WO2022249617A1 - Three-dimensional model generation support system, program, and recording medium - Google Patents

Three-dimensional model generation support system, program, and recording medium Download PDF

Info

Publication number
WO2022249617A1
WO2022249617A1 PCT/JP2022/008782 JP2022008782W WO2022249617A1 WO 2022249617 A1 WO2022249617 A1 WO 2022249617A1 JP 2022008782 W JP2022008782 W JP 2022008782W WO 2022249617 A1 WO2022249617 A1 WO 2022249617A1
Authority
WO
WIPO (PCT)
Prior art keywords
asset
cad model
partial
model
dimensional
Prior art date
Application number
PCT/JP2022/008782
Other languages
French (fr)
Japanese (ja)
Inventor
嘉成 堀
志郎 高橋
幸彦 小野
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2022249617A1 publication Critical patent/WO2022249617A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/18Network design, e.g. design based on topological or interconnect aspects of utility systems, piping, heating ventilation air conditioning [HVAC] or cabling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/14Pipes

Definitions

  • the present invention relates to a three-dimensional model creation support system, program, and recording medium.
  • 3D three dimensions
  • 2D two dimensions
  • a device has also been developed that can acquire color information using a camera at the same time as acquiring coordinate data. Therefore, colored 3D point cloud data can be displayed. Therefore, the human eye can easily identify the pipes, equipment, and the like.
  • point cloud data are not 3D models with attributes. Therefore, in order to use the tag information of equipment and piping for asset management, it is necessary to convert the point cloud data into a 3D model with attributes.
  • the conversion work to such a 3D model is performed by an operator manually converting it into a 3D model while displaying the point cloud data on the screen. Therefore, the conversion requires a great deal of effort.
  • end point connection information of logical connection data which is a logical connection relationship between plant equipment
  • geometric shape data which is figure shape information in a three-dimensional space.
  • a layout design support apparatus is disclosed that automatically generates a logical connection/geometric shape correspondence table composed of correspondence relationship data in which logical connection data and geometric shape data having matching end point connection information are associated with each other.
  • Patent Document 1 it is difficult to convert all devices such as valves into 3D models.
  • piping it is difficult to convert all piping into a 3D model accurately, and it is necessary to correct the created piping model and additionally create a piping model that could not be automatically created.
  • the purpose of the present invention is to reduce the user's work and efficiently create a 3D model with attributes.
  • a three-dimensional model creation support system of the present invention includes a partial asset CAD model creation device for creating a partial asset CAD model having attribute data using data of a perspective view showing a part of an asset, and a partial asset CAD model and an asset. a three-dimensional pattern matching device that identifies the position of the partial asset CAD model by pattern matching with the three-dimensional image and arranges the partial asset CAD model in a three-dimensional space to create an asset CAD model with attributes. .
  • FIG. 1 is a configuration diagram showing an example of a three-dimensional model creation support system of Example 1;
  • FIG. 2 is an isometric view showing an example of piping in a plant; It is a flow chart showing a method of creating a piping model and a valve model. It is a figure which shows the example of the line segment of the extracted piping.
  • 1 is a perspective view showing a partial asset CAD model;
  • FIG. It is a table
  • FIG. 4 is a diagram showing an example of three-dimensional image data of the entire asset;
  • FIG. 3 is a flow diagram illustrating a method of 3D pattern matching;
  • FIG. 10 is a perspective view showing an example of a partial pipe model in which virtual outer diameters are set;
  • FIG. 4 is a perspective view showing an example of an attributed asset CAD model
  • FIG. 11 is a configuration diagram showing an example of a three-dimensional model creation support system of Example 2
  • FIG. 3 is a diagram showing an example of creating a 3D image from multiple 2D images
  • FIG. 4 is a perspective view showing a 3D image recognized as a bulb
  • FIG. 10 is a perspective view showing the result of placing the valve and instrument
  • FIG. 10 is an isometric view showing an example in which information on a connection destination of piping is added; It is a figure which shows the point cloud corresponding to the cross-sectional shape of a piping model.
  • the 3D model creation support system further include an attribute database having attribute data and asset part control numbers. Then, the partial asset CAD model creation device can acquire the management number displayed in the perspective view, acquire the attribute data associated with the part management number from the attribute database, and add it to the partial asset CAD model. desirable.
  • the partial asset CAD model creation device acquire dimensions from the dimension lines displayed in the perspective view and create a partial asset CAD model according to the dimensions.
  • the three-dimensional pattern matching device sets a virtual outer diameter of the partial asset CAD model, identifies a position where the number of point clouds contained inside the partial asset CAD model having the virtual outer diameter is maximum, and identifies It is desirable to place the partial asset CAD model at the location.
  • the three-dimensional pattern matching device sets virtual cross-sectional dimensions of a predetermined portion of the partial asset CAD model, divides the partial asset CAD model having the cross-sectional dimensions into areas, and divides the partial asset CAD model having the cross-sectional dimensions into areas. It is desirable to identify the location that maximizes the number of point clouds contained within , and place the partial asset CAD model at the identified location.
  • the three-dimensional pattern matching device sets virtual cross-sectional dimensions of a predetermined portion of the partial asset CAD model, and minimizes the error in the distance between the contour of the cross-section of the partial asset CAD model having the cross-sectional dimensions and the point cloud. It is desirable to identify locations and place partial asset CAD models at the identified locations.
  • a three-dimensional model creation support system creates a partial asset CAD model having attribute data using data of a perspective view showing a part of an asset including piping and at least one of valves and equipment.
  • Asset CAD model creation device valve/equipment recognition device that acquires position information of valves and equipment from asset 2D image or 3D image data, and pattern matching between partial asset CAD model and asset 3D image a three-dimensional pattern matching device for creating an attributed asset CAD model by locating the partial asset CAD model and placing the partial asset CAD model in three-dimensional space. Then, the three-dimensional pattern matching device limits the range of pattern matching from the valve and device position information obtained by the valve/device recognition device and the valve and device relative position information obtained from the partial asset CAD model.
  • FIG. 1 is a configuration diagram showing an example of the three-dimensional model creation support system of the first embodiment.
  • the three-dimensional model creation support system includes a partial asset CAD model creation device 2 and a 3D asset pattern matching device 6 (three-dimensional pattern matching device).
  • the asset isometric drawing data 1 is used for predetermined processing in the partial asset CAD model creation device 2 .
  • the partial asset CAD model 3 is created by the partial asset CAD model creation device 2 and used for predetermined processing by the 3D asset pattern matching device 6 .
  • the 3D asset pattern matching device 6 creates an attributed asset CAD model 7 using the partial asset CAD model 3 and 3D image data 5 (three-dimensional image data).
  • the attributed asset CAD model 7 is linked with the attribute database 4 .
  • image data may be simply referred to as "image”.
  • recognition refers to identifying pipes, valves, equipment, etc. using numerical data such as two-dimensional or three-dimensional points, lines, and figures.
  • All of the above devices that constitute the three-dimensional model creation support system may be built in one computer device, or each device may be built in a separate computer device.
  • Each of the above processes is performed by transferring a program recorded in a recording medium such as one or more memories built in the computer device to one or more central processing units built in the computer device. (CPU: Central Processing Unit) performs arithmetic processing.
  • the program may be recorded on a recording medium such as a memory stick that is detachable from the computer device.
  • the program is for causing the computer device to execute a predetermined process.
  • the recording medium is a computer-readable medium recording the program.
  • the asset isometric drawing data 1 is input and recorded in one or more recording media such as memories built into the computer device.
  • the partial asset CAD model 3 created by predetermined processing from the asset isometric drawing data 1, the attributed asset CAD model 7 finally created, etc. are stored in one or more memories built in the computer device. recorded on the recording medium.
  • the input to the recording medium may be performed via communication means such as the Internet.
  • the asset isometric drawing data 1 is the data of the isometric drawing of the asset, and is data capable of displaying a three-dimensional representation of the asset when viewed obliquely from above.
  • the isometric drawing is abbreviated as "Isometric drawing”.
  • An isometric view may be an isometric view.
  • the isometric view may be collectively referred to as a "perspective view”.
  • the partial asset CAD model creation device 2 creates a 3D model from the assets included in the asset isometric drawing data 1. Normally, only a part of the asset is recorded like a piping model, so the partial asset is converted to CAD. A detailed CAD method will be described later.
  • the asset isometric drawing data 1 usually includes the control number of the target part, it is possible to assign the control number to the CAD model. In the example of piping, piping numbers are given as management numbers.
  • the partial asset CAD model 3 is a model created by the partial asset CAD model creation device 2. In the piping example, it is a 3D-CAD model of a series of piping having a certain piping number. Further, the partial asset CAD model 3 is given a pipe number as attribute data.
  • the attribute data of each part of the asset is recorded in the attribute database 4 together with the management number of the part.
  • attribute information such as the outer diameter, wall thickness, and material of the piping is recorded in association with the piping number. Therefore, a 3D-CAD model having pipe numbers can acquire all related attributes by linking with the attribute database 4 .
  • the 3D image data 5 is three-dimensional image data of the entire asset. For example, it can be created from multiple images taken from a drone.
  • the 3D asset pattern matching device 6 matches the partial asset CAD model 3 and the 3D image data 5, and arranges the partial asset CAD model 3 in the three-dimensional space where the 3D image data 5 is drawn. Since the positional information of the partial asset CAD model 3 is usually unknown, it is placed at a location where the shape matches the 3D image.
  • the attributed asset CAD model 7 is created by arranging all the partial asset CAD models 3. Since the partial asset CAD model 3 is given the management number of the partial asset as an attribute, the management number is also given to all of the attributed asset CAD models 7 which are aggregates thereof. Therefore, by linking with the attribute database 4, an attributed asset model including other attribute data is obtained.
  • Fig. 2 is an isometric view showing an example of plant piping.
  • directions are defined by the x-axis, y-axis, and z-axis shown in the figure.
  • the isometric drawing is the most basic drawing method. That is, the z-axis in the vertical direction is directed upward in the figure, the x-axis and the y-axis are each inclined 30 degrees with respect to the horizontal direction in the figure, and the angle between them is 120 degrees. .
  • the bent portion of the pipe is precisely a bent pipe, but in this embodiment, the bent pipe portion is schematically drawn as a right-angled pipe. If there is a valve in the middle of the pipe, it is also displayed in the isometric drawing.
  • the dimensions necessary for construction such as the length of the straight pipe, the length to the branch pipe, and the position from the end to the valve, are indicated by dimension lines. Both ends of the dimension line are arrows, and the lead lines of the dimension line are line segments. However, the thickness of the line segment is different from the piping so that it can be distinguished from the piping.
  • a pipe number is displayed on the pipe.
  • the partial asset CAD model creation device 2 creates a partial asset CAD model 3, which is a three-dimensional CAD model, from the isometric drawing.
  • a piping model was created according to the following steps, and then a valve model was created.
  • Fig. 3 is a flow diagram showing a method of creating a piping model and a valve model.
  • the isometric drawing shown in FIG. 2 is converted into data by image recognition, and only the line segments with the same thickness as the piping are extracted (step S21).
  • FIG. 4 is an example of the result of step S21, showing only the line segments of the extracted piping.
  • one end point is selected (symbol A in FIG. 4), its coordinates are set to (0, 0, 0), and the slope and length of the extracted line segment on the drawing are used to determine the other points ( are indicated by symbols B, C, D, E and F.) are determined (step S22).
  • the point B is oriented 210 degrees from the point A and has a length of 58 mm. Since the direction of 210 degrees is the x-axis negative direction in three-dimensional coordinates, the coordinates of B are (-58, 0, 0).
  • the line segment BC has an inclination of 150 degrees on the paper surface and a length of 30 mm. Since the line segment BC is in the positive direction of the y-axis in three-dimensional coordinates, the coordinates of the point C are (-58, 30, 0). Similarly, the coordinates of points D, E and F can be obtained. However, the length is the length on paper and differs from the actual length. Since the ratio between the actual length and the length on the paper surface is constant, the actual length can be obtained by converting the coordinates by the constant ratio. In this embodiment, the actual length is 100 times the length on the paper surface, so if the actual coordinates are A (0, 0, 0), it becomes B (-5800, 0, 0). .
  • the outer diameter of the pipe to be created is obtained (step S23).
  • the corresponding outer diameter is obtained by reading the piping number displayed along the piping in the isometric drawing by OCR technology.
  • the end of the pipe number represents the outer diameter.
  • 300 of the piping number "PAS-01-300" represents the outer diameter.
  • the nominal diameter is 300A
  • the actual outer diameter is 318.5 mm.
  • a piping model is created from the coordinates obtained in step S22 and the outer diameter obtained in step S23 (step S24).
  • a 3D-CAD model of piping using a general 3D-CAD system API (Application Programming Interface).
  • step S25 place the valve model in the created piping model.
  • the position coordinates of the valve can be specified in the same manner as the method for determining the end point of the pipe in step S22. Once the position of the valve is known, the CAD software API can be utilized to locate the valve model.
  • the valve model differs depending on the type of valve.
  • the valve model was selected from the model number of the valve displayed in the isometric drawing. Since VG represents a gate valve in the example of FIG. 2, a model of the gate valve is arranged.
  • the partial asset CAD model 3 of FIG. 1 can be created by the method shown in FIG.
  • FIG. 5 is a perspective view showing the partial asset CAD model created in this embodiment.
  • the dimensions of the pipe are the length of the line segment that represents the pipe. Values may indicate correct dimensions. Therefore, instead of reading the length of each line segment, the OCR function may be used to read the dimension values and convert them into coordinate values.
  • the attribute data of each part of the asset is recorded together with the management number of the part.
  • FIG. 6 shows an example of the attribute database 4 related to piping.
  • attribute information data such as the outer diameter, wall thickness, and material of the pipe are displayed together in a table using the pipe number as an index.
  • the 3D image data 5 (Fig. 1) is three-dimensional image data of the entire asset.
  • 3D image data 5 is created from a plurality of images taken by a drone.
  • FIG. 7 shows an example of the 3D image data 5.
  • the 3D asset pattern matching device 6 matches the partial asset CAD model 3 and the 3D image data 5, and arranges the partial asset CAD model 3 in the three-dimensional space where the 3D image data 5 is drawn. Since the position information of the partial asset CAD model 3 is usually unknown, it is arranged in a place where the shape matches the 3D image by the following method.
  • FIG. 8 is a flow diagram showing a method of 3D pattern matching.
  • a virtual outer diameter that is a constant multiple of the outer diameter is set with respect to the center line of the created partial pipe model (step S61).
  • Fig. 9 shows an example of a partial piping model with virtual outer diameters set.
  • the partial pipe model is a pipe 75 having a virtual outer diameter arranged around a straight pipe center line 71 .
  • center line refers to the line connecting the center of the cross section of the pipe in the 3D image.
  • a center line is a line segment that is not cut by a valve installed in the middle of a pipe and that connects a device at an end point of the pipe to a device at another end point.
  • a connected line segment is called a “polyline”.
  • a piping model having a virtual outer diameter is placed on the 3D image of FIG. 7, and the number of point groups included in the virtual outer diameter is counted (step S62).
  • the orientation of the piping model with the outer diameter is arranged according to the orientation on the 3D image with reference to the isometric drawing.
  • a piping model having a virtual outer diameter is translated, and the number of point groups included in the virtual outer diameter is counted (step S63).
  • the target space is exhaustively searched, and the piping model is placed at the position with the largest number of point groups (step S64).
  • step S65 If there are multiple positions where the number of point clouds is the largest, reduce the virtual outer diameter of the pipe by a predetermined value ⁇ D, compare the number of point clouds at the target multiple locations, and find the number of point clouds that is the largest. Positions with a high frequency are identified (step S65).
  • Step S65 is repeated until the virtual outer diameter becomes equal to the outer diameter (step S66). If it cannot be identified, place it in one of multiple candidates.
  • the point cloud was counted in a cylindrical region with a virtual outer diameter, but it may be a rectangular parallelepiped with a square cross section and a side length of a constant multiple of the outer diameter of the pipe. Furthermore, instead of counting the number of point groups in the area, a method may be used in which the cylinder or rectangular parallelepiped is divided into N in the longitudinal direction, and whether or not each divided area has a point group is determined.
  • a virtual cross-sectional dimension of a predetermined part of a partial asset CAD model such as a partial piping model (for example, if the cross-sectional shape is a square, the length of one side of the square is a constant multiple of the outer diameter of the pipe)
  • the length of one piece thereof is set as a representative dimension of a virtual cross section (that is, a virtual cross-sectional dimension))
  • the partial asset CAD model having the cross-sectional dimension is divided into areas, A position where the number of points included in the partial asset CAD model having the same cross-sectional dimension is maximized is specified, and the partial asset CAD model is placed at the specified position.
  • an attributed asset CAD model 7 can be created.
  • FIG. 10 is a perspective view showing an example of the attributed asset CAD model 7 created in this embodiment.
  • the attributed asset CAD model 7 was created by utilizing the isometric drawing. This is the main model of the plant, excluding structures such as pipe supports that support the pipes, and can create a 3D model more efficiently than conventional manual model creation.
  • the target assets are plant facilities composed of pipes, valves, equipment, and the like.
  • FIG. 11 is a configuration diagram showing an example of the three-dimensional model creation support system of this embodiment.
  • the three-dimensional model creation support system includes a partial plant CAD model creation device 22, a valve/equipment recognition device 26, and a 3D pattern matching device 27.
  • the piping isometric drawing data 21 (piping perspective drawing data) is used for predetermined processing in the partial plant CAD model creation device 22 .
  • the partial plant CAD model 23 is created by the partial plant CAD model creation device 22 and used for predetermined processing by the 3D pattern matching device 27 .
  • the 2D/3D image data 25 (two-dimensional/three-dimensional image data) is used for predetermined processing by the valve/equipment recognition device 26 .
  • the 3D pattern matching device 27 uses the partial plant CAD model 23 and data processed by the valve/equipment recognition device 26 using the 2D/3D image data 25 to create a plant CAD model 28 with attributes.
  • the attributed plant CAD model 28 is linked with the attribute database 24 .
  • Example 2 since plant equipment is taken as an example, Example 2 has many parts in common with Example 1. 2D/3D image data 25 , valve/equipment recognition device 26 and 3D pattern matching device 27 are different. These will be further described below.
  • the 2D/3D image data 25 includes 2D image data obtained by photographing the same part from multiple angles and 3D image data created based thereon. These are saved in a recording medium such as a database. Here, along with the data of each point of the 3D image, the correspondence relationship of the data of the 2D image used when creating them is also stored.
  • the 2D image data includes an image file name and a two-dimensional coordinate format on the image file.
  • FIG. 12 shows an example of creating a 3D image from multiple 2D images.
  • a 3D image is created from N 2D images.
  • the valve/equipment recognition device 26 recognizes valves and equipment from 2D or 3D images of the plant and acquires position information of the recognized valves and equipment.
  • a 2D image was used to recognize the valve.
  • Step S251 Recognize valves and equipment from the used 2D image (step S251).
  • Deep learning which is widely used, is used as a method for recognizing objects in images. By learning images of valves and equipment in advance, images of valves and equipment can be identified from all 2D images.
  • a 3D image corresponding to the valve and device images identified on the 2D image is identified (step S252).
  • a 2D image corresponding to a 3D image of a certain valve spans multiple image files. And the points of the 3D image and the points of the 2D image are not in one-to-one correspondence. Therefore, among the valve images recognized in certain 2D image data, the pixels corresponding to the 3D image are limited. However, by recognizing the valve and equipment in all the 2D images used to create the 3D image and identifying the corresponding 3D image, the 3D image of the valve in the 3D image can be identified. As a method of finding the corresponding 3D image, a method of determining whether or not the corresponding 2D image is included in the area specified in step S251 for all the points of the 3D image may be used.
  • Positional information of the valve and equipment is obtained from the coordinate data of the valve and equipment specified on the 3D image (step S253).
  • FIG. 13 is a perspective view showing a 3D image recognized as a valve.
  • the part including the valve is indicated by a dashed rectangular parallelepiped 110 .
  • Devices may also be indicated by rectangular parallelepipeds.
  • the 3D image includes multiple valves and devices, it is necessary to separate the 3D image identified in step S252 into individual valves and devices.
  • a point cloud whose intervals are continuous within a threshold value is separated as one valve or device.
  • valves and equipment are recognized using 2D images, but they may be recognized using only 3D images. That is, the process of step S252 may be performed using a plurality of 2D images with viewpoints at various positions of the 3D images. Also, if there is sufficient 3D data of valves and equipment as teaching data, the valves and equipment may be identified by three-dimensional shape recognition. Next, the 3D pattern matching device 27 will be explained.
  • the 3D pattern matching device 27 uses the valve and device position information obtained by the valve/device recognition device 26 to determine which position on the 3D image the partial plant CAD model 23 corresponds to. By using valve and instrument position information, the search range can be greatly reduced.
  • FIG. 2 As the piping isometric drawing data 21, FIG. 2 is used, and as the partial plant CAD model 23, FIG.
  • valve and device position information obtained by the valve/device recognition device 26 is arranged on the 3D image (step S261).
  • FIG. 14 is a perspective view showing the result of arranging the valves and equipment.
  • step S262 the relative positions of valves and equipment that can be acquired from the partial plant CAD model 23 are obtained (step S262).
  • VG-01-50 is used as the reference point (0, 0, 0) for the placement positions (points on the piping center line) of the two valves VG-01-50 and VG-02-50, , VG-02-50 becomes (0,2400,0).
  • valve and equipment position information obtained in step S261 and the valve and equipment relative position information obtained in step S262 are used to narrow down the search range for pattern matching of the partial plant model (step S263). In other words, it limits the scope of pattern matching.
  • the areas where valves may be arranged are the areas of valves 122, 123, 124, and 125.
  • the relative positions of the two valves must be 2400 mm apart in the y-axis direction. Therefore, the coordinates (X1, Y1, Z1) of V1 are changed in the entire area of the bulbs 122, 123, 124, 125, and (X1, Y1+2400, Z) is included in the area of the bulbs 122, 123, 124, 125. is the scope of the search.
  • step S264 Limiting the search range obtained in step S263, setting the virtual outer diameter shown in FIG. The position with the maximum number is identified (step S264).
  • FIG. 15 shows an example of the isometric view of FIG. 2 to which the information on the connection destination of the piping is added.
  • step S262 if there is device information at the pipe connection destination, the relative position information of the valve and the device can also be acquired in step S262, so it is possible to further narrow down the search range in step S263.
  • Examples 1 and 2 as a method of pattern matching, a method using the virtual outer diameter shown in FIG. 9 is shown, but a method different from this is also possible.
  • Fig. 16 shows a point cloud corresponding to the cross-sectional shape of the piping model.
  • the distance between the contour 140 of the cross section of the piping model and the point cloud 141 may be matched by a statistical method so that the error is minimized.
  • a method of least squares or the like can be used as a statistical method.
  • the shape of the outer surface of the pipe including the heat insulating material may be matched as the contour 140 .
  • the position of the partial plant model can be efficiently specified, and the attributed plant CAD model 28 can be created with a small number of man-hours. can.
  • 1 asset isometric drawing data
  • 2 partial asset CAD model creation device
  • 3 partial asset CAD model
  • 4 attribute database
  • 5 3D image data
  • 6 3D asset pattern matching device
  • 7 asset CAD model with attributes
  • 11 Piping
  • 12a Tank
  • 12b Pump
  • 13 Valve
  • 21 Piping isometric drawing data
  • 22 Partial plant CAD model creation device
  • 23 Partial plant CAD model
  • 24 Attribute database
  • 25 2D/3D image Data
  • 26 valve/equipment recognition device
  • 27 3D pattern matching device
  • 28 plant CAD model with attributes
  • 71 straight pipe centerline
  • 75 piping.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Graphics (AREA)
  • Image Generation (AREA)
  • Processing Or Creating Images (AREA)

Abstract

The present invention uses a three-dimensional model generation support system which includes: a partial asset CAD model generation device for generating a partial asset CAD model which has attribute data by using the data from a perspective view which depicts part of the asset; and a three-dimensional pattern matching device for generating an attribute-equipped asset CAD model by identifying the position of the partial asset CAD model using pattern matching between the partial asset CAD model and a three-dimensional image of the asset, and positioning the partial asset CAD model in three-dimensional space. As a result, it is possible to reduce user work and efficiently generate an attribute-equipped three-dimensional model.

Description

三次元モデル作成支援システム、プログラム及び記録媒体3D model creation support system, program and recording medium
 本発明は、三次元モデル作成支援システム、プログラム及び記録媒体に関する。 The present invention relates to a three-dimensional model creation support system, program, and recording medium.
 近年、発電プラントや化学プラントでは、3D-CAD(Three-Dimension Computer-Aided Design)を利用して資産を管理している。 In recent years, power plants and chemical plants use 3D-CAD (Three-Dimensional Computer-Aided Design) to manage assets.
 一方、これらのプラントには、建設時期が古く、3D-CADモデルがなく、資産管理を紙のドキュメントで実施しているものもある。 On the other hand, some of these plants were built a long time ago, do not have 3D-CAD models, and use paper documents for asset management.
 そこで、近年、レーザ計測により三次元の点群データを取得し、そのデータを用いてプラントの3Dモデルを作成するサービスが一般化してきた。なお、以下では、三次元を「3D」、二次元を「2D」と呼ぶ場合がある。 Therefore, in recent years, services that acquire 3D point cloud data by laser measurement and create 3D models of plants using that data have become commonplace. Note that, hereinafter, three dimensions may be referred to as "3D" and two dimensions may be referred to as "2D".
 現在のレーザ計測装置では、高精度な三次元点群データの取得が可能である。また、座標データの取得と同時に、カメラによる色情報の取得が可能な装置も開発されている。したがって、色付きの三次元点群データが表示可能である。このため、人間の目によって配管、機器などを容易に識別することができるようになっている。 With current laser measurement equipment, it is possible to acquire highly accurate 3D point cloud data. A device has also been developed that can acquire color information using a camera at the same time as acquiring coordinate data. Therefore, colored 3D point cloud data can be displayed. Therefore, the human eye can easily identify the pipes, equipment, and the like.
 ただし、それらの点群データは、属性を持つ3Dモデルではない。このため、機器や配管のタグ情報を利用した資産管理に利用するためには、それらの点群データを属性付きの3Dモデルに変換する必要がある。 However, those point cloud data are not 3D models with attributes. Therefore, in order to use the tag information of equipment and piping for asset management, it is necessary to convert the point cloud data into a 3D model with attributes.
 このような3Dモデルへの変換作業は、点群データを画面に表示させながら、オペレータが手作業で3Dモデルに変換していく方法が一般的である。このため、変換には非常に多くの労力が必要である。  In general, the conversion work to such a 3D model is performed by an operator manually converting it into a 3D model while displaying the point cloud data on the screen. Therefore, the conversion requires a great deal of effort.
 一方、近年では、ソフトウェアにより点群データから配管などの形状を認識し、属性を持たない3Dモデルに変換する技術がある。また、属性を持たない3Dモデルに自動的に属性を付与する技術が開発されている。 On the other hand, in recent years, there is a technology that recognizes the shape of piping from point cloud data using software and converts it into a 3D model without attributes. Also, a technique has been developed to automatically assign attributes to 3D models that do not have attributes.
 例えば、特許文献1には、プラント用機器間の論理的な接続関係である論理接続データの端点接続情報と、三次元空間上の図形形状情報である幾何形状データの端点接続情報とを比較して、端点接続情報が一致した論理接続データと幾何形状データとを対応付けた対応関係データで構成される論理接続・幾何形状対応テーブルを自動生成する、レイアウト設計支援装置が開示されている。 For example, in Patent Document 1, end point connection information of logical connection data, which is a logical connection relationship between plant equipment, is compared with end point connection information of geometric shape data, which is figure shape information in a three-dimensional space. A layout design support apparatus is disclosed that automatically generates a logical connection/geometric shape correspondence table composed of correspondence relationship data in which logical connection data and geometric shape data having matching end point connection information are associated with each other.
特許第4940267号公報Japanese Patent No. 4940267
 点群データから3Dモデルに変換する従来技術においては、配管、鋼材などの比較的単純な形状のみが対象である。  Conventional technology that converts point cloud data into a 3D model only targets relatively simple shapes such as piping and steel materials.
 また、特許文献1においては、バルブなどの機器のすべてについて、3Dモデルへの変換の対象とすることは困難である。また、配管についても、全ての配管を正確に3Dモデルに変換することは難しく、作成された配管モデルの補正や、自動作成できなかった配管モデルの追加作成が必要である。 Also, in Patent Document 1, it is difficult to convert all devices such as valves into 3D models. As for piping, it is difficult to convert all piping into a 3D model accurately, and it is necessary to correct the created piping model and additionally create a piping model that could not be automatically created.
 本発明の目的は、ユーザの作業を軽減し、属性付き三次元モデルを効率よく作成することにある。 The purpose of the present invention is to reduce the user's work and efficiently create a 3D model with attributes.
 本発明の三次元モデル作成支援システムは、アセットの一部を示す斜視図のデータを用いて属性データを有する部分アセットCADモデルを作成する部分アセットCADモデル作成装置と、部分アセットCADモデルとアセットの三次元画像とのパターンマッチングにより部分アセットCADモデルの位置を特定し、部分アセットCADモデルを三次元空間上に配置することにより、属性付きアセットCADモデルを作成する三次元パターンマッチング装置と、を含む。 A three-dimensional model creation support system of the present invention includes a partial asset CAD model creation device for creating a partial asset CAD model having attribute data using data of a perspective view showing a part of an asset, and a partial asset CAD model and an asset. a three-dimensional pattern matching device that identifies the position of the partial asset CAD model by pattern matching with the three-dimensional image and arranges the partial asset CAD model in a three-dimensional space to create an asset CAD model with attributes. .
 本発明によれば、ユーザの作業を軽減し、属性付き三次元モデルを効率よく作成することができる。 According to the present invention, it is possible to reduce the user's work and efficiently create a 3D model with attributes.
実施例1の三次元モデル作成支援システムの例を示す構成図である。1 is a configuration diagram showing an example of a three-dimensional model creation support system of Example 1; FIG. プラントの配管の例を示すアイソメ図である。FIG. 2 is an isometric view showing an example of piping in a plant; 配管モデル及びバルブモデルの作成方法を示すフロー図である。It is a flow chart showing a method of creating a piping model and a valve model. 抽出された配管の線分の例を示す図である。It is a figure which shows the example of the line segment of the extracted piping. 部分アセットCADモデルを示す斜視図である。1 is a perspective view showing a partial asset CAD model; FIG. 配管に関する属性データベースの一例を示す表である。It is a table|surface which shows an example of the attribute database regarding piping. アセット全体の三次元の画像データの一例を示す図である。FIG. 4 is a diagram showing an example of three-dimensional image data of the entire asset; 3Dパターンマッチングの方法を示すフロー図である。FIG. 3 is a flow diagram illustrating a method of 3D pattern matching; 仮想外径を設定した部分配管モデルの一例を示す斜視図である。FIG. 10 is a perspective view showing an example of a partial pipe model in which virtual outer diameters are set; 属性付きアセットCADモデルの例を示す斜視図である。FIG. 4 is a perspective view showing an example of an attributed asset CAD model; 実施例2の三次元モデル作成支援システムの例を示す構成図である。FIG. 11 is a configuration diagram showing an example of a three-dimensional model creation support system of Example 2; 複数の2D画像から3D画像を作成する例を示す図である。FIG. 3 is a diagram showing an example of creating a 3D image from multiple 2D images; バルブとして認識された3D画像を示す斜視図である。FIG. 4 is a perspective view showing a 3D image recognized as a bulb; バルブ及び機器を配置した結果を示す斜視図である。FIG. 10 is a perspective view showing the result of placing the valve and instrument; 配管の接続先の情報が付加された例を示すアイソメ図である。FIG. 10 is an isometric view showing an example in which information on a connection destination of piping is added; 配管モデルの断面形状に対応する点群を示す図である。It is a figure which shows the point cloud corresponding to the cross-sectional shape of a piping model.
 本開示の望ましい実施形態について説明する。 A preferred embodiment of the present disclosure will be described.
 三次元モデル作成支援システムにおいては、属性データとアセットの部位の管理番号とを有する属性データベースを更に含むことが望ましい。そして、部分アセットCADモデル作成装置は、斜視図に表示されている管理番号を取得し、属性データベースから部位の管理番号に関連付けられている属性データを取得し、部分アセットCADモデルに付加することが望ましい。 It is desirable that the 3D model creation support system further include an attribute database having attribute data and asset part control numbers. Then, the partial asset CAD model creation device can acquire the management number displayed in the perspective view, acquire the attribute data associated with the part management number from the attribute database, and add it to the partial asset CAD model. desirable.
 部分アセットCADモデル作成装置は、斜視図に表示されている寸法線から寸法を取得し、寸法に従い部分アセットCADモデルを作成することが望ましい。 It is desirable that the partial asset CAD model creation device acquire dimensions from the dimension lines displayed in the perspective view and create a partial asset CAD model according to the dimensions.
 三次元パターンマッチング装置は、部分アセットCADモデルの仮想外径を設定し、仮想外径を有する部分アセットCADモデルの内部に包含される点群の数が最大となる位置を特定し、特定された位置に部分アセットCADモデルを配置することが望ましい。 The three-dimensional pattern matching device sets a virtual outer diameter of the partial asset CAD model, identifies a position where the number of point clouds contained inside the partial asset CAD model having the virtual outer diameter is maximum, and identifies It is desirable to place the partial asset CAD model at the location.
 三次元パターンマッチング装置は、部分アセットCADモデルの所定の部位の仮想的な断面寸法を設定し、断面寸法を有する部分アセットCADモデルを領域分割し、領域分割された断面寸法を有する部分アセットCADモデルの内部に包含される点群の数が最大となる位置を特定し、特定された位置に部分アセットCADモデルを配置することが望ましい。 The three-dimensional pattern matching device sets virtual cross-sectional dimensions of a predetermined portion of the partial asset CAD model, divides the partial asset CAD model having the cross-sectional dimensions into areas, and divides the partial asset CAD model having the cross-sectional dimensions into areas. It is desirable to identify the location that maximizes the number of point clouds contained within , and place the partial asset CAD model at the identified location.
 三次元パターンマッチング装置は、部分アセットCADモデルの所定の部位の仮想的な断面寸法を設定し、断面寸法を有する部分アセットCADモデルの断面の輪郭と点群との距離についての誤差が最小となる位置を特定し、特定された位置に部分アセットCADモデルを配置することが望ましい。 The three-dimensional pattern matching device sets virtual cross-sectional dimensions of a predetermined portion of the partial asset CAD model, and minimizes the error in the distance between the contour of the cross-section of the partial asset CAD model having the cross-sectional dimensions and the point cloud. It is desirable to identify locations and place partial asset CAD models at the identified locations.
 三次元モデル作成支援システムは、配管と、バルブ及び機器のうちの少なくともいずれか一つとを備えたアセットの一部を示す斜視図のデータを用いて属性データを有する部分アセットCADモデルを作成する部分アセットCADモデル作成装置と、アセットの二次元画像又は三次元画像のデータからバルブ及び機器の位置情報を取得するバルブ/機器認識装置と、部分アセットCADモデルとアセットの三次元画像とのパターンマッチングにより部分アセットCADモデルの位置を特定し、部分アセットCADモデルを三次元空間上に配置することにより、属性付きアセットCADモデルを作成する三次元パターンマッチング装置と、を含むものであってもよい。そして、三次元パターンマッチング装置は、バルブ/機器認識装置により取得されたバルブ及び機器の位置情報と、部分アセットCADモデルから取得されたバルブ及び機器の相対位置情報からパターンマッチングの範囲を限定する。 A three-dimensional model creation support system creates a partial asset CAD model having attribute data using data of a perspective view showing a part of an asset including piping and at least one of valves and equipment. Asset CAD model creation device, valve/equipment recognition device that acquires position information of valves and equipment from asset 2D image or 3D image data, and pattern matching between partial asset CAD model and asset 3D image a three-dimensional pattern matching device for creating an attributed asset CAD model by locating the partial asset CAD model and placing the partial asset CAD model in three-dimensional space. Then, the three-dimensional pattern matching device limits the range of pattern matching from the valve and device position information obtained by the valve/device recognition device and the valve and device relative position information obtained from the partial asset CAD model.
 以下、実施例について図面を用いて説明する。 Examples will be described below with reference to the drawings.
 図1は、実施例1の三次元モデル作成支援システムの例を示す構成図である。 FIG. 1 is a configuration diagram showing an example of the three-dimensional model creation support system of the first embodiment.
 本図に示すように、三次元モデル作成支援システムは、部分アセットCADモデル作成装置2と、3Dアセットパターンマッチング装置6(三次元パターンマッチング装置)と、を含む。アセットアイソメ図データ1は、部分アセットCADモデル作成装置2で所定の処理に用いられる。部分アセットCADモデル3は、部分アセットCADモデル作成装置2で作成され、3Dアセットパターンマッチング装置6で所定の処理に用いられる。3Dアセットパターンマッチング装置6は、部分アセットCADモデル3及び3D画像データ5(三次元画像データ)を用いて、属性付きアセットCADモデル7を作成する。属性付きアセットCADモデル7は、属性データベース4と連携している。 As shown in this figure, the three-dimensional model creation support system includes a partial asset CAD model creation device 2 and a 3D asset pattern matching device 6 (three-dimensional pattern matching device). The asset isometric drawing data 1 is used for predetermined processing in the partial asset CAD model creation device 2 . The partial asset CAD model 3 is created by the partial asset CAD model creation device 2 and used for predetermined processing by the 3D asset pattern matching device 6 . The 3D asset pattern matching device 6 creates an attributed asset CAD model 7 using the partial asset CAD model 3 and 3D image data 5 (three-dimensional image data). The attributed asset CAD model 7 is linked with the attribute database 4 .
 なお、以下では、画像データを単に「画像」と表記する場合がある。また、「認識」とは、二次元又は三次元の点、線、図形等の数値データを用いて、配管、バルブ、機器等を判別することをいう。 In the following, image data may be simply referred to as "image". The term "recognition" refers to identifying pipes, valves, equipment, etc. using numerical data such as two-dimensional or three-dimensional points, lines, and figures.
 三次元モデル作成支援システムを構成する上記の装置は、すべてが1台のコンピュータ装置に内蔵されていてもよいし、それぞれの装置が別々のコンピュータ装置に内蔵されていてもよい。上記のそれぞれの処理は、コンピュータ装置に内蔵されている1つ又は2つ以上のメモリ等の記録媒体に記録されたプログラムを、コンピュータ装置に内蔵されている1つ又は2つ以上の中央演算ユニット(CPU:Central Processing Unit)で演算処理することにより実施する。また、当該プログラムは、コンピュータ装置に着脱自在なメモリスティック等の記録媒体に記録されたものであってもよい。
当該プログラムは、コンピュータ装置に所定の処理を実行させるためのものである。当該記録媒体は、当該プログラムを記録したコンピュータ読み取り可能なものである。
All of the above devices that constitute the three-dimensional model creation support system may be built in one computer device, or each device may be built in a separate computer device. Each of the above processes is performed by transferring a program recorded in a recording medium such as one or more memories built in the computer device to one or more central processing units built in the computer device. (CPU: Central Processing Unit) performs arithmetic processing. Also, the program may be recorded on a recording medium such as a memory stick that is detachable from the computer device.
The program is for causing the computer device to execute a predetermined process. The recording medium is a computer-readable medium recording the program.
 アセットアイソメ図データ1は、コンピュータ装置に内蔵されている1つ又は2つ以上のメモリ等の記録媒体に入力され、記録される。アセットアイソメ図データ1から所定の処理によって作成される部分アセットCADモデル3、最終的に作成される属性付きアセットCADモデル7等は、コンピュータ装置に内蔵されている1つ又は2つ以上のメモリ等の記録媒体に記録される。なお、記録媒体への入力は、インターネット等の通信手段を介して行ってもよい。 The asset isometric drawing data 1 is input and recorded in one or more recording media such as memories built into the computer device. The partial asset CAD model 3 created by predetermined processing from the asset isometric drawing data 1, the attributed asset CAD model 7 finally created, etc. are stored in one or more memories built in the computer device. recorded on the recording medium. Note that the input to the recording medium may be performed via communication means such as the Internet.
 アセットアイソメ図データ1は、アセットのアイソメトリック図のデータであり、アセットを斜め上方から見て、三次元的に表現した図を表示可能なデータである。以下では、アイソメトリック図を「アイソメ図」と略称する。アイソメ図は、等角投影図であってもよい。また、アイソメ図は、「斜視図」と総称してもよい。 The asset isometric drawing data 1 is the data of the isometric drawing of the asset, and is data capable of displaying a three-dimensional representation of the asset when viewed obliquely from above. Below, the isometric drawing is abbreviated as "Isometric drawing". An isometric view may be an isometric view. Also, the isometric view may be collectively referred to as a "perspective view".
 部分アセットCADモデル作成装置2は、アセットアイソメ図データ1に含まれるアセットから3Dモデルを作成する。通常、配管モデルのようにアセットの一部のみが記録されているため、部分アセットのCAD化となる。CAD化の詳細な方法については後述する。また、アセットアイソメ図データ1には、通常、対象部位の管理番号も含まれるため、CAD化したモデルに管理番号を付与することができる。配管の例では、配管番号が管理番号として付与されている。 The partial asset CAD model creation device 2 creates a 3D model from the assets included in the asset isometric drawing data 1. Normally, only a part of the asset is recorded like a piping model, so the partial asset is converted to CAD. A detailed CAD method will be described later. In addition, since the asset isometric drawing data 1 usually includes the control number of the target part, it is possible to assign the control number to the CAD model. In the example of piping, piping numbers are given as management numbers.
 部分アセットCADモデル3は、部分アセットCADモデル作成装置2で作成されたモデルである。配管の例では、ある配管番号を持つ一つながりの配管の3D-CADモデルである。また、部分アセットCADモデル3には、属性データとして、配管番号が付与されている。 The partial asset CAD model 3 is a model created by the partial asset CAD model creation device 2. In the piping example, it is a 3D-CAD model of a series of piping having a certain piping number. Further, the partial asset CAD model 3 is given a pipe number as attribute data.
 属性データベース4には、アセットの各部位の属性データが部位の管理番号とともに記録されている。配管の場合は、管理番号として配管番号があり、配管番号に紐づいて配管の外径、肉厚、材質などの属性情報(属性データ)が記録されている。したがって、配管番号を有する3D-CADモデルは、属性データベース4と連携することで、関連する全ての属性を取得することができる。 The attribute data of each part of the asset is recorded in the attribute database 4 together with the management number of the part. In the case of piping, there is a piping number as a management number, and attribute information (attribute data) such as the outer diameter, wall thickness, and material of the piping is recorded in association with the piping number. Therefore, a 3D-CAD model having pipe numbers can acquire all related attributes by linking with the attribute database 4 .
 3D画像データ5は、アセット全体の三次元の画像データである。例えば、ドローンから撮影した複数枚の画像から作成することができる。 The 3D image data 5 is three-dimensional image data of the entire asset. For example, it can be created from multiple images taken from a drone.
 3Dアセットパターンマッチング装置6は、部分アセットCADモデル3と3D画像データ5とをマッチングさせ、3D画像データ5が描画さている三次元空間上に部分アセットCADモデル3を配置する。部分アセットCADモデル3の位置情報は、通常不明であるため、3D画像と形状が一致する場所に配置する。 The 3D asset pattern matching device 6 matches the partial asset CAD model 3 and the 3D image data 5, and arranges the partial asset CAD model 3 in the three-dimensional space where the 3D image data 5 is drawn. Since the positional information of the partial asset CAD model 3 is usually unknown, it is placed at a location where the shape matches the 3D image.
 属性付きアセットCADモデル7は、全ての部分アセットCADモデル3が配置されることで作成される。部分アセットCADモデル3には、属性として部分アセットの管理番号が付与されているため、その集合体である属性付きアセットCADモデル7の全てにも管理番号が付与される。したがって、属性データベース4と連携することで、その他の属性データを含む属性付きアセットモデルとなる。 The attributed asset CAD model 7 is created by arranging all the partial asset CAD models 3. Since the partial asset CAD model 3 is given the management number of the partial asset as an attribute, the management number is also given to all of the attributed asset CAD models 7 which are aggregates thereof. Therefore, by linking with the attribute database 4, an attributed asset model including other attribute data is obtained.
 以下に、プラントの例を本実施例の詳細について説明する。 The details of this embodiment will be described below with an example of a plant.
 図2は、プラントの配管の例を示すアイソメ図である。 Fig. 2 is an isometric view showing an example of plant piping.
 本図においては、図1のアセットアイソメ図データ1から作成したものを示している。
プラントのアイソメ図は、配管の施工に利用することが多いため、一般に、一つながりの配管を抽出して図面化されたものである。
This figure shows what is created from the asset isometric drawing data 1 in FIG.
Since isometric drawings of plants are often used for construction of piping, they are generally drawn by extracting a series of pipes.
 なお、説明のために図中に示すx軸、y軸及びz軸により方向を定義する。アイソメ図の構成は、最も基本的な描画方法としている。すなわち、鉛直方向のz軸は、図中の上方に向かうものとし、x軸、y軸はそれぞれ、図中の水平方向を基準として30度傾けた方向とし、両者のなす角は120度としている。 For the sake of explanation, directions are defined by the x-axis, y-axis, and z-axis shown in the figure. The isometric drawing is the most basic drawing method. That is, the z-axis in the vertical direction is directed upward in the figure, the x-axis and the y-axis are each inclined 30 degrees with respect to the horizontal direction in the figure, and the angle between them is 120 degrees. .
 配管の大半は、x軸、y軸またはz軸に沿って配置される。配管の曲げ部は、正確には曲げ管であるが、本実施例では、曲げ管部分を模式的に直角の配管で描画するものとしている。配管の途中にバルブがある場合は、アイソメ図にも表示される。また、直管部分の長さや、分岐配管までの長さ、端部からバルブまでの位置など、施工に必要な寸法は、寸法線で表示されている。寸法線の両端は矢印であり、寸法線の引き出し線は線分である。
ただし、配管と区別ができるように線分の太さが配管とは異なる。また、配管には、配管番号が表示されている。
Most of the tubing is arranged along the x-, y-, or z-axis. The bent portion of the pipe is precisely a bent pipe, but in this embodiment, the bent pipe portion is schematically drawn as a right-angled pipe. If there is a valve in the middle of the pipe, it is also displayed in the isometric drawing. In addition, the dimensions necessary for construction, such as the length of the straight pipe, the length to the branch pipe, and the position from the end to the valve, are indicated by dimension lines. Both ends of the dimension line are arrows, and the lead lines of the dimension line are line segments.
However, the thickness of the line segment is different from the piping so that it can be distinguished from the piping. In addition, a pipe number is displayed on the pipe.
 図2においては、右端の配管に表示された「PAS-01-300」が配管番号である。なお、アイソメ図は、近年では、CADソフトウェアで作成されることが多いが、ここでは、紙で作成されるものを対象とした。 In Figure 2, "PAS-01-300" displayed on the rightmost pipe is the pipe number. In recent years, isometric drawings are often created with CAD software, but here, those created with paper were targeted.
 部分アセットCADモデル作成装置2では、アイソメ図から三次元のCADモデルである部分アセットCADモデル3を作成する。 The partial asset CAD model creation device 2 creates a partial asset CAD model 3, which is a three-dimensional CAD model, from the isometric drawing.
 本実施例では、モデルの対象が配管及びバルブであるため、以下のステップに従い、配管モデルを作成し、次にバルブモデルを作成した。 In this example, since the objects of the model are piping and valves, a piping model was created according to the following steps, and then a valve model was created.
 図3は、配管モデル及びバルブモデルの作成方法を示すフロー図である。  Fig. 3 is a flow diagram showing a method of creating a piping model and a valve model.
 本図に示すように、図2に示すアイソメ図を画像認識によりデータ化し、線分の太さが配管と同じものだけを抽出する(ステップS21)。 As shown in this figure, the isometric drawing shown in FIG. 2 is converted into data by image recognition, and only the line segments with the same thickness as the piping are extracted (step S21).
 図4は、ステップS21の結果の一例であって、抽出された配管の線分のみを示したものである。 FIG. 4 is an example of the result of step S21, showing only the line segments of the extracted piping.
 次に、端点を1つ選択し(図4においては符号A)、その座標を(0,0,0)とし、抽出された線分の図面上の傾き及び長さからその他の点(図4においては符号B、C、D、E及びFで示されている。)の座標を決定する(ステップS22)。 Next, one end point is selected (symbol A in FIG. 4), its coordinates are set to (0, 0, 0), and the slope and length of the extracted line segment on the drawing are used to determine the other points ( are indicated by symbols B, C, D, E and F.) are determined (step S22).
 例えば、線分ABは、紙面の水平右向きを0度とした場合、点Bは、点Aから210度の向きにあり、長さが58mmである。210度の向きは、三次元座標でx軸負方向であるため、Bの座標は(-58,0,0)となる。 For example, if the horizontal right direction of the line segment AB is 0 degrees, the point B is oriented 210 degrees from the point A and has a length of 58 mm. Since the direction of 210 degrees is the x-axis negative direction in three-dimensional coordinates, the coordinates of B are (-58, 0, 0).
 次に、線分BCは、紙面上で150度の傾きで、長さが30mmである。線分BCは、三次元座標でy軸正方向であるため、点Cの座標は(-58,30,0)となる。同様にして、点D、E及びFの座標を求めることができる。ただし、長さは紙面上の長さであり、実際の長さとは異なる。実際の長さと紙面上の長さとの比は一定であるため、座標を一定比率で変換すれば実際の長さとなる。本実施例では、実際の長さは紙面上の長さの100倍であるため、実際の座標をA(0,0,0)とすると、B(-5800,0,0)のようになる。 Next, the line segment BC has an inclination of 150 degrees on the paper surface and a length of 30 mm. Since the line segment BC is in the positive direction of the y-axis in three-dimensional coordinates, the coordinates of the point C are (-58, 30, 0). Similarly, the coordinates of points D, E and F can be obtained. However, the length is the length on paper and differs from the actual length. Since the ratio between the actual length and the length on the paper surface is constant, the actual length can be obtained by converting the coordinates by the constant ratio. In this embodiment, the actual length is 100 times the length on the paper surface, so if the actual coordinates are A (0, 0, 0), it becomes B (-5800, 0, 0). .
 次に、作成する配管の外径を求める(ステップS23)。外径は、アイソメ図の配管に沿って表示されている配管番号をOCR技術により読み取り、対応する外径を求める。本実施例では、配管番号の末尾が外径を表す。図2の例では、配管番号「PAS-01-300」の300が外径を表す。ただし、これは、呼び径が300Aであるとの意味であるため、実際の外径は、318.5mmである。 Next, the outer diameter of the pipe to be created is obtained (step S23). As for the outer diameter, the corresponding outer diameter is obtained by reading the piping number displayed along the piping in the isometric drawing by OCR technology. In this embodiment, the end of the pipe number represents the outer diameter. In the example of FIG. 2, 300 of the piping number "PAS-01-300" represents the outer diameter. However, since this means that the nominal diameter is 300A, the actual outer diameter is 318.5 mm.
 次に、ステップS22で求めた座標と、ステップS23で求めた外径とから配管モデルを作成する(ステップS24)。この情報を用いれば、一般的な3D-CADシステムのAPI(Application Programing Interface)を使って配管の3D-CADモデルを作成することができる。 Next, a piping model is created from the coordinates obtained in step S22 and the outer diameter obtained in step S23 (step S24). Using this information, it is possible to create a 3D-CAD model of piping using a general 3D-CAD system API (Application Programming Interface).
 最後に、作成した配管モデルにバルブモデルを配置する(ステップS25)。ステップS22で配管の端点を求めた方法と同様にして、バルブの位置座標を特定することができる。バルブの位置が分かれば、CADソフトウェアのAPIを活用して、バルブモデルを配置することができる。 Finally, place the valve model in the created piping model (step S25). The position coordinates of the valve can be specified in the same manner as the method for determining the end point of the pipe in step S22. Once the position of the valve is known, the CAD software API can be utilized to locate the valve model.
 なお、バルブモデルは、バルブの種類によって異なる。本実施例では、アイソメ図に表示されたバルブ番号の型式からバルブモデルを選択した。図2の例ではVGがゲートバルブを表すため、ゲートバルブのモデルを配置する。 The valve model differs depending on the type of valve. In this example, the valve model was selected from the model number of the valve displayed in the isometric drawing. Since VG represents a gate valve in the example of FIG. 2, a model of the gate valve is arranged.
 以上のように、図3に示す方法により図1の部分アセットCADモデル3を作成することができる。 As described above, the partial asset CAD model 3 of FIG. 1 can be created by the method shown in FIG.
 図5は、本実施例で作成した部分アセットCADモデルを示す斜視図である。 FIG. 5 is a perspective view showing the partial asset CAD model created in this embodiment.
 なお、上記の例においては、配管の寸法が配管を表す線分の長さとしたが、アイソメ図によっては、見やすさを優先し、実際の寸法とは異なる長さの線分で描画し、寸法値に正しい寸法を表記する場合がある。したがって、各線分の長さを読み取るのではなく、OCR機能により寸法値を読み取り、座標値に変換してもよい。 In the above example, the dimensions of the pipe are the length of the line segment that represents the pipe. Values may indicate correct dimensions. Therefore, instead of reading the length of each line segment, the OCR function may be used to read the dimension values and convert them into coordinate values.
 次に、図1の属性データベース4について説明する。 Next, the attribute database 4 in FIG. 1 will be explained.
 属性データベース4においては、アセットの各部位の属性データが部位の管理番号とともに記録されている。  In the attribute database 4, the attribute data of each part of the asset is recorded together with the management number of the part.
 図6は、配管に関する属性データベース4の一例を示したものである。 FIG. 6 shows an example of the attribute database 4 related to piping.
 本図においては、配管番号をインデックスとして、配管の外径、肉厚、材質などの属性情報のデータが表にまとめて表示されている。 In this figure, attribute information data such as the outer diameter, wall thickness, and material of the pipe are displayed together in a table using the pipe number as an index.
 3D画像データ5(図1)は、アセット全体の三次元の画像データである。本実施例では、ドローンで撮影した複数枚の画像から3D画像データ5を作成した。 The 3D image data 5 (Fig. 1) is three-dimensional image data of the entire asset. In this embodiment, 3D image data 5 is created from a plurality of images taken by a drone.
 図7は、3D画像データ5の一例を示したものである。 FIG. 7 shows an example of the 3D image data 5.
 本図に示すように、配管11の他、タンク12a、ポンプ12b及びバルブ13の点群データがある。 As shown in this figure, in addition to the piping 11, there is point cloud data of the tank 12a, the pump 12b, and the valve 13.
 3Dアセットパターンマッチング装置6においては、部分アセットCADモデル3と3D画像データ5とをマッチングさせ、3D画像データ5が描画されている三次元空間上に部分アセットCADモデル3を配置する。部分アセットCADモデル3の位置情報は、通常不明であるため、次の方法で3D画像と形状が一致する場所に配置する。 The 3D asset pattern matching device 6 matches the partial asset CAD model 3 and the 3D image data 5, and arranges the partial asset CAD model 3 in the three-dimensional space where the 3D image data 5 is drawn. Since the position information of the partial asset CAD model 3 is usually unknown, it is arranged in a place where the shape matches the 3D image by the following method.
 図8は、3Dパターンマッチングの方法を示すフロー図である。 FIG. 8 is a flow diagram showing a method of 3D pattern matching.
 作成した部分配管モデルの中心線に対して、外径の定数倍の仮想外径を設定する(ステップS61)。 A virtual outer diameter that is a constant multiple of the outer diameter is set with respect to the center line of the created partial pipe model (step S61).
 図9は、仮想外径を設定した部分配管モデルの一例を示したものである。 Fig. 9 shows an example of a partial piping model with virtual outer diameters set.
 本図においては、外径の1.5倍の仮想外径を設定している。部分配管モデルは、直管中心線71の周囲に、仮想外径を有する配管75が配置されたものである。 In this figure, the virtual outer diameter is set to 1.5 times the outer diameter. The partial pipe model is a pipe 75 having a virtual outer diameter arranged around a straight pipe center line 71 .
 ここで、中心線とは、3D画像の配管の断面の中心を結んだ線をいう。中心線は、配管の途中に設置されているバルブで切断されず、配管の端点である機器から別の端点の機器までを結ぶ線分である。なお、複数の線分が接続されたものを「折れ線」という。 Here, the center line refers to the line connecting the center of the cross section of the pipe in the 3D image. A center line is a line segment that is not cut by a valve installed in the middle of a pipe and that connects a device at an end point of the pipe to a device at another end point. A connected line segment is called a “polyline”.
 仮想外径を有する配管モデルを図7の3D画像上に配置し、仮想外径に含まれる点群の数をカウントする(ステップS62)。なお、外径を持った配管モデルの向きはアイソメ図を参考に、3D画像上の向きと合わせて配置する。 A piping model having a virtual outer diameter is placed on the 3D image of FIG. 7, and the number of point groups included in the virtual outer diameter is counted (step S62). The orientation of the piping model with the outer diameter is arranged according to the orientation on the 3D image with reference to the isometric drawing.
 仮想外径を有する配管モデルを平行移動し、仮想外径に含まれる点群の数をカウントする(ステップS63)。 A piping model having a virtual outer diameter is translated, and the number of point groups included in the virtual outer diameter is counted (step S63).
 対象となる空間を網羅的に探索し、点群の数が最も多い位置に配管モデルを配置する(ステップS64)。 The target space is exhaustively searched, and the piping model is placed at the position with the largest number of point groups (step S64).
 点群の数が最も多くなる位置が複数個所ある場合、配管の仮想外径を所定の値ΔDだけ小さくし、対象となった複数個所で点群の数を比較し、点群の数が最も多い位置を特定する(ステップS65)。 If there are multiple positions where the number of point clouds is the largest, reduce the virtual outer diameter of the pipe by a predetermined value ΔD, compare the number of point clouds at the target multiple locations, and find the number of point clouds that is the largest. Positions with a high frequency are identified (step S65).
 仮想外径が外径と等しくなるまでステップS65を繰り返す(ステップS66)。特定できなかった場合は、複数候補のいずれかに配置する。  Step S65 is repeated until the virtual outer diameter becomes equal to the outer diameter (step S66). If it cannot be identified, place it in one of multiple candidates.
 部分配管モデルが正しい位置にあれば、仮想外径のモデル内に点群化されたデータが全て入るため、点群の数が最大となる。 If the partial pipe model is in the correct position, all the point group data will be included in the virtual outer diameter model, so the number of point groups will be the maximum.
 なお、ここでは、仮想外径を持った円柱形の領域で点群をカウントしたが、断面を正方形とし、正方形の一辺の長さが配管の外径の定数倍となる直方体としてもよい。さらに、領域内の点群の数をカウントするのではなく、当該円柱または直方体を長手方向にN分割し、各分割した領域に点群があるかないかを判定する方法でもよい。言い換えると、部分配管モデル等の部分アセットCADモデルの所定の部位の仮想的な断面寸法(例えば、断面形状を正方形とした場合は、正方形の一辺の長さが配管の外径の定数倍となる直方体を仮定し、その一片の長さを仮想的な断面の代表寸法(すなわち仮想的な断面寸法)とする。)を設定し、断面寸法を有する部分アセットCADモデルを領域分割し、領域分割された断面寸法を有する部分アセットCADモデルの内部に包含される点群の数が最大となる位置を特定し、特定された当該位置に部分アセットCADモデルを配置する。 Here, the point cloud was counted in a cylindrical region with a virtual outer diameter, but it may be a rectangular parallelepiped with a square cross section and a side length of a constant multiple of the outer diameter of the pipe. Furthermore, instead of counting the number of point groups in the area, a method may be used in which the cylinder or rectangular parallelepiped is divided into N in the longitudinal direction, and whether or not each divided area has a point group is determined. In other words, a virtual cross-sectional dimension of a predetermined part of a partial asset CAD model such as a partial piping model (for example, if the cross-sectional shape is a square, the length of one side of the square is a constant multiple of the outer diameter of the pipe) Assuming a rectangular parallelepiped, the length of one piece thereof is set as a representative dimension of a virtual cross section (that is, a virtual cross-sectional dimension)), the partial asset CAD model having the cross-sectional dimension is divided into areas, A position where the number of points included in the partial asset CAD model having the same cross-sectional dimension is maximized is specified, and the partial asset CAD model is placed at the specified position.
 以上のステップを全ての部分アセットモデルについて繰り返すことにより、属性付きアセットCADモデル7を作成することができる。 By repeating the above steps for all partial asset models, an attributed asset CAD model 7 can be created.
 図10は、本実施例で作成した属性付きアセットCADモデル7の例を示す斜視図である。 FIG. 10 is a perspective view showing an example of the attributed asset CAD model 7 created in this embodiment.
 以上のように、本実施例では、アイソメ図を活用することで、属性付きアセットCADモデル7を作成できた。これは、配管を支える配管サポートなどの構造物を除いたプラントの主要なモデルであり、従来の手作業によるモデル作成に比べて、効率よく3Dモデルが作成できる。 As described above, in this example, the attributed asset CAD model 7 was created by utilizing the isometric drawing. This is the main model of the plant, excluding structures such as pipe supports that support the pipes, and can create a 3D model more efficiently than conventional manual model creation.
 実施例2は、対象アセットが配管、バルブ、機器等で構成されるプラント設備の場合である。 In the second embodiment, the target assets are plant facilities composed of pipes, valves, equipment, and the like.
 図11は、本実施例の三次元モデル作成支援システムの例を示す構成図である。 FIG. 11 is a configuration diagram showing an example of the three-dimensional model creation support system of this embodiment.
 本図においては、三次元モデル作成支援システムは、部分プラントCADモデル作成装置22と、バルブ/機器認識装置26と、3Dパターンマッチング装置27と、を含む。 In this figure, the three-dimensional model creation support system includes a partial plant CAD model creation device 22, a valve/equipment recognition device 26, and a 3D pattern matching device 27.
 配管アイソメ図データ21(配管斜視図データ)は、部分プラントCADモデル作成装置22で所定の処理に用いられる。部分プラントCADモデル23は、部分プラントCADモデル作成装置22で作成され、3Dパターンマッチング装置27で所定の処理に用いられる。2D/3D画像データ25(二次元/三次元画像データ)は、バルブ/機器認識装置26で所定の処理に用いられる。3Dパターンマッチング装置27は、部分プラントCADモデル23と、2D/3D画像データ25を用いてバルブ/機器認識装置26で処理されたデータとを用いて、属性付きプラントCADモデル28を作成する。属性付きプラントCADモデル28は、属性データベース24と連携している。 The piping isometric drawing data 21 (piping perspective drawing data) is used for predetermined processing in the partial plant CAD model creation device 22 . The partial plant CAD model 23 is created by the partial plant CAD model creation device 22 and used for predetermined processing by the 3D pattern matching device 27 . The 2D/3D image data 25 (two-dimensional/three-dimensional image data) is used for predetermined processing by the valve/equipment recognition device 26 . The 3D pattern matching device 27 uses the partial plant CAD model 23 and data processed by the valve/equipment recognition device 26 using the 2D/3D image data 25 to create a plant CAD model 28 with attributes. The attributed plant CAD model 28 is linked with the attribute database 24 .
 なお、実施例1においても、プラント設備を例としているため、実施例2は、実施例1と共通する部分が多い。異なる点は、2D/3D画像データ25、バルブ/機器認識装置26及び3Dパターンマッチング装置27である。以下では、これらについて更に説明する。 Also in Example 1, since plant equipment is taken as an example, Example 2 has many parts in common with Example 1. 2D/3D image data 25 , valve/equipment recognition device 26 and 3D pattern matching device 27 are different. These will be further described below.
 2D/3D画像データ25は、同じ部位を複数の角度から撮影した2D画像のデータと、それをもとに作成した3D画像のデータと、を含む。これらは、データベース等の記録媒体に保存されている。ここで、3D画像の各点のデータとともに、それらを作成する際に使用した2D画像のデータの対応関係も保存されている。なお、2D画像データは、画像ファイル名と、その画像ファイル上の二次元座標の形式とを含む。 The 2D/3D image data 25 includes 2D image data obtained by photographing the same part from multiple angles and 3D image data created based thereon. These are saved in a recording medium such as a database. Here, along with the data of each point of the 3D image, the correspondence relationship of the data of the 2D image used when creating them is also stored. The 2D image data includes an image file name and a two-dimensional coordinate format on the image file.
 図12は、複数の2D画像から3D画像を作成する例を示したものである。 FIG. 12 shows an example of creating a 3D image from multiple 2D images.
 本図においては、N枚の2D画像から3D画像を作成している。 In this figure, a 3D image is created from N 2D images.
 バルブ/機器認識装置26は、プラントの2D画像または3D画像からバルブ及び機器を認識し、認識したバルブ及び機器の位置情報を取得する。本実施例では、2D画像を用いてバルブを認識した。 The valve/equipment recognition device 26 recognizes valves and equipment from 2D or 3D images of the plant and acquires position information of the recognized valves and equipment. In this example, a 2D image was used to recognize the valve.
 以下に、具体的な手順を示す。 Specific procedures are shown below.
 利用した2D画像からバルブ及び機器を認識する(ステップS251)。画像の物体を認識する方法には、広く利用されている深層学習を利用した。事前にバルブ及び機器の画像を学習させることで、全ての2D画像からバルブ及び機器の画像を特定することができる。 Recognize valves and equipment from the used 2D image (step S251). Deep learning, which is widely used, is used as a method for recognizing objects in images. By learning images of valves and equipment in advance, images of valves and equipment can be identified from all 2D images.
 2D/3D画像データ25に保存されている3D画像と2D画像の対応関係を利用し、2D画像上で特定したバルブおよび機器の画像に対応する3D画像を特定する(ステップS252)。 Using the correspondence relationship between the 3D image and the 2D image stored in the 2D/3D image data 25, a 3D image corresponding to the valve and device images identified on the 2D image is identified (step S252).
 なお、あるバルブの3D画像に対応する2D画像は、複数の画像ファイルにまたがっている。そして、3D画像の点と2D画像の点が1対1に対応しているわけではない。したがって、ある2D画像データにおいて認識されたバルブ画像のうち、3D画像に対応している画素は、一部に限定される。しかしながら、3D画像の作成に利用したすべての2D画像でバルブおよび機器を認識し、対応する3D画像を特定することで、3D画像中のバルブの3D画像を特定できる。なお、対応する3D画像を見つける方法としては、全ての3D画像の点について、対応する2D画像がステップS251で特定された領域に入っているか否かを判定する方法でもよい。 A 2D image corresponding to a 3D image of a certain valve spans multiple image files. And the points of the 3D image and the points of the 2D image are not in one-to-one correspondence. Therefore, among the valve images recognized in certain 2D image data, the pixels corresponding to the 3D image are limited. However, by recognizing the valve and equipment in all the 2D images used to create the 3D image and identifying the corresponding 3D image, the 3D image of the valve in the 3D image can be identified. As a method of finding the corresponding 3D image, a method of determining whether or not the corresponding 2D image is included in the area specified in step S251 for all the points of the 3D image may be used.
 3D画像上で特定されたバルブおよび機器の座標データからバルブおよび機器の位置情報を求める(ステップS253)。 Positional information of the valve and equipment is obtained from the coordinate data of the valve and equipment specified on the 3D image (step S253).
 図13は、バルブとして認識された3D画像を示す斜視図である。 FIG. 13 is a perspective view showing a 3D image recognized as a valve.
 本図においては、バルブを包含する部位を破線の直方体110で示している。機器についても同様に直方体で示すようにしてもよい。 In this figure, the part including the valve is indicated by a dashed rectangular parallelepiped 110 . Devices may also be indicated by rectangular parallelepipeds.
 なお、3D画像には複数のバルブおよび機器が含まれるため、ステップS252で特定された3D画像を個別のバルブ及び機器に分離する必要がある。本実施例では、特定された点群の間隔が閾値以内で連続しているものを1つのバルブまたは機器として分離した。 Since the 3D image includes multiple valves and devices, it is necessary to separate the 3D image identified in step S252 into individual valves and devices. In the present example, a point cloud whose intervals are continuous within a threshold value is separated as one valve or device.
 また、本処理により作成した直方体の体積があらかじめ定めた閾値よりも小さいものは、バルブおよび機器の位置情報からは除外した。この処理により、ステップS252でバルブまたは機器と誤認識したデータを削除することができる。 In addition, rectangular parallelepipeds created by this process whose volume was smaller than a predetermined threshold were excluded from the position information of valves and equipment. By this process, the data erroneously recognized as valves or devices in step S252 can be deleted.
 以上の方法により、バルブ及び機器の三次元上での位置情報が取得できる。 By the above method, the three-dimensional positional information of valves and equipment can be obtained.
 なお、本実施例では、2D画像を利用してバルブおよび機器を認識したが、3D画像のみを利用してこれらを認識してもよい。すなわち、3D画像を様々な位置を視点とした複数の2D画像を活用してステップS252の処理を実施してもよい。また、教師データとして、バルブ及び機器の3Dデータが十分にある場合は、三次元の形状認識によりバルブ及び機器を特定してもよい、
 次に、3Dパターンマッチング装置27について説明する。
In this embodiment, valves and equipment are recognized using 2D images, but they may be recognized using only 3D images. That is, the process of step S252 may be performed using a plurality of 2D images with viewpoints at various positions of the 3D images. Also, if there is sufficient 3D data of valves and equipment as teaching data, the valves and equipment may be identified by three-dimensional shape recognition.
Next, the 3D pattern matching device 27 will be explained.
 3Dパターンマッチング装置27では、バルブ/機器認識装置26で求めたバルブ及び機器の位置情報を用いて、部分プラントCADモデル23が3D画像上のどの位置に対応するかを判定する。バルブ及び機器の位置情報を用いることで、探索範囲を大幅に短縮することができる。 The 3D pattern matching device 27 uses the valve and device position information obtained by the valve/device recognition device 26 to determine which position on the 3D image the partial plant CAD model 23 corresponds to. By using valve and instrument position information, the search range can be greatly reduced.
 具体的な処理手順を以下に示す。なお、配管アイソメ図データ21としては、図2を用い、部分プラントCADモデル23としては、図5を用いる。 The specific processing procedure is shown below. As the piping isometric drawing data 21, FIG. 2 is used, and as the partial plant CAD model 23, FIG.
 まず、バルブ/機器認識装置26により求めたバルブ及び機器の位置情報を3D画像上に配置する(ステップS261)。 First, the valve and device position information obtained by the valve/device recognition device 26 is arranged on the 3D image (step S261).
 図14は、バルブ及び機器を配置した結果を示す斜視図である。 FIG. 14 is a perspective view showing the result of arranging the valves and equipment.
 本図においては、タンク121、バルブ122、123、124、125及びポンプ126、127の位置情報が表示されている。 In this figure, the position information of the tank 121, the valves 122, 123, 124, 125 and the pumps 126, 127 are displayed.
 次に、部分プラントCADモデル23より取得可能なバルブ及び機器の相対位置を求める(ステップS262)。図2の例では、2つのバルブVG-01-50及びVG-02-50の配置位置(配管中心線上の点)について、VG-01-50を基準点(0,0,0)とした場合、VG-02-50は(0,2400,0)となる。 Next, the relative positions of valves and equipment that can be acquired from the partial plant CAD model 23 are obtained (step S262). In the example of Fig. 2, when VG-01-50 is used as the reference point (0, 0, 0) for the placement positions (points on the piping center line) of the two valves VG-01-50 and VG-02-50, , VG-02-50 becomes (0,2400,0).
 ここでは、ステップS261で求めたバルブ及び機器の位置情報と、ステップS262で求めたバルブ及び機器の相対位置情報とを用いて、部分プラントモデルのパターンマッチングの探索範囲を絞り込む(ステップS263)。言い換えると、パターンマッチングの範囲を限定する。 Here, the valve and equipment position information obtained in step S261 and the valve and equipment relative position information obtained in step S262 are used to narrow down the search range for pattern matching of the partial plant model (step S263). In other words, it limits the scope of pattern matching.
 本例では、図14に示すように、バルブが配置される可能性がある領域は、バルブ122、123、124、125の領域である。また、ステップS262より、2つのバルブの相対位置がy軸方向に2400mm離れている必要がある。したがって、V1の座標(X1,Y1,Z1)をバルブ122、123、124、125の全領域で変化させ、(X1,Y1+2400,Z)がバルブ122、123、124、125の領域に含まれる条件のみが探索の範囲となる。 In this example, as shown in FIG. 14, the areas where valves may be arranged are the areas of valves 122, 123, 124, and 125. Also, from step S262, the relative positions of the two valves must be 2400 mm apart in the y-axis direction. Therefore, the coordinates (X1, Y1, Z1) of V1 are changed in the entire area of the bulbs 122, 123, 124, 125, and (X1, Y1+2400, Z) is included in the area of the bulbs 122, 123, 124, 125. is the scope of the search.
 ステップS263で求めた探索範囲に限定し、実施例1で利用したマッチング方法と同様に、図9に示す仮想外径を設定し、仮想外径を有する配管75の内部に包含される点群の数が最大となる位置を特定する(ステップS264)。 Limiting the search range obtained in step S263, setting the virtual outer diameter shown in FIG. The position with the maximum number is identified (step S264).
 なお、次の場合には、更に探索範囲を絞り込むことが可能である。 In addition, in the following cases, it is possible to further narrow down the search range.
 図15は、図2のアイソメ図に配管の接続先の情報が付加されている例を示したものである。 FIG. 15 shows an example of the isometric view of FIG. 2 to which the information on the connection destination of the piping is added.
 図15に示すように、配管の接続先に機器情報がある場合は、ステップS262でバルブ及び機器の相対位置情報も取得できるため、ステップS263で更に探索範囲を絞り込むことが可能である。 As shown in FIG. 15, if there is device information at the pipe connection destination, the relative position information of the valve and the device can also be acquired in step S262, so it is possible to further narrow down the search range in step S263.
 なお、実施例1及び実施例2においては、パターンマッチングの方法として、図9に示す仮想外径を用いる方法を示しているが、これとは異なる方法もあり得る。 In addition, in Examples 1 and 2, as a method of pattern matching, a method using the virtual outer diameter shown in FIG. 9 is shown, but a method different from this is also possible.
 図16は、配管モデルの断面形状に対応する点群を示したものである。 Fig. 16 shows a point cloud corresponding to the cross-sectional shape of the piping model.
 本図に示すように、配管モデルの断面の輪郭140と点群141との距離について統計的手法により誤差が最小となるようにマッチングしてもよい。統計的手法としては、最小二乗法等を用いることができる。 As shown in this figure, the distance between the contour 140 of the cross section of the piping model and the point cloud 141 may be matched by a statistical method so that the error is minimized. A method of least squares or the like can be used as a statistical method.
 なお、配管に保温材が巻かれている場合には、保温材を含む配管の外表面の形状を輪郭140としてマッチングしてもよい。 In addition, when the pipe is wrapped with heat insulating material, the shape of the outer surface of the pipe including the heat insulating material may be matched as the contour 140 .
 以上の実施例で示したように、バルブ及び機器の位置情報を活用することにより、効率よく部分プラントモデルの位置を特定することができ、少ない工数で属性付きプラントCADモデル28を作成することができる。 As shown in the above embodiment, by utilizing the positional information of valves and devices, the position of the partial plant model can be efficiently specified, and the attributed plant CAD model 28 can be created with a small number of man-hours. can.
 1:アセットアイソメ図データ、2:部分アセットCADモデル作成装置、3:部分アセットCADモデル、4:属性データベース、5:3D画像データ、6:3Dアセットパターンマッチング装置、7:属性付きアセットCADモデル、11:配管、12a:タンク、12b:ポンプ、13:バルブ、21:配管アイソメ図データ、22:部分プラントCADモデル作成装置、23:部分プラントCADモデル、24:属性データベース、25:2D/3D画像データ、26:バルブ/機器認識装置、27:3Dパターンマッチング装置、28:属性付きプラントCADモデル、71:直管中心線、75:配管。 1: asset isometric drawing data, 2: partial asset CAD model creation device, 3: partial asset CAD model, 4: attribute database, 5: 3D image data, 6: 3D asset pattern matching device, 7: asset CAD model with attributes, 11: Piping, 12a: Tank, 12b: Pump, 13: Valve, 21: Piping isometric drawing data, 22: Partial plant CAD model creation device, 23: Partial plant CAD model, 24: Attribute database, 25: 2D/3D image Data, 26: valve/equipment recognition device, 27: 3D pattern matching device, 28: plant CAD model with attributes, 71: straight pipe centerline, 75: piping.

Claims (9)

  1.  アセットの一部を示す斜視図のデータを用いて属性データを有する部分アセットCADモデルを作成する部分アセットCADモデル作成装置と、
     前記部分アセットCADモデルと前記アセットの三次元画像とのパターンマッチングにより前記部分アセットCADモデルの位置を特定し、前記部分アセットCADモデルを三次元空間上に配置することにより、属性付きアセットCADモデルを作成する三次元パターンマッチング装置と、を含む、三次元モデル作成支援システム。
    a partial asset CAD model creation device for creating a partial asset CAD model having attribute data using perspective view data showing a part of the asset;
    The position of the partial asset CAD model is identified by pattern matching between the partial asset CAD model and the 3D image of the asset, and the attributed asset CAD model is generated by arranging the partial asset CAD model in a 3D space. A three-dimensional model creation support system, comprising a three-dimensional pattern matching device for creating.
  2.  前記属性データと前記アセットの部位の管理番号とを有する属性データベースを更に含み、
     前記部分アセットCADモデル作成装置は、前記斜視図に表示されている管理番号を取得し、前記属性データベースから前記部位の前記管理番号に関連付けられている前記属性データを取得し、前記部分アセットCADモデルに付加する、請求項1記載の三次元モデル作成支援システム。
    further comprising an attribute database having the attribute data and a management number of the part of the asset;
    The partial asset CAD model creation device acquires the management number displayed in the perspective view, acquires the attribute data associated with the management number of the part from the attribute database, and generates the partial asset CAD model. 3. The three-dimensional model creation support system according to claim 1, which is added to.
  3.  前記部分アセットCADモデル作成装置は、前記斜視図に表示されている寸法線から寸法を取得し、前記寸法に従い前記部分アセットCADモデルを作成する、請求項1記載の三次元モデル作成支援システム。 The three-dimensional model creation support system according to claim 1, wherein said partial asset CAD model creation device acquires dimensions from dimension lines displayed in said perspective view and creates said partial asset CAD model according to said dimensions.
  4.  前記三次元パターンマッチング装置は、前記部分アセットCADモデルの仮想外径を設定し、前記仮想外径を有する前記部分アセットCADモデルの内部に包含される点群の数が最大となる位置を特定し、特定された前記位置に前記部分アセットCADモデルを配置する、請求項1記載の三次元モデル作成支援システム。 The three-dimensional pattern matching device sets a virtual outer diameter of the partial asset CAD model, and identifies a position where the number of point groups included inside the partial asset CAD model having the virtual outer diameter is maximum. 2. The three-dimensional model creation support system according to claim 1, wherein said partial asset CAD model is placed at said identified position.
  5.  前記三次元パターンマッチング装置は、前記部分アセットCADモデルの所定の部位の仮想的な断面寸法を設定し、前記断面寸法を有する前記部分アセットCADモデルを領域分割し、領域分割された前記断面寸法を有する前記部分アセットCADモデルの内部に包含される点群の数が最大となる位置を特定し、特定された前記位置に前記部分アセットCADモデルを配置する、請求項1記載の三次元モデル作成支援システム。 The three-dimensional pattern matching device sets virtual cross-sectional dimensions of a predetermined portion of the partial asset CAD model, divides the partial asset CAD model having the cross-sectional dimensions into areas, and divides the divided cross-sectional dimensions into areas. 2. The three-dimensional model creation support according to claim 1, wherein a position where the number of point groups contained inside said partial asset CAD model is maximum is specified, and said partial asset CAD model is placed at said specified position. system.
  6.  前記三次元パターンマッチング装置は、前記部分アセットCADモデルの所定の部位の仮想的な断面寸法を設定し、前記断面寸法を有する前記部分アセットCADモデルの断面の輪郭と点群との距離についての誤差が最小となる位置を特定し、特定された前記位置に前記部分アセットCADモデルを配置する、請求項1記載の三次元モデル作成支援システム。 The three-dimensional pattern matching device sets a virtual cross-sectional dimension of a predetermined portion of the partial asset CAD model, and calculates an error in the distance between the contour of the cross section of the partial asset CAD model having the cross-sectional dimension and the point cloud. 2. The three-dimensional model creation support system according to claim 1, wherein a position where is the smallest is specified, and the partial asset CAD model is placed at the specified position.
  7.  配管と、バルブ及び機器のうちの少なくともいずれか一つとを備えたアセットの一部を示す斜視図のデータを用いて属性データを有する部分アセットCADモデルを作成する部分アセットCADモデル作成装置と、
     前記アセットの二次元画像又は三次元画像のデータから前記バルブ及び前記機器の位置情報を取得するバルブ/機器認識装置と、
     前記部分アセットCADモデルと前記アセットの三次元画像とのパターンマッチングにより前記部分アセットCADモデルの位置を特定し、前記部分アセットCADモデルを三次元空間上に配置することにより、属性付きアセットCADモデルを作成する三次元パターンマッチング装置と、を含み、
     前記三次元パターンマッチング装置は、前記バルブ/機器認識装置により取得された前記バルブ及び前記機器の前記位置情報と、前記部分アセットCADモデルから取得された前記バルブ及び前記機器の相対位置情報から前記パターンマッチングの範囲を限定する、三次元モデル作成支援システム。
    a partial asset CAD model creation device for creating a partial asset CAD model having attribute data using data of a perspective view showing a portion of an asset including piping and at least one of valves and equipment;
    a valve/equipment recognition device that acquires position information of the valve and the equipment from 2D image or 3D image data of the asset;
    The position of the partial asset CAD model is identified by pattern matching between the partial asset CAD model and the 3D image of the asset, and the attributed asset CAD model is generated by arranging the partial asset CAD model in a 3D space. a three-dimensional pattern matching device that creates
    The three-dimensional pattern matching device uses the position information of the valve and the equipment acquired by the valve/equipment recognition device and the relative position information of the valve and the equipment acquired from the partial asset CAD model. A 3D model creation support system that limits the range of matching.
  8.  コンピュータに、
     アセットの一部を示す斜視図のデータを用いて属性データを有する部分アセットCADモデルを作成する手順と、
     前記部分アセットCADモデルと前記アセットの三次元画像とのパターンマッチングにより前記部分アセットCADモデルの位置を特定し、前記部分アセットCADモデルを三次元空間上に配置することにより、属性付きアセットCADモデルを作成する手順と、を実行させるためのプログラム。
    to the computer,
    A procedure for creating a partial asset CAD model having attribute data using perspective view data showing a part of the asset;
    The position of the partial asset CAD model is identified by pattern matching between the partial asset CAD model and the 3D image of the asset, and the attributed asset CAD model is generated by arranging the partial asset CAD model in a 3D space. A procedure to create and a program to execute it.
  9.  コンピュータに、
     アセットの一部を示す斜視図のデータを用いて属性データを有する部分アセットCADモデルを作成する手順と、
     前記部分アセットCADモデルと前記アセットの三次元画像とのパターンマッチングにより前記部分アセットCADモデルの位置を特定し、前記部分アセットCADモデルを三次元空間上に配置することにより、属性付きアセットCADモデルを作成する手順と、を実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体。
    to the computer,
    A procedure for creating a partial asset CAD model having attribute data using perspective view data showing a part of the asset;
    The position of the partial asset CAD model is identified by pattern matching between the partial asset CAD model and the 3D image of the asset, and the attributed asset CAD model is generated by arranging the partial asset CAD model in a 3D space. A computer-readable recording medium that records a procedure to create and a program for executing it.
PCT/JP2022/008782 2021-05-28 2022-03-02 Three-dimensional model generation support system, program, and recording medium WO2022249617A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021089879A JP2022182362A (en) 2021-05-28 2021-05-28 Three-dimensional model creation support system, program, and recording medium
JP2021-089879 2021-05-28

Publications (1)

Publication Number Publication Date
WO2022249617A1 true WO2022249617A1 (en) 2022-12-01

Family

ID=84228575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008782 WO2022249617A1 (en) 2021-05-28 2022-03-02 Three-dimensional model generation support system, program, and recording medium

Country Status (2)

Country Link
JP (1) JP2022182362A (en)
WO (1) WO2022249617A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117635837A (en) * 2023-12-04 2024-03-01 壹仟零壹艺网络科技(北京)有限公司 Quick three-dimensional method and system for two-dimensional CAD drawing data

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014174708A (en) * 2013-03-08 2014-09-22 Hitachi-Ge Nuclear Energy Ltd Design support device and design support method
WO2016088553A1 (en) * 2014-12-01 2016-06-09 株式会社日立製作所 3d model creation assistance system and method
JP2020204806A (en) * 2019-06-14 2020-12-24 日立Geニュークリア・エナジー株式会社 Measurement support device and measurement support method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014174708A (en) * 2013-03-08 2014-09-22 Hitachi-Ge Nuclear Energy Ltd Design support device and design support method
WO2016088553A1 (en) * 2014-12-01 2016-06-09 株式会社日立製作所 3d model creation assistance system and method
JP2020204806A (en) * 2019-06-14 2020-12-24 日立Geニュークリア・エナジー株式会社 Measurement support device and measurement support method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117635837A (en) * 2023-12-04 2024-03-01 壹仟零壹艺网络科技(北京)有限公司 Quick three-dimensional method and system for two-dimensional CAD drawing data

Also Published As

Publication number Publication date
JP2022182362A (en) 2022-12-08

Similar Documents

Publication Publication Date Title
Grimson et al. Localizing overlapping parts by searching the interpretation tree
US20140192050A1 (en) Three-dimensional point processing and model generation
JP5251080B2 (en) Object recognition method
US10747203B2 (en) Modeling process device, modeling process system, and medium
JP5830004B2 (en) 3D model generation apparatus, 3D model generation method, and 3D model generation program
Ahn et al. Computing the discrete Fréchet distance with imprecise input
US10776978B2 (en) Method for the automated identification of real world objects
US9551579B1 (en) Automatic connection of images using visual features
JP5470190B2 (en) 3D environment generation system
US20050024361A1 (en) Graphic processing method and device
JP5782175B2 (en) Model management of computer aided design system.
CN111859002B (en) Interest point name generation method and device, electronic equipment and medium
US11574084B1 (en) Methods and systems for geometric analysis of a part for manufacture
WO2022249617A1 (en) Three-dimensional model generation support system, program, and recording medium
US20170059306A1 (en) Point cloud systems and methods
KR101665446B1 (en) Apparatus and method for generating 3d facility layout data from point-cloud data
Jiang et al. Learned local features for structure from motion of uav images: A comparative evaluation
US20230045338A1 (en) Data management system, management method, and storage medium
Meidow et al. Obtaining as-built models of manufacturing plants from point clouds
JP7237541B2 (en) MAP GENERATION DEVICE AND MAP GENERATION METHOD
CN116823595A (en) Method and device for establishing internal detection defect data three-dimensional model and electronic equipment
JP2022182359A (en) Three-dimensional model generation support system, program, and recording medium
JP2006113832A (en) Stereoscopic image processor and program
Grimson et al. Computer vision applications
CN115906227A (en) Water supply schematic diagram generation method, device, equipment and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810898

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22810898

Country of ref document: EP

Kind code of ref document: A1