WO2022249433A1 - Diffusion body and illumination device - Google Patents

Diffusion body and illumination device Download PDF

Info

Publication number
WO2022249433A1
WO2022249433A1 PCT/JP2021/020331 JP2021020331W WO2022249433A1 WO 2022249433 A1 WO2022249433 A1 WO 2022249433A1 JP 2021020331 W JP2021020331 W JP 2021020331W WO 2022249433 A1 WO2022249433 A1 WO 2022249433A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
diffuser
emitted
frame
exit surface
Prior art date
Application number
PCT/JP2021/020331
Other languages
French (fr)
Japanese (ja)
Inventor
覚 岡垣
将利 西村
Original Assignee
三菱電機株式会社
三菱電機照明株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社, 三菱電機照明株式会社 filed Critical 三菱電機株式会社
Priority to JP2023523895A priority Critical patent/JP7325692B2/en
Priority to PCT/JP2021/020331 priority patent/WO2022249433A1/en
Priority to CN202180098508.8A priority patent/CN117377849A/en
Priority to EP21943078.2A priority patent/EP4328481A4/en
Publication of WO2022249433A1 publication Critical patent/WO2022249433A1/en
Priority to JP2023123969A priority patent/JP2023129712A/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • F21S8/02Lighting devices intended for fixed installation of recess-mounted type, e.g. downlighters
    • F21S8/026Lighting devices intended for fixed installation of recess-mounted type, e.g. downlighters intended to be recessed in a ceiling or like overhead structure, e.g. suspended ceiling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/02Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters for simulating daylight
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0247Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of voids or pores
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/004Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles
    • G02B6/0041Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles provided in the bulk of the light guide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0068Arrangements of plural sources, e.g. multi-colour light sources

Definitions

  • the present disclosure relates to diffusers and lighting devices.
  • the lighting device has a lighting panel mounted in a recess in the ceiling and side walls therearound.
  • the sidewalls have independently controllable triangular light emitting areas to mimic sun and shadow areas.
  • the sun and shadow areas mimic the sun areas and unlit shadow areas that would be formed by the light coming through the skylight if the lighting panel were an actual skylight. .
  • Patent Document 1 when an observer observes the lighting panel, the brightness and color of the lighting panel are different from natural scenery (for example, natural blue sky), so the observer feels unnatural. There is a problem of making
  • the present disclosure provides an observer with a natural landscape that looks as if the sunlight is shining even in an environment where the blue sky cannot be visually recognized and there is actually no sunlight. for the purpose.
  • a diffuser is a diffuser that receives first light and emits light including scattered light, and includes a light incident surface on which the first light is incident in a first direction, and , and a first light exit surface, wherein the light entrance surface is formed on an end surface of the diffuser, the first exit light is emitted from the light exit surface, and the first light of the diffuser is emitted from the light exit surface.
  • a second emitted light is emitted from a second light emitting surface other than the emitting surface, and the intensity of the first emitted light is such that the emission direction of the first emitted light approaches the first direction.
  • the correlated color temperature of the first light is lower than the correlated color temperature of the first emitted light and higher than the correlated color temperature of the second emitted light.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a lighting device according to Embodiment 1;
  • FIG. 2 is an enlarged cross-sectional view of the diffuser shown in FIG. 1;
  • FIG. FIG. 5 is a cross-sectional view showing a schematic configuration of a lighting device according to Embodiment 2;
  • FIG. 10 is a cross-sectional view showing an example of a schematic configuration of a lighting device according to Modification 1 of Embodiment 2;
  • FIG. 10 is a cross-sectional view showing another example of the schematic configuration of the lighting device according to Modification 1 of Embodiment 2;
  • FIG. 10 is a cross-sectional view showing another example of the schematic configuration of the lighting device according to Modification 1 of Embodiment 2;
  • FIG. 10 is a cross-sectional view showing another example of the schematic configuration of the lighting device according to Modification 1 of Embodiment 2;
  • FIG. 10 is a cross-sectional view showing another example of the schematic configuration of the
  • FIG. 10 is a cross-sectional view showing another example of the schematic configuration of the lighting device according to Modification 1 of Embodiment 2;
  • FIG. 10 is a cross-sectional view showing a schematic configuration of a lighting device according to Modification 2 of Embodiment 2;
  • a diffuser and a lighting device according to embodiments of the present disclosure will be described below with reference to the drawings.
  • the following embodiments are merely examples, and the embodiments can be combined as appropriate and each embodiment can be modified as appropriate.
  • the Y-axis direction is the normal direction of the light exit surface of the diffuser. If the light exit surface includes a curved surface, an inclined surface, or both, the Y-axis direction may be the direction indicated by the normal direction of the center of the light exit surface or the sum of the normal vectors of the light exit surface. good.
  • the -Y axis direction is vertically downward and the +Y axis direction is vertically upward.
  • the X-axis direction and the Z-axis direction are directions orthogonal to the Y-axis direction. When the lighting device is mounted on the ceiling, the X-axis and Z-axis directions are horizontal.
  • the +Z-axis direction is the traveling direction in the diffuser of the light incident from the light incident surface.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a lighting device 100 according to Embodiment 1.
  • lighting device 100 has diffuser 10 and light source 20 .
  • the light source 20 emits light L1 as first light.
  • the light source 20 emits, for example, light L1 toward the light incident surface 10a.
  • the light source 20 is arranged, for example, so as to face the light incident surface 10a.
  • the light source 20 is also called "the first light source 20".
  • the diffuser 10 is, for example, a plate-like member.
  • the diffuser 10 has a light incident surface 10a and a first light exit surface 10b.
  • the diffuser 10 guides the light L1 incident on the light incident surface 10a by total reflection, and scatters at least a part of the light L1 to be emitted from the first light emitting surface 10b (XZ plane). .
  • the totally reflected light is denoted by L11.
  • the light incident surface 10a receives the light L1 emitted from the light source 20 from the Z-axis direction, which is the first direction.
  • the light incident surface 10a is an end surface in contact with the ⁇ Z-axis direction end of the first light exit surface 10b.
  • the light incident surface 10a is formed on the end surface of the diffuser 10 including the end portion of the first light exit surface 10b.
  • the diffuser 10 has one light incident surface 10a.
  • the diffuser 10 may have at least one light incident surface 10a.
  • the light incident surface 10a may include a plurality of end faces of the diffuser 10, and the light L1 may enter each of the plurality of end faces.
  • the diffuser 10 is a light guide panel, which is a light transmissive member that diffuses light by transmitting, reflecting, and guiding the light.
  • the light guide panel includes a transparent resin and a scattering structure that scatters incident light to generate scattered light.
  • the scattering structures are formed by scattering particles, crystals, voids or depressions on the surface of the diffuser 10 that have a different refractive index than the diffuser 10 .
  • the diffuser 10 is formed of a transparent resin 11 and scattering particles 12 will be described.
  • FIG. 2 is an enlarged cross-sectional view of the diffuser 10 shown in FIG.
  • the diffuser 10 is made up of, for example, a transparent resin 11 that is a transparent resin member and a plurality of scattering particles 12 dispersed in the transparent resin 11 .
  • the scattering phenomenon in the diffuser 10 will be explained.
  • a part of the light L1 that has entered the diffuser 10 from the light incident surface 10a is scattered by the scattering particles 12 .
  • the light generated by scattering is labeled L12.
  • Light L12 has a dependence on the scattering angle and the wavelength of light L1.
  • the size of the scattering particles 12 is sufficiently small with respect to the wavelength of the light L1, the light L12 is isotropic. Therefore, the dependence on the scattering angle is small. is relatively higher than the scattering intensity when .
  • the degree of forward scattering is relatively greater than the degree of backward scattering.
  • the scattering intensity when the wavelength of the light L1 is short is relatively higher than the scattering intensity when the wavelength of the light L1 is long. .
  • the light L1 that has entered the diffuser 10 is emitted as first emitted light L21 and second emitted light L22.
  • the first emitted light L21 is emitted from the first light emitting surface 10b.
  • the second emitted light L22 is emitted from the second light emitting surface 10c of the diffuser 10 other than the first light emitting surface 10b.
  • the second light exit surface 10c is an end surface of the diffuser 10 facing the +Z-axis direction.
  • the second light exit surface 10c is not limited to the end face facing the +Z-axis direction, and may be at least one of the end face facing the +Y-axis direction and the end face facing the ⁇ Y-axis direction of the diffuser 10. , -Z-axis direction.
  • the second light exit surface 10c is at least one of an end face facing the +Y-axis direction, an end face facing the -Y-axis direction, an end face facing the +Z-axis direction, and an end face facing the -Z-axis direction of the diffuser 10. It is sufficient if it includes one, and it may be configured by a combination of these end faces.
  • the diffuser 10 only needs to have at least one first light exit surface 10b. Therefore, the diffuser 10 may have a plurality of first light exit surfaces 10b.
  • the incident light L1 is multiple-scattered by the scattering particles 12, so that at least part of the light L1 is emitted from the diffuser 10 as the first emitted light L21 and the second emitted light L22. Moreover, at least part of the incident light L1 is emitted from the diffuser 10 as part of the second emitted light L22 without being scattered.
  • the scattered light L12 has an incident direction of the light L1 (in other words, an emission direction of the light L1 emitted from the light source 20).
  • Forward scattering which is scattering, tends to be strong. The tendency is the same even when multiple scattering occurs within the diffuser 10, so the first emitted light L21 has dependence on the angle. That is, the intensity of the first emitted light L21 increases as the emission direction of the first emitted light L21 approaches the +Z-axis direction from the normal direction (Y-axis direction) of the first light emitting surface 10b.
  • the scattering intensity by the scattering particles 12 when the wavelength of the light L1 is long is lower than the scattering intensity when the wavelength of the light L1 is short. Therefore, for example, when the light L1 including a wide wavelength spectrum is incident on the light incident surface 10a, the short wavelength light L1 is preferentially scattered, and the correlated color temperature of the first emitted light L21 is the correlated color of the light L1. higher than the temperature. This phenomenon is the same as the principle of generating an actual blue sky, and is effective in making the diffuser 10 visually recognizable as a blue sky for the observer. Also, the second emitted light L22 includes scattered light and non-scattered light in the incident light L1. Therefore, the correlated color temperature of the light L1 is lower than the correlated color temperature of the first emitted light L21 and higher than the correlated color temperature of the second emitted light L22.
  • the average particle diameter of the plurality of scattering particles 12 is within the range of 10 nm to 3000 nm, and more preferably within the range of 50 nm to 2000 nm. is. Accordingly, the intensity of the first emitted light L21 increases as the emission direction of the first emitted light L21 approaches the +Z-axis direction from the normal direction (Y-axis direction) of the first light exit surface 10b.
  • a preferred example of the difference between the correlated color temperature of the first emitted light L21 and the correlated color temperature of the second emitted light L22 is about the same as 100K or 100K or less.
  • the emission angle of the first emission light L21 when the first emission light L21 travels in the Z-axis direction is assumed to be 0 deg, and the first emission light L21 travels in the normal direction of the first light emission surface 10b. Assume that the emission angle of the first emission light L21 at this time is 90 degrees.
  • a preferred example of the intensity ratio of the first emitted light L21 when the emission angle is 45 degrees to the intensity of the first emitted light L21 when the emission angle is 90 degrees is in the range of 1.01 times to 10 times. and more preferably in the range of 1.1 to 5 times.
  • the diffuser 10 is attached to the indoor ceiling and the light source 20 is fixed near the light entrance surface 10a, and the observer observes the first light exit surface 10b in the +Y-axis direction. At this time, the observer can visually recognize the first light emitting surface 10b as the blue sky by the first emitted light L21.
  • the oblique direction (for example, the direction of arrow V shown in FIG. 1) is the direction in which the observer approaches the incident direction of the light L1 (that is, the +Z-axis direction) from the normal direction of the first light exit surface 10b. is higher than the brightness when observing the first light exit surface 10b in the direction normal to the first light exit surface 10b (i.e., in the vertically downward direction). .
  • Such a change in luminance of the first light exit surface 10b accompanying a change in the line of sight of the observer is a phenomenon that occurs even in a natural blue sky. Even when a person actually observes a natural blue sky, the brightness of the blue sky changes depending on the altitude and the position of the sun. That is, the diffuser 10 according to Embodiment 1 can reproduce a more natural blue sky than the conventional technique. Therefore, according to Embodiment 1, even in an environment where the blue sky cannot be visually recognized and there is actually no incoming light from the sun, a natural landscape can be created as if the incoming light from the sun were illuminated. can be given to the observer.
  • the intensity of the first emitted light L21 is set to be equal to or lower than the intensity of the second emitted light L22 by designing the diffusion strength of the diffuser 10 based on the size, density, etc. of the scattering particles 12 . Thereby, the diffuser 10 can reproduce a more natural blue sky.
  • the diffuser 10 has one light incident surface 10a, but the diffuser 10 has two or more light incident surfaces 10a. It is possible to further reduce the change in luminance on the exit surface 10b. This makes it possible to reproduce a natural blue sky as described above.
  • the intensity of the first emitted light L21 increases as the emission direction of the first emitted light L21 approaches the +Z-axis direction, which is the incident direction of the light L1.
  • the correlated color temperature of the light L1 is lower than the correlated color temperature of the first emitted light L21 and higher than the correlated color temperature of the second emitted light L22. This makes it possible to cause a change in luminance of the first light exit surface 10b when an observation change occurs with respect to the first light exit surface 10b.
  • the change in brightness of the first light exit surface 10b accompanying this change in observation is a phenomenon that also occurs when a person sees a natural blue sky. Therefore, even in an environment where the blue sky cannot be visually recognized and there is actually no light from the sun, it is possible to provide the observer with a natural landscape as if the light from the sun were shining. can.
  • the diffuser 10 includes a transparent resin 11 having a light incident surface 10a and a first light exit surface 10b, and a plurality of scattering particles 12 dispersed in the transparent resin 11. and the plurality of scattering particles 12 are arranged such that the intensity of the first emitted light L21 increases as the emission direction of the first emitted light L21 approaches the Z-axis direction, and the correlated color temperature of the light L1 increases to the first It is dispersed in the transparent resin 11 so that the correlated color temperature is lower than the correlated color temperature of the first emitted light L21 and higher than the correlated color temperature of the second emitted light L22.
  • the intensity of the first emitted light L21 is equal to or lower than the intensity of the second emitted light L22. Accordingly, when the first light exit surface 10b is observed from directly below the diffuser 10, the change in luminance on the first light exit surface 10b is small. Therefore, the diffuser 10 can reproduce a more natural blue sky.
  • FIG. 3 is a cross-sectional view showing a schematic configuration of lighting device 200 according to Embodiment 2. As shown in FIG. 3, the same or corresponding components as those shown in FIG. 1 are given the same reference numerals as those shown in FIG.
  • the illumination device 200 according to Embodiment 2 differs from the illumination device 100 according to Embodiment 1 in that it further includes a frame 30 . Except for this point, the illumination device 200 according to the second embodiment is the same as the illumination device 100 according to the first embodiment.
  • the illumination device 200 has a diffuser 10, a light source 20, and a frame 30.
  • the frame 30 is arranged at the end of the diffuser 10 opposite to the light incident surface 10a.
  • the frame 30 is arranged at the end 10e of the diffuser 10 in the +Z-axis direction.
  • the end portion 10e in the +Z-axis direction is the end portion of the diffuser 10 that includes the second light exit surface 10c.
  • the frame 30 has a portion facing the plane S including the light incident surface 10a.
  • the frame 30 has a first portion 31 fixed to the end face 10d facing the +Y-axis direction of the +Z-axis direction end 10e of the diffuser 10, and a second portion 32 facing the plane S. and
  • the first portion 31 extends in the Z-axis direction.
  • the second portion 32 extends in the ⁇ Y-axis direction from the +Z-axis direction end of the first portion 31 .
  • the frame 30 is made of a light transmissive material or a light reflective material.
  • the frame 30 is made of metal, resin, glass, film, or the like, for example.
  • the frame 30 reflects, diffuses, or transmits incident light, thereby emitting the light toward the space where the observer exists. This allows the observer to perceive that the frame 30 is an area with higher luminance than the other areas of the illumination apparatus 200 when the observer observes the illumination apparatus 200 . Therefore, it is possible to provide the observer with a landscape as if the sunlight were shining into the frame 30 in the direction of the arrow A shown in FIG. Therefore, it is possible to give the observer a more natural scenery.
  • the light that enters the frame 30 is, for example, at least part of the light L1 emitted from the light source 20, the first emitted light L21, and the second emitted light L22.
  • the frame 30 is fixed to the +Z-axis direction end portion 10e of the diffuser 10 including the second light exit surface 10c. Since the second emitted light L22 is emitted from the second light emitting surface 10c, the light that enters the frame 30 is mainly the second emitted light L22.
  • another light source (not shown) different from the light source 20 may be arranged near the frame 30 .
  • the frame 30 can make the brightness of the frame 30 higher than the brightness of the other regions of the illumination device 200 by reflecting, diffusing, transmitting, or the like the light incident from the other light source.
  • Embodiment 2 similarly to the first embodiment, when a change in observation occurs with respect to the first light exit surface 10b, a change in luminance of the first light exit surface 10b is caused. be able to.
  • the change in brightness of the first light exit surface 10b accompanying this change in observation is a phenomenon that also occurs when a person sees a natural blue sky. Therefore, even in an environment where the blue sky cannot be visually recognized and there is actually no light from the sun, it is possible to provide the observer with a natural landscape as if the light from the sun were shining. can.
  • the lighting device 200 has the frame 30 arranged at the end portion 10e of the diffuser 10 opposite to the light incident surface 10a.
  • the light emitted from the diffuser 10 enters the frame 30, and the luminance of the frame 30 is higher than the luminance of other regions of the illumination device 200. can be raised. Therefore, it is possible to provide the observer with a landscape as if sunlight is shining through the frame 30 . Therefore, it is possible to give the observer a more natural scenery.
  • FIG. 4 is a cross-sectional view schematically showing an example of the configuration of a lighting device 200A according to Modification 1 of Embodiment 2.
  • FIG. 5, 6 and 7 are cross-sectional views schematically showing other examples of the configuration of a lighting device 200A according to Modification 1 of Embodiment 2.
  • FIG. 4 to 7 components that are the same as or correspond to those shown in FIG. 3 are labeled with the same reference numerals as those shown in FIG.
  • Illuminating device 200A according to Modification 1 of Embodiment 2 differs from illuminating device 200 according to Embodiment 2 in terms of the placement location of frame 30A. Except for this point, the lighting device 200A according to the first modification of the second embodiment is the same as the lighting device 200 according to the second embodiment.
  • the illumination device 200A has a diffuser 10, a light source 20, and a frame 30A.
  • the frame 30A is also arranged at the end 10e of the diffuser 10 in the +Z-axis direction, like the frame 30 shown in FIG. Specifically, the frame 30A is arranged at a position facing the plane S including the light entrance surface 10a and in contact with the first light exit surface 10b. In this case also, at least part of the light L1 emitted from the light source 20, the first emitted light L21, and the second emitted light L22 enters the frame 30A.
  • the frame 30A reflects, diffuses, and transmits incident light, thereby making the brightness of the frame 30A higher than the brightness of other regions of the illumination device 200A.
  • the frame 30A includes a first portion 31A fixed to the first light exit surface 10b and facing a plane S including the light entrance surface 10a, and an end portion of the first portion 31A in the -Y-axis direction. and a second portion 32A extending in the +Z-axis direction.
  • the angle formed by the first portion 31A and the second portion 32A is a right angle.
  • the illumination device 200A may further have a second light source 40 arranged near the frame 30A.
  • the second light source 40 is arranged outside the frame 30A. Specifically, the second light source 40 faces the second portion 32A of the frame 30A in the ⁇ Y-axis direction and is arranged on the +Z-axis side of the second light exit surface 10c of the diffuser 10. .
  • the second light source 40 emits light L2 as second light.
  • the second light source 40 has, for example, the same configuration as the first light source 20 . Note that the second light source 40 may have a configuration different from that of the first light source 20 .
  • the frame 30A directs the incident light L2 from the second light source 40 to the space 110 facing the first light exit surface 10b (that is, the space where the first exit light L21 is emitted). lead. Specifically, the frame 30A reflects, diffuses, and transmits the light L2. Thereby, the brightness of the frame 30A can be made higher than the brightness of other regions of the illumination device 200A.
  • the second light source 40 may be arranged near the end face 10d facing the +Y-axis direction on the side opposite to the first light exit face 10b of the diffuser 10.
  • the second light source 40 is arranged on the +Y-axis side of the end surface 10d of the diffuser 10 facing the +Y-axis direction. That is, the second light source 40 may be arranged at a position facing the end face 10d of the diffuser 10 facing the +Y-axis direction.
  • the frame 30A reflects, diffuses, and transmits the light transmitted through the diffuser 10 out of the light L2 emitted by the second light source 40 .
  • the frame 30A may guide at least part of the light L2 to the space 110 facing the first light exit surface 10b.
  • the brightness of the frame 30A can be made higher than the brightness of other areas of the illumination device 200A.
  • the shape of the frame 30A is not limited to the shapes shown in FIGS. As shown in FIG. 7, the first portion 31A of the frame 30A fixed to the first light exit surface 10b is positioned in front of the first light exit surface 10b as the distance from the first light exit surface 10b increases. You may incline with respect to the normal line of the 1st light-projection surface 10b so that space may spread.
  • the illumination device 200A is arranged in the diffuser 10 at a position facing the plane S including the light entrance surface 10a and in contact with the first light exit surface 10b. It has a frame 30A arranged. This makes it easier for the first emitted light L21 emitted from the first light emitting surface 10b to enter the frame 30A, so that the brightness of the frame 30A can be made higher than the brightness of other regions of the illumination device 200A. Therefore, it is possible to provide the observer with a landscape as if sunlight were shining through the frame 30A. Therefore, the observer's recognition of the position of the sun is strengthened, so that a more natural scenery can be given to the observer.
  • illumination device 200A further includes second light source 40 that emits light L2, and frame 30A emits at least part of light L2 from the first light exit surface. lead to space 110 facing 10b.
  • the light L2 emitted by the second light source 40 is made incident on the frame 30A, and the incident light L2 is reflected, diffused, transmitted, etc., so that the brightness of the frame 30A is changed to the brightness of other regions of the illumination device 200A. can be made even higher.
  • FIG. 8 is a cross-sectional view showing a schematic configuration of a lighting device 200B according to Modification 2 of Embodiment 2.
  • the same or corresponding components as those shown in FIG. 3 are given the same reference numerals as those shown in FIG.
  • a lighting device 200B according to Modification 2 of Embodiment 2 differs from lighting device 200 according to Embodiment 2 in the configuration of frame 30B. Except for this point, the lighting device 200B according to the second modification of the second embodiment is the same as the lighting device 200 according to the second embodiment.
  • the illumination device 200B is composed of a diffuser 10, a light source 20, and a frame 30B.
  • the frame 30B is a member (frame body) that surrounds the space 110 facing the first light exit surface 10b.
  • the frame 30B may be a frame surrounding the diffuser 10 .
  • the frame 30B may be a frame surrounding both the space 110 facing the first light exit surface 10b and the diffuser 10. As shown in FIG.
  • the frame 30B has a bright area 51 and a dark area 52.
  • the bright region 51 is a region with high brightness
  • the dark region 52 is a region with a lower brightness than the bright region 51 .
  • the bright region 51 and the dark region 52 are formed by providing regions having different light transmittance or light reflectance in the frame 30B.
  • the observer can perceive the bright region 51 and the dark region 52 as sunshine and shade formed on the window frame. In other words, the observer can feel as if actual sunlight, that is, natural light is coming from the diffuser 10 in the direction of arrow A shown in FIG. Therefore, the observer can further feel that a pseudo blue sky is being reproduced by lighting device 200B.
  • frame 30B of lighting device 200B has bright region 51 and dark region 52 .
  • the observer can perceive the bright region 51 and the dark region 52 as sunshine and shade formed on the window frame.
  • the observer can feel as if actual sunlight, that is, natural light is coming through the diffuser 10 . Therefore, the observer can feel that a pseudo blue sky is being reproduced by lighting device 200B.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

A diffusion body (10) receives incoming first light (L1) and emits scattered light. The diffusion body (10) has one light-entering surface (10a) through which the first light (L1) enters in a first direction and a first light-emitting surface (10b). The light-entering surface (10a) is formed on an end face of the diffusion body (10). First emitted light (L21) is emitted from the first light-emitting surface (10b). Second emitted light (L22) is emitted from a second light-emitting surface (10c), which is a surface other than the first light-emitting surface (10b) of the diffusion body (10). The intensity of the first emitted light (L21) increases as the emitted direction of the first emitted light (L21) is closer to the first direction. The correlated color temperature of the first light (L1) is lower than the correlated color temperature of the first emitted light (L21) and is higher than the correlated color temperature of the second emitted light (L22).

Description

拡散体及び照明装置Diffuser and Lighting Device
 本開示は、拡散体及び照明装置に関する。 The present disclosure relates to diffusers and lighting devices.
 天井の凹部に取り付けられ、疑似的な天窓の形態を備えた照明装置の提案がある(例えば、特許文献1を参照)。この照明装置は、天井の凹部に取り付けられた照明パネルとそのまわりの側壁とを有している。側壁は、独立して制御可能な三角形発光領域を有しており、日なた部分と影部分とを模している。日なた部分と影部分とは、照明パネルが実際の天窓であったならば天窓から差し込む光によって形成されると思われる日なた領域と、光の当たらない影領域とを模している。 There is a proposal for a lighting device that is attached to a recess in the ceiling and has the form of a pseudo skylight (see Patent Document 1, for example). The lighting device has a lighting panel mounted in a recess in the ceiling and side walls therearound. The sidewalls have independently controllable triangular light emitting areas to mimic sun and shadow areas. The sun and shadow areas mimic the sun areas and unlit shadow areas that would be formed by the light coming through the skylight if the lighting panel were an actual skylight. .
特許第6081663号公報Japanese Patent No. 6081663
 しかしながら、特許文献1では、観察者が照明パネルを観察した際に、当該照明パネルにおける明るさ及び色が自然な造景(例えば、自然な青空)と異なるため、観察者に不自然さを感じさせるという課題がある。 However, in Patent Document 1, when an observer observes the lighting panel, the brightness and color of the lighting panel are different from natural scenery (for example, natural blue sky), so the observer feels unnatural. There is a problem of making
 本開示は、青空を視認できず、実際に太陽からの差し込み光がないような環境であっても、あたかも太陽からの差し込み光が照射されているかのような自然な造景を観察者に与えることを目的とする。 The present disclosure provides an observer with a natural landscape that looks as if the sunlight is shining even in an environment where the blue sky cannot be visually recognized and there is actually no sunlight. for the purpose.
 本開示の一態様に係る拡散体は、第1の光を入射して散乱光を含む光を出射する拡散体であって、前記第1の光が第1の方向に入射する光入射面と、第1の光出射面とを有し、前記光入射面は、前記拡散体の端面に形成され、前記光出射面から第1の出射光が出射し、前記拡散体の前記第1の光出射面以外の面である第2の光出射面から第2の出射光が出射し、前記第1の出射光の強度は、前記第1の出射光の出射方向が前記第1の方向に近づくほど高くなり、前記第1の光の相関色温度は、前記第1の出射光の相関色温度より低く、前記第2の出射光の相関色温度より高い、ことを特徴とする。 A diffuser according to an aspect of the present disclosure is a diffuser that receives first light and emits light including scattered light, and includes a light incident surface on which the first light is incident in a first direction, and , and a first light exit surface, wherein the light entrance surface is formed on an end surface of the diffuser, the first exit light is emitted from the light exit surface, and the first light of the diffuser is emitted from the light exit surface. A second emitted light is emitted from a second light emitting surface other than the emitting surface, and the intensity of the first emitted light is such that the emission direction of the first emitted light approaches the first direction. The correlated color temperature of the first light is lower than the correlated color temperature of the first emitted light and higher than the correlated color temperature of the second emitted light.
 本開示によれば、あたかも太陽からの差し込み光が照射されているかのような自然な造景を観察者に与えることができる。 According to the present disclosure, it is possible to provide the observer with a natural landscape as if the light from the sun were illuminated.
実施の形態1に係る照明装置の概略的な構成を示す断面図である。1 is a cross-sectional view showing a schematic configuration of a lighting device according to Embodiment 1; FIG. 図1に示される拡散体の拡大断面図である。2 is an enlarged cross-sectional view of the diffuser shown in FIG. 1; FIG. 実施の形態2に係る照明装置の概略的な構成を示す断面図である。FIG. 5 is a cross-sectional view showing a schematic configuration of a lighting device according to Embodiment 2; 実施の形態2の変形例1に係る照明装置の概略的な構成の一例を示す断面図である。FIG. 10 is a cross-sectional view showing an example of a schematic configuration of a lighting device according to Modification 1 of Embodiment 2; 実施の形態2の変形例1に係る照明装置の概略的な構成の他の例を示す断面図である。FIG. 10 is a cross-sectional view showing another example of the schematic configuration of the lighting device according to Modification 1 of Embodiment 2; 実施の形態2の変形例1に係る照明装置の概略的な構成の他の例を示す断面図である。FIG. 10 is a cross-sectional view showing another example of the schematic configuration of the lighting device according to Modification 1 of Embodiment 2; 実施の形態2の変形例1に係る照明装置の概略的な構成の他の例を示す断面図である。FIG. 10 is a cross-sectional view showing another example of the schematic configuration of the lighting device according to Modification 1 of Embodiment 2; 実施の形態2の変形例2に係る照明装置の概略的な構成を示す断面図である。FIG. 10 is a cross-sectional view showing a schematic configuration of a lighting device according to Modification 2 of Embodiment 2;
 以下に、本開示の実施の形態に係る拡散体及び照明装置を、図面を参照しながら説明する。以下の実施の形態は、例にすぎず、実施の形態を適宜組み合わせること及び各実施の形態を適宜変更することが可能である。 A diffuser and a lighting device according to embodiments of the present disclosure will be described below with reference to the drawings. The following embodiments are merely examples, and the embodiments can be combined as appropriate and each embodiment can be modified as appropriate.
 図面には、説明の理解を容易にするために、XYZ直交座標系の座標軸が示されている。Y軸方向は、拡散体の光出射面の法線方向である。なお、光出射面が曲面又は傾斜面又はこれらの両方を含んでいる場合、Y軸方向は、光出射面の中心部の法線方向又は光出射面の法線ベクトルの和が示す方向としてもよい。照明装置が天井に取り付けられた場合、-Y軸方向は鉛直下方向であり、+Y軸方向は鉛直上方向である。X軸方向及びZ軸方向は、Y軸方向に直交する方向である。照明装置が天井に取り付けられた場合、X軸方向及びZ軸方向は、水平方向である。+Z軸方向は、光入射面から入射した光の拡散体内における進行方向である。 In the drawing, the coordinate axes of the XYZ orthogonal coordinate system are shown to facilitate understanding of the explanation. The Y-axis direction is the normal direction of the light exit surface of the diffuser. If the light exit surface includes a curved surface, an inclined surface, or both, the Y-axis direction may be the direction indicated by the normal direction of the center of the light exit surface or the sum of the normal vectors of the light exit surface. good. When the lighting device is mounted on the ceiling, the -Y axis direction is vertically downward and the +Y axis direction is vertically upward. The X-axis direction and the Z-axis direction are directions orthogonal to the Y-axis direction. When the lighting device is mounted on the ceiling, the X-axis and Z-axis directions are horizontal. The +Z-axis direction is the traveling direction in the diffuser of the light incident from the light incident surface.
 《実施の形態1》
 図1は、実施の形態1に係る照明装置100の概略的な構成を示す断面図である。図1に示されるように、照明装置100は、拡散体10と、光源20とを有している。
<<Embodiment 1>>
FIG. 1 is a cross-sectional view showing a schematic configuration of a lighting device 100 according to Embodiment 1. FIG. As shown in FIG. 1, lighting device 100 has diffuser 10 and light source 20 .
 光源20は、第1の光としての光L1を発する。光源20は、例えば、光L1を光入射面10aに向けて発する。光源20は、例えば、光入射面10aと向き合うように配置されている。なお、以下の説明では、光源20を「第1の光源20」とも呼ぶ。 The light source 20 emits light L1 as first light. The light source 20 emits, for example, light L1 toward the light incident surface 10a. The light source 20 is arranged, for example, so as to face the light incident surface 10a. In addition, in the following description, the light source 20 is also called "the first light source 20".
 拡散体10は、例えば、板状の部材である。拡散体10は、光入射面10aと、第1の光出射面10bとを有している。拡散体10は、光入射面10aに入射した光L1を全反射によって導光しつつ、当該光L1の少なくとも一部を散乱させて第1の光出射面10b(X-Z平面)から出射する。図1では、全反射する光は、符号L11で示されている。 The diffuser 10 is, for example, a plate-like member. The diffuser 10 has a light incident surface 10a and a first light exit surface 10b. The diffuser 10 guides the light L1 incident on the light incident surface 10a by total reflection, and scatters at least a part of the light L1 to be emitted from the first light emitting surface 10b (XZ plane). . In FIG. 1, the totally reflected light is denoted by L11.
 光入射面10aは、光源20から発せられた光L1を第1の方向であるZ軸方向から入射する。光入射面10aは、第1の光出射面10bの-Z軸方向の端部と接する端面である。このように、光入射面10aは、第1の光出射面10bの端部を含む拡散体10の端面に形成されている。図1に示す例では、拡散体10は、1つの光入射面10aを有している。なお、拡散体10は、少なくとも1つの光入射面10aを有していればよい。言い換えれば、光入射面10aは、拡散体10の複数の端面を含み、当該複数の端面の各々に光L1が入射してもよい。 The light incident surface 10a receives the light L1 emitted from the light source 20 from the Z-axis direction, which is the first direction. The light incident surface 10a is an end surface in contact with the −Z-axis direction end of the first light exit surface 10b. Thus, the light incident surface 10a is formed on the end surface of the diffuser 10 including the end portion of the first light exit surface 10b. In the example shown in FIG. 1, the diffuser 10 has one light incident surface 10a. Note that the diffuser 10 may have at least one light incident surface 10a. In other words, the light incident surface 10a may include a plurality of end faces of the diffuser 10, and the light L1 may enter each of the plurality of end faces.
 拡散体10の具体的な構成の一例として、光を透過、反射及び導光させることによって拡散させる光透過性部材である導光パネルが挙げられる。この場合、導光パネルには、透明樹脂と、入射した光を散乱させて散乱光を発生させる散乱構造とが備えられている。散乱構造は、拡散体10と異なる屈折率を有する散乱粒子、結晶、ボイド又は拡散体10の表面上の凹部などによって形成されている。以下の説明では、拡散体10が、透明樹脂11と散乱粒子12とによって形成される例を説明する。 An example of a specific configuration of the diffuser 10 is a light guide panel, which is a light transmissive member that diffuses light by transmitting, reflecting, and guiding the light. In this case, the light guide panel includes a transparent resin and a scattering structure that scatters incident light to generate scattered light. The scattering structures are formed by scattering particles, crystals, voids or depressions on the surface of the diffuser 10 that have a different refractive index than the diffuser 10 . In the following description, an example in which the diffuser 10 is formed of a transparent resin 11 and scattering particles 12 will be described.
 図2は、図1に示される拡散体10の拡大断面図である。図2に示されるように、拡散体10は、例えば、透明の樹脂部材である透明樹脂11と、透明樹脂11内に分散された複数の散乱粒子12とによって形成されている。 FIG. 2 is an enlarged cross-sectional view of the diffuser 10 shown in FIG. As shown in FIG. 2, the diffuser 10 is made up of, for example, a transparent resin 11 that is a transparent resin member and a plurality of scattering particles 12 dispersed in the transparent resin 11 .
 次に、拡散体10における散乱現象について説明する。光入射面10aから拡散体10内に入射した光L1の一部は、散乱粒子12によって散乱する。図2では、散乱によって発生した光は、符号L12で示されている。光L12は、散乱角度及び光L1の波長に対する依存性を有している。散乱粒子12の大きさが光L1の波長に対して十分小さい場合、光L12は等方的であるため、散乱角度に対する依存性は小さく、光L1の波長が短いときの散乱強度は、当該波長が長いときの散乱強度より相対的に高くなる。一方で、散乱粒子12の大きさが光L1の波長と近しい場合は、前方散乱の程度が後方散乱の程度より相対的に大きくなる。また、散乱粒子12の大きさが光L1の波長と近しい大きさである場合も、光L1の波長が短いときの散乱強度は、光L1の波長が長いときの散乱強度より相対的に高くなる。 Next, the scattering phenomenon in the diffuser 10 will be explained. A part of the light L1 that has entered the diffuser 10 from the light incident surface 10a is scattered by the scattering particles 12 . In FIG. 2, the light generated by scattering is labeled L12. Light L12 has a dependence on the scattering angle and the wavelength of light L1. When the size of the scattering particles 12 is sufficiently small with respect to the wavelength of the light L1, the light L12 is isotropic. Therefore, the dependence on the scattering angle is small. is relatively higher than the scattering intensity when . On the other hand, when the size of the scattering particles 12 is close to the wavelength of the light L1, the degree of forward scattering is relatively greater than the degree of backward scattering. Also when the size of the scattering particles 12 is close to the wavelength of the light L1, the scattering intensity when the wavelength of the light L1 is short is relatively higher than the scattering intensity when the wavelength of the light L1 is long. .
 図1に示されるように、拡散体10内に入射した光L1の少なくとも一部は、第1の出射光L21及び第2の出射光L22として出射される。第1の出射光L21は、第1の光出射面10bから出射する。第2の出射光L22は、拡散体10の第1の光出射面10b以外の面である第2の光出射面10cから出射する。図1に示す例では、第2の光出射面10cは、拡散体10の+Z軸方向を向く端面である。なお、第2の光出射面10cは、+Z軸方向を向く端面に限らず、拡散体10の+Y軸方向を向く端面及び-Y軸方向を向く端面のうちの少なくとも1つであってもよく、-Z軸方向を向く端面であってもよい。言い換えれば、第2の光出射面10cは、拡散体10の+Y軸方向を向く端面、-Y軸方向を向く端面、+Z軸方向を向く端面及び-Z軸方向を向く端面のうちの少なくとも1つを含んでいればよく、これらの端面の組み合わせによって構成されていてもよい。また、拡散体10は、少なくとも1つの第1の光出射面10bを有していればよい。そのため、拡散体10は、複数の第1の光出射面10bを有していてもよい。 As shown in FIG. 1, at least part of the light L1 that has entered the diffuser 10 is emitted as first emitted light L21 and second emitted light L22. The first emitted light L21 is emitted from the first light emitting surface 10b. The second emitted light L22 is emitted from the second light emitting surface 10c of the diffuser 10 other than the first light emitting surface 10b. In the example shown in FIG. 1, the second light exit surface 10c is an end surface of the diffuser 10 facing the +Z-axis direction. The second light exit surface 10c is not limited to the end face facing the +Z-axis direction, and may be at least one of the end face facing the +Y-axis direction and the end face facing the −Y-axis direction of the diffuser 10. , -Z-axis direction. In other words, the second light exit surface 10c is at least one of an end face facing the +Y-axis direction, an end face facing the -Y-axis direction, an end face facing the +Z-axis direction, and an end face facing the -Z-axis direction of the diffuser 10. It is sufficient if it includes one, and it may be configured by a combination of these end faces. Moreover, the diffuser 10 only needs to have at least one first light exit surface 10b. Therefore, the diffuser 10 may have a plurality of first light exit surfaces 10b.
 このように、入射した光L1は散乱粒子12によって多重散乱されることによって、光L1の少なくとも一部が第1の出射光L21、第2の出射光L22として拡散体10から出射する。また、入射した光L1の少なくとも一部は散乱されずに、第2の出射光L22の一部として拡散体10から出射する。 In this way, the incident light L1 is multiple-scattered by the scattering particles 12, so that at least part of the light L1 is emitted from the diffuser 10 as the first emitted light L21 and the second emitted light L22. Moreover, at least part of the incident light L1 is emitted from the diffuser 10 as part of the second emitted light L22 without being scattered.
 ここで、上述した通り、散乱粒子12の大きさが光L1の波長と近しい場合、散乱した光L12では、光L1の入射方向(言い換えれば、光源20から出射される光L1の出射方向)の散乱である前方散乱が強い傾向にある。拡散体10内で多重散乱が発生した場合においても当該傾向は同様であるため、第1の出射光L21は、角度に対する依存性を有している。すなわち、第1の出射光L21の強度は、第1の出射光L21の出射方向が第1の光出射面10bの法線方向(Y軸方向)から+Z軸方向に近づくほど、高くなる。 Here, as described above, when the size of the scattering particles 12 is close to the wavelength of the light L1, the scattered light L12 has an incident direction of the light L1 (in other words, an emission direction of the light L1 emitted from the light source 20). Forward scattering, which is scattering, tends to be strong. The tendency is the same even when multiple scattering occurs within the diffuser 10, so the first emitted light L21 has dependence on the angle. That is, the intensity of the first emitted light L21 increases as the emission direction of the first emitted light L21 approaches the +Z-axis direction from the normal direction (Y-axis direction) of the first light emitting surface 10b.
 光L1の波長が長い場合の散乱粒子12による散乱強度は、光L1の波長が短い場合の散乱強度より低くなる。そのため、例えば、幅広い波長スペクトルを含む光L1が光入射面10aに入射した場合、短波長の光L1が優先的に散乱され、第1の出射光L21の相関色温度は、光L1の相関色温度より高くなる。この現象は、実際の青空の発生原理と同一であり、観察者に対して拡散体10を青空として視認させるために有効である。また、第2の出射光L22は、入射した光L1の内の散乱した光と散乱されなかった光とを含む。そのため、光L1の相関色温度は、第1の出射光L21の相関色温度より低く、第2の出射光L22の相関色温度より高くなる。 The scattering intensity by the scattering particles 12 when the wavelength of the light L1 is long is lower than the scattering intensity when the wavelength of the light L1 is short. Therefore, for example, when the light L1 including a wide wavelength spectrum is incident on the light incident surface 10a, the short wavelength light L1 is preferentially scattered, and the correlated color temperature of the first emitted light L21 is the correlated color of the light L1. higher than the temperature. This phenomenon is the same as the principle of generating an actual blue sky, and is effective in making the diffuser 10 visually recognizable as a blue sky for the observer. Also, the second emitted light L22 includes scattered light and non-scattered light in the incident light L1. Therefore, the correlated color temperature of the light L1 is lower than the correlated color temperature of the first emitted light L21 and higher than the correlated color temperature of the second emitted light L22.
 また、実施の形態1に係る拡散体10の好適な構成例として、複数の散乱粒子12の平均粒子径は、10nmから3000nmまでの範囲内であって、更に好ましくは50nmから2000nmまでの範囲内である。これにより、第1の出射光L21の強度が、第1の出射光L21の出射方向が第1の光出射面10bの法線方向(Y軸方向)から+Z軸方向に近づくほど、高くなる。 Further, as a preferred configuration example of the diffuser 10 according to Embodiment 1, the average particle diameter of the plurality of scattering particles 12 is within the range of 10 nm to 3000 nm, and more preferably within the range of 50 nm to 2000 nm. is. Accordingly, the intensity of the first emitted light L21 increases as the emission direction of the first emitted light L21 approaches the +Z-axis direction from the normal direction (Y-axis direction) of the first light exit surface 10b.
 また、第1の出射光L21の相関色温度と第2の出射光L22の相関色温度との差の好適例としては、100Kと同程度又は100K以下である。また、第1の出射光L21がZ軸方向に進むときの当該第1の出射光L21の出射角度を0degとし、第1の出射光L21が第1の光出射面10bの法線方向に進むときの当該第1の出射光L21の出射角度を90degとする。ここで、出射角度が90degのときの第1の出射光L21の強度に対する出射角度が45degのときの第1の出射光L21の強度比の好適例は1.01倍から10倍までの範囲内であって、更に好ましくは1.1倍から5倍までの範囲内である。 A preferred example of the difference between the correlated color temperature of the first emitted light L21 and the correlated color temperature of the second emitted light L22 is about the same as 100K or 100K or less. Further, the emission angle of the first emission light L21 when the first emission light L21 travels in the Z-axis direction is assumed to be 0 deg, and the first emission light L21 travels in the normal direction of the first light emission surface 10b. Assume that the emission angle of the first emission light L21 at this time is 90 degrees. Here, a preferred example of the intensity ratio of the first emitted light L21 when the emission angle is 45 degrees to the intensity of the first emitted light L21 when the emission angle is 90 degrees is in the range of 1.01 times to 10 times. and more preferably in the range of 1.1 to 5 times.
 仮に、拡散体10が屋内の天井に取り付けられ、光源20が光入射面10aの近傍に固定された状態において、観察者が第1の光出射面10bを+Y軸方向に観察したとする。このとき、観察者は、第1の出射光L21によって第1の光出射面10bを青空と視認できる。また、観察者が、第1の光出射面10bの法線方向から光L1の入射方向(すなわち、+Z軸方向)に近づく方向である斜め方向(例えば、図1に示される矢印Vの向き)に第1の光出射面10bを観察したときの輝度は、第1の光出射面10bの法線方向(すなわち、鉛直下方向)に第1の光出射面10bを観察したときの輝度より高い。このような観察者の視線の変化(以下、「観察変化」とも呼ぶ。)に伴う第1の光出射面10bの輝度の変化は、自然な青空においても発生する現象である。人が実際に自然な青空を観察した場合にも、高度及び太陽の位置次第で、青空の輝度は変化する。すなわち、実施の形態1に係る拡散体10は、従来技術と比べてより自然な青空を再現することができる。よって、実施の形態1によれば、青空を視認できず、実際に太陽からの差し込み光がないような環境であっても、太陽からの差し込み光が照射されているかのような自然な造景を観察者に与えることができる。 Suppose that the diffuser 10 is attached to the indoor ceiling and the light source 20 is fixed near the light entrance surface 10a, and the observer observes the first light exit surface 10b in the +Y-axis direction. At this time, the observer can visually recognize the first light emitting surface 10b as the blue sky by the first emitted light L21. In addition, the oblique direction (for example, the direction of arrow V shown in FIG. 1) is the direction in which the observer approaches the incident direction of the light L1 (that is, the +Z-axis direction) from the normal direction of the first light exit surface 10b. is higher than the brightness when observing the first light exit surface 10b in the direction normal to the first light exit surface 10b (i.e., in the vertically downward direction). . Such a change in luminance of the first light exit surface 10b accompanying a change in the line of sight of the observer (hereinafter also referred to as "observation change") is a phenomenon that occurs even in a natural blue sky. Even when a person actually observes a natural blue sky, the brightness of the blue sky changes depending on the altitude and the position of the sun. That is, the diffuser 10 according to Embodiment 1 can reproduce a more natural blue sky than the conventional technique. Therefore, according to Embodiment 1, even in an environment where the blue sky cannot be visually recognized and there is actually no incoming light from the sun, a natural landscape can be created as if the incoming light from the sun were illuminated. can be given to the observer.
 また、第1の光出射面10bに対する観察変化が微小な場合、例えば、拡散体10の真下から第1の光出射面10bを観察した場合には、第1の光出射面10bにおける輝度の変化は小さいことが好ましい。そのため、拡散体10の拡散の強さを散乱粒子12の大きさ、濃度等で設計することによって、第1の出射光L21の強度を第2の出射光L22の強度と同等もしくは低く設定する。これにより、拡散体10は、より自然な青空を再現することができる。 Further, when the observation change with respect to the first light exit surface 10b is very small, for example, when the first light exit surface 10b is observed from directly below the diffuser 10, the change in luminance on the first light exit surface 10b is is preferably small. Therefore, the intensity of the first emitted light L21 is set to be equal to or lower than the intensity of the second emitted light L22 by designing the diffusion strength of the diffuser 10 based on the size, density, etc. of the scattering particles 12 . Thereby, the diffuser 10 can reproduce a more natural blue sky.
 また、図1に示す例では、拡散体10は1つの光入射面10aを有しているが、拡散体10が2つ以上の光入射面10aを有していることにより、第1の光出射面10bにおける輝度の変化を更に小さくすることができる。これにより、上述したように、自然な青空を再現することができる。 Further, in the example shown in FIG. 1, the diffuser 10 has one light incident surface 10a, but the diffuser 10 has two or more light incident surfaces 10a. It is possible to further reduce the change in luminance on the exit surface 10b. This makes it possible to reproduce a natural blue sky as described above.
 〈実施の形態1の効果〉
 以上に説明した実施の形態1によれば、第1の出射光L21の強度が、第1の出射光L21の出射方向が光L1の入射方向である+Z軸方向に近づくほど高くなる。また、光L1の相関色温度は、第1の出射光L21の相関色温度より低く、第2の出射光L22の相関色温度より高い。これにより、第1の光出射面10bに対する観察変化が生じた場合に、第1の光出射面10bの輝度の変化を生じさせることができる。この観察変化に伴う第1の光出射面10bの輝度の変化は、人が自然な青空を見るときにも発生する現象である。よって、青空を視認できず、実際に太陽からの差し込み光がないような環境であっても、あたかも太陽からの差し込み光が照射されているかのような自然な造景を観察者に与えることができる。
<Effect of Embodiment 1>
According to Embodiment 1 described above, the intensity of the first emitted light L21 increases as the emission direction of the first emitted light L21 approaches the +Z-axis direction, which is the incident direction of the light L1. Also, the correlated color temperature of the light L1 is lower than the correlated color temperature of the first emitted light L21 and higher than the correlated color temperature of the second emitted light L22. This makes it possible to cause a change in luminance of the first light exit surface 10b when an observation change occurs with respect to the first light exit surface 10b. The change in brightness of the first light exit surface 10b accompanying this change in observation is a phenomenon that also occurs when a person sees a natural blue sky. Therefore, even in an environment where the blue sky cannot be visually recognized and there is actually no light from the sun, it is possible to provide the observer with a natural landscape as if the light from the sun were shining. can.
 また、実施の形態1によれば、拡散体10は、光入射面10aと第1の光出射面10bとが備えられた透明樹脂11と、透明樹脂11内に分散された複数の散乱粒子12とを含み、複数の散乱粒子12は、第1の出射光L21の強度が第1の出射光L21の出射方向がZ軸方向に近づくほど高くなるように、且つ光L1の相関色温度が第1の出射光L21の相関色温度より低く、第2の出射光L22の相関色温度より高くなるように透明樹脂11内に分散されている。これにより、第1の光出射面10bに対する観察変化が生じた場合に、第1の光出射面10bの輝度の変化を生じさせることができ、人が自然な青空を見るときと同じ現象を発生させることができる。 Further, according to the first embodiment, the diffuser 10 includes a transparent resin 11 having a light incident surface 10a and a first light exit surface 10b, and a plurality of scattering particles 12 dispersed in the transparent resin 11. and the plurality of scattering particles 12 are arranged such that the intensity of the first emitted light L21 increases as the emission direction of the first emitted light L21 approaches the Z-axis direction, and the correlated color temperature of the light L1 increases to the first It is dispersed in the transparent resin 11 so that the correlated color temperature is lower than the correlated color temperature of the first emitted light L21 and higher than the correlated color temperature of the second emitted light L22. As a result, when a change in observation occurs with respect to the first light exit surface 10b, a change in luminance of the first light exit surface 10b can be produced, and the same phenomenon as when a person sees a natural blue sky occurs. can be made
 また、実施の形態1によれば、第1の出射光L21の強度は、第2の出射光L22の強度と同等もしくは低い。これにより、拡散体10の真下から第1の光出射面10bを観察した場合には、第1の光出射面10bにおける輝度の変化は小さい。よって、拡散体10は、より自然な青空を再現することができる。 Further, according to Embodiment 1, the intensity of the first emitted light L21 is equal to or lower than the intensity of the second emitted light L22. Accordingly, when the first light exit surface 10b is observed from directly below the diffuser 10, the change in luminance on the first light exit surface 10b is small. Therefore, the diffuser 10 can reproduce a more natural blue sky.
 《実施の形態2》
 図3は、実施の形態2に係る照明装置200の概略的な構成を示す断面図である。図3において、図1に示される構成要素と同一又は対応する構成要素には、図1に示される符号と同じ符号が付される。実施の形態2に係る照明装置200は、フレーム30を更に有する点で、実施の形態1に係る照明装置100と相違する。これ以外の点については、実施の形態2に係る照明装置200は、実施の形態1に係る照明装置100と同じである。
<<Embodiment 2>>
FIG. 3 is a cross-sectional view showing a schematic configuration of lighting device 200 according to Embodiment 2. As shown in FIG. 3, the same or corresponding components as those shown in FIG. 1 are given the same reference numerals as those shown in FIG. The illumination device 200 according to Embodiment 2 differs from the illumination device 100 according to Embodiment 1 in that it further includes a frame 30 . Except for this point, the illumination device 200 according to the second embodiment is the same as the illumination device 100 according to the first embodiment.
 図3に示されるように、照明装置200は、拡散体10と、光源20と、フレーム30とを有している。 As shown in FIG. 3, the illumination device 200 has a diffuser 10, a light source 20, and a frame 30.
 フレーム30は、拡散体10のうち光入射面10aと反対側の端部に配置されている。図3に示す例では、フレーム30は、拡散体10の+Z軸方向の端部10eに配置されている。+Z軸方向の端部10eは、拡散体10のうち第2の光出射面10cを含む端部である。フレーム30は、光入射面10aを含む平面Sと対向する部位を有している。 The frame 30 is arranged at the end of the diffuser 10 opposite to the light incident surface 10a. In the example shown in FIG. 3, the frame 30 is arranged at the end 10e of the diffuser 10 in the +Z-axis direction. The end portion 10e in the +Z-axis direction is the end portion of the diffuser 10 that includes the second light exit surface 10c. The frame 30 has a portion facing the plane S including the light incident surface 10a.
 フレーム30は、拡散体10の+Z軸方向の端部10eの+Y軸方向を向く端面10dに固定される部位である第1の部分31と、平面Sと対向する部位である第2の部分32とを有している。第1の部分31は、Z軸方向に伸びている。第2の部分32は、第1の部分31の+Z軸方向の端部から-Y軸方向に伸びている。 The frame 30 has a first portion 31 fixed to the end face 10d facing the +Y-axis direction of the +Z-axis direction end 10e of the diffuser 10, and a second portion 32 facing the plane S. and The first portion 31 extends in the Z-axis direction. The second portion 32 extends in the −Y-axis direction from the +Z-axis direction end of the first portion 31 .
 フレーム30は、光透過性を有する材料、又は光反射性を有する材料から形成される。フレーム30は、例えば、金属、樹脂、ガラス又はフィルムなどで構成される。フレーム30は、入射した光を反射、拡散又は透過等させることによって、観察者が存在する空間に向けて出射する。これにより、観察者が照明装置200を観察したときに、フレーム30が照明装置200の他の領域より輝度の高い領域であると観察者に知覚させることができる。そのため、図3に示される矢印Aの向きに太陽光がフレーム30に差し込んでいるようかのような造景を観察者に与えることができる。よって、観察者に、より一層自然な造景を与えることができる。 The frame 30 is made of a light transmissive material or a light reflective material. The frame 30 is made of metal, resin, glass, film, or the like, for example. The frame 30 reflects, diffuses, or transmits incident light, thereby emitting the light toward the space where the observer exists. This allows the observer to perceive that the frame 30 is an area with higher luminance than the other areas of the illumination apparatus 200 when the observer observes the illumination apparatus 200 . Therefore, it is possible to provide the observer with a landscape as if the sunlight were shining into the frame 30 in the direction of the arrow A shown in FIG. Therefore, it is possible to give the observer a more natural scenery.
 フレーム30に入射する光は、例えば、光源20から出射した光L1、第1の出射光L21及び第2の出射光L22のうちの少なくとも一部である。上述した通り、図3に示す例では、フレーム30は、拡散体10において、第2の光出射面10cを含む+Z軸方向の端部10eに固定されている。第2の光出射面10cからは、第2の出射光L22が出射するため、フレーム30に入射する光は、主に、第2の出射光L22である。また、フレーム30の近傍に、光源20とは異なる他の光源(図示せず)が配置されていてもよい。この場合、フレーム30は、当該他の光源から入射する光を反射、拡散及び透過等させることによって、フレーム30の輝度を照明装置200の他の領域の輝度より高くすることができる。 The light that enters the frame 30 is, for example, at least part of the light L1 emitted from the light source 20, the first emitted light L21, and the second emitted light L22. As described above, in the example shown in FIG. 3, the frame 30 is fixed to the +Z-axis direction end portion 10e of the diffuser 10 including the second light exit surface 10c. Since the second emitted light L22 is emitted from the second light emitting surface 10c, the light that enters the frame 30 is mainly the second emitted light L22. Further, another light source (not shown) different from the light source 20 may be arranged near the frame 30 . In this case, the frame 30 can make the brightness of the frame 30 higher than the brightness of the other regions of the illumination device 200 by reflecting, diffusing, transmitting, or the like the light incident from the other light source.
 〈実施の形態2の効果〉
 以上に説明した実施の形態2によれば、実施の形態1と同様に、第1の光出射面10bに対する観察変化が生じた場合に、第1の光出射面10bの輝度の変化を生じさせることができる。この観察変化に伴う第1の光出射面10bの輝度の変化は、人が自然な青空を見るときにも発生する現象である。よって、青空を視認できず、実際に太陽からの差し込み光がないような環境であっても、あたかも太陽からの差し込み光が照射されているかのような自然な造景を観察者に与えることができる。
<Effect of Embodiment 2>
According to the second embodiment described above, similarly to the first embodiment, when a change in observation occurs with respect to the first light exit surface 10b, a change in luminance of the first light exit surface 10b is caused. be able to. The change in brightness of the first light exit surface 10b accompanying this change in observation is a phenomenon that also occurs when a person sees a natural blue sky. Therefore, even in an environment where the blue sky cannot be visually recognized and there is actually no light from the sun, it is possible to provide the observer with a natural landscape as if the light from the sun were shining. can.
 また、実施の形態2によれば、照明装置200は、拡散体10のうち光入射面10aと反対側の端部10eに配置されたフレーム30を有している。これにより、拡散体10から出射した光(例えば、第1の出射光L21、第2の出射光L22など)がフレーム30に入射し、フレーム30の輝度を照明装置200の他の領域の輝度より高くすることができる。そのため、太陽光がフレーム30に差し込んでいるかのような造景を観察者に与えることができる。よって、観察者に、より一層自然な造景を与えることができる。 Further, according to Embodiment 2, the lighting device 200 has the frame 30 arranged at the end portion 10e of the diffuser 10 opposite to the light incident surface 10a. As a result, the light emitted from the diffuser 10 (for example, the first emitted light L21, the second emitted light L22, etc.) enters the frame 30, and the luminance of the frame 30 is higher than the luminance of other regions of the illumination device 200. can be raised. Therefore, it is possible to provide the observer with a landscape as if sunlight is shining through the frame 30 . Therefore, it is possible to give the observer a more natural scenery.
 《実施の形態2の変形例1》
 図4は、実施の形態2の変形例1に係る照明装置200Aの構成の一例を概略的に示す断面図である。図5、6及び7は、実施の形態2の変形例1に係る照明装置200Aの構成の他の例を概略的に示す断面図である。図4から7において、図3に示される構成要素と同一又は対応する構成要素には、図3に示される符号と同じ符号が付される。実施の形態2の変形例1に係る照明装置200Aは、フレーム30Aの配置場所の点で、実施の形態2に係る照明装置200と相違する。これ以外の点については、実施の形態2の変形例1に係る照明装置200Aは、実施の形態2に係る照明装置200と同じである。
<<Modification 1 of Embodiment 2>>
FIG. 4 is a cross-sectional view schematically showing an example of the configuration of a lighting device 200A according to Modification 1 of Embodiment 2. As shown in FIG. 5, 6 and 7 are cross-sectional views schematically showing other examples of the configuration of a lighting device 200A according to Modification 1 of Embodiment 2. FIG. 4 to 7, components that are the same as or correspond to those shown in FIG. 3 are labeled with the same reference numerals as those shown in FIG. Illuminating device 200A according to Modification 1 of Embodiment 2 differs from illuminating device 200 according to Embodiment 2 in terms of the placement location of frame 30A. Except for this point, the lighting device 200A according to the first modification of the second embodiment is the same as the lighting device 200 according to the second embodiment.
 図4に示されるように、照明装置200Aは、拡散体10と、光源20と、フレーム30Aとを有している。 As shown in FIG. 4, the illumination device 200A has a diffuser 10, a light source 20, and a frame 30A.
 図4に示す例では、フレーム30Aも、図3に示されるフレーム30と同様に、拡散体10の+Z軸方向の端部10eに配置されている。具体的には、フレーム30Aは、光入射面10aを含む平面Sと対向する位置で且つ第1の光出射面10bと接する位置に配置されている。この場合も、フレーム30Aには、光源20から出射した光L1、第1の出射光L21及び第2の出射光L22のうちの少なくとも一部が入射する。フレーム30Aは、入射した光を反射、拡散及び透過等させることによって、フレーム30Aの輝度を照明装置200Aの他の領域の輝度より高くすることができる。 In the example shown in FIG. 4, the frame 30A is also arranged at the end 10e of the diffuser 10 in the +Z-axis direction, like the frame 30 shown in FIG. Specifically, the frame 30A is arranged at a position facing the plane S including the light entrance surface 10a and in contact with the first light exit surface 10b. In this case also, at least part of the light L1 emitted from the light source 20, the first emitted light L21, and the second emitted light L22 enters the frame 30A. The frame 30A reflects, diffuses, and transmits incident light, thereby making the brightness of the frame 30A higher than the brightness of other regions of the illumination device 200A.
 フレーム30Aは、第1の光出射面10bに固定されて且つ光入射面10aを含む平面Sと対向する部位である第1の部分31Aと、第1の部分31Aの-Y軸方向の端部から+Z軸方向に伸びる部位である第2の部分32Aとを有している。図4に示す例では、第1の部分31Aと第2の部分32Aとのなす角度は、直角である。 The frame 30A includes a first portion 31A fixed to the first light exit surface 10b and facing a plane S including the light entrance surface 10a, and an end portion of the first portion 31A in the -Y-axis direction. and a second portion 32A extending in the +Z-axis direction. In the example shown in FIG. 4, the angle formed by the first portion 31A and the second portion 32A is a right angle.
 図5に示されるように、照明装置200Aは、フレーム30Aの近傍に配置された第2の光源40を更に有していてもよい。第2の光源40は、フレーム30Aの外側に配置されている。具体的には、第2の光源40は、フレーム30Aの第2の部分32Aと-Y軸方向に対向して且つ拡散体10の第2の光出射面10cより+Z軸側に配置されている。第2の光源40は、第2の光としての光L2を発する。第2の光源40は、例えば、第1の光源20と同様の構成を有している。なお、第2の光源40は、第1の光源20と異なる構成を有していてもよい。 As shown in FIG. 5, the illumination device 200A may further have a second light source 40 arranged near the frame 30A. The second light source 40 is arranged outside the frame 30A. Specifically, the second light source 40 faces the second portion 32A of the frame 30A in the −Y-axis direction and is arranged on the +Z-axis side of the second light exit surface 10c of the diffuser 10. . The second light source 40 emits light L2 as second light. The second light source 40 has, for example, the same configuration as the first light source 20 . Note that the second light source 40 may have a configuration different from that of the first light source 20 .
 図5に示す例では、フレーム30Aは、第2の光源40から入射した光L2を第1の光出射面10bと面する空間110(すなわち、第1の出射光L21が出射される空間)に導く。具体的には、フレーム30Aは、光L2を反射、拡散及び透過等させる。これにより、フレーム30Aの輝度を照明装置200Aの他の領域の輝度より一層高くすることができる。 In the example shown in FIG. 5, the frame 30A directs the incident light L2 from the second light source 40 to the space 110 facing the first light exit surface 10b (that is, the space where the first exit light L21 is emitted). lead. Specifically, the frame 30A reflects, diffuses, and transmits the light L2. Thereby, the brightness of the frame 30A can be made higher than the brightness of other regions of the illumination device 200A.
 図6に示されるように、第2の光源40は、拡散体10の第1の光出射面10bと反対側の+Y軸方向を向く端面10dの近傍に配置されていてもよい。図6に示す例では、第2の光源40は、拡散体10の+Y軸方向を向く端面10dより+Y軸側に配置されている。すなわち、第2の光源40は、拡散体10の+Y軸方向を向く端面10dと向き合う位置に配置されていてもよい。この場合、フレーム30Aは、第2の光源40が発した光L2のうち拡散体10を透過した光を反射、拡散及び透過等させる。このように、フレーム30Aは、光L2の少なくとも一部を第1の光出射面10bと面する空間110に導いてもよい。図6に示す例においても、フレーム30Aの輝度を照明装置200Aの他の領域の輝度より一層高くすることができる。 As shown in FIG. 6, the second light source 40 may be arranged near the end face 10d facing the +Y-axis direction on the side opposite to the first light exit face 10b of the diffuser 10. In the example shown in FIG. 6, the second light source 40 is arranged on the +Y-axis side of the end surface 10d of the diffuser 10 facing the +Y-axis direction. That is, the second light source 40 may be arranged at a position facing the end face 10d of the diffuser 10 facing the +Y-axis direction. In this case, the frame 30A reflects, diffuses, and transmits the light transmitted through the diffuser 10 out of the light L2 emitted by the second light source 40 . Thus, the frame 30A may guide at least part of the light L2 to the space 110 facing the first light exit surface 10b. Also in the example shown in FIG. 6, the brightness of the frame 30A can be made higher than the brightness of other areas of the illumination device 200A.
 フレーム30Aの形状は、図4から6に示される形状に限られない。図7に示されるように、フレーム30Aのうち第1の光出射面10bに固定される第1の部分31Aは、第1の光出射面10bから離れるほど第1の光出射面10bの前の空間が広がるように、第1の光出射面10bの法線に対して傾斜していてもよい。 The shape of the frame 30A is not limited to the shapes shown in FIGS. As shown in FIG. 7, the first portion 31A of the frame 30A fixed to the first light exit surface 10b is positioned in front of the first light exit surface 10b as the distance from the first light exit surface 10b increases. You may incline with respect to the normal line of the 1st light-projection surface 10b so that space may spread.
 〈実施の形態2の変形例1の効果〉
 以上に説明した実施の形態2の変形例1によれば、実施の形態1又は2と同様に、第1の光出射面10bに対する観察変化が生じた場合に、第1の光出射面10bの輝度の変化を生じさせることができる。この観察変化に伴う第1の光出射面10bの輝度の変化は、人が自然な青空を見るときにも発生する現象である。よって、青空を視認できず、実際に太陽からの差し込み光がないような環境であっても、あたかも太陽からの差し込み光が照射されているかのような自然な造景を観察者に与えることができる。
<Effect of Modification 1 of Embodiment 2>
According to Modified Example 1 of Embodiment 2 described above, similarly to Embodiment 1 or 2, when a change in observation occurs with respect to first light exit surface 10b, the first light exit surface 10b A change in luminance can be produced. The change in brightness of the first light exit surface 10b accompanying this change in observation is a phenomenon that also occurs when a person sees a natural blue sky. Therefore, even in an environment where the blue sky cannot be visually recognized and there is actually no light from the sun, it is possible to provide the observer with a natural landscape as if the light from the sun were shining. can.
 また、実施の形態2の変形例1によれば、照明装置200Aは、拡散体10のうち、光入射面10aを含む平面Sと対向する位置で且つ第1の光出射面10bに接する位置に配置されたフレーム30Aを有している。これにより、第1の光出射面10bから出射した第1の出射光L21がフレーム30Aに入射し易くなるため、フレーム30Aの輝度を照明装置200Aの他の領域の輝度より高くすることができる。そのため、あたかも太陽光がフレーム30Aに差し込んでいるようかのような造景を観察者に与えることができる。よって、観察者は、太陽の位置に対する認識を強めるため、より一層自然な造景を観察者に与えることができる。 Further, according to Modification 1 of Embodiment 2, the illumination device 200A is arranged in the diffuser 10 at a position facing the plane S including the light entrance surface 10a and in contact with the first light exit surface 10b. It has a frame 30A arranged. This makes it easier for the first emitted light L21 emitted from the first light emitting surface 10b to enter the frame 30A, so that the brightness of the frame 30A can be made higher than the brightness of other regions of the illumination device 200A. Therefore, it is possible to provide the observer with a landscape as if sunlight were shining through the frame 30A. Therefore, the observer's recognition of the position of the sun is strengthened, so that a more natural scenery can be given to the observer.
 また、実施の形態2の変形例1によれば、照明装置200Aは、光L2を発する第2の光源40を更に有し、フレーム30Aは、光L2の少なくとも一部を第1の光出射面10bと面する空間110に導く。これにより、第2の光源40が発した光L2をフレーム30Aに入射させ、当該入射した光L2を反射、拡散及び透過等させることで、フレーム30Aの輝度を照明装置200Aの他の領域の輝度より一層高くすることができる。 Further, according to Modification 1 of Embodiment 2, illumination device 200A further includes second light source 40 that emits light L2, and frame 30A emits at least part of light L2 from the first light exit surface. lead to space 110 facing 10b. Thereby, the light L2 emitted by the second light source 40 is made incident on the frame 30A, and the incident light L2 is reflected, diffused, transmitted, etc., so that the brightness of the frame 30A is changed to the brightness of other regions of the illumination device 200A. can be made even higher.
 《実施の形態2の変形例2》
 図8は、実施の形態2の変形例2に係る照明装置200Bの概略的な構成を示す断面図である。図8において、図3に示される構成要素と同一又は対応する構成要素には、図3に示される符号と同じ符号が付される。実施の形態2の変形例2に係る照明装置200Bは、フレーム30Bの構成の点で、実施の形態2に係る照明装置200と相違する。これ以外の点については、実施の形態2の変形例2に係る照明装置200Bは、実施の形態2に係る照明装置200と同じである。
<<Modification 2 of Embodiment 2>>
FIG. 8 is a cross-sectional view showing a schematic configuration of a lighting device 200B according to Modification 2 of Embodiment 2. As shown in FIG. 8, the same or corresponding components as those shown in FIG. 3 are given the same reference numerals as those shown in FIG. A lighting device 200B according to Modification 2 of Embodiment 2 differs from lighting device 200 according to Embodiment 2 in the configuration of frame 30B. Except for this point, the lighting device 200B according to the second modification of the second embodiment is the same as the lighting device 200 according to the second embodiment.
 図8に示されるように、照明装置200Bは、拡散体10と、光源20と、フレーム30Bとする。 As shown in FIG. 8, the illumination device 200B is composed of a diffuser 10, a light source 20, and a frame 30B.
 図8に示す例では、フレーム30Bは、第1の光出射面10bと面する空間110を囲う部材(枠体)である。なお、フレーム30Bは、拡散体10を囲う枠体であってもよい。また、フレーム30Bは、第1の光出射面10bと面する空間110と拡散体10の両方を囲う枠体であってもよい。 In the example shown in FIG. 8, the frame 30B is a member (frame body) that surrounds the space 110 facing the first light exit surface 10b. Note that the frame 30B may be a frame surrounding the diffuser 10 . Also, the frame 30B may be a frame surrounding both the space 110 facing the first light exit surface 10b and the diffuser 10. As shown in FIG.
 フレーム30Bは、明部領域51と、暗部領域52とを有している。明部領域51は、輝度の高い領域であり、暗部領域52は、明部領域51より輝度が低い領域である。明部領域51及び暗部領域52は、フレーム30Bに光透過率又は光反射率の異なる領域を設けることによって形成される。観察者は、明部領域51と暗部領域52を、窓枠に形成された日なたと日陰のように感じることができる。つまり、観察者は、あたかも拡散体10から実際の太陽光、すなわち、自然光が図8に示される矢印Aの向きに差し込んでいるように感じることができる。よって、観察者は、照明装置200Bによって疑似的な青空が再現されていると一層感じることができる。 The frame 30B has a bright area 51 and a dark area 52. The bright region 51 is a region with high brightness, and the dark region 52 is a region with a lower brightness than the bright region 51 . The bright region 51 and the dark region 52 are formed by providing regions having different light transmittance or light reflectance in the frame 30B. The observer can perceive the bright region 51 and the dark region 52 as sunshine and shade formed on the window frame. In other words, the observer can feel as if actual sunlight, that is, natural light is coming from the diffuser 10 in the direction of arrow A shown in FIG. Therefore, the observer can further feel that a pseudo blue sky is being reproduced by lighting device 200B.
 〈実施の形態2の変形例2の効果〉
 以上に説明した実施の形態2の変形例2によれば、実施の形態1又は2と同様に、第1の光出射面10bに対する観察変化が生じた場合に、第1の光出射面10bの輝度の変化を生じさせることができる。この観察変化に伴う第1の光出射面10bの輝度の変化は、人が自然な青空を見るときにも発生する現象である。よって、青空を視認できず、実際に太陽からの差し込み光がないような環境であっても、あたかも太陽からの差し込み光が照射されているかのような自然な造景を観察者に与えることができる。
<Effect of Modification 2 of Embodiment 2>
According to Modified Example 2 of Embodiment 2 described above, similarly to Embodiment 1 or 2, when a change in observation occurs with respect to first light exit surface 10b, the first light exit surface 10b A change in luminance can be produced. The change in brightness of the first light exit surface 10b accompanying this change in observation is a phenomenon that also occurs when a person sees a natural blue sky. Therefore, even in an environment where the blue sky cannot be visually recognized and there is actually no light from the sun, it is possible to provide the observer with a natural landscape as if the light from the sun were shining. can.
 また、実施の形態2の変形例2によれば、照明装置200Bのフレーム30Bは、明部領域51と、暗部領域52とを有している。これにより、観察者は、明部領域51と暗部領域52を、窓枠に形成された日なたと日陰のように感じることができる。つまり、観察者は、あたかも拡散体10から実際の太陽光、すなわち、自然光が差し込んでいるように感じることができる。よって、観察者は、照明装置200Bによって疑似的な青空が再現されていると感じることができる。 Further, according to Modification 2 of Embodiment 2, frame 30B of lighting device 200B has bright region 51 and dark region 52 . As a result, the observer can perceive the bright region 51 and the dark region 52 as sunshine and shade formed on the window frame. In other words, the observer can feel as if actual sunlight, that is, natural light is coming through the diffuser 10 . Therefore, the observer can feel that a pseudo blue sky is being reproduced by lighting device 200B.
 10 拡散体、 10a 光入射面、 10b 第1の光出射面、 10c 第2の光出射面、 10e 端部、 11 透明樹脂、 12 散乱粒子、 20 光源(第1の光源)、 30、30A、30B フレーム、 40 第2の光源、 51 明部領域、 52 暗部領域、 100、200、200A、200B 照明装置、 110 空間、 L1 第1の光、 L2 第2の光、 L21 第1の出射光、 L22 第2の出射光。 10 diffuser 10a light incident surface 10b first light emitting surface 10c second light emitting surface 10e end 11 transparent resin 12 scattering particles 20 light source (first light source) 30, 30A, 30B frame, 40 second light source, 51 bright area, 52 dark area, 100, 200, 200A, 200B lighting device, 110 space, L1 first light, L2 second light, L21 first emitted light, L22 Second emitted light.

Claims (8)

  1.  第1の光を入射して散乱光を含む光を出射する拡散体であって、
     前記第1の光が第1の方向に入射する光入射面と、
     第1の光出射面と
     を有し、
     前記光入射面は、前記拡散体の端面に形成され、
     前記第1の光出射面から第1の出射光が出射し、
     前記拡散体の前記第1の光出射面以外の面である第2の光出射面から第2の出射光が出射し、
     前記第1の出射光の強度は、前記第1の出射光の出射方向が前記第1の方向に近づくほど高くなり、
     前記第1の光の相関色温度は、前記第1の出射光の相関色温度より低く、前記第2の出射光の相関色温度より高い、
     ことを特徴とする拡散体。
    A diffuser that receives a first light and emits light containing scattered light,
    a light incident surface on which the first light is incident in a first direction;
    and a first light exit surface;
    The light incident surface is formed on an end surface of the diffuser,
    a first output light is emitted from the first light output surface;
    a second output light is emitted from a second light output surface that is a surface other than the first light output surface of the diffuser;
    The intensity of the first emitted light increases as the emission direction of the first emitted light approaches the first direction,
    the correlated color temperature of the first light is lower than the correlated color temperature of the first emitted light and higher than the correlated color temperature of the second emitted light;
    A diffuser characterized by:
  2.  前記拡散体は、
     前記光入射面、前記第1の光出射面及び前記第2の光出射面が備えられた樹脂部材と、
     前記樹脂部材内に分散された複数の散乱粒子と
     を含むことを特徴とする請求項1に記載の拡散体。
    The diffuser is
    a resin member provided with the light entrance surface, the first light exit surface, and the second light exit surface;
    2. The diffuser of claim 1, comprising a plurality of scattering particles dispersed within said resin member.
  3.  前記複数の散乱粒子の平均粒子径は、10nmから3000nmまでの範囲内である、
     ことを特徴とする請求項2に記載の拡散体。
    The average particle size of the plurality of scattering particles is in the range of 10 nm to 3000 nm.
    3. The diffuser of claim 2, wherein:
  4.  前記複数の散乱粒子の平均粒子径は、50nmから2000nmまでの範囲内である、
     ことを特徴とする請求項3に記載の拡散体。
    The average particle size of the plurality of scattering particles is in the range of 50 nm to 2000 nm.
    4. The diffuser according to claim 3, characterized in that:
  5.  前記光入射面は、前記拡散体の複数の端面を含み、
     前記第1の光は、前記複数の端面の各々に入射する、
     ことを特徴とする請求項1から4のいずれか1項に記載の拡散体。
    the light incident surface includes a plurality of end surfaces of the diffuser;
    the first light is incident on each of the plurality of end faces;
    5. The diffuser according to any one of claims 1 to 4, characterized in that:
  6.  請求項1から5のいずれか1項に記載の拡散体と、
     前記第1の光を発する第1の光源と、
     前記拡散体のうち前記光入射面と反対側の端部に配置されたフレームと
     を有する、ことを特徴とする照明装置。
    a diffuser according to any one of claims 1 to 5;
    a first light source that emits the first light;
    and a frame disposed at an end of the diffuser opposite to the light incident surface.
  7.  第2の光を発する第2の光源を更に有し、
     前記フレームは、前記第2の光の少なくとも一部を前記第1の光出射面と面する空間に導く、
     ことを特徴とする請求項6に記載の照明装置。
    further comprising a second light source emitting a second light;
    the frame guides at least part of the second light to a space facing the first light exit surface;
    7. The lighting device according to claim 6, characterized in that:
  8.  前記フレームは、前記第1の光出射面と面する空間を囲う部材であって、明部領域と暗部領域とを有する、
     ことを特徴とする請求項6に記載の照明装置。
    The frame is a member that surrounds the space facing the first light exit surface, and has a bright area and a dark area.
    7. The lighting device according to claim 6, characterized in that:
PCT/JP2021/020331 2021-05-28 2021-05-28 Diffusion body and illumination device WO2022249433A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2023523895A JP7325692B2 (en) 2021-05-28 2021-05-28 Diffuser and Lighting Device
PCT/JP2021/020331 WO2022249433A1 (en) 2021-05-28 2021-05-28 Diffusion body and illumination device
CN202180098508.8A CN117377849A (en) 2021-05-28 2021-05-28 Diffuser and lighting device
EP21943078.2A EP4328481A4 (en) 2021-05-28 2021-05-28 Diffusion body and illumination device
JP2023123969A JP2023129712A (en) 2021-05-28 2023-07-31 Diffuser and lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/020331 WO2022249433A1 (en) 2021-05-28 2021-05-28 Diffusion body and illumination device

Publications (1)

Publication Number Publication Date
WO2022249433A1 true WO2022249433A1 (en) 2022-12-01

Family

ID=84228684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020331 WO2022249433A1 (en) 2021-05-28 2021-05-28 Diffusion body and illumination device

Country Status (4)

Country Link
EP (1) EP4328481A4 (en)
JP (2) JP7325692B2 (en)
CN (1) CN117377849A (en)
WO (1) WO2022249433A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6081663B2 (en) 2013-10-14 2017-02-15 フィリップス ライティング ホールディング ビー ヴィ Lighting system
JP2018060624A (en) * 2016-10-03 2018-04-12 パナソニックIpマネジメント株式会社 Illuminating device
WO2019220656A1 (en) * 2018-05-18 2019-11-21 三菱電機株式会社 Lighting unit and lighting apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20081135A1 (en) * 2008-06-24 2009-12-25 Trapani Paolo Di LIGHTING DEVICE
JP5463966B2 (en) * 2010-03-08 2014-04-09 大日本印刷株式会社 Light guide plate, surface light source device, and liquid crystal display device
JP2013020796A (en) * 2011-07-11 2013-01-31 Fujifilm Corp Light guide plate and planar lighting device
ITTO20120988A1 (en) * 2012-11-14 2014-05-15 Light In Light S R L ARTIFICIAL LIGHTING SYSTEM TO SIMULATE A NATURAL LIGHTING
CA2942063C (en) * 2014-03-10 2021-10-26 Coelux S.R.L. Lighting system for simulating natural light
CN113498464A (en) * 2019-02-27 2021-10-12 三菱电机株式会社 Lighting device, window with lighting function, and building material for window
WO2020240933A1 (en) 2019-05-27 2020-12-03 三菱電機株式会社 Diffusion body and illumination device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6081663B2 (en) 2013-10-14 2017-02-15 フィリップス ライティング ホールディング ビー ヴィ Lighting system
JP2018060624A (en) * 2016-10-03 2018-04-12 パナソニックIpマネジメント株式会社 Illuminating device
WO2019220656A1 (en) * 2018-05-18 2019-11-21 三菱電機株式会社 Lighting unit and lighting apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4328481A4

Also Published As

Publication number Publication date
JP7325692B2 (en) 2023-08-14
JPWO2022249433A1 (en) 2022-12-01
EP4328481A4 (en) 2024-05-29
CN117377849A (en) 2024-01-09
JP2023129712A (en) 2023-09-14
EP4328481A1 (en) 2024-02-28

Similar Documents

Publication Publication Date Title
CN107477428B (en) Lighting system
US10670228B2 (en) Sun-sky imitating lighting system with enlarged perceived window area
JPWO2019039600A1 (en) Aerial image display device
US11879634B2 (en) Illumination device
JP7213946B2 (en) lighting equipment
TWM284913U (en) Light guide plate, backlight module and liquid crystal display device
JPWO2020240664A5 (en)
CN213299822U (en) Lighting system and artificial window
JP7325692B2 (en) Diffuser and Lighting Device
US20230358387A1 (en) Vehicle lighting fixture
CN113892046A (en) Diffuser and lighting device
JP7297071B2 (en) lighting equipment
US11561334B2 (en) Diffusive body and illumination device
JP7386835B2 (en) lighting equipment
JP2003217326A (en) Lighting system
WO2023286113A1 (en) Planar light source device and liquid crystal display device
EP4134597A1 (en) Lighting equipment, air conditioner, and control system
EP4191123A1 (en) Lighting device
JP2023535497A (en) Lighting device that simulates natural light
JP2543003B2 (en) Pseudo lighting prevention lens for signal light
JP3132034U (en) Line lighting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21943078

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023523895

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180098508.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021943078

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021943078

Country of ref document: EP

Effective date: 20231123

NENP Non-entry into the national phase

Ref country code: DE