radio waves in space and converts the radio waves into signals.
  • Antenna 181 may include a transmit antenna and a receive antenna, or may be a single antenna for transmission and reception.
  • Antenna 181 may be a directional antenna and may include multiple antenna elements.
  • the RF circuit 183 performs analog processing of signals transmitted and received via the antenna 181 .
  • RF circuitry 183 may include high frequency filters, amplifiers, modulators, low pass filters, and the like.
  • the processor 185 performs digital processing of signals transmitted and received via the antenna 181 and the RF circuit 183.
  • the digital processing includes processing of the protocol stack of the RAN.
  • Processor 185 may include multiple processors or may be a single processor.
  • the multiple processors may include a baseband processor that performs the digital processing and one or more processors that perform other processing.
  • the memory 187 stores programs executed by the processor 185, parameters related to the programs, and data related to the programs.
  • the memory 187 may include at least one of ROM (Read Only Memory), EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read Only Memory), RAM (Random Access Memory), and flash memory. All or part of memory 187 may be included within processor 185 .
  • the storage 189 stores various information.
  • the storage 189 may include at least one of SSD (Solid State Drive) and HDD (Hard Disc Drive).
  • the wireless communication unit 110 may be implemented by an antenna 181 and an RF circuit 183.
  • Storage unit 120 may be implemented by storage 189 .
  • Processing unit 130 may be implemented by processor 185 and memory 187 .
  • the processing unit 130 may be implemented by an SoC (System on Chip) including a processor 185 and a memory 187.
  • SoC System on Chip
  • the SoC may include RF circuitry 183 and the wireless communication unit 110 may also be implemented by the SoC.
  • the UE 100 may include a memory that stores the program (ie, memory 187) and one or more processors that can execute the program (ie, processor 185).
  • One or more processors may execute the programs described above to perform the operations of the processing unit 130 .
  • the program may be a program for causing the processor to execute the operation of the processing unit 130 .
  • the base station 200 includes a wireless communication unit 210, a network communication unit 220, a storage unit 230 and a processing unit 240.
  • FIG. 4 An example of the functional configuration of the base station 200 according to the first embodiment of the present disclosure will be described with reference to FIG. Referring to FIG. 4, the base station 200 includes a wireless communication unit 210, a network communication unit 220, a storage unit 230 and a processing unit 240.
  • FIG. 1 the base station 200 includes a wireless communication unit 210, a network communication unit 220, a storage unit 230 and a processing unit 240.
  • the wireless communication unit 210 wirelessly transmits and receives signals.
  • the radio communication unit 210 receives signals from UEs and transmits signals to the UEs.
  • the network communication unit 220 receives signals from the network and transmits signals to the network.
  • the storage unit 230 stores various information for the base station 200.
  • the processing unit 240 provides various functions of the base station 200.
  • the processing unit 240 includes an information acquisition unit 241 , a communication processing unit 243 and a control unit 245 .
  • the processing unit 240 may further include other components other than these components. That is, the processing unit 240 can perform operations other than those of these components. Specific operations of the information acquisition unit 241, communication processing unit 243, and control unit 245 will be described in detail later.
  • the processing unit 240 communicates with the UE (eg, UE 100) via the wireless communication unit 210.
  • the processing unit 240 (communication processing unit 243) communicates with other nodes (for example, network nodes in the core network or other base stations) via the network communication unit 220.
  • base station 200 comprises antenna 281 , RF circuitry 283 , network interface 285 , processor 287 , memory 289 and storage 291 .
  • the antenna 281 converts the signal into radio waves and radiates the radio waves into space. Also, the antenna 281 receives radio waves in space and converts the radio waves into signals.
  • Antenna 281 may include a transmit antenna and a receive antenna, or may be a single antenna for transmission and reception. Antenna 281 may be a directional antenna and may include multiple antenna elements.
  • the RF circuit 283 performs analog processing of signals transmitted and received via the antenna 281 .
  • RF circuitry 283 may include high frequency filters, amplifiers, modulators, low pass filters, and the like.
  • the network interface 285 is, for example, a network adapter, which transmits signals to and receives signals from the network.
  • the processor 287 performs digital processing of signals transmitted and received via the antenna 281 and the RF circuit 283.
  • the digital processing includes processing of the protocol stack of the RAN.
  • Processor 287 also processes signals sent and received via network interface 285 .
  • Processor 287 may include multiple processors or may be a single processor.
  • the multiple processors may include a baseband processor that performs the digital processing and one or more processors that perform other processing.
  • the memory 289 stores programs executed by the processor 287, parameters related to the programs, and data related to the programs.
  • Memory 289 may include at least one of ROM, EPROM, EEPROM, RAM, and flash memory. All or part of memory 289 may be included within processor 287 .
  • the storage 291 stores various information.
  • the storage 291 may include at least one of SSD and HDD.
  • the wireless communication unit 210 may be implemented by an antenna 281 and an RF circuit 283.
  • Network communication unit 220 may be implemented by network interface 285 .
  • Storage unit 230 may be implemented by storage 291 .
  • Processing unit 240 may be implemented by processor 287 and memory 289
  • a part or all of the processing unit 240 may be virtualized. In other words, part or all of the processing unit 240 may be implemented as a virtual machine. In this case, part or all of the processing unit 240 may operate as a virtual machine on a physical machine (that is, hardware) including a processor, memory, etc. and a hypervisor.
  • the base station 200 may include a memory for storing programs (ie, memory 289) and one or more processors (ie, processor 287) capable of executing the programs.
  • the one or more processors may execute the program to perform the operation of the processing unit 240 .
  • the program may be a program for causing the processor to execute the operation of the processing unit 240 .
  • the UE 100 can operate as a first UE, a second UE, a third UE, or any two or all of them.
  • the UE 100 operating as the first UE (also referred to as the first UE 100) transmits an uplink reference signal.
  • the first UE 100 (communication processing unit 133) transmits an uplink reference signal.
  • the uplink reference signal is a sounding reference signal (SRS).
  • the uplink reference signal transmitted by the first UE 100 is used for uplink communication of another UE (eg, the second UE).
  • the first UE 100 is mounted on a vehicle preceding the vehicle on which the second UE 100 is mounted.
  • the UE 100A and the UE 100B are mounted on vehicles traveling in a row.
  • UE 100A operates as a first UE
  • UE 100B operates as a second UE.
  • UE 100A and UE 100B move side by side in the order of UE 100A and UE 100B. Therefore, while each vehicle is moving in the direction of travel, the position of UE 100A will be the future position of UE 100B.
  • UE 100A transmits SRS, and UE 100B communicates with base station 200.
  • FIG. Therefore, the result of measurement based on the SRS is valid for UE 100B that has reached the position of UE 100 at the time of transmission of the SRS.
  • the period required for UE 100B to reach the position of UE 100A is calculated by [distance between UE 100A and UE 100B] ⁇ [vehicle speed].
  • the UE 100 (also referred to as the second UE 100) operating as the second UE acquires uplink resources and transmits data without sending SRS.
  • the second UE 100 (communication processing unit 133) transmits a scheduling request on the uplink.
  • the scheduling request is a scheduling request signal (SR signal).
  • the second UE 100 transmits a scheduling request on the uplink.
  • the base station 200 schedules the second UE 100 .
  • Scheduling is, for example, resource allocation.
  • the base station 200 transmits resource allocation information indicating allocated uplink resources to the second UE 100 on the downlink.
  • the base station 200 uses the channel measurement result based on the SRS received from the first UE 100 instead of the SRS received from the second UE 100 .
  • the second UE 100 is allocated resources for data transmission without SRS transmission.
  • the second UE 100 transmits data using the allocated resources.
  • the UE 100 (also referred to as the third UE 100) operating as the third UE transmits applied SRS information regarding the SRS transmitted by the first UE 100 and available for the second UE 100 on the uplink.
  • Applicable SRS information includes availability information and UE information.
  • Validity information relates to results of measurements based on uplink reference signals transmitted by the first UE 100 that are valid for the second UE 100 .
  • the UE information indicates the second UE 100 concerned.
  • the third UE 100 (information acquisition unit 131) acquires the valid information and the UE information.
  • the third UE 100 (communication processing unit 133) transmits applicable SRS information including the above valid information and the above UE information on the uplink.
  • the validity information indicates an uplink reference signal related to the result of the above measurement that is valid for the second UE 100. Details will be described with reference to FIG. In the example of FIG. 7, the UE 100 operates as the first UE and the third UE.
  • the UE 100 transmits SRS at timings 11-17.
  • the base station 200 receives each SRS and performs measurements based on each SRS.
  • the UE 100 transmits valid information and UE information.
  • the validity information indicates SRSs that are valid for the second UE 100 among SRSs that have been transmitted in the past.
  • the valid information is the identification information of the SRS.
  • the valid information is information indicating SRS2.
  • the valid information may indicate the uplink reference signal by directly indicating the transmission timing of the uplink reference signal.
  • the valid information indicates timing 13, which is the transmission timing of SRS2.
  • the useful information is a system frame number, a subframe number, a slot number, a symbol number, or a combination of two or more of a system frame number, a subframe number, a slot number, and a symbol number
  • the uplink reference signal indicates the transmission timing of
  • the effective information may be generated based on the positional relationship between the first UE 100 and the second UE 100.
  • the third UE 100 identifies an uplink reference signal corresponding to the above measurement result valid for the second UE 100 based on the distance between the first UE 100 and the second UE 100 and the moving speed of the second UE 100 . Then, the third UE 100 generates valid information indicating the uplink reference signal.
  • the positional relationship between the first UE 100 and the second UE 100 may be stored in advance in the third UE 100, or may be acquired from the base station 200 or another UE.
  • the third UE 100 transmits applied SRS information on the uplink.
  • the third UE 100 (communication processing unit 133) periodically transmits applicable SRS information including validity information and user equipment information on the uplink.
  • the base station 200 receives an uplink reference signal from the first UE 100 and performs measurements based on the uplink reference signal.
  • the base station 200 receives the applied SRS information from the third UE 100 and schedules the second UE 100 using the above measurement results identified based on the applied SRS information.
  • the base station 200 receives an uplink reference signal from the first UE 100 and performs measurement based on the uplink reference signal.
  • the base station 200 (control unit 245) performs channel-related measurements based on the uplink reference signal received from the first UE 100.
  • the measurement includes channel estimation, SINR (Signal to Interference plus Noise Ratio) measurement, identification of the best resource block, calculation of the preferred precoding matrix, calculation of the preferred number of layers, and the like.
  • SINR Signal to Interference plus Noise Ratio
  • the base station 200 (control unit 245) measures each of SRS1 to SRS9 transmitted from the UE100.
  • the base station 200 stores each result of the measurement.
  • the measurement result may be associated with the identifier of the SRS used for the measurement, or may be associated with the transmission timing of the SRS.
  • the base station 200 receives the applied SRS information from the third UE 100, and performs scheduling for the second UE 100 based on the results of the above measurements and the effective information and UE information included in the applied SRS information. conduct.
  • the base station 200 receives the above valid information and UE information on the uplink using control information.
  • the base station 200 (information acquisition unit 241) acquires the effective information and the UE information from the control information.
  • the base station 200 (control unit 245) identifies the valid measurement result for the second UE 100 indicated by the UE information based on the valid information.
  • the base station 200 (control unit 245) associates the identified measurement result with the UE information.
  • the base station 200 receives the scheduling request.
  • the base station 200 acquires the measurement result associated with the second UE 100 that is the transmission source of the received scheduling request.
  • the base station 200 (control unit 245) allocates uplink resources using the obtained measurement results.
  • the base station 200 (communication processing unit 243) transmits resource allocation information indicating allocation of the uplink resource to the second UE 100 indicated by the UE information.
  • the base station 200 receives applied SRS information transmitted by the UEs 100 operating as the first UE and the third UE.
  • the base station 200 identifies SRS2 received at timing 13 from the valid information included in the applicable SRS information, and identifies the result of the above measurement corresponding to SRS2.
  • the base station 200 associates the identified measurement result (or SRS2) with the second UE 100 indicated by the UE information.
  • the base station 200 receives the scheduling request from the second UE 100 and acquires the result of the measurement associated with the second UE 100.
  • the base station 200 performs uplink scheduling (for example, resource allocation) for the second UE 100 based on the obtained measurement results.
  • the base station 200 transmits resource allocation information to the second UE 100.
  • the resource allocation information is downlink control information (DCI) for resource allocation.
  • DCI downlink control information
  • the second UE 100 transmits data to the base station 200 based on the DCI.
  • the UE 100A operates as the first UE and the third UE, and the UE 100B operates as the second UE.
  • the UE 100A transmits an uplink reference signal (S301). For example, when the UE 100A receives an SRS request from the base station 200, the UE 100A periodically transmits the SRS. Base station 200 makes measurements based on the received SRS.
  • S301 uplink reference signal
  • the UE 100A transmits valid information and UE information on the uplink (S303). For example, the UE 100A periodically transmits applicable SRS information including availability information and UE information on the uplink. For example, the valid information indicates SRS2 and the UE information indicates UE100B.
  • the UE 100B transmits a scheduling request on the uplink (S305). For example, the UE 100B transmits an SR signal on the uplink when a data transmission request occurs.
  • the base station 200 transmits resource allocation information to the UE 100B on the downlink (S307). For example, the base station 200 identifies SRS2 that is valid for the UE 100B that has transmitted the SR signal based on the received valid information and UE information, and obtains the results of measurements performed based on the SRS2. The base station 200 allocates resources to the received UE 100B based on the measurement result. The base station 200 transmits resource allocation information indicating allocation of the resource to the UE 100B.
  • the UE 100B transmits data on the uplink (S309). For example, the UE 100B transmits data on the uplink using resources indicated by the received resource allocation information.
  • uplink resources can be allocated to the second UE 100 without the second UE 100 transmitting an uplink reference signal. Therefore, even if the number of UEs communicating on the uplink increases, it is possible to suppress an increase in resources used for uplink reference signals.
  • the validity information indicates the uplink reference signal by directly indicating the transmission timing of the uplink reference signal.
  • the valid information according to the first embodiment of the present disclosure is not limited to this example.
  • the validity information may indicate the uplink reference signal by indirectly indicating the transmission timing of the uplink reference signal.
  • the validity information may indicate the uplink reference signal by indicating the period between the transmission timing of the uplink reference signal and other timings related to the validity information and the user equipment information.
  • the validity information is the transmission timing of the validity information and the UE information.
  • the UE 100 transmits valid information and UE information.
  • the valid information indicates a period 21 from timing 13 to timing 19 when SRS2 is transmitted.
  • the base station 200 can calculate the timing 13 at which the SRS2 is transmitted from the period 21 indicated by the validity information and the timing 19 at which the validity information is transmitted. That is, the base station 200 can determine that the valid information indicates SRS2.
  • the information amount of the effective information can be suppressed.
  • the validity information may indicate the uplink reference signal by indicating a period between the transmission timing of the uplink reference signal and another timing that is the transmission timing of another uplink reference signal. Specifically, other uplink reference signals are identified based on the transmission timing of the availability information and UE information.
  • SRS9 which is closest to timing 19 when the validity information and UE information are transmitted, is identified as another uplink reference signal.
  • the validity information indicates a period 23 from timing 13 when SRS2 is transmitted to timing 17 when SRS9 is transmitted.
  • the base station 200 can calculate the timing 13 when the SRS2 is transmitted from the period 23 indicated by the validity information and the timing 17 when the SRS9 is transmitted. That is, the base station 200 can identify SRS2.
  • the useful information may indicate the period in terms of radio frames, subframes, slots, symbols, or a combination of two or more of radio frames, subframes, slots, and symbols.
  • the valid information may include information indicating the first UE 100.
  • the valid information includes identification information of the first UE 100 that transmitted the uplink reference signal.
  • the uplink reference signal is identified by the identification information of the first UE 100.
  • the base station 200 can distinguish the transmission sources and identify the SRSs.
  • the validity information may include timing information regarding the timing at which the above measurement result becomes valid for the second UE 100.
  • the timing information indicates the timing at which the measurement results become valid.
  • the timing information indirectly indicates when the result of the measurement becomes valid.
  • the timing information indicates the period between the timing when the result of the above measurement becomes valid and other timings regarding valid information and UE information. More specifically, the other timing is the timing at which the validity information is transmitted on the uplink.
  • the UE 100 operating as the third UE transmits valid information including timing information and UE information. Based on the validity information and the UE information, the base station 200 identifies valid measurement results. Further, the base station 200 validates the result of the measurement at timing 33 after the period 41 indicated by the timing information has elapsed from the reception timing 31 of the valid information. Note that the timing information may be transmitted separately from the validity information.
  • the timing information indicates the period by radio frames, subframes, slots, symbols, or a combination of two or more of radio frames, subframes, slots, and symbols.
  • the timing information may directly indicate the timing at which the above measurement results become valid.
  • the timing information indicates timing 33, which is the timing at which the measurement results become valid.
  • the timing information indicates the timing by a system frame number, subframe number, slot number, symbol number, or a combination of two or more of system frame number, subframe number, slot number and symbol number.
  • the timing information may be generated based on changes in the positional relationship between the first UE 100 and the second UE 100.
  • the third UE 100 acquires information indicating the distance between the first UE 100 and the second UE 100 at predetermined time intervals, and calculates changes in the distance. Then, the third UE 100 calculates the period or timing based on the change in distance and the moving speed of the second UE 100 .
  • the relative positions of the 1st UE 100 and the 2nd UE 100 fluctuate, the timing at which the measurement result becomes valid according to the validity information, and the 2nd UE 100 reaches the position where the uplink reference signal corresponding to the measurement result is transmitted.
  • the influence of CSI Aging (Channel State Information Aging) on the results of the above measurements may increase. That is, the accuracy or accuracy of scheduling based on the results of the above measurements may decrease.
  • the timing difference can be suppressed. Therefore, even if the relative positions of the first UE 100 and the second UE 100 fluctuate, the influence of CSI aging on the above measurement results can be suppressed. That is, it is possible to improve the precision or accuracy of scheduling based on the results of the above measurements.
  • the third UE 100 periodically transmits valid information.
  • the method of transmitting valid information according to the first embodiment of the present disclosure is not limited to this example.
  • the third UE 100 when the third UE 100 receives configuration information for transmission of valid information and UE information, even if the valid information and UE information are transmitted in the uplink, good. Specifically, when the third UE 100 (communication processing unit 133) receives an RRC message including configuration information for transmitting valid information and UE information on the downlink, the valid information and UE information are transmitted according to the configuration information. Send by uplink. Also, the base station 200 (communication processing unit 243) transmits an RRC message including configuration information for transmission of valid information and UE information on the downlink.
  • the configuration information can also be said to be information that configures the UE 100 to transmit valid information and UE information.
  • the third UE 100 (communication processing unit 133) receives an RRC message including configuration information for transmission of validity information and UE information, it transmits the validity information and UE information on the uplink according to the configuration information.
  • the third UE 100 (communication processing unit 133) does not receive the RRC message including the configuration information, it does not transmit the valid information and the UE information on the uplink. In this case, the second UE 100 (communication processing unit 133) transmits an uplink reference signal.
  • the base station 200 transmits an RRC message including configuration information for transmission of valid information and UE information to the UE 100, and the UE 100 acting as the third UE receives the RRC message (S401). .
  • UE 100 transmits a response message to the RRC message to base station 200 (S403).
  • the configuration information is included in SRS-Config in the RRC message.
  • the RRC message is an RRCReconfiguration message and the response message is an RRCReconfigurationComplete message.
  • the valid information is the transmission timing of the uplink reference signal and the transmission timing of the other uplink reference signal.
  • the third UE 100 may transmit the validity information and the UE information in advance.
  • the third UE 100 may transmit valid information and UE information when communicating an RRC message. Specifically, when the third UE 100 (communication processing unit 133) receives an RRC message including configuration information for transmitting valid information and UE information on the downlink, as a response to the RRC message, valid information and Send UE information on the uplink. The base station 200 (communication processing unit 243) receives the valid information and UE information on the uplink as a response to the RRC message.
  • the third UE 100 (communication processing unit 133) transmits the UE information on the uplink after responding to the RRC message (that is, after transmitting the validity information and the UE information). The other timing is indicated by the transmission of the UE information.
  • the base station 200 (communication processing unit 243) receives the UE information on the uplink.
  • the UE 100 operating as the first UE and the third UE receives the RRC message including the configuration information from the base station 200 (S501).
  • the UE 100 transmits a response message to the RRC message, which includes validity information and UE information, to the base station 200 (S503).
  • the validity information indicates the period between the transmission timing of a certain SRS and the transmission timing of another SRS. For example, referring to FIG. 7 again, the validity information indicates the period 23 between the transmission timing of SRS2 and the transmission timing of SRS9. Also, the period indicated by the valid information is associated with the UE information. For example, period 23 is associated with the identification information of the second UE 100 .
  • the UE 100 After transmitting the response message, the UE 100 transmits the SRS (S505). After transmitting the SRS, the UE 100 transmits UE information (S507).
  • the transmission timing of the UE information indicates the transmission timing of the other SRS.
  • the other SRS is an SRS transmitted immediately before the transmission timing of the UE information.
  • the transmission timing of the UE information corresponds to timing 19, and the other timing is timing 17, which is the transmission timing of SRS 9 immediately before timing 19.
  • FIG. Base station 200 calculates timing 13 based on period 23 and timing 17 and identifies SRS2.
  • the UE information transmitted after the transmission of the response message may be included in UCI (Uplink Control Information) or MAC CE (MAC Control Element).
  • the transmission timing of the other SRS may be indicated by the second UE 100 transmitting a scheduling request instead of the third UE 100 transmitting the UE information indicating the second UE 100 after transmitting the response message.
  • the measurement result can be validated without sending validation information when validating the measurement result. Therefore, communication traffic can be reduced.
  • This configuration is particularly effective when the change in the relative positions of the first UE 100 and the second UE 100 is small, because the change in the period is also small.
  • the third UE 100 periodically transmits valid information.
  • the method of transmitting valid information according to the first embodiment of the present disclosure is not limited to this example.
  • the third UE 100 may transmit the validity information and the UE information on the uplink when requested to transmit the validity information and the UE information.
  • the third UE 100 (communication processing unit 133) uplinks the valid information and the UE information in response to reception of downlink control information (DCI) including request information requesting transmission of the valid information and the UE information.
  • DCI downlink control information
  • the base station 200 (communication processing unit 243) transmits downlink control information including the above request information on the downlink.
  • the base station 200 (communication processing unit 243) transmits DCI including request information requesting transmission of valid information and UE information to the UE 100 operating as the third UE (S601).
  • the UE 100 (communication processing unit 133) transmits the SRS, validity information and UE information to the base station 200 in response to the request information (S603).
  • the request information may be an SRS request set to a value requesting transmission of availability information and UE information.
  • the third UE 100 may transmit valid information and UE information in response to a request from the second UE 100.
  • the third UE 100 (communication processing unit 133), in response to receiving control information including request information requesting transmission of valid information and user equipment information from the second UE 100 by direct communication, valid information and UE Send information on the uplink.
  • the second UE 100 transmits control information including the request information to the third UE 100 by direct communication.
  • the third UE 100 receives the control information through direct communication, the third UE 100 transmits valid information and UE information through uplink.
  • Direct communication is sidelink communication (single-hop communication using a single sidelink or multi-hop communication via multiple sidelinks).
  • direct communication is communication using the above-mentioned wireless LAN or wireless PAN (single-hop communication using a single link in each communication method, or multi-hop communication via multiple links in each format) may be
  • the UE 100B operating as the second UE transmits control information including the request information to the UE 100A operating as the third UE on the sidelink (S801).
  • the control information may be transmitted via PSCCH (Physical Sidelink Control Channel) or PSSCH (Physical Sidelink Shared Channel).
  • the UE 100A transmits effective information and UE information on the uplink in response to receiving the control information including the request information on the sidelink (S803). For example, the UE 100A transmits, on the uplink, validity information regarding the result of the measurement that is valid for the UE 100B, which is the transmission source of the control information, and UE information indicating the UE 100B.
  • the UE 100B After transmitting the control information, the UE 100B transmits a scheduling request on the uplink (S805). For example, the UE 100B transmits an SR signal on the uplink after transmitting control information on the sidelink.
  • the effective information and UE information transmitted by the UE 100A in response to receiving the above control information may be substituted for the scheduling request of the UE 100B.
  • the UE 100B is allocated resources for data transmission without transmitting a scheduling request.
  • Second Embodiment> A second embodiment of the present disclosure will be described. In this embodiment, a UE cooperates with other UEs to transmit data on the uplink.
  • system configuration> An example of the configuration of the system 2 according to the second embodiment of the present disclosure will be described with reference to FIG. 14 .
  • system 2 includes UE 100 (UE 100A to UE 100C) and base station 200.
  • FIG. 14 An example of the configuration of the system 2 according to the second embodiment of the present disclosure will be described with reference to FIG. 14 .
  • system 2 includes UE 100 (UE 100A to UE 100C) and base station 200.
  • System 2 is a 3GPP TS-compliant system. More specifically, for example, the system 2 is a 5G or NR TS compliant system. Of course, system 2 is not limited to this example.
  • Base station 200 receives data cooperatively transmitted on the uplink from a plurality of UEs 100 located within its coverage area. For example, the base station 200 allocates resources for coordinated transmission to each of the UEs 100A to 100C, and receives coordinated transmitted data.
  • UE 100 A UE 100 cooperates with another UE 100 to transmit data on the uplink. For example, UE 100A shares data to UE 100B and UE 100C on the sidelink, and UE 100A to UE 100C coordinately transmit the data on the uplink.
  • FIG. 15 An example of operations of the UE 100 and the base station 200 according to the second embodiment of the present disclosure will be described with reference to FIGS. 15 and 16.
  • FIG. 15 the UE 100 acting as a first, second or third UE may act as a transmitting UE, a representative UE, a coordinating UE, or any two or all of them.
  • Operation of transmitting UE UE 100 (also called transmitting UE 100) operating as a transmitting UE transmits cooperative transmission data to be transmitted to base station 200 to UE 100 operating as a cooperative UE (also called cooperative UE 100). . Also, the transmitting UE 100 acquires a list of cooperative UEs 100 (also referred to as a cooperative UE list) as cooperative user equipment information.
  • a coordinated UE list is two or more UEs 100 capable of transmitting or receiving coordinated transmission data in direct communication, and two or more UEs 100 capable of cooperatively transmitting coordinated transmission data to the base station 200.
  • a UE 100 (ie two or more cooperating UEs 100) is shown.
  • the coordinated UE list indicates two or more coordinated UEs 100 to which the transmitting UE 100 can transmit coordinated transmission data.
  • the cooperating UE list is a list of identifiers of cooperating UEs 100 .
  • Direct communication is sidelink communication (single-hop communication using a single sidelink or multi-hop via multiple sidelinks).
  • the transmitting UE 100 acquires the cooperating UE list using direct communication. Specifically, the transmitting UE 100 acquires a cooperative UE list using control information in sidelink communication. For example, the transmitting UE 100 identifies the cooperative UE 100 capable of sidelink communication using sidelink sensing or the like. Also, the transmitting UE 100 may acquire the cooperative UE list by transmitting and receiving information other than control information in sidelink communication on the sidelink.
  • a plurality of cooperating UEs 100 indicated by the cooperating UE list may be UEs 100 that operate as two or more second UEs. Further, when the coordinated UE 100 also operates as a coordinated UE, the plurality of coordinated UEs 100 indicated by the coordinated UE list may be the UE 100 operating as one or more first UEs and the UE 100 operating as one or more second UEs. .
  • the transmitting UE 100 shares cooperative transmission data with the cooperative UE 100 by direct communication. Specifically, transmitting UE 100 (information acquisition unit 131) acquires a cooperative UE list. The transmitting UE 100 (communication processing unit 133) transmits cooperative transmission data to at least one cooperative UE 100 out of two or more cooperative UEs 100 indicated by the cooperative UE list, via the sidelink. Note that when the transmitting UE 100 also operates as a cooperating UE, the coordinating UE list may separately include information indicating one or more cooperating UEs 100 with which the transmitting UE 100 can communicate on the sidelink and information indicating the transmitting UE 100. That is, the transmitting UE 100 may transmit cooperative transmission data to one or more cooperative UEs 100 .
  • the transmitting UE 100 acquires cooperative transmission data within the transmitting UE 100.
  • the transmitting UE 100 (communication processing unit 133) transmits the acquired cooperative transmission data to at least one cooperative UE 100 on the sidelink.
  • the transmitting UE 100 acquires data stored in the storage unit 120 or data received from an upper layer such as an application running on the transmitting UE 100 .
  • the transmitting UE 100 transmits the acquired data to at least one cooperating UE 100 indicated by the cooperating UE list.
  • the representative UE 100 transmits a cooperating UE list to the base station 200 as a representative of two or more cooperating UEs 100 .
  • the representative UE 100 transmits the coordinated UE list to the base station 200 .
  • the representative UE 100 (information acquisition unit 131) acquires a cooperative UE list.
  • the representative UE 100 (communication processing unit 133 ) transmits control information including the cooperative UE list to the base station 200 .
  • the representative UE 100 (communication processing unit 133) transmits UCI including the cooperative UE list to the base station 200.
  • the representative UE 100 (communication processing unit 133) transmits a MAC CE or RRC message including the coordinated UE list to the base station 200.
  • the cooperative UE 100 receives cooperative transmission data from the transmitting UE 100 and transmits the received cooperative transmission data to the base station 200 in cooperation with other cooperative UEs 100 .
  • the cooperative UE 100 receives cooperative transmission data from the transmitting UE 100 by direct communication. Specifically, the cooperative UE 100 (communication processing unit 133) receives the cooperative transmission data from the transmitting UE 100 on the sidelink.
  • the cooperative UE 100 receives resource allocation information indicating UL resources from the base station 200 .
  • the cooperative UE 100 (communication processing unit 133 ) receives control information including resource allocation information from the base station 200 .
  • the cooperative UE 100 (information acquisition unit 131) acquires resource allocation information included in control information.
  • the cooperative UE 100 receives cooperative precoding for cooperative MIMO from the base station 200 .
  • the cooperative UE 100 (communication processing unit 133) receives control information including cooperative precoding from the base station 200.
  • FIG. The cooperative UE 100 (information acquisition unit 131) acquires cooperative precoding included in control information. Note that cooperative precoding may be included in control information included in resource allocation information.
  • a cooperative UE 100 cooperates with another cooperative UE 100 to transmit cooperative transmission data to the base station 200 .
  • cooperative transmission means sharing and transmitting cooperative transmission data among a plurality of cooperative UEs 100 .
  • cooperative transmission may mean sharing cooperative transmission data among a plurality of cooperative UEs 100 and transmitting in the same time, frequency, or space.
  • cooperative transmission may mean sharing cooperative transmission data among a plurality of cooperative UEs 100 and transmitting with cooperative MIMO.
  • the coordinated UE 100 transmits coordinated transmission data to the base station 200 using UL resources indicated by resource allocation information received from the base station 200 .
  • cooperative precoding is received from base station 200
  • cooperative UE 100 transmits cooperative transmission data to base station 200 using the received cooperative precoding.
  • Cooperative MIMO is achieved by transmitting cooperative transmission data using cooperative precoding that is received by two or more cooperative UEs 100 respectively.
  • the second UE 100 according to the second embodiment is substantially the same as in the first embodiment except that it does not transmit a scheduling request. That is, the second UE 100 transmits data using resources allocated to the base station 200 without transmitting a scheduling request or an uplink reference signal.
  • the third UE 100 transmits applicable SRS information including valid information and UE information to the base station 200 for transmission of cooperative transmission data.
  • the third UE 100 transmits applied SRS information on the uplink. Specifically, the third UE 100 (communication processing unit 133) transmits effective information and UE information in the uplink in response to acquisition of cooperative transmission data.
  • the third UE 100 When the third UE 100 operates as a transmitting UE, the third UE 100 transmits valid information and UE information on the uplink when it acquires cooperative transmission data within the third UE 100 .
  • the third UE 100 When the third UE 100 operates as a cooperative UE, upon receiving cooperative transmission data from the transmitting UE 100 by direct communication, the third UE 100 transmits valid information and UE information on the uplink.
  • the effective information and the UE information are transmitted, so it is possible to reduce the amount of communication.
  • the validity information and the UE information are transmitted in response to the request for transmission of cooperative transmission data, it is possible to reduce the deviation between the timing at which the result of the measurement becomes effective and the timing at which cooperative transmission data is transmitted. Therefore, resources suitable for transmission of cooperative transmission data can be allocated.
  • the third UE 100 may transmit the applied SRS information and the cooperative UE list at the same time.
  • the coordinated UE list is included in the control information that includes applicable SRS information.
  • the applied SRS information may include effective information regarding the result of the measurement that is effective for the coordinated UE 100 and UE information indicating the coordinated UE 100.
  • the base station 200 receives an uplink reference signal from the first UE 100 and performs measurements based on the uplink reference signal.
  • the base station 200 receives the applied SRS information from the third UE 100 and receives the cooperating UE list from the representative UE 100 .
  • the base station 200 schedules for cooperative transmission by the cooperative UE 100 using the results of the above measurements identified based on the applied SRS information and the cooperative UE list. Note that the above measurement and reception of applied SRS information are substantially the same as in the first embodiment, so description thereof will be omitted.
  • the base station 200 receives the coordinated UE list from the representative UE 100 .
  • the base station 200 (communication processing unit 243 ) receives control information including the cooperative UE list from the representative UE 100 .
  • the base station 200 (information acquisition unit 241) acquires the coordinated UE list included in the control information.
  • the base station 200 (storage unit 230) stores the acquired cooperative UE list.
  • the base station 200 receives applied SRS information from the third UE 100 and receives the coordinated UE list from the representative UE 100 .
  • Base station 200 allocates UL resources for cooperative transmission to cooperative UE 100 based on the applied SRS information and the cooperative UE list.
  • the base station 200 transmits resource allocation information indicating the UL resource to the cooperative UE 100 .
  • the base station 200 (control unit 245) receives the coordinated UE list on the uplink, the above measurement result indicated by the validity information is valid for the plurality of coordinated UEs 100 indicated by the coordinated UE list.
  • UL resources are assigned to each of the coordinating UEs 100 using each of the above measurement results.
  • the base station 200 (communication processing unit 243) transmits resource allocation information indicating allocation of the UL resource to each of the coordinated UEs 100 indicated by the coordinated UE list.
  • the base station 200 associates the measurement result with the UE information based on the effective information and the UE information included in the applicable SRS information.
  • the base station 200 acquires each of the above measurement results associated with UE information that matches each of the cooperating UEs 100 indicated by the cooperating UE list.
  • the base station 200 allocates UL resources for cooperative transmission to each of the cooperative UEs 100 based on the obtained measurement results.
  • the base station 200 transmits control information including resource allocation information indicating allocation of the UL resource to each of the cooperative UEs 100 concerned.
  • the base station 200 may transmit cooperative precoding for cooperative MIMO to each cooperative UE 100.
  • base station 200 (control section 245) acquires cooperative precoding based on each of the above measurement results.
  • the base station 200 (communication processing unit 243) transmits control information including cooperative precoding to each of the cooperative UEs 100 concerned.
  • the base station 200 (communication processing unit 243) transmits DCI including resource allocation information and cooperative precoding to each cooperative UE 100.
  • the base station 200 receives coordinated transmission data transmitted by each of the coordinated UEs 100 in cooperation. Specifically, the base station 200 (communication processing unit 243) receives each coordinated transmission data transmitted by the UL resource allocated to each coordinated UE 100.
  • FIG. 243 illustrates the base station 200 (communication processing unit 243).
  • the coordinated transmission data transmitted by each of the coordinated UEs 100 may be part of the entire coordinated transmission data. For example, a first portion of the overall cooperative transmission data is transmitted by cooperative UE 100-1, and a second portion different from the first portion is transmitted by cooperative UE 100-2. Also, the coordinated transmission data transmitted by each of the coordinated UEs 100 may partially or wholly overlap. For example, the first portion and the second portion may overlap. Also, the coordinated transmission data to be transmitted by two or more coordinated UEs 100 may be the entire coordinated transmission data.
  • the base station 200 acquires the entire coordinated transmission data based on each received coordinated transmission data. More specifically, base station 200 recovers the entire coordinated transmission data based on each received portion of the entire coordinated transmission data.
  • FIG. 15 and 16 An example of processing according to the second embodiment of the present disclosure will be described with reference to FIGS. 15 and 16.
  • FIG. 15 and 16 the UE 100A operates as the transmitting UE, the representative UE and the cooperative UE, and the UE 100B and UE 100C operate as the cooperative UE. Also, the UE 100A operates as the first UE, the second UE, and the third UE, and the UE 100B and the UE 100C operate as the second UE.
  • the UE 100A transmits an uplink reference signal (S901). For example, UE 100A transmits SRS1 to SRS9. The UE 100A transmits the SRS at timings as shown in FIG.
  • the base station 200 performs channel-related measurements based on the SRS transmitted from the UE 100A.
  • UE 100A transmits cooperative transmission data to UE 100A and UE 100B by direct communication (S903). For example, when a transmission request for cooperative transmission data is generated, UE 100A transmits cooperative transmission data to UE 100B and UE 100C operating as cooperative UEs on the sidelinks. Also, the UE 100A obtains a coordinated UE list indicating the UE 100B and the UE 100C. Also, the UE 100A acquires valid information and UE information for the UE 100B and the UE 100C.
  • the UE 100A transmits the effective information, the UE information and the cooperative UE list on the uplink (S905). For example, after sharing the coordinated transmission data, the UE 100A transmits applied SRS information including effective information and UE information and a coordinated UE list on the uplink.
  • the base station 200 transmits resource allocation information and cooperative precoding to the UEs 100A to 100C on the downlink (S907). For example, the base station 200 obtains the valid measurement results based on the applied SRS information for the UE 100B and the UE 100C indicated by the coordinated UE list.
  • SRS9 is transmitted immediately before the transmission timing of applied SRS information.
  • UE 100B has reached the position of UE 100A at the timing when SRS8 is transmitted.
  • the UE 100C has reached the position of the UE 100C at the timing when the SRS2 was transmitted.
  • the result of the measurement based on SRS8 is used for UE 100B, and the result of the measurement based on SRS2 is used for UE 100C. That is, the valid information for the UE 100B indicates SRS8, and the valid information for the UE 100C indicates SRS2.
  • the base station 200 acquires the above measurement results based on SRS8 for the UE 100B, and acquires the above measurement results based on the SRS2 for the UE 100C.
  • base station 200 since UE 100A also operates as a cooperative UE, base station 200 also acquires the above measurement result based on SRS9. Base station 200 then allocates resources to UE 100A to UE 100C based on each of the obtained measurement results. If cooperative transmission is performed using cooperative MIMO, base station 200 also obtains cooperative precoding based on each of the above obtained measurement results. Base station 200 then transmits control information including resource allocation information and cooperative precoding to UE 100A to UE 100C.
  • the UE 100A to UE 100C transmit cooperative transmission data on the uplink (S909).
  • UE 100A-UE 100C transmit cooperative transmission data on the uplink using the allocated resources and cooperative precoding.
  • uplink resources for cooperative transmission can be allocated to cooperative UEs 100 without the cooperative UEs 100 transmitting uplink reference signals. Therefore, even if the number of UEs performing cooperative transmission increases, it is possible to suppress an increase in resources used for uplink reference signals.
  • control information for cooperative transmission is not limited to this example.
  • the third UE 100 may transmit effective information and UE information for each of the cooperating UEs 100 indicated by the cooperating UE list.
  • the validity information relates to the result of the above measurement that is valid for the cooperative UE 100 operating as the second UE among the multiple cooperative UEs 100 indicated by the cooperative UE list.
  • the UE information indicates the cooperating UE 100 that operates as the second one of the plurality of cooperating UEs 100 .
  • the applied SRS information according to the second embodiment also includes information about UEs 100 other than UEs 100 operating as cooperative UEs. Therefore, the third UE 100 transmits only applicable SRS information for the UE 100 indicated by the cooperative UE list on the uplink.
  • the UE 100 does not need to transmit the cooperative UE list, so it is possible to reduce resources used for control for cooperative transmission.
  • the third UE 100 may transmit effective information and UE information about the UE 100 indicated by the group information. Specifically, the third UE 100 transmits only applicable SRS information for the UE 100 indicated by the group information on the uplink.
  • the group information indicates a group of vehicles in which the UE 100 is mounted (for example, a group of vehicles running in a row).
  • the system in the example application includes UE 100A-UE 100D, base station 200A and base station 200B.
  • the UE 100A to UE 100D are mounted on vehicles, and the vehicles run in a row.
  • UE 100A to UE 100D can communicate with each other via sidelinks.
  • UE100A to UE100D are each capable of communicating with the base station 200A.
  • the UE 100A periodically transmits SRS and applied SRS information to the base station 200A.
  • UE 100B-UE 100D do not transmit SRS.
  • the UE 100C transmits a scheduling request to the base station 200A.
  • the base station 200A Based on the applied SRS information received, the base station 200A identifies an SRS valid for the UE 100C that has transmitted the scheduling request from among the SRSs received in the past, and obtains the measurement results for the channel based on the identified SRS. Then, the base station 200A allocates UL resources to the UE 100C based on the obtained measurement result.
  • the UE 100C uses the assigned UL resource to transmit data to the base station 200A.
  • the UE 100A cannot communicate with the base stations 200A and 200B because the vehicle on which the UE 100A is mounted has entered a tunnel. Therefore, UE 100A, as a transmitting UE, shares data with UE 100B to UE 100D. Any one of UE100B to UE100D as a representative UE and a third UE transmits a coordinated UE list and applied SRS information indicating UE100B to UE100D to base station 200A.
  • the base station 200A identifies, based on the applied SRS information, SRSs valid for UE100B to UE100D indicated by the coordinated UE list from among a plurality of SRSs transmitted by UE100A in the past, and the results of measurement based on the identified SRSs are respectively displayed. get.
  • the base station 200A then allocates UL resources to the UEs 100B to 100D based on the respective measurement results.
  • UE 100B-UE 100D cooperatively transmit the shared data to base station 200A using the assigned UL resources.
  • the UE 100A can communicate with the base station 200B because the vehicle on which the UE 100A is mounted has left the tunnel. However, the UE 100A cannot communicate with the base station 200A because it is outside the coverage area. Also, the UE 100B cannot communicate with the base stations 200A and 200B because the vehicle on which the UE 100B is mounted has entered the tunnel. Therefore, UE 100A shares data with UE 100C and UE 100D. Also, UE 100A, as a representative UE, transmits information indicating base station 200A operating as a cooperative base station, a cooperative UE list indicating UE 100C and UE 100D, and applied SRS information to base station 200B.
  • the base station 200B transmits the cooperative UE list and applicable SRS information to the base station 200A.
  • Base station 200A allocates UL resources to UE 100C and UE 100D based on the received coordinated UE list and applied SRS information.
  • the UE 100C and UE 100D cooperatively transmit the shared data to the base station 200A using the assigned UL resources.
  • the base station 200A transmits the data received from the UE 100C and the UE 100D to the base station 200B.
  • the UE 100A also transmits data to the base station 200A.
  • the base station 200B receives data from the UE 100A and the base station 200A.
  • a group of UEs 100 with similar movement trajectories can allocate uplink resources by using the uplink reference signal transmitted by the preceding UE 100 without transmitting an uplink reference signal. Therefore, even if the number of UEs communicating on the uplink increases, it is possible to suppress an increase in resources used for uplink reference signals.
  • uplink reference signals are transmitted from each of the plurality of UEs 100, and resources may become tight. However, according to each embodiment of the present disclosure, it is possible to avoid the tightness of the resource.
  • the UE 100A cannot communicate with the base station 200A because the vehicle on which the UE 100A is mounted has moved from the coverage area of the base station 200A to the coverage area of the base station 200B. However, due to the failure occurring in the base station 200B, the UE 100A cannot communicate with the base station 200B.
  • UE 100A detects a communication abnormality with base station 200B
  • UE 100A shares information indicating the communication abnormality with UE 100B to UE 100D. Any one of UE100B to UE100D as a representative UE and a third UE transmits a coordinated UE list and applied SRS information indicating UE100B to UE100D to base station 200A.
  • the base station 200A Based on the applicable SRS information, the base station 200A identifies SRSs that are valid for UE100B to UE100D indicated by the coordinated UE list from among the plurality of SRSs transmitted by UE100A in the past, and obtains the results of measurement based on the identified SRSs. Get each. The base station 200A then allocates UL resources to the UEs 100B to 100D based on the respective measurement results. The UE 100B-UE 100D cooperatively transmit the shared information to the base station 200A using the assigned UL resources.
  • the UE 100B is also unable to communicate with the base station 200A because the vehicle on which the UE 100B is mounted has moved from the coverage area of the base station 200A to the coverage area of the base station 200B.
  • UE100C and UE100D can communicate with base station 200A, UE100A transmits information shared via UE100C and UE100D to base station 200A and the remote control system.
  • the UE 100C is also unable to communicate with the base station 200A because the vehicle on which the UE 100C is mounted has moved from the coverage area of the base station 200A to the coverage area of the base station 200B.
  • UE 100D can communicate with base station 200A, UE 100A transmits information shared via UE 100D to base station 200A and the remote control system.
  • UE 100A even after the UE 100A becomes unable to communicate with the base station 200A and the base station 200B, it can still communicate with the base station 200A via the UE100B to UE100D mounted on subsequent vehicles.
  • UE 100B-UE 100D can transmit data without transmission of uplink reference signals by UE 100B-UE 100D.
  • the overhead for data transmission of UE 100B-UE 100D is reduced. Therefore, it is possible to shorten the time required to restore the connection between the UE 100A and the remote control system due to the communication interruption between the UE 100A and the base station 200B.
  • the safety of the vehicle group in which the UE 100 is mounted can be improved. Especially in the case of driverless vehicles, it is effective because communication disruption affects the safety or availability of driverless operation.
  • steps in the processes described in this specification do not necessarily have to be executed in chronological order according to the order described in the flowcharts or sequence diagrams.
  • steps in a process may be performed in an order different from that depicted in a flowchart or sequence diagram, or in parallel.
  • some of the steps in the process may be deleted and additional steps may be added to the process.
  • a method may be provided that includes the operation of one or more components of the apparatus described herein, and a program may be provided for causing a computer to perform the operation of the components. Further, a computer-readable non-transitional tangible recording medium recording the program may be provided.
  • a method may be provided that includes the operation of one or more components of the apparatus described herein, and a program may be provided for causing a computer to perform the operation of the components.
  • a computer-readable non-transitional tangible recording medium recording the program may be provided.
  • such methods, programs, and computer-readable non-transitory tangible computer-readable storage mediums are also included in the present disclosure.
  • user equipment refers to a mobile station, mobile terminal, mobile device, mobile unit, subscriber station, subscriber terminal, subscriber equipment, subscriber unit, wireless It may also be called a station, a wireless terminal, a wireless device, a wireless unit, a remote station, a remote terminal, a remote device, a remote unit, or the like.
  • transmit may mean performing at least one layer of processing within the protocol stack used for transmission, or physically transmitting a signal wirelessly or by wire. It may mean sending to Alternatively, “transmitting” may mean a combination of performing the at least one layer of processing and physically transmitting the signal wirelessly or by wire.
  • recipient may mean processing at least one layer in the protocol stack used for reception, or physically receiving a signal wirelessly or by wire. may mean that Alternatively, “receiving” may mean a combination of performing the at least one layer of processing and physically receiving the signal wirelessly or by wire.
  • the at least one layer may also be translated as at least one protocol.
  • “obtain/acquire” may mean obtaining information among stored information, obtaining information among information received from other nodes. or to obtain the information by generating the information.
  • the terms “include” and “comprise” do not mean to include only the recited items, but may include only the recited items, or may include only the recited items. It means that further items may be included in addition to the
  • a user equipment (100) comprising:
  • the uplink reference signal is a sounding reference signal (SRS);
  • SRS sounding reference signal
  • the validity information indicates the uplink reference signal for the result of the measurement that is valid for the second user equipment; A user equipment according to feature 1 or 2.
  • the validity information indicates the uplink reference signal by directly indicating the transmission timing (13) of the uplink reference signal;
  • the useful information is a system frame number, a subframe number, a slot number, a symbol number, or a combination of two or more of a system frame number, a subframe number, a slot number, and a symbol number of the uplink reference signal. indicating the transmission timing, A user equipment according to feature 4.
  • the useful information is the uplink reference signal by indicating a period (21) between the transmission timing (13) of the uplink reference signal and another timing (19) for the useful information and the user equipment information. indicates a A user equipment according to feature 3.
  • the validity information indicates the period (23) between the transmission timing (13) of the uplink reference signal and another timing (17) which is the transmission timing of another uplink reference signal, thereby indicating the uplink indicating a reference signal, A user equipment according to feature 3.
  • the useful information indicates the period in terms of radio frames, subframes, slots, symbols, or a combination of two or more of radio frames, subframes, slots, and symbols.
  • User equipment according to feature 6 or 7.
  • the availability information includes information indicative of the first user equipment; User equipment according to any one of the features 1-8.
  • said validity information comprises timing information relating to when (33) the results of said measurements are valid for said second user equipment; User equipment according to any one of features 3-9.
  • said timing information indicates a time period (41) between said timing when the result of said measurement is valid and another timing (31) for said valid information and said user equipment information; 12.
  • the user equipment of feature 11 is a time period (41) between said timing when the result of said measurement is valid and another timing (31) for said valid information and said user equipment information; 12.
  • the communication processing unit When the communication processing unit receives an RRC (Radio Resource Control) message including configuration information for transmission of the valid information and the user equipment information on the downlink, the communication processing unit configures the valid information and the user equipment according to the configuration information. send information on an uplink, User equipment according to any one of the features 1-13.
  • RRC Radio Resource Control
  • the communication processing unit When receiving an RRC message including configuration information for transmission of the availability information and the user equipment information on the downlink, the communication processing unit transmits the availability information and the user equipment information as a response to the RRC message. send on the uplink, The user equipment of feature 7.
  • the communication processor transmits the user equipment information on an uplink after responding to the RRC message; 16.
  • the user equipment information transmitted after responding to the RRC message is included in UCI (Uplink Control Information) or MAC CE (Media Access Control Control Element), User equipment according to feature 16 or 17.
  • UCI Uplink Control Information
  • MAC CE Media Access Control Control Element
  • the communication processing unit transmits the valid information and the user equipment information on an uplink in response to receiving downlink control information including request information requesting transmission of the valid information and the user equipment information.
  • User equipment according to any one of the features 1-13.
  • the request information is an SRS request set to a value requesting transmission of the valid information and the user equipment information; 20.
  • the communication processing unit in response to receiving control information including request information requesting transmission of the valid information and the user device information from the second user device through direct communication, transmits the valid information and the user device information. send information on an uplink, User equipment according to any one of the features 1-13.
  • the direct communication is a sidelink communication;
  • the control information is received via PSCCH (Physical Sidelink Control Channel) or PSSCH (Physical Sidelink Shared Channel), 22.
  • PSCCH Physical Sidelink Control Channel
  • PSSCH Physical Sidelink Shared Channel
  • the communication processing unit periodically transmits the valid information and the user equipment information on an uplink.
  • User equipment according to any one of the features 1-13.
  • said second user equipment is capable of transmitting or receiving data in direct communication and is capable of cooperatively transmitting said data on an uplink; User equipment according to any one of the features 1-13.
  • the communication processing unit transmits the valid information and the user equipment information on an uplink in response to obtaining the data. 25.
  • the information acquisition unit acquires the data within the user device; 26.
  • the communication processing unit receives the data from another user device through the direct communication; User equipment according to feature 25 or 26.
  • the first user equipment is capable of transmitting or receiving the data on the direct communication and cooperatively transmitting the data on an uplink; User equipment according to any one of the features 24-27.
  • the information acquisition unit acquires cooperative user equipment information indicating a plurality of user equipments, the communication processing unit transmits the cooperative user equipment information on an uplink; wherein the plurality of user equipment is two or more second user equipment or one or more first user equipment and one or more second user equipment; User equipment according to any one of the features 24-28.
  • the validity information relates to a result of the measurement that is valid for the second of the plurality of user equipments indicated by the collaborative user equipment information; the user equipment information is indicative of the second user equipment of the plurality of user equipment; User equipment according to feature 29.
  • (Feature 32) the valid information is generated based on a positional relationship between the first user device and the second user device; User equipment according to any one of the features 1-31.
  • a base station (200) comprising:
  • the communication processing unit receives the valid information and the user equipment information on an uplink in response to the RRC message; 36.
  • the base station of feature 35 The base station of feature 35.
  • the communication processing unit transmits downlink control information including request information requesting transmission of the valid information and the user equipment information on the downlink. 35.
  • the communication processing unit transmits resource allocation information indicating allocation of uplink resources to the second user equipment indicated by the user equipment information; the uplink resources are allocated using results of the measurements that are valid for the second user equipment indicated by the validity information; A base station according to any one of features 34-37.
  • the communication processing unit When the communication processing unit receives cooperative user equipment information indicating a plurality of user equipments on an uplink, the communication processing unit transmits the resource allocation information to the plurality of user equipments indicated by the cooperative user equipment information; wherein the plurality of user equipment is two or more second user equipment or one or more first user equipment and one or more second user equipment; each of the plurality of user equipment can transmit or receive data in direct communication and can cooperatively transmit the data on the uplink;
  • the uplink resource is valid for each of the two or more second user equipments indicated by the availability information, or is valid for the one or more second user equipments indicated by the availability information. assigned using a result of one of the measurements and a measurement of an uplink reference signal received from the first user equipment; The base station of feature 38.
  • the information acquisition unit acquires cooperative precoding, wherein the communication processing unit transmits control information including the cooperative precoding to the plurality of user equipments; 40.
  • Validity information about results of measurements based on an uplink reference signal transmitted by a first user equipment (100) that are valid for a second user equipment (100) and said second user. obtaining user device information indicative of the device; transmitting the valid information and the user equipment information on an uplink using control information; A program that makes a computer run
  • Validity information about results of measurements based on an uplink reference signal transmitted by a first user equipment (100) that are valid for a second user equipment (100) and said second user.
  • Validity information about results of measurements based on an uplink reference signal transmitted by a first user equipment (100) that are valid for a second user equipment (100) and said second user. obtaining user device information indicative of the device; transmitting the valid information and the user equipment information on an uplink using control information; A computer-readable non-transitional tangible recording medium in which a program for causing a computer to execute is recorded.
  • Validity information about results of measurements based on an uplink reference signal transmitted by a first user equipment (100) that are valid for a second user equipment (100) and said second user.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

User equipment (100) according to an aspect disclosed herein comprises: an information acquisition unit (131) for acquiring, as a result of a measurement based on an uplink reference signal transmitted by first user equipment (100), valid information related to the result of the measurement that is valid for second user equipment (100), and for acquiring user equipment information indicating the second user equipment; and a communication processing unit (133) for transmitting the valid information and the user equipment information to an uplink using control information.

Description

ユーザ機器及び基地局User Equipment and Base Station 関連出願の相互参照Cross-reference to related applications
 本出願は、2021年5月26日に出願された日本出願番号2021-88661号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2021-88661 filed on May 26, 2021, and the contents thereof are incorporated herein.
 本開示は、ユーザ機器及び基地局に関する。 The present disclosure relates to user equipment and base stations.
 3GPP(3rd Generation Partnership Project)において移動体通信技術が提案され、技術仕様(Technical Specification:TS)として標準化されている。とりわけ現在では、5G(5th Generation)の技術が提案され、標準化されている。 A mobile communication technology has been proposed in the 3GPP (3rd Generation Partnership Project) and standardized as a Technical Specification (TS). Especially now, 5G (5th Generation) technology has been proposed and standardized.
 近年、複数のユーザ機器(user equipment:UE)による協調的アップリンク(Uplink:UL)が検討され始めている。例えば、特許文献1では、送信元のUEから複数のUEへデータがサイドリンクで共有され、基地局はSRS(Sounding Reference Signal)を受信した当該複数のUEにMIMO(Multi Input Multi Output)パラメータを通知し、当該複数のUEは通知されたMIMOパラメータを用いて当該基地局へ当該データを送信することが開示されている。 In recent years, cooperative uplink (UL) by multiple user equipment (UE) has begun to be considered. For example, in Patent Document 1, data is shared from a source UE to a plurality of UEs via sidelinks, and a base station sends MIMO (Multi Input Multi Output) parameters to the plurality of UEs that have received SRS (Sounding Reference Signal). and the UEs transmit the data to the base station using the notified MIMO parameters.
米国特許出願公開2020/0336178号明細書U.S. Patent Application Publication No. 2020/0336178
 上述の特許文献1によれば、基地局は、基地局へデータを送信する複数のUEはそれぞれSRSを基地局へ送信する。しかし、発明者の詳細な検討の結果、以下の課題が見出された。即ち、UEの数が増加すると、SRSに用いられるリソースが増加する。 According to the above-mentioned Patent Document 1, a base station transmits an SRS to the base station for each of a plurality of UEs that transmit data to the base station. However, as a result of detailed studies by the inventors, the following problems were found. That is, as the number of UEs increases, the resources used for SRS increase.
 本開示の目的は、アップリンクで通信するUEの数が増加してもアップリンクリファレンス信号に用いられるリソースの増加を抑制することを可能にするユーザ機器及び基地局を提供することにある。 An object of the present disclosure is to provide a user equipment and a base station that can suppress an increase in resources used for uplink reference signals even if the number of UEs communicating on the uplink increases.
 本開示の一態様に係るユーザ機器(100)は、第1のユーザ機器(100)により送信されるアップリンクリファレンス信号に基づく測定の結果であって、第2のユーザ機器(100)について有効である測定の結果に関する有効情報と、上記第2のユーザ機器を示すユーザ機器情報とを取得する情報取得部(131)と、上記有効情報及び上記ユーザ機器情報を、制御情報を用いてアップリンクで送信する通信処理部(133)と、を備える。 A user equipment (100) according to one aspect of the present disclosure provides a measurement result based on an uplink reference signal transmitted by a first user equipment (100) valid for a second user equipment (100). an information acquisition unit (131) for acquiring useful information about a result of a measurement and user equipment information indicative of said second user equipment; and transmitting said useful information and said user equipment information in uplink using control information. and a communication processing unit (133) for transmission.
 本開示の一態様に係る基地局(200)は、第1のユーザ機器(100)により送信されるアップリンクリファレンス信号に基づく測定の結果であって、第2のユーザ機器(100)について有効である測定の結果に関する有効情報と、上記第2のユーザ機器のユーザ機器情報とを、制御情報を用いてアップリンクで受信する通信処理部(243)と、上記制御情報から上記有効情報及び上記ユーザ機器情報を取得する情報取得部(241)と、を備える A base station (200) according to one aspect of the present disclosure provides a measurement result based on an uplink reference signal transmitted by a first user equipment (100) valid for a second user equipment (100). a communication processing unit (243) for receiving on the uplink, using control information, useful information about a result of a measurement and user equipment information of said second user equipment; an information acquisition unit (241) for acquiring device information;
 本開示によれば、アップリンクで通信するUEの数が増加してもアップリンクリファレンス信号に用いられるリソースの増加を抑制することが可能になる。なお、本開示により、当該効果の代わりに、又は当該効果とともに、他の効果が奏されてもよい。 According to the present disclosure, even if the number of UEs communicating on the uplink increases, it is possible to suppress an increase in resources used for uplink reference signals. It should be noted that the present disclosure may provide other effects instead of or in addition to the above effects.
本開示の第1の実施形態に係るシステムの概略的な構成の一例を示す図である。1 is a diagram illustrating an example of a schematic configuration of a system according to a first embodiment of the present disclosure; FIG. 本実施形態に係るユーザ機器の概略的な機能構成の例を示すブロック図である。3 is a block diagram showing an example of a schematic functional configuration of a user device according to the embodiment; FIG. 本実施形態に係るユーザ機器の概略的なハードウェア構成の例を示すブロック図である。2 is a block diagram showing an example of a schematic hardware configuration of a user device according to the embodiment; FIG. 本実施形態に係る基地局の概略的な機能構成の例を示すブロック図である。3 is a block diagram showing an example of a schematic functional configuration of a base station according to this embodiment; FIG. 本実施形態に係る基地局の概略的なハードウェア構成の例を示すブロック図である。It is a block diagram showing an example of a schematic hardware configuration of a base station according to the present embodiment. 本実施形態に係るユーザ機器の位置と利用されるチャネルに関する測定の結果の例を説明するための説明図である。FIG. 4 is an explanatory diagram for explaining an example of a measurement result regarding the position of the user equipment and the channel used according to the present embodiment; 本実施形態に係る有効情報に基づく上記測定の結果に関するアップリンクリファレンス信号の識別の例を説明するための説明図である。FIG. 4 is an explanatory diagram for explaining an example of identification of an uplink reference signal related to the measurement result based on the effective information according to the present embodiment; 本実施形態に係る処理の概略的な流れの例を説明するためのシーケンス図である。FIG. 4 is a sequence diagram for explaining an example of a schematic flow of processing according to the embodiment; 本実施形態の第2の変形例に係るタイミング情報により示される期間の例を説明するための説明図である。FIG. 11 is an explanatory diagram for explaining an example of a period indicated by timing information according to a second modification of the embodiment; 本実施形態の第3の変形例に係る有効情報及びユーザ機器情報を送信するようにユーザ機器を構成するための処理の概略的な流れの例を説明するためのシーケンス図である。FIG. 11 is a sequence diagram for explaining an example of a schematic flow of processing for configuring a user equipment to transmit valid information and user equipment information according to a third modification of the present embodiment; 本実施形態の第3の変形例の別の形態に係る有効情報及びユーザ機器情報の送信の例を説明するためのシーケンス図である。FIG. 14 is a sequence diagram for explaining an example of transmission of valid information and user equipment information according to another form of the third modification of the present embodiment; 本実施形態の第4の変形例に係る有効情報及びユーザ機器情報の送信の例を説明するためのシーケンス図である。FIG. 21 is a sequence diagram for explaining an example of transmission of valid information and user equipment information according to the fourth modification of the embodiment; 本実施形態の第4の変形例の別の形態に係る有効情報及びユーザ機器情報の送信の例を説明するためのシーケンス図である。FIG. 21 is a sequence diagram for explaining an example of transmission of valid information and user equipment information according to another form of the fourth modification of the present embodiment; 本開示の第2の実施形態に係るシステムの概略的な構成の一例を示す図である。FIG. 10 is a diagram showing an example of a schematic configuration of a system according to a second embodiment of the present disclosure; FIG. 本実施形態に係る処理の概略的な流れの例を説明するためのシーケンス図である。FIG. 4 is a sequence diagram for explaining an example of a schematic flow of processing according to the embodiment; 本実施形態に係るユーザ機器の位置と利用される上記測定の結果の例を説明するための説明図である。FIG. 4 is an explanatory diagram for explaining an example of the position of the user equipment and the results of the above-mentioned measurement used according to the present embodiment; 本開示の各実施形態に係る適用例1を説明するための図である。FIG. 5 is a diagram for explaining application example 1 according to each embodiment of the present disclosure; 本開示の各実施形態に係る適用例1を説明するための図である。FIG. 5 is a diagram for explaining application example 1 according to each embodiment of the present disclosure; 本開示の各実施形態に係る適用例1を説明するための図である。FIG. 5 is a diagram for explaining application example 1 according to each embodiment of the present disclosure; 本開示の各実施形態に係る適用例2を説明するための図である。FIG. 11 is a diagram for explaining an application example 2 according to each embodiment of the present disclosure; 本開示の各実施形態に係る適用例2を説明するための図である。FIG. 11 is a diagram for explaining an application example 2 according to each embodiment of the present disclosure; 本開示の各実施形態に係る適用例2を説明するための図である。FIG. 11 is a diagram for explaining an application example 2 according to each embodiment of the present disclosure;
 以下、添付の図面を参照して本開示の実施形態を詳細に説明する。なお、本明細書及び図面において、同様に説明されることが可能な要素については、同一の符号を付することにより重複説明が省略され得る。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In addition, in the present specification and drawings, elements that can be described in the same manner can be omitted from redundant description by assigning the same reference numerals.
 説明は、以下の順序で行われる。
 1.第1の実施形態
  1.1.システムの構成
  1.2.ユーザ機器の構成
  1.3.基地局の構成
  1.4.動作例
  1.5.変形例
 2.第2の実施形態
  2.1.システムの構成
  2.2.動作例
  2.3.変形例
 3.適用例
  3.1.適用例1
  3.2.適用例2
The description is given in the following order.
1. First Embodiment 1.1. System configuration 1.2. Configuration of User Device 1.3. Configuration of Base Station 1.4. Operation example 1.5. Modification 2. Second Embodiment 2.1. System configuration 2.2. Operation example 2.3. Modification 3. Application example 3.1. Application example 1
3.2. Application example 2
 <1.第1の実施形態>
 本開示の第1の実施形態を説明する。本実施形態では、UEは、他のUEが送信したアップリンクリファレンス信号を利用してデータをアップリンクで送信する。
<1. First Embodiment>
A first embodiment of the present disclosure will be described. In this embodiment, a UE transmits data on the uplink using uplink reference signals transmitted by other UEs.
 <1.1.システムの構成>
 図1を参照して、本開示の第1の実施形態に係るシステム1の構成の例を説明する。図1を参照すると、システム1は、UE100(UE100A及びUE100B)及び基地局200を含む。
<1.1. System configuration>
An example of the configuration of a system 1 according to the first embodiment of the present disclosure will be described with reference to FIG. Referring to FIG. 1 , system 1 includes UE 100 (UE 100A and UE 100B) and base station 200 .
 例えば、システム1は、3GPP(Third Generation Partnership Project)の技術仕様(Technical Specification:TS)に準拠したシステムである。より具体的には、例えば、システム1は、5G又はNR(New Radio)のTSに準拠したシステムである。当然ながら、システム1は、この例に限定されない。 For example, system 1 is a system that complies with the Technical Specifications (TS) of 3GPP (Third Generation Partnership Project). More specifically, for example, the system 1 is a system conforming to 5G or NR (New Radio) TS. Naturally, the system 1 is not limited to this example.
 (1)基地局200
 基地局200は、無線アクセスネットワーク(Radio Access Network:RAN)のノードであり、基地局200のカバレッジエリア内に位置するUE(例えば、UE100A及びUE100B)と通信する。
(1) Base station 200
Base station 200 is a node of a radio access network (RAN) and communicates with UEs (eg, UE 100A and UE 100B) located within the coverage area of base station 200. FIG.
 例えば、基地局200は、RANのプロトコルスタックを使用してUE(例えば、UE100A及びUE100B)と通信する。例えば、当該プロトコルスタックは、RRC(Radio Resource Control)、SDAP(Service Data Adaptation Protocol)、PDCP(Packet Data Convergence Protocol)、RLC(Radio Link Control)、MAC(Medium Access Control)、及び、物理(Physical:PHY)レイヤのプロトコルを含む。あるいは、上記プロトコルスタックは、これらのプロトコルの全てを含まず、これらのプロトコルの一部を含んでもよい。 For example, the base station 200 communicates with UEs (eg, UE 100A and UE 100B) using the RAN protocol stack. For example, the protocol stack includes RRC (Radio Resource Control), SDAP (Service Data Adaptation Protocol), PDCP (Packet Data Convergence Protocol), RLC (Radio Link Control), MAC (Medium Access Control), and Physical: PHY) layer protocol. Alternatively, the protocol stack may not include all of these protocols, but some of these protocols.
 例えば、基地局200は、gNBである。gNBは、UEに対するNRユーザプレーン及び制御プレーンプロトコル終端(NR user plane and control plane protocol terminations towards the UE)を提供し、NGインターフェースを介して5GC(5G Core Network)に接続されるノードである。あるいは、基地局200は、en-gNBであってもよい。en-gNBは、UEに対するNRユーザプレーン及び制御プレーンプロトコル終端を提供し、EN-DC(E-UTRA-NR Dual Connectivity)においてセカンダリノードとして動作するノードである。 For example, the base station 200 is a gNB. A gNB is a node that provides NR user plane and control plane protocol terminations towards the UE and is connected to the 5GC (5G Core Network) via the NG interface. Alternatively, base station 200 may be an en-gNB. An en-gNB is a node that provides NR user plane and control plane protocol termination for UEs and acts as a secondary node in EN-DC (E-UTRA-NR Dual Connectivity).
 基地局200は、複数のノードを含んでもよい。当該複数のノードは、上記プロトコルスタックに含まれる上位レイヤ(higher layer)をホストする第1のノードと、当該プロトコルスタックに含まれる下位レイヤ(lower layer)をホストする第2のノードとを含んでもよい。上記上位レイヤは、RRCレイヤ、SDAPレイヤ及びPDCPレイヤを含んでもよく、上記下位レイヤは、RLCレイヤ、MACレイヤ及びPHYレイヤを含んでもよい。上記第1のノードは、CU(central unit)であってもよく、上記第2のノードは、DU(Distributed Unit)であってもよい。なお、上記複数のノードは、PHYレイヤの下位の処理を行う第3のノードを含んでもよく、上記第2のノードは、PHYレイヤの上位の処理を行ってもよい。当該第3のノードは、RU(Radio Unit)であってもよい。 The base station 200 may include multiple nodes. The plurality of nodes may include a first node that hosts a higher layer included in the protocol stack and a second node that hosts a lower layer included in the protocol stack. good. The upper layers may include an RRC layer, an SDAP layer and a PDCP layer, and the lower layers may include an RLC layer, a MAC layer and a PHY layer. The first node may be a CU (central unit), and the second node may be a DU (Distributed Unit). Note that the plurality of nodes may include a third node that performs lower-level processing of the PHY layer, and the second node may perform higher-level processing of the PHY layer. The third node may be an RU (Radio Unit).
 あるいは、基地局200は、上記複数のノードのうちの1つであってもよく、上記複数のノードのうちの他のユニットと接続されていてもよい。 Alternatively, the base station 200 may be one of the plurality of nodes, or may be connected to another unit of the plurality of nodes.
 基地局200は、IAB(Integrated Access and Backhaul)ドナー又はIABノードであってもよい。 The base station 200 may be an IAB (Integrated Access and Backhaul) donor or an IAB node.
 (2)UE100
 UE100(UE100A及びUE100B)は、基地局200のカバレッジエリア内に位置する場合に、基地局200と通信する。UE100は、ダウンリンクで基地局200から信号を受信し、アップリンクで基地局200へ信号を送信する。換言すると、UE100は、Uuインターフェースを介して基地局200と通信する。
(2) UE 100
UE 100 (UE 100A and UE 100B) communicates with base station 200 when located within the coverage area of base station 200 . The UE 100 receives signals from the base station 200 on the downlink and transmits signals to the base station 200 on the uplink. In other words, the UE 100 communicates with the base station 200 via the Uu interface.
 例えば、UE100は、上記プロトコルスタックを使用して基地局200と通信する。例えば、UE100は、上記プロトコルスタックを使用して他のUEと通信する。 For example, the UE 100 communicates with the base station 200 using the above protocol stack. For example, UE 100 communicates with other UEs using the above protocol stack.
 また、UE100は、基地局200を経由せず直接的に他のUEと通信する。具体的には、UE100は、サイドリンクで他のUEと通信する。換言すると、UE100は、PC5インターフェースを介して他のUEと通信する。またUE100は、複数のサイドリンクからなる通信経路を介して他のUEと通信してもよい。ここで、直接的な通信は、基地局200を経由しない経路での通信を指し、単一のリンクでの通信、及び複数のリンクからなる経路を介した通信を含む。複数のリンクからなる通信経路は、例えば、UE100A及びUE100Bの両方と単一のリンクで通信可能なUE100Cが通信の中継を行うことによって提供される。このようなUE100Cによる中継を介した通信は一般にマルチホップ通信と呼ばれる。 Also, the UE 100 communicates directly with other UEs without going through the base station 200. Specifically, the UE 100 communicates with other UEs on the sidelink. In other words, UE 100 communicates with other UEs via the PC5 interface. Also, the UE 100 may communicate with other UEs via a communication path including multiple sidelinks. Here, direct communication refers to communication through a route that does not go through the base station 200, and includes communication through a single link and communication through a route consisting of multiple links. A communication path consisting of a plurality of links is provided, for example, by relaying communications by the UE 100C, which is capable of communicating with both the UE 100A and the UE 100B through a single link. Such communication via relay by the UE 100C is generally called multi-hop communication.
 例えば、UE100(例えばUE100A)は、サイドリンクリソースアロケーションモード2で動作する。即ち、UE100Aは、サイドリンク用のリソースプール内の無線リソースを選択し、選択した当該無線リソースを使用して、サイドリンクで信号を送信する。例えば、UE100Aは、サイドリンクで他のUE100(例えばUE100B)へ信号を送信する。 For example, the UE 100 (eg, UE 100A) operates in sidelink resource allocation mode 2. That is, the UE 100A selects a radio resource within the sidelink resource pool, and uses the selected radio resource to transmit a signal on the sidelink. For example, UE 100A transmits a signal to other UE 100 (for example, UE 100B) on the sidelink.
 なお、UE100は、サイドリンクとは別の通信方式を用いて他のUEと直接的に通信してもよい。例えば、UE100は、Wi-Fi(登録商標)等の無線LAN(Local Area Network)又はBluetooth(登録商標)若しくはZigbee(登録商標)等の無線PAN(Personal Area Network)等を用いて他のUEと通信してもよい。これらの通信方式を用いる場合も、UE100は、中継を含むマルチホップ通信を用いて他のUEと通信してもよい。 Note that the UE 100 may directly communicate with another UE using a communication scheme other than the sidelink. For example, the UE 100 communicates with other UEs using a wireless LAN (Local Area Network) such as Wi-Fi (registered trademark) or a wireless PAN (Personal Area Network) such as Bluetooth (registered trademark) or Zigbee (registered trademark). may communicate. Even when using these communication schemes, the UE 100 may communicate with other UEs using multi-hop communication including relay.
 また、UE100は、移動体に搭載されてもよい。例えば、移動体は車両である。車両は、UE100を用いて基地局200と通信する。例えば、UE100は、車両に搭載可能な車載装置である。なお、移動体は、飛行体又は船舶であってもよい。 Also, the UE 100 may be mounted on a mobile object. For example, the mobile object is a vehicle. A vehicle uses UE 100 to communicate with base station 200 . For example, the UE 100 is an in-vehicle device that can be mounted on a vehicle. Note that the mobile object may be an aircraft or a ship.
 <1.2.ユーザ機器の構成>
 図2及び図3を参照して、本開示の第1の実施形態に係るUE100の構成の例を説明する。
<1.2. User device configuration>
An example of the configuration of the UE 100 according to the first embodiment of the present disclosure will be described with reference to FIGS. 2 and 3. FIG.
 (1)機能構成
 まず、図2を参照して、本開示の実施形態に係るUE100の機能構成の例を説明する。図2を参照すると、UE100は、無線通信部110、記憶部120及び処理部130を備える。
(1) Functional Configuration First, an example of the functional configuration of the UE 100 according to the embodiment of the present disclosure will be described with reference to FIG. Referring to FIG. 2, the UE 100 includes a wireless communication unit 110, a storage unit 120 and a processing unit .
 無線通信部110は、信号を無線で送受信する。例えば、無線通信部110は、基地局からの信号を受信し、基地局への信号を送信する。例えば、無線通信部110は、他のUEからの信号を受信し、他のUEへの信号を送信する。 The wireless communication unit 110 wirelessly transmits and receives signals. For example, the wireless communication unit 110 receives signals from base stations and transmits signals to the base stations. For example, the radio communication unit 110 receives signals from other UEs and transmits signals to other UEs.
 記憶部120は、様々な情報を記憶する。 The storage unit 120 stores various information.
 処理部130は、UE100の様々な機能を提供する。処理部130は、情報取得部131及び通信処理部133を含む。なお、処理部130は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、処理部130は、これらの構成要素の動作以外の動作も行い得る。情報取得部131及び通信処理部133の具体的な動作は、後に詳細に説明する。 The processing unit 130 provides various functions of the UE 100. The processing unit 130 includes an information acquisition unit 131 and a communication processing unit 133 . Note that the processing unit 130 may further include components other than these components. That is, the processing unit 130 can perform operations other than those of these components. Specific operations of the information acquisition unit 131 and the communication processing unit 133 will be described later in detail.
 例えば、処理部130(通信処理部133)は、無線通信部110を介して基地局(例えば、基地局200)又は他のUEと通信する。 For example, the processing unit 130 (communication processing unit 133) communicates with a base station (for example, the base station 200) or another UE via the wireless communication unit 110.
 (2)ハードウェア構成
 次に、図3を参照して、本開示の実施形態に係るUE100のハードウェア構成の例を説明する。図3を参照すると、UE100は、アンテナ181、RF(radio frequency)回路183、プロセッサ185、メモリ187及びストレージ189を備える。
(2) Hardware Configuration Next, an example of the hardware configuration of the UE 100 according to the embodiment of the present disclosure will be described with reference to FIG. Referring to FIG. 3, UE 100 comprises antenna 181 , RF (radio frequency) circuitry 183 , processor 185 , memory 187 and storage 189 .
 アンテナ181は、信号を電波に変換し、当該電波を空間に放射する。また、アンテナ181は、空間における電波を受信し、当該電波を信号に変換する。アンテナ181は、送信アンテナ及び受信アンテナを含んでもよく、又は、送受信用の単一のアンテナであってもよい。アンテナ181は、指向性アンテナであってもよく、複数のアンテナ素子を含んでもよい。 Antenna 181 converts a signal into radio waves and radiates the radio waves into space. Also, the antenna 181 receives radio waves in space and converts the radio waves into signals. Antenna 181 may include a transmit antenna and a receive antenna, or may be a single antenna for transmission and reception. Antenna 181 may be a directional antenna and may include multiple antenna elements.
 RF回路183は、アンテナ181を介して送受信される信号のアナログ処理を行う。RF回路183は、高周波フィルタ、増幅器、変調器及びローパスフィルタ等を含んでもよい。 The RF circuit 183 performs analog processing of signals transmitted and received via the antenna 181 . RF circuitry 183 may include high frequency filters, amplifiers, modulators, low pass filters, and the like.
 プロセッサ185は、アンテナ181及びRF回路183を介して送受信される信号のデジタル処理を行う。当該デジタル処理は、RANのプロトコルスタックの処理を含む。プロセッサ185は、複数のプロセッサを含んでもよく、又は、単一のプロセッサであってもよい。当該複数のプロセッサは、上記デジタル処理を行うベースバンドプロセッサと、他の処理を行う1つ以上のプロセッサとを含んでもよい。 The processor 185 performs digital processing of signals transmitted and received via the antenna 181 and the RF circuit 183. The digital processing includes processing of the protocol stack of the RAN. Processor 185 may include multiple processors or may be a single processor. The multiple processors may include a baseband processor that performs the digital processing and one or more processors that perform other processing.
 メモリ187は、プロセッサ185により実行されるプログラム、当該プログラムに関するパラメータ、及び、当該プログラムに関するデータを記憶する。メモリ187は、ROM(Read Only Memory)、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)、RAM(Random Access Memory)及びフラッシュメモリの少なくとも1つを含んでもよい。メモリ187の全部又は一部は、プロセッサ185内に含まれていてもよい。 The memory 187 stores programs executed by the processor 185, parameters related to the programs, and data related to the programs. The memory 187 may include at least one of ROM (Read Only Memory), EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read Only Memory), RAM (Random Access Memory), and flash memory. All or part of memory 187 may be included within processor 185 .
 ストレージ189は、様々な情報を記憶する。ストレージ189は、SSD(Solid State Drive)及びHDD(Hard Disc Drive)の少なくとも1つを含んでもよい。 The storage 189 stores various information. The storage 189 may include at least one of SSD (Solid State Drive) and HDD (Hard Disc Drive).
 無線通信部110は、アンテナ181及びRF回路183により実装されてもよい。記憶部120は、ストレージ189により実装されてもよい。処理部130は、プロセッサ185及びメモリ187により実装されてもよい。 The wireless communication unit 110 may be implemented by an antenna 181 and an RF circuit 183. Storage unit 120 may be implemented by storage 189 . Processing unit 130 may be implemented by processor 185 and memory 187 .
 処理部130は、プロセッサ185及びメモリ187を含むSoC(System on Chip)により実装されてもよい。当該SoCは、RF回路183を含んでもよく、無線通信部110も、当該SoCにより実装されてもよい。 The processing unit 130 may be implemented by an SoC (System on Chip) including a processor 185 and a memory 187. The SoC may include RF circuitry 183 and the wireless communication unit 110 may also be implemented by the SoC.
 以上のハードウェア構成を考慮すると、UE100は、プログラムを記憶するメモリ(即ち、メモリ187)と、当該プログラムを実行可能な1つ以上のプロセッサ(即ち、プロセッサ185)とを備えてもよく、当該1つ以上のプロセッサは、上記プログラムを実行して、処理部130の動作を行ってもよい。上記プログラムは、処理部130の動作をプロセッサに実行させるためのプログラムであってもよい。 Considering the above hardware configuration, the UE 100 may include a memory that stores the program (ie, memory 187) and one or more processors that can execute the program (ie, processor 185). One or more processors may execute the programs described above to perform the operations of the processing unit 130 . The program may be a program for causing the processor to execute the operation of the processing unit 130 .
 <1.3.基地局の構成>
 図4及び図5を参照して、本開示の第1の実施形態に係る基地局200の構成の例を説明する。
<1.3. Configuration of Base Station>
An example of the configuration of the base station 200 according to the first embodiment of the present disclosure will be described with reference to FIGS. 4 and 5. FIG.
 (1)機能構成
 まず、図4を参照して、本開示の第1の実施形態に係る基地局200の機能構成の例を説明する。図4を参照すると、基地局200は、無線通信部210、ネットワーク通信部220、記憶部230及び処理部240を備える。
(1) Functional Configuration First, an example of the functional configuration of the base station 200 according to the first embodiment of the present disclosure will be described with reference to FIG. Referring to FIG. 4, the base station 200 includes a wireless communication unit 210, a network communication unit 220, a storage unit 230 and a processing unit 240. FIG.
 無線通信部210は、信号を無線で送受信する。例えば、無線通信部210は、UEからの信号を受信し、UEへの信号を送信する。 The wireless communication unit 210 wirelessly transmits and receives signals. For example, the radio communication unit 210 receives signals from UEs and transmits signals to the UEs.
 ネットワーク通信部220は、ネットワークから信号を受信し、ネットワークへ信号を送信する。 The network communication unit 220 receives signals from the network and transmits signals to the network.
 記憶部230は、基地局200のために様々な情報を記憶する。 The storage unit 230 stores various information for the base station 200.
 処理部240は、基地局200の様々な機能を提供する。処理部240は、情報取得部241、通信処理部243及び制御部245を含む。なお、処理部240は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、処理部240は、これらの構成要素の動作以外の動作も行い得る。情報取得部241、通信処理部243及び制御部245の具体的な動作は、後に詳細に説明する。 The processing unit 240 provides various functions of the base station 200. The processing unit 240 includes an information acquisition unit 241 , a communication processing unit 243 and a control unit 245 . Note that the processing unit 240 may further include other components other than these components. That is, the processing unit 240 can perform operations other than those of these components. Specific operations of the information acquisition unit 241, communication processing unit 243, and control unit 245 will be described in detail later.
 例えば、処理部240(通信処理部243)は、無線通信部210を介してUE(例えば、UE100)と通信する。例えば、処理部240(通信処理部243)は、ネットワーク通信部220を介して他のノード(例えば、コアネットワーク内のネットワークノード又は他の基地局)と通信する。 For example, the processing unit 240 (communication processing unit 243) communicates with the UE (eg, UE 100) via the wireless communication unit 210. For example, the processing unit 240 (communication processing unit 243) communicates with other nodes (for example, network nodes in the core network or other base stations) via the network communication unit 220. FIG.
 (2)ハードウェア構成
 次に、図5を参照して、本開示の第1の実施形態に係る基地局200のハードウェア構成の例を説明する。図5を参照すると、基地局200は、アンテナ281、RF回路283、ネットワークインターフェース285、プロセッサ287、メモリ289及びストレージ291を備える。
(2) Hardware Configuration Next, an example hardware configuration of the base station 200 according to the first embodiment of the present disclosure will be described with reference to FIG. Referring to FIG. 5, base station 200 comprises antenna 281 , RF circuitry 283 , network interface 285 , processor 287 , memory 289 and storage 291 .
 アンテナ281は、信号を電波に変換し、当該電波を空間に放射する。また、アンテナ281は、空間における電波を受信し、当該電波を信号に変換する。アンテナ281は、送信アンテナ及び受信アンテナを含んでもよく、又は、送受信用の単一のアンテナであってもよい。アンテナ281は、指向性アンテナであってもよく、複数のアンテナ素子を含んでもよい。 The antenna 281 converts the signal into radio waves and radiates the radio waves into space. Also, the antenna 281 receives radio waves in space and converts the radio waves into signals. Antenna 281 may include a transmit antenna and a receive antenna, or may be a single antenna for transmission and reception. Antenna 281 may be a directional antenna and may include multiple antenna elements.
 RF回路283は、アンテナ281を介して送受信される信号のアナログ処理を行う。RF回路283は、高周波フィルタ、増幅器、変調器及びローパスフィルタ等を含んでもよい。 The RF circuit 283 performs analog processing of signals transmitted and received via the antenna 281 . RF circuitry 283 may include high frequency filters, amplifiers, modulators, low pass filters, and the like.
 ネットワークインターフェース285は、例えばネットワークアダプタであり、ネットワークへ信号を送信し、ネットワークから信号を受信する。 The network interface 285 is, for example, a network adapter, which transmits signals to and receives signals from the network.
 プロセッサ287は、アンテナ281及びRF回路283を介して送受信される信号のデジタル処理を行う。当該デジタル処理は、RANのプロトコルスタックの処理を含む。プロセッサ287は、ネットワークインターフェース285を介して送受信される信号の処理も行う。プロセッサ287は、複数のプロセッサを含んでもよく、又は、単一のプロセッサであってもよい。当該複数のプロセッサは、上記デジタル処理を行うベースバンドプロセッサと、他の処理を行う1つ以上のプロセッサとを含んでもよい。 The processor 287 performs digital processing of signals transmitted and received via the antenna 281 and the RF circuit 283. The digital processing includes processing of the protocol stack of the RAN. Processor 287 also processes signals sent and received via network interface 285 . Processor 287 may include multiple processors or may be a single processor. The multiple processors may include a baseband processor that performs the digital processing and one or more processors that perform other processing.
 メモリ289は、プロセッサ287により実行されるプログラム、当該プログラムに関するパラメータ、及び、当該プログラムに関するデータを記憶する。メモリ289は、ROM、EPROM、EEPROM、RAM及びフラッシュメモリの少なくとも1つを含んでもよい。メモリ289の全部又は一部は、プロセッサ287内に含まれていてもよい。 The memory 289 stores programs executed by the processor 287, parameters related to the programs, and data related to the programs. Memory 289 may include at least one of ROM, EPROM, EEPROM, RAM, and flash memory. All or part of memory 289 may be included within processor 287 .
 ストレージ291は、様々な情報を記憶する。ストレージ291は、SSD及びHDDの少なくとも1つを含んでもよい。 The storage 291 stores various information. The storage 291 may include at least one of SSD and HDD.
 無線通信部210は、アンテナ281及びRF回路283により実装されてもよい。ネットワーク通信部220は、ネットワークインターフェース285により実装されてもよい。記憶部230は、ストレージ291により実装されてもよい。処理部240は、プロセッサ287及びメモリ289により実装されてもよい The wireless communication unit 210 may be implemented by an antenna 281 and an RF circuit 283. Network communication unit 220 may be implemented by network interface 285 . Storage unit 230 may be implemented by storage 291 . Processing unit 240 may be implemented by processor 287 and memory 289
 処理部240の一部又は全部は、仮想化されていてもよい。換言すると、処理部240の一部又は全部は、仮想マシンとして実装されてもよい。この場合に、処理部240の一部又は全部は、プロセッサ及びメモリ等を含む物理マシン(即ち、ハードウェア)及びハイパーバイザ上で仮想マシンとして動作してもよい。 A part or all of the processing unit 240 may be virtualized. In other words, part or all of the processing unit 240 may be implemented as a virtual machine. In this case, part or all of the processing unit 240 may operate as a virtual machine on a physical machine (that is, hardware) including a processor, memory, etc. and a hypervisor.
 以上のハードウェア構成を考慮すると、基地局200は、プログラムを記憶するメモリ(即ち、メモリ289)と、当該プログラムを実行可能な1つ以上のプロセッサ(即ち、プロセッサ287)とを備えてもよく、当該1つ以上のプロセッサは、上記プログラムを実行して、処理部240の動作を行ってもよい。上記プログラムは、処理部240の動作をプロセッサに実行させるためのプログラムであってもよい。 Considering the above hardware configuration, the base station 200 may include a memory for storing programs (ie, memory 289) and one or more processors (ie, processor 287) capable of executing the programs. , the one or more processors may execute the program to perform the operation of the processing unit 240 . The program may be a program for causing the processor to execute the operation of the processing unit 240 .
 <1.4.動作例>
 図6~図8を参照して、本開示の第1の実施形態に係るUE100及び基地局200の動作の例を説明する。本実施形態では、UE100は、第1UE、第2UE、第3UE又はそれらのいずれか2つ若しくは全てとして動作し得る。
<1.4. Operation example>
An example of operations of the UE 100 and the base station 200 according to the first embodiment of the present disclosure will be described with reference to FIGS. 6 to 8. FIG. In this embodiment, the UE 100 can operate as a first UE, a second UE, a third UE, or any two or all of them.
 (1)第1UEの動作
 第1UEとして動作するUE100(第1UE100とも称する。)は、アップリンクリファレンス信号を送信する。
(1) Operation of first UE The UE 100 operating as the first UE (also referred to as the first UE 100) transmits an uplink reference signal.
 -アップリンクリファレンス信号の送信
 第1UE100(通信処理部133)は、アップリンクリファレンス信号を送信する。例えば、上記アップリンクリファレンス信号は、サウンディングリファレンス信号(SRS)である。
- Transmission of uplink reference signal The first UE 100 (communication processing unit 133) transmits an uplink reference signal. For example, the uplink reference signal is a sounding reference signal (SRS).
 例えば、第1UE100が送信する上記アップリンクリファレンス信号は、他のUE(例えば、第2UE)のアップリンク通信に利用される。例えば、第1UE100は、第2UE100が搭載される車両を先行する車両に搭載される。 For example, the uplink reference signal transmitted by the first UE 100 is used for uplink communication of another UE (eg, the second UE). For example, the first UE 100 is mounted on a vehicle preceding the vehicle on which the second UE 100 is mounted.
 例えば、UE100A及びUE100Bは、隊列走行する車両にそれぞれ搭載される。UE100Aは第1UEとして動作し、UE100Bは第2UEとして動作する。図6を参照すると、UE100A及びUE100Bは、UE100A、UE100Bの順で並んで移動する。そのため、各車両が進行方向に移動している間、UE100Aの位置は、UE100Bの将来の位置となる。UE100Aは、SRSを送信し、UE100Bは、基地局200と通信する。よって、上記SRSに基づく測定の結果は、上記SRSの送信時のUE100の位置に到達したUE100Bについて有効になる。なお、UE100BがUE100Aの位置に到達するのに要する期間は、[UE100AとUE100Bとの間の距離]÷[車両の速度]により算出される。 For example, the UE 100A and the UE 100B are mounted on vehicles traveling in a row. UE 100A operates as a first UE, and UE 100B operates as a second UE. Referring to FIG. 6, UE 100A and UE 100B move side by side in the order of UE 100A and UE 100B. Therefore, while each vehicle is moving in the direction of travel, the position of UE 100A will be the future position of UE 100B. UE 100A transmits SRS, and UE 100B communicates with base station 200. FIG. Therefore, the result of measurement based on the SRS is valid for UE 100B that has reached the position of UE 100 at the time of transmission of the SRS. The period required for UE 100B to reach the position of UE 100A is calculated by [distance between UE 100A and UE 100B]÷[vehicle speed].
 (2)第2UEの動作
 第2UEとして動作するUE100(第2UE100とも称する。)は、SRSを送ることなく、アップリンクリソースを得てデータを送信する。
(2) Operation of Second UE The UE 100 (also referred to as the second UE 100) operating as the second UE acquires uplink resources and transmits data without sending SRS.
 -スケジューリング要求の送信
 第2UE100(通信処理部133)は、スケジューリング要求をアップリンクで送信する。例えば、上記スケジューリング要求は、スケジューリング要求信号(SR信号)である。
- Transmission of scheduling request The second UE 100 (communication processing unit 133) transmits a scheduling request on the uplink. For example, the scheduling request is a scheduling request signal (SR signal).
 例えば、第2UE100は、データの送信要求が発生すると、スケジューリング要求をアップリンクで送信する。基地局200は、スケジューリング要求を受信すると、第2UE100についてスケジューリングを実行する。スケジューリングは、例えばリソース割り当てである。基地局200は、割り当てられたアップリンクリソースを示すリソース割当情報を第2UE100へダウンリンクで送信する。スケジューリングにおいて、基地局200は、第2UE100から受信されるSRSではなく、第1UE100から受信されるSRSに基づくチャネルの測定の結果を用いる。その結果、第2UE100には、SRSの送信なしに、データ送信のためのリソースが割り当てられる。第2UE100は、割り当てられたリソースを用いてデータを送信する。 For example, when a data transmission request occurs, the second UE 100 transmits a scheduling request on the uplink. Upon receiving the scheduling request, the base station 200 schedules the second UE 100 . Scheduling is, for example, resource allocation. The base station 200 transmits resource allocation information indicating allocated uplink resources to the second UE 100 on the downlink. In scheduling, the base station 200 uses the channel measurement result based on the SRS received from the first UE 100 instead of the SRS received from the second UE 100 . As a result, the second UE 100 is allocated resources for data transmission without SRS transmission. The second UE 100 transmits data using the allocated resources.
 (3)第3UEの動作
 第3UEとして動作するUE100(第3UE100とも称する。)は、第1UE100が送信したSRSであって、第2UE100について利用可能なSRSに関する適用SRS情報をアップリンクで送信する。
(3) Operation of the third UE The UE 100 (also referred to as the third UE 100) operating as the third UE transmits applied SRS information regarding the SRS transmitted by the first UE 100 and available for the second UE 100 on the uplink.
 -適用SRS情報(有効情報及びUE情報)
 適用SRS情報は、有効情報及びUE情報を含む。有効情報は、第1UE100により送信されるアップリンクリファレンス信号に基づく測定の結果であって、第2UE100について有効である測定の結果に関する。UE情報は、当該第2UE100を示す。具体的には、第3UE100(情報取得部131)は、上記有効情報及び上記UE情報を取得する。第3UE100(通信処理部133)は、上記有効情報及び上記UE情報を含む適用SRS情報をアップリンクで送信する。
- Applicable SRS information (effective information and UE information)
Applicable SRS information includes availability information and UE information. Validity information relates to results of measurements based on uplink reference signals transmitted by the first UE 100 that are valid for the second UE 100 . The UE information indicates the second UE 100 concerned. Specifically, the third UE 100 (information acquisition unit 131) acquires the valid information and the UE information. The third UE 100 (communication processing unit 133) transmits applicable SRS information including the above valid information and the above UE information on the uplink.
 有効情報は、第2UE100について有効である上記測定の結果に関するアップリンクリファレンス信号を示す。図7を参照して、詳細を説明する。図7の例では、UE100は、第1UE及び第3UEとして動作する。 The validity information indicates an uplink reference signal related to the result of the above measurement that is valid for the second UE 100. Details will be described with reference to FIG. In the example of FIG. 7, the UE 100 operates as the first UE and the third UE.
 例えば、図7の例を参照すると、タイミング11~17において、UE100は、SRSを送信する。基地局200は、当該SRSをそれぞれ受信し、当該SRSそれぞれに基づく測定を行う。その後、タイミング19において、UE100は、有効情報及びUE情報を送信する。当該有効情報は、過去に送信されたSRSのうち、第2UE100について有効となるSRSを示す。例えば、有効情報は、SRSの識別情報である。図7の例では、有効情報は、SRS2を示す情報である。 For example, referring to the example of FIG. 7, the UE 100 transmits SRS at timings 11-17. The base station 200 receives each SRS and performs measurements based on each SRS. After that, at timing 19, the UE 100 transmits valid information and UE information. The validity information indicates SRSs that are valid for the second UE 100 among SRSs that have been transmitted in the past. For example, the valid information is the identification information of the SRS. In the example of FIG. 7, the valid information is information indicating SRS2.
 これにより、第2UE100について有効な測定の結果を識別することができる。 Thereby, effective measurement results for the second UE 100 can be identified.
 また、有効情報は、アップリンクリファレンス信号の送信タイミングを直接的に示すことで、アップリンクリファレンス信号を示してもよい。図7の例では、有効情報は、SRS2の送信タイミングであるタイミング13を示す。例えば、有効情報は、システムフレーム番号、サブフレーム番号、スロット番号、シンボル番号、又は、システムフレーム番号とサブフレーム番号とスロット番号とシンボル番号とのうちの2以上の組合せにより、上記アップリンクリファレンス信号の送信タイミングを示す。 Also, the valid information may indicate the uplink reference signal by directly indicating the transmission timing of the uplink reference signal. In the example of FIG. 7, the valid information indicates timing 13, which is the transmission timing of SRS2. For example, the useful information is a system frame number, a subframe number, a slot number, a symbol number, or a combination of two or more of a system frame number, a subframe number, a slot number, and a symbol number, and the uplink reference signal indicates the transmission timing of
 これにより、SRSに識別子が付与されない場合であっても第2UE100について有効な測定の結果に関するSRSを識別することができる。 By this means, even if an identifier is not assigned to the SRS, it is possible to identify the SRS relating to the valid measurement results for the second UE 100.
 また、有効情報は、第1UE100及び第2UE100の位置関係に基づき生成されてよい。例えば、第3UE100は、第1UE100と第2UE100との距離及び第2UE100の移動速度に基づいて、第2UE100について有効である上記測定の結果に対応するアップリンクリファレンス信号を識別する。そして、第3UE100は、当該アップリンクリファレンス信号を示す有効情報を生成する。なお、第1UE100及び第2UE100の位置関係は、第3UE100に予め記憶されていてもよく、基地局200又は他のUEから取得されてもよい。 Also, the effective information may be generated based on the positional relationship between the first UE 100 and the second UE 100. For example, the third UE 100 identifies an uplink reference signal corresponding to the above measurement result valid for the second UE 100 based on the distance between the first UE 100 and the second UE 100 and the moving speed of the second UE 100 . Then, the third UE 100 generates valid information indicating the uplink reference signal. Note that the positional relationship between the first UE 100 and the second UE 100 may be stored in advance in the third UE 100, or may be acquired from the base station 200 or another UE.
 -適用SRS情報の送信
 第3UE100は、適用SRS情報をアップリンクで送信する。例えば、第3UE100(通信処理部133)は、周期的に有効情報及びユーザ機器情報を含む適用SRS情報をアップリンクで送信する。
- Transmission of applied SRS information The third UE 100 transmits applied SRS information on the uplink. For example, the third UE 100 (communication processing unit 133) periodically transmits applicable SRS information including validity information and user equipment information on the uplink.
 これにより、制御情報なしで有効情報及びユーザ機器情報を送信することができる。即ち、有効情報及びユーザ機器情報の送信にかかるオーバヘッドを削減することができる。 This makes it possible to transmit valid information and user equipment information without control information. That is, the overhead associated with the transmission of valid information and user equipment information can be reduced.
 (4)基地局の動作
 基地局200は、第1UE100からアップリンクリファレンス信号を受信し、当該アップリンクリファレンス信号に基づき測定を行う。基地局200は、適用SRS情報を第3UE100から受信し、適用SRS情報に基づき識別される上記測定の結果を用いて第2UE100のスケジューリングを行う。
(4) Base station operation The base station 200 receives an uplink reference signal from the first UE 100 and performs measurements based on the uplink reference signal. The base station 200 receives the applied SRS information from the third UE 100 and schedules the second UE 100 using the above measurement results identified based on the applied SRS information.
 -アップリンクリファレンス信号に基づく測定
 基地局200は、第1UE100からアップリンクリファレンス信号を受信し、当該アップリンクリファレンス信号に基づき測定を行う。
- Measurement based on uplink reference signal The base station 200 receives an uplink reference signal from the first UE 100 and performs measurement based on the uplink reference signal.
 具体的には、基地局200(制御部245)は、第1UE100から受信されるアップリンクリファレンス信号に基づいてチャネルに関する測定を行う。例えば、当該測定は、チャネル推定、SINR(Signal to Interference plus Noise Ratio)の測定、最良のリソースブロックの識別、好ましいプリコーディング行列の算出、及び、好ましいレイヤ数の算出等を含む。 Specifically, the base station 200 (control unit 245) performs channel-related measurements based on the uplink reference signal received from the first UE 100. For example, the measurement includes channel estimation, SINR (Signal to Interference plus Noise Ratio) measurement, identification of the best resource block, calculation of the preferred precoding matrix, calculation of the preferred number of layers, and the like.
 例えば、図7を参照すると、基地局200(制御部245)は、UE100から送信されるSRS1~SRS9それぞれについて測定を行う。基地局200(記憶部230)は、当該測定の結果それぞれを記憶する。当該測定の結果は、測定に用いられたSRSの識別子と対応付けられてもよく、当該SRSの送信タイミングと対応付けられてもよい。 For example, referring to FIG. 7, the base station 200 (control unit 245) measures each of SRS1 to SRS9 transmitted from the UE100. The base station 200 (storage unit 230) stores each result of the measurement. The measurement result may be associated with the identifier of the SRS used for the measurement, or may be associated with the transmission timing of the SRS.
 -適用SRS情報に基づくスケジューリング
 基地局200は、第3UE100から適用SRS情報を受信し、上記測定の結果及び当該適用SRS情報に含まれる有効情報及びUE情報に基づいて、第2UE100のためのスケジューリングを行う。
- Scheduling based on applied SRS information The base station 200 receives the applied SRS information from the third UE 100, and performs scheduling for the second UE 100 based on the results of the above measurements and the effective information and UE information included in the applied SRS information. conduct.
 具体的には、基地局200(通信処理部243)は、上記有効情報とUE情報とを、制御情報を用いてアップリンクで受信する。基地局200(情報取得部241)は、当該制御情報から上記有効情報及び上記UE情報を取得する。基地局200(制御部245)は、上記UE情報が示す第2UE100について有効な上記測定の結果を、上記有効情報に基づき識別する。基地局200(制御部245)は、識別した上記測定の結果とUE情報とを対応付ける。 Specifically, the base station 200 (communication processing unit 243) receives the above valid information and UE information on the uplink using control information. The base station 200 (information acquisition unit 241) acquires the effective information and the UE information from the control information. The base station 200 (control unit 245) identifies the valid measurement result for the second UE 100 indicated by the UE information based on the valid information. The base station 200 (control unit 245) associates the identified measurement result with the UE information.
 また、基地局200(通信処理部243)は、スケジューリング要求を受信する。基地局200(制御部245)は、受信したスケジューリング要求の送信元である第2UE100に対応付けられた上記測定の結果を取得する。基地局200(制御部245)は、取得された上記測定の結果を用いてアップリンクリソースを割り当てる。基地局200(通信処理部243)は、上記UE情報が示す第2UE100へ当該アップリンクリソースの割当を示すリソース割当情報を送信する。 Also, the base station 200 (communication processing unit 243) receives the scheduling request. The base station 200 (control unit 245) acquires the measurement result associated with the second UE 100 that is the transmission source of the received scheduling request. The base station 200 (control unit 245) allocates uplink resources using the obtained measurement results. The base station 200 (communication processing unit 243) transmits resource allocation information indicating allocation of the uplink resource to the second UE 100 indicated by the UE information.
 図7を参照すると、基地局200は、タイミング19において、第1UE及び第3UEとして動作するUE100により送信される適用SRS情報を受信する。基地局200は、当該適用SRS情報に含まれる有効情報からタイミング13において受信されたSRS2を識別し、SRS2に対応する上記測定の結果を識別する。基地局200は、識別した上記測定の結果(又はSRS2)とUE情報が示す第2UE100とを対応付ける。 Referring to FIG. 7, at timing 19, the base station 200 receives applied SRS information transmitted by the UEs 100 operating as the first UE and the third UE. The base station 200 identifies SRS2 received at timing 13 from the valid information included in the applicable SRS information, and identifies the result of the above measurement corresponding to SRS2. The base station 200 associates the identified measurement result (or SRS2) with the second UE 100 indicated by the UE information.
 基地局200は、スケジューリング要求を第2UE100から受信し、当該第2UE100と対応付けられた上記測定の結果を取得する。基地局200は、取得した上記測定の結果に基づいて、当該第2UE100についてのアップリンクのスケジューリング(例えば、リソース割当て)を行う。基地局200は、リソース割当情報を当該第2UE100へ送信する。例えば、リソース割当情報は、リソース割当てのためのダウンリンク制御情報(DCI)である。当該第2UE100は、当該DCIに基づいて、データを基地局200へ送信する。 The base station 200 receives the scheduling request from the second UE 100 and acquires the result of the measurement associated with the second UE 100. The base station 200 performs uplink scheduling (for example, resource allocation) for the second UE 100 based on the obtained measurement results. The base station 200 transmits resource allocation information to the second UE 100. For example, the resource allocation information is downlink control information (DCI) for resource allocation. The second UE 100 transmits data to the base station 200 based on the DCI.
 これにより、第2UE100からアップリンクリファレンス信号を受信することなく、第2UE100にリソースを割り当てることが可能になる。したがって、アップリンクで通信するUEの数が増加してもアップリンクリファレンス信号に用いられるリソースの増加を抑制することが可能になる。 This makes it possible to allocate resources to the second UE 100 without receiving an uplink reference signal from the second UE 100. Therefore, even if the number of UEs communicating on the uplink increases, it is possible to suppress an increase in resources used for uplink reference signals.
 (5)処理の流れ
 図8を参照して、本開示の第1の実施形態に係る処理の例を説明する。図8の例では、UE100Aが第1UE及び第3UEとして動作し、UE100Bが第2UEとして動作する。
(5) Flow of Processing An example of processing according to the first embodiment of the present disclosure will be described with reference to FIG. In the example of FIG. 8, the UE 100A operates as the first UE and the third UE, and the UE 100B operates as the second UE.
 UE100Aは、アップリンクリファレンス信号を送信する(S301)。例えば、UE100Aは、基地局200からSRSリクエストを受信した場合、周期的にSRSを送信する。基地局200は、受信されたSRSに基づき測定を行う。 The UE 100A transmits an uplink reference signal (S301). For example, when the UE 100A receives an SRS request from the base station 200, the UE 100A periodically transmits the SRS. Base station 200 makes measurements based on the received SRS.
 UE100Aは、有効情報及びUE情報をアップリンクで送信する(S303)。例えば、UE100Aは、有効情報及びUE情報を含む適用SRS情報を周期的にアップリンクで送信する。例えば、有効情報はSRS2を示し、UE情報はUE100Bを示す。 The UE 100A transmits valid information and UE information on the uplink (S303). For example, the UE 100A periodically transmits applicable SRS information including availability information and UE information on the uplink. For example, the valid information indicates SRS2 and the UE information indicates UE100B.
 UE100Bは、スケジューリング要求をアップリンクで送信する(S305)。例えば、UE100Bは、データ送信要求が発生すると、SR信号をアップリンクで送信する。 The UE 100B transmits a scheduling request on the uplink (S305). For example, the UE 100B transmits an SR signal on the uplink when a data transmission request occurs.
 基地局200は、リソース割当情報をUE100Bへダウンリンクで送信する(S307)。例えば、基地局200は、受信された有効情報及びUE情報に基づきSR信号を送信したUE100Bについて有効となるSRS2を識別し、SRS2に基づき行われた測定の結果を取得する。基地局200は、当該測定の結果に基づき、受信されたUE100Bにリソースを割り当てる。基地局200は、当該リソースの割当を示すリソース割当情報をUE100Bへ送信する。 The base station 200 transmits resource allocation information to the UE 100B on the downlink (S307). For example, the base station 200 identifies SRS2 that is valid for the UE 100B that has transmitted the SR signal based on the received valid information and UE information, and obtains the results of measurements performed based on the SRS2. The base station 200 allocates resources to the received UE 100B based on the measurement result. The base station 200 transmits resource allocation information indicating allocation of the resource to the UE 100B.
 UE100Bは、データをアップリンクで送信する(S309)。例えば、UE100Bは、受信されたリソース割当情報が示すリソースを用いてデータをアップリンクで送信する。 The UE 100B transmits data on the uplink (S309). For example, the UE 100B transmits data on the uplink using resources indicated by the received resource allocation information.
 このように、本開示の第1の実施形態によれば、第2UE100がアップリンクリファレンス信号を送信することなく、第2UE100にアップリンクリソースを割り当てることができる。したがって、アップリンクで通信するUEの数が増加してもアップリンクリファレンス信号に用いられるリソースの増加を抑制することが可能になる Thus, according to the first embodiment of the present disclosure, uplink resources can be allocated to the second UE 100 without the second UE 100 transmitting an uplink reference signal. Therefore, even if the number of UEs communicating on the uplink increases, it is possible to suppress an increase in resources used for uplink reference signals.
 <1.5.変形例>
 図9~13を参照して、本開示の第1の実施形態に係る第1~第4の変形例を説明する。なお、これらの変形例のうちの2つ以上が組み合わせられてもよい。
<1.5. Variation>
First to fourth modifications according to the first embodiment of the present disclosure will be described with reference to FIGS. 9 to 13. FIG. Note that two or more of these modifications may be combined.
 (1)第1の変形例
 本開示の第1の実施形態の上述した例では、有効情報は、アップリンクリファレンス信号の送信タイミングを直接的に示すことにより当該アップリンクリファレンス信号を示す。しかし、本開示の第1の実施形態に係る有効情報は、この例に限定されない。
(1) First Modification In the above-described example of the first embodiment of the present disclosure, the validity information indicates the uplink reference signal by directly indicating the transmission timing of the uplink reference signal. However, the valid information according to the first embodiment of the present disclosure is not limited to this example.
 本開示の第1の実施形態の第1の変形例として、有効情報は、アップリンクリファレンス信号の送信タイミングを間接的に示すことにより当該アップリンクリファレンス信号を示してもよい。 As a first modification of the first embodiment of the present disclosure, the validity information may indicate the uplink reference signal by indirectly indicating the transmission timing of the uplink reference signal.
 具体的には、有効情報は、アップリンクリファレンス信号の送信タイミングと、有効情報及びユーザ機器情報に関する他のタイミングとの間の期間を示すことにより当該アップリンクリファレンス信号を示してもよい。例えば、有効情報は、有効情報及びUE情報の送信タイミングである。 Specifically, the validity information may indicate the uplink reference signal by indicating the period between the transmission timing of the uplink reference signal and other timings related to the validity information and the user equipment information. For example, the validity information is the transmission timing of the validity information and the UE information.
 例えば、図7を再び参照すると、タイミング19において、UE100は、有効情報及びUE情報を送信する。有効となるSRSがSRS2である場合、有効情報は、SRS2が送信されたタイミング13からタイミング19までの期間21を示す。基地局200は、有効情報が示す期間21及び有効情報が送信されたタイミング19からSRS2が送信されたタイミング13を計算することができる。即ち、基地局200は、有効情報がSRS2を示すことを判断できる。なお、期間21は、例えば以下のように算出される。
  [期間21]=[第1UE100と第2UE100との間の距離]÷[車両の速度]
For example, referring to FIG. 7 again, at timing 19, the UE 100 transmits valid information and UE information. When the valid SRS is SRS2, the valid information indicates a period 21 from timing 13 to timing 19 when SRS2 is transmitted. The base station 200 can calculate the timing 13 at which the SRS2 is transmitted from the period 21 indicated by the validity information and the timing 19 at which the validity information is transmitted. That is, the base station 200 can determine that the valid information indicates SRS2. Note that the period 21 is calculated, for example, as follows.
[Period 21]=[distance between first UE 100 and second UE 100]÷[vehicle speed]
 これにより、上記有効情報の情報量を抑制することができる。 As a result, the information amount of the effective information can be suppressed.
 また、有効情報は、アップリンクリファレンス信号の送信タイミングと、他のアップリンクリファレンス信号の送信タイミングである他のタイミングとの間の期間を示すことにより当該アップリンクリファレンス信号を示してもよい。具体的には、他のアップリンクリファレンス信号は、有効情報及びUE情報の送信タイミングに基づき識別される。 Also, the validity information may indicate the uplink reference signal by indicating a period between the transmission timing of the uplink reference signal and another timing that is the transmission timing of another uplink reference signal. Specifically, other uplink reference signals are identified based on the transmission timing of the availability information and UE information.
 例えば、図7を再び参照すると、有効情報及びUE情報が送信されるタイミング19に対して直近のSRS9が他のアップリンクリファレンス信号として識別される。有効となるSRSがSRS2である場合、有効情報は、SRS2が送信されたタイミング13からSRS9が送信されたタイミング17までの期間23を示す。基地局200は、有効情報が示す期間23及びSRS9が送信されたタイミング17からSRS2が送信されたタイミング13を計算することができる。即ち、基地局200は、SRS2を識別することができる。 For example, referring to FIG. 7 again, SRS9, which is closest to timing 19 when the validity information and UE information are transmitted, is identified as another uplink reference signal. When the valid SRS is SRS2, the validity information indicates a period 23 from timing 13 when SRS2 is transmitted to timing 17 when SRS9 is transmitted. The base station 200 can calculate the timing 13 when the SRS2 is transmitted from the period 23 indicated by the validity information and the timing 17 when the SRS9 is transmitted. That is, the base station 200 can identify SRS2.
 これにより、アップリンクリファレンス信号の送信タイミングを利用して有効にするアップリンクリファレンス信号を柔軟に示すことができる。特に、アップリンクリファレンス信号が所定の間隔で持続的に送信される場合は、有効にするアップリンクリファレンス信号の識別が容易となる。 As a result, it is possible to flexibly indicate the uplink reference signal to be enabled using the transmission timing of the uplink reference signal. In particular, when the uplink reference signal is continuously transmitted at predetermined intervals, it becomes easy to identify the uplink reference signal to be enabled.
 例えば、有効情報は、無線フレーム、サブフレーム、スロット、シンボル、又は、無線フレームとサブフレームとスロットとシンボルとのうちの2以上の組合せにより、上記期間を示してよい。 For example, the useful information may indicate the period in terms of radio frames, subframes, slots, symbols, or a combination of two or more of radio frames, subframes, slots, and symbols.
 また、有効情報は、第1UE100を示す情報を含んでもよい。例えば、図7に示されるように、有効情報は、アップリンクリファレンス信号を送信した第1UE100の識別情報を含む。アップリンクリファレンス信号は、第1UE100の識別情報によって識別される。 Also, the valid information may include information indicating the first UE 100. For example, as shown in FIG. 7, the valid information includes identification information of the first UE 100 that transmitted the uplink reference signal. The uplink reference signal is identified by the identification information of the first UE 100.
 これにより、複数の第1UE100からSRSが送信される場合であっても、基地局200は、送信元を区別してSRSを識別することができる。 Thereby, even when SRSs are transmitted from a plurality of first UEs 100, the base station 200 can distinguish the transmission sources and identify the SRSs.
 (2)第2の変形例
 本開示の第1の実施形態の上述した例では、上記測定の結果は有効情報の送信タイミングで有効となる。しかし、本開示の第1の実施形態に係る上記測定の結果が有効となるタイミングは、この例に限定されない。
(2) Second Modification In the above-described example of the first embodiment of the present disclosure, the result of the measurement becomes valid at the transmission timing of valid information. However, the timing at which the result of the measurement according to the first embodiment of the present disclosure becomes valid is not limited to this example.
 本開示の第1の実施形態の第2の変形例として、有効情報は、上記測定の結果が第2UE100について有効となるタイミングに関するタイミング情報を含んでもよい。具体的には、タイミング情報は、上記測定の結果が有効になるタイミングを示す。例えば、タイミング情報は、上記測定の結果が有効になるタイミングを間接的に示す。 As a second modification of the first embodiment of the present disclosure, the validity information may include timing information regarding the timing at which the above measurement result becomes valid for the second UE 100. Specifically, the timing information indicates the timing at which the measurement results become valid. For example, the timing information indirectly indicates when the result of the measurement becomes valid.
 例えば、タイミング情報は、上記測定の結果が有効になるタイミングと、有効情報及びUE情報に関する他のタイミングとの間の期間を示す。より具体的には、当該他のタイミングは、有効情報がアップリンクで送信されるタイミングである。 For example, the timing information indicates the period between the timing when the result of the above measurement becomes valid and other timings regarding valid information and UE information. More specifically, the other timing is the timing at which the validity information is transmitted on the uplink.
 例えば、図9を参照すると、タイミング31において、第3UEとして動作するUE100は、タイミング情報を含む有効情報及びUE情報を送信する。基地局200は、当該有効情報及びUE情報に基づき、有効となる上記測定の結果を識別する。さらに、基地局200は、有効情報の受信タイミング31からタイミング情報が示す期間41の経過後のタイミング33で当該測定の結果を有効にする。なお、タイミング情報は、有効情報とは別に送信されてもよい。 For example, referring to FIG. 9, at timing 31, the UE 100 operating as the third UE transmits valid information including timing information and UE information. Based on the validity information and the UE information, the base station 200 identifies valid measurement results. Further, the base station 200 validates the result of the measurement at timing 33 after the period 41 indicated by the timing information has elapsed from the reception timing 31 of the valid information. Note that the timing information may be transmitted separately from the validity information.
 例えば、タイミング情報は、無線フレーム、サブフレーム、スロット、シンボル、又は、無線フレームとサブフレームとスロットとシンボルとのうちの2以上の組合せにより、上記期間を示す。 For example, the timing information indicates the period by radio frames, subframes, slots, symbols, or a combination of two or more of radio frames, subframes, slots, and symbols.
 なお、タイミング情報は、上記測定の結果が有効になるタイミングを直接的に示してもよい。図9の例では、タイミング情報は、上記測定の結果が有効になるタイミングであるタイミング33を示す。例えば、タイミング情報は、システムフレーム番号、サブフレーム番号、スロット番号、シンボル番号、又は、システムフレーム番号とサブフレーム番号とスロット番号とシンボル番号とのうちの2以上の組合せにより、上記タイミングを示す。 It should be noted that the timing information may directly indicate the timing at which the above measurement results become valid. In the example of FIG. 9, the timing information indicates timing 33, which is the timing at which the measurement results become valid. For example, the timing information indicates the timing by a system frame number, subframe number, slot number, symbol number, or a combination of two or more of system frame number, subframe number, slot number and symbol number.
 また、タイミング情報は、第1UE100及び第2UE100の位置関係の変化に基づいて生成されてよい。例えば、第3UE100は、第1UE100と第2UE100との距離を示す情報を所定の時間間隔で取得し、当該距離の変化を算出する。そして、第3UE100は、当該距離の変化及び第2UE100の移動速度に基づいて上記期間又は上記タイミングを算出する。 Also, the timing information may be generated based on changes in the positional relationship between the first UE 100 and the second UE 100. For example, the third UE 100 acquires information indicating the distance between the first UE 100 and the second UE 100 at predetermined time intervals, and calculates changes in the distance. Then, the third UE 100 calculates the period or timing based on the change in distance and the moving speed of the second UE 100 .
 ここで、第1UE100及び第2UE100の相対位置が変動し、有効情報により上記測定の結果が有効となるタイミングと、当該測定の結果に対応するアップリンクリファレンス信号が送信された位置に第2UE100が到達するタイミングとの間に差が生じる可能性がある。この場合、上記測定の結果についてのCSI Aging(Channel State Information Aging)の影響が大きくなり得る。即ち、上記測定の結果に基づくスケジューリングの精度又は正確性が低下しかねない。 Here, the relative positions of the 1st UE 100 and the 2nd UE 100 fluctuate, the timing at which the measurement result becomes valid according to the validity information, and the 2nd UE 100 reaches the position where the uplink reference signal corresponding to the measurement result is transmitted. There may be a difference between when In this case, the influence of CSI Aging (Channel State Information Aging) on the results of the above measurements may increase. That is, the accuracy or accuracy of scheduling based on the results of the above measurements may decrease.
 しかし、第2の変形例によれば、当該タイミングの差を抑制することができる。したがって、第1UE100及び第2UE100の相対位置が変動したとしても、上記測定の結果についてのCSI Agingの影響を抑制できる。即ち、上記測定の結果に基づくスケジューリングの精度又は正確性を向上させることができる。 However, according to the second modified example, the timing difference can be suppressed. Therefore, even if the relative positions of the first UE 100 and the second UE 100 fluctuate, the influence of CSI aging on the above measurement results can be suppressed. That is, it is possible to improve the precision or accuracy of scheduling based on the results of the above measurements.
 (3)第3の変形例
 本開示の第1の実施形態の上述した例では、第3UE100は、周期的に有効情報を送信する。しかし、本開示の第1の実施形態に係る有効情報の送信方法は、この例に限定されない。
(3) Third Modification In the above-described example of the first embodiment of the present disclosure, the third UE 100 periodically transmits valid information. However, the method of transmitting valid information according to the first embodiment of the present disclosure is not limited to this example.
 本開示の第1の実施形態の第3の変形例として、第3UE100は、有効情報及びUE情報の送信のための構成情報を受信する場合、有効情報及びUE情報をアップリンクで送信してもよい。具体的には、第3UE100(通信処理部133)は、有効情報及びUE情報の送信のための構成情報を含むRRCメッセージをダウンリンクで受信する場合に、当該構成情報に従って有効情報及びUE情報をアップリンクで送信する。また、基地局200(通信処理部243)は、有効情報及びUE情報の送信のための構成情報を含むRRCメッセージをダウンリンクで送信する。上記構成情報は、有効情報及びUE情報を送信するようにUE100を構成する情報とも言える。 As a third modification of the first embodiment of the present disclosure, when the third UE 100 receives configuration information for transmission of valid information and UE information, even if the valid information and UE information are transmitted in the uplink, good. Specifically, when the third UE 100 (communication processing unit 133) receives an RRC message including configuration information for transmitting valid information and UE information on the downlink, the valid information and UE information are transmitted according to the configuration information. Send by uplink. Also, the base station 200 (communication processing unit 243) transmits an RRC message including configuration information for transmission of valid information and UE information on the downlink. The configuration information can also be said to be information that configures the UE 100 to transmit valid information and UE information.
 例えば、第3UE100(通信処理部133)は、有効情報及びUE情報の送信のための構成情報を含むRRCメッセージを受信する場合、当該構成情報に従って有効情報及びUE情報をアップリンクで送信する。一方、第3UE100(通信処理部133)は、上記構成情報を含む上記RRCメッセージを受信しない場合には、有効情報及びUE情報をアップリンクで送信しない。この場合は、第2UE100(通信処理部133)が、アップリンクリファレンス信号を送信する。 For example, when the third UE 100 (communication processing unit 133) receives an RRC message including configuration information for transmission of validity information and UE information, it transmits the validity information and UE information on the uplink according to the configuration information. On the other hand, when the third UE 100 (communication processing unit 133) does not receive the RRC message including the configuration information, it does not transmit the valid information and the UE information on the uplink. In this case, the second UE 100 (communication processing unit 133) transmits an uplink reference signal.
 図10を参照すると、基地局200は、有効情報及びUE情報の送信のための構成情報を含むRRCメッセージをUE100へ送信し、第3UEとして動作するUE100は、当該RRCメッセージを受信する(S401)。UE100は、当該RRCメッセージに対する応答メッセージを基地局200へ送信する(S403)。例えば、上記構成情報は、上記RRCメッセージ内のSRS-Configに含まれる。例えば、上記RRCメッセージは、RRCReconfigurationメッセージであり、上記応答メッセージは、RRCReconfigurationCompleteメッセージである。 Referring to FIG. 10, the base station 200 transmits an RRC message including configuration information for transmission of valid information and UE information to the UE 100, and the UE 100 acting as the third UE receives the RRC message (S401). . UE 100 transmits a response message to the RRC message to base station 200 (S403). For example, the configuration information is included in SRS-Config in the RRC message. For example, the RRC message is an RRCReconfiguration message and the response message is an RRCReconfigurationComplete message.
 これにより、有効情報及びUE情報の送信を柔軟に制御することが可能になる。換言すると、他のUEが送信したアップリンクリファレンス信号を利用するか否かを柔軟に制御することが可能になる。 This makes it possible to flexibly control the transmission of valid information and UE information. In other words, it is possible to flexibly control whether or not to use uplink reference signals transmitted by other UEs.
 また、第3の変形例の別の形態として、上記第1の変形例で説明したように、有効情報が、アップリンクリファレンス信号の送信タイミングと、他のアップリンクリファレンス信号の送信タイミングである他のタイミングとの間の期間を示す場合、第3UE100は、予め有効情報及びUE情報を送信してもよい。 Further, as another form of the third modification, as described in the first modification, the valid information is the transmission timing of the uplink reference signal and the transmission timing of the other uplink reference signal. , the third UE 100 may transmit the validity information and the UE information in advance.
 例えば、第3UE100は、RRCメッセージの通信時に、有効情報及びUE情報を送信してもよい。具体的には、第3UE100(通信処理部133)は、有効情報及びUE情報の送信のための構成情報を含むRRCメッセージをダウンリンクで受信する場合、当該RRCメッセージへの応答として、有効情報及びUE情報をアップリンクで送信する。基地局200(通信処理部243)は、上記RRCメッセージへの応答として、有効情報及びUE情報をアップリンクで受信する。 For example, the third UE 100 may transmit valid information and UE information when communicating an RRC message. Specifically, when the third UE 100 (communication processing unit 133) receives an RRC message including configuration information for transmitting valid information and UE information on the downlink, as a response to the RRC message, valid information and Send UE information on the uplink. The base station 200 (communication processing unit 243) receives the valid information and UE information on the uplink as a response to the RRC message.
 また、第3UE100(通信処理部133)は、上記RRCメッセージへの応答後(即ち、有効情報及びUE情報の送信後)に、UE情報をアップリンクで送信する。上記他のタイミングは、当該UE情報の送信により示される。基地局200(通信処理部243)は、上記RRCメッセージへの応答後に、UE情報をアップリンクで受信する。 Also, the third UE 100 (communication processing unit 133) transmits the UE information on the uplink after responding to the RRC message (that is, after transmitting the validity information and the UE information). The other timing is indicated by the transmission of the UE information. After responding to the RRC message, the base station 200 (communication processing unit 243) receives the UE information on the uplink.
 図11を参照すると、第1UE及び第3UEとして動作するUE100は、上記構成情報を含むRRCメッセージを基地局200から受信する(S501)。 Referring to FIG. 11, the UE 100 operating as the first UE and the third UE receives the RRC message including the configuration information from the base station 200 (S501).
 UE100は、当該RRCメッセージに対する応答メッセージであって、有効情報及びUE情報を含む応答メッセージを基地局200へ送信する(S503)。当該有効情報は、あるSRSの送信タイミングと他のSRSの送信タイミングとの期間を示す。例えば、図7を再び参照すると、当該有効情報は、SRS2の送信タイミングとSRS9の送信タイミングとの期間23を示す。また、当該有効情報が示す期間とUE情報とは対応付けられる。例えば、期間23と第2UE100の識別情報とが対応付けられる。 The UE 100 transmits a response message to the RRC message, which includes validity information and UE information, to the base station 200 (S503). The validity information indicates the period between the transmission timing of a certain SRS and the transmission timing of another SRS. For example, referring to FIG. 7 again, the validity information indicates the period 23 between the transmission timing of SRS2 and the transmission timing of SRS9. Also, the period indicated by the valid information is associated with the UE information. For example, period 23 is associated with the identification information of the second UE 100 .
 UE100は、応答メッセージの送信後、SRSを送信する(S505)。SRSの送信後、UE100は、UE情報を送信する(S507)。当該UE情報の送信タイミングにより、上記他のSRSの送信タイミングが示される。例えば、当該他のSRSは、当該UE情報の送信タイミングの直前に送信されたSRSである。図7を再び参照すると、当該UE情報の送信タイミングは、タイミング19に相当し、上記他のタイミングは、タイミング19の直前のSRS9の送信タイミングであるタイミング17である。基地局200は、上記期間23とタイミング17とに基づき、タイミング13を算出し、SRS2を識別する。応答メッセージの送信後に送信されるUE情報は、UCI(Uplink Control Information)又はMAC CE(MAC Control Element)に含まれてもよい。 After transmitting the response message, the UE 100 transmits the SRS (S505). After transmitting the SRS, the UE 100 transmits UE information (S507). The transmission timing of the UE information indicates the transmission timing of the other SRS. For example, the other SRS is an SRS transmitted immediately before the transmission timing of the UE information. Referring to FIG. 7 again, the transmission timing of the UE information corresponds to timing 19, and the other timing is timing 17, which is the transmission timing of SRS 9 immediately before timing 19. FIG. Base station 200 calculates timing 13 based on period 23 and timing 17 and identifies SRS2. The UE information transmitted after the transmission of the response message may be included in UCI (Uplink Control Information) or MAC CE (MAC Control Element).
 なお、第3UE100が応答メッセージの送信後に第2UE100を示すUE情報を送信する代わりに、第2UE100がスケジューリング要求を送信することにより、上記他のSRSの送信タイミングが示されてもよい。 Note that the transmission timing of the other SRS may be indicated by the second UE 100 transmitting a scheduling request instead of the third UE 100 transmitting the UE information indicating the second UE 100 after transmitting the response message.
 これにより、上記測定の結果を有効にする際に有効情報を送信することなく上記測定の結果を有効にすることができる。したがって、通信量を低減することができる。本構成は、第1UE100及び第2UE100の相対位置の変化が小さい場合は上記期間の変化も小さいため、特に有効である。 As a result, the measurement result can be validated without sending validation information when validating the measurement result. Therefore, communication traffic can be reduced. This configuration is particularly effective when the change in the relative positions of the first UE 100 and the second UE 100 is small, because the change in the period is also small.
 (4)第4の変形例
 本開示の第1の実施形態の上述した例では、第3UE100は、周期的に有効情報を送信する。しかし、本開示の第1の実施形態に係る有効情報の送信方法は、この例に限定されない。
(4) Fourth Modification In the above-described example of the first embodiment of the present disclosure, the third UE 100 periodically transmits valid information. However, the method of transmitting valid information according to the first embodiment of the present disclosure is not limited to this example.
 本開示の第1の実施形態の第4の変形例として、第3UE100は、有効情報及びUE情報の送信を要求される場合、有効情報及びUE情報をアップリンクで送信してもよい。具体的には、第3UE100(通信処理部133)は、有効情報及びUE情報の送信を要求する要求情報を含むダウンリンク制御情報(DCI)の受信に応じて、有効情報及びUE情報をアップリンクで送信する。また、基地局200(通信処理部243)は、上記要求情報を含むダウンリンク制御情報をダウンリンクで送信する。 As a fourth modification of the first embodiment of the present disclosure, the third UE 100 may transmit the validity information and the UE information on the uplink when requested to transmit the validity information and the UE information. Specifically, the third UE 100 (communication processing unit 133) uplinks the valid information and the UE information in response to reception of downlink control information (DCI) including request information requesting transmission of the valid information and the UE information. Send with Also, the base station 200 (communication processing unit 243) transmits downlink control information including the above request information on the downlink.
 図12の例を参照すると、基地局200(通信処理部243)は、有効情報及びUE情報の送信を要求する要求情報を含むDCIを、第3UEとして動作するUE100へ送信する(S601)。UE100(通信処理部133)は、上記要求情報に応じて、SRSと、有効情報及びUE情報とを、基地局200へ送信する(S603)。例えば、上記要求情報は、有効情報及びUE情報の送信を要求する値にセットされたSRSリクエストであってもよい。 Referring to the example of FIG. 12, the base station 200 (communication processing unit 243) transmits DCI including request information requesting transmission of valid information and UE information to the UE 100 operating as the third UE (S601). The UE 100 (communication processing unit 133) transmits the SRS, validity information and UE information to the base station 200 in response to the request information (S603). For example, the request information may be an SRS request set to a value requesting transmission of availability information and UE information.
 これにより、有効情報及びUE情報の送信を柔軟に制御することが可能になる。また、基地局200が有効情報及びUE情報を要する場合に有効情報及びUE情報が送信されるため、通信量を低減することができる。 This makes it possible to flexibly control the transmission of valid information and UE information. Moreover, since the effective information and the UE information are transmitted when the base station 200 requires the effective information and the UE information, the amount of communication can be reduced.
 また、第4の変形例の別の形態では、第3UE100は、第2UE100からの要求に応じて、有効情報及びUE情報を送信してもよい。具体的には、第3UE100(通信処理部133)は、有効情報及びユーザ機器情報の送信を要求する要求情報を含む制御情報を第2UE100から直接通信で受信したことに応じて、有効情報及びUE情報をアップリンクで送信する。 In addition, in another form of the fourth modified example, the third UE 100 may transmit valid information and UE information in response to a request from the second UE 100. Specifically, the third UE 100 (communication processing unit 133), in response to receiving control information including request information requesting transmission of valid information and user equipment information from the second UE 100 by direct communication, valid information and UE Send information on the uplink.
 例えば、第2UE100は、上記要求情報を含む制御情報を直接通信で第3UE100へ送信する。第3UE100は、直接通信で当該制御情報を受信すると、有効情報及びUE情報をアップリンクで送信する。直接通信は、サイドリンク通信(単一のサイドリンクを用いたシングルホップ通信、又は複数のサイドリンクを経由するマルチホップ通信)である。なお、直接通信は、上述した無線LAN又は無線PAN等を用いた通信(各通信方式における形式の単一のリンクを用いたシングルホップ通信、又はそれぞれの形式のリンクを複数経由するマルチホップ通信)であってもよい。 For example, the second UE 100 transmits control information including the request information to the third UE 100 by direct communication. When the third UE 100 receives the control information through direct communication, the third UE 100 transmits valid information and UE information through uplink. Direct communication is sidelink communication (single-hop communication using a single sidelink or multi-hop communication via multiple sidelinks). In addition, direct communication is communication using the above-mentioned wireless LAN or wireless PAN (single-hop communication using a single link in each communication method, or multi-hop communication via multiple links in each format) may be
 図13を参照すると、第2UEとして動作するUE100Bは、上記要求情報を含む制御情報をサイドリンクで第3UEとして動作するUE100Aへ送信する(S801)。例えば、当該制御情報は、PSCCH(Physical Sidelink Control Channel)又はPSSCH(Physical Sidelink Shared Channel)を介して送信されてよい。 Referring to FIG. 13, the UE 100B operating as the second UE transmits control information including the request information to the UE 100A operating as the third UE on the sidelink (S801). For example, the control information may be transmitted via PSCCH (Physical Sidelink Control Channel) or PSSCH (Physical Sidelink Shared Channel).
 UE100Aは、サイドリンクで上記要求情報を含む制御情報を受信したことに応じて、有効情報及びUE情報をアップリンクで送信する(S803)。例えば、UE100Aは、制御情報の送信元であるUE100Bについて有効である上記測定の結果に関する有効情報と、UE100Bを示すUE情報と、をアップリンクで送信する。 The UE 100A transmits effective information and UE information on the uplink in response to receiving the control information including the request information on the sidelink (S803). For example, the UE 100A transmits, on the uplink, validity information regarding the result of the measurement that is valid for the UE 100B, which is the transmission source of the control information, and UE information indicating the UE 100B.
 UE100Bは、制御情報の送信後に、スケジューリング要求をアップリンクで送信する(S805)。例えば、UE100Bは、サイドリンクで制御情報を送信した後、SR信号をアップリンクで送信する。 After transmitting the control information, the UE 100B transmits a scheduling request on the uplink (S805). For example, the UE 100B transmits an SR signal on the uplink after transmitting control information on the sidelink.
 なお、上記制御情報の受信に応じてUE100Aが送信する有効情報及びUE情報が、UE100Bのスケジューリング要求の代わりになってもよい。この場合、UE100Bは、スケジューリング要求を送信することなく、データ送信のためのリソースがUE100Bに割り当てられる。 It should be noted that the effective information and UE information transmitted by the UE 100A in response to receiving the above control information may be substituted for the scheduling request of the UE 100B. In this case, the UE 100B is allocated resources for data transmission without transmitting a scheduling request.
 これにより、第2UE100がデータを基地局200へ送信する場合に有効情報及びUE情報が送信されるため、通信量を低減することができる。また、第2UE100からの要求に応じて有効情報及びUE情報が送信されるため、上記測定の結果が有効になるタイミングと第2UE100のデータ送信のタイミングとのずれを低減することができる。したがって、第2UE100のデータ送信に適したリソースを割り当てることができる。
 <2.第2の実施形態>
 本開示の第2の実施形態を説明する。本実施形態では、UEは、他のUEと協調してデータをアップリンクで送信する。
Thereby, when the second UE 100 transmits data to the base station 200, the effective information and the UE information are transmitted, so that the amount of communication can be reduced. In addition, since the validity information and the UE information are transmitted in response to a request from the second UE 100, it is possible to reduce the deviation between the timing when the measurement result becomes valid and the timing of the data transmission of the second UE 100. Therefore, resources suitable for data transmission of the second UE 100 can be allocated.
<2. Second Embodiment>
A second embodiment of the present disclosure will be described. In this embodiment, a UE cooperates with other UEs to transmit data on the uplink.
 <2.1.システムの構成>
 図14を参照して、本開示の第2の実施形態に係るシステム2の構成の例を説明する。図14を参照すると、システム2は、UE100(UE100A~UE100C)及び基地局200を含む。
<2.1. System configuration>
An example of the configuration of the system 2 according to the second embodiment of the present disclosure will be described with reference to FIG. 14 . Referring to FIG. 14, system 2 includes UE 100 (UE 100A to UE 100C) and base station 200. FIG.
 例えば、システム2は、3GPPのTSに準拠したシステムである。より具体的には、例えば、システム2は、5G又はNRのTSに準拠したシステムである。当然ながら、システム2は、この例に限定されない。 For example, System 2 is a 3GPP TS-compliant system. More specifically, for example, the system 2 is a 5G or NR TS compliant system. Of course, system 2 is not limited to this example.
 (1)基地局200
 基地局200は、カバレッジエリア内に位置する複数のUE100からアップリンクで協調送信されるデータを受信する。例えば、基地局200は、UE100A~UE100Cに協調送信のためのリソースをそれぞれ割り当て、協調送信されるデータを受信する。
(1) Base station 200
The base station 200 receives data cooperatively transmitted on the uplink from a plurality of UEs 100 located within its coverage area. For example, the base station 200 allocates resources for coordinated transmission to each of the UEs 100A to 100C, and receives coordinated transmitted data.
 (2)UE100
 UE100は、他のUE100と協調してデータをアップリンクで送信する。例えば、UE100Aは、UE100B及びUE100Cへデータをサイドリンクで共有し、UE100A~UE100Cが当該データをアップリンクで協調送信する。
(2) UE 100
A UE 100 cooperates with another UE 100 to transmit data on the uplink. For example, UE 100A shares data to UE 100B and UE 100C on the sidelink, and UE 100A to UE 100C coordinately transmit the data on the uplink.
 なお、UE100及び基地局200の構成は、実質的に第1の実施形態の構成と同一であるため説明を省略する。 Note that the configurations of the UE 100 and the base station 200 are substantially the same as those of the first embodiment, so description thereof will be omitted.
 <2.2.動作例>
 図15及び図16を参照して、本開示の第2の実施形態に係るUE100及び基地局200の動作の例を説明する。本実施形態では、第1UE、第2UE又は第3UEとして動作するUE100は、送信UE、代表UE、協調UE又はそれらのいずれか2つ若しくは全てとして動作し得る。
<2.2. Operation example>
An example of operations of the UE 100 and the base station 200 according to the second embodiment of the present disclosure will be described with reference to FIGS. 15 and 16. FIG. In this embodiment, the UE 100 acting as a first, second or third UE may act as a transmitting UE, a representative UE, a coordinating UE, or any two or all of them.
 (1)送信UEの動作
 送信UEとして動作するUE100(送信UE100とも称する。)は、基地局200へ送信されるべき協調送信データを協調UEとして動作するUE100(協調UE100とも称する。)へ送信する。また、送信UE100は、協調ユーザ機器情報として協調UE100のリスト(協調UEリストとも称する。)を取得する。
(1) Operation of transmitting UE UE 100 (also called transmitting UE 100) operating as a transmitting UE transmits cooperative transmission data to be transmitted to base station 200 to UE 100 operating as a cooperative UE (also called cooperative UE 100). . Also, the transmitting UE 100 acquires a list of cooperative UEs 100 (also referred to as a cooperative UE list) as cooperative user equipment information.
 -協調UEリストの取得
 協調UEリストは、直接通信で協調送信データを送信又は受信可能な2つ以上のUE100であって、協調的に協調送信データを基地局200へ送信可能な2つ以上のUE100(即ち、2つ以上の協調UE100)を示す。例えば、協調UEリストは、送信UE100が協調送信データを送信可能な2つ以上の協調UE100を示す。より具体的には、協調UEリストは、協調UE100の識別子のリストである。直接通信は、サイドリンク通信(単一のサイドリンクを用いたシングルホップ通信、又は複数のサイドリンクを経由するマルチホップ)である。
- Acquisition of a coordinated UE list A coordinated UE list is two or more UEs 100 capable of transmitting or receiving coordinated transmission data in direct communication, and two or more UEs 100 capable of cooperatively transmitting coordinated transmission data to the base station 200. A UE 100 (ie two or more cooperating UEs 100) is shown. For example, the coordinated UE list indicates two or more coordinated UEs 100 to which the transmitting UE 100 can transmit coordinated transmission data. More specifically, the cooperating UE list is a list of identifiers of cooperating UEs 100 . Direct communication is sidelink communication (single-hop communication using a single sidelink or multi-hop via multiple sidelinks).
 送信UE100は、直接通信を用いて協調UEリストを取得する。具体的には、送信UE100は、サイドリンク通信における制御情報を用いて協調UEリストを取得する。例えば、送信UE100は、サイドリンクでのセンシング等を用いてサイドリンク通信可能な協調UE100を識別する。また、送信UE100は、サイドリンク通信における制御情報とは別の情報をサイドリンクで送受信することで協調UEリストを取得してもよい。 The transmitting UE 100 acquires the cooperating UE list using direct communication. Specifically, the transmitting UE 100 acquires a cooperative UE list using control information in sidelink communication. For example, the transmitting UE 100 identifies the cooperative UE 100 capable of sidelink communication using sidelink sensing or the like. Also, the transmitting UE 100 may acquire the cooperative UE list by transmitting and receiving information other than control information in sidelink communication on the sidelink.
 協調UEリストが示す複数の協調UE100は、2つ以上の第2UEとして動作するUE100であってもよい。また、協調UE100が協調UEとしても動作する場合、協調UEリストが示す複数の協調UE100は、1つ以上の第1UEとして動作するUE100及び1つ以上の第2UEとして動作するUE100であってもよい。 A plurality of cooperating UEs 100 indicated by the cooperating UE list may be UEs 100 that operate as two or more second UEs. Further, when the coordinated UE 100 also operates as a coordinated UE, the plurality of coordinated UEs 100 indicated by the coordinated UE list may be the UE 100 operating as one or more first UEs and the UE 100 operating as one or more second UEs. .
 これにより、協調UEリストが示す協調UE100について適用SRS情報を用いてリソースを割り当てることができる。即ち、協調UE100以外のUEに協調送信用のリソースを割り当てることを防止できる。 By this means, it is possible to allocate resources to the cooperative UE 100 indicated by the cooperative UE list using the applied SRS information. That is, it is possible to prevent allocation of resources for cooperative transmission to UEs other than the cooperative UE 100 .
 -協調送信データの送信
 送信UE100は、協調UE100へ協調送信データを直接通信で共有する。具体的には、送信UE100(情報取得部131)は、協調UEリストを取得する。送信UE100(通信処理部133)は、当該協調UEリストが示す2つ以上の協調UE100のうちの少なくとも1つの協調UE100へ協調送信データをサイドリンクで送信する。なお、送信UE100が協調UEとしても動作する場合は、協調UEリストは、送信UE100がサイドリンクで通信可能な1つ以上の協調UE100を示す情報と送信UE100を示す情報とを別に含んでもよい。即ち、送信UE100は、1つ以上の協調UE100へ協調送信データを送信してもよい。
- Transmission of cooperative transmission data The transmitting UE 100 shares cooperative transmission data with the cooperative UE 100 by direct communication. Specifically, transmitting UE 100 (information acquisition unit 131) acquires a cooperative UE list. The transmitting UE 100 (communication processing unit 133) transmits cooperative transmission data to at least one cooperative UE 100 out of two or more cooperative UEs 100 indicated by the cooperative UE list, via the sidelink. Note that when the transmitting UE 100 also operates as a cooperating UE, the coordinating UE list may separately include information indicating one or more cooperating UEs 100 with which the transmitting UE 100 can communicate on the sidelink and information indicating the transmitting UE 100. That is, the transmitting UE 100 may transmit cooperative transmission data to one or more cooperative UEs 100 .
 例えば、送信UE100(情報取得部131)は、送信UE100内で協調送信データを取得する。送信UE100(通信処理部133)は、取得された協調送信データをサイドリンクで少なくとも1つの協調UE100へ送信する。例えば、送信UE100は、記憶部120に記憶されるデータ又は送信UE100にて動作するアプリケーション等の上位レイヤから受け取るデータを取得する。送信UE100は、取得されたデータを協調UEリストが示す少なくとも1つの協調UE100へ送信する。 For example, the transmitting UE 100 (information acquisition unit 131) acquires cooperative transmission data within the transmitting UE 100. The transmitting UE 100 (communication processing unit 133) transmits the acquired cooperative transmission data to at least one cooperative UE 100 on the sidelink. For example, the transmitting UE 100 acquires data stored in the storage unit 120 or data received from an upper layer such as an application running on the transmitting UE 100 . The transmitting UE 100 transmits the acquired data to at least one cooperating UE 100 indicated by the cooperating UE list.
 (2)代表UEの動作
 代表UE100は、2つ以上の協調UE100の代表として、協調UEリストを基地局200へ送信する。
(2) Operation of representative UE The representative UE 100 transmits a cooperating UE list to the base station 200 as a representative of two or more cooperating UEs 100 .
 -協調UEリストの送信
 代表UE100は、協調UEリストを基地局200へ送信する。具体的には、代表UE100(情報取得部131)は、協調UEリストを取得する。代表UE100(通信処理部133)は、協調UEリストを含む制御情報を基地局200へ送信する。
-Transmission of coordinated UE list The representative UE 100 transmits the coordinated UE list to the base station 200 . Specifically, the representative UE 100 (information acquisition unit 131) acquires a cooperative UE list. The representative UE 100 (communication processing unit 133 ) transmits control information including the cooperative UE list to the base station 200 .
 例えば、代表UE100(通信処理部133)は、協調UEリストを含むUCIを基地局200へ送信する。あるいは、代表UE100(通信処理部133)は、協調UEリストを含むMAC CE、又はRRCメッセージを基地局200へ送信する。 For example, the representative UE 100 (communication processing unit 133) transmits UCI including the cooperative UE list to the base station 200. Alternatively, the representative UE 100 (communication processing unit 133) transmits a MAC CE or RRC message including the coordinated UE list to the base station 200.
 (3)協調UEの動作
 協調UE100は、協調送信データを送信UE100から受信し、受信した協調送信データを他の協調UE100と協調して基地局200へ送信する。
(3) Operation of Cooperative UE The cooperative UE 100 receives cooperative transmission data from the transmitting UE 100 and transmits the received cooperative transmission data to the base station 200 in cooperation with other cooperative UEs 100 .
 -協調送信データを受信
 協調UE100は、協調送信データを送信UE100から直接通信で受信する。具体的には、協調UE100(通信処理部133)は、協調送信データを送信UE100からサイドリンクで受信する。
- Receiving cooperative transmission data The cooperative UE 100 receives cooperative transmission data from the transmitting UE 100 by direct communication. Specifically, the cooperative UE 100 (communication processing unit 133) receives the cooperative transmission data from the transmitting UE 100 on the sidelink.
 -リソース割当情報の受信
 協調UE100は、ULリソースを示すリソース割当情報を基地局200から受信する。具体的には、協調UE100(通信処理部133)は、リソース割当情報を含む制御情報を基地局200から受信する。協調UE100(情報取得部131)は、制御情報に含まれるリソース割当情報を取得する。
- Receiving resource allocation information The cooperative UE 100 receives resource allocation information indicating UL resources from the base station 200 . Specifically, the cooperative UE 100 (communication processing unit 133 ) receives control information including resource allocation information from the base station 200 . The cooperative UE 100 (information acquisition unit 131) acquires resource allocation information included in control information.
 また、協調UE100は、協調MIMOのための協調プリコーディングを基地局200から受信する。例えば、協調UE100(通信処理部133)は、協調プリコーディングを含む制御情報を基地局200から受信する。協調UE100(情報取得部131)は、制御情報に含まれる協調プリコーディングを取得する。なお、協調プリコーディングは、リソース割当情報が含む制御情報に含まれてもよい。 Also, the cooperative UE 100 receives cooperative precoding for cooperative MIMO from the base station 200 . For example, the cooperative UE 100 (communication processing unit 133) receives control information including cooperative precoding from the base station 200. FIG. The cooperative UE 100 (information acquisition unit 131) acquires cooperative precoding included in control information. Note that cooperative precoding may be included in control information included in resource allocation information.
 -協調送信データの送信
 協調UE100は、他の協調UE100と協調して協調送信データを基地局200へ送信する。
- Transmission of cooperative transmission data A cooperative UE 100 cooperates with another cooperative UE 100 to transmit cooperative transmission data to the base station 200 .
 ここで、協調送信は、協調送信データを複数の協調UE100で共有し、送信することを意味する。あるいは、協調送信は、協調送信データを複数の協調UE100で共有し、同一の時間、周波数又は空間で送信することを意味してもよい。あるいは、協調送信は、協調送信データを複数の協調UE100で共有し、協調MIMOで送信することを意味してもよい。 Here, cooperative transmission means sharing and transmitting cooperative transmission data among a plurality of cooperative UEs 100 . Alternatively, cooperative transmission may mean sharing cooperative transmission data among a plurality of cooperative UEs 100 and transmitting in the same time, frequency, or space. Alternatively, cooperative transmission may mean sharing cooperative transmission data among a plurality of cooperative UEs 100 and transmitting with cooperative MIMO.
 例えば、協調UE100は、基地局200から受信されたリソース割当情報が示すULリソースを用いて協調送信データを基地局200へ送信する。協調プリコーディングが基地局200から受信される場合は、協調UE100は、受信された協調プリコーディングを用いて協調送信データを基地局200へ送信する。2つ以上の協調UE100それぞれが受信される協調プリコーディングを用いて協調送信データを送信することにより、協調MIMOが実現される。 For example, the coordinated UE 100 transmits coordinated transmission data to the base station 200 using UL resources indicated by resource allocation information received from the base station 200 . When cooperative precoding is received from base station 200, cooperative UE 100 transmits cooperative transmission data to base station 200 using the received cooperative precoding. Cooperative MIMO is achieved by transmitting cooperative transmission data using cooperative precoding that is received by two or more cooperative UEs 100 respectively.
 (4)第1UEの動作
 第2の実施形態に係る第1UE100の動作は、第1の実施形態と実質的に同一であるため、説明を省略する。
(4) Operation of First UE The operation of the first UE 100 according to the second embodiment is substantially the same as that of the first embodiment, so the description is omitted.
 (5)第2UEの動作
 第2の実施形態に係る第2UE100は、スケジューリング要求を送信しないことを除き、第1の実施形態と実質的に同一である。即ち、第2UE100は、スケジューリング要求もアップリンクリファレンス信号も送信することなく、基地局200に割り当てられたリソースを用いてデータを送信する。
(5) Operation of Second UE The second UE 100 according to the second embodiment is substantially the same as in the first embodiment except that it does not transmit a scheduling request. That is, the second UE 100 transmits data using resources allocated to the base station 200 without transmitting a scheduling request or an uplink reference signal.
 (6)第3UEの動作
 第3UE100は、協調送信データの送信のために、有効情報及びUE情報を含む適用SRS情報を基地局200へ送信する。
(6) Operation of Third UE The third UE 100 transmits applicable SRS information including valid information and UE information to the base station 200 for transmission of cooperative transmission data.
 -適用SRS情報の送信
 第3UE100は、適用SRS情報をアップリンクで送信する。具体的には、第3UE100(通信処理部133)は、協調送信データの取得に応じて、有効情報及びUE情報をアップリンクで送信する。
- Transmission of applied SRS information The third UE 100 transmits applied SRS information on the uplink. Specifically, the third UE 100 (communication processing unit 133) transmits effective information and UE information in the uplink in response to acquisition of cooperative transmission data.
 第3UE100が送信UEとして動作する場合、第3UE100は、第3UE100内で協調送信データを取得すると、有効情報及びUE情報をアップリンクで送信する。 When the third UE 100 operates as a transmitting UE, the third UE 100 transmits valid information and UE information on the uplink when it acquires cooperative transmission data within the third UE 100 .
 第3UE100が協調UEとして動作する場合、第3UE100は、送信UE100から協調送信データを直接通信で受信すると、有効情報及びUE情報をアップリンクで送信する。 When the third UE 100 operates as a cooperative UE, upon receiving cooperative transmission data from the transmitting UE 100 by direct communication, the third UE 100 transmits valid information and UE information on the uplink.
 これにより、協調送信データが基地局200へ送信される場合に有効情報及びUE情報が送信されるため、通信量を低減することができる。また、協調送信データの送信要求に応じて有効情報及びUE情報が送信されるため、上記測定の結果が有効になるタイミングと協調送信データの送信のタイミングとのずれを低減することができる。したがって、協調送信データの送信に適したリソースを割り当てることができる。 As a result, when the cooperative transmission data is transmitted to the base station 200, the effective information and the UE information are transmitted, so it is possible to reduce the amount of communication. In addition, since the validity information and the UE information are transmitted in response to the request for transmission of cooperative transmission data, it is possible to reduce the deviation between the timing at which the result of the measurement becomes effective and the timing at which cooperative transmission data is transmitted. Therefore, resources suitable for transmission of cooperative transmission data can be allocated.
 なお、第3UE100は、適用SRS情報及び協調UEリストを同時に送信してもよい。例えば、協調UEリストは、適用SRS情報が含まれる制御情報に含まれる。 Note that the third UE 100 may transmit the applied SRS information and the cooperative UE list at the same time. For example, the coordinated UE list is included in the control information that includes applicable SRS information.
 また、適用SRS情報は、協調UE100が第1UEとして動作する場合、当該協調UE100について有効である上記測定の結果に関する有効情報、及び当該協調UE100を示すUE情報を含んでもよい。 In addition, when the coordinated UE 100 operates as the first UE, the applied SRS information may include effective information regarding the result of the measurement that is effective for the coordinated UE 100 and UE information indicating the coordinated UE 100.
 (7)基地局の動作
 基地局200は、第1UE100からアップリンクリファレンス信号を受信し、当該アップリンクリファレンス信号に基づき測定を行う。基地局200は、適用SRS情報を第3UE100から受信し、協調UEリストを代表UE100から受信する。基地局200は、適用SRS情報及び協調UEリストに基づき識別される上記測定の結果を用いて協調UE100による協調送信のためのスケジューリングを行う。なお、上記測定及び適用SRS情報の受信は、第1の実施形態と実質的に同一であるため説明を省略する。
(7) Base station operation The base station 200 receives an uplink reference signal from the first UE 100 and performs measurements based on the uplink reference signal. The base station 200 receives the applied SRS information from the third UE 100 and receives the cooperating UE list from the representative UE 100 . The base station 200 schedules for cooperative transmission by the cooperative UE 100 using the results of the above measurements identified based on the applied SRS information and the cooperative UE list. Note that the above measurement and reception of applied SRS information are substantially the same as in the first embodiment, so description thereof will be omitted.
 -協調UEリストの受信
 基地局200は、協調UEリストを代表UE100から受信する。具体的には、基地局200(通信処理部243)は、協調UEリストを含む制御情報を代表UE100から受信する。基地局200(情報取得部241)は、制御情報に含まれる協調UEリストを取得する。基地局200(記憶部230)は、取得された協調UEリストを記憶する。
- Receipt of coordinated UE list The base station 200 receives the coordinated UE list from the representative UE 100 . Specifically, the base station 200 (communication processing unit 243 ) receives control information including the cooperative UE list from the representative UE 100 . The base station 200 (information acquisition unit 241) acquires the coordinated UE list included in the control information. The base station 200 (storage unit 230) stores the acquired cooperative UE list.
 -適用SRS情報及び協調UEリストに基づくスケジューリング
 基地局200は、第3UE100から適用SRS情報を受信し、協調UEリストを代表UE100から受信する。基地局200は、適用SRS情報及び協調UEリストに基づき協調送信のためのULリソースを協調UE100に割り当てる。基地局200は、当該ULリソースを示すリソース割当情報を協調UE100へ送信する。
- Scheduling based on applied SRS information and coordinated UE list The base station 200 receives applied SRS information from the third UE 100 and receives the coordinated UE list from the representative UE 100 . Base station 200 allocates UL resources for cooperative transmission to cooperative UE 100 based on the applied SRS information and the cooperative UE list. The base station 200 transmits resource allocation information indicating the UL resource to the cooperative UE 100 .
 具体的には、基地局200(制御部245)は、協調UEリストをアップリンクで受信する場合、有効情報が示す上記測定の結果であって、協調UEリストが示す複数の協調UE100について有効である上記測定の結果それぞれを用いて当該協調UE100それぞれにULリソースを割り当てる。そして、基地局200(通信処理部243)は、当該協調UEリストが示す協調UE100それぞれへ当該ULリソースの割当を示すリソース割当情報を送信する。 Specifically, when the base station 200 (control unit 245) receives the coordinated UE list on the uplink, the above measurement result indicated by the validity information is valid for the plurality of coordinated UEs 100 indicated by the coordinated UE list. UL resources are assigned to each of the coordinating UEs 100 using each of the above measurement results. Then, the base station 200 (communication processing unit 243) transmits resource allocation information indicating allocation of the UL resource to each of the coordinated UEs 100 indicated by the coordinated UE list.
 第1の実施形態で説明したように、基地局200は、適用SRS情報に含まれる有効情報及びUE情報に基づき上記測定の結果とUE情報とを対応付けている。基地局200は、協調UEリストが示す協調UE100それぞれと一致するUE情報と対応付けられている上記測定の結果をそれぞれ取得する。基地局200は、取得された上記測定の結果それぞれに基づき、協調送信のためのULリソースを当該協調UE100それぞれに割り当てる。基地局200は、当該ULリソースの割当を示すリソース割当情報を含む制御情報を当該協調UE100それぞれへ送信する。 As described in the first embodiment, the base station 200 associates the measurement result with the UE information based on the effective information and the UE information included in the applicable SRS information. The base station 200 acquires each of the above measurement results associated with UE information that matches each of the cooperating UEs 100 indicated by the cooperating UE list. The base station 200 allocates UL resources for cooperative transmission to each of the cooperative UEs 100 based on the obtained measurement results. The base station 200 transmits control information including resource allocation information indicating allocation of the UL resource to each of the cooperative UEs 100 concerned.
 また、基地局200は、協調MIMOのための協調プリコーディングを協調UE100それぞれへ送信してもよい。具体的には、基地局200(制御部245)は、上記測定の結果それぞれに基づき協調プリコーディングを取得する。基地局200(通信処理部243)は、協調プリコーディングを含む制御情報を当該協調UE100それぞれへ送信する。 Also, the base station 200 may transmit cooperative precoding for cooperative MIMO to each cooperative UE 100. Specifically, base station 200 (control section 245) acquires cooperative precoding based on each of the above measurement results. The base station 200 (communication processing unit 243) transmits control information including cooperative precoding to each of the cooperative UEs 100 concerned.
 例えば、基地局200(通信処理部243)は、リソース割当情報及び協調プリコーディングを含むDCIを協調UE100それぞれへ送信する。 For example, the base station 200 (communication processing unit 243) transmits DCI including resource allocation information and cooperative precoding to each cooperative UE 100.
 -協調送信データの受信
 基地局200は、協調UE100それぞれが協調して送信する協調送信データを受信する。具体的には、基地局200(通信処理部243)は、協調UE100それぞれに割り当てられたULリソースで送信される協調送信データそれぞれを受信する。
- Receipt of coordinated transmission data The base station 200 receives coordinated transmission data transmitted by each of the coordinated UEs 100 in cooperation. Specifically, the base station 200 (communication processing unit 243) receives each coordinated transmission data transmitted by the UL resource allocated to each coordinated UE 100. FIG.
 なお、協調UE100それぞれが送信する協調送信データは、協調送信データ全体の一部であってもよい。例えば、協調送信データ全体の第1の部分が協調UE100-1により送信され、第1の部分とは異なる第2の部分が協調UE100-2により送信される。また、協調UE100それぞれが送信する協調送信データは部分的又は全体的に重複していてもよい。例えば、上記第1の部分と上記第2の部分とは重複してもよい。また、2つ以上の協調UE100がそれぞれ送信すべき協調送信データは協調送信データ全体であってもよい。 Note that the coordinated transmission data transmitted by each of the coordinated UEs 100 may be part of the entire coordinated transmission data. For example, a first portion of the overall cooperative transmission data is transmitted by cooperative UE 100-1, and a second portion different from the first portion is transmitted by cooperative UE 100-2. Also, the coordinated transmission data transmitted by each of the coordinated UEs 100 may partially or wholly overlap. For example, the first portion and the second portion may overlap. Also, the coordinated transmission data to be transmitted by two or more coordinated UEs 100 may be the entire coordinated transmission data.
 例えば、基地局200は、受信された協調送信データそれぞれに基づき、協調送信データ全体を取得する。より具体的には、基地局200は、受信された協調送信データ全体の部分それぞれに基づき協調送信データ全体を復元する。 For example, the base station 200 acquires the entire coordinated transmission data based on each received coordinated transmission data. More specifically, base station 200 recovers the entire coordinated transmission data based on each received portion of the entire coordinated transmission data.
 (8)処理の流れ
 図15及び図16を参照して、本開示の第2の実施形態に係る処理の例を説明する。図15及び図16の例では、UE100Aが送信UE、代表UE及び協調UEとして動作し、UE100B及びUE100Cが協調UEとして動作する。また、UE100Aが第1UE、第2UE、第3UEとして動作し、UE100B及びUE100Cが第2UEとして動作する。
(8) Flow of Processing An example of processing according to the second embodiment of the present disclosure will be described with reference to FIGS. 15 and 16. FIG. In the examples of FIGS. 15 and 16, the UE 100A operates as the transmitting UE, the representative UE and the cooperative UE, and the UE 100B and UE 100C operate as the cooperative UE. Also, the UE 100A operates as the first UE, the second UE, and the third UE, and the UE 100B and the UE 100C operate as the second UE.
 UE100Aは、アップリンクリファレンス信号を送信する(S901)。例えば、UE100Aは、SRS1~SRS9を送信する。UE100Aは、図16で示されるようなタイミングで、SRSを送信する。基地局200は、UE100Aから送信されるSRSに基づきチャネルに関する測定を行う。 The UE 100A transmits an uplink reference signal (S901). For example, UE 100A transmits SRS1 to SRS9. The UE 100A transmits the SRS at timings as shown in FIG. The base station 200 performs channel-related measurements based on the SRS transmitted from the UE 100A.
 UE100Aは、協調送信データをUE100A及びUE100Bへ直接通信で送信する(S903)。例えば、UE100Aは、協調送信データの送信要求が発生すると、協調UEとして動作するUE100B及びUE100Cへ協調送信データをサイドリンクで送信する。また、UE100Aは、UE100B及びUE100Cを示す協調UEリストを取得する。また、UE100Aは、UE100B及びUE100Cについての有効情報及びUE情報を取得する。 UE 100A transmits cooperative transmission data to UE 100A and UE 100B by direct communication (S903). For example, when a transmission request for cooperative transmission data is generated, UE 100A transmits cooperative transmission data to UE 100B and UE 100C operating as cooperative UEs on the sidelinks. Also, the UE 100A obtains a coordinated UE list indicating the UE 100B and the UE 100C. Also, the UE 100A acquires valid information and UE information for the UE 100B and the UE 100C.
 UE100Aは、有効情報及びUE情報並びに協調UEリストをアップリンクで送信する(S905)。例えば、UE100Aは、協調送信データの共有後、有効情報及びUE情報を含む適用SRS情報及び協調UEリストをアップリンクで送信する。 The UE 100A transmits the effective information, the UE information and the cooperative UE list on the uplink (S905). For example, after sharing the coordinated transmission data, the UE 100A transmits applied SRS information including effective information and UE information and a coordinated UE list on the uplink.
 基地局200は、リソース割当情報及び協調プリコーディングをUE100A~UE100Cへダウンリンクで送信する(S907)。例えば、基地局200は、協調UEリストが示すUE100B及びUE100Cについて、適用SRS情報に基づき有効となる上記測定の結果を取得する。図16を参照すると、適用SRS情報の送信タイミングの直前でSRS9が送信されている。SRS9が送信されたタイミングでは、UE100Bは、SRS8が送信されたタイミングにおけるUE100Aの位置に到達している。UE100Cは、SRS2が送信されたタイミングにおけるUE100Cの位置に到達している。そこで、UE100BにはSRS8に基づく上記測定の結果が、UE100CにはSRS2に基づく上記測定の結果が、利用される。即ち、UE100Bについての有効情報は、SRS8を示し、UE100Cについての有効情報は、SRS2を示す。基地局200は、UE100Bについては、SRS8に基づく上記測定の結果を取得し、UE100Cについては、SRS2に基づく上記測定の結果を取得する。また、UE100Aも協調UEとして動作するため、基地局200は、SRS9に基づく上記測定の結果も取得する。そして、基地局200は、取得された上記測定の結果それぞれに基づき、UE100A~UE100Cにリソースを割り当てる。協調送信が協調MIMOを用いて行われる場合は、基地局200は、取得された上記測定の結果それぞれに基づき、協調プリコーディングも取得する。そして、基地局200は、リソース割当情報及び協調プリコーディングを含む制御情報をUE100A~UE100Cへ送信する。 The base station 200 transmits resource allocation information and cooperative precoding to the UEs 100A to 100C on the downlink (S907). For example, the base station 200 obtains the valid measurement results based on the applied SRS information for the UE 100B and the UE 100C indicated by the coordinated UE list. Referring to FIG. 16, SRS9 is transmitted immediately before the transmission timing of applied SRS information. At the timing when SRS9 is transmitted, UE 100B has reached the position of UE 100A at the timing when SRS8 is transmitted. The UE 100C has reached the position of the UE 100C at the timing when the SRS2 was transmitted. Therefore, the result of the measurement based on SRS8 is used for UE 100B, and the result of the measurement based on SRS2 is used for UE 100C. That is, the valid information for the UE 100B indicates SRS8, and the valid information for the UE 100C indicates SRS2. The base station 200 acquires the above measurement results based on SRS8 for the UE 100B, and acquires the above measurement results based on the SRS2 for the UE 100C. In addition, since UE 100A also operates as a cooperative UE, base station 200 also acquires the above measurement result based on SRS9. Base station 200 then allocates resources to UE 100A to UE 100C based on each of the obtained measurement results. If cooperative transmission is performed using cooperative MIMO, base station 200 also obtains cooperative precoding based on each of the above obtained measurement results. Base station 200 then transmits control information including resource allocation information and cooperative precoding to UE 100A to UE 100C.
 UE100A~UE100Cは、協調送信データをアップリンクで送信する(S909)。例えば、UE100A~UE100Cは、割り当てられたリソース及び協調プリコーディングを用いて協調送信データをアップリンクで送信する。 The UE 100A to UE 100C transmit cooperative transmission data on the uplink (S909). For example, UE 100A-UE 100C transmit cooperative transmission data on the uplink using the allocated resources and cooperative precoding.
 このように、本開示の第2の実施形態によれば、協調UE100がアップリンクリファレンス信号を送信することなく、協調UE100に協調送信のためのアップリンクリソースを割り当てることができる。したがって、協調送信するUEの数が増加してもアップリンクリファレンス信号に用いられるリソースの増加を抑制することが可能になる。 Thus, according to the second embodiment of the present disclosure, uplink resources for cooperative transmission can be allocated to cooperative UEs 100 without the cooperative UEs 100 transmitting uplink reference signals. Therefore, even if the number of UEs performing cooperative transmission increases, it is possible to suppress an increase in resources used for uplink reference signals.
 <2.3.変形例>
 本開示の第2の実施形態に係る変形例を説明する。なお、これらの変形例のうちの2つ以上が組み合わせられてもよい。
<2.3. Variation>
A modification according to the second embodiment of the present disclosure will be described. Note that two or more of these modifications may be combined.
 (1)変形例
 本開示の第2の実施形態の上述した例では、協調送信のための制御情報として協調UEリスト及び適用SRS情報がアップリンクで送信される。しかし、本開示の第2の実施形態に係る協調送信のための制御情報は、この例に限定されない。
(1) Modification In the above-described example of the second embodiment of the present disclosure, the coordinated UE list and applied SRS information are transmitted in the uplink as control information for coordinated transmission. However, control information for cooperative transmission according to the second embodiment of the present disclosure is not limited to this example.
 本開示の第2の実施形態の変形例として、第3UE100は、協調UEリストが示す協調UE100それぞれについての有効情報及びUE情報を送信してもよい。具体的には、有効情報は、協調UEリストが示す複数の協調UE100のうちの第2UEとして動作する協調UE100について有効である上記測定の結果に関する。また、UE情報は、当該複数の協調UE100のうちの第2として動作する協調UE100を示す。 As a modification of the second embodiment of the present disclosure, the third UE 100 may transmit effective information and UE information for each of the cooperating UEs 100 indicated by the cooperating UE list. Specifically, the validity information relates to the result of the above measurement that is valid for the cooperative UE 100 operating as the second UE among the multiple cooperative UEs 100 indicated by the cooperative UE list. Also, the UE information indicates the cooperating UE 100 that operates as the second one of the plurality of cooperating UEs 100 .
 例えば、第2の実施形態に係る適用SRS情報は、協調UEとして動作するUE100以外のUE100についての情報も含む。そこで、第3UE100は、協調UEリストが示すUE100についての適用SRS情報のみをアップリンクで送信する。 For example, the applied SRS information according to the second embodiment also includes information about UEs 100 other than UEs 100 operating as cooperative UEs. Therefore, the third UE 100 transmits only applicable SRS information for the UE 100 indicated by the cooperative UE list on the uplink.
 これにより、UE100は協調UEリストを送信せずに済むため、協調送信のための制御に用いられるリソースを低減することができる。 As a result, the UE 100 does not need to transmit the cooperative UE list, so it is possible to reduce resources used for control for cooperative transmission.
 なお、第3UE100は、グループ情報が示すUE100についての有効情報及びUE情報を送信してもよい。具体的には、第3UE100は、グループ情報が示すUE100についての適用SRS情報のみをアップリンクで送信する。例えば、上記グループ情報は、UE100が搭載される車両のグループ(例えば、隊列走行する車両群)を示す。 Note that the third UE 100 may transmit effective information and UE information about the UE 100 indicated by the group information. Specifically, the third UE 100 transmits only applicable SRS information for the UE 100 indicated by the group information on the uplink. For example, the group information indicates a group of vehicles in which the UE 100 is mounted (for example, a group of vehicles running in a row).
 <3.適用例>
 本開示の各実施の形態の適用例について説明する。適用例におけるシステムは、UE100A~UE100D、基地局200A及び基地局200Bを含む。UE100A~UE100Dはそれぞれ車両に搭載され、当該車両は隊列走行する。UE100A~UE100Dは、サイドリンクで互いに通信可能である。
<3. Application example>
An application example of each embodiment of the present disclosure will be described. The system in the example application includes UE 100A-UE 100D, base station 200A and base station 200B. The UE 100A to UE 100D are mounted on vehicles, and the vehicles run in a row. UE 100A to UE 100D can communicate with each other via sidelinks.
 <3.1.適用例1>
 図17A~図17Cを参照して、本開示の各実施形態の適用例1について説明する。
<3.1. Application example 1>
An application example 1 of each embodiment of the present disclosure will be described with reference to FIGS. 17A to 17C.
 図17Aでは、UE100A~UE100Dは、それぞれ基地局200Aと通信可能である。UE100Aは、SRS及び適用SRS情報を周期的に基地局200Aへ送信する。他方で、UE100B~UE100Dは、SRSを送信しない。ここで、例えば、UE100Cにおいてデータ送信要求が発生した場合、UE100Cは、スケジューリング要求を基地局200Aへ送信する。基地局200Aは、受信した適用SRS情報に基づき、過去に受信したSRSの中からスケジューリング要求を送信したUE100Cについて有効となるSRSを識別し、識別したSRSに基づくチャネルに関する測定の結果を取得する。そして、基地局200Aは、取得した上記測定の結果に基づきUE100CにULリソースを割り当てる。UE100Cは、割り当てられたULリソースを用いてデータを基地局200Aへ送信する。 In FIG. 17A, UE100A to UE100D are each capable of communicating with the base station 200A. The UE 100A periodically transmits SRS and applied SRS information to the base station 200A. On the other hand, UE 100B-UE 100D do not transmit SRS. Here, for example, when a data transmission request occurs in the UE 100C, the UE 100C transmits a scheduling request to the base station 200A. Based on the applied SRS information received, the base station 200A identifies an SRS valid for the UE 100C that has transmitted the scheduling request from among the SRSs received in the past, and obtains the measurement results for the channel based on the identified SRS. Then, the base station 200A allocates UL resources to the UE 100C based on the obtained measurement result. The UE 100C uses the assigned UL resource to transmit data to the base station 200A.
 図17Bでは、UE100Aは、UE100Aが搭載される車両がトンネルに入ったため、基地局200A及び基地局200Bと通信できない。そこで、UE100Aは、送信UEとして、UE100B~UE100Dへデータを共有する。UE100B~UE100Dのうちのいずれかが代表UE及び第3UEとして、UE100B~UE100Dを示す協調UEリスト及び適用SRS情報を基地局200Aへ送信する。基地局200Aは、適用SRS情報に基づき協調UEリストが示すUE100B~UE100Dについて有効となるSRSを、過去にUE100Aが送信した複数のSRSの中から識別し、識別したSRSに基づく測定の結果をそれぞれ取得する。そして、基地局200Aは、当該測定の結果それぞれに基づき、UE100B~UE100DにULリソースを割り当てる。UE100B~UE100Dは、共有されたデータを割り当てられたULリソースを用いて協調的に基地局200Aへ送信する。 In FIG. 17B, the UE 100A cannot communicate with the base stations 200A and 200B because the vehicle on which the UE 100A is mounted has entered a tunnel. Therefore, UE 100A, as a transmitting UE, shares data with UE 100B to UE 100D. Any one of UE100B to UE100D as a representative UE and a third UE transmits a coordinated UE list and applied SRS information indicating UE100B to UE100D to base station 200A. The base station 200A identifies, based on the applied SRS information, SRSs valid for UE100B to UE100D indicated by the coordinated UE list from among a plurality of SRSs transmitted by UE100A in the past, and the results of measurement based on the identified SRSs are respectively displayed. get. The base station 200A then allocates UL resources to the UEs 100B to 100D based on the respective measurement results. UE 100B-UE 100D cooperatively transmit the shared data to base station 200A using the assigned UL resources.
 図17Cでは、UE100Aは、UE100Aが搭載される車両がトンネルから出たため、基地局200Bと通信可能である。しかし、UE100Aは、カバレッジエリア外のため基地局200Aとは通信できない。また、UE100Bは、UE100Bが搭載される車両がトンネルに入ったため、基地局200A及び基地局200Bと通信できない。そこで、UE100Aは、UE100C及びUE100Dへデータを共有する。また、UE100Aは、代表UEとして、協調基地局として動作する基地局200Aを示す情報、UE100C及びUE100Dを示す協調UEリスト、及び適用SRS情報を基地局200Bへ送信する。基地局200Bは、協調UEリスト及び適用SRS情報を基地局200Aへ送信する。基地局200Aは、受信された協調UEリスト及び適用SRS情報に基づいてUE100C及びUE100DにULリソースを割り当てる。UE100C及びUE100Dは、共有されたデータを割り当てられたULリソースを用いて協調的に基地局200Aへ送信する。基地局200Aは、UE100C及びUE100Dから受信されたデータを基地局200Bへ送信する。また、UE100Aもデータを基地局200Aへ送信する。基地局200Bは、UE100A及び基地局200Aからデータを受信する。 In FIG. 17C, the UE 100A can communicate with the base station 200B because the vehicle on which the UE 100A is mounted has left the tunnel. However, the UE 100A cannot communicate with the base station 200A because it is outside the coverage area. Also, the UE 100B cannot communicate with the base stations 200A and 200B because the vehicle on which the UE 100B is mounted has entered the tunnel. Therefore, UE 100A shares data with UE 100C and UE 100D. Also, UE 100A, as a representative UE, transmits information indicating base station 200A operating as a cooperative base station, a cooperative UE list indicating UE 100C and UE 100D, and applied SRS information to base station 200B. The base station 200B transmits the cooperative UE list and applicable SRS information to the base station 200A. Base station 200A allocates UL resources to UE 100C and UE 100D based on the received coordinated UE list and applied SRS information. The UE 100C and UE 100D cooperatively transmit the shared data to the base station 200A using the assigned UL resources. The base station 200A transmits the data received from the UE 100C and the UE 100D to the base station 200B. The UE 100A also transmits data to the base station 200A. The base station 200B receives data from the UE 100A and the base station 200A.
 このように、移動軌跡が類似するUE100群では、先行するUE100が送信したアップリンクリファレンス信号を利用することにより、アップリンクリファレンス信号を送信することなく、アップリンクリソースの割当が可能となる。したがって、アップリンクで通信するUEの数が増加してもアップリンクリファレンス信号に用いられるリソースの増加を抑制することが可能になる。特に、複数のUE100による協調送信の場合は、アップリンクリファレンス信号が複数のUE100それぞれから送信され、リソースが逼迫するおそれがある。しかし、本開示の各実施形態によれば、当該リソースの逼迫を回避することが可能となる。 In this way, a group of UEs 100 with similar movement trajectories can allocate uplink resources by using the uplink reference signal transmitted by the preceding UE 100 without transmitting an uplink reference signal. Therefore, even if the number of UEs communicating on the uplink increases, it is possible to suppress an increase in resources used for uplink reference signals. In particular, in the case of coordinated transmission by a plurality of UEs 100, uplink reference signals are transmitted from each of the plurality of UEs 100, and resources may become tight. However, according to each embodiment of the present disclosure, it is possible to avoid the tightness of the resource.
 <3.2.適用例2>
 図18A~図18Cを参照して、本開示の各実施形態の適用例2について説明する。適用例2では、UE100及び基地局200を介して車両と車両の遠隔制御システムとが接続されている。
<3.2. Application example 2>
An application example 2 of each embodiment of the present disclosure will be described with reference to FIGS. 18A to 18C. In the application example 2, the vehicle and the vehicle remote control system are connected via the UE 100 and the base station 200 .
 図18Aでは、UE100Aは、UE100Aが搭載される車両が基地局200Aのカバレッジエリアから基地局200Bのカバレッジエリアへ移動したことにより、基地局200Aとは通信できない。しかし、基地局200Bにおいて障害が発生したことにより、UE100Aは、基地局200Bとも通信できない状態に陥っている。UE100Aは、基地局200Bとの通信異常が検出されると、UE100B~UE100Dへ通信異常を示す情報を共有する。UE100B~UE100Dのうちのいずれかが代表UE及び第3UEとして、UE100B~UE100Dを示す協調UEリスト及び適用SRS情報を基地局200Aへ送信する。基地局200Aは、適用SRS情報に基づき、協調UEリストが示すUE100B~UE100Dについて有効となるSRSを、過去にUE100Aが送信した複数のSRSの中から識別し、識別したSRSに基づく測定の結果をそれぞれ取得する。そして、基地局200Aは、当該測定の結果それぞれに基づき、UE100B~UE100DにULリソースを割り当てる。UE100B~UE100Dは、共有された情報を割り当てられたULリソースを用いて協調的に基地局200Aへ送信する。 In FIG. 18A, the UE 100A cannot communicate with the base station 200A because the vehicle on which the UE 100A is mounted has moved from the coverage area of the base station 200A to the coverage area of the base station 200B. However, due to the failure occurring in the base station 200B, the UE 100A cannot communicate with the base station 200B. When UE 100A detects a communication abnormality with base station 200B, UE 100A shares information indicating the communication abnormality with UE 100B to UE 100D. Any one of UE100B to UE100D as a representative UE and a third UE transmits a coordinated UE list and applied SRS information indicating UE100B to UE100D to base station 200A. Based on the applicable SRS information, the base station 200A identifies SRSs that are valid for UE100B to UE100D indicated by the coordinated UE list from among the plurality of SRSs transmitted by UE100A in the past, and obtains the results of measurement based on the identified SRSs. Get each. The base station 200A then allocates UL resources to the UEs 100B to 100D based on the respective measurement results. The UE 100B-UE 100D cooperatively transmit the shared information to the base station 200A using the assigned UL resources.
 図18Bでは、UE100Bも、UE100Bが搭載される車両が基地局200Aのカバレッジエリアから基地局200Bのカバレッジエリアへ移動したことにより、基地局200Aとは通信できない。しかし、UE100C及びUE100Dは、基地局200Aと通信可能であるため、UE100Aは、UE100C及びUE100Dを介して共有された情報を基地局200A及び遠隔制御システムへ送信する。 In FIG. 18B, the UE 100B is also unable to communicate with the base station 200A because the vehicle on which the UE 100B is mounted has moved from the coverage area of the base station 200A to the coverage area of the base station 200B. However, since UE100C and UE100D can communicate with base station 200A, UE100A transmits information shared via UE100C and UE100D to base station 200A and the remote control system.
 図18Cでは、UE100Cも、UE100Cが搭載される車両が基地局200Aのカバレッジエリアから基地局200Bのカバレッジエリアへ移動したことにより、基地局200Aとは通信できない。しかし、UE100Dは、基地局200Aと通信可能であるため、UE100Aは、UE100Dを介して共有された情報を基地局200A及び遠隔制御システムへ送信する。 In FIG. 18C, the UE 100C is also unable to communicate with the base station 200A because the vehicle on which the UE 100C is mounted has moved from the coverage area of the base station 200A to the coverage area of the base station 200B. However, since UE 100D can communicate with base station 200A, UE 100A transmits information shared via UE 100D to base station 200A and the remote control system.
 このように、UE100Aが基地局200A及び基地局200Bと通信できない状態に陥った後も、後続の車両に搭載されるUE100B~UE100Dを介して基地局200Aと通信することができる。この時、UE100B~UE100Dによるアップリンクリファレンス信号の送信なしで、UE100B~UE100Dは、データを送信することができる。換言すると、UE100B~UE100Dのデータ送信のためのオーバヘッドが削減される。したがって、UE100Aと基地局200Bとの通信の途絶によるUE100Aと遠隔制御システムとの接続の復旧にかかる時間を短縮することができる。これにより、UE100が搭載される車両群の安全性を向上させることができる。特に、無人運転車両の場合、通信途絶は無人運転の安全性又は可用性に影響を及ぼすため、有効である。 Thus, even after the UE 100A becomes unable to communicate with the base station 200A and the base station 200B, it can still communicate with the base station 200A via the UE100B to UE100D mounted on subsequent vehicles. At this time, UE 100B-UE 100D can transmit data without transmission of uplink reference signals by UE 100B-UE 100D. In other words, the overhead for data transmission of UE 100B-UE 100D is reduced. Therefore, it is possible to shorten the time required to restore the connection between the UE 100A and the remote control system due to the communication interruption between the UE 100A and the base station 200B. Thereby, the safety of the vehicle group in which the UE 100 is mounted can be improved. Especially in the case of driverless vehicles, it is effective because communication disruption affects the safety or availability of driverless operation.
 以上、本開示の各実施形態を説明したが、本開示は当該各実施形態に限定されるものではない。当該各実施形態は例示にすぎないということ、及び、本開示のスコープ及び精神から逸脱することなく様々な変形が可能であるということは、当業者に理解されるであろう。 Although the embodiments of the present disclosure have been described above, the present disclosure is not limited to the respective embodiments. Those skilled in the art will appreciate that each such embodiment is exemplary only and that various modifications are possible without departing from the scope and spirit of the disclosure.
 例えば、本明細書に記載されている処理におけるステップは、必ずしもフローチャート又はシーケンス図に記載された順序に沿って時系列に実行されなくてよい。例えば、処理におけるステップは、フローチャート又はシーケンス図として記載した順序と異なる順序で実行されても、並列的に実行されてもよい。また、処理におけるステップの一部が削除されてもよく、さらなるステップが処理に追加されてもよい。 For example, the steps in the processes described in this specification do not necessarily have to be executed in chronological order according to the order described in the flowcharts or sequence diagrams. For example, steps in a process may be performed in an order different from that depicted in a flowchart or sequence diagram, or in parallel. Also, some of the steps in the process may be deleted and additional steps may be added to the process.
 例えば、本明細書において説明した装置の1つ以上の構成要素の動作を含む方法が提供されてもよく、上記構成要素の動作をコンピュータに実行させるためのプログラムが提供されてもよい。また、当該プログラムを記録したコンピュータに読み取り可能な非遷移的実体的記録媒体が提供されてもよい。当然ながら、このような方法、プログラム、及びコンピュータに読み取り可能な非遷移的実体的記録媒体(non-transitory tangible computer-readable storage medium)も、本開示に含まれる。 For example, a method may be provided that includes the operation of one or more components of the apparatus described herein, and a program may be provided for causing a computer to perform the operation of the components. Further, a computer-readable non-transitional tangible recording medium recording the program may be provided. Of course, such methods, programs, and computer-readable non-transitory tangible computer-readable storage mediums are also included in the present disclosure.
 例えば、本開示において、ユーザ機器(UE)は、移動局(mobile station)、移動端末、移動装置、移動ユニット、加入者局(subscriber station)、加入者端末、加入者装置、加入者ユニット、ワイヤレス局、ワイヤレス端末、ワイヤレス装置、ワイヤレスユニット、リモート局、リモート端末、リモート装置、又はリモートユニット等の別の名称で呼ばれてもよい。 For example, in this disclosure user equipment (UE) refers to a mobile station, mobile terminal, mobile device, mobile unit, subscriber station, subscriber terminal, subscriber equipment, subscriber unit, wireless It may also be called a station, a wireless terminal, a wireless device, a wireless unit, a remote station, a remote terminal, a remote device, a remote unit, or the like.
 例えば、本開示において、「送信する(transmit)」は、送信に使用されるプロトコルスタック内の少なくとも1つのレイヤの処理を行うことを意味してもよく、又は、無線又は有線で信号を物理的に送信することを意味してもよい。あるいは、「送信する」は、上記少なくとも1つのレイヤの処理を行うことと、無線又は有線で信号を物理的に送信することとの組合せを意味してもよい。同様に、「受信する(receive)」は、受信に使用されるプロトコルスタック内の少なくとも1つのレイヤの処理を行うことを意味してもよく、又は、無線又は有線で信号を物理的に受信することを意味してもよい。あるいは、「受信する」は、上記少なくとも1つのレイヤの処理を行うことと、無線又は有線で信号を物理的に受信することとの組合せを意味してもよい。上記少なくとも1つのレイヤは、少なくとも1つのプロトコルと言い換えられてもよい。 For example, in this disclosure, "transmit" may mean performing at least one layer of processing within the protocol stack used for transmission, or physically transmitting a signal wirelessly or by wire. It may mean sending to Alternatively, "transmitting" may mean a combination of performing the at least one layer of processing and physically transmitting the signal wirelessly or by wire. Similarly, "receive" may mean processing at least one layer in the protocol stack used for reception, or physically receiving a signal wirelessly or by wire. may mean that Alternatively, "receiving" may mean a combination of performing the at least one layer of processing and physically receiving the signal wirelessly or by wire. The at least one layer may also be translated as at least one protocol.
 例えば、本開示において、「取得する(obtain/acquire)」は、記憶されている情報の中から情報を取得することを意味してもよく、他のノードから受信した情報の中から情報を取得することを意味してもよく、又は、情報を生成することにより当該情報を取得することを意味してもよい。 For example, in this disclosure, "obtain/acquire" may mean obtaining information among stored information, obtaining information among information received from other nodes. or to obtain the information by generating the information.
 例えば、本開示において、「~を含む(include)」及び「~を備える(comprise)」は、列挙する項目のみを含むことを意味せず、列挙する項目のみを含んでもよいし、列挙する項目に加えてさらなる項目を含んでもよいことを意味する。 For example, in this disclosure, the terms "include" and "comprise" do not mean to include only the recited items, but may include only the recited items, or may include only the recited items. It means that further items may be included in addition to the
 例えば、本開示において、「又は(or)」は、排他的論理和を意味せず、論理和を意味する。 For example, in the present disclosure, "or" does not mean exclusive OR, but means logical sum.
 なお、上述した実施形態に含まれる技術的特徴は、以下のような特徴として表現されてもよい。当然ながら、本開示は以下のような特徴に限定されない。 It should be noted that the technical features included in the above-described embodiments may be expressed as the following features. Of course, the disclosure is not limited to the following features.
(特徴1)
 第1のユーザ機器(100)により送信されるアップリンクリファレンス信号に基づく測定の結果であって、第2のユーザ機器(100)について有効である測定の結果に関する有効情報と、前記第2のユーザ機器を示すユーザ機器情報とを取得する情報取得部(131)と、
 前記有効情報及び前記ユーザ機器情報を、制御情報を用いてアップリンクで送信する通信処理部(133)と、
 を備えるユーザ機器(100)。
(Feature 1)
Validity information about results of measurements based on an uplink reference signal transmitted by a first user equipment (100) that are valid for a second user equipment (100) and said second user. an information acquisition unit (131) for acquiring user device information indicating the device;
a communication processing unit (133) for transmitting said valid information and said user equipment information on an uplink using control information;
A user equipment (100) comprising:
(特徴2)
 前記アップリンクリファレンス信号は、サウンディングリファレンス信号(SRS)である、
 特徴1に記載のユーザ機器。
(Feature 2)
the uplink reference signal is a sounding reference signal (SRS);
The user equipment of feature 1.
(特徴3)
 前記有効情報は、前記第2のユーザ機器について有効である前記測定の結果に関する前記アップリンクリファレンス信号を示す、
 特徴1又は2に記載のユーザ機器。
(Feature 3)
the validity information indicates the uplink reference signal for the result of the measurement that is valid for the second user equipment;
A user equipment according to feature 1 or 2.
(特徴4)
 前記有効情報は、前記アップリンクリファレンス信号の送信タイミング(13)を直接的に示すことにより前記アップリンクリファレンス信号を示す、
 特徴3に記載のユーザ機器。
(Feature 4)
the validity information indicates the uplink reference signal by directly indicating the transmission timing (13) of the uplink reference signal;
A user equipment according to feature 3.
(特徴5)
 前記有効情報は、システムフレーム番号、サブフレーム番号、スロット番号、シンボル番号、又は、システムフレーム番号とサブフレーム番号とスロット番号とシンボル番号とのうちの2以上の組合せにより、前記アップリンクリファレンス信号の送信タイミングを示す、
 特徴4に記載のユーザ機器。
(Feature 5)
The useful information is a system frame number, a subframe number, a slot number, a symbol number, or a combination of two or more of a system frame number, a subframe number, a slot number, and a symbol number of the uplink reference signal. indicating the transmission timing,
A user equipment according to feature 4.
(特徴6)
 前記有効情報は、前記アップリンクリファレンス信号の送信タイミング(13)と、前記有効情報及び前記ユーザ機器情報に関する他のタイミング(19)との間の期間(21)を示すことにより前記アップリンクリファレンス信号を示す、
 特徴3に記載のユーザ機器。
(Feature 6)
The useful information is the uplink reference signal by indicating a period (21) between the transmission timing (13) of the uplink reference signal and another timing (19) for the useful information and the user equipment information. indicates a
A user equipment according to feature 3.
(特徴7)
 前記有効情報は、前記アップリンクリファレンス信号の送信タイミング(13)と、他のアップリンクリファレンス信号の送信タイミングである他のタイミング(17)との間の期間(23)を示すことにより前記アップリンクリファレンス信号を示す、
 特徴3に記載のユーザ機器。
(Feature 7)
The validity information indicates the period (23) between the transmission timing (13) of the uplink reference signal and another timing (17) which is the transmission timing of another uplink reference signal, thereby indicating the uplink indicating a reference signal,
A user equipment according to feature 3.
(特徴8)
 前記有効情報は、無線フレーム、サブフレーム、スロット、シンボル、又は、無線フレームとサブフレームとスロットとシンボルとのうちの2以上の組合せにより、前記期間を示す、
 特徴6又は7に記載のユーザ機器。
(Feature 8)
The useful information indicates the period in terms of radio frames, subframes, slots, symbols, or a combination of two or more of radio frames, subframes, slots, and symbols.
User equipment according to feature 6 or 7.
(特徴9)
 前記有効情報は、前記第1のユーザ機器を示す情報を含む、
 特徴1~8のいずれか1項に記載のユーザ機器。
(Feature 9)
the availability information includes information indicative of the first user equipment;
User equipment according to any one of the features 1-8.
(特徴10)
 前記有効情報は、前記測定の結果が前記第2のユーザ機器について有効となるタイミング(33)に関するタイミング情報を含む、
 特徴3~9のいずれか1項に記載のユーザ機器。
(Feature 10)
said validity information comprises timing information relating to when (33) the results of said measurements are valid for said second user equipment;
User equipment according to any one of features 3-9.
(特徴11)
 前記タイミング情報は、前記測定の結果が有効になる前記タイミングを示す、
 特徴10に記載のユーザ機器。
(Feature 11)
the timing information indicates the timing at which the result of the measurement becomes valid;
The user equipment of feature 10.
(特徴12)
 前記タイミング情報は、前記測定の結果が有効になる前記タイミングと、前記有効情報及び前記ユーザ機器情報に関する他のタイミング(31)との間の期間(41)を示す、
 特徴11に記載のユーザ機器。
(Feature 12)
said timing information indicates a time period (41) between said timing when the result of said measurement is valid and another timing (31) for said valid information and said user equipment information;
12. The user equipment of feature 11.
(特徴13)
 前記タイミング情報は、前記測定の結果が有効になる前記タイミングを直接的に示す、
 特徴11に記載のユーザ機器。
(Feature 13)
the timing information directly indicates the timing at which the results of the measurements are valid;
12. The user equipment of feature 11.
(特徴14)
 前記通信処理部は、前記有効情報及び前記ユーザ機器情報の送信のための構成情報を含むRRC(Radio Resource Control)メッセージをダウンリンクで受信する場合に、前記構成情報に従って前記有効情報及び前記ユーザ機器情報をアップリンクで送信する、
 特徴1~13のいずれか1項に記載のユーザ機器。
(Feature 14)
When the communication processing unit receives an RRC (Radio Resource Control) message including configuration information for transmission of the valid information and the user equipment information on the downlink, the communication processing unit configures the valid information and the user equipment according to the configuration information. send information on an uplink,
User equipment according to any one of the features 1-13.
(特徴15)
 前記通信処理部は、前記有効情報及び前記ユーザ機器情報の送信のための構成情報を含むRRCメッセージをダウンリンクで受信する場合、前記RRCメッセージへの応答として、前記有効情報及び前記ユーザ機器情報をアップリンクで送信する、
 特徴7に記載のユーザ機器。
(Feature 15)
When receiving an RRC message including configuration information for transmission of the availability information and the user equipment information on the downlink, the communication processing unit transmits the availability information and the user equipment information as a response to the RRC message. send on the uplink,
The user equipment of feature 7.
(特徴16)
 前記通信処理部は、前記RRCメッセージへの応答後に、前記ユーザ機器情報をアップリンクで送信する、
 特徴15に記載のユーザ機器。
(Feature 16)
the communication processor transmits the user equipment information on an uplink after responding to the RRC message;
16. The user equipment of feature 15.
(特徴17)
 前記他のタイミングは、前記ユーザ機器情報の送信により示される、
 特徴16に記載のユーザ機器。
(Feature 17)
the other timing is indicated by the transmission of the user equipment information;
17. The user equipment of feature 16.
(特徴18)
 前記RRCメッセージへの応答後に送信される前記ユーザ機器情報は、UCI(Uplink Control Information)又はMAC CE(Media Access Control Control Element)に含まれる、
 特徴16又は17に記載のユーザ機器。
(Feature 18)
The user equipment information transmitted after responding to the RRC message is included in UCI (Uplink Control Information) or MAC CE (Media Access Control Control Element),
User equipment according to feature 16 or 17.
(特徴19)
 前記通信処理部は、前記有効情報及び前記ユーザ機器情報の送信を要求する要求情報を含むダウンリンク制御情報の受信に応じて、前記有効情報及び前記ユーザ機器情報をアップリンクで送信する、
 特徴1~13のいずれか1項に記載のユーザ機器。
(Feature 19)
The communication processing unit transmits the valid information and the user equipment information on an uplink in response to receiving downlink control information including request information requesting transmission of the valid information and the user equipment information.
User equipment according to any one of the features 1-13.
(特徴20)
 前記要求情報は、前記有効情報及び前記ユーザ機器情報の送信を要求する値にセットされたSRSリクエストである、
 特徴19に記載のユーザ機器。
(Feature 20)
the request information is an SRS request set to a value requesting transmission of the valid information and the user equipment information;
20. The user equipment of feature 19.
(特徴21)
 前記通信処理部は、前記有効情報及び前記ユーザ機器情報の送信を要求する要求情報を含む制御情報を前記第2のユーザ機器から直接通信で受信したことに応じて、前記有効情報及び前記ユーザ機器情報をアップリンクで送信する、
 特徴1~13のいずれか1項に記載のユーザ機器。
(Feature 21)
The communication processing unit, in response to receiving control information including request information requesting transmission of the valid information and the user device information from the second user device through direct communication, transmits the valid information and the user device information. send information on an uplink,
User equipment according to any one of the features 1-13.
(特徴22)
 前記直接通信は、サイドリンク通信であり、
 前記制御情報は、PSCCH(Physical Sidelink Control Channel)又はPSSCH(Physical Sidelink Shared Channel)を介して受信される、
 特徴21に記載のユーザ機器。
(Feature 22)
the direct communication is a sidelink communication;
The control information is received via PSCCH (Physical Sidelink Control Channel) or PSSCH (Physical Sidelink Shared Channel),
22. The user equipment of feature 21.
(特徴23)
 前記通信処理部は、周期的に前記有効情報及び前記ユーザ機器情報をアップリンクで送信する、
 特徴1~13のいずれか1項に記載のユーザ機器。
(Feature 23)
The communication processing unit periodically transmits the valid information and the user equipment information on an uplink.
User equipment according to any one of the features 1-13.
(特徴24)
 前記第2のユーザ機器は、データを直接通信で送信又は受信可能であり、協調的に前記データをアップリンクで送信可能である、
 特徴1~13のいずれか1項に記載のユーザ機器。
(Feature 24)
said second user equipment is capable of transmitting or receiving data in direct communication and is capable of cooperatively transmitting said data on an uplink;
User equipment according to any one of the features 1-13.
(特徴25)
 前記通信処理部は、前記データの取得に応じて、前記有効情報及び前記ユーザ機器情報をアップリンクで送信する、
 特徴24に記載のユーザ機器。
(Feature 25)
The communication processing unit transmits the valid information and the user equipment information on an uplink in response to obtaining the data.
25. The user equipment of feature 24.
(特徴26)
 前記情報取得部は、前記ユーザ機器内で前記データを取得する、
 特徴25に記載のユーザ機器。
(Feature 26)
the information acquisition unit acquires the data within the user device;
26. The user equipment of feature 25.
(特徴27)
 前記通信処理部は、他のユーザ機器から前記データを前記直接通信で受信する、
 特徴25又は26に記載のユーザ機器。
(Feature 27)
the communication processing unit receives the data from another user device through the direct communication;
User equipment according to feature 25 or 26.
(特徴28)
 前記第1のユーザ機器は、前記データを前記直接通信で送信又は受信可能であり、協調的に前記データをアップリンクで送信可能である、
 特徴24~27のいずれか1項に記載のユーザ機器。
(Feature 28)
the first user equipment is capable of transmitting or receiving the data on the direct communication and cooperatively transmitting the data on an uplink;
User equipment according to any one of the features 24-27.
(特徴29)
 前記情報取得部は、複数のユーザ機器を示す協調ユーザ機器情報を取得し、
 前記通信処理部は、前記協調ユーザ機器情報をアップリンクで送信し、
 前記複数のユーザ機器は、2つ以上の第2のユーザ機器又は1つ以上の第1のユーザ機器及び1つ以上の第2のユーザ機器である、
 特徴24~28のいずれか1項に記載のユーザ機器。
(Feature 29)
The information acquisition unit acquires cooperative user equipment information indicating a plurality of user equipments,
the communication processing unit transmits the cooperative user equipment information on an uplink;
wherein the plurality of user equipment is two or more second user equipment or one or more first user equipment and one or more second user equipment;
User equipment according to any one of the features 24-28.
(特徴30)
 前記有効情報は、前記協調ユーザ機器情報が示す前記複数のユーザ機器のうちの前記第2のユーザ機器について有効である前記測定の結果に関し、
 前記ユーザ機器情報は、前記複数のユーザ機器のうちの前記第2のユーザ機器を示す、
 特徴29に記載のユーザ機器。
(Feature 30)
the validity information relates to a result of the measurement that is valid for the second of the plurality of user equipments indicated by the collaborative user equipment information;
the user equipment information is indicative of the second user equipment of the plurality of user equipment;
User equipment according to feature 29.
(特徴31)
 前記直接通信は、サイドリンク通信である、
 特徴24~29のいずれか1項に記載のユーザ機器。
(Feature 31)
wherein the direct communication is a sidelink communication;
User equipment according to any one of features 24-29.
(特徴32)
 前記有効情報は、前記第1のユーザ機器及び前記第2のユーザ機器の位置関係に基づき生成される、
 特徴1~31のいずれか1項に記載のユーザ機器。
(Feature 32)
the valid information is generated based on a positional relationship between the first user device and the second user device;
User equipment according to any one of the features 1-31.
(特徴33)
 前記ユーザ機器は、前記第1のユーザ機器である、
 特徴1~32のいずれか1項に記載のユーザ機器。
(Feature 33)
wherein the user equipment is the first user equipment;
User equipment according to any one of the features 1-32.
(特徴34)
 第1のユーザ機器(100)により送信されるアップリンクリファレンス信号に基づく測定の結果であって、第2のユーザ機器(100)について有効である測定の結果に関する有効情報と、前記第2のユーザ機器のユーザ機器情報とを、制御情報を用いてアップリンクで受信する通信処理部(243)と、
 前記制御情報から前記有効情報及び前記ユーザ機器情報を取得する情報取得部(241)と、
 を備える基地局(200)。
(Feature 34)
Validity information about results of measurements based on an uplink reference signal transmitted by a first user equipment (100) that are valid for a second user equipment (100) and said second user. a communication processing unit (243) for receiving user equipment information of the equipment on an uplink using control information;
an information acquisition unit (241) for acquiring the valid information and the user equipment information from the control information;
A base station (200) comprising:
(特徴35)
 前記通信処理部は、前記有効情報及び前記ユーザ機器情報の送信のための構成情報を含むRRCメッセージをダウンリンクで送信する
 特徴34に記載の基地局。
(Feature 35)
35. The base station of feature 34, wherein the communications processor transmits on the downlink an RRC message including configuration information for transmission of the availability information and the user equipment information.
(特徴36)
 前記通信処理部は、前記RRCメッセージへの応答として、前記有効情報及び前記ユーザ機器情報をアップリンクで受信する、
 特徴35に記載の基地局。
(Feature 36)
the communication processing unit receives the valid information and the user equipment information on an uplink in response to the RRC message;
36. The base station of feature 35.
(特徴37)
 前記通信処理部は、前記有効情報及び前記ユーザ機器情報の送信を要求する要求情報を含むダウンリンク制御情報をダウンリンクで送信する、
 特徴34に記載の基地局。
(Feature 37)
The communication processing unit transmits downlink control information including request information requesting transmission of the valid information and the user equipment information on the downlink.
35. The base station of feature 34.
(特徴38)
 前記通信処理部は、前記ユーザ機器情報が示す前記第2のユーザ機器へアップリンクリソースの割当を示すリソース割当情報を送信し、
 前記アップリンクリソースは、前記有効情報が示す前記第2のユーザ機器について有効である前記測定の結果を用いて割り当てられる、
 特徴34~37のいずれか1項に記載の基地局。
(Feature 38)
The communication processing unit transmits resource allocation information indicating allocation of uplink resources to the second user equipment indicated by the user equipment information;
the uplink resources are allocated using results of the measurements that are valid for the second user equipment indicated by the validity information;
A base station according to any one of features 34-37.
(特徴39)
 前記通信処理部は、複数のユーザ機器を示す協調ユーザ機器情報をアップリンクで受信する場合、前記協調ユーザ機器情報が示す前記複数のユーザ機器へ前記リソース割当情報を送信し、
 前記複数のユーザ機器は、2つ以上の第2のユーザ機器、又は1つ以上の第1のユーザ機器及び1つ以上の第2のユーザ機器であり、
 前記複数のユーザ機器の各々は、データを直接通信で送信又は受信可能であり、協調的に前記データをアップリンクで送信可能であり、
 前記アップリンクリソースは、前記有効情報が示す前記2つ以上の第2のユーザ機器について有効である前記測定の結果それぞれ、又は前記有効情報が示す前記1つ以上の第2のユーザ機器について有効である前記測定の結果及び前記第1のユーザ機器から受信されるアップリンクリファレンス信号の測定の結果を用いて割り当てられる、
 特徴38に記載の基地局。
(Feature 39)
When the communication processing unit receives cooperative user equipment information indicating a plurality of user equipments on an uplink, the communication processing unit transmits the resource allocation information to the plurality of user equipments indicated by the cooperative user equipment information;
wherein the plurality of user equipment is two or more second user equipment or one or more first user equipment and one or more second user equipment;
each of the plurality of user equipment can transmit or receive data in direct communication and can cooperatively transmit the data on the uplink;
The uplink resource is valid for each of the two or more second user equipments indicated by the availability information, or is valid for the one or more second user equipments indicated by the availability information. assigned using a result of one of the measurements and a measurement of an uplink reference signal received from the first user equipment;
The base station of feature 38.
(特徴40)
 前記情報取得部は、協調プリコーディングを取得し、
 前記通信処理部は、前記協調プリコーディングを含む制御情報を前記複数のユーザ機器へ送信する、
 特徴39に記載の基地局。
(Feature 40)
The information acquisition unit acquires cooperative precoding,
wherein the communication processing unit transmits control information including the cooperative precoding to the plurality of user equipments;
40. The base station of feature 39.
(特徴41)
 ユーザ機器(100)により行われる方法であって、
 第1のユーザ機器(100)により送信されるアップリンクリファレンス信号に基づく測定の結果であって、第2のユーザ機器(100)について有効である測定の結果に関する有効情報と、前記第2のユーザ機器を示すユーザ機器情報とを取得し、
 前記有効情報及び前記ユーザ機器情報を、制御情報を用いてアップリンクで送信する、
 方法。
(Feature 41)
A method performed by a user equipment (100), comprising:
Validity information about results of measurements based on an uplink reference signal transmitted by a first user equipment (100) that are valid for a second user equipment (100) and said second user. obtaining user device information indicating the device;
transmitting the valid information and the user equipment information on an uplink using control information;
Method.
(特徴42)
 基地局(200)により行われる方法であって、
 第1のユーザ機器(100)により送信されるアップリンクリファレンス信号に基づく測定の結果であって、第2のユーザ機器(100)について有効である測定の結果に関する有効情報と、前記第2のユーザ機器のユーザ機器情報とを、制御情報を用いてアップリンクで受信し、
 前記制御情報から前記有効情報及び前記ユーザ機器情報を取得する、
 方法。
(Feature 42)
A method performed by a base station (200), comprising:
Validity information about results of measurements based on an uplink reference signal transmitted by a first user equipment (100) that are valid for a second user equipment (100) and said second user. receiving user equipment information for the equipment on the uplink using the control information;
obtaining the valid information and the user equipment information from the control information;
Method.
(特徴43)
 第1のユーザ機器(100)により送信されるアップリンクリファレンス信号に基づく測定の結果であって、第2のユーザ機器(100)について有効である測定の結果に関する有効情報と、前記第2のユーザ機器を示すユーザ機器情報とを取得することと、
 前記有効情報及び前記ユーザ機器情報を、制御情報を用いてアップリンクで送信することと、
 をコンピュータに実行させるプログラム。
(Feature 43)
Validity information about results of measurements based on an uplink reference signal transmitted by a first user equipment (100) that are valid for a second user equipment (100) and said second user. obtaining user device information indicative of the device;
transmitting the valid information and the user equipment information on an uplink using control information;
A program that makes a computer run
(特徴44)
 第1のユーザ機器(100)により送信されるアップリンクリファレンス信号に基づく測定の結果であって、第2のユーザ機器(100)について有効である測定の結果に関する有効情報と、前記第2のユーザ機器のユーザ機器情報とを、制御情報を用いてアップリンクで受信することと、
 前記制御情報から前記有効情報及び前記ユーザ機器情報を取得することと、
 をコンピュータに実行させるプログラム。
(Feature 44)
Validity information about results of measurements based on an uplink reference signal transmitted by a first user equipment (100) that are valid for a second user equipment (100) and said second user. receiving user equipment information for the equipment on the uplink using the control information;
obtaining the valid information and the user equipment information from the control information;
A program that makes a computer run
(特徴45)
 第1のユーザ機器(100)により送信されるアップリンクリファレンス信号に基づく測定の結果であって、第2のユーザ機器(100)について有効である測定の結果に関する有効情報と、前記第2のユーザ機器を示すユーザ機器情報とを取得することと、
 前記有効情報及び前記ユーザ機器情報を、制御情報を用いてアップリンクで送信することと、
 をコンピュータに実行させるプログラムを記録したコンピュータに読み取り可能な非遷移的実体的記録媒体。
(Feature 45)
Validity information about results of measurements based on an uplink reference signal transmitted by a first user equipment (100) that are valid for a second user equipment (100) and said second user. obtaining user device information indicative of the device;
transmitting the valid information and the user equipment information on an uplink using control information;
A computer-readable non-transitional tangible recording medium in which a program for causing a computer to execute is recorded.
(特徴46)
 第1のユーザ機器(100)により送信されるアップリンクリファレンス信号に基づく測定の結果であって、第2のユーザ機器(100)について有効である測定の結果に関する有効情報と、前記第2のユーザ機器のユーザ機器情報とを、制御情報を用いてアップリンクで受信することと、
 前記制御情報から前記有効情報及び前記ユーザ機器情報を取得することと、
 をコンピュータに実行させるプログラムを記録したコンピュータに読み取り可能な非遷移的実体的記録媒体。
 
(Feature 46)
Validity information about results of measurements based on an uplink reference signal transmitted by a first user equipment (100) that are valid for a second user equipment (100) and said second user. receiving user equipment information for the equipment on the uplink using the control information;
obtaining the valid information and the user equipment information from the control information;
A computer-readable non-transitional tangible recording medium in which a program for causing a computer to execute is recorded.

Claims (15)

  1.  第1のユーザ機器(100)により送信されるアップリンクリファレンス信号に基づく測定の結果であって、第2のユーザ機器(100)について有効である測定の結果に関する有効情報と、前記第2のユーザ機器を示すユーザ機器情報とを取得する情報取得部(131)と、
     前記有効情報及び前記ユーザ機器情報を、制御情報を用いてアップリンクで送信する通信処理部(133)と、
     を備えるユーザ機器(100)。
    Validity information about results of measurements based on an uplink reference signal transmitted by a first user equipment (100) that are valid for a second user equipment (100) and said second user. an information acquisition unit (131) for acquiring user device information indicating the device;
    a communication processing unit (133) for transmitting said valid information and said user equipment information on an uplink using control information;
    A user equipment (100) comprising:
  2.  前記アップリンクリファレンス信号は、サウンディングリファレンス信号(SRS)である、
     請求項1に記載のユーザ機器。
    the uplink reference signal is a sounding reference signal (SRS);
    2. User equipment according to claim 1.
  3.  前記有効情報は、前記第2のユーザ機器について有効である前記測定の結果に関する前記アップリンクリファレンス信号を示す、
     請求項1又は2に記載のユーザ機器。
    the validity information indicates the uplink reference signal for the result of the measurement that is valid for the second user equipment;
    User equipment according to claim 1 or 2.
  4.  前記有効情報は、前記アップリンクリファレンス信号の送信タイミング(13)を直接的に示すことにより前記アップリンクリファレンス信号を示す、
     請求項3に記載のユーザ機器。
    the validity information indicates the uplink reference signal by directly indicating the transmission timing (13) of the uplink reference signal;
    4. User equipment according to claim 3.
  5.  前記有効情報は、前記アップリンクリファレンス信号の送信タイミング(13)と、前記有効情報及び前記ユーザ機器情報に関する他のタイミング(19)との間の期間(21)を示すことにより前記アップリンクリファレンス信号を示す、
     請求項3に記載のユーザ機器。
    The useful information is the uplink reference signal by indicating a period (21) between the transmission timing (13) of the uplink reference signal and another timing (19) for the useful information and the user equipment information. indicates a
    4. User equipment according to claim 3.
  6.  前記有効情報は、前記アップリンクリファレンス信号の送信タイミング(13)と、他のアップリンクリファレンス信号の送信タイミングである他のタイミング(17)との間の期間(23)を示すことにより前記アップリンクリファレンス信号を示す、
     請求項3に記載のユーザ機器。
    The validity information indicates the period (23) between the transmission timing (13) of the uplink reference signal and another timing (17) which is the transmission timing of another uplink reference signal, thereby indicating the uplink indicating a reference signal,
    4. User equipment according to claim 3.
  7.  前記有効情報は、前記第1のユーザ機器を示す情報を含む、
     請求項1~6のいずれか1項に記載のユーザ機器。
    the availability information includes information indicative of the first user equipment;
    User equipment according to any one of claims 1-6.
  8.  前記有効情報は、前記測定の結果が前記第2のユーザ機器について有効となるタイミング(33)に関するタイミング情報を含む、
     請求項3~7のいずれか1項に記載のユーザ機器。
    said validity information comprises timing information relating to when (33) the results of said measurements are valid for said second user equipment;
    A user equipment according to any one of claims 3-7.
  9.  前記タイミング情報は、前記測定の結果が有効になる前記タイミングを示す、
     請求項8に記載のユーザ機器。
    the timing information indicates the timing at which the result of the measurement becomes valid;
    9. User equipment according to claim 8.
  10.  前記タイミング情報は、前記測定の結果が有効になる前記タイミングと、前記有効情報及び前記ユーザ機器情報に関する他のタイミング(31)との間の期間(41)を示す、
     請求項9に記載のユーザ機器。
    said timing information indicates a time period (41) between said timing when the result of said measurement is valid and another timing (31) for said valid information and said user equipment information;
    10. User equipment according to claim 9.
  11.  前記タイミング情報は、前記測定の結果が有効になる前記タイミングを直接的に示す、
     請求項9に記載のユーザ機器。
    the timing information directly indicates the timing at which the results of the measurements are valid;
    10. User equipment according to claim 9.
  12.  前記第2のユーザ機器は、データを直接通信で送信又は受信可能であり、協調的に前記データをアップリンクで送信可能である、
     請求項1~11のいずれか1項に記載のユーザ機器。
    said second user equipment is capable of transmitting or receiving data in direct communication and is capable of cooperatively transmitting said data on an uplink;
    User equipment according to any one of claims 1-11.
  13.  前記通信処理部は、前記データの取得に応じて、前記有効情報及び前記ユーザ機器情報をアップリンクで送信する、
     請求項12に記載のユーザ機器。
    The communication processing unit transmits the valid information and the user equipment information on an uplink in response to obtaining the data.
    13. User equipment according to claim 12.
  14.  前記情報取得部は、複数のユーザ機器を示す協調ユーザ機器情報を取得し、
     前記通信処理部は、前記協調ユーザ機器情報をアップリンクで送信し、
     前記複数のユーザ機器は、2つ以上の第2のユーザ機器又は1つ以上の第1のユーザ機器及び1つ以上の第2のユーザ機器である、
     請求項12又は13に記載のユーザ機器。
    The information acquisition unit acquires cooperative user equipment information indicating a plurality of user equipments,
    the communication processing unit transmits the cooperative user equipment information on an uplink;
    wherein the plurality of user equipment is two or more second user equipment or one or more first user equipment and one or more second user equipment;
    User equipment according to claim 12 or 13.
  15.  第1のユーザ機器(100)により送信されるアップリンクリファレンス信号に基づく測定の結果であって、第2のユーザ機器(100)について有効である測定の結果に関する有効情報と、前記第2のユーザ機器のユーザ機器情報とを、制御情報を用いてアップリンクで受信する通信処理部(243)と、
     前記制御情報から前記有効情報及び前記ユーザ機器情報を取得する情報取得部(241)と、
     を備える基地局(200)。
    Validity information about results of measurements based on an uplink reference signal transmitted by a first user equipment (100) that are valid for a second user equipment (100) and said second user. a communication processing unit (243) for receiving user equipment information of the equipment on an uplink using control information;
    an information acquisition unit (241) for acquiring the valid information and the user equipment information from the control information;
    A base station (200) comprising:
PCT/JP2022/019147 2021-05-26 2022-04-27 User equipment and base station WO2022249850A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021088661A JP2022181627A (en) 2021-05-26 2021-05-26 User apparatus and base station
JP2021-088661 2021-05-26

Publications (1)

Publication Number Publication Date
WO2022249850A1 true WO2022249850A1 (en) 2022-12-01

Family

ID=84228726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019147 WO2022249850A1 (en) 2021-05-26 2022-04-27 User equipment and base station

Country Status (2)

Country Link
JP (1) JP2022181627A (en)
WO (1) WO2022249850A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013048380A (en) * 2011-08-29 2013-03-07 Kyocera Corp Wireless communication system, base station, wireless terminal, and communication control method
JP2015502699A (en) * 2011-11-14 2015-01-22 クゥアルコム・インコーポレイテッドQualcomm Incorporated Uplink data transmission with interference mitigation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013048380A (en) * 2011-08-29 2013-03-07 Kyocera Corp Wireless communication system, base station, wireless terminal, and communication control method
JP2015502699A (en) * 2011-11-14 2015-01-22 クゥアルコム・インコーポレイテッドQualcomm Incorporated Uplink data transmission with interference mitigation

Also Published As

Publication number Publication date
JP2022181627A (en) 2022-12-08

Similar Documents

Publication Publication Date Title
JP5727046B2 (en) TDD data transmission on multiple carriers with subframes reserved for a given transmission direction
US20190165851A1 (en) Wireless relay operation on top of 5g frame structure
JP7215484B2 (en) Communication device and communication method
EP3942726B1 (en) Transmission of nr control information in an lte downlink subframe
US20210345322A1 (en) Method and apparatus for resource allocation
US11399316B2 (en) Method and apparatus to support resource sharing between an access link and a backhaul link
CN111656852A (en) Method and apparatus for backhaul in 5G networks
CN110547016A (en) Electronic device, wireless communication apparatus, and wireless communication method
EP4007444A1 (en) Terminal and communication method
EP3473045B1 (en) Allocating radio resources in backhaul and access link
EP3267763A1 (en) Communication system, communication network, communication device, and communication method
WO2020144812A1 (en) Communication device and communication method
KR20120061316A (en) Adaptive Beam-based Communication System and Scheduling Method Thereof
EP3253126A1 (en) Method for scheduling transmission resources in a mobile communication system and base station, relay station and user equipment station for the use in the method
WO2022249850A1 (en) User equipment and base station
EP4007443A1 (en) Terminal and communication method
WO2020024288A1 (en) Resource scheduling between network nodes
WO2021029129A1 (en) Wireless communication system, ground base station, aerial base station, and wireless communication method
WO2022249849A1 (en) User equipment and base station
WO2022249848A1 (en) User device and base station
CN113994726A (en) Wireless communication node and wireless communication method
WO2023272507A1 (en) Cross-link switching between terrestrial and non-terrestrial links in wireless communication networks
CN112514493B (en) Communication apparatus
WO2024166335A1 (en) Communication device and wireless base station
EP4340514A1 (en) Sidelink communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22811124

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22811124

Country of ref document: EP

Kind code of ref document: A1