WO2022249502A1 - Refrigeration and air-conditioning device - Google Patents

Refrigeration and air-conditioning device Download PDF

Info

Publication number
WO2022249502A1
WO2022249502A1 PCT/JP2021/028876 JP2021028876W WO2022249502A1 WO 2022249502 A1 WO2022249502 A1 WO 2022249502A1 JP 2021028876 W JP2021028876 W JP 2021028876W WO 2022249502 A1 WO2022249502 A1 WO 2022249502A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
compressor
temperature
pressure
air
Prior art date
Application number
PCT/JP2021/028876
Other languages
French (fr)
Japanese (ja)
Inventor
康敬 落合
宣明 田崎
和彦 南条
一宏 小松
冬樹 佐藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2022249502A1 publication Critical patent/WO2022249502A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present disclosure relates to a refrigerating and air-conditioning system with multiple sensors.
  • Patent Document 1 there is a technique for detecting anomalies in sensors provided in refrigerating and air-conditioning equipment such as air conditioners (see Patent Document 1, for example).
  • Patent document 1 is equipped with two sensors, finds the evaporating pressure of the refrigerant based on the refrigerant temperature detected by one sensor installed in the evaporator, and compares this evaporating pressure with the refrigerant pressure detected by the other sensor. However, when the calculated value is out of the predetermined range, it is determined that at least one of the two sensors is abnormal.
  • Patent Document 1 has the problem that it can determine that at least one of the two sensors is abnormal, but cannot determine which sensor is abnormal.
  • the present disclosure has been made to solve the above problems, and aims to provide a refrigerating and air-conditioning apparatus that can identify a sensor in which an abnormality has occurred.
  • a refrigerating and air-conditioning apparatus includes a refrigerant circuit in which a compressor, a condenser, a throttle device, and an evaporator are connected by piping, and a refrigerant circuit in which refrigerant circulates;
  • a first sensor that detects the temperature for calculating, a second sensor that detects the suction pressure of the compressor or detects the temperature for calculating the suction pressure, and a second sensor that detects the discharge temperature of the compressor
  • Three sensors, a fourth sensor for detecting the suction temperature of the compressor, the discharge pressure, the suction pressure, the discharge temperature, and the adiabatic efficiency of the compressor calculated based on the suction temperature are set in advance. or the discharge temperature is lower than a discharge temperature threshold calculated based on the discharge pressure, the suction pressure, and the suction temperature, it is determined that the third sensor is abnormal. and a control device for
  • the third sensor when the adiabatic efficiency is greater than the preset upper limit value, or when the discharge temperature is lower than the discharge temperature threshold, it is determined that the third sensor is abnormal.
  • a sensor in which an abnormality has occurred can be specified.
  • FIG. 1 is a diagram showing the configuration of a refrigerating and air-conditioning apparatus according to Embodiment 1;
  • FIG. 4 is a diagram showing a method of calculating compressor efficiency of the refrigerating and air-conditioning apparatus according to Embodiment 1.
  • FIG. 4 is a diagram showing pressure and temperature ranges on the discharge side of the compressor of the refrigerating and air-conditioning apparatus according to Embodiment 1.
  • FIG. 4 is a diagram showing normal values and abnormal values of a compressor discharge temperature sensor of the refrigerating and air-conditioning apparatus according to Embodiment 1;
  • FIG. 4 is a diagram showing normal values and abnormal values of a high-pressure sensor of the refrigerating and air-conditioning system according to Embodiment 1;
  • FIG. 4 is a flow chart showing the flow of control in the sensor abnormality determination mode of the refrigerating and air-conditioning apparatus according to Embodiment 1; 7 is a flow chart showing the flow of control in the sensor abnormality determination mode according to the modified example of the refrigerating and air-conditioning apparatus according to Embodiment 1; FIG. 7 is a diagram showing the configuration of a refrigerating and air-conditioning apparatus according to Embodiment 2; FIG.
  • FIG. 10 is a diagram showing the enthalpy difference between the suction side and the discharge side of the compressor when the refrigerating and air-conditioning apparatus according to Embodiment 2 is normal and abnormal; 9 is a flow chart showing the flow of control in the sensor abnormality determination mode of the refrigerating and air-conditioning apparatus according to Embodiment 2;
  • FIG. 1 is a diagram showing the configuration of a refrigerating and air-conditioning apparatus 100 according to Embodiment 1.
  • a refrigerating and air-conditioning apparatus 100 as shown in FIG. 1, one indoor unit 20 is provided with a liquid pipe 41 and a gas pipe 42 (hereinafter referred to as refrigerant pipes) for one outdoor unit 10. , and illustrates an air conditioner that performs cooling operation.
  • FIG. 1 shows a configuration in which the refrigerating and air-conditioning apparatus 100 includes one indoor unit 20, a configuration including a plurality of indoor units 20 may be used. machines 20 are connected in parallel by refrigerant pipes.
  • the outdoor unit 10 includes a compressor 11, a condenser 12, a high pressure sensor 16, a low pressure sensor 17, a compressor discharge temperature sensor 51, a condenser ambient temperature sensor 54, and a compressor suction temperature sensor 55.
  • the high pressure sensor 16 is also called the first sensor
  • the low pressure sensor 17 is also called the second sensor
  • the compressor discharge temperature sensor 51 is also called the third sensor
  • the compressor suction temperature sensor 55 is called the fourth sensor. Also called
  • the indoor unit 20 includes an expansion device 21 and an evaporator 22.
  • a refrigerating and air-conditioning apparatus 100 includes a refrigerant circuit 1 in which a compressor 11, a condenser 12, an expansion device 21, and an evaporator 22 are sequentially connected in a circular manner by refrigerant pipes, and refrigerant circulates.
  • the refrigerant circuit 1 contains an azeotropic refrigerant such as R32 and R410A or a pseudo-azeotropic refrigerant.
  • the refrigerant circuit 1 may be configured to be connected to a channel switching device such as a four-way valve, and such a configuration enables heating operation in addition to cooling operation.
  • the refrigerating and air-conditioning apparatus 100 also includes a control device 30, a notification unit 36, and an operation mode switching unit 37.
  • the control device 30 is connected to the notification unit 36 and the operation mode switching unit 37, respectively.
  • the notification unit 36 and the operation mode switching unit 37 may be provided in the control device 30 as part of the control device 30 .
  • the compressor 11 is a fluid machine that draws in low-temperature, low-pressure gas refrigerant, compresses it, and discharges it as high-temperature, high-pressure gas refrigerant. When the compressor 11 operates, the refrigerant circulates through the refrigerant circuit 1 .
  • the compressor 11 is, for example, an inverter-driven type whose operating frequency can be adjusted. Also, the operation of the compressor 11 is controlled by the control device 30 .
  • the condenser 12 performs heat exchange between the refrigerant and the outdoor air.
  • a fan (not shown) may be provided in the vicinity of the condenser 12. In this case, the rotation speed of the fan is changed to change the air volume, thereby changing the amount of heat released to the outdoor air, that is, the amount of heat exchange. be able to.
  • the expansion device 21 adiabatically expands the refrigerant.
  • the expansion device 21 is, for example, an electronic expansion valve or a thermal expansion valve.
  • the degree of opening of the expansion device 21 is controlled by the control device 30 so that the degree of superheat at the outlet of the evaporator 22 approaches the target value.
  • the evaporator 22 performs heat exchange between the refrigerant and the room air.
  • a fan (not shown) may be provided in the vicinity of the evaporator 22. In this case, by changing the number of revolutions of the fan, the amount of air is changed, and the amount of heat absorbed from the indoor air, that is, the amount of heat exchange is changed. be able to.
  • the high pressure sensor 16 is provided on the discharge side of the compressor 11, detects the pressure on the discharge side of the compressor 11 (hereinafter referred to as high pressure), and outputs a detection signal to the control device 30.
  • the low pressure sensor 17 is provided on the suction side of the compressor 11 , detects pressure on the suction side of the compressor 11 (hereinafter referred to as low pressure), and outputs a detection signal to the control device 30 .
  • the high-pressure sensor 16 and the low-pressure pressure sensor 17 receive, for example, the pressure of the refrigerant with a diaphragm, detect it with a pressure-sensitive element via hydraulic pressure, convert it into an electric signal corresponding to the pressure, and output it.
  • a condensation temperature sensor may be provided at an intermediate portion of the heat transfer tube constituting the condenser 12 to detect the temperature of the refrigerant flowing therethrough, that is, the condensation temperature (saturation temperature). In this case, the pressure on the discharge side of the compressor 11 can be converted from the condensation temperature.
  • an evaporation temperature sensor may be provided in the intermediate portion of the heat transfer tube constituting the evaporator 22 to detect the temperature of the refrigerant flowing therethrough, that is, the evaporation temperature (saturation temperature). In this case, the pressure on the suction side of the compressor 11 can be converted from the evaporation temperature.
  • the compressor discharge temperature sensor 51 is provided on the discharge side of the compressor 11 , detects the temperature on the discharge side of the compressor 11 (hereinafter referred to as discharge temperature), and outputs a detection signal to the control device 30 .
  • Condenser ambient temperature sensor 54 is provided near condenser 12 , detects the ambient temperature of condenser 12 (hereinafter referred to as outside air temperature), and outputs a detection signal to control device 30 .
  • Compressor suction temperature sensor 55 is provided on the suction side of compressor 11 , detects the temperature on the suction side of compressor 11 (hereinafter referred to as suction temperature), and outputs a detection signal to control device 30 .
  • the compressor discharge temperature sensor 51, the condenser ambient temperature sensor 54, and the compressor suction temperature sensor 55 are, for example, thermistors whose resistance values change with temperature.
  • an evaporator outlet temperature sensor arranged on the outlet side of the evaporator 22 and detecting the temperature of the refrigerant flowing therethrough may be provided.
  • the control device 30 is, for example, dedicated hardware, or a CPU (also referred to as a central processing unit, a central processing unit, a processing unit, an arithmetic unit, a microprocessor, or a processor) that executes a program stored in a storage unit 31, which will be described later. Configured.
  • a CPU also referred to as a central processing unit, a central processing unit, a processing unit, an arithmetic unit, a microprocessor, or a processor
  • control device 30 may be, for example, a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof. Applicable. Each functional unit implemented by the control device 30 may be implemented by separate hardware, or each functional unit may be implemented by one piece of hardware.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • each function executed by the control device 30 is implemented by software, firmware, or a combination of software and firmware.
  • Software and firmware are written as programs and stored in the storage unit 31 .
  • the CPU implements each function of the control device 30 by reading and executing the programs stored in the storage unit 31 .
  • control device 30 may be realized by dedicated hardware, and part of them may be realized by software or firmware.
  • the control device 30 operates the compressor 11, the expansion device 21, etc., based on detection signals from sensors provided in the refrigerating and air-conditioning apparatus 100 and operation signals from an operation unit (not shown) such as a remote controller. control and control the operation of the entire refrigerating and air-conditioning apparatus 100 .
  • the control device 30 may be provided inside the outdoor unit 10 or the indoor unit 20 , or may be provided outside the outdoor unit 10 and the indoor unit 20 .
  • the control device 30 includes a storage unit 31, an extraction unit 32, a calculation unit 33, a comparison unit 34, and a determination unit 35 as functional blocks related to sensor abnormality determination.
  • the sensor abnormality determination is to determine whether or not the pressure sensor or the temperature sensor in the refrigerating and air-conditioning apparatus 100 is abnormal.
  • the storage unit 31 stores various types of information, and includes, for example, rewritable non-volatile semiconductor memory such as flash memory, EPROM, and EEPROM. Note that the storage unit 31 may also include, for example, a non-volatile semiconductor memory in which data cannot be rewritten, such as a ROM, or a volatile semiconductor memory in which data can be rewritten, such as a RAM.
  • the storage unit 31 stores temperature data and pressure data detected by each sensor. Note that these temperature data and pressure data are acquired periodically during operation of the refrigerating and air-conditioning apparatus 100 . In addition, the storage unit 31 stores each threshold, which will be described later.
  • the extraction unit 32 extracts data necessary for sensor abnormality determination, such as detection values of each sensor, from the data stored in the storage unit 31 .
  • data obtained when the compressor 11 is in operation is used for sensor abnormality determination. This is because when the compressor 11 is not in operation, it is not possible to correctly determine whether or not a sensor abnormality has occurred.
  • the calculation unit 33 performs necessary calculations based on the data extracted by the extraction unit 32. This calculation unit 33 calculates the heat insulation efficiency ⁇ and the like based on the detection values of the respective sensors.
  • the comparison unit 34 compares the value obtained by the calculation in the calculation unit 33 with a preset threshold or the like, or compares the values obtained by the calculation in the calculation unit 33 with each other.
  • the comparison unit 34 compares the adiabatic efficiency ⁇ with a preset ⁇ max.
  • the determination unit 35 determines whether an abnormality has occurred in the pressure sensor or the temperature sensor based on the comparison result of the comparison unit 34 .
  • the notification unit 36 notifies various information such as the occurrence of an abnormality according to a command from the control device 30 .
  • the notification unit 36 includes at least one of display means such as a display lamp or a monitor for visually notifying information, and audio output means such as a speaker for aurally notifying information.
  • the operation mode switching unit 37 receives an operation mode switching operation by the user.
  • the operation mode switching unit 37 can be provided, for example, in the operation unit described above.
  • a signal is output from the operation mode switching unit 37 to the control device 30, and the control device 30 switches the operation mode based on the signal.
  • the control device 30 has at least a normal operation mode and a sensor abnormality determination mode as operation modes.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the condenser 12 .
  • the gas refrigerant that has flowed into the condenser 12 exchanges heat with the outdoor air there, condenses, becomes high-pressure liquid refrigerant, and flows out of the condenser 12 .
  • the liquid refrigerant that has flowed out of the condenser 12 is depressurized by the expansion device 21 and flows into the evaporator 22 as a low-pressure two-layer refrigerant.
  • the two-layer refrigerant that has flowed into the evaporator 22 exchanges heat with the indoor air, evaporates, and flows out of the evaporator 22 as a low-temperature, low-pressure gas refrigerant.
  • the gas refrigerant that has flowed out of the evaporator 22 is sucked into the compressor 11, where it is discharged again as a high-temperature and high-pressure gas refrigerant.
  • the pressure sensor such as the high-pressure sensor 16 receives, for example, the pressure of the refrigerant with a diaphragm, detects it with a pressure-sensitive element via hydraulic pressure, converts it into an electric signal corresponding to the detected pressure, and outputs it. is. Therefore, it is conceivable that, for example, deterioration of the oil-filled portion causes oil to escape, air to enter, and the detection value of the pressure sensor to gradually decrease from normal. This occurs because pressure propagation to the piezoelectric element is reduced when gas, which is a compressible fluid, is mixed into the oil portion. When this abnormality occurs, the detected value of the pressure sensor gradually decreases from the normal value, making it difficult to determine the abnormality.
  • the compressor discharge temperature sensor 51 is in close contact with the discharge-side pipe of the compressor 11 (hereinafter referred to as discharge-side pipe) in order to accurately detect the temperature on the discharge side of the compressor 11 .
  • the compressor discharge temperature sensor 51 is insulated with a heat insulating material together with the discharge side pipe so as not to be affected by the outside air temperature. Therefore, the factors causing the abnormality of the compressor discharge temperature sensor 51 include deterioration of the heat insulating material due to deterioration over time, deteriorating the heat insulating performance, peeling off of the heat insulating material, or the connection between the compressor discharge temperature sensor 51 and the discharge side piping. It is conceivable that the influence of the outside air temperature may increase due to gaps occurring between them. When this abnormality occurs, the value detected by the compressor discharge temperature sensor 51 gradually decreases from the normal value, making it difficult to determine the abnormality.
  • FIG. 2 is a diagram showing a method of calculating compressor efficiency of the refrigerating and air-conditioning apparatus 100 according to the first embodiment.
  • the vertical axis in FIG. 2 indicates the pressure [MPaG], and the horizontal axis indicates the specific enthalpy [kJ/kg].
  • FIG. 2 shows the states of the suction side and the discharge side of the compressor 11 on the ph diagram, respectively, and illustrates the method of calculating the efficiency of the compressor.
  • the point ps indicates the state of the suction side of the compressor 11
  • the point p0(P, T) indicates the state of the discharge side of the compressor 11
  • the line s1 indicates the isentropic line.
  • the adiabatic efficiency ⁇ of the compressor 11 can be expressed by the following formula.
  • ⁇ h (s const): enthalpy difference [kJ/kg] when isentropic changes
  • the enthalpy difference ⁇ h (REF) is a function of the pressure and temperature on the suction side of the compressor 11 and the pressure and temperature on the discharge side of the compressor 11, that is, the high pressure sensor 16, the low pressure sensor 17, the compression It is calculated by inputting detection values of the machine discharge temperature sensor 51 and the compressor suction temperature sensor 55 .
  • the adiabatic efficiency ⁇ varies depending on the specifications, operating conditions, environmental conditions, etc. of the compressor 11, but the compressor 11 is designed so that the adiabatic efficiency ⁇ is within a certain range. That is, the compressor 11 is designed so that the adiabatic efficiency ⁇ is equal to or greater than the minimum adiabatic efficiency ⁇ min and less than or equal to the maximum adiabatic efficiency ⁇ max ( ⁇ min ⁇ max), and this range is the normal range.
  • the minimum adiabatic efficiency ⁇ min is, for example, 0.5
  • the maximum adiabatic efficiency ⁇ max is, for example, 0.9.
  • the value of the adiabatic efficiency ⁇ is smaller than 1 in the actual compressor 11 at best.
  • FIG. 3 is a diagram showing ranges of pressure and temperature on the discharge side of the compressor 11 of the refrigerating and air-conditioning apparatus 100 according to the first embodiment.
  • the vertical axis in FIG. 3 indicates pressure [MPaG], and the horizontal axis indicates specific enthalpy [kJ/kg].
  • FIG. 3 shows the highest adiabatic efficiency ⁇ max and the lowest adiabatic efficiency ⁇ min on the ph diagram.
  • the adiabatic efficiency ⁇ has a range depending on the specifications of the compressor 11, the operating state, and the environmental conditions. ⁇ max or less.
  • the pressure and temperature also have a range, and under normal conditions, the pressure is a value between the minimum pressure P ( ⁇ min) and the maximum pressure P ( ⁇ max), and the temperature is the minimum temperature T ( ⁇ max). The value is equal to or lower than the maximum temperature T( ⁇ min).
  • p0(P, T) with the pressure P and the temperature T as parameters is, under normal conditions, as shown in FIG. 3, the minimum adiabatic efficiency ⁇ min, the maximum adiabatic efficiency It exists in a range surrounded by pressure P( ⁇ max), minimum temperature T( ⁇ max), and maximum temperature T( ⁇ min).
  • FIG. 4 is a diagram showing normal values and abnormal values of the compressor discharge temperature sensor 51 of the refrigerating and air-conditioning apparatus 100 according to the first embodiment.
  • the vertical axis in FIG. 4 indicates pressure [MPaG], and the horizontal axis indicates specific enthalpy [kJ/kg].
  • FIG. 4 shows on the ph diagram how the detected value of the compressor discharge temperature sensor 51 diverges from the normal p0, passes through the boundary p1 between normal and abnormal, and changes to an abnormal value pTab. It is a diagram showing. Although the detected value of the compressor discharge temperature sensor 51 changes depending on the operating state, environmental conditions, individual differences of sensors, etc., it stays within the normal range in normal times. However, when an abnormality occurs in the compressor discharge temperature sensor 51 as described above, the detected value of the compressor discharge temperature sensor 51 decreases from p0 to p1 and then to pTab, deviating from the normal range. Therefore, when p0 deviates from the normal range, abnormality of the compressor discharge temperature sensor 51 can be determined.
  • FIG. 5 is a diagram showing normal values and abnormal values of the high-pressure sensor 16 of the refrigerating and air-conditioning apparatus 100 according to Embodiment 1.
  • FIG. The vertical axis in FIG. 5 indicates pressure [MPaG], and the horizontal axis indicates specific enthalpy [kJ/kg].
  • FIG. 5 shows, on the ph diagram, how the detected value of the high-pressure sensor 16 deviates from the normal p0, passes through the boundary p3 between normal and abnormal, and changes to the abnormal value pPab. It is a diagram.
  • the detection value of the high-pressure sensor 16 changes depending on the operating state, environmental conditions, individual differences of the sensors, etc., but it stays within the normal range under normal conditions. However, when an abnormality occurs in the high pressure sensor 16 as described above, the detection value of the high pressure sensor 16 drops from p0 to p3 and then to pPab, deviating from the normal range. Therefore, when p0 deviates from the normal range, abnormality of the high pressure sensor 16 can be determined.
  • FIG. 6 is a flow chart showing the control flow of the refrigerating and air-conditioning apparatus 100 according to Embodiment 1 in the sensor abnormality determination mode.
  • the control device 30 switches from the normal operation mode to the sensor abnormality determination mode at predetermined time intervals, and performs the abnormality determination process described below.
  • the control device 30 switches from the normal operation mode to the sensor abnormality determination mode, and performs the abnormality determination process described below.
  • Step S101 Control device 30 determines whether compressor 11 is in operation. When the control device 30 determines that the compressor 11 is in operation (YES), the process proceeds to step S102. On the other hand, when the control device 30 determines that the compressor 11 is not in operation (NO), the sensor abnormality determination process ends. Thus, the reason why the sensor abnormality determination process ends when the compressor 11 is not in operation is that the sensor abnormality detection is correctly performed even if the sensor abnormality determination process is executed when the compressor 11 is not in operation. This is because it is not possible to
  • Step S102 Control device 30 determines whether or not there is a transient state.
  • the transient state is, for example, when the compressor 11 is started, or when the opening degree of the expansion device 21 fluctuates greatly and the amount of liquid refrigerant stored on the high pressure side fluctuates. It is in a state of not doing so.
  • the control device 30 determines that the state is not in a transient state (YES)
  • the process proceeds to step S103.
  • the control device 30 determines that the state is in a transient state (NO)
  • NO the sensor abnormality determination process ends. The reason why the sensor abnormality determination process is terminated in the transient state is that even if the sensor abnormality determination process is executed in the transient state, the sensor abnormality detection cannot be performed correctly.
  • Step S103 Control device 30 acquires detection values from high pressure sensor 16, low pressure sensor 17, compressor discharge temperature sensor 51, and compressor suction temperature sensor 55, respectively. After that, the process proceeds to step S104A. Note that the process of step S103 is not limited to after step S102, and may be performed before step S101 or before step S102.
  • Step S104A Controller 30 calculates adiabatic efficiency ⁇ based on the values detected by high pressure sensor 16 , low pressure sensor 17 , compressor discharge temperature sensor 51 , and compressor suction temperature sensor 55 . Note that the calculation of the adiabatic efficiency ⁇ is performed using the above equation (1). After that, the process proceeds to step S105A.
  • Step S105A The control device 30 determines whether or not the adiabatic efficiency ⁇ is higher than a preset maximum adiabatic efficiency ⁇ max. When the control device 30 determines that the adiabatic efficiency ⁇ is higher than the maximum adiabatic efficiency ⁇ max (YES), the process proceeds to step S106. On the other hand, when control device 30 determines that adiabatic efficiency ⁇ is not higher than maximum adiabatic efficiency ⁇ max (NO), the process proceeds to step S107A.
  • Step S106 The controller 30 determines that the compressor discharge temperature sensor 51 is abnormal, and notifies that the compressor discharge temperature sensor 51 is abnormal by the notification unit 36 . After that, the sensor abnormality determination process ends.
  • Step S107A The control device 30 determines whether or not the adiabatic efficiency ⁇ is lower than a preset minimum adiabatic efficiency ⁇ min. When the control device 30 determines that the adiabatic efficiency ⁇ is lower than the minimum adiabatic efficiency ⁇ min (YES), the process proceeds to step S108. On the other hand, when the control device 30 determines that the adiabatic efficiency ⁇ is not lower than the minimum adiabatic efficiency ⁇ min (NO), the process proceeds to step S109.
  • Step S108 The control device 30 determines that the high pressure sensor 16 is abnormal, and notifies the high pressure sensor 16 of the abnormality by the notification unit 36 . After that, the sensor abnormality determination process ends.
  • Step S109 Control device 30 determines that each sensor is normal, and terminates the sensor abnormality determination process.
  • Embodiment 1 processing after sensor abnormality detection of the refrigerating and air-conditioning apparatus 100 according to Embodiment 1 will be described.
  • the compressor 11 is stopped even when there is an abnormality.
  • the abnormal sensor can be specified, and when the compressor discharge temperature sensor 51 is abnormal, the discharge state of the compressor 11 can be estimated without using the abnormal sensor. Therefore, in Embodiment 1, it is possible to operate the compressor 11 without stopping it even after the sensor abnormality is detected.
  • the compressor frequency is not increased.
  • the expansion device 21 is closed too much when a sensor abnormality occurs, the refrigerant is stored on the high pressure side and the high pressure increases, which may cause the refrigerating and air-conditioning apparatus 100 to malfunction. When it is detected, the diaphragm device 21 is not closed.
  • the sensor abnormality determination process is performed using the adiabatic efficiency ⁇ in the sensor abnormality determination mode.
  • Sensor abnormality determination processing is performed using the temperature threshold value Td_s_th and the high pressure threshold value Pd_s_th.
  • the discharge temperature Td can be expressed as a function fTd with Pd, Ps, Ts, and ⁇ as arguments, as in Equation (2) below.
  • the high pressure Pd can be expressed as a function fPd with Ps, Td, Ts, and ⁇ as arguments, as in the following equation (3).
  • Td fTd (Pd, Ps, Ts, ⁇ ) (2) Pd: Discharge pressure [MPaG] Ps: suction pressure [MPaG] Ts: Suction temperature [°C] ⁇ : Thermal insulation efficiency [-]
  • Pd fPd (Ps, Td, Ts, ⁇ ) (3) Ps: suction pressure [MPaG] Td: discharge temperature [°C] Ts: Suction temperature [°C] ⁇ : Thermal insulation efficiency [-]
  • the discharge temperature threshold Td_s_th can be expressed by a function fTd in which ⁇ max, which is a value preset to ⁇ in equation (2), is input, and the high pressure threshold Pd_s_th is preset to ⁇ in equation (3). It is possible to express the value ⁇ min as the input function fPd.
  • the ejection temperature threshold Td_s_th can be expressed as a function fTd with Pd, Ps, Ts, and ⁇ max as arguments, as in Equation (2)' below.
  • the high-pressure threshold Pd_s_th can be expressed as a function fPd with Ps, Td, Ts, and ⁇ min as arguments, as in Equation (3)' below.
  • Td_s_th fTd (Pd, Ps, Ts, ⁇ max) (2)'
  • Pd_s_th fPd (Ps, Td, Ts, ⁇ min) (3)'
  • FIG. 7 is a flow chart showing the flow of control in the sensor abnormality determination mode according to the modified example of the refrigerating and air-conditioning apparatus 100 according to the first embodiment.
  • steps S101 to S103, S106, and S108 to S109 in FIG. 7 are the same processes as those already explained, so explanations thereof will be omitted.
  • step S103 of FIG. 7 "the process proceeds to step S104A” in the above description of step S103 should be read as "the process proceeds to step S104B.”
  • Step S104B Controller 30 calculates discharge temperature threshold Td_s_th and high pressure threshold Pd_s_th based on the values detected by high pressure sensor 16 , low pressure sensor 17 , compressor discharge temperature sensor 51 , and compressor suction temperature sensor 55 .
  • the discharge temperature threshold value Td_s_th and the high pressure threshold value Pd_s_th are calculated using the above equations (2)′ and (3)′. After that, the process proceeds to step S105B.
  • Step S105B The control device 30 determines whether or not the discharge temperature Td, which is the value detected by the compressor discharge temperature sensor 51, is lower than the discharge temperature threshold value Td_s_th.
  • Td_s_th the discharge temperature threshold value
  • the process proceeds to step S106.
  • the control device 30 determines that the ejection temperature Td is not lower than the ejection temperature threshold value Td_s_th (NO)
  • the process proceeds to step S107B.
  • Step S107B The control device 30 determines whether the high pressure Pd, which is the value detected by the high pressure sensor 16, is lower than the high pressure threshold value Pd_s_th.
  • the control device 30 determines that the high pressure Pd is lower than the high pressure threshold value Pd_s_th (YES)
  • the process proceeds to step S108.
  • the control device 30 determines that the high pressure Pd is not lower than the high pressure threshold value Pd_s_th (NO)
  • the process proceeds to step S109.
  • the refrigerating and air-conditioning apparatus 100 includes the refrigerant circuit 1 in which the compressor 11, the condenser 12, the expansion device 21, and the evaporator 22 are connected by pipes and the refrigerant circulates.
  • the refrigerating and air-conditioning apparatus 100 also includes a first sensor for detecting the discharge pressure of the compressor 11 or for detecting the temperature for calculating the discharge pressure, and a first sensor for detecting the suction pressure of the compressor 11 or for calculating the suction pressure. a second sensor that detects the temperature of the compressor 11; a third sensor that detects the discharge temperature of the compressor 11; and a fourth sensor that detects the suction temperature of the compressor 11.
  • the refrigerating and air-conditioning apparatus 100 operates when the adiabatic efficiency of the compressor 11 calculated based on the discharge pressure, the suction pressure, the discharge temperature, and the suction temperature is higher than a preset upper limit value, or when the discharge temperature exceeds the discharge pressure , and a control device 30 that determines that the third sensor is abnormal when the temperature is lower than a discharge temperature threshold calculated based on the suction pressure and the suction temperature.
  • the third sensor is abnormal when the adiabatic efficiency is greater than the preset upper limit value or when the discharge temperature is lower than the discharge temperature threshold. do. Therefore, it is possible to identify the sensor in which the abnormality has occurred, and particularly to identify the abnormality of the third sensor. Moreover, since the sensor in which the abnormality has occurred can be identified, the cause of the abnormality can be identified, and the location of the abnormality can be quickly restored. As a result, the abnormal period of the refrigerating and air-conditioning apparatus 100 can be shortened, and the time during which it is operated in the abnormal state can be shortened.
  • the pressure sensor when the pressure sensor is abnormal, the detected value is lower than in normal times, and as a result, the refrigerating and air-conditioning apparatus 100 is controlled at a higher pressure than in normal times. If the refrigerating and air-conditioning apparatus 100 is controlled at a higher pressure, the power consumption of the compressor 11 will increase, resulting in poor energy efficiency and an environmentally unfriendly operation. Therefore, by performing the sensor abnormality determination described in Embodiment 1, it is possible to shorten the time during which the refrigerating and air-conditioning apparatus 100 is operated in an abnormal state. Cost can be reduced.
  • the control device 30 detects that the first sensor is Judged as abnormal.
  • the refrigerating and air-conditioning apparatus 100 According to the refrigerating and air-conditioning apparatus 100 according to Embodiment 1, it is possible to identify an abnormality in the first sensor.
  • control device 30 does not increase the compressor frequency when any sensor is abnormal.
  • the refrigerating and air-conditioning apparatus 100 According to the refrigerating and air-conditioning apparatus 100 according to Embodiment 1, it is possible to prevent the refrigerating and air-conditioning apparatus 100 from breaking down.
  • Embodiment 2 will be described below, but descriptions of parts that overlap with those of Embodiment 1 will be omitted, and parts that are the same as or correspond to those of Embodiment 1 will be given the same reference numerals.
  • FIG. 8 is a diagram showing the configuration of a refrigerating and air-conditioning apparatus 100 according to Embodiment 2.
  • the outdoor unit 10 according to Embodiment 2 includes a compressor input sensor 56 and a compressor frequency sensor 57 in addition to the configuration of Embodiment 1.
  • the compressor input sensor 56 is also referred to as a fifth sensor
  • the compressor frequency sensor 57 is also referred to as frequency acquisition means.
  • a compressor input sensor 56 is provided in the compressor 11 to detect a compressor input value and output a detection signal to the control device 30 .
  • Compressor input sensor 56 is, for example, a watt meter.
  • the compressor frequency sensor 57 is provided in the compressor 11 , detects the compressor frequency for calculating the refrigerant circulation amount of the refrigerant circuit 1 , and outputs a detection signal to the control device 30 .
  • Compressor frequency sensor 57 is, for example, a vibration sensor or an acceleration sensor. Note that instead of the value detected by the compressor frequency sensor 57, the indicated frequency to the compressor 11 may be used to calculate the refrigerant circulation amount.
  • FIG. 9 is a diagram showing the enthalpy difference between the suction side and the discharge side of the compressor 11 when the refrigerating and air-conditioning apparatus 100 according to Embodiment 2 is normal and abnormal.
  • the vertical axis in FIG. 9 indicates pressure [MPaG], and the horizontal axis indicates specific enthalpy [kJ/kg].
  • the enthalpy difference ⁇ h between the suction side and the discharge side of the compressor 11 can be obtained from the ph diagram shown in FIG. 9, but it can also be calculated by the following formula.
  • the refrigerant circulation amount Gr can be calculated by the following formula.
  • the compressor input estimated value W (REF) is calculated by adding the refrigerant circulation amount Gr to the enthalpy difference ⁇ h (REF) between the suction side and the discharge side of the compressor 11 obtained from the ph diagram. You can also That is, the compressor input estimated value W(REF) can also be calculated by the following formula.
  • the high pressure sensor 16 and the compressor discharge Abnormality detection of the temperature sensor 51 can be performed.
  • W(REF) W(w): Normal W(REF) ⁇ W(w): Compressor discharge temperature sensor 51 malfunction or compressor input sensor 56 malfunction W(w) ⁇ W(REF): High pressure sensor 16 Abnormality, or compressor input sensor 56 abnormality
  • ⁇ h(REF) ⁇ h(w): Normal ⁇ h(REF) ⁇ h(w): Compressor discharge temperature sensor 51 malfunction or compressor input sensor 56 malfunction ⁇ h(w) ⁇ h(REF): High pressure sensor 16 Abnormality, or compressor input sensor 56 abnormality
  • FIG. 10 is a flow chart showing the flow of control in the sensor abnormality determination mode of the refrigerating and air-conditioning apparatus 100 according to the second embodiment.
  • the control device 30 switches from the normal operation mode to the sensor abnormality determination mode at predetermined time intervals, and performs the abnormality determination process described below.
  • the control device 30 switches from the normal operation mode to the sensor abnormality determination mode, and performs the abnormality determination process described below.
  • Step S201 Control device 30 determines whether compressor 11 is in operation. When the control device 30 determines that the compressor 11 is in operation (YES), the process proceeds to step S202. On the other hand, when the control device 30 determines that the compressor 11 is not in operation (NO), the sensor abnormality determination process ends. Thus, the reason why the sensor abnormality determination process ends when the compressor 11 is not in operation is that the sensor abnormality detection is correctly performed even if the sensor abnormality determination process is executed when the compressor 11 is not in operation. This is because it is not possible to
  • Step S202 Control device 30 determines whether or not there is a transient state.
  • the transient state is, for example, when the compressor 11 is started, or when the opening degree of the expansion device 21 fluctuates greatly and the amount of liquid refrigerant stored on the high pressure side fluctuates. It is in a state of not doing so.
  • the control device 30 determines that it is not in a transient state (YES)
  • the process proceeds to step S203.
  • the control device 30 determines that the state is in a transient state (NO)
  • NO the sensor abnormality determination process ends. The reason why the sensor abnormality determination process is terminated in the transient state is that even if the sensor abnormality determination process is executed in the transient state, the sensor abnormality detection cannot be performed correctly.
  • Step S203 Control device 30 acquires detection values from high pressure sensor 16, low pressure sensor 17, compressor discharge temperature sensor 51, compressor intake temperature sensor 55, compressor input sensor 56, and compressor frequency sensor 57, respectively. After that, the process proceeds to step S204. Note that the process of step S203 is not limited to after step S202, and may be performed before step S201 or before step S202.
  • Step S204 The controller 30 calculates the estimated compressor input value W ( REF) is calculated. Note that the compressor input estimated value W(REF) is calculated using the above equation (6). After that, the process proceeds to step S205.
  • Step S205 The controller 30 determines whether the estimated compressor input value W(REF) is smaller than the compressor input value W(w) detected by the compressor input sensor 56 . If controller 30 determines that estimated compressor input value W(REF) is smaller than compressor input value W(w) (YES), the process proceeds to step S206. On the other hand, when controller 30 determines that compressor input estimated value W(REF) is not smaller than compressor input value W(w) (NO), the process proceeds to step S207.
  • Step S206 The controller 30 determines that the compressor discharge temperature sensor 51 or the compressor input sensor 56 is abnormal, and notifies that the compressor discharge temperature sensor 51 or the compressor input sensor 56 is abnormal by the notification unit 36. . After that, the sensor abnormality determination process ends.
  • Step S207 The controller 30 determines whether the estimated compressor input value W(REF) is greater than the compressor input value W(w). If controller 30 determines that estimated compressor input value W(REF) is greater than compressor input value W(w) (YES), the process proceeds to step S208. On the other hand, when controller 30 determines that estimated compressor input value W(REF) is not greater than compressor input value W(w) (NO), the process proceeds to step S209.
  • Step S208 The control device 30 determines that the high pressure sensor 16 or the compressor input sensor 56 is abnormal, and notifies that the high pressure sensor 16 or the compressor input sensor 56 is abnormal by the notification unit 36 . After that, the sensor abnormality determination process ends.
  • Step S209 Control device 30 determines that each sensor is normal, and terminates the sensor abnormality determination process.
  • the abnormal sensor cannot be identified in the processes of steps S206 and S208, but the abnormal sensor can be identified by performing the sensor abnormality determination process described in the first embodiment. It can be carried out. For example, after performing the process of step S206, the sensor abnormality determination process described in the first embodiment is performed. If the process proceeds to step S106, the compressor discharge temperature sensor 51 is abnormal. It can be determined that the input sensor 56 is abnormal.
  • Embodiment 2 processing after sensor abnormality detection of the refrigerating and air-conditioning apparatus 100 according to Embodiment 2 will be described.
  • the compressor 11 is stopped even when there is an abnormality.
  • the abnormal sensor can be specified, and when the compressor discharge temperature sensor 51 is abnormal, the discharge state of the compressor 11 can be estimated without using the abnormal sensor. Therefore, in Embodiment 2, it is possible to operate the compressor 11 without stopping it even after the sensor abnormality is detected.
  • the compressor frequency is not increased.
  • the expansion device 21 is closed too much when a sensor abnormality occurs, the refrigerant is stored on the high pressure side and the high pressure increases, which may cause the refrigerating and air-conditioning apparatus 100 to malfunction. When it is detected, the diaphragm device 21 is not closed.
  • the refrigerating and air-conditioning apparatus 100 includes the fifth sensor that detects the compressor input value and the frequency acquisition means that acquires the compressor frequency. Then, when the estimated compressor input value calculated based on the discharge pressure, the suction pressure, the discharge temperature, the suction temperature, and the compressor frequency is different from the compressor input value, the control device 30 performs the first It is determined that one of the sensor, the third sensor, and the fifth sensor is abnormal.
  • control device 30 determines that the third sensor or the fifth sensor is abnormal when the compressor input estimated value is smaller than the compressor input value.
  • control device 30 determines that the first sensor or the fifth sensor is abnormal when the compressor input estimated value is greater than the compressor input value.
  • Embodiment 2 According to the refrigerating and air-conditioning apparatus 100 according to Embodiment 2, the same effect as Embodiment 1 can be obtained.
  • 1 refrigerant circuit 10 outdoor unit, 11 compressor, 12 condenser, 16 high pressure sensor, 17 low pressure sensor, 20 indoor unit, 21 expansion device, 22 evaporator, 30 control device, 31 storage unit, 32 extraction unit, 33 Computing section, 34 Comparing section, 35 Judging section, 36 Reporting section, 37 Operation mode switching section, 41 Liquid pipe, 42 Gas pipe, 51 Compressor discharge temperature sensor, 54 Condenser ambient temperature sensor, 55 Compressor suction temperature sensor , 56 Compressor input sensor, 57 Compressor frequency sensor, 100 Refrigerating air conditioner.

Abstract

A refrigeration and air-conditioning device that comprises: a refrigerant circuit in which a refrigerant circulates through a compressor, a condenser, a throttling device, and an evaporator that are connected by piping; a first sensor that detects the discharge pressure of the compressor or detects a temperature for calculating the discharge pressure; a second sensor that detects the suction pressure of the compressor or detects a temperature for calculating the suction pressure; a third sensor that detects the discharge temperature of the compressor; a fourth sensor that detects the suction temperature of the compressor; and a control device that determines that the third sensor is abnormal when the adiabatic efficiency of the compressor as calculated on the basis of the discharge pressure, the suction pressure, the discharge temperature, and the suction temperature is higher than a preset upper limit or when the discharge temperature is lower than a discharge temperature threshold calculated on the basis of the discharge pressure, the suction pressure, and the suction temperature.

Description

冷凍空調装置refrigeration air conditioner
 本開示は、複数のセンサを備えた冷凍空調装置に関するものである。 The present disclosure relates to a refrigerating and air-conditioning system with multiple sensors.
 従来、空気調和装置などの冷凍空調装置に設けられたセンサの異常検知を行う技術がある(例えば、特許文献1参照)。 Conventionally, there is a technique for detecting anomalies in sensors provided in refrigerating and air-conditioning equipment such as air conditioners (see Patent Document 1, for example).
 特許文献1は、2つのセンサを備え、蒸発器に設置した一方のセンサが検知する冷媒温度に基づいて冷媒の蒸発圧力を求め、この蒸発圧力ともう一方のセンサが検知する冷媒圧力とを比較し、その演算値が所定範囲を外れるとき、それら2つのセンサのうち少なくとも一方が異常であると判定する。 Patent document 1 is equipped with two sensors, finds the evaporating pressure of the refrigerant based on the refrigerant temperature detected by one sensor installed in the evaporator, and compares this evaporating pressure with the refrigerant pressure detected by the other sensor. However, when the calculated value is out of the predetermined range, it is determined that at least one of the two sensors is abnormal.
特開平8-313125号公報JP-A-8-313125
 しかしながら、特許文献1は、2つのセンサのうち少なくとも一方が異常であると判定することができるが、どちらのセンサが異常であるかは判定できないという課題があった。 However, Patent Document 1 has the problem that it can determine that at least one of the two sensors is abnormal, but cannot determine which sensor is abnormal.
 本開示は、以上のような課題を解決するためになされたもので、異常が発生したセンサを特定することができる冷凍空調装置を提供することを目的としている。 The present disclosure has been made to solve the above problems, and aims to provide a refrigerating and air-conditioning apparatus that can identify a sensor in which an abnormality has occurred.
 本開示に係る冷凍空調装置は、圧縮機、凝縮器、絞り装置、および、蒸発器が配管で接続され、冷媒が循環する冷媒回路と、前記圧縮機の吐出圧力を検知、または前記吐出圧力を算出するための温度を検知する第一センサと、前記圧縮機の吸入圧力を検知、または前記吸入圧力を算出するための温度を検知する第二センサと、前記圧縮機の吐出温度を検知する第三センサと、前記圧縮機の吸入温度を検知する第四センサと、前記吐出圧力、前記吸入圧力、前記吐出温度、および、前記吸入温度に基づいて算出した前記圧縮機の断熱効率があらかじめ設定された上限値より高い場合、あるいは、前記吐出温度が前記吐出圧力、前記吸入圧力、および、前記吸入温度に基づいて算出した吐出温度閾値よりも低い場合に、前記第三センサが異常であると判定する制御装置と、を備えたものである。 A refrigerating and air-conditioning apparatus according to the present disclosure includes a refrigerant circuit in which a compressor, a condenser, a throttle device, and an evaporator are connected by piping, and a refrigerant circuit in which refrigerant circulates; A first sensor that detects the temperature for calculating, a second sensor that detects the suction pressure of the compressor or detects the temperature for calculating the suction pressure, and a second sensor that detects the discharge temperature of the compressor Three sensors, a fourth sensor for detecting the suction temperature of the compressor, the discharge pressure, the suction pressure, the discharge temperature, and the adiabatic efficiency of the compressor calculated based on the suction temperature are set in advance. or the discharge temperature is lower than a discharge temperature threshold calculated based on the discharge pressure, the suction pressure, and the suction temperature, it is determined that the third sensor is abnormal. and a control device for
 本開示に係る冷凍空調装置によれば、断熱効率があらかじめ設定された上限値より大きい場合、あるいは、吐出温度が吐出温度閾値よりも低い場合に、第三センサが異常であると判定するため、異常が発生したセンサを特定することができる。 According to the refrigerating and air-conditioning apparatus according to the present disclosure, when the adiabatic efficiency is greater than the preset upper limit value, or when the discharge temperature is lower than the discharge temperature threshold, it is determined that the third sensor is abnormal. A sensor in which an abnormality has occurred can be specified.
実施の形態1に係る冷凍空調装置の構成を示す図である。1 is a diagram showing the configuration of a refrigerating and air-conditioning apparatus according to Embodiment 1; FIG. 実施の形態1に係る冷凍空調装置の圧縮機効率の算出方法を示す図である。4 is a diagram showing a method of calculating compressor efficiency of the refrigerating and air-conditioning apparatus according to Embodiment 1. FIG. 実施の形態1に係る冷凍空調装置の圧縮機の吐出側の圧力および温度の範囲を示す図である。4 is a diagram showing pressure and temperature ranges on the discharge side of the compressor of the refrigerating and air-conditioning apparatus according to Embodiment 1. FIG. 実施の形態1に係る冷凍空調装置の圧縮機吐出温度センサの正常値および異常値を示す図である。4 is a diagram showing normal values and abnormal values of a compressor discharge temperature sensor of the refrigerating and air-conditioning apparatus according to Embodiment 1; FIG. 実施の形態1に係る冷凍空調装置の高圧圧力センサの正常値および異常値を示す図である。4 is a diagram showing normal values and abnormal values of a high-pressure sensor of the refrigerating and air-conditioning system according to Embodiment 1; FIG. 実施の形態1に係る冷凍空調装置のセンサ異常判定モード時の制御の流れを示すフローチャートである。4 is a flow chart showing the flow of control in the sensor abnormality determination mode of the refrigerating and air-conditioning apparatus according to Embodiment 1; 実施の形態1に係る冷凍空調装置の変形例によるセンサ異常判定モード時の制御の流れを示すフローチャートである。7 is a flow chart showing the flow of control in the sensor abnormality determination mode according to the modified example of the refrigerating and air-conditioning apparatus according to Embodiment 1; 実施の形態2に係る冷凍空調装置の構成を示す図である。FIG. 7 is a diagram showing the configuration of a refrigerating and air-conditioning apparatus according to Embodiment 2; 実施の形態2に係る冷凍空調装置の正常時および異常時における圧縮機の吸入側と吐出側とのエンタルピー差を示す図である。FIG. 10 is a diagram showing the enthalpy difference between the suction side and the discharge side of the compressor when the refrigerating and air-conditioning apparatus according to Embodiment 2 is normal and abnormal; 実施の形態2に係る冷凍空調装置のセンサ異常判定モード時の制御の流れを示すフローチャートである。9 is a flow chart showing the flow of control in the sensor abnormality determination mode of the refrigerating and air-conditioning apparatus according to Embodiment 2;
 以下、本開示の実施の形態を図面に基づいて説明する。なお、以下に説明する実施の形態によって本開示が限定されるものではない。また、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。 Hereinafter, embodiments of the present disclosure will be described based on the drawings. It should be noted that the present disclosure is not limited by the embodiments described below. Also, in the following drawings, the size relationship of each component may differ from the actual size.
 実施の形態1.
 図1は、実施の形態1に係る冷凍空調装置100の構成を示す図である。
 実施の形態1では、冷凍空調装置100として、図1に示すように、1台の室外機10に対して1台の室内機20が液管41およびガス管42(以下、冷媒配管と称する)で接続され、冷房運転を行う空気調和装置を例示している。なお、図1では冷凍空調装置100が1台の室内機20を備えた構成を示しているが、複数の室内機20を備えた構成でもよく、その場合は、室外機10に対して各室内機20が冷媒配管で並列に接続される。
Embodiment 1.
FIG. 1 is a diagram showing the configuration of a refrigerating and air-conditioning apparatus 100 according to Embodiment 1. As shown in FIG.
In Embodiment 1, as a refrigerating and air-conditioning apparatus 100, as shown in FIG. 1, one indoor unit 20 is provided with a liquid pipe 41 and a gas pipe 42 (hereinafter referred to as refrigerant pipes) for one outdoor unit 10. , and illustrates an air conditioner that performs cooling operation. Although FIG. 1 shows a configuration in which the refrigerating and air-conditioning apparatus 100 includes one indoor unit 20, a configuration including a plurality of indoor units 20 may be used. machines 20 are connected in parallel by refrigerant pipes.
 室外機10は、圧縮機11と、凝縮器12と、高圧圧力センサ16と、低圧圧力センサ17と、圧縮機吐出温度センサ51と、凝縮器周囲温度センサ54と、圧縮機吸入温度センサ55とを備えている。なお、以下において、高圧圧力センサ16は第一センサとも称し、低圧圧力センサ17は第二センサとも称し、圧縮機吐出温度センサ51は第三センサとも称し、圧縮機吸入温度センサ55は第四センサとも称する。 The outdoor unit 10 includes a compressor 11, a condenser 12, a high pressure sensor 16, a low pressure sensor 17, a compressor discharge temperature sensor 51, a condenser ambient temperature sensor 54, and a compressor suction temperature sensor 55. It has In the following, the high pressure sensor 16 is also called the first sensor, the low pressure sensor 17 is also called the second sensor, the compressor discharge temperature sensor 51 is also called the third sensor, and the compressor suction temperature sensor 55 is called the fourth sensor. Also called
 室内機20は、絞り装置21と、蒸発器22とを備えている。 The indoor unit 20 includes an expansion device 21 and an evaporator 22.
 冷凍空調装置100は、圧縮機11、凝縮器12、絞り装置21、および、蒸発器22が冷媒配管で環状に順次接続され、冷媒が循環する冷媒回路1を備えている。冷媒回路1には、R32およびR410Aなどの共沸冷媒、あるいは疑似共沸冷媒が封入されている。なお、冷媒回路1には、四方弁などの流路切替装置が接続されている構成でもよく、そのような構成にすることで、冷房運転に加えて暖房運転を行うことが可能となる。 A refrigerating and air-conditioning apparatus 100 includes a refrigerant circuit 1 in which a compressor 11, a condenser 12, an expansion device 21, and an evaporator 22 are sequentially connected in a circular manner by refrigerant pipes, and refrigerant circulates. The refrigerant circuit 1 contains an azeotropic refrigerant such as R32 and R410A or a pseudo-azeotropic refrigerant. The refrigerant circuit 1 may be configured to be connected to a channel switching device such as a four-way valve, and such a configuration enables heating operation in addition to cooling operation.
 また、冷凍空調装置100は、制御装置30と、報知部36と、運転モード切替部37とを備えており、制御装置30には、報知部36および運転モード切替部37がそれぞれ接続されている。なお、報知部36および運転モード切替部37は、制御装置30の一部として制御装置30に備えられていてもよい。 The refrigerating and air-conditioning apparatus 100 also includes a control device 30, a notification unit 36, and an operation mode switching unit 37. The control device 30 is connected to the notification unit 36 and the operation mode switching unit 37, respectively. . Note that the notification unit 36 and the operation mode switching unit 37 may be provided in the control device 30 as part of the control device 30 .
 圧縮機11は、低温低圧のガス冷媒を吸入して圧縮し、高温高圧のガス冷媒として吐出する流体機械である。圧縮機11が動作すると、冷媒回路1内を冷媒が循環する。圧縮機11は、例えば運転周波数の調整が可能なインバータ駆動式である。また、圧縮機11の動作は、制御装置30によって制御される。 The compressor 11 is a fluid machine that draws in low-temperature, low-pressure gas refrigerant, compresses it, and discharges it as high-temperature, high-pressure gas refrigerant. When the compressor 11 operates, the refrigerant circulates through the refrigerant circuit 1 . The compressor 11 is, for example, an inverter-driven type whose operating frequency can be adjusted. Also, the operation of the compressor 11 is controlled by the control device 30 .
 凝縮器12は、冷媒と室外空気との熱交換を行うものである。なお、凝縮器12の近傍にファン(図示せず)を設けてもよく、その場合はファンの回転数を変化させることにより風量を変化させ、室外空気への放熱量つまり熱交換量を変化させることができる。 The condenser 12 performs heat exchange between the refrigerant and the outdoor air. A fan (not shown) may be provided in the vicinity of the condenser 12. In this case, the rotation speed of the fan is changed to change the air volume, thereby changing the amount of heat released to the outdoor air, that is, the amount of heat exchange. be able to.
 絞り装置21は、冷媒を断熱膨張させるものである。絞り装置21は、例えば電子式膨張弁あるいは温度式膨張弁などである。絞り装置21の開度は、蒸発器22の出口の過熱度が目標値に近づくように、制御装置30によって制御される。 The expansion device 21 adiabatically expands the refrigerant. The expansion device 21 is, for example, an electronic expansion valve or a thermal expansion valve. The degree of opening of the expansion device 21 is controlled by the control device 30 so that the degree of superheat at the outlet of the evaporator 22 approaches the target value.
 蒸発器22は、冷媒と室内空気との熱交換を行うものである。なお、蒸発器22の近傍にファン(図示せず)を設けてもよく、その場合はファンの回転数を変化させることにより風量を変化させ、室内空気からの吸熱量つまり熱交換量を変化させることができる。 The evaporator 22 performs heat exchange between the refrigerant and the room air. A fan (not shown) may be provided in the vicinity of the evaporator 22. In this case, by changing the number of revolutions of the fan, the amount of air is changed, and the amount of heat absorbed from the indoor air, that is, the amount of heat exchange is changed. be able to.
 高圧圧力センサ16は、圧縮機11の吐出側に設けられており、圧縮機11の吐出側の圧力(以下、高圧圧力と称する)を検知し、検知信号を制御装置30に出力する。低圧圧力センサ17は、圧縮機11の吸入側に設けられており、圧縮機11の吸入側の圧力(以下、低圧圧力と称する)を検知し、検知信号を制御装置30に出力する。高圧圧力センサ16および低圧圧力センサ17は、例えば冷媒の圧力をダイヤフラムで受け、油圧を介して感圧素子で検知し、圧力に応じた電気信号に変換して出力するものである。なお、高圧圧力センサ16の代わりに凝縮器12を構成する伝熱管の中間部分に設けられ、そこを流れる冷媒の温度、つまり凝縮温度(飽和温度)を検知する凝縮温度センサを設けてもよく、この場合、凝縮温度から圧縮機11の吐出側の圧力を換算することができる。また、低圧圧力センサ17の代わりに蒸発器22を構成する伝熱管の中間部分に設けられ、そこを流れる冷媒の温度、つまり蒸発温度(飽和温度)を検知する蒸発温度センサを設けてもよく、この場合、蒸発温度から圧縮機11の吸入側の圧力を換算することができる。 The high pressure sensor 16 is provided on the discharge side of the compressor 11, detects the pressure on the discharge side of the compressor 11 (hereinafter referred to as high pressure), and outputs a detection signal to the control device 30. The low pressure sensor 17 is provided on the suction side of the compressor 11 , detects pressure on the suction side of the compressor 11 (hereinafter referred to as low pressure), and outputs a detection signal to the control device 30 . The high-pressure sensor 16 and the low-pressure pressure sensor 17 receive, for example, the pressure of the refrigerant with a diaphragm, detect it with a pressure-sensitive element via hydraulic pressure, convert it into an electric signal corresponding to the pressure, and output it. Instead of the high-pressure sensor 16, a condensation temperature sensor may be provided at an intermediate portion of the heat transfer tube constituting the condenser 12 to detect the temperature of the refrigerant flowing therethrough, that is, the condensation temperature (saturation temperature). In this case, the pressure on the discharge side of the compressor 11 can be converted from the condensation temperature. Further, instead of the low-pressure sensor 17, an evaporation temperature sensor may be provided in the intermediate portion of the heat transfer tube constituting the evaporator 22 to detect the temperature of the refrigerant flowing therethrough, that is, the evaporation temperature (saturation temperature). In this case, the pressure on the suction side of the compressor 11 can be converted from the evaporation temperature.
 圧縮機吐出温度センサ51は、圧縮機11の吐出側に設けられており、圧縮機11の吐出側の温度(以下、吐出温度と称する)を検知し、検知信号を制御装置30に出力する。凝縮器周囲温度センサ54は、凝縮器12の近傍に設けられており、凝縮器12の周囲の温度(以下、外気温度と称する)を検知し、検知信号を制御装置30に出力する。圧縮機吸入温度センサ55は、圧縮機11の吸入側に設けられており、圧縮機11の吸入側の温度(以下、吸入温度と称する)を検知し、検知信号を制御装置30に出力する。圧縮機吐出温度センサ51、凝縮器周囲温度センサ54、および、圧縮機吸入温度センサ55は、例えば温度により抵抗値が変化するサーミスタである。なお、圧縮機吸入温度センサ55の代わりに蒸発器22の出口側に配置され、そこを流れる冷媒の温度を検知する蒸発器出口温度センサを設けてもよい。 The compressor discharge temperature sensor 51 is provided on the discharge side of the compressor 11 , detects the temperature on the discharge side of the compressor 11 (hereinafter referred to as discharge temperature), and outputs a detection signal to the control device 30 . Condenser ambient temperature sensor 54 is provided near condenser 12 , detects the ambient temperature of condenser 12 (hereinafter referred to as outside air temperature), and outputs a detection signal to control device 30 . Compressor suction temperature sensor 55 is provided on the suction side of compressor 11 , detects the temperature on the suction side of compressor 11 (hereinafter referred to as suction temperature), and outputs a detection signal to control device 30 . The compressor discharge temperature sensor 51, the condenser ambient temperature sensor 54, and the compressor suction temperature sensor 55 are, for example, thermistors whose resistance values change with temperature. Instead of the compressor suction temperature sensor 55, an evaporator outlet temperature sensor arranged on the outlet side of the evaporator 22 and detecting the temperature of the refrigerant flowing therethrough may be provided.
 制御装置30は、例えば、専用のハードウェア、または後述する記憶部31に格納されるプログラムを実行するCPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、プロセッサともいう)で構成される。 The control device 30 is, for example, dedicated hardware, or a CPU (also referred to as a central processing unit, a central processing unit, a processing unit, an arithmetic unit, a microprocessor, or a processor) that executes a program stored in a storage unit 31, which will be described later. Configured.
 制御装置30が専用のハードウェアである場合、制御装置30は、例えば、単一回路、複合回路、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、またはこれらを組み合わせたものが該当する。制御装置30が実現する各機能部のそれぞれを、個別のハードウェアで実現してもよいし、各機能部を一つのハードウェアで実現してもよい。 If the control device 30 is dedicated hardware, the control device 30 may be, for example, a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof. Applicable. Each functional unit implemented by the control device 30 may be implemented by separate hardware, or each functional unit may be implemented by one piece of hardware.
 制御装置30がCPUの場合、制御装置30が実行する各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアおよびファームウェアはプログラムとして記述され、記憶部31に格納される。CPUは、記憶部31に格納されたプログラムを読み出して実行することにより、制御装置30の各機能を実現する。 When the control device 30 is a CPU, each function executed by the control device 30 is implemented by software, firmware, or a combination of software and firmware. Software and firmware are written as programs and stored in the storage unit 31 . The CPU implements each function of the control device 30 by reading and executing the programs stored in the storage unit 31 .
 なお、制御装置30の機能の一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現するようにしてもよい。 It should be noted that part of the functions of the control device 30 may be realized by dedicated hardware, and part of them may be realized by software or firmware.
 制御装置30は、冷凍空調装置100に設けられた各センサからの検知信号、および、リモコンなどの操作部(図示せず)からの操作信号などに基づいて、圧縮機11および絞り装置21などを制御し、冷凍空調装置100全体の動作を制御する。なお、制御装置30は、室外機10あるいは室内機20の内部に設けられていてもよいし、室外機10および室内機20の外部に設けられていてもよい。 The control device 30 operates the compressor 11, the expansion device 21, etc., based on detection signals from sensors provided in the refrigerating and air-conditioning apparatus 100 and operation signals from an operation unit (not shown) such as a remote controller. control and control the operation of the entire refrigerating and air-conditioning apparatus 100 . Note that the control device 30 may be provided inside the outdoor unit 10 or the indoor unit 20 , or may be provided outside the outdoor unit 10 and the indoor unit 20 .
 制御装置30は、センサ異常判定に関わる機能ブロックとして、記憶部31と、抽出部32と、演算部33と、比較部34と、判定部35とを備えている。ここで、センサ異常判定とは、冷凍空調装置100において、圧力センサまたは温度センサに異常が発生しているかどうかを判定することである。 The control device 30 includes a storage unit 31, an extraction unit 32, a calculation unit 33, a comparison unit 34, and a determination unit 35 as functional blocks related to sensor abnormality determination. Here, the sensor abnormality determination is to determine whether or not the pressure sensor or the temperature sensor in the refrigerating and air-conditioning apparatus 100 is abnormal.
 記憶部31は、各種情報を記憶するものであり、例えば、フラッシュメモリ、EPROM、および、EEPROMなどの、データの書き換え可能な不揮発性の半導体メモリを備えている。なお、記憶部31は、その他に、例えばROMなどのデータの書き換え不可能な不揮発性の半導体メモリ、あるいは、RAMなどのデータの書き換え可能な揮発性の半導体メモリなどを備えていてもよい。記憶部31は、各センサのそれぞれで検知された温度データおよび圧力データを記憶する。なお、これら温度データおよび圧力データは、冷凍空調装置100の運転中に定期的に取得される。また、記憶部31は、後述する各閾値を記憶する。 The storage unit 31 stores various types of information, and includes, for example, rewritable non-volatile semiconductor memory such as flash memory, EPROM, and EEPROM. Note that the storage unit 31 may also include, for example, a non-volatile semiconductor memory in which data cannot be rewritten, such as a ROM, or a volatile semiconductor memory in which data can be rewritten, such as a RAM. The storage unit 31 stores temperature data and pressure data detected by each sensor. Note that these temperature data and pressure data are acquired periodically during operation of the refrigerating and air-conditioning apparatus 100 . In addition, the storage unit 31 stores each threshold, which will be described later.
 抽出部32は、記憶部31に記憶されたデータの中から、各センサの検知値などセンサ異常判定に必要となるデータを抽出するものである。ここで、センサ異常判定には、圧縮機11が運転しているときのデータが用いられる。これは、圧縮機11が運転していないときには、センサ異常が発生しているかどうかの判定を正しく行うことができないためである。 The extraction unit 32 extracts data necessary for sensor abnormality determination, such as detection values of each sensor, from the data stored in the storage unit 31 . Here, data obtained when the compressor 11 is in operation is used for sensor abnormality determination. This is because when the compressor 11 is not in operation, it is not possible to correctly determine whether or not a sensor abnormality has occurred.
 演算部33は、抽出部32で抽出されたデータに基づき、必要な演算を行うものである。この演算部33は、各センサの検知値に基づいて、断熱効率ηなどを算出する。 The calculation unit 33 performs necessary calculations based on the data extracted by the extraction unit 32. This calculation unit 33 calculates the heat insulation efficiency η and the like based on the detection values of the respective sensors.
 比較部34は、演算部33での演算により得られた値とあらかじめ設定された閾値などとの比較、あるいは演算部33での演算により得られた値同士の比較を行うものである。この比較部34は、断熱効率ηとあらかじめ設定されたηmaxとの比較などを行う。 The comparison unit 34 compares the value obtained by the calculation in the calculation unit 33 with a preset threshold or the like, or compares the values obtained by the calculation in the calculation unit 33 with each other. The comparison unit 34 compares the adiabatic efficiency η with a preset ηmax.
 判定部35は、比較部34での比較結果に基づき、圧力センサまたは温度センサに異常が発生しているかどうかの判定を行うものである。 The determination unit 35 determines whether an abnormality has occurred in the pressure sensor or the temperature sensor based on the comparison result of the comparison unit 34 .
 報知部36は、制御装置30からの指令により、異常発生などの各種情報を報知するものである。報知部36は、表示灯あるいはモニターなどの情報を視覚的に報知する表示手段、および、スピーカーなどの情報を聴覚的に報知する音声出力手段のうち、少なくとも一方を備えている。 The notification unit 36 notifies various information such as the occurrence of an abnormality according to a command from the control device 30 . The notification unit 36 includes at least one of display means such as a display lamp or a monitor for visually notifying information, and audio output means such as a speaker for aurally notifying information.
 運転モード切替部37は、ユーザーによる運転モードの切替操作を受け付けるものである。運転モード切替部37は、例えば上記の操作部に設けることができる。運転モード切替部37で運転モードの切替操作が行われると、運転モード切替部37から制御装置30に対して信号が出力され、制御装置30は、その信号に基づいて運転モードを切り替える。制御装置30は、運転モードとして、少なくとも通常運転モードとセンサ異常判定モードとを有している。 The operation mode switching unit 37 receives an operation mode switching operation by the user. The operation mode switching unit 37 can be provided, for example, in the operation unit described above. When the operation mode switching unit 37 performs an operation mode switching operation, a signal is output from the operation mode switching unit 37 to the control device 30, and the control device 30 switches the operation mode based on the signal. The control device 30 has at least a normal operation mode and a sensor abnormality determination mode as operation modes.
 次に、実施の形態1に係る冷凍空調装置100の通常運転モード時の運転動作について説明する。 Next, the operation of the refrigerating and air-conditioning apparatus 100 according to Embodiment 1 in the normal operation mode will be described.
 圧縮機11から吐出した高温高圧のガス冷媒は、凝縮器12に流入する。凝縮器12に流入したガス冷媒は、そこで室外空気と熱交換し、凝縮して高圧の液冷媒となって凝縮器12から流出する。凝縮器12から流出した液冷媒は、絞り装置21によって減圧され、低圧の二層冷媒となって蒸発器22に流入する。そして、蒸発器22に流入した二層冷媒は、そこで室内空気と熱交換し、蒸発して低温低圧のガス冷媒となって蒸発器22から流出する。蒸発器22から流出したガス冷媒は、圧縮機11に吸入され、そこで再び高温高圧のガス冷媒となって吐出される。 The high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the condenser 12 . The gas refrigerant that has flowed into the condenser 12 exchanges heat with the outdoor air there, condenses, becomes high-pressure liquid refrigerant, and flows out of the condenser 12 . The liquid refrigerant that has flowed out of the condenser 12 is depressurized by the expansion device 21 and flows into the evaporator 22 as a low-pressure two-layer refrigerant. Then, the two-layer refrigerant that has flowed into the evaporator 22 exchanges heat with the indoor air, evaporates, and flows out of the evaporator 22 as a low-temperature, low-pressure gas refrigerant. The gas refrigerant that has flowed out of the evaporator 22 is sucked into the compressor 11, where it is discharged again as a high-temperature and high-pressure gas refrigerant.
 次に、圧力センサおよび温度センサの異常発生要因について説明する。 Next, we will explain the causes of abnormalities in the pressure sensor and temperature sensor.
 上述のように、高圧圧力センサ16などの圧力センサは、例えば冷媒の圧力をダイヤフラムで受け、油圧を介して感圧素子で検知し、検知した圧力に応じた電気信号に変換して出力するものである。そのため、圧力センサの異常発生要因としては、例えば油充填部が劣化して油が抜け、空気が侵入し、圧力センサの検知値が正常時よりも徐々に低下することが考えられる。これは、圧縮性流体である気体が油部に混入することにより圧電素子への圧力伝播が小さくなるために発生する。この異常が発生すると、圧力センサの検知値が正常値から徐々に低下するため、異常判定しにくい。 As described above, the pressure sensor such as the high-pressure sensor 16 receives, for example, the pressure of the refrigerant with a diaphragm, detects it with a pressure-sensitive element via hydraulic pressure, converts it into an electric signal corresponding to the detected pressure, and outputs it. is. Therefore, it is conceivable that, for example, deterioration of the oil-filled portion causes oil to escape, air to enter, and the detection value of the pressure sensor to gradually decrease from normal. This occurs because pressure propagation to the piezoelectric element is reduced when gas, which is a compressible fluid, is mixed into the oil portion. When this abnormality occurs, the detected value of the pressure sensor gradually decreases from the normal value, making it difficult to determine the abnormality.
 また、圧縮機吐出温度センサ51は、圧縮機11の吐出側の温度を正確に検知するため、圧縮機11の吐出側の配管(以下、吐出側配管と称する)に密接している。さらに、圧縮機吐出温度センサ51は、外気温度の影響を受けないように、吐出側配管とともに断熱材によって断熱されている。そのため、圧縮機吐出温度センサ51の異常発生要因としては、経年劣化により断熱材が劣化して断熱性能が低下したり、断熱材が剥がれ落ちたり、あるいは圧縮機吐出温度センサ51と吐出側配管との間に隙間が生じたりすることで、外気温度の影響を受けやすくなることが考えられる。この異常が発生すると、圧縮機吐出温度センサ51の検知値が正常値から徐々に低下するため、異常判定しにくい。 In addition, the compressor discharge temperature sensor 51 is in close contact with the discharge-side pipe of the compressor 11 (hereinafter referred to as discharge-side pipe) in order to accurately detect the temperature on the discharge side of the compressor 11 . Furthermore, the compressor discharge temperature sensor 51 is insulated with a heat insulating material together with the discharge side pipe so as not to be affected by the outside air temperature. Therefore, the factors causing the abnormality of the compressor discharge temperature sensor 51 include deterioration of the heat insulating material due to deterioration over time, deteriorating the heat insulating performance, peeling off of the heat insulating material, or the connection between the compressor discharge temperature sensor 51 and the discharge side piping. It is conceivable that the influence of the outside air temperature may increase due to gaps occurring between them. When this abnormality occurs, the value detected by the compressor discharge temperature sensor 51 gradually decreases from the normal value, making it difficult to determine the abnormality.
 次に、実施の形態1に係る冷凍空調装置100の高圧圧力センサ16および圧縮機吐出温度センサ51の異常検知方法について説明する。 Next, a method for detecting abnormality of the high-pressure sensor 16 and the compressor discharge temperature sensor 51 of the refrigerating and air-conditioning apparatus 100 according to Embodiment 1 will be described.
 図2は、実施の形態1に係る冷凍空調装置100の圧縮機効率の算出方法を示す図である。図2の縦軸は圧力[MPaG]を示しており、横軸は比エンタルピー[kJ/kg]を示している。 FIG. 2 is a diagram showing a method of calculating compressor efficiency of the refrigerating and air-conditioning apparatus 100 according to the first embodiment. The vertical axis in FIG. 2 indicates the pressure [MPaG], and the horizontal axis indicates the specific enthalpy [kJ/kg].
 図2は、p-h線図上に圧縮機11の吸入側および吐出側の状態をそれぞれ示し、圧縮機効率の算出方法を図示したものである。図2の点psは圧縮機11の吸入側の状態を、点p0(P,T)は圧縮機11の吐出側の状態を、線s1は等エントロピー線をそれぞれ示している。このとき、圧縮機11の断熱効率ηは、下記の式で表すことができる。 FIG. 2 shows the states of the suction side and the discharge side of the compressor 11 on the ph diagram, respectively, and illustrates the method of calculating the efficiency of the compressor. In FIG. 2, the point ps indicates the state of the suction side of the compressor 11, the point p0(P, T) indicates the state of the discharge side of the compressor 11, and the line s1 indicates the isentropic line. At this time, the adiabatic efficiency η of the compressor 11 can be expressed by the following formula.
 η=Δh(s=const)/Δh(REF)・・・・・(1)
 Δh(s=const):等エントロピー変化した場合のエンタルピー差[kJ/kg]
 Δh(REF):実際の圧縮機11の吸入側と吐出側とのエンタルピー差[kJ/kg]
η=Δh(s=const)/Δh(REF) (1)
Δh (s = const): enthalpy difference [kJ/kg] when isentropic changes
Δh (REF): Actual enthalpy difference between the suction side and the discharge side of the compressor 11 [kJ/kg]
 なお、各エンタルピー差Δh(s=const)、Δh(REF)は、圧力および温度をパラメータとした関数に、各センサが検知した圧力および温度を入力することで、算出することができる。具体的には、エンタルピー差Δh(s=const)は、その関数に、圧縮機11の吸入側の圧力および温度、つまり、低圧圧力センサ17および圧縮機吸入温度センサ55の検知値を入力することで算出される。また、エンタルピー差Δh(REF)は、その関数に、圧縮機11の吸入側の圧力および温度と、圧縮機11の吐出側の圧力および温度、つまり、高圧圧力センサ16、低圧圧力センサ17、圧縮機吐出温度センサ51、および、圧縮機吸入温度センサ55の検知値を入力することで算出される。なお、各エンタルピー差Δh(s=const)、Δh(REF)の関数は、記憶部31にあらかじめ記憶されている。 The enthalpy differences Δh (s=const) and Δh(REF) can be calculated by inputting the pressure and temperature detected by each sensor into a function with pressure and temperature as parameters. Specifically, the enthalpy difference Δh (s=const) is obtained by inputting the pressure and temperature on the suction side of the compressor 11, that is, the detection values of the low-pressure sensor 17 and the compressor suction temperature sensor 55 into the function. Calculated by In addition, the enthalpy difference Δh (REF) is a function of the pressure and temperature on the suction side of the compressor 11 and the pressure and temperature on the discharge side of the compressor 11, that is, the high pressure sensor 16, the low pressure sensor 17, the compression It is calculated by inputting detection values of the machine discharge temperature sensor 51 and the compressor suction temperature sensor 55 . Note that the functions of the enthalpy differences Δh (s=const) and Δh(REF) are pre-stored in the storage unit 31 .
 断熱効率ηは、圧縮機11の仕様、運転状態、および、環境条件などにより変化するが、圧縮機11は、断熱効率ηが一定の範囲内となるように設計される。つまり、圧縮機11は、断熱効率ηが最低断熱効率ηmin以上かつ最高断熱効率ηmax以下(ηmin≦η≦ηmax)となるように設計され、この範囲が正常範囲となる。なお、最低断熱効率ηminは、例えば0.5であり、最高断熱効率ηmaxは例えば0.9である。また、圧縮機11の吸入状態および圧縮機11の吸入側と吐出側との高低圧差などにより、断熱効率ηはおおよそどの位の値になるか、推定することができる。なお、断熱効率ηの値は、実際の圧縮機11ではよくても1より小さくなる。 The adiabatic efficiency η varies depending on the specifications, operating conditions, environmental conditions, etc. of the compressor 11, but the compressor 11 is designed so that the adiabatic efficiency η is within a certain range. That is, the compressor 11 is designed so that the adiabatic efficiency η is equal to or greater than the minimum adiabatic efficiency ηmin and less than or equal to the maximum adiabatic efficiency ηmax (ηmin≦η≦ηmax), and this range is the normal range. Note that the minimum adiabatic efficiency ηmin is, for example, 0.5, and the maximum adiabatic efficiency ηmax is, for example, 0.9. Also, it is possible to estimate the approximate value of the adiabatic efficiency η depending on the suction state of the compressor 11 and the pressure difference between the suction side and the discharge side of the compressor 11 . Note that the value of the adiabatic efficiency η is smaller than 1 in the actual compressor 11 at best.
 図3は、実施の形態1に係る冷凍空調装置100の圧縮機11の吐出側の圧力および温度の範囲を示す図である。図3の縦軸は圧力[MPaG]を示しており、横軸は比エンタルピー[kJ/kg]を示している。 FIG. 3 is a diagram showing ranges of pressure and temperature on the discharge side of the compressor 11 of the refrigerating and air-conditioning apparatus 100 according to the first embodiment. The vertical axis in FIG. 3 indicates pressure [MPaG], and the horizontal axis indicates specific enthalpy [kJ/kg].
 図3は、p-h線図上に、最高断熱効率ηmaxと最低断熱効率ηminとをそれぞれ図示したものである。圧縮機11の仕様、運転状態、および、環境条件などから、断熱効率ηには幅が存在し、正常時であれば、断熱効率ηはそれら条件に応じて最低断熱効率ηmin以上かつ最高断熱効率ηmax以下の値となる。また、同様に、圧力および温度にもそれぞれ幅が存在し、正常時であれば、圧力は最小圧力P(ηmin)以上最大圧力P(ηmax)以下の値となり、温度は最低温度T(ηmax)以上最高温度T(ηmin)以下の値となる。 FIG. 3 shows the highest adiabatic efficiency ηmax and the lowest adiabatic efficiency ηmin on the ph diagram. The adiabatic efficiency η has a range depending on the specifications of the compressor 11, the operating state, and the environmental conditions. ηmax or less. Similarly, the pressure and temperature also have a range, and under normal conditions, the pressure is a value between the minimum pressure P (ηmin) and the maximum pressure P (ηmax), and the temperature is the minimum temperature T (ηmax). The value is equal to or lower than the maximum temperature T(ηmin).
 そのため、圧力Pおよび温度Tをパラメータとしたp0(P,T)は、正常時であれば、図3に示すように、最低断熱効率ηmin、最高断熱効率ηmax、最小圧力P(ηmin)、最大圧力P(ηmax)、最低温度T(ηmax)、および、最高温度T(ηmin)で囲まれた範囲に存在することとなる。 Therefore, p0(P, T) with the pressure P and the temperature T as parameters is, under normal conditions, as shown in FIG. 3, the minimum adiabatic efficiency ηmin, the maximum adiabatic efficiency It exists in a range surrounded by pressure P(ηmax), minimum temperature T(ηmax), and maximum temperature T(ηmin).
 図4は、実施の形態1に係る冷凍空調装置100の圧縮機吐出温度センサ51の正常値および異常値を示す図である。図4の縦軸は圧力[MPaG]を示しており、横軸は比エンタルピー[kJ/kg]を示している。 FIG. 4 is a diagram showing normal values and abnormal values of the compressor discharge temperature sensor 51 of the refrigerating and air-conditioning apparatus 100 according to the first embodiment. The vertical axis in FIG. 4 indicates pressure [MPaG], and the horizontal axis indicates specific enthalpy [kJ/kg].
 図4は、p-h線図上に、圧縮機吐出温度センサ51の検知値が正常なp0から乖離して、正常と異常との境界p1を経て、異常値pTabへ変化していく様子を示した図である。運転状態、環境条件、および、センサの個体差などにより、圧縮機吐出温度センサ51の検知値は変化するが、正常時は正常範囲内に収まる。しかしながら、上述のように圧縮機吐出温度センサ51に異常が発生すると、圧縮機吐出温度センサ51の検知値は、p0からp1、そしてpTabへと低下し、正常範囲から逸脱してしまう。よって、p0が正常範囲から逸脱した場合に、圧縮機吐出温度センサ51の異常を判別することができる。 FIG. 4 shows on the ph diagram how the detected value of the compressor discharge temperature sensor 51 diverges from the normal p0, passes through the boundary p1 between normal and abnormal, and changes to an abnormal value pTab. It is a diagram showing. Although the detected value of the compressor discharge temperature sensor 51 changes depending on the operating state, environmental conditions, individual differences of sensors, etc., it stays within the normal range in normal times. However, when an abnormality occurs in the compressor discharge temperature sensor 51 as described above, the detected value of the compressor discharge temperature sensor 51 decreases from p0 to p1 and then to pTab, deviating from the normal range. Therefore, when p0 deviates from the normal range, abnormality of the compressor discharge temperature sensor 51 can be determined.
 図5は、実施の形態1に係る冷凍空調装置100の高圧圧力センサ16の正常値および異常値を示す図である。図5の縦軸は圧力[MPaG]を示しており、横軸は比エンタルピー[kJ/kg]を示している。 FIG. 5 is a diagram showing normal values and abnormal values of the high-pressure sensor 16 of the refrigerating and air-conditioning apparatus 100 according to Embodiment 1. FIG. The vertical axis in FIG. 5 indicates pressure [MPaG], and the horizontal axis indicates specific enthalpy [kJ/kg].
 図5は、p-h線図上に、高圧圧力センサ16の検知値が正常なp0から乖離して、正常と異常との境界p3を経て、異常値pPabへ変化していく様子を示した図である。運転状態、環境条件、および、センサの個体差などにより、高圧圧力センサ16の検知値は変化するが、正常時は正常範囲内に収まる。しかしながら、上述のように高圧圧力センサ16に異常が発生すると、高圧圧力センサ16の検知値は、p0からp3、そしてpPabへと低下し、正常範囲から逸脱してしまう。よって、p0が正常範囲から逸脱した場合に、高圧圧力センサ16の異常を判別することができる。 FIG. 5 shows, on the ph diagram, how the detected value of the high-pressure sensor 16 deviates from the normal p0, passes through the boundary p3 between normal and abnormal, and changes to the abnormal value pPab. It is a diagram. The detection value of the high-pressure sensor 16 changes depending on the operating state, environmental conditions, individual differences of the sensors, etc., but it stays within the normal range under normal conditions. However, when an abnormality occurs in the high pressure sensor 16 as described above, the detection value of the high pressure sensor 16 drops from p0 to p3 and then to pPab, deviating from the normal range. Therefore, when p0 deviates from the normal range, abnormality of the high pressure sensor 16 can be determined.
 次に、実施の形態1に係る冷凍空調装置100のセンサ異常判定処理時の制御の流れについて説明する。 Next, the flow of control during the sensor abnormality determination process of the refrigerating and air-conditioning apparatus 100 according to Embodiment 1 will be described.
 図6は、実施の形態1に係る冷凍空調装置100のセンサ異常判定モード時の制御の流れを示すフローチャートである。
 制御装置30は、所定の時間間隔毎に通常運転モードからセンサ異常判定モードに切り替え、以下に説明する異常判定の処理を行う。または、制御装置30は、運転モード切替部37からユーザーによる異常検知モードへの切替操作を受け付けたら、通常運転モードからセンサ異常判定モードに切り替え、以下に説明する異常判定の処理を行う。
FIG. 6 is a flow chart showing the control flow of the refrigerating and air-conditioning apparatus 100 according to Embodiment 1 in the sensor abnormality determination mode.
The control device 30 switches from the normal operation mode to the sensor abnormality determination mode at predetermined time intervals, and performs the abnormality determination process described below. Alternatively, when receiving a user's operation to switch to the abnormality detection mode from the operation mode switching unit 37, the control device 30 switches from the normal operation mode to the sensor abnormality determination mode, and performs the abnormality determination process described below.
(ステップS101)
 制御装置30は、圧縮機11が運転中であるかどうかを判定する。制御装置30が、圧縮機11が運転中であると判定した場合(YES)、処理はステップS102に進む。一方、制御装置30が、圧縮機11が運転中ではないと判定した場合(NO)、センサ異常判定処理は終了する。このように、圧縮機11が運転中ではない場合にセンサ異常判定処理が終了するのは、圧縮機11の運転中以外にセンサ異常判定処理を実行しても、センサの異常検知を正しく行うことができないためである。
(Step S101)
Control device 30 determines whether compressor 11 is in operation. When the control device 30 determines that the compressor 11 is in operation (YES), the process proceeds to step S102. On the other hand, when the control device 30 determines that the compressor 11 is not in operation (NO), the sensor abnormality determination process ends. Thus, the reason why the sensor abnormality determination process ends when the compressor 11 is not in operation is that the sensor abnormality detection is correctly performed even if the sensor abnormality determination process is executed when the compressor 11 is not in operation. This is because it is not possible to
(ステップS102)
 制御装置30は、過渡状態でないかどうかを判定する。ここで、過渡状態とは、例えば圧縮機11の起動時、または、絞り装置21の開度が大きく変動して高圧側に貯留されている液冷媒量が変動する場合、などの運転動作が安定していない状態である。制御装置30が、過渡状態ではないと判定した場合(YES)、処理はステップS103に進む。一方、制御装置30が、過渡状態であると判定した場合(NO)、センサ異常判定処理は終了する。このように、過渡状態である場合にセンサ異常判定処理が終了するのは、過渡状態のときにセンサ異常判定処理を実行しても、センサの異常検知を正しく行うことができないためである。
(Step S102)
Control device 30 determines whether or not there is a transient state. Here, the transient state is, for example, when the compressor 11 is started, or when the opening degree of the expansion device 21 fluctuates greatly and the amount of liquid refrigerant stored on the high pressure side fluctuates. It is in a state of not doing so. When the control device 30 determines that the state is not in a transient state (YES), the process proceeds to step S103. On the other hand, when the control device 30 determines that the state is in a transient state (NO), the sensor abnormality determination process ends. The reason why the sensor abnormality determination process is terminated in the transient state is that even if the sensor abnormality determination process is executed in the transient state, the sensor abnormality detection cannot be performed correctly.
(ステップS103)
 制御装置30は、高圧圧力センサ16、低圧圧力センサ17、圧縮機吐出温度センサ51、および、圧縮機吸入温度センサ55から検知値をそれぞれ取得する。その後、処理はステップS104Aに進む。なお、ステップS103の処理は、ステップS102の後に限定されず、ステップS101の前あるいはステップS102の前に行ってもよい。
(Step S103)
Control device 30 acquires detection values from high pressure sensor 16, low pressure sensor 17, compressor discharge temperature sensor 51, and compressor suction temperature sensor 55, respectively. After that, the process proceeds to step S104A. Note that the process of step S103 is not limited to after step S102, and may be performed before step S101 or before step S102.
(ステップS104A)
 制御装置30は、高圧圧力センサ16、低圧圧力センサ17、圧縮機吐出温度センサ51、および、圧縮機吸入温度センサ55の検知値に基づいて、断熱効率ηを算出する。なお、断熱効率ηの算出は、上記の式(1)を用いて行われる。その後、処理はステップS105Aに進む。
(Step S104A)
Controller 30 calculates adiabatic efficiency η based on the values detected by high pressure sensor 16 , low pressure sensor 17 , compressor discharge temperature sensor 51 , and compressor suction temperature sensor 55 . Note that the calculation of the adiabatic efficiency η is performed using the above equation (1). After that, the process proceeds to step S105A.
(ステップS105A)
 制御装置30は、断熱効率ηがあらかじめ設定された最高断熱効率ηmaxよりも高いかどうかを判定する。制御装置30が、断熱効率ηが最高断熱効率ηmaxよりも高いと判定した場合(YES)、処理はステップS106に進む。一方、制御装置30が、断熱効率ηが最高断熱効率ηmaxよりも高くないと判定した場合(NO)、処理はステップS107Aに進む。
(Step S105A)
The control device 30 determines whether or not the adiabatic efficiency η is higher than a preset maximum adiabatic efficiency ηmax. When the control device 30 determines that the adiabatic efficiency η is higher than the maximum adiabatic efficiency ηmax (YES), the process proceeds to step S106. On the other hand, when control device 30 determines that adiabatic efficiency η is not higher than maximum adiabatic efficiency ηmax (NO), the process proceeds to step S107A.
(ステップS106)
 制御装置30は、圧縮機吐出温度センサ51が異常であると判定し、報知部36により、圧縮機吐出温度センサ51が異常である旨を報知する。その後、センサ異常判定処理は終了する。
(Step S106)
The controller 30 determines that the compressor discharge temperature sensor 51 is abnormal, and notifies that the compressor discharge temperature sensor 51 is abnormal by the notification unit 36 . After that, the sensor abnormality determination process ends.
(ステップS107A)
 制御装置30は、断熱効率ηがあらかじめ設定された最低断熱効率ηminよりも低いかどうかを判定する。制御装置30が、断熱効率ηが最低断熱効率ηminよりも低いと判定した場合(YES)、処理はステップS108に進む。一方、制御装置30が、断熱効率ηが最低断熱効率ηminよりも低くないと判定した場合(NO)、処理はステップS109に進む。
(Step S107A)
The control device 30 determines whether or not the adiabatic efficiency η is lower than a preset minimum adiabatic efficiency ηmin. When the control device 30 determines that the adiabatic efficiency η is lower than the minimum adiabatic efficiency ηmin (YES), the process proceeds to step S108. On the other hand, when the control device 30 determines that the adiabatic efficiency η is not lower than the minimum adiabatic efficiency ηmin (NO), the process proceeds to step S109.
(ステップS108)
 制御装置30は、高圧圧力センサ16が異常であると判定し、報知部36により、高圧圧力センサ16が異常である旨を報知する。その後、センサ異常判定処理は終了する。
(Step S108)
The control device 30 determines that the high pressure sensor 16 is abnormal, and notifies the high pressure sensor 16 of the abnormality by the notification unit 36 . After that, the sensor abnormality determination process ends.
(ステップS109)
 制御装置30は、各センサが正常であると判定し、センサ異常判定処理は終了する。
(Step S109)
Control device 30 determines that each sensor is normal, and terminates the sensor abnormality determination process.
 次に、実施の形態1に係る冷凍空調装置100のセンサ異常検知後の処理について説明する。
 従来では、圧縮機吐出温度センサ51に異常が発生して検知値が低くなった場合、冷凍空調装置100が故障する恐れがあるため、圧縮機吐出温度センサ51および高圧圧力センサ16のうち一方のみが異常の場合でも圧縮機11を停止させていた。しかし、実施の形態1では、異常センサの特定ができ、圧縮機吐出温度センサ51が異常の場合、その異常センサを用いなくても圧縮機11の吐出状態を推定することができる。よって、実施の形態1では、センサ異常検知後でも圧縮機11を停止させることなく運転させることが可能となる。
Next, processing after sensor abnormality detection of the refrigerating and air-conditioning apparatus 100 according to Embodiment 1 will be described.
Conventionally, when an abnormality occurs in the compressor discharge temperature sensor 51 and the detection value becomes low, the refrigerating and air-conditioning system 100 may malfunction. The compressor 11 is stopped even when there is an abnormality. However, in Embodiment 1, the abnormal sensor can be specified, and when the compressor discharge temperature sensor 51 is abnormal, the discharge state of the compressor 11 can be estimated without using the abnormal sensor. Therefore, in Embodiment 1, it is possible to operate the compressor 11 without stopping it even after the sensor abnormality is detected.
 ただし、センサ異常の発生時に圧縮機11を増速させると冷媒が高圧側に貯留されて高圧圧力が高くなり、冷凍空調装置100が故障する恐れがあるため、制御装置30は、センサ異常の発生を検知したら、圧縮機周波数を増速させないようにする。また、センサ異常の発生時に絞り装置21を閉めすぎると冷媒が高圧側に貯留されて高圧圧力が高くなり、冷凍空調装置100が故障する恐れがあるため、制御装置30は、センサ異常の発生を検知したら、絞り装置21を閉めないようにする。 However, if the speed of the compressor 11 is increased when a sensor abnormality occurs, the refrigerant will accumulate on the high pressure side and the high pressure will increase, which may cause the refrigerating and air-conditioning apparatus 100 to malfunction. is detected, the compressor frequency is not increased. Further, if the expansion device 21 is closed too much when a sensor abnormality occurs, the refrigerant is stored on the high pressure side and the high pressure increases, which may cause the refrigerating and air-conditioning apparatus 100 to malfunction. When it is detected, the diaphragm device 21 is not closed.
 次に、実施の形態1に係る冷凍空調装置100の変形例について説明する。 Next, a modification of the refrigerating and air-conditioning apparatus 100 according to Embodiment 1 will be described.
 実施の形態1に係る冷凍空調装置100では、センサ異常判定モードにおいて、断熱効率ηを用いてセンサ異常判定処理を行っているが、実施の形態1に係る冷凍空調装置100の変形例では、吐出温度閾値Td_s_thおよび高圧圧力閾値Pd_s_thを用いてセンサ異常判定処理を行う。 In the refrigerating and air-conditioning apparatus 100 according to Embodiment 1, the sensor abnormality determination process is performed using the adiabatic efficiency η in the sensor abnormality determination mode. Sensor abnormality determination processing is performed using the temperature threshold value Td_s_th and the high pressure threshold value Pd_s_th.
 ここで、吐出温度Tdは、下記の式(2)のように、Pd、Ps、Ts、および、ηを引数とした関数fTdとして表すことができる。また、高圧圧力Pdは、下記の式(3)のように、Ps、Td、Ts、および、ηを引数とした関数fPdとして表すことができる。 Here, the discharge temperature Td can be expressed as a function fTd with Pd, Ps, Ts, and η as arguments, as in Equation (2) below. Also, the high pressure Pd can be expressed as a function fPd with Ps, Td, Ts, and η as arguments, as in the following equation (3).
 Td=fTd(Pd、Ps、Ts、η)・・・・・(2)
 Pd:吐出圧力[MPaG]
 Ps:吸入圧力[MPaG]
 Ts:吸入温度[℃]
 η:断熱効率[―]
Td=fTd (Pd, Ps, Ts, η) (2)
Pd: Discharge pressure [MPaG]
Ps: suction pressure [MPaG]
Ts: Suction temperature [°C]
η: Thermal insulation efficiency [-]
 Pd=fPd(Ps、Td、Ts、η)・・・・・(3)
 Ps:吸入圧力[MPaG]
 Td:吐出温度[℃]
 Ts:吸入温度[℃]
 η:断熱効率[―]
Pd=fPd (Ps, Td, Ts, η) (3)
Ps: suction pressure [MPaG]
Td: discharge temperature [°C]
Ts: Suction temperature [°C]
η: Thermal insulation efficiency [-]
 そして、吐出温度閾値Td_s_thは、式(2)のηにあらかじめ設定された値であるηmaxを入力した関数fTdで表すことができ、高圧圧力閾値Pd_s_thは、式(3)のηにあらかじめ設定された値であるηminを入力した関数fPdで表すことができる。つまり、吐出温度閾値Td_s_thは、下記の式(2)’のように、Pd、Ps、Ts、および、ηmaxを引数とした関数fTdとして表すことができる。また、高圧圧力閾値Pd_s_thは、下記の式(3)’のように、Ps、Td、Ts、および、ηminを引数とした関数fPdとして表すことができる。 Then, the discharge temperature threshold Td_s_th can be expressed by a function fTd in which ηmax, which is a value preset to η in equation (2), is input, and the high pressure threshold Pd_s_th is preset to η in equation (3). It is possible to express the value ηmin as the input function fPd. In other words, the ejection temperature threshold Td_s_th can be expressed as a function fTd with Pd, Ps, Ts, and ηmax as arguments, as in Equation (2)' below. Also, the high-pressure threshold Pd_s_th can be expressed as a function fPd with Ps, Td, Ts, and ηmin as arguments, as in Equation (3)' below.
 Td_s_th=fTd(Pd、Ps、Ts、ηmax)・・・(2)’  Td_s_th = fTd (Pd, Ps, Ts, ηmax) (2)'
 Pd_s_th=fPd(Ps、Td、Ts、ηmin)・・・(3)’  Pd_s_th=fPd (Ps, Td, Ts, ηmin) (3)'
 図7は、実施の形態1に係る冷凍空調装置100の変形例によるセンサ異常判定モード時の制御の流れを示すフローチャートである。 FIG. 7 is a flow chart showing the flow of control in the sensor abnormality determination mode according to the modified example of the refrigerating and air-conditioning apparatus 100 according to the first embodiment.
 なお、図7のステップS101~S103、S106、S108~S109についてはすでに説明したものと同じ処理のため、それらの説明を省略する。ただし、図7のステップS103では、上記のステップS103の説明において、「処理はステップS104Aに進む。」を「処理はステップS104Bに進む。」に読み替えるものとする。 Note that steps S101 to S103, S106, and S108 to S109 in FIG. 7 are the same processes as those already explained, so explanations thereof will be omitted. However, in step S103 of FIG. 7, "the process proceeds to step S104A" in the above description of step S103 should be read as "the process proceeds to step S104B."
(ステップS104B)
 制御装置30は、高圧圧力センサ16、低圧圧力センサ17、圧縮機吐出温度センサ51、および、圧縮機吸入温度センサ55の検知値に基づいて、吐出温度閾値Td_s_thおよび高圧圧力閾値Pd_s_thを算出する。なお、吐出温度閾値Td_s_thおよび高圧圧力閾値Pd_s_thの算出は、上記の式(2)’および式(3)’を用いて行われる。その後、処理はステップS105Bに進む。
(Step S104B)
Controller 30 calculates discharge temperature threshold Td_s_th and high pressure threshold Pd_s_th based on the values detected by high pressure sensor 16 , low pressure sensor 17 , compressor discharge temperature sensor 51 , and compressor suction temperature sensor 55 . The discharge temperature threshold value Td_s_th and the high pressure threshold value Pd_s_th are calculated using the above equations (2)′ and (3)′. After that, the process proceeds to step S105B.
(ステップS105B)
 制御装置30は、圧縮機吐出温度センサ51の検知値である吐出温度Tdが吐出温度閾値Td_s_thよりも低いかどうかを判定する。制御装置30が、吐出温度Tdが吐出温度閾値Td_s_thよりも低いと判定した場合(YES)、処理はステップS106に進む。一方、制御装置30が、吐出温度Tdが吐出温度閾値Td_s_thよりも低くないと判定した場合(NO)、処理はステップS107Bに進む。
(Step S105B)
The control device 30 determines whether or not the discharge temperature Td, which is the value detected by the compressor discharge temperature sensor 51, is lower than the discharge temperature threshold value Td_s_th. When the control device 30 determines that the ejection temperature Td is lower than the ejection temperature threshold value Td_s_th (YES), the process proceeds to step S106. On the other hand, when the control device 30 determines that the ejection temperature Td is not lower than the ejection temperature threshold value Td_s_th (NO), the process proceeds to step S107B.
(ステップS107B)
 制御装置30は、高圧圧力センサ16の検知値である高圧圧力Pdが高圧圧力閾値Pd_s_thよりも低いかどうかを判定する。制御装置30が、高圧圧力Pdが高圧圧力閾値Pd_s_thよりも低いと判定した場合(YES)、処理はステップS108に進む。一方、制御装置30が、高圧圧力Pdが高圧圧力閾値Pd_s_thよりも低くないと判定した場合(NO)、処理はステップS109に進む。
(Step S107B)
The control device 30 determines whether the high pressure Pd, which is the value detected by the high pressure sensor 16, is lower than the high pressure threshold value Pd_s_th. When the control device 30 determines that the high pressure Pd is lower than the high pressure threshold value Pd_s_th (YES), the process proceeds to step S108. On the other hand, when the control device 30 determines that the high pressure Pd is not lower than the high pressure threshold value Pd_s_th (NO), the process proceeds to step S109.
 以上、実施の形態1に係る冷凍空調装置100は、圧縮機11、凝縮器12、絞り装置21、および、蒸発器22が配管で接続され、冷媒が循環する冷媒回路1を備えている。また、冷凍空調装置100は、圧縮機11の吐出圧力を検知、または吐出圧力を算出するための温度を検知する第一センサと、圧縮機11の吸入圧力を検知、または吸入圧力を算出するための温度を検知する第二センサと、圧縮機11の吐出温度を検知する第三センサと、圧縮機11の吸入温度を検知する第四センサと、を備えている。また、冷凍空調装置100は、吐出圧力、吸入圧力、吐出温度、および、吸入温度に基づいて算出した圧縮機11の断熱効率があらかじめ設定された上限値より高い場合、あるいは、吐出温度が吐出圧力、吸入圧力、および、吸入温度に基づいて算出した吐出温度閾値よりも低い場合に、第三センサが異常であると判定する制御装置30と、を備えたものである。 As described above, the refrigerating and air-conditioning apparatus 100 according to Embodiment 1 includes the refrigerant circuit 1 in which the compressor 11, the condenser 12, the expansion device 21, and the evaporator 22 are connected by pipes and the refrigerant circulates. The refrigerating and air-conditioning apparatus 100 also includes a first sensor for detecting the discharge pressure of the compressor 11 or for detecting the temperature for calculating the discharge pressure, and a first sensor for detecting the suction pressure of the compressor 11 or for calculating the suction pressure. a second sensor that detects the temperature of the compressor 11; a third sensor that detects the discharge temperature of the compressor 11; and a fourth sensor that detects the suction temperature of the compressor 11. Further, the refrigerating and air-conditioning apparatus 100 operates when the adiabatic efficiency of the compressor 11 calculated based on the discharge pressure, the suction pressure, the discharge temperature, and the suction temperature is higher than a preset upper limit value, or when the discharge temperature exceeds the discharge pressure , and a control device 30 that determines that the third sensor is abnormal when the temperature is lower than a discharge temperature threshold calculated based on the suction pressure and the suction temperature.
 実施の形態1に係る冷凍空調装置100によれば、断熱効率があらかじめ設定された上限値より大きい場合、あるいは、吐出温度が吐出温度閾値よりも低い場合に、第三センサが異常であると判定する。そのため、異常が発生したセンサを特定することができ、特に第三センサの異常を特定することができる。また、異常が発生したセンサを特定することができるため、異常要因の特定ができ、異常箇所を早期に復旧させることができる。その結果、冷凍空調装置100の異常期間を短縮することができるとともに、異常状態で運転させる時間を短縮することができる。 According to the refrigerating and air-conditioning apparatus 100 according to Embodiment 1, it is determined that the third sensor is abnormal when the adiabatic efficiency is greater than the preset upper limit value or when the discharge temperature is lower than the discharge temperature threshold. do. Therefore, it is possible to identify the sensor in which the abnormality has occurred, and particularly to identify the abnormality of the third sensor. Moreover, since the sensor in which the abnormality has occurred can be identified, the cause of the abnormality can be identified, and the location of the abnormality can be quickly restored. As a result, the abnormal period of the refrigerating and air-conditioning apparatus 100 can be shortened, and the time during which it is operated in the abnormal state can be shortened.
 なお、圧力センサが異常の場合には、正常時よりも検知値が低くなるため、結果的に正常時と比べて冷凍空調装置100がより高い圧力で制御されることになる。そして、冷凍空調装置100がより高い圧力で制御されることになると、圧縮機11の消費電力が高くなるため、エネルギー効率が悪くなり、環境に悪い運転を行うことになってしまう。そこで、実施の形態1に記載のセンサ異常判定を行うことで、異常状態で運転させる時間を短縮することができるため、冷凍空調装置100の寿命が低下するのを抑制でき、環境負荷およびライフサイクルコストを低減することができる。 It should be noted that when the pressure sensor is abnormal, the detected value is lower than in normal times, and as a result, the refrigerating and air-conditioning apparatus 100 is controlled at a higher pressure than in normal times. If the refrigerating and air-conditioning apparatus 100 is controlled at a higher pressure, the power consumption of the compressor 11 will increase, resulting in poor energy efficiency and an environmentally unfriendly operation. Therefore, by performing the sensor abnormality determination described in Embodiment 1, it is possible to shorten the time during which the refrigerating and air-conditioning apparatus 100 is operated in an abnormal state. Cost can be reduced.
 また、実施の形態1に係る冷凍空調装置100において、制御装置30は、断熱効率があらかじめ設定された下限値より低い場合、あるいは、吐出圧力が高圧圧力閾値よりも低い場合に、第一センサが異常であると判定する。 Further, in the refrigerating and air-conditioning apparatus 100 according to Embodiment 1, the control device 30 detects that the first sensor is Judged as abnormal.
 実施の形態1に係る冷凍空調装置100によれば、第一センサの異常を特定することができる。 According to the refrigerating and air-conditioning apparatus 100 according to Embodiment 1, it is possible to identify an abnormality in the first sensor.
 また、実施の形態1に係る冷凍空調装置100において、制御装置30は、いずれかのセンサが異常である場合、圧縮機周波数を増速させない。 Also, in the refrigerating and air-conditioning apparatus 100 according to Embodiment 1, the control device 30 does not increase the compressor frequency when any sensor is abnormal.
 実施の形態1に係る冷凍空調装置100によれば、冷凍空調装置100が故障するのを回避することができる。 According to the refrigerating and air-conditioning apparatus 100 according to Embodiment 1, it is possible to prevent the refrigerating and air-conditioning apparatus 100 from breaking down.
 実施の形態2.
 以下、実施の形態2について説明するが、実施の形態1と重複するものについては説明を省略し、実施の形態1と同じ部分または相当する部分には同じ符号を付す。
Embodiment 2.
Embodiment 2 will be described below, but descriptions of parts that overlap with those of Embodiment 1 will be omitted, and parts that are the same as or correspond to those of Embodiment 1 will be given the same reference numerals.
 図8は、実施の形態2に係る冷凍空調装置100の構成を示す図である。
 実施の形態2に係る室外機10は、実施の形態1の構成に加え、圧縮機入力センサ56と、圧縮機周波数センサ57とを備えている。なお、以下において、圧縮機入力センサ56は第五センサとも称し、圧縮機周波数センサ57は周波数取得手段とも称する。
FIG. 8 is a diagram showing the configuration of a refrigerating and air-conditioning apparatus 100 according to Embodiment 2. As shown in FIG.
The outdoor unit 10 according to Embodiment 2 includes a compressor input sensor 56 and a compressor frequency sensor 57 in addition to the configuration of Embodiment 1. Note that, hereinafter, the compressor input sensor 56 is also referred to as a fifth sensor, and the compressor frequency sensor 57 is also referred to as frequency acquisition means.
 圧縮機入力センサ56は、圧縮機11に設けられており、圧縮機入力値を検知し、検知信号を制御装置30に出力する。圧縮機入力センサ56は、例えばワットメーターである。圧縮機周波数センサ57は、圧縮機11に設けられており、冷媒回路1の冷媒循環量を算出するための圧縮機周波数を検知し、検知信号を制御装置30に出力する。圧縮機周波数センサ57は、例えば振動センサあるいは加速度センサである。なお、冷媒循環量の算出には、圧縮機周波数センサ57の検知値の代わりに圧縮機11への指示周波数を用いてもよい。 A compressor input sensor 56 is provided in the compressor 11 to detect a compressor input value and output a detection signal to the control device 30 . Compressor input sensor 56 is, for example, a watt meter. The compressor frequency sensor 57 is provided in the compressor 11 , detects the compressor frequency for calculating the refrigerant circulation amount of the refrigerant circuit 1 , and outputs a detection signal to the control device 30 . Compressor frequency sensor 57 is, for example, a vibration sensor or an acceleration sensor. Note that instead of the value detected by the compressor frequency sensor 57, the indicated frequency to the compressor 11 may be used to calculate the refrigerant circulation amount.
 図9は、実施の形態2に係る冷凍空調装置100の正常時および異常時における圧縮機11の吸入側と吐出側とのエンタルピー差を示す図である。図9の縦軸は圧力[MPaG]を示しており、横軸は比エンタルピー[kJ/kg]を示している。 FIG. 9 is a diagram showing the enthalpy difference between the suction side and the discharge side of the compressor 11 when the refrigerating and air-conditioning apparatus 100 according to Embodiment 2 is normal and abnormal. The vertical axis in FIG. 9 indicates pressure [MPaG], and the horizontal axis indicates specific enthalpy [kJ/kg].
 図9は、p-h線図上に、高圧圧力センサ16および圧縮機吐出温度センサ51の正常値p0、高圧圧力センサ16の異常値pPab、圧縮機吐出温度センサ51の異常値pTab、および、その際の圧縮機11の吸入側と吐出側とのエンタルピー差Δh(REF)、Δh(Pab)、Δh(Tab)をそれぞれ示したものである。 9 shows, on the ph diagram, the normal value p0 of the high pressure sensor 16 and the compressor discharge temperature sensor 51, the abnormal value pPab of the high pressure sensor 16, the abnormal value pTab of the compressor discharge temperature sensor 51, and The enthalpy differences Δh(REF), Δh(Pab), and Δh(Tab) between the suction side and the discharge side of the compressor 11 at that time are shown, respectively.
 なお、上述のとおり、図9に示すp-h線図から圧縮機11の吸入側と吐出側とのエンタルピー差Δhを求めることができるが、下記の式によって算出することもできる。 As described above, the enthalpy difference Δh between the suction side and the discharge side of the compressor 11 can be obtained from the ph diagram shown in FIG. 9, but it can also be calculated by the following formula.
 Δh(w)=W(w)/Gr・・・・・(4)
 W(w):圧縮機入力値[W]
 Gr:冷媒循環量[kg/s]
Δh(w)=W(w)/Gr (4)
W (w): compressor input value [W]
Gr: Refrigerant circulation amount [kg/s]
 また、冷媒循環量Grは、下記の式によって算出することができる。 Also, the refrigerant circulation amount Gr can be calculated by the following formula.
 Gr=F×v×ηv×ρs・・・・・(5)
 F:圧縮機周波数[Hz]
 v:圧縮機押しのけ量[m
 ηv:圧縮機体積効率[―]
 ρs:圧縮機吸入密度[kg/m
 なお、v、ηvは、冷凍空調装置100に用いられる圧縮機11の設計仕様から定まる一定値であり、ρsは、圧縮機11の吸入温度と吸入圧力とから求められる冷媒物性値である。
Gr=F×v×ηv×ρs (5)
F: Compressor frequency [Hz]
v: Compressor displacement [m 3 ]
ηv: Compressor volumetric efficiency [-]
ρs: Compressor suction density [kg/m 3 ]
Note that v and ηv are constant values determined from the design specifications of the compressor 11 used in the refrigerating and air-conditioning system 100 , and ρs is a refrigerant physical property value determined from the suction temperature and suction pressure of the compressor 11 .
 また、p-h線図から求めた圧縮機11の吸入側と吐出側とのエンタルピー差Δh(REF)に、冷媒循環量Grを積算することで、圧縮機入力推定値W(REF)を算出することもできる。つまり、圧縮機入力推定値W(REF)は下記の式によって算出することもできる。 Further, the compressor input estimated value W (REF) is calculated by adding the refrigerant circulation amount Gr to the enthalpy difference Δh (REF) between the suction side and the discharge side of the compressor 11 obtained from the ph diagram. You can also That is, the compressor input estimated value W(REF) can also be calculated by the following formula.
 W(REF)=Δh(REF)×Gr・・・・・(6)
 Δh(REF):実際の圧縮機11の吸入側と吐出側とのエンタルピー差
 Gr:冷媒循環量[kg/s]
W(REF)=Δh(REF)×Gr (6)
Δh (REF): Actual enthalpy difference between suction side and discharge side of compressor 11 Gr: Refrigerant circulation amount [kg/s]
 そして、圧縮機入力推定値W(REF)と、圧縮機入力センサ56の検知値である圧縮機入力値W(w)とを比較することで、下記のように高圧圧力センサ16および圧縮機吐出温度センサ51の異常検知を行うことができる。 Then, by comparing the estimated compressor input value W(REF) and the compressor input value W(w) detected by the compressor input sensor 56, the high pressure sensor 16 and the compressor discharge Abnormality detection of the temperature sensor 51 can be performed.
 W(REF)=W(w):正常
 W(REF)<W(w):圧縮機吐出温度センサ51異常、もしくは圧縮機入力センサ56異常
 W(w)<W(REF):高圧圧力センサ16異常、もしくは圧縮機入力センサ56異常
W(REF)=W(w): Normal W(REF)<W(w): Compressor discharge temperature sensor 51 malfunction or compressor input sensor 56 malfunction W(w)<W(REF): High pressure sensor 16 Abnormality, or compressor input sensor 56 abnormality
 また、実際の圧縮機11の吸入側と吐出側とのエンタルピー差Δh(REF)と、圧縮機入力センサ56の検知値である圧縮機入力値W(w)を冷媒循環量Grで割って算出した圧縮機11の吸入側と吐出側とのエンタルピー差Δh(w)とを比較する。そうすることで、下記のように高圧圧力センサ16および圧縮機吐出温度センサ51の異常検知を行うことができる。 Also, it is calculated by dividing the actual enthalpy difference Δh (REF) between the suction side and the discharge side of the compressor 11 and the compressor input value W (w), which is the detection value of the compressor input sensor 56, by the refrigerant circulation amount Gr. Then, the enthalpy difference Δh(w) between the suction side and the discharge side of the compressor 11 is compared. By doing so, abnormality detection of the high pressure sensor 16 and the compressor discharge temperature sensor 51 can be performed as described below.
 Δh(REF)=Δh(w):正常
 Δh(REF)<Δh(w):圧縮機吐出温度センサ51異常、もしくは圧縮機入力センサ56異常
 Δh(w)<Δh(REF):高圧圧力センサ16異常、もしくは圧縮機入力センサ56異常
Δh(REF)=Δh(w): Normal Δh(REF)<Δh(w): Compressor discharge temperature sensor 51 malfunction or compressor input sensor 56 malfunction Δh(w)<Δh(REF): High pressure sensor 16 Abnormality, or compressor input sensor 56 abnormality
 次に、実施の形態2に係る冷凍空調装置100のセンサ異常判定処理時の制御の流れについて説明する。 Next, the flow of control during the sensor abnormality determination process of the refrigerating and air-conditioning apparatus 100 according to Embodiment 2 will be described.
 図10は、実施の形態2に係る冷凍空調装置100のセンサ異常判定モード時の制御の流れを示すフローチャートである。
 制御装置30は、所定の時間間隔毎に通常運転モードからセンサ異常判定モードに切り替え、以下に説明する異常判定の処理を行う。または、制御装置30は、運転モード切替部37からユーザーによる異常検知モードへの切替操作を受け付けたら、通常運転モードからセンサ異常判定モードに切り替え、以下に説明する異常判定の処理を行う。
FIG. 10 is a flow chart showing the flow of control in the sensor abnormality determination mode of the refrigerating and air-conditioning apparatus 100 according to the second embodiment.
The control device 30 switches from the normal operation mode to the sensor abnormality determination mode at predetermined time intervals, and performs the abnormality determination process described below. Alternatively, when receiving a user's operation to switch to the abnormality detection mode from the operation mode switching unit 37, the control device 30 switches from the normal operation mode to the sensor abnormality determination mode, and performs the abnormality determination process described below.
(ステップS201)
 制御装置30は、圧縮機11が運転中であるかどうかを判定する。制御装置30が、圧縮機11が運転中であると判定した場合(YES)、処理はステップS202に進む。一方、制御装置30が、圧縮機11が運転中ではないと判定した場合(NO)、センサ異常判定処理は終了する。このように、圧縮機11が運転中ではない場合にセンサ異常判定処理が終了するのは、圧縮機11の運転中以外にセンサ異常判定処理を実行しても、センサの異常検知を正しく行うことができないためである。
(Step S201)
Control device 30 determines whether compressor 11 is in operation. When the control device 30 determines that the compressor 11 is in operation (YES), the process proceeds to step S202. On the other hand, when the control device 30 determines that the compressor 11 is not in operation (NO), the sensor abnormality determination process ends. Thus, the reason why the sensor abnormality determination process ends when the compressor 11 is not in operation is that the sensor abnormality detection is correctly performed even if the sensor abnormality determination process is executed when the compressor 11 is not in operation. This is because it is not possible to
(ステップS202)
 制御装置30は、過渡状態でないかどうかを判定する。ここで、過渡状態とは、例えば圧縮機11の起動時、または、絞り装置21の開度が大きく変動して高圧側に貯留されている液冷媒量が変動する場合、などの運転動作が安定していない状態である。制御装置30が、過渡状態ではないと判定した場合(YES)、処理はステップS203に進む。一方、制御装置30が、過渡状態であると判定した場合(NO)、センサ異常判定処理は終了する。このように、過渡状態である場合にセンサ異常判定処理が終了するのは、過渡状態のときにセンサ異常判定処理を実行しても、センサの異常検知を正しく行うことができないためである。
(Step S202)
Control device 30 determines whether or not there is a transient state. Here, the transient state is, for example, when the compressor 11 is started, or when the opening degree of the expansion device 21 fluctuates greatly and the amount of liquid refrigerant stored on the high pressure side fluctuates. It is in a state of not doing so. When the control device 30 determines that it is not in a transient state (YES), the process proceeds to step S203. On the other hand, when the control device 30 determines that the state is in a transient state (NO), the sensor abnormality determination process ends. The reason why the sensor abnormality determination process is terminated in the transient state is that even if the sensor abnormality determination process is executed in the transient state, the sensor abnormality detection cannot be performed correctly.
(ステップS203)
 制御装置30は、高圧圧力センサ16、低圧圧力センサ17、圧縮機吐出温度センサ51、圧縮機吸入温度センサ55、圧縮機入力センサ56、および、圧縮機周波数センサ57から検知値をそれぞれ取得する。その後、処理はステップS204に進む。なお、ステップS203の処理は、ステップS202の後に限定されず、ステップS201の前あるいはステップS202の前に行ってもよい。
(Step S203)
Control device 30 acquires detection values from high pressure sensor 16, low pressure sensor 17, compressor discharge temperature sensor 51, compressor intake temperature sensor 55, compressor input sensor 56, and compressor frequency sensor 57, respectively. After that, the process proceeds to step S204. Note that the process of step S203 is not limited to after step S202, and may be performed before step S201 or before step S202.
(ステップS204)
 制御装置30は、高圧圧力センサ16、低圧圧力センサ17、圧縮機吐出温度センサ51、圧縮機吸入温度センサ55、および、圧縮機周波数センサ57の検知値に基づいて、圧縮機入力推定値W(REF)を算出する。なお、圧縮機入力推定値W(REF)の算出は、上記の式(6)を用いて行われる。その後、処理はステップS205に進む。
(Step S204)
The controller 30 calculates the estimated compressor input value W ( REF) is calculated. Note that the compressor input estimated value W(REF) is calculated using the above equation (6). After that, the process proceeds to step S205.
(ステップS205)
 制御装置30は、圧縮機入力推定値W(REF)が圧縮機入力センサ56の検知値である圧縮機入力値W(w)よりも小さいかどうかを判定する。制御装置30が、圧縮機入力推定値W(REF)が圧縮機入力値W(w)よりも小さいと判定した場合(YES)、処理はステップS206に進む。一方、制御装置30が、圧縮機入力推定値W(REF)が圧縮機入力値W(w)よりも小さくないと判定した場合(NO)、処理はステップS207に進む。
(Step S205)
The controller 30 determines whether the estimated compressor input value W(REF) is smaller than the compressor input value W(w) detected by the compressor input sensor 56 . If controller 30 determines that estimated compressor input value W(REF) is smaller than compressor input value W(w) (YES), the process proceeds to step S206. On the other hand, when controller 30 determines that compressor input estimated value W(REF) is not smaller than compressor input value W(w) (NO), the process proceeds to step S207.
(ステップS206)
 制御装置30は、圧縮機吐出温度センサ51または圧縮機入力センサ56が異常であると判定し、報知部36により、圧縮機吐出温度センサ51または圧縮機入力センサ56が異常である旨を報知する。その後、センサ異常判定処理は終了する。
(Step S206)
The controller 30 determines that the compressor discharge temperature sensor 51 or the compressor input sensor 56 is abnormal, and notifies that the compressor discharge temperature sensor 51 or the compressor input sensor 56 is abnormal by the notification unit 36. . After that, the sensor abnormality determination process ends.
(ステップS207)
 制御装置30は、圧縮機入力推定値W(REF)が圧縮機入力値W(w)よりも大きいかどうかを判定する。制御装置30が、圧縮機入力推定値W(REF)が圧縮機入力値W(w)よりも大きいと判定した場合(YES)、処理はステップS208に進む。一方、制御装置30が、圧縮機入力推定値W(REF)が圧縮機入力値W(w)よりも大きくないと判定した場合(NO)、処理はステップS209に進む。
(Step S207)
The controller 30 determines whether the estimated compressor input value W(REF) is greater than the compressor input value W(w). If controller 30 determines that estimated compressor input value W(REF) is greater than compressor input value W(w) (YES), the process proceeds to step S208. On the other hand, when controller 30 determines that estimated compressor input value W(REF) is not greater than compressor input value W(w) (NO), the process proceeds to step S209.
(ステップS208)
 制御装置30は、高圧圧力センサ16または圧縮機入力センサ56が異常であると判定し、報知部36により、高圧圧力センサ16または圧縮機入力センサ56が異常である旨を報知する。その後、センサ異常判定処理は終了する。
(Step S208)
The control device 30 determines that the high pressure sensor 16 or the compressor input sensor 56 is abnormal, and notifies that the high pressure sensor 16 or the compressor input sensor 56 is abnormal by the notification unit 36 . After that, the sensor abnormality determination process ends.
(ステップS209)
 制御装置30は、各センサが正常であると判定し、センサ異常判定処理は終了する。
(Step S209)
Control device 30 determines that each sensor is normal, and terminates the sensor abnormality determination process.
 なお、上記のセンサ異常判定処理に関して、ステップS206およびS208の処理では異常センサの特定ができていないが、実施の形態1で説明したセンサ異常判定処理を合わせて行うことで、異常センサの特定を行うことができる。例えば、ステップS206の処理を行った後、実施の形態1で説明したセンサ異常判定処理を行い、ステップS106の処理に進んだら圧縮機吐出温度センサ51が異常、ステップS108の処理に進んだら圧縮機入力センサ56が異常であると判定できる。 Regarding the sensor abnormality determination process described above, the abnormal sensor cannot be identified in the processes of steps S206 and S208, but the abnormal sensor can be identified by performing the sensor abnormality determination process described in the first embodiment. It can be carried out. For example, after performing the process of step S206, the sensor abnormality determination process described in the first embodiment is performed. If the process proceeds to step S106, the compressor discharge temperature sensor 51 is abnormal. It can be determined that the input sensor 56 is abnormal.
 次に、実施の形態2に係る冷凍空調装置100のセンサ異常検知後の処理について説明する。
 従来では、圧縮機吐出温度センサ51に異常が発生して検知値が低くなった場合、冷凍空調装置100が故障する恐れがあるため、圧縮機吐出温度センサ51および高圧圧力センサ16のうち一方のみが異常の場合でも圧縮機11を停止させていた。しかし、実施の形態2では、異常センサの特定ができ、圧縮機吐出温度センサ51が異常の場合、その異常センサを用いなくても圧縮機11の吐出状態を推定することができる。よって、実施の形態2では、センサ異常検知後でも圧縮機11を停止させることなく運転させることが可能となる。
Next, processing after sensor abnormality detection of the refrigerating and air-conditioning apparatus 100 according to Embodiment 2 will be described.
Conventionally, when an abnormality occurs in the compressor discharge temperature sensor 51 and the detection value becomes low, the refrigerating and air-conditioning system 100 may malfunction. The compressor 11 is stopped even when there is an abnormality. However, in the second embodiment, the abnormal sensor can be specified, and when the compressor discharge temperature sensor 51 is abnormal, the discharge state of the compressor 11 can be estimated without using the abnormal sensor. Therefore, in Embodiment 2, it is possible to operate the compressor 11 without stopping it even after the sensor abnormality is detected.
 ただし、センサ異常の発生時に圧縮機11を増速させると冷媒が高圧側に貯留されて高圧圧力が高くなり、冷凍空調装置100が故障する恐れがあるため、制御装置30は、センサ異常の発生を検知したら、圧縮機周波数を増速させないようにする。また、センサ異常の発生時に絞り装置21を閉めすぎると冷媒が高圧側に貯留されて高圧圧力が高くなり、冷凍空調装置100が故障する恐れがあるため、制御装置30は、センサ異常の発生を検知したら、絞り装置21を閉めないようにする。 However, if the speed of the compressor 11 is increased when a sensor abnormality occurs, the refrigerant will accumulate on the high pressure side and the high pressure will increase, which may cause the refrigerating and air-conditioning apparatus 100 to malfunction. is detected, the compressor frequency is not increased. Further, if the expansion device 21 is closed too much when a sensor abnormality occurs, the refrigerant is stored on the high pressure side and the high pressure increases, which may cause the refrigerating and air-conditioning apparatus 100 to malfunction. When it is detected, the diaphragm device 21 is not closed.
 以上、実施の形態2に係る冷凍空調装置100は、圧縮機入力値を検知する第五センサと、圧縮機周波数を取得する周波数取得手段と、を備えている。そして、制御装置30は、吐出圧力、吸入圧力、吐出温度、吸入温度、および、圧縮機周波数に基づいて算出した圧縮機入力推定値と圧縮機入力値とが異なる値である場合に、第一センサ、第三センサ、および、第五センサのうちいずれかが異常であると判定する。 As described above, the refrigerating and air-conditioning apparatus 100 according to Embodiment 2 includes the fifth sensor that detects the compressor input value and the frequency acquisition means that acquires the compressor frequency. Then, when the estimated compressor input value calculated based on the discharge pressure, the suction pressure, the discharge temperature, the suction temperature, and the compressor frequency is different from the compressor input value, the control device 30 performs the first It is determined that one of the sensor, the third sensor, and the fifth sensor is abnormal.
 また、制御装置30は、圧縮機入力推定値が圧縮機入力値よりも小さい場合に、第三センサまたは第五センサが異常であると判定する。 Also, the control device 30 determines that the third sensor or the fifth sensor is abnormal when the compressor input estimated value is smaller than the compressor input value.
 また、制御装置30は、圧縮機入力推定値が圧縮機入力値よりも大きい場合に、第一センサまたは第五センサが異常であると判定する。 Also, the control device 30 determines that the first sensor or the fifth sensor is abnormal when the compressor input estimated value is greater than the compressor input value.
 実施の形態2に係る冷凍空調装置100によれば、実施の形態1と同じ効果が得られる。 According to the refrigerating and air-conditioning apparatus 100 according to Embodiment 2, the same effect as Embodiment 1 can be obtained.
 1 冷媒回路、10 室外機、11 圧縮機、12 凝縮器、16 高圧圧力センサ、17 低圧圧力センサ、20 室内機、21 絞り装置、22 蒸発器、30 制御装置、31 記憶部、32 抽出部、33 演算部、34 比較部、35 判定部、36 報知部、37 運転モード切替部、41 液管、42 ガス管、51 圧縮機吐出温度センサ、54 凝縮器周囲温度センサ、55 圧縮機吸入温度センサ、56 圧縮機入力センサ、57 圧縮機周波数センサ、100 冷凍空調装置。 1 refrigerant circuit, 10 outdoor unit, 11 compressor, 12 condenser, 16 high pressure sensor, 17 low pressure sensor, 20 indoor unit, 21 expansion device, 22 evaporator, 30 control device, 31 storage unit, 32 extraction unit, 33 Computing section, 34 Comparing section, 35 Judging section, 36 Reporting section, 37 Operation mode switching section, 41 Liquid pipe, 42 Gas pipe, 51 Compressor discharge temperature sensor, 54 Condenser ambient temperature sensor, 55 Compressor suction temperature sensor , 56 Compressor input sensor, 57 Compressor frequency sensor, 100 Refrigerating air conditioner.

Claims (9)

  1.  圧縮機、凝縮器、絞り装置、および、蒸発器が配管で接続され、冷媒が循環する冷媒回路と、
     前記圧縮機の吐出圧力を検知、または前記吐出圧力を算出するための温度を検知する第一センサと、
     前記圧縮機の吸入圧力を検知、または前記吸入圧力を算出するための温度を検知する第二センサと、
     前記圧縮機の吐出温度を検知する第三センサと、
     前記圧縮機の吸入温度を検知する第四センサと、
     前記吐出圧力、前記吸入圧力、前記吐出温度、および、前記吸入温度に基づいて算出した前記圧縮機の断熱効率があらかじめ設定された上限値より高い場合、あるいは、前記吐出温度が前記吐出圧力、前記吸入圧力、および、前記吸入温度に基づいて算出した吐出温度閾値よりも低い場合に、前記第三センサが異常であると判定する制御装置と、を備えた
     冷凍空調装置。
    a refrigerant circuit in which a compressor, a condenser, a throttle device, and an evaporator are connected by pipes and in which the refrigerant circulates;
    a first sensor that detects the discharge pressure of the compressor or detects a temperature for calculating the discharge pressure;
    a second sensor that detects the suction pressure of the compressor or detects a temperature for calculating the suction pressure;
    a third sensor that detects the discharge temperature of the compressor;
    a fourth sensor that detects the suction temperature of the compressor;
    When the adiabatic efficiency of the compressor calculated based on the discharge pressure, the suction pressure, the discharge temperature, and the suction temperature is higher than a preset upper limit value, or the discharge temperature is higher than the discharge pressure, the A refrigerating and air-conditioning apparatus, comprising: a control device that determines that the third sensor is abnormal when the intake pressure and the discharge temperature are lower than a discharge temperature threshold calculated based on the intake temperature.
  2.  前記制御装置は、
     前記断熱効率があらかじめ設定された下限値より低い場合、あるいは、前記吐出圧力が前記吸入圧力、前記吐出温度、および、前記吸入温度に基づいて算出した高圧圧力閾値よりも低い場合に、前記第一センサが異常であると判定する
     請求項1に記載の冷凍空調装置。
    The control device is
    When the adiabatic efficiency is lower than a preset lower limit value, or when the discharge pressure is lower than a high pressure threshold calculated based on the suction pressure, the discharge temperature, and the suction temperature, the first The refrigerating and air-conditioning apparatus according to claim 1, wherein the sensor is determined to be abnormal.
  3.  圧縮機入力値を検知する第五センサと、
     圧縮機周波数を取得する周波数取得手段と、を備え、
     前記制御装置は、
     前記吐出圧力、前記吸入圧力、前記吐出温度、前記吸入温度、および、前記圧縮機周波数に基づいて算出した圧縮機入力推定値と前記圧縮機入力値とが異なる値である場合に、前記第一センサ、前記第三センサ、および、前記第五センサのうちいずれかが異常であると判定する
     請求項1または2に記載の冷凍空調装置。
    a fifth sensor for detecting compressor input;
    a frequency acquisition means for acquiring the compressor frequency,
    The control device is
    When the estimated compressor input value calculated based on the discharge pressure, the suction pressure, the discharge temperature, the suction temperature, and the compressor frequency and the compressor input value are different values, the first 3. The refrigerating and air-conditioning apparatus according to claim 1, wherein it is determined that one of the sensor, the third sensor, and the fifth sensor is abnormal.
  4.  前記制御装置は、
     前記圧縮機入力推定値が前記圧縮機入力値よりも小さい場合に、前記第三センサまたは前記第五センサが異常であると判定する
     請求項3に記載の冷凍空調装置。
    The control device is
    The refrigerating and air-conditioning apparatus according to claim 3, wherein when the estimated compressor input value is smaller than the compressor input value, it is determined that the third sensor or the fifth sensor is abnormal.
  5.  前記制御装置は、
     前記圧縮機入力推定値が前記圧縮機入力値よりも大きい場合に、前記第一センサまたは前記第五センサが異常であると判定する
     請求項3または4に記載の冷凍空調装置。
    The control device is
    5. The refrigerating and air-conditioning apparatus according to claim 3, wherein when the estimated compressor input value is greater than the compressor input value, it is determined that the first sensor or the fifth sensor is abnormal.
  6.  前記第一センサは、
     前記圧縮機の吐出側に設けられた圧力センサ、または前記凝縮器を構成する伝熱管に設けられた温度センサである
     請求項1~5のいずれか一項に記載の冷凍空調装置。
    The first sensor is
    The refrigerating and air-conditioning system according to any one of claims 1 to 5, wherein the pressure sensor is provided on the discharge side of the compressor, or the temperature sensor is provided on a heat transfer tube that constitutes the condenser.
  7.  前記第二センサは、
     前記圧縮機の吸入側に設けられた圧力センサ、または前記蒸発器を構成する伝熱管に設けられた温度センサである
     請求項1~6のいずれか一項に記載の冷凍空調装置。
    The second sensor is
    The refrigerating and air-conditioning system according to any one of claims 1 to 6, wherein the pressure sensor is provided on the suction side of the compressor, or the temperature sensor is provided on a heat transfer tube that constitutes the evaporator.
  8.  前記第四センサは、
     前記圧縮機の吸入側に設けられた温度センサ、または前記蒸発器の出口側に設けられた温度センサである
     請求項1~7のいずれか一項に記載の冷凍空調装置。
    The fourth sensor is
    The refrigerating and air-conditioning system according to any one of claims 1 to 7, wherein the temperature sensor is provided on the suction side of the compressor or the temperature sensor is provided on the outlet side of the evaporator.
  9.  前記制御装置は、
     いずれかのセンサが異常である場合、
     圧縮機周波数を増速させない
     請求項1~8のいずれか一項に記載の冷凍空調装置。
    The control device is
    If any sensor is abnormal,
    The refrigerating and air-conditioning system according to any one of claims 1 to 8, wherein the compressor frequency is not increased.
PCT/JP2021/028876 2021-05-24 2021-08-04 Refrigeration and air-conditioning device WO2022249502A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021086816A JP2022179969A (en) 2021-05-24 2021-05-24 Refrigerating air conditioner
JP2021-086816 2021-05-24

Publications (1)

Publication Number Publication Date
WO2022249502A1 true WO2022249502A1 (en) 2022-12-01

Family

ID=84229648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028876 WO2022249502A1 (en) 2021-05-24 2021-08-04 Refrigeration and air-conditioning device

Country Status (2)

Country Link
JP (1) JP2022179969A (en)
WO (1) WO2022249502A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05231754A (en) * 1992-02-24 1993-09-07 Daikin Ind Ltd Operational failure detection device for air conditioner
JP2005351575A (en) * 2004-06-11 2005-12-22 Mitsubishi Heavy Ind Ltd Air conditioning system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05231754A (en) * 1992-02-24 1993-09-07 Daikin Ind Ltd Operational failure detection device for air conditioner
JP2005351575A (en) * 2004-06-11 2005-12-22 Mitsubishi Heavy Ind Ltd Air conditioning system

Also Published As

Publication number Publication date
JP2022179969A (en) 2022-12-06

Similar Documents

Publication Publication Date Title
US11131490B2 (en) Refrigeration device having condenser unit connected to compressor unit with on-site pipe interposed therebetween and remote from the compressor unit
US20160356534A1 (en) Refrigeration cycle device
EP2578956B1 (en) Method for controlling fan for heat source heat exchanger, and air conditioning device
JP6341808B2 (en) Refrigeration air conditioner
EP3279591B1 (en) Indoor air conditioning unit
EP2320169B1 (en) Air conditioner and method for determining the amount of refrigerant therein
US11280507B2 (en) Air-conditioner
JP7257782B2 (en) air conditioning system
CN110651163B (en) Air conditioner
US20220397320A1 (en) Refrigeration cycle apparatus
KR20180080727A (en) Air conditioner and Method for controlling it
JP6628833B2 (en) Refrigeration cycle device
JP2002147905A (en) Refrigerating plant
WO2022249502A1 (en) Refrigeration and air-conditioning device
CN110836519B (en) Air conditioner refrigerant leakage detection method and detection system
WO2022249503A1 (en) Refrigeration/air-conditioning apparatus
JP7350151B2 (en) Refrigeration cycle equipment
JP7053988B2 (en) Air conditioner
KR20110074106A (en) Air conditioner and control process of the same
JP2002188874A (en) Refrigerator
US20240068723A1 (en) Refrigerant leakage detection system
US20230089678A1 (en) Refrigeration cycle apparatus
AU2013200092A1 (en) Air conditioning apparatus and air conditioning apparatus refrigerant quantity determination method
WO2021074991A1 (en) Air conditioning apparatus
CN115789985A (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21943136

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE