WO2022249771A1 - ミスト排出装置及び吸収液吸収塔 - Google Patents

ミスト排出装置及び吸収液吸収塔 Download PDF

Info

Publication number
WO2022249771A1
WO2022249771A1 PCT/JP2022/017206 JP2022017206W WO2022249771A1 WO 2022249771 A1 WO2022249771 A1 WO 2022249771A1 JP 2022017206 W JP2022017206 W JP 2022017206W WO 2022249771 A1 WO2022249771 A1 WO 2022249771A1
Authority
WO
WIPO (PCT)
Prior art keywords
mist
demister
gas
projecting portion
discharging device
Prior art date
Application number
PCT/JP2022/017206
Other languages
English (en)
French (fr)
Inventor
裕一 由井
次郎 米田
孝樹 伊藤
琢也 平田
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US18/563,502 priority Critical patent/US20240238719A1/en
Priority to CA3221407A priority patent/CA3221407A1/en
Priority to AU2022280451A priority patent/AU2022280451A1/en
Priority to EP22811045.8A priority patent/EP4327913A4/en
Publication of WO2022249771A1 publication Critical patent/WO2022249771A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • B01D53/185Liquid distributors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D47/06Spray cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D47/14Packed scrubbers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2247/00Details relating to the separation of dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D2247/04Regenerating the washing fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2247/00Details relating to the separation of dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D2247/10Means for removing the washing fluid dispersed in the gas or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases

Definitions

  • This disclosure relates to a mist discharge device and an absorbent absorption tower.
  • a moisture separator having a wire mesh layer is known (see Patent Document 1, for example).
  • the wire mesh layer separates the droplets contained in the wet steam flowing through it from the wet steam by attaching the droplets to the wire mesh.
  • the moisture separator is provided with a drain pan for receiving drain water, which is droplets separated in the wire mesh layer.
  • the drain receiver extends along the wire mesh layer in a direction inclined with respect to the horizontal direction, receives drain water from the wire mesh layer, and guides the drain water to the outside of the wire mesh layer in the horizontal direction.
  • the flow direction of the wet steam flowing through the wire mesh layer of the moisture separator of Patent Document 1 is horizontal, and the drain water flows vertically downward along the wire mesh layer. ing.
  • the gas flowing through the demister that collects the mist flows from the lower side to the upper side in the vertical direction.
  • the mist collected by the demister turns into drain water and accumulates inside the demister.
  • the drain water will accumulate in the upper part of the demister, and in this case, mist may be scattered again from the accumulated drain water.
  • an object of the present disclosure is to provide a mist discharge device and an absorption liquid absorption tower that can suppress re-scattering of mist.
  • a mist discharge device of the present disclosure is a mist discharge device for discharging mist collected by a demister, wherein the demister is provided in a gas flow path through which gas flows from the lower side to the upper side in the vertical direction, The lower side serves as the inflow side of the gas, and the upper side serves as the outflow side of the gas, collects the mist contained in the gas, and protrudes downward from the inflow side of the demister. have a department.
  • the absorbent absorption tower of the present disclosure includes an absorption tower main body to which a gas containing CO 2 is supplied, an absorbent supply section for supplying an absorbent to the absorption tower main body, and the absorbent supply to the absorption tower main body.
  • a demister arranged downstream in the direction of flow of the gas from the absorption liquid supply position of the part and collecting the mist containing the absorption liquid containing CO 2 , and the mist discharging the mist collected by the demister and an ejection device.
  • FIG. 1 is a schematic diagram of a CO 2 recovery device according to Embodiment 1.
  • FIG. FIG. 2 is a diagram schematically showing a demister and a mist discharging device according to Embodiment 1.
  • FIG. FIG. 3 is a perspective view showing a mist discharging device.
  • FIG. 4 is a cross-sectional view schematically showing the mist discharging device.
  • FIG. 5 is a diagram showing various dimensions in FIG.
  • FIG. 6 is a graph showing the performance of each type of mist discharge device.
  • FIG. 7 is a cross-sectional view schematically showing a mist discharging device according to Embodiment 2.
  • FIG. FIG. 8 is a diagram schematically showing a mist discharging device according to Embodiment 3.
  • FIG. 1 is a schematic diagram of a CO 2 recovery device according to Embodiment 1.
  • FIG. FIG. 2 is a diagram schematically showing a demister and a mist discharging device according to Embodiment 1.
  • FIG. 3 is a perspective view showing a mist discharging device.
  • FIG. 4 is a cross-sectional view schematically showing the mist discharging device.
  • FIG. 5 is a diagram showing various dimensions in FIG.
  • FIG. 6 is a graph showing the performance of each type of mist discharge device.
  • the CO 2 recovery apparatus of Embodiment 1 uses a CO 2 absorbent as an absorbent that absorbs carbon dioxide (CO 2 ), removes CO 2 from gas in a CO 2 absorption tower (absorption liquid absorption tower), The CO 2 absorbent is regenerated in the absorbent regeneration tower.
  • CO 2 absorbent as an absorbent that absorbs carbon dioxide (CO 2 ), removes CO 2 from gas in a CO 2 absorption tower (absorption liquid absorption tower), The CO 2 absorbent is regenerated in the absorbent regeneration tower.
  • a CO 2 recovery apparatus 10 As shown in FIG. 1, a CO 2 recovery apparatus 10 according to Embodiment 1 is introduced with an introduction gas (hereinafter referred to as "gas") 11 containing CO 2 , and the CO 2 in the gas and the CO 2 absorbent 12 are A CO 2 absorption tower (hereinafter referred to as “absorption tower") 13 equipped with a CO 2 absorption part (hereinafter referred to as “absorption part” ) 13A that removes CO 2 by contacting Absorption liquid regeneration tower (hereinafter referred to as "regeneration tower") 14 for regenerating the CO 2 absorption liquid from the rich solution 12A with the steam of the reboiler 61, and the rich solution 12A is extracted from the absorption tower 13 and sent to the regeneration tower 14 side.
  • gas introduction gas
  • the rich solution supply line 50 to be introduced and the lean solution 12B which is the CO 2 absorbing liquid in which the CO 2 regenerated in the regeneration tower 14 has been diffused, are withdrawn from the regeneration tower 14, introduced into the absorption tower 13, and the CO 2 and a lean solution supply line (absorbent supply unit) 53 that is reused as an absorbent.
  • a rich solution 12A absorbing CO 2 and a lean solution 12B dissipating CO 2 are circulated and reused within the CO 2 recovery device. It should be noted that the description of the CO 2 recovery apparatus of this embodiment is only to describe the outline thereof, and some attached equipment is omitted from the description.
  • the gas 11 containing CO 2 is supplied to the absorption tower 13 after being cooled by cooling water in the cooling section.
  • the absorption tower 13 brings the gas 11 introduced through the gas introduction line 13c into countercurrent contact with the CO 2 absorbent 12 containing an amine-based CO 2 absorption component, and the CO 2 in the gas 11 is converted into CO 2 by a chemical reaction.
  • Absorption liquid 12 is made to absorb.
  • the CO 2 -removed flue gas 11A from which CO 2 has been removed is mist-collected by the demister 110, and then released from the top 13a to the outside of the system.
  • the demister 110 will be described later.
  • a water washing section 20 is provided between the CO 2 absorption section 13A and the demister 110 in the absorption tower 13 .
  • the water washing section 20 includes a gas-liquid contact section 21 and washing liquid circulation means 22 .
  • the gas-liquid contacting part 21 passes through the CO 2 absorbing part 13A and brings the gas 11 accompanied by the CO 2 absorbing liquid 12 that has absorbed CO 2 into gas-liquid contact with the washing water, thereby removing the CO 2 contained in the gas 11 .
  • the absorbent 12 is collected with washing water.
  • the cleaning liquid circulation means 22 includes a cleaning water receiving tray 23 , a circulation line 24 , a pump 25 , a cleaning water supply section 26 and a cooling section 27 .
  • the cleaning water receiving tray 23 is arranged on the upstream side of the gas-liquid contact portion 21 in the gas flow, that is, below the gas-liquid contact portion 21 in the vertical direction. Washing water receiving tray 23 collects washing water that has passed through gas-liquid contact portion 21 and fallen.
  • the circulation line 24 connects the wash water receiver 23 and the wash water supply unit 26 outside the absorber 13 .
  • a pump 25 is installed in the circulation line 24 and conveys the washing water in a predetermined direction.
  • the cleaning water supply part 26 is disposed downstream of the gas-liquid contact part 21 in the gas flow, that is, above the gas-liquid contact part 21 in the vertical direction.
  • the washing water supply unit 26 supplies the washing liquid supplied through the circulation line 24 into the absorption tower 13 .
  • the supplied cleaning liquid drops onto the gas-liquid contact portion 21 .
  • the cleaning water supply unit 26 supplies the cleaning liquid, for example, by injecting the cleaning liquid onto a spray.
  • the cooling unit 27 is installed in the circulation line 24 and cools the washing water.
  • the water washing unit 20 collects the absorbing liquid contained in the gas 11 by supplying the washing liquid from above the gas-liquid contact part, recovering it from below and circulating it.
  • the gas that has passed through the water washing section 20 is accompanied by part of the cleaning liquid containing the absorbing liquid. That is, the gas that has passed through the water washing section 20 is accompanied by mist containing the CO 2 absorbing liquid.
  • a demister 110 collects the mist containing the CO2 absorbing liquid.
  • the CO 2 recovery device 10 extracts the rich solution 12A that has absorbed CO 2 from the bottom portion 13b of the absorption tower 13 through the rich solution supply line 50 .
  • the rich solution 12A is pressurized by the rich solution pump 51, and the rich/lean solution heat exchanger 52 is provided at the intersection of the rich solution supply line 50 and the lean solution supply line 53. After being heated by the lean solution 12B regenerated at , it is supplied to the regeneration tower 14 .
  • the regeneration tower 14 discharges the rich solution 12A into the inside from the rich solution introduction part 14a near the top.
  • the regeneration tower 14 releases most of the CO 2 within the regeneration tower 14 in an endothermic reaction between the rich solution 12A and steam from the reboiler 61 fed from the bottom.
  • the CO 2 absorbent that has released some or most of the CO 2 in the regeneration tower 14 becomes a semi-lean solution.
  • this semi-lean solution reaches the bottom 14b of the regeneration tower 14, it becomes a CO 2 absorbent (lean solution) 12B from which almost all of the CO 2 has been removed.
  • a part of the lean solution 12B of the rich solution 12A is heated by a reboiler 61 supplied with saturated steam 62 to supply steam to the inside of the regeneration tower 14 .
  • an accompanying gas 41 mainly composed of water vapor and CO 2 released from the rich solution 12A and the semi-lean solution in the tower was collected as a mist by the demister 110. After that, it is discharged from the column top 14c.
  • An accompanying gas 41 is supplied to the regeneration tower condensation section 40 .
  • the regeneration tower condensing section 40 condenses water vapor by cooling the accompanying gas with a cooler 42 , and separates the regeneration tower condensed water (hereinafter referred to as “condensed water”) 44 and CO 2 gas 45 with a gas-liquid separator 43 . do.
  • the regeneration tower condensation section 40 injects the separated CO 2 gas 45 into an oil field using, for example, Enhanced Oil Recovery (EOR), or stores it in an aquifer.
  • EOR Enhanced Oil Recovery
  • the regenerated CO 2 absorbent (lean solution) 12B is extracted from the bottom 14b of the regeneration tower 14 through the lean solution supply line 53 and cooled by the rich solution 12A in the rich/lean solution heat exchanger 52. Then, the pressure is increased by the lean solution pump 54 , cooled by the lean solution cooler 55 , and supplied into the absorption tower 13 .
  • a regeneration tower condensing section 40 for condensing moisture from the accompanying gas 41 discharged from the tower top 14 c of the regeneration tower 14 is provided outside the regeneration tower 14 .
  • the regeneration tower condensation section 40 includes a discharge line 40a that discharges the accompanying gas 41 from the tower top portion 14c of the regeneration tower 14, a cooler 42 that is interposed in the discharge line 40a, and water vapor condensed by the cooler 42.
  • the condensed water 44 separated and refluxed from the accompanying gas 41 by the gas-liquid separator 43 is introduced by the refluxed water circulation pump 46 from the condensed water introduction part 14d on the tower top part 14c side of the rich solution introduction part 14a of the regeneration tower 14. be done.
  • the CO 2 recovery device 10 introduces the CO 2 -containing gas 11 into the absorption tower 13 and brings the CO 2 in the gas 11 into contact with the CO 2 absorbent 12 to remove CO 2 .
  • the gas supplied to the absorption tower 13 and contacted with the CO 2 absorbent 12 passes through the demister 110 and is discharged out of the system.
  • the CO 2 recovery device 10 also introduces the rich solution 12A that has absorbed CO 2 into the regeneration tower 14, and regenerates the CO 2 with reboiler steam.
  • the accompanying gas 41 in the regeneration tower 14 passes through the demister 110 and is supplied to the regeneration tower condensation section 40 .
  • the CO 2 recovery device 10 circulates and reuses the CO 2 absorbent 12 through the absorption tower 13 and the regeneration tower 14 through a circulation line.
  • the CO 2 recovery device 10 condenses moisture from the accompanying gas 41 accompanying the separated CO 2 in the regeneration tower condensation section 40 .
  • the CO 2 recovery device 10 cools the accompanying gas 41 and separates the condensed water 44 in which water vapor is condensed and the CO 2 gas 45 .
  • the CO 2 recovery device 10 supplies the condensed water 44 to the regeneration tower 14 by refluxing it on the tower top portion 14c side of the rich solution introduction portion 14a into which the rich solution 12A is introduced.
  • the demister 110 is installed in the absorption tower 13 .
  • the absorption tower main body 112 is a gas channel of the absorption tower through which the exhaust gas 11A flows.
  • the absorption tower main body 112 of Embodiment 1 has a cylindrical shape with a circular cross section.
  • the shape of the absorption tower main body 112 is not limited to this, and for example, the cross section may be rectangular.
  • the absorption tower main body 112 is provided extending in the vertical direction, and the exhaust gas 11A flows from the lower side to the upper side in the vertical direction.
  • Demister 110 includes a laminate unit 120 for collecting mist containing CO2 absorbing liquid.
  • the laminated unit 120 is composed of a plurality of layers, and each layer has a plurality of linear structures. As the exhaust gas 11A passes through each layer of the laminated unit 120, the mist contained in the exhaust gas 11A is collected. The drain water W contained inside the demister 110 is discharged by a mist discharging device 130 provided below the demister 110 .
  • mist discharge device 130 Next, the mist discharge device 130 will be described. As shown in FIGS. 2 to 4, the mist discharge device 130 is provided below the demister 110, that is, in contact with the inflow side of the demister 110 into which the exhaust gas 11A flows. The mist discharging device 130 guides the drain water W accumulated inside the demister 110 downward in the vertical direction, thereby allowing the drain water W to fall under its own weight.
  • the mist discharging device 130 has a plurality of protrusions 135 protruding downward from the inflow side of the demister 110 .
  • the protruding portion 135 is a plate-like member extending downward, and has a plate surface including a vertical direction and a horizontal direction.
  • the plurality of projecting portions 135 are arranged side by side at predetermined intervals in the horizontal direction. That is, the plurality of protruding portions 135, which are plate-like members, are provided so that the plate surfaces are parallel to each other. For this reason, the mist discharging device 130 has a slit-shaped drain port as shown in FIG.
  • the projecting portion 135 has a rectangular cross-sectional shape taken along a plane perpendicular to the plate surface.
  • the projecting portion 135 is provided in contact with the demister 110 .
  • the projecting portion 135 guides the drain water W inside the demister 110 downward in the vertical direction.
  • the projecting portion 135 may be configured to have hydrophilicity in order to promote the guidance of the drain water W.
  • the protruding portion 135 may be formed including a hydrophilic material.
  • the projecting portion 135 is formed using a material having a smaller contact angle than the demister 110, and examples of the material having a smaller contact angle include nylon, which is a thermoplastic resin that is easy to mold.
  • the projecting portion 135 may have a surface layer formed by applying a hydrophilic surface treatment.
  • the surface layer is, for example, a coating film formed by applying a vitreous coating with a small contact angle.
  • the parameter of performance to be compared is the pressure loss in the absorption tower main body 112, and the ratio of the pressure loss of each type when the case without the mist discharge device 130 is set to 1 is used.
  • the various dimensions of the mist discharging device 130 include the projection height (a) of the projection 135, the thickness (b) of the projection 135, and the interval (c) between the adjacent projections 135. be.
  • the types of the mist discharging device 130 include "ID5", "ID7”, and “ID8".
  • ID5 has a protrusion height (a) of 6 mm, a thickness (b) of 2 mm, and a spacing (c) of 2 mm.
  • ID7 has a protrusion height (a) of 1 mm, a thickness (b) of 2 mm, and a spacing (c) of 4 mm.
  • ID8 has a protrusion height (a) of 1 mm, a thickness (b) of 4 mm, and a spacing (c) of 4 mm.
  • the distance (c) between the projections 135 in the mist discharging device 130 is wider than the mesh of the demister 110 .
  • the horizontal axis is the type type, and the vertical axis is the pressure loss ratio (pressure loss ratio).
  • ID4 is a case where the mist discharge device 130 is not provided, and the pressure loss ratio is 1.
  • ID5 has a pressure loss ratio of less than 0.5.
  • ID7 also has a pressure loss ratio of less than 0.5.
  • ID8 also has a pressure loss ratio below 0.5.
  • ID8 the type of demister 110 (mesh mesh) is different, but the pressure loss ratio is less than 0.5 in any type. Therefore, it was confirmed that the pressure loss of the absorption tower main body 112 can be reduced by providing the mist discharge device 130 . In other words, it was confirmed that by discharging the drain water W inside the demister 110 by the mist discharge device 130, clogging of the absorption tower main body 112 by the drain water W was suppressed, and an increase in pressure loss was suppressed.
  • FIG. 7 is a cross-sectional view schematically showing a mist discharging device according to Embodiment 2.
  • the shape of the projecting portion 151 is different from that of the first embodiment.
  • the protruding portion 151 is formed such that the flow direction of the drain water W (the resulting mist) flowing along the protruding portion 151 is inclined with respect to the vertical direction.
  • the protruding portion 151 has a tapered shape in which a cross-sectional shape taken along a plane orthogonal to the plate surface is tapered from the upper side to the lower side.
  • the tapered shape may be, for example, a triangular shape or a trapezoidal shape, and is not particularly limited.
  • FIG. 8 is a diagram schematically showing a mist discharging device according to Embodiment 3.
  • FIG. 8 is a diagram schematically showing a mist discharging device according to Embodiment 3.
  • the flow direction of the drain water W flowing along the projecting portion 161 is inclined with respect to the vertical direction.
  • the protruding portion 161 is inclined with respect to the horizontal direction so as to form a one-sided flow from one end to the other end.
  • the mist discharging device 160 is inclined with respect to the horizontal direction.
  • the projecting portion 161 which is a plate-like member, is arranged so as to extend in an inclined direction by positioning one end in the horizontal direction upward and the other end in the horizontal direction downward. .
  • the drain water W flowing along the projecting portion 161 flows in the direction in which the projecting portion 161 is inclined.
  • the projecting portions 135, 151, and 161 are plate-shaped members, but may be rod-shaped members that extend downward, and have a shape that projects downward. If there is, it may have any shape as long as it does not block the absorption tower main body 112 .
  • mist discharge devices 130, 150, 160 and the absorbent absorption tower 13 described in the embodiments are understood as follows, for example.
  • the mist discharging devices 130, 150, and 160 are mist discharging devices for discharging the mist collected by the demister 110, and the demister 110 moves the gas from the lower side to the upper side in the vertical direction. is provided in the gas flow path (absorber tower main body 112) through which the is circulated, the lower side is the inflow side of the gas, and the upper side is the outflow side of the gas, and the mist contained in the gas is collected, Protrusions 135 , 151 , 161 protrude downward from the inflow side of the demister 110 .
  • the mist collected by the demister 110 is discharged to the outside of the demister 110 along the projecting portion 135 . Therefore, the mist can be suitably discharged to the outside of the demister 110, so that the accumulation of the mist in the demister 110 can be suppressed, and the re-scattering of the mist from the accumulated drain water can be suppressed.
  • the projecting portions 135, 151, 161 are plate-like members extending downward, and the plate-like members are arranged side by side at predetermined intervals in the horizontal direction.
  • the protrusions 135, 151, 161 have a surface layer formed by applying a hydrophilic surface treatment.
  • the discharge of mist can be favorably promoted.
  • the projections 135, 151, 161 are formed containing a hydrophilic material.
  • the discharge of mist can be favorably promoted.
  • the projecting portions 151 and 161 are formed so that the flow direction of the mist flowing along the projecting portions 135, 151 and 161 is inclined with respect to the vertical direction.
  • the projecting portion 151 has a tapered shape that tapers from the upper side to the lower side.
  • the protruding portion 161 is inclined with respect to the horizontal direction so that it flows in one direction from one end to the other end.
  • the mist can be easily made to flow in one direction.
  • the absorbent absorption tower 13 includes an absorption tower main body 112 to which gas containing CO 2 is supplied, and an absorbent supply section (lean solution supply line) that supplies absorbent to the absorption tower main body 112 53), and a demister 110 arranged downstream in the direction of flow of the gas from the absorbent supply position of the absorbent supply unit of the absorber main body 112 and collecting the mist containing the absorbent containing CO2 . and the above-mentioned mist discharging devices 130, 150, 160 for discharging the mist collected by the demister 110.
  • the absorption liquid absorption tower 13 can suppress the re-scattering of mist.
  • CO 2 recovery device 11 Introduced gas (gas) 12 CO2 absorbing liquid 12A rich solution 12B lean solution 13A CO2 absorption part 13 CO2 absorption tower 14 absorption liquid regeneration tower 41 entrained gas 42 cooler 43 gas-liquid separator 44 regeneration tower condensed water 45 CO2 gas 46 reflux water circulation pump 50 rich solution supply line 51 rich solution pump 52 rich/lean solution heat exchanger 53 lean solution supply line 110 demister 112 absorption tower main body 130, 150, 160 mist discharge device 135, 151, 161 protruding part

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Gas Separation By Absorption (AREA)
  • Treating Waste Gases (AREA)

Abstract

デミスタにより捕集したミストを排出するミスト排出装置であって、前記デミスタは、鉛直方向の下方側から上方側に向かってガスが流通するガス流路に設けられ、下方側が、前記ガスの流入側となり、上方側が、前記ガスの流出側となり、前記ガスに含まれる前記ミストを捕集しており、前記デミスタの流入側から下方側へ向かって突出して設けられる突出部を備える。前記突出部は、下方側へ向かって延在する板状部材であり、前記板状部材は、水平方向において、所定間隔を空けて複数並べて設けられる。

Description

ミスト排出装置及び吸収液吸収塔
 本開示は、ミスト排出装置及び吸収液吸収塔に関するものである。
 従来、ワイヤメッシュ層を有する湿分分離器が知られている(例えば、特許文献1参照)。ワイヤメッシュ層は、貫流する湿り蒸気に含まれる液滴がワイヤメッシュに付着することにより、湿り蒸気から液滴を分離している。湿分分離器には、ワイヤメッシュ層において分離した液滴であるドレン水を受けるドレン受けが設けられている。ドレン受けは、ワイヤメッシュ層に沿って水平方向に対して傾斜した方向に延びており、ワイヤメッシュ層からのドレン水を受けて、ドレン水をワイヤメッシュ層の水平方向の外側へ導いている。
特開2016-150297号公報
 ここで、特許文献1の湿分分離器のワイヤメッシュ層を貫流する湿り蒸気の貫流方向は水平方向となっており、ドレン水は、ワイヤメッシュ層に沿って鉛直方向の下方側へ向かって流れている。一方で、ミストを捕集するデミスタを貫流するガスは、鉛直方向の下方側から上方側へ向かって流れている。ガスが下方側から上方側に向かって流れる場合、デミスタで捕集されたミストは、ドレン水となってデミスタの内部に溜まる。このとき、ドレン水の排出が適切でないと、デミスタの上部にドレン水が溜まり、この場合、溜まったドレン水からミストが再飛散する可能性がある。
 そこで、本開示は、ミストの再飛散を抑制することができるミスト排出装置及び吸収液吸収塔を提供することを課題とする。
 本開示のミスト排出装置は、デミスタにより捕集したミストを排出するミスト排出装置であって、前記デミスタは、鉛直方向の下方側から上方側に向かってガスが流通するガス流路に設けられ、下方側が、前記ガスの流入側となり、上方側が、前記ガスの流出側となり、前記ガスに含まれる前記ミストを捕集しており、前記デミスタの流入側から下方側へ向かって突出して設けられる突出部を備える。
 本開示の吸収液吸収塔は、COを含有するガスが供給される吸収塔本体と、前記吸収塔本体に、吸収液を供給する吸収液供給部と、前記吸収塔本体の前記吸収液供給部の吸収液供給位置よりも前記ガスの流れ方向下流側に配置され、COを含有する吸収液を含有するミストを捕集するデミスタと、前記デミスタにより捕集したミストを排出する上記のミスト排出装置と、を備える。
 本開示によれば、ミストの再飛散を抑制することができる。
図1は、実施形態1に係るCO回収装置の概略図である。 図2は、実施形態1に係るデミスタ及びミスト排出装置を模式的に示す図である。 図3は、ミスト排出装置を示す斜視図である。 図4は、ミスト排出装置を模式的に示す断面図である。 図5は、図4における各種寸法を示す図である。 図6は、ミスト排出装置のタイプ別の性能を示すグラフである。 図7は、実施形態2に係るミスト排出装置を模式的に示す断面図である。 図8は、実施形態3に係るミスト排出装置を模式的に示す図である。
 以下に、本開示に係る実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能であり、また、実施形態が複数ある場合には、各実施形態を組み合わせることも可能である。
[実施形態1]
 図1は、実施形態1に係るCO回収装置の概略図である。図2は、実施形態1に係るデミスタ及びミスト排出装置を模式的に示す図である。図3は、ミスト排出装置を示す斜視図である。図4は、ミスト排出装置を模式的に示す断面図である。図5は、図4における各種寸法を示す図である。図6は、ミスト排出装置のタイプ別の性能を示すグラフである。先ず、図1を参照して、CO回収装置について説明する。
(CO2回収装置)
 実施形態1のCO2回収装置は、二酸化炭素(CO2)を吸収する吸収剤としてCO2吸収剤を用いて、CO2吸収塔(吸収液吸収塔)において、ガスからCO2を除去し、CO2吸収液を吸収液再生塔で再生する。
 図1に示すように、実施形態1に係るCO回収装置10は、CO2を含有する導入ガス(以下「ガス」という)11が導入され、ガス中のCO2とCO2吸収液12とを接触させてCO2を除去するCO2吸収部(以下「吸収部」という)13Aを備えたCO2吸収塔(以下「吸収塔」という)13と、CO2を吸収したCO2吸収液12であるリッチ溶液12Aをリボイラ61の蒸気によりCO2吸収液を再生する吸収液再生塔(以下「再生塔」という)14と、吸収塔13からリッチ溶液12Aを抜出すと共に、再生塔14側に導入するリッチ溶液供給ライン50と、再生塔14で再生されたCO2が放散されたCO2吸収液であるリーン溶液12Bを再生塔14から抜出すると共に、吸収塔13に導入し、CO2吸収液として再利用するリーン溶液供給ライン(吸収液供給部)53と、を具備する。CO2吸収液12は、CO2を吸収したリッチ溶液12AとCO2を放散したリーン溶液12Bとを、CO回収装置内で循環再利用している。なお、この実施形態のCO回収装置の説明では、あくまでその概要を説明するものであり、付属する機器を一部省略して説明している。
 吸収塔13は、CO2を含んだガス11は、冷却部において、冷却水により冷却された後、供給される。吸収塔13は、ガス導入ライン13cにより導入されたガス11とアミン系のCO2吸収成分を含むCO2吸収液12とを向流接触させ、ガス11中のCO2は、化学反応によりCO2吸収液12に吸収させる。吸収塔13は、CO2が除去された後のCO2除去排ガス11Aを、デミスタ110にてミスト捕集させた後、頂部13aから系外に放出する。デミスタ110については、後述する。
 吸収塔13内のCO2吸収部13Aとデミスタ110との間に、水洗部20を設けている。水洗部20は、気液接触部21と、洗浄液循環手段22と、を含む。気液接触部21は、CO2吸収部13Aを通過して、COを吸収したCO2吸収液12が同伴するガス11と、洗浄水とを気液接触させ、ガス11に含まれるCO2吸収液12を洗浄水で捕集する。洗浄液循環手段22は、洗浄水受け皿23と、循環ライン24と、ポンプ25と、洗浄水供給部26と、冷却部27と、を含む。洗浄水受け皿23は、気液接触部21のガス流れ上流側、つまり、気液接触部21の鉛直方向下側に配置される。洗浄水受け皿23は、気液接触部21を通過して、落下した洗浄水を捕集する。循環ライン24は、吸収塔13の外で、洗浄水受け皿23と洗浄水供給部26とを接続する。ポンプ25は、循環ライン24に設置され、洗浄水を所定方向に搬送する。洗浄水供給部26と、気液接触部21のガス流れ下流側、つまり、気液接触部21の鉛直方向上側に配置される。洗浄水供給部26は、循環ライン24で供給される洗浄液を吸収塔13内に供給する。供給された洗浄液は、気液接触部21に落下する。洗浄水供給部26は、例えば、スプレー上に洗浄液を噴射して供給する。冷却部27は、循環ライン24に設置され、洗浄水を冷却する。水洗部20は、以上のように、洗浄液を気液接触部の上から供給し、下から回収して循環させることで、ガス11に含まれている吸収液を捕集する。なお、水洗部20を通過したガスは、吸収液を含む洗浄液の一部がガス11と同伴する。つまり、水洗部20を通過したガスには、CO吸収液を含むミストが同伴する。デミスタ110は、CO吸収液を含むミストを捕集する。
 また、CO回収装置10は、吸収塔13の底部13bからリッチ溶液供給ライン50により、CO2を吸収したリッチ溶液12Aを抜き出す。CO回収装置10は、リッチ溶液12Aをリッチ溶液ポンプ51により昇圧し、リッチ溶液供給ライン50とリーン溶液供給ライン53との交差部に設けたリッチ・リーン溶液熱交換器52において、再生塔14で再生されたリーン溶液12Bにより加熱した後、再生塔14に供給する。
 再生塔14は、上部近傍のリッチ溶液導入部14aから内部にリッチ溶液12Aが放出される。再生塔14は、リッチ溶液12Aと、底部から供給されるリボイラ61による水蒸気との間の吸熱反応で、再生塔14内で大部分のCO2を放出させる。再生塔14内で一部または大部分のCO2を放出したCO2吸収液は、セミリーン溶液となる。このセミリーン溶液は、再生塔14の底部14bに至る頃には、ほぼ全てのCO2が除去されたCO2吸収液(リーン溶液)12Bとなる。リッチ溶液12Aは、リーン溶液12Bの一部が、飽和水蒸気62が供給されるリボイラ61により加熱され、再生塔14内部に水蒸気を供給している。
 また、再生塔14は、塔内においてリッチ溶液12Aおよびセミリーン溶液から放出された水蒸気とCO2を主成分とする同伴ガス(以下「同伴ガス」という)41がデミスタ110でミストが捕集された後、塔頂部14cから排出される。
 再生塔凝縮部40は、同伴ガス41が供給される。再生塔凝縮部40は、冷却器42で同伴ガスを冷却することで水蒸気を凝縮し、気液分離器43で再生塔凝縮水(以下「凝縮水」という)44とCO2ガス45とに分離する。再生塔凝縮部40は、分離したCO2ガス45を例えば石油増進回収法(EOR:Enhanced Oil Recovery)を用いて油田中に圧入するか、帯水層へ貯留する。
 また、再生されたCO2吸収液(リーン溶液)12Bは、再生塔14の底部14bからリーン溶液供給ライン53により抜き出され、リッチ・リーン溶液熱交換器52にて、リッチ溶液12Aにより冷却され、つづいてリーン溶液ポンプ54にて昇圧され、さらにリーン溶液クーラ55にて冷却された後、吸収塔13内に供給される。
 実施形態1では、再生塔14の塔頂部14cから排出された同伴ガス41から、水分を凝縮する再生塔凝縮部40が再生塔の外部に設けられている。この再生塔凝縮部40は、同伴ガス41を再生塔14の塔頂部14cから排出する排出ライン40aと、排出ライン40aに介装された冷却器42と、冷却器42により水蒸気が凝縮された凝縮水44とCO2ガス45とを分離する気液分離器43と、凝縮水44を再生塔の頭部側に還流する還流ライン40bと、還流ライン40bに介装された還流水循環ポンプ46とを備えている。同伴ガス41から気液分離器43にて分離・還流された凝縮水44は、還流水循環ポンプ46にて再生塔14のリッチ溶液導入部14aよりも塔頂部14c側の凝縮水導入部14dから導入される。
 CO2回収装置10は、CO2を含有するガス11を吸収塔13に導入し、ガス11中のCO2とCO2吸収液12とを接触させてCO2を除去する。吸収塔13に供給されCO2吸収液12と接触したガスは、デミスタ110を通過し系外に排出される。また、CO2回収装置10は、CO2を吸収したリッチ溶液12Aを再生塔14に導入し、リボイラ蒸気によりCO2を再生する。再生塔14の同伴ガス41は、デミスタ110を通過し、再生塔凝縮部40に供給される。CO2回収装置10は、CO2吸収液12を吸収塔13と再生塔14とを循環ラインにより循環再利用する。CO2回収装置10は、再生塔凝縮部40で、分離されたCO2を同伴する同伴ガス41から、水分を凝縮する。CO2回収装置10は、同伴ガス41を冷却して水蒸気が凝縮された凝縮水44とCO2ガス45とを分離する。CO2回収装置10は、凝縮水44を、再生塔14のリッチ溶液12Aが導入されるリッチ溶液導入部14aよりも塔頂部14c側で還流して供給する。
 次に、デミスタ110について、吸収塔13に設置した場合として説明する。図2に示すように、デミスタ110は、円形の吸収塔本体112に配置される。吸収塔本体112は、排ガス11Aが流れる吸収塔のガス流路である。実施形態1の吸収塔本体112は、断面が円形の円筒形状である。なお、吸収塔本体112の形状はこれに限定されず、例えば断面が矩形でもよい。吸収塔本体112は、鉛直方向に延在して設けられ、排ガス11Aは、鉛直方向の下方側から上方側に向かって流通する。
 デミスタ110は、CO吸収液を含むミストを捕集するための積層ユニット120を含む。積層ユニット120は、複数の層からなり、各層は、複数の線状の構造体となっている。排ガス11Aは、積層ユニット120の各層を通過することで、排ガス11Aに含まれるミストが捕集され、捕集されたミストがドレン水Wとなって、デミスタ110の内部に含水する。デミスタ110の内部に含水したドレン水Wは、デミスタ110の下方側に設けられるミスト排出装置130によって排出される。
(ミスト排出装置)
 次に、ミスト排出装置130について説明する。ミスト排出装置130は、図2から図4に示すように、デミスタ110の下方側に、すなわち、排ガス11Aが流入するデミスタ110の流入側に、接して設けられている。ミスト排出装置130は、デミスタ110の内部に溜まるドレン水Wを、鉛直方向の下方側に案内することで、ドレン水Wを自重落下させている。
 ミスト排出装置130は、デミスタ110の流入側から下方側へ向かって突出して設けられる突出部135を複数備えている。突出部135は、下方側へ向かって延在する板状部材であり、鉛直方向と水平方向とを含む板面を有している。また、複数の突出部135は、水平方向において、所定間隔を空けて複数並べて設けられている。つまり、板状部材となる複数の突出部135は、板面が平行となるように設けられている。このため、ミスト排出装置130は、図3に示すようにスリット形状となる排水口を有している。また、突出部135は、図4に示すように、板面に直交する面で切った断面形状が矩形状となっている。
 また、突出部135は、デミスタ110に接して設けられている。突出部135は、デミスタ110の内部のドレン水Wを、鉛直方向の下方側へ向けて案内している。突出部135は、ドレン水Wの案内を促進するために、親水性を有する構成としてもよい。例えば、突出部135は、親水性を有する材料を含んで形成してもよい。具体的に、突出部135は、デミスタ110に比して接触角が小さい材料を用いて形成され、接触角が小さい材料としては、例えば、成形し易い熱可塑性樹脂となるナイロン等である。また、例えば、突出部135は、親水性の表面処理が施されることで形成される表面層を有していてもよい。表層面は、例えば、接触角が小さいガラス質塗料を塗布して形成される塗布膜である。
 次に、図4から図6を参照して、ミスト排出装置130の各種寸法を異ならせたタイプ別の性能について比較する。比較する性能のパラメータとしては、吸収塔本体112における圧力損失であり、ミスト排出装置130を設けない場合を1としたときの各タイプの圧力損失の比率を用いている。
 図4に示すように、ミスト排出装置130の各種寸法としては、突出部135の突出高さ(a)、突出部135の厚さ(b)、隣接する突出部135同士の間隔(c)がある。図5に示すように、ミスト排出装置130のタイプとしては、「ID5」、「ID7」、「ID8」がある。「ID5」は、突出高さ(a)が6mm、厚さ(b)が2mm、間隔(c)が2mmとなっている。「ID7」は、突出高さ(a)が1mm、厚さ(b)が2mm、間隔(c)が4mmとなっている。「ID8」は、突出高さ(a)が1mm、厚さ(b)が4mm、間隔(c)が4mmとなっている。なお、ミスト排出装置130における突出部135同士の間隔(c)は、デミスタ110におけるメッシュの網目よりも隙間が広いものとなっている。
 図6は、その横軸がタイプの種別となっており、その縦軸が、圧力損失の比率(圧力損失比)となっている。なお、ID4は、ミスト排出装置130を設けない場合であり、圧力損失比は、1となっている。「ID5」は、圧力損失比が、0.5を下回っている。また、「ID7」も、圧力損失比が、0.5を下回っている。さらに、「ID8」も、圧力損失比が、0.5を下回っている。なお、「ID8」では、デミスタ110の種別(メッシュの網目)を異ならせているが、いずれの種別においても、圧力損失比が、0.5を下回っている。このため、ミスト排出装置130を設けることで、吸収塔本体112の圧力損失を低下させることができることが確認された。つまり、デミスタ110の内部のドレン水Wをミスト排出装置130により排出することで、ドレン水Wによる吸収塔本体112の閉塞を抑制し、圧力損失の増大を抑制していることが確認された。
[実施形態2]
 次に、図7を参照して、実施形態2について説明する。なお、実施形態2では、重複した記載を避けるべく、実施形態1と異なる部分について説明し、実施形態1と同様の構成である部分については、同じ符号を付して説明する。図7は、実施形態2に係るミスト排出装置を模式的に示す断面図である。
(ミスト排出装置)
 実施形態2のミスト排出装置150は、突出部151の形状が、実施形態1と異なる形状となっている。突出部151は、突出部151を伝って流れるドレン水W(となったミスト)の流れ方向が、鉛直方向に対して傾斜するように形成されている。具体的に、突出部151は、板面に直交する面で切った断面形状が、上方側から下方側に向かって先細りとなるテーパ形状となっている。テーパ形状としては、例えば、三角形状であってもよいし、台形形状であってもよく、特に限定されない。
[実施形態3]
 次に、図8を参照して、実施形態3について説明する。なお、実施形態3では、重複した記載を避けるべく、実施形態1及び2と異なる部分について説明し、実施形態1及び2と同様の構成である部分については、同じ符号を付して説明する。図8は、実施形態3に係るミスト排出装置を模式的に示す図である。
(ミスト排出装置)
 実施形態3のミスト排出装置160は、実施形態2と同様に、突出部161が、突出部161を伝って流れるドレン水W(となったミスト)の流れ方向が、鉛直方向に対して傾斜するように形成されている。具体的に、突出部161は、一方の端から他方の端へ向かって片流れとなるように、水平方向に対して傾斜して設けられている。つまり、ミスト排出装置160は、水平方向に対して傾斜して設けられている。具体的に、板状部材となる突出部161は、水平方向の一端を上方側に、水平方向の他端を下方側に位置させることで、傾斜する方向に延在するように配置されている。そして、突出部161を伝って流れるドレン水Wは、突出部161傾斜する方向へ向かって流れる。
 なお、実施形態1から3では、突出部135,151,161は、板状部材となっていたが、下方側へ向かって延在する棒状部材であってもよく、下方側に突出する形状であれば、吸収塔本体112を閉塞しない限り、何れの形状であってもよい。
 以上のように、実施形態に記載のミスト排出装置130,150,160及び吸収液吸収塔13は、例えば、以下のように把握される。
 第1の態様に係るミスト排出装置130,150,160は、デミスタ110により捕集したミストを排出するミスト排出装置であって、前記デミスタ110は、鉛直方向の下方側から上方側に向かってガスが流通するガス流路(吸収塔本体112)に設けられ、下方側が、前記ガスの流入側となり、上方側が、前記ガスの流出側となり、前記ガスに含まれる前記ミストを捕集しており、前記デミスタ110の流入側から下方側へ向かって突出して設けられる突出部135,151,161を備える。
 この構成によれば、デミスタ110で捕集されたミストが、突出部135を伝ってデミスタ110の外部に排出される。このため、ミストを好適にデミスタ110の外部に排出することができるため、デミスタ110にミストが溜まることを抑制でき、溜まったドレン水からミストが再飛散することを抑制することができる。
 第2の態様として、前記突出部135,151,161は、下方側へ向かって延在する板状部材であり、前記板状部材は、水平方向において、所定間隔を空けて複数並べて設けられる。
 この構成によれば、簡易な構成で、ミストを好適に排出することができる構造とすることができる。
 第3の態様として、前記突出部135,151,161は、親水性の表面処理が施されることで形成される表面層を有する。
 この構成によれば、ミストの排出を好適に促すことができる。
 第4の態様として、前記突出部135,151,161は、親水性を有する材料を含んで形成される。
 この構成によれば、ミストの排出を好適に促すことができる。
 第5の態様として、前記突出部151,161は、前記突出部135,151,161を伝って流れる前記ミストの流れ方向が、鉛直方向に対して傾斜するように形成される。
 この構成によれば、突出部151,161を伝って流れるミストを傾斜させることで、ミストの排出をより好適に促すことができる。
 第6の態様として、前記突出部151は、上方側から下方側に向かって先細りとなるテーパ形状となっている。
 この構成によれば、簡易な形状で、ミストを傾斜する方向に流すことができる。
 第7の態様として、前記突出部161は、一方の端から他方の端へ向かって片流れとなるように、水平方向に対して傾斜して設けられている。
 この構成によれば、突出部161を傾斜させることで、ミストを容易に片流れにすることができる。
 第8の態様に係る吸収液吸収塔13は、COを含有するガスが供給される吸収塔本体112と、前記吸収塔本体112に、吸収液を供給する吸収液供給部(リーン溶液供給ライン53)と、前記吸収塔本体112の前記吸収液供給部の吸収液供給位置よりも前記ガスの流れ方向下流側に配置され、COを含有する吸収液を含有するミストを捕集するデミスタ110と、前記デミスタ110により捕集したミストを排出する上記のミスト排出装置130,150,160と、を備える。
 この構成によれば、ミストの再飛散を抑制できる吸収液吸収塔13とすることができる。
 10 CO回収装置
 11 導入ガス(ガス)
 12 CO2吸収液
 12A リッチ溶液
 12B リーン溶液
 13A CO2吸収部
 13 CO2吸収塔
 14 吸収液再生塔
 41 同伴ガス
 42 冷却器
 43 気液分離器
 44 再生塔凝縮水
 45 CO2ガス
 46 還流水循環ポンプ
 50 リッチ溶液供給ライン
 51 リッチ溶液ポンプ
 52 リッチ・リーン溶液熱交換器
 53 リーン溶液供給ライン
 110 デミスタ
 112 吸収塔本体
 130,150,160 ミスト排出装置
 135,151,161 突出部

Claims (8)

  1.  デミスタにより捕集したミストを排出するミスト排出装置であって、
     前記デミスタは、鉛直方向の下方側から上方側に向かってガスが流通するガス流路に設けられ、下方側が、前記ガスの流入側となり、上方側が、前記ガスの流出側となり、前記ガスに含まれる前記ミストを捕集しており、
     前記デミスタの流入側から下方側へ向かって突出して設けられる突出部を備えるミスト排出装置。
  2.  前記突出部は、下方側へ向かって延在する板状部材であり、
     前記板状部材は、水平方向において、所定間隔を空けて複数並べて設けられる請求項1に記載のミスト排出装置。
  3.  前記突出部は、親水性の表面処理が施されることで形成される表面層を有する請求項1または2に記載のミスト排出装置。
  4.  前記突出部は、親水性を有する材料を含んで形成される請求項1から3のいずれか1項に記載のミスト排出装置。
  5.  前記突出部は、前記突出部を伝って流れる前記ミストの流れ方向が、鉛直方向に対して傾斜するように形成される請求項1から4のいずれか1項に記載のミスト排出装置。
  6.  前記突出部は、上方側から下方側に向かって先細りとなるテーパ形状となっている請求項5に記載のミスト排出装置。
  7.  前記突出部は、一方の端から他方の端へ向かって片流れとなるように、水平方向に対して傾斜して設けられている請求項5に記載のミスト排出装置。
  8.  COを含有するガスが供給される吸収塔本体と、
     前記吸収塔本体に、吸収液を供給する吸収液供給部と、
     前記吸収塔本体の前記吸収液供給部の吸収液供給位置よりも前記ガスの流れ方向下流側に配置され、COを含有する吸収液を含有するミストを捕集するデミスタと、
     前記デミスタにより捕集したミストを排出する請求項1から7のいずれか1項に記載のミスト排出装置と、を備える吸収液吸収塔。
PCT/JP2022/017206 2021-05-24 2022-04-06 ミスト排出装置及び吸収液吸収塔 WO2022249771A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/563,502 US20240238719A1 (en) 2021-05-24 2022-04-06 Mist discharge device and absorbent absorber
CA3221407A CA3221407A1 (en) 2021-05-24 2022-04-06 Mist discharge device and absorbent absorber
AU2022280451A AU2022280451A1 (en) 2021-05-24 2022-04-06 Mist discharge device and absorbent absorber
EP22811045.8A EP4327913A4 (en) 2021-05-24 2022-04-06 MIST DISCHARGE DEVICE AND ABSORPTION LIQUID ABSORPTION TOWER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-086907 2021-05-24
JP2021086907A JP2022180026A (ja) 2021-05-24 2021-05-24 ミスト排出装置及び吸収液吸収塔

Publications (1)

Publication Number Publication Date
WO2022249771A1 true WO2022249771A1 (ja) 2022-12-01

Family

ID=84229851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017206 WO2022249771A1 (ja) 2021-05-24 2022-04-06 ミスト排出装置及び吸収液吸収塔

Country Status (6)

Country Link
US (1) US20240238719A1 (ja)
EP (1) EP4327913A4 (ja)
JP (1) JP2022180026A (ja)
AU (1) AU2022280451A1 (ja)
CA (1) CA3221407A1 (ja)
WO (1) WO2022249771A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5544362A (en) * 1978-09-25 1980-03-28 Babcock Hitachi Kk Demister
JPS5795201U (ja) * 1981-11-11 1982-06-11
JP2016107162A (ja) * 2014-12-01 2016-06-20 株式会社東芝 二酸化炭素回収システム
JP2016150297A (ja) 2015-02-17 2016-08-22 株式会社東芝 湿分分離器
JP2018192396A (ja) * 2017-05-15 2018-12-06 株式会社東芝 排ガス成分の除去方法、排ガス成分の除去器および二酸化炭素の分離回収方法ならびに分離回収装置
JP2021159796A (ja) * 2020-03-30 2021-10-11 三菱重工業株式会社 デミスタ、吸収液吸収塔及びデミスタの製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4164399A (en) * 1977-09-28 1979-08-14 American Air Filter Company, Inc. Wet scrubbing device
JP3958035B2 (ja) * 2001-12-07 2007-08-15 三菱重工業株式会社 気液接触用の高分子材料製充填物および気液接触装置
MX2011009109A (es) * 2009-03-03 2011-10-19 Harol Dean Curtis Enfriador/torre de enfriamiento de fluido de tiro forzado directo y colector de liquido para el mismo.
CN107983099A (zh) * 2017-12-30 2018-05-04 江苏永益环保科技有限公司 高效水洗塔
CN111203086B (zh) * 2020-01-07 2021-07-13 浙江大学 一种低再生能耗和低污染物排放的co2捕集系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5544362A (en) * 1978-09-25 1980-03-28 Babcock Hitachi Kk Demister
JPS5795201U (ja) * 1981-11-11 1982-06-11
JP2016107162A (ja) * 2014-12-01 2016-06-20 株式会社東芝 二酸化炭素回収システム
JP2016150297A (ja) 2015-02-17 2016-08-22 株式会社東芝 湿分分離器
JP2018192396A (ja) * 2017-05-15 2018-12-06 株式会社東芝 排ガス成分の除去方法、排ガス成分の除去器および二酸化炭素の分離回収方法ならびに分離回収装置
JP2021159796A (ja) * 2020-03-30 2021-10-11 三菱重工業株式会社 デミスタ、吸収液吸収塔及びデミスタの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4327913A4

Also Published As

Publication number Publication date
US20240238719A1 (en) 2024-07-18
CA3221407A1 (en) 2022-12-01
EP4327913A1 (en) 2024-02-28
AU2022280451A1 (en) 2023-12-07
EP4327913A4 (en) 2024-10-16
JP2022180026A (ja) 2022-12-06

Similar Documents

Publication Publication Date Title
CN104324587B (zh) 细孔筛板式鼓泡塔
JP7530163B2 (ja) 二酸化炭素回収システムおよび二酸化炭素回収システムの運転方法
US11235277B2 (en) Carbon dioxide capture system and method of operating carbon dioxide capture system
US10065149B2 (en) Gas-liquid contactor and CO2-recovering apparatus provided therewith
JP2018001086A (ja) 二酸化炭素回収システムおよび排ガス処理方法
EP2651538A2 (en) Apparatus and method for processing a gas stream
WO2022249771A1 (ja) ミスト排出装置及び吸収液吸収塔
JP2006341194A (ja) 不純物除去装置
JP7189747B2 (ja) 二酸化炭素回収システムおよびその運転方法
KR200425748Y1 (ko) 충돌식 스크러버의 수막층 생성구조
US20230128116A1 (en) Demister, absorption liquid absorbing tower, and demister production method
JP2020006350A (ja) 気液接触装置
JP7479788B2 (ja) 二酸化炭素回収システムおよびその運転方法
JP6983681B2 (ja) 二酸化炭素回収システムおよび二酸化炭素回収システムの運転方法
JP6990099B2 (ja) 二酸化炭素回収システムおよびその運転方法
JP5726589B2 (ja) 二酸化炭素回収システム
KR20100029430A (ko) 가변형 다단 충돌 및 응축식 산 가스 세정장치
JP7524086B2 (ja) 二酸化炭素回収システムおよび二酸化炭素回収システムの運転方法
CN211537106U (zh) 喷淋冷凝式除雾器
WO2020218240A1 (ja) 吸収塔の排ガス入口構造
US20240165552A1 (en) Gas scrubbing apparatus for absorbing carbon dioxide from the ambient air
JP2021178302A (ja) 気液接触装置
WO2019087900A1 (ja) 酸性ガス除去装置及び酸性ガス除去方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22811045

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202317077663

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2022280451

Country of ref document: AU

Ref document number: AU2022280451

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 18563502

Country of ref document: US

Ref document number: 2022811045

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 3221407

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2022811045

Country of ref document: EP

Effective date: 20231122

ENP Entry into the national phase

Ref document number: 2022280451

Country of ref document: AU

Date of ref document: 20220406

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE