WO2022249407A1 - アセスメント支援システム、アセスメント支援方法、及び記録媒体 - Google Patents

アセスメント支援システム、アセスメント支援方法、及び記録媒体 Download PDF

Info

Publication number
WO2022249407A1
WO2022249407A1 PCT/JP2021/020254 JP2021020254W WO2022249407A1 WO 2022249407 A1 WO2022249407 A1 WO 2022249407A1 JP 2021020254 W JP2021020254 W JP 2021020254W WO 2022249407 A1 WO2022249407 A1 WO 2022249407A1
Authority
WO
WIPO (PCT)
Prior art keywords
assessment
patient
vector
similarity
information
Prior art date
Application number
PCT/JP2021/020254
Other languages
English (en)
French (fr)
Inventor
賢志 荒木
裕 宇野
潤一 矢原
康介 西原
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to PCT/JP2021/020254 priority Critical patent/WO2022249407A1/ja
Priority to US18/563,406 priority patent/US20240242838A1/en
Priority to JP2023523873A priority patent/JPWO2022249407A1/ja
Publication of WO2022249407A1 publication Critical patent/WO2022249407A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/60ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/70ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients

Definitions

  • the present invention relates to an assessment support system, an assessment support method, and a recording medium that support the creation of an assessment, which is one of the nursing processes for patients.
  • the assessment recorded as one item in the nursing record requires an analysis of the patient's nursing policy and a description of its thinking process, which can be provided to the patient in addition to the patient's symptoms. It is desirable to consider multifaceted information on nursing, such as the nursing system and medical facilities. Therefore, the description of the assessment of the second patient, which is similar to the first patient to be assessed in terms of symptom vector, does not necessarily serve as a reference for the assessment written for the first patient. . Therefore, in order to search for a second patient similar to the first patient in order to assist in creating an assessment for the first patient, the above system has low search performance and may not be reliable enough to support assessment creation. have a nature.
  • An object of the present invention is to provide an assessment support system, an assessment support method, and a recording medium with improved reliability as assessment creation support.
  • an assessment vector obtained by vectorizing the assessment of the target patient is used as a predictive assessment vector based on the patient information of the target patient for whom the assessment is to be created in the nursing record.
  • a degree of similarity of the assessment vector to the predicted assessment vector based on the relationship among the assessment predictor to predict, the predicted predicted assessment vector, and the assessment vector of the patient whose assessment is recorded in the nursing record.
  • a retrieval unit that retrieves and outputs at least one similar patient who is similar to the target patient based on the similarity.
  • At least one computer stores an assessment vector obtained by vectorizing the assessment of the target patient based on the patient information of the target patient for whom the assessment is to be created in the nursing record. is predicted as a predicted assessment vector, and based on the relationship between the predicted predicted assessment vector and the assessment vector of the patient whose assessment is recorded in the nursing record, the prediction vector for the predicted assessment vector A degree of similarity is calculated, and based on the degree of similarity, at least one similar patient similar to the target patient is retrieved and output.
  • At least one computer stores an assessment vector obtained by vectorizing the assessment of the target patient based on patient information of the target patient for whom the assessment is to be created in the nursing record. , an assessment predictor for predicting as a predictive assessment vector, the assessment for the predictive assessment vector based on the relationship between the predicted predictive assessment vector and the assessment vector of the patient whose assessment is recorded in the nursing record
  • a computer program configured to function as a similarity calculation unit that calculates the similarity of vectors, and a search unit that searches for and outputs at least one similar patient similar to the target patient based on the similarity. is recorded.
  • each of the assessment support system, the assessment support method, and the recording medium described above the performance of searching for patients whose assessment is similar to that of the target patient for whom an assessment is to be created is improved, and highly reliable assessment creation support is provided. It is possible to provide
  • FIG. 1 is a diagram showing an example of the overall configuration for realizing an assessment support system according to the present invention
  • FIG. 4 is a diagram showing an example of the hardware configuration of a search server;
  • FIG. 4 is a diagram showing an example of the hardware configuration of a model generation terminal and a search terminal; Schematically illustrates the concept of similarity.
  • FIG. 1 shows an example of the overall configuration for realizing the assessment support system Asys according to the present invention.
  • the assessment support system Asys is a system that assists medical staff (typically, nurses, nursing students, etc., hereinafter referred to as "users") in preparing assessment information.
  • “assessment” is an item included in “SOAP” which is one of the analysis methods of nursing records recorded for nursing a patient.
  • SOAP medical staff
  • S indicates patient subjective information
  • O indicates objective information
  • A indicates “assessment”
  • P indicates care plan.
  • the “assessment” includes judgments and evaluations derived from analysis of subjective information (namely "S") and objective information (namely "O"), as well as opinions and impressions.
  • text information described as “assessment” in the nursing record is referred to as “assessment information”.
  • the assessment support system Asys may be composed of, for example, a system server section 10 capable of transmitting and receiving data and a system terminal section 20, as shown in FIG. Transmission and reception of the data may be performed directly or via a predetermined network.
  • the system server unit 10 may include, for example, a model generation server 11 and a search server 12 .
  • the system terminal unit 20 may include, for example, a model generation terminal 21 and a search terminal 22 .
  • the model generation terminal 21 can access the model generation server 11, and the model generation terminal 21 and the model generation server 11 may constitute a model generation system Msys.
  • the model generation system Msys is, for example, a system that generates a prediction model, which will be described later, according to user's operation on the model generation terminal 21 .
  • the search terminal 22 can access the search server 12, and the search terminal 22 and the search server 12 may constitute a search system Dsys.
  • the search system Dsys is, for example, a system that searches for similar patients, which will be described later, according to the user's operation on the search terminal 22 and presents them to the user.
  • the model generation server 11 and the search server 12 may be able to access, for example, a database 30 that can also be accessed from other systems.
  • the database 30 may store various data that may be generated and used by other systems (eg, an electronic medical record system, etc.), such as patient information regarding multiple patients.
  • the patient information is information recorded about each patient (that is, known information), and may include, for example, medical records, test data, and nursing records created by doctors regarding each patient.
  • Patient information may also include, for example, assessments previously made and recorded for the corresponding patient.
  • Patient information may be associated with, for example, patient identification information for identifying each patient.
  • the system may, for example, identify each patient in each treatment by patient identification information.
  • a patient whose assessment was created in the past and recorded in the nursing record i.e., assessment information exists
  • a patient whose assessment is to be created i.e., to be created
  • a target patient referred to as the "target patient”.
  • the system server unit 10 may be configured as a so-called cloud server that is physically composed of a plurality of server devices. Alternatively, the system server section 10 may be physically configured by one server device.
  • the model generation terminal 21 and the search terminal 22 may be integrated with the model generation server 11 and the search server 12, respectively, as will be described later.
  • one model generation terminal 21 and one retrieval terminal 22 are shown in FIG. 1, but there may be a plurality of them.
  • the model generation terminal 21 and the search terminal 22 may be physically one terminal.
  • Model Generation Server 11 An example of the hardware configuration of the model generation server 11 is shown in FIG.
  • the model generation server 11 may have a storage device 111, a computing device 112, and a communication interface 114, for example.
  • the storage device 111, the arithmetic device 112, and the communication interface 114 may be connected via a data bus 115 so that data can be transmitted and received.
  • the storage device 111 can store desired data.
  • the storage device 111 may temporarily store computer programs executed by the arithmetic device 112 .
  • the storage device 111 may temporarily store data temporarily used by the arithmetic device 112 while the arithmetic device 112 is executing a computer program.
  • the storage device 111 may store data that the model generation server 11 saves over a long period of time.
  • the storage device 111 may include a model storage unit 111a that stores generated prediction models, and a vector storage unit 111b that stores assessment vectors (described later) regarding past patients.
  • the storage device 111 may include at least one of RAM (Random Access Memory), ROM (Read Only Memory), hard disk device, magneto-optical disk device, SSD (Solid State Drive), and disk array device. good. That is, the storage device 111 may include volatile recording media and nonvolatile recording media.
  • the computing device 112 includes, for example, a CPU (Central Processing Unit). Arithmetic device 112 reads a computer program. For example, arithmetic device 112 may read a computer program stored in storage device 111 . For example, the computing device 112 may read a computer program stored in a computer-readable non-volatile recording medium using a recording medium reading device (not shown). The computing device 112 may acquire (that is, download or load) a computer program from a device (not shown) located outside the model generation server 11 via the communication interface 114 .
  • a CPU Central Processing Unit
  • the computing device 112 executes the read computer program.
  • logical functional blocks for executing the operations performed by the model generation server 11 are implemented within the arithmetic unit 112 .
  • the computing device 112 can function as a controller for realizing logical functional blocks for executing operations performed by the model generation server 11 .
  • FIG. 2 shows an example of logical functional blocks implemented in the arithmetic unit 112 in order to implement each process to be executed by the model generation server 11.
  • an assessment mapping unit 112a and a predictive model learning unit 112b are implemented in the computing device 112.
  • Arithmetic unit 112 obtains necessary data via, for example, communication interface 114 and data bus 115 for processing related to each unit 112a-112b.
  • the details of the operation of each unit 112a-112b that is, the processing executed by each unit 112a-112b will be described later.
  • the communication interface 114 accesses other devices such as the model generation terminal 21, the database 30, other servers (for example, the search server 12) in the system server section 10, and external systems via a communication line, for example. device and various data can be sent and received.
  • devices such as the model generation terminal 21, the database 30, other servers (for example, the search server 12) in the system server section 10, and external systems via a communication line, for example. device and various data can be sent and received.
  • the search server 12 may have a storage device 121, a computing device 122, and a communication interface 124, for example.
  • the storage device 121, the arithmetic device 122, and the communication interface 124 may be connected via a data bus 125 so that data can be transmitted and received.
  • the storage device 121 can store desired data.
  • the storage device 121 may temporarily store computer programs executed by the arithmetic device 122 .
  • the storage device 121 may temporarily store data temporarily used by the arithmetic device 122 while the arithmetic device 122 is executing a computer program.
  • the storage device 121 may store data that the search server 12 saves over a long period of time.
  • the storage device 121 may include a similarity storage unit 121a that stores a similarity to be described later.
  • the storage device 121 may include at least one of RAM, ROM, hard disk device, magneto-optical disk device, SSD, and disk array device. That is, the storage device 121 may include volatile recording media and nonvolatile recording media.
  • the computing device 122 includes, for example, a CPU. Arithmetic device 122 reads a computer program. For example, arithmetic device 122 may read a computer program stored in storage device 121 . For example, the computing device 122 may read a computer program stored in a computer-readable non-volatile recording medium using a recording medium reading device (not shown). The computing device 122 may acquire (that is, download or load) a computer program from a device (not shown) located outside the search server 12 via the communication interface 124 .
  • the computing device 122 executes the read computer program.
  • logical functional blocks for performing the operations performed by the search server 12 are implemented within the computing device 122 .
  • the computing device 122 can function as a controller for implementing logical functional blocks for executing operations performed by the search server 12 .
  • FIG. 3 shows an example of logical functional blocks implemented within the arithmetic unit 122 in order to implement each process to be executed by the search server 12.
  • the calculation unit 122 includes, for example, an assessment prediction unit 122a, a similarity calculation unit 122b, a search unit 122c, and an output control unit 122d.
  • Arithmetic unit 122 acquires necessary data via, for example, communication interface 124 and data bus 125 for processing related to each unit 122a-122d. Details of the operation of each unit 122a-122d (that is, the processing executed by each unit 122a-122d) will be described later.
  • the communication interface 124 accesses other devices such as the search terminal 22, the database 30, other servers in the system server unit 10 (for example, the model generation server 11), and external systems via communication lines, and device and various data can be sent and received.
  • devices such as the search terminal 22, the database 30, other servers in the system server unit 10 (for example, the model generation server 11), and external systems via communication lines, and device and various data can be sent and received.
  • the model generation terminal 21 functions as an interface for the model generation server 11 for the user.
  • the model generation terminal 21 operates according to user input operations and instructions from the model generation server 11 .
  • An example of the hardware configuration of the model generation terminal 21 is shown in FIG.
  • the model generation terminal 21 may have a storage unit 211, a calculation unit 212, an input unit 213, an output unit 214, and a communication interface 215, for example.
  • the storage unit 211, the calculation unit 212, the input unit 213, the output unit 214, and the communication interface 215 may be connected via the data bus 216 so that data can be transmitted and received.
  • the model generation terminal 21 may be provided so as to be integrated with the model generation server 11 .
  • the input unit 213 and the output unit 214 may be connected to the data bus 115 of the model generation server 11 .
  • the respective functions of the storage unit 211 and the calculation unit 212 may be realized by the storage device 111 and the calculation device 112 of the model generation server 11, for example.
  • the storage unit 211 can store desired data.
  • the storage unit 211 may temporarily store computer programs executed by the calculation unit 212 .
  • the storage unit 211 may temporarily store data temporarily used by the calculation unit 212 while the calculation unit 212 is executing the computer program.
  • the storage unit 211 may store data that the model generation terminal 21 saves over a long period of time.
  • the storage unit 211 may include at least one of a RAM, a ROM, a hard disk device, a magneto-optical disk device, an SSD, and a disk array device. That is, the storage unit 211 may include a volatile recording medium and a nonvolatile recording medium.
  • the computing unit 212 includes, for example, a CPU.
  • the calculation unit 212 reads a computer program.
  • the computing section 212 may read a computer program stored in the storage section 211 .
  • the calculation unit 212 may read a computer program stored in a computer-readable non-volatile recording medium using a recording medium reading device (not shown).
  • the computing unit 212 may acquire (that is, download or read) a computer program from a device (not shown) arranged outside the model generation terminal 21 via the communication interface 215 .
  • the calculation unit 212 executes the read computer program.
  • logical functional blocks for executing the operations performed by the model generation terminal 21 are realized within the calculation unit 212 .
  • the calculation unit 212 can function as a controller for realizing logical functional blocks for executing operations performed by the model generation terminal 21 .
  • the input unit 213 receives, for example, an input operation from the outside (for example, a user's input operation on the model generation terminal 21), and sends operation information to the calculation unit 212 so that processing according to the input operation is performed.
  • the calculation unit 212 may transmit the operation information sent from the input unit 213 to the model generation server 11 via the communication interface 215, for example. Further, for example, the calculation unit 212 may perform processing according to operation information sent from the input unit 213 and transmit the processing result to the model generation server 11 via the communication interface 215 .
  • the input mode in the input unit 213 may be key input, voice input, touch input, button input, or the like.
  • the input unit 213 may include, for example, a keyboard, mouse, touch panel, microphone, buttons, and the like.
  • the output unit 214 appropriately outputs instructions and various information transmitted from the model generation server 11 in a manner that the user can confirm.
  • the output unit 214 may, for example, output the processing result processed by the calculation unit 212 as appropriate in a manner that the user can check.
  • the output mode of the output unit 214 may be visual output, auditory output, data output, or the like.
  • the output unit 214 may include, for example, a screen, a speaker, a storage medium, and the like.
  • the search terminal 22 functions as an interface of the search server 12 for the user.
  • the search terminal 22 operates according to user input operations and instructions from the search server 12 .
  • the hardware configuration of the search terminal 22 is such that "model generation terminal 21" corresponds to "search terminal 22" and "model generation server 11" corresponds to "search server 12" in the above description of model generation terminal 21.
  • the hardware configuration of the model generation terminal 21 may be the same as that described above, except that it is read as . Therefore, description of the hardware configuration of the search terminal 22 is omitted.
  • Model Generation System Returning to FIG. 2, the processing performed in the model generation system Msys will be described with a focus on the operations of the assessment mapping unit 112a and the predictive model learning unit 112b implemented in the arithmetic unit 112 of the model generation server 11.
  • FIG. 2 the processing performed in the model generation system Msys will be described with a focus on the operations of the assessment mapping unit 112a and the predictive model learning unit 112b implemented in the arithmetic unit 112 of the model generation server 11.
  • the assessment mapping unit 112a may perform vector generation processing according to the vector generation operation received by the input unit 213 of the model generation terminal 21, for example.
  • the vector generation operation may be performed, for example, when one or more assessments are newly created or updated.
  • the assessment mapping unit 112a may vectorize, for example, an existing sentence (i.e., assessment information) created as an assessment in a nursing record, and map it as an assessment vector in a multi-dimensional assessment space.
  • the assessment mapping unit 112a may acquire assessment information from nursing records held by the database 30, for example.
  • the assessment mapping unit 112a may utilize existing techniques for vectorizing sentences to obtain assessment vectors from the assessment information. As the existing method, for example, BoW (Bag of Words), Word2vec, etc. may be adopted.
  • the assessment mapping unit 112a may store, for example, the vector storage unit 111b of the storage device 111 in association with the patient identification information, for example, the assessment vector obtained by vectorizing the assessment information for each past patient.
  • the prediction model learning unit 112b may perform model learning processing following vector generation processing.
  • the prediction model learning unit 112b may perform the model learning process according to the model learning operation received by the input unit 213 of the model generation terminal 21, for example.
  • the prediction model learning unit 112b learns, for example, a prediction model for predicting the assessment vector of the target patient.
  • the assessment vector predicted for the subject patient is hereinafter referred to as "predicted assessment vector”.
  • the assessment vector obtained by the assessment mapping unit 112a and the predicted assessment vector may be vectors in the same assessment space.
  • the predictive model can be, for example, a machine learning model for outputting a predictive assessment vector given patient information about the target patient.
  • the predictive model learning unit 112b may learn the structure of the predictive model using, for example, the patient information of the past patient as input data and the teacher data set in which the assessment vector of the past patient is correct data.
  • the prediction model learning unit 112b may acquire the assessment vector of each past patient to be used as correct data from the vector storage unit 111b, and the patient information of each past patient to be used as input data from the database 30.
  • the predictive model learning unit 112b reduces the difference between the predictive assessment vector output by the predictive model based on the patient information as input data and the assessment vector as correct data, that is, the output predictive assessment
  • the parameter values of the predictive model may be adjusted so that the vector is closer to the correct data assessment vector.
  • the prediction model learning unit 112b may store the generated prediction model in the model storage unit 111a of the storage device 111, for example.
  • patient information in this system preferably includes at least one of physical information about the body, disease information about diseases, and past assessment information.
  • Physical information may include, for example, vitals, age, height, weight, and the like.
  • the “disease information” may include, for example, the name of the disease, the disease stage, and the like.
  • Propast assessment information is information about assessment information created in the past, and may be, for example, the assessment information itself or an assessment vector.
  • the consistency among patients, particularly regarding the above three elements is greatly related to the similarity of assessment information. For example, it is known that the higher the degree of matching regarding the above three elements, the more similar the assessment information.
  • the assessment prediction unit 122a performs the following processing in this order, for example, according to the search operation received by the input unit 213 of the search terminal 22. good.
  • a search operation may be performed, for example, at a timing according to the user's needs.
  • the assessment prediction unit 122a predicts the assessment vector of the target patient from the patient information regarding the target patient as a prediction assessment vector.
  • the prediction by the assessment prediction unit 122a may be performed using, for example, a prediction model learned by the prediction model learning unit 112b.
  • the assessment prediction unit 122a may use, for example, a prediction model stored in the model storage unit 111a for the prediction.
  • the assessment prediction unit 122a may acquire patient information about the target patient from the database 30, for example.
  • the similarity calculation unit 122b may calculate the similarity of each past patient's assessment vector to the predicted assessment vector, for example, based on the relationship between the predicted assessment vector and each past patient's assessment vector in the assessment space.
  • the similarity calculation unit 122b may have, for example, a vector acquisition unit 122bb that acquires assessment vectors of past patients.
  • the vector acquisition unit 122bb may acquire, for example, all or some of the assessment vectors of past patients from among the assessment vectors stored in the vector storage unit 111b.
  • the vector acquisition unit 122bb may acquire the past patient's assessment vector by, for example, performing the vector generation process described above (or causing the assessment mapping unit 112a to perform the process).
  • the similarity calculation unit 122b may store the similarity calculated for each past patient in the similarity storage unit 121a of the storage device 121 in association with patient identification information.
  • the similarity calculator 122b may calculate similarity based on, for example, Minkowski distance (including Manhattan distance, Euclidean distance, and Chebyshev distance), cosine similarity, and the like.
  • the patient information space on the left side of FIG. 5 is a space in which the patient information of the target patient is vectorized into an n-dimensional (two-dimensional in FIG. 5) patient information vector.
  • the X-axis element may be set to vital values
  • the Y-axis element may be set to age.
  • a position X in the patient information space indicates a patient information vector obtained from the patient information of the target patient, that is, a position corresponding to the patient information of the target patient in the patient information space.
  • the position Yp in the assessment space indicates the predicted assessment vector value predicted from the patient information of the target patient, ie, the position corresponding to the predicted assessment information of the target patient in the assessment space.
  • the degree of similarity may be the positional relationship (distance in FIG. 5) ⁇ between the position Yp, which is the predicted assessment vector value in the assessment space, and the position Yi, which is the past patient's assessment vector value.
  • position Y1 is closer to position Yp than position Y2. Therefore, it may be determined that the similarity of the assessment vector value Y1 is higher than the similarity of the assessment vector value Y2.
  • the similarity according to this system is, for example, not only the predicted assessment vector of the target patient and the assessment vector of the past patient, but also the patient information of the target patient and the patient information of the past patient. degree of similarity.
  • composite similarity may be calculated as similarity in assessment space + similarity in patient information space.
  • the method adopted for the similarity in the patient information space may be the same as the similarity in the assessment space, or may be a different method.
  • the similarity calculation unit 122b may calculate composite similarity so that the similarity in the assessment space is adjusted with patient information.
  • the similarity calculation unit 122b calculates at least one of assessment-related information (eg, physical information, disease information, and past assessment information) that is known to be greatly related to the similarity of assessment information among patient information. ) may be used.
  • the similarity calculation unit 122b may calculate a composite similarity such that, for example, the higher the matching of the assessment-related information, the higher the similarity in the assessment space.
  • the similarity calculator 122b may set the similarity to the lowest level (for example, infinite when the similarity is distance).
  • the similarity calculation unit 122b may, for example, set weights according to information included in the assessment-related information and calculate composite similarities.
  • the search unit 122c searches for similar patients similar to the target patient from past patients based on the similarity calculated by the similarity calculation unit 122b, for example.
  • the search unit 122c may sort the similarities calculated for each past patient in descending order and output them as similar patients.
  • the search unit 122c may search a predetermined number (for example, 10) of past patients in descending order of similarity and identify them as similar patients.
  • the search unit 122c may specify, as similar patients, all past patients whose degree of similarity is equal to or higher than a threshold (that is, past patients whose degree of similarity is equal to or higher than a predetermined value).
  • the search unit 122c performs the search, for example, by referring to the similarity storage unit 121a.
  • the identification of similar patients by the search unit 122c may be performed, for example, based on the above-described high/low determination of the degree of similarity.
  • the number of patients to be identified as similar patients and the degree of similarity as a threshold may be appropriately set by the user (for example, the user who operates the search terminal 22).
  • the search unit 122c selects a plurality of provisionally similar patients based only on the degree of similarity in the assessment space, and further selects patient information (for example, the Patients who meet predetermined conditions may be narrowed down by assessment-related information (for example, at least one of physical information, disease information, and past assessment information), and patients who meet the predetermined conditions may be identified as similar patients. .
  • patient information for example, the Patients who meet predetermined conditions may be narrowed down by assessment-related information (for example, at least one of physical information, disease information, and past assessment information), and patients who meet the predetermined conditions may be identified as similar patients.
  • the "predetermined condition" may be set, for example, such that a provisionally similar patient whose assessment-related information has a relatively high degree of matching is relatively likely to be identified as a similar patient.
  • the output control unit 122d presents the user of the search terminal 22 with similar patients identified by the search unit 122c.
  • the output control unit 122d presents, for example, similar patients (for example, 10 patients with a high degree of similarity) to the user of the search terminal 22 as a similar patient list.
  • the output control unit 122d may display the similar patient list on the output unit 214 (for example, screen) of the search terminal 22, for example.
  • the output control unit 122d may cause the user to select at least one similar patient from the displayed similar patient list via the input unit 213 of the search terminal 22, for example.
  • the output control unit 122d acquires the assessment information of each selected similar patient from the database 30, displays it on the screen of the search terminal 22, and/or You can download to This allows the user to refer to assessment information similar to assessment information to be described for the target patient.
  • one physical server device may function as the model generation server 11 and the search server 12, as described above.
  • each of the model generation server 11 and the search server 12 may be realized by a plurality of server devices.
  • a common storage device shared by the model generation server 11 and the search server 12 is provided, and data generated by the model generation server 11 and used by the search server 12 (for example, past patient assessment vectors, etc.) is stored in this common storage device. may be retained.
  • This system adopts the concept of assessment vectors in which nursing record assessments are vectorized in a multi-dimensional assessment space. Similar patients are detected by the degree of similarity obtained based on the relationship with the predicted assessment vector. Therefore, the description of the assessment of similar patients with a high degree of similarity in this system may be more similar to the description of the assessment of the target patient than, for example, the description of the assessment of patients whose symptoms are similar. get higher That is, in this system, the detected similar patients have a higher degree of similarity to the target patient in terms of the description of the assessment, and can provide highly reliable support for assessment creation. According to the system, a predictive model can be used to predict a predictive assessment vector for a subject patient.
  • the predictive model is trained with assessment vectors derived from actual patient information and assessments that have actually been made in the past. Therefore, according to the present system, the predictive assessment vector can be predicted with high accuracy. According to this system, the similarity obtained only from the relationship between the assessment vector and the predicted assessment vector can be adjusted by the relationship between the patient information about the target patient and the patient information about the patient corresponding to the assessment vector. For example, if the consistency of information related to the similarity of assessment among the patient information is taken into consideration, it is possible to further improve the ability to search for similar patients.
  • the patient information considered when calculating similarity preferably includes at least one of physical information, disease information, and past assessment information. These three elements are known to be closely related to the similarity of assessments.
  • This system can output similar patients in descending order of similarity. As a result, the user can more quickly recognize similar patients with a high degree of similarity in assessment, and the efficiency of searching for similar patients is improved. Additionally/or alternatively, the system can output similar patients whose degree of similarity is greater than or equal to a predetermined value. As a result, it is possible to omit the output processing for patients whose similarity is not targeted, and thus it is possible to reduce the load of the output processing.
  • this system which adopts the concept of assessment vectors in which nursing record assessments are vectorized in a multi-dimensional assessment space (i.e., mapped onto a multi-dimensional assessment space) Generate an assessment vector (assessment mapping section), and learn a predictive model for predicting the predictive assessment vector of the target patient for whom assessment is to be created using the generated assessment vector (predictive model learning section).
  • Each process in the system may be provided as a method executed by at least one computer. This makes it possible, for example, to distribute the processing load.
  • a computer program for realizing each process in this system may be provided as a recording medium on which the computer program is recorded. This facilitates, for example, selling and updating the computer program associated with the system.
  • the present invention can be modified as appropriate within the scope that does not contradict the gist or idea of the invention that can be read from the claims and the entire specification, and the assessment support system, assessment support method, and recording medium that accompany such changes are also It is included in the technical idea of the present invention.
  • the assessment support system predicts an assessment vector obtained by vectorizing the assessment of the target patient as a predictive assessment vector based on patient information of the target patient for whom the assessment is to be created in the nursing record. calculating a similarity of the assessment vector to the predicted assessment vector based on a prediction unit, the predicted predicted assessment vector, and the assessment vector of the patient whose assessment is recorded in the nursing record;
  • the assessment support system includes a similarity calculation unit and a search unit that searches for and outputs at least one similar patient similar to the target patient based on the similarity.
  • the assessment prediction unit uses a prediction model that outputs the prediction assessment vector based on the input patient information to generate the prediction assessment vector from the patient information of the target patient.
  • the prediction model is a model learned using the patient information and the assessment vector of the patient.
  • the similarity calculation unit calculates the similarity using the patient information of the target patient and the patient information of the patient. It is an assessment support system.
  • the patient information includes at least one of physical information about the body, disease information about the disease, and past assessment information about the assessment created in the past for each patient. 4.
  • the assessment support system according to any one of Appendices 1 to 3.
  • the similarity calculation unit calculates the similarity so that the similarity increases as the degree of matching between the patient information of the target patient and the patient information of the patient increases.
  • the assessment support system according to appendix 3 or 4, which calculates (Appendix 6)
  • the assessment support system according to any one of appendices 1 to 6, wherein the search unit outputs the patient whose degree of similarity is equal to or greater than a predetermined value among the plurality of patients as the similar patient.
  • the assessment support system described. (Appendix 8)
  • the assessment support system described in Supplementary Note 8 includes an assessment mapping unit that maps an assessment recorded in a patient's nursing record as an assessment vector into an assessment space; and a prediction model learning unit that learns a prediction model that predicts the assessment vector of the target patient as a prediction assessment vector using the assessment vector of the patient and the patient information of the patient as a teacher data set. Support system.
  • At least one computer predicts an assessment vector obtained by vectorizing the assessment of the target patient based on patient information of the target patient for whom the assessment is to be created in the nursing record. Based on the relationship between the predicted assessment vector predicted as an assessment vector and the assessment vector of the patient whose assessment is recorded in the nursing record, the similarity of the assessment vector to the predicted assessment vector is calculated. calculation, and searching and outputting at least one similar patient who is similar to the target patient based on the similarity.
  • the recording medium according to Supplementary Note 10 causes at least one computer to generate an assessment vector obtained by vectorizing the assessment of the target patient based on patient information of the target patient for whom the assessment is to be created in the nursing record.
  • an assessment predictor predicting as a vector, a similarity of the assessment vector to the predictive assessment vector based on a relationship between the predicted predictive assessment vector and the assessment vector of the patient whose assessment is recorded in the care record;
  • a computer program configured to function as a similarity calculation unit that calculates the degree of similarity and a search unit that searches and outputs at least one similar patient similar to the target patient based on the similarity is recorded It is a recording medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Pathology (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

アセスメント支援システム(Asys)は、看護記録におけるアセスメントの作成対象である対象患者の患者情報に基づいて、前記対象患者の前記アセスメントがベクトル化されたアセスメントベクトルを、予測アセスメントベクトルとして予測するアセスメント予測部(122a)と、予測された前記予測アセスメントベクトルと、前記看護記録に前記アセスメントが記録されている患者の前記アセスメントベクトルとの関係に基づいて、前記予測アセスメントベクトルに対する前記アセスメントベクトルの類似度を計算する類似度計算部(122b)と、前記類似度に基づいて、前記対象患者に類似する少なくとも一人の類似患者を検索して出力する検索部(122c)とを備える。

Description

アセスメント支援システム、アセスメント支援方法、及び記録媒体
 本発明は、患者に関する看護過程の1つであるアセスメントの作成を支援するアセスメント支援システム、アセスメント支援方法、及び記録媒体に関する。
 診療や治療方針の支援のためのシステムとして、患者の症状を数値化した症状ベクトルで類似度を定義し、対象患者に症状ベクトルが類似する過去の患者を検出するシステムが知られている(例えば、特許文献1参照。)。
特開2003-122845号公報
 しかしながら、看護記録の1項目として記載されるアセスメントには、患者の看護方針に関する分析やその思考過程の記載が求められ、これらは、その患者の症状の他、例えば、患者に対して提供可能な看護体制や医療設備等の看護に関する多面的な情報が考慮されることが望ましい。このため、症状ベクトルに関して、アセスメント作成対象の第1の患者に類似するとされた第2の患者のアセスメントの記載内容が、必ずしも第1の患者のために記載されるアセスメントの参考になるとは限らない。従って、第1の患者のアセスメントの作成支援のために第1の患者に類似する第2の患者を検索するには、上記システムでは検索性能が低く、アセスメント作成支援として信頼性が十分ではない可能性がある。
 本発明は、アセスメント作成支援として信頼性を高めたアセスメント支援システム、アセスメント支援方法、及び記録媒体を提供することを課題とする。
 本発明に係るアセスメント支援システムの一の態様は、看護記録におけるアセスメントの作成対象である対象患者の患者情報に基づいて、前記対象患者の前記アセスメントがベクトル化されたアセスメントベクトルを、予測アセスメントベクトルとして予測するアセスメント予測部と、予測された前記予測アセスメントベクトルと、前記看護記録に前記アセスメントが記録されている患者の前記アセスメントベクトルとの関係に基づいて、前記予測アセスメントベクトルに対する前記アセスメントベクトルの類似度を計算する類似度計算部と、前記類似度に基づいて、前記対象患者に類似する少なくとも一人の類似患者を検索して出力する検索部とを備える。
 本発明に係るアセスメント支援方法の一の態様は、少なくとも1つのコンピュータに、看護記録におけるアセスメントの作成対象である対象患者の患者情報に基づいて、前記対象患者の前記アセスメントがベクトル化されたアセスメントベクトルを、予測アセスメントベクトルとして予測させ、予測された前記予測アセスメントベクトルと、前記看護記録に前記アセスメントが記録されている患者の前記アセスメントベクトルとの関係に基づいて、前記予測アセスメントベクトルに対する前記アセスメントベクトルの類似度を計算させ、前記類似度に基づいて、前記対象患者に類似する少なくとも一人の類似患者を検索して出力させる。
 本発明に係る記録媒体の一の態様は、少なくとも1つのコンピュータを、看護記録におけるアセスメントの作成対象である対象患者の患者情報に基づいて、前記対象患者の前記アセスメントがベクトル化されたアセスメントベクトルを、予測アセスメントベクトルとして予測するアセスメント予測部、予測された前記予測アセスメントベクトルと、前記看護記録に前記アセスメントが記録されている患者の前記アセスメントベクトルとの関係に基づいて、前記予測アセスメントベクトルに対する前記アセスメントベクトルの類似度を計算する類似度計算部、及び、前記類似度に基づいて、前記対象患者に類似する少なくとも一人の類似患者を検索して出力する検索部として機能させるように構成されたコンピュータプログラムが記録されている。
 上述したアセスメント支援システム、アセスメント支援方法、及び記録媒体のそれぞれの一の態様によれば、アセスメントを作成する対象患者に対してアセスメントが類似する患者の検索性能が高まり、信頼性の高いアセスメント作成支援を提供することが可能である。
本発明に係るアセスメント支援システムを実現するための全体構成の一例を示す図。 モデル生成サーバのハードウェア構成の一例を示す図。 検索サーバのハードウェア構成の一例を示す図。 モデル生成端末及び検索端末のハードウェア構成の一例を示す図。 類似度の概念を図式的に示す図。
1.全体構成
 図1は、本発明に係るアセスメント支援システムAsysを実現するための全体構成の一例を示している。アセスメント支援システムAsysは、アセスメント情報の作成を医療従事者(典型的には、看護師や看護学生等。以下「ユーザ」という。)に支援するシステムである。ここで、「アセスメント」とは、患者を看護するために記録される看護記録の分析手法の1つである「SOAP」に含まれる記載項目である。「SOAP」のうち、「S」は患者の主観的情報、「O」は客観的情報、「A」は「アセスメント」、そして、「P」は看護計画を示す。「アセスメント」には、主観的情報(即ち「S」)及び客観的情報(即ち「O」)が分析されることにより導かれた判断及び評価の他、意見及び印象等が記載される。以下、看護記録の「アセスメント」として記載されている文章情報を「アセスメント情報」という。
 アセスメント支援システムAsysは、例えば、図1に示すように、データの送受信可能なシステムサーバ部10とシステム端末部20とで構成されてよい。当該データの送受信は、所定のネットワークを介して或いは直接的に行われてよい。システムサーバ部10には、例えば、モデル生成サーバ11及び検索サーバ12が含まれてよい。システム端末部20には、例えば、モデル生成端末21及び検索端末22が含まれてよい。モデル生成端末21はモデル生成サーバ11にアクセス可能であり、モデル生成端末21及びモデル生成サーバ11はモデル生成システムMsysを構成してよい。モデル生成システムMsysは、例えば、モデル生成端末21に対するユーザの操作に応じて後述の予測モデルを生成するシステムである。検索端末22は検索サーバ12にアクセス可能であり、検索端末22及び検索サーバ12は検索システムDsysを構成してよい。検索システムDsysは、例えば、検索端末22に対するユーザの操作に応じて後述する類似患者を検索してユーザに提示するシステムである。
 モデル生成サーバ11及び検索サーバ12は、例えば、他のシステムからもアクセス可能なデータベース30にアクセス可能であってもよい。データベース30には、例えば、複数患者に関する患者情報等、他のシステム(例えば、電子カルテシステム等)で生成され利用され得る各種データが記憶されてよい。患者情報は、各患者に関して記録される情報(即ち、既知の情報)であり、例えば、各患者に関しての医師が作成する診療記録、検査データ、及び看護記録等が含まれてよい。患者情報には、例えば、対応する患者に関して過去に作成されて記録されたアセスメントも含まれてよい。患者情報は、例えば、各患者を識別するための患者識別情報に対応付けられていてよい。本システムでは、例えば、各処理において各患者を患者識別情報によって識別してよい。以下、アセスメントが過去に作成されて看護記録に記録されている(即ち、アセスメント情報が存在する)患者を、「過去患者」といい、アセスメントをこれから作成する(即ち、作成対象である)患者を「対象患者」という。
 システムサーバ部10は、物理的に複数のサーバ装置によって構成されるいわゆるクラウドサーバとして構成されてもよい。或いは、システムサーバ部10は、物理的に1つのサーバ装置によって構成されてもよい。モデル生成端末21及び検索端末22は、それぞれ後述するように、モデル生成サーバ11及び検索サーバ12と一体化されてもよい。また、図1では、モデル生成端末21及び検索端末22は、それぞれ1つ示されているが、複数存在してもよい。或いは、モデル生成端末21及び検索端末22は、物理的に1つの端末であってもよい。
2.モデル生成サーバ
 モデル生成サーバ11のハードウェア構成の一例を図2に示す。モデル生成サーバ11は、例えば、記憶装置111、演算装置112、及び通信インターフェース114とを有してよい。記憶装置111と、演算装置112と、通信インターフェース114とは、データバス115を介してデータの送受信可能に接続されてよい。
 記憶装置111は、所望のデータを記憶可能である。例えば、記憶装置111は、演算装置112が実行するコンピュータプログラムを一時的に記憶していてもよい。記憶装置111は、演算装置112がコンピュータプログラムを実行している際に演算装置112が一時的に使用するデータを一時的に記憶してよい。記憶装置111は、モデル生成サーバ11が長期的に保存するデータを記憶してもよい。例えば、記憶装置111には、生成された予測モデルを記憶するモデル記憶部111a、及び過去患者に関する後述のアセスメントベクトルを記憶するベクトル記憶部111bが含まれてよい。なお、記憶装置111は、RAM(Random Access Memory)、ROM(Read Only Memory)、ハードディスク装置、光磁気ディスク装置、SSD(Solid State Drive)及びディスクアレイ装置のうちの少なくとも1つを含んでいてもよい。つまり、記憶装置111は、揮発性記録媒体及び不揮発性記録媒体を含んでいてもよい。
 演算装置112は、例えば、CPU(Central Proecssing Unit)を含む。演算装置112は、コンピュータプログラムを読み込む。例えば、演算装置112は、記憶装置111が記憶しているコンピュータプログラムを読み込んでもよい。例えば、演算装置112は、コンピュータで読み取り可能であって且つ不揮発性記録媒体が記憶しているコンピュータプログラムを、不図示の記録媒体読み取り装置を用いて読み込んでもよい。演算装置112は、通信インターフェース114を介して、モデル生成サーバ11の外部に配置される不図示の装置からコンピュータプログラムを取得してもよい(つまり、ダウンロードしてもよい又は読み込んでもよい)。
 演算装置112は、読み込んだコンピュータプログラムを実行する。その結果、演算装置112内には、モデル生成サーバ11が行う動作を実行するための論理的な機能ブロックが実現される。つまり、演算装置112は、モデル生成サーバ11が行う動作を実行するための論理的な機能ブロックを実現するためのコントローラとして機能可能である。図2には、モデル生成サーバ11が実行すべき各処理を実現するために、演算装置112内に実現される論理的な機能ブロックの一例が示されている。図2に示すように、演算装置112内には、アセスメント写像部112aと、予測モデル学習部112bとが実現される。演算装置112は、各部112a-112bに関する処理のために、例えば、通信インターフェース114及びデータバス115を介して必要なデータを取得する。各部112a-112bの動作(即ち、各部112a-112bが実行する処理)の詳細については後述する。
 通信インターフェース114は、例えば、モデル生成端末21、データベース30,システムサーバ部10における他のサーバ(例えば、検索サーバ12)、及び外部システム等、他の装置に通信回線を介してアクセスし、当該他の装置と各種データの送受信を可能にする。
3.検索サーバ
 検索サーバ12のハードウェア構成の一例を図3に示す。検索サーバ12は、例えば、記憶装置121、演算装置122、及び通信インターフェース124とを有してよい。記憶装置121と、演算装置122と、通信インターフェース124とは、データバス125を介してデータの送受信可能に接続されてよい。
 記憶装置121は、所望のデータを記憶可能である。例えば、記憶装置121は、演算装置122が実行するコンピュータプログラムを一時的に記憶していてもよい。記憶装置121は、演算装置122がコンピュータプログラムを実行している際に演算装置122が一時的に使用するデータを一時的に記憶してよい。記憶装置121は、検索サーバ12が長期的に保存するデータを記憶してもよい。例えば、記憶装置121には、後述する類似度を記憶する類似度記憶部121aが含まれてよい。なお、記憶装置121は、RAM、ROM、ハードディスク装置、光磁気ディスク装置、SSD及びディスクアレイ装置のうちの少なくとも1つを含んでいてもよい。つまり、記憶装置121は、揮発性記録媒体及び不揮発性記録媒体を含んでいてもよい。
 演算装置122は、例えば、CPUを含む。演算装置122は、コンピュータプログラムを読み込む。例えば、演算装置122は、記憶装置121が記憶しているコンピュータプログラムを読み込んでもよい。例えば、演算装置122は、コンピュータで読み取り可能であって且つ不揮発性記録媒体が記憶しているコンピュータプログラムを、不図示の記録媒体読み取り装置を用いて読み込んでもよい。演算装置122は、通信インターフェース124を介して、検索サーバ12の外部に配置される不図示の装置からコンピュータプログラムを取得してもよい(つまり、ダウンロードしてもよい又は読み込んでもよい)。
 演算装置122は、読み込んだコンピュータプログラムを実行する。その結果、演算装置122内には、検索サーバ12が行う動作を実行するための論理的な機能ブロックが実現される。つまり、演算装置122は、検索サーバ12が行う動作を実行するための論理的な機能ブロックを実現するためのコントローラとして機能可能である。図3には、検索サーバ12が実行すべき各処理を実現するために、演算装置122内に実現される論理的な機能ブロックの一例が示されている。図3に示すように、演算装置122内には、例えば、アセスメント予測部122aと、類似度計算部122bと、検索部122cと、出力制御部122dとが実現される。演算装置122は、各部122a-122dに関する処理のために、例えば、通信インターフェース124及びデータバス125を介して必要なデータを取得する。各部122a-122dの動作(即ち、各部122a-122dが実行する処理)の詳細については後述する。
 通信インターフェース124は、例えば、検索端末22、データベース30、システムサーバ部10における他のサーバ(例えば、モデル生成サーバ11)、及び外部システム等、他の装置に通信回線を介してアクセスし、当該他の装置と各種データの送受信を可能にする。
4.モデル生成端末
 モデル生成端末21は、ユーザに対してモデル生成サーバ11のインターフェースとして機能する。モデル生成端末21は、ユーザの入力操作及びモデル生成サーバ11からの指示に応じて動作する。モデル生成端末21のハードウェア構成の一例を図4に示す。モデル生成端末21は、例えば、記憶部211、演算部212、入力部213、出力部214及び通信インターフェース215とを有してよい。記憶部211と、演算部212と、入力部213と、出力部214と、通信インターフェース215とは、データバス216を介してデータの送受信可能に接続されてよい。なお、モデル生成端末21はモデル生成サーバ11と一体化するように設けられてもよい。この場合、例えば、入力部213及び出力部214はモデル生成サーバ11のデータバス115に接続されてよい。また、記憶部211及び演算部212のそれぞれの機能は、例えば、モデル生成サーバ11の記憶装置111及び演算装置112によって実現されてよい。
 記憶部211は、所望のデータを記憶可能である。例えば、記憶部211は、演算部212が実行するコンピュータプログラムを一時的に記憶していてもよい。記憶部211は、演算部212がコンピュータプログラムを実行している際に演算部212が一時的に使用するデータを一時的に記憶してよい。記憶部211は、モデル生成端末21が長期的に保存するデータを記憶してもよい。なお、記憶部211は、RAM、ROM、ハードディスク装置、光磁気ディスク装置、SSD及びディスクアレイ装置のうちの少なくとも1つを含んでいてもよい。つまり、記憶部211は、揮発性記録媒体及び不揮発性記録媒体を含んでいてもよい。
 演算部212は、例えば、CPUを含む。演算部212は、コンピュータプログラムを読み込む。例えば、演算部212は、記憶部211が記憶しているコンピュータプログラムを読み込んでもよい。例えば、演算部212は、コンピュータで読み取り可能であって且つ不揮発性記録媒体が記憶しているコンピュータプログラムを、不図示の記録媒体読み取り装置を用いて読み込んでもよい。演算部212は、通信インターフェース215を介して、モデル生成端末21の外部に配置される不図示の装置からコンピュータプログラムを取得してもよい(つまり、ダウンロードしてもよい又は読み込んでもよい)。演算部212は、読み込んだコンピュータプログラムを実行する。その結果、演算部212内には、モデル生成端末21が行う動作を実行するための論理的な機能ブロックが実現される。つまり、演算部212は、モデル生成端末21が行う動作を実行するための論理的な機能ブロックを実現するためのコントローラとして機能可能である。
 入力部213は、例えば、外部からの入力操作(例えば、ユーザのモデル生成端末21に対する入力操作)を受け付け、当該入力操作に応じた処理がされるように、操作情報を演算部212に送る。演算部212は、例えば、入力部213から送られた操作情報を通信インターフェース215を介してモデル生成サーバ11に送信してよい。また、演算部212は、例えば、入力部213から送られた操作情報に応じた処理を行い、その処理結果を通信インターフェース215を介してモデル生成サーバ11に送信してもよい。入力部213における入力態様は、キー入力、音声入力、タッチ入力、ボタン入力等問わない。入力部213には、例えば、キーボード、マウス、タッチパネル、マイク、ボタン等が含まれてよい。
 出力部214は、例えば、モデル生成サーバ11から送信された指示や各種情報を、ユーザが確認できる態様で適宜出力する。また、出力部214は、例えば、演算部212によって処理された処理結果を、ユーザが確認できる態様で適宜出力してもよい。出力部214の出力態様は、視覚的出力、聴覚的出力、データ出力等問わない。出力部214には、例えば、画面、スピーカ、記憶媒体等が含まれてよい。通信インターフェース215は、例えば、通信回線を介してモデル生成サーバ11にアクセスし、モデル生成サーバ11と各種データの送受信を可能にする。
5.検索端末
 検索端末22は、ユーザに対して検索サーバ12のインターフェースとして機能する。検索端末22は、ユーザの入力操作及び検索サーバ12からの指示に応じて動作する。検索端末22のハードウェア構成は、モデル生成端末21に関する上記説明において、「モデル生成端末21」が「検索端末22」に対応し、「モデル生成サーバ11」が「検索サーバ12」に対応するように読み替える他は、モデル生成端末21の上記ハードウェア構成と同様でよい。従って、検索端末22に関するハードウェア構成の説明を省略する。
6.モデル生成システム
 図2に戻り、モデル生成システムMsysにおいて行われる処理について、モデル生成サーバ11の演算装置112に実現されるアセスメント写像部112a及び予測モデル学習部112bのそれぞれの動作を中心に説明する。
 アセスメント写像部112aは、例えば、モデル生成端末21の入力部213が受け付けたベクトル生成操作に応じてベクトル生成処理を行ってよい。ベクトル生成操作は、例えば、アセスメントが1つ以上新規作成されたタイミングや更新されたタイミングで行われてよい。アセスメント写像部112aは、ベクトル生成処理として、例えば、看護記録にアセスメントとして作成された実在の文章(即ち、アセスメント情報)をベクトル化して、複数次元のアセスメント空間にアセスメントベクトルとして写像してよい。アセスメント写像部112aは、アセスメント情報を、例えば、データベース30が保持する看護記録から取得してよい。アセスメント写像部112aは、アセスメント情報からアセスメントベクトルを得るために、文章をベクトル化するための既存の手法を利用してよい。当該既存の手法として、例えば、BoW(Bag of Words)、Word2vec等が採用されてよい。アセスメント写像部112aは、例えば、各過去患者について、アセスメント情報がベクトル化されたアセスメントベクトルを、例えば患者識別情報と対応付けて、記憶装置111のベクトル記憶部111bに記憶してよい。
 予測モデル学習部112bは、例えば、ベクトル生成処理に続いてモデル学習処理を行ってよい。或いは、予測モデル学習部112bは、例えば、モデル生成端末21の入力部213が受け付けたモデル学習操作に応じてモデル学習処理を行ってもよい。予測モデル学習部112bは、モデル学習処理として、例えば、対象患者のアセスメントベクトルを予測するための予測モデルを学習する。以下、対象患者について予測されたアセスメントベクトルを、以下「予測アセスメントベクトル」という。なお、アセスメント写像部112aにより得られるアセスメントベクトルと、予測アセスメントベクトルとは、同じアセスメント空間におけるベクトルでよい。予測モデルは、例えば、対象患者に関する患者情報が入力されると予測アセスメントベクトルを出力するための機械学習モデルでよい。予測モデル学習部112bは、モデル学習処理として、例えば、過去患者の患者情報を入力データとし、その過去患者のアセスメントベクトルを正解データとする教師データセットにより、予測モデルの構造を学習してよい。予測モデル学習部112bは、例えば、正解データとして使用する各過去患者のアセスメントベクトルをベクトル記憶部111bから取得し、入力データとして使用する各過去患者の患者情報を、データベース30から取得してよい。予測モデル学習部112bは、例えば、入力データとしての患者情報に基づいて予測モデルによって出力された予測アセスメントベクトルと正解データとしてのアセスメントベクトルとの差が小さくなるように、即ち、出力された予測アセスメントベクトルが正解データのアセスメントベクトルに近くなるように、予測モデルのパラメータ値を調整してよい。予測モデル学習部112bは、生成した予測モデルを、例えば、記憶装置111のモデル記憶部111aに記憶してよい。
 ここで、本システムにおける「患者情報」には、特に、身体に関する身体的情報、疾病に関する疾病情報、及び過去アセスメント情報のうち少なくとも1つが含まれていることが望ましい。「身体的情報」には、例えば、バイタル値、年齢、身長、及び体重等が含まれてよい。「疾病情報」には、例えば、病名、及び病期等が含まれてよい。「過去アセスメント情報」は、過去に作成されたアセスメント情報に関する情報であり、例えば、アセスメント情報自体であってもよいしアセスメントベクトルでもよい。患者情報に含まれる情報の中で、特に、上記3要素に関する患者間の一致性は、アセスメント情報の類似性に大きく関係することが知られている。例えば、上記3要素に関しての一致度が高いほどアセスメント情報が類似することが知られている。
7.検索システム
 続いて、検索システムDsysにおいて行われる処理について、図3に示す検索サーバ12の演算装置122に実現されるアセスメント予測部122a、類似度計算部122b、検索部122c、及び出力制御部122dのそれぞれの動作を中心に説明する。アセスメント予測部122a、類似度計算部122b、検索部122c、及び出力制御部122dのそれぞれは、例えば、検索端末22の入力部213が受け付けた検索操作に応じて、この順序で下記処理を行ってよい。検索操作は、例えば、ユーザの必要に応じたタイミングで行われてよい。
 アセスメント予測部122aは、例えば、対象患者に関する患者情報からその対象患者のアセスメントベクトルを予測アセスメントベクトルとして予測する。アセスメント予測部122aによる予測は、例えば、予測モデル学習部112bによって学習された予測モデルによって行われてよい。アセスメント予測部122aは、例えば、モデル記憶部111aに記憶されている予測モデルを当該予測に利用してよい。アセスメント予測部122aは、対象患者に関する患者情報を、例えば、データベース30から取得してよい。
 類似度計算部122bは、例えば、アセスメント空間における予測アセスメントベクトルと各過去患者のアセスメントベクトルと関係に基づいて、予測アセスメントベクトルに対する各過去患者のアセスメントベクトルの類似度を計算してよい。類似度計算部122bは、例えば、過去患者のアセスメントベクトルを取得するベクトル取得部122bbを有してよい。ベクトル取得部122bbは、例えば、ベクトル記憶部111bに記憶されているアセスメントベクトルのうち、全ての或いは一部の過去患者のアセスメントベクトルを取得してよい。或いは、ベクトル取得部122bbは、例えば、上述したベクトル生成処理を行う(或いは、アセスメント写像部112aに実行させる)ことにより、過去患者のアセスメントベクトルを取得してよい。類似度計算部122bは、例えば、各過去患者について計算した類似度を記憶装置121の類似度記憶部121aに、例えば患者識別情報に対応付けて記憶してよい。類似度計算部122bは、例えば、ミンコフスキー距離(マンハッタン距離、ユークリッド距離、及びチェビシェフ距離を含む)、コサイン類似度等に基づいて類似度を計算してよい。
 対象患者の予測アセスメントベクトルと過去患者のアセスメントベクトルとの関係における類似度の概念を、図式的に図5に示す。図5左側の患者情報空間は、対象患者の患者情報がn次元(図5では2次元)の患者情報ベクトルにベクトル化される空間である。図5に示すように、2次元の患者情報空間の場合、例えば、X軸要素はバイタル値、Y軸要素は年齢に設定されてよい。患者情報空間における位置Xは、対象患者の患者情報から得られる患者情報ベクトル、即ち、患者情報空間における対象患者の患者情報に対応する位置を示す。一方、図5右側にn次元(図5では2次元)のアセスメント空間を示す。アセスメント空間における位置Ypは、対象患者の患者情報から予測された予測アセスメントベクトル値、即ち、アセスメント空間における対象患者の予測されたアセスメント情報に対応する位置を示す。アセスメント空間における位置Yi(i=1、2、3…)は、過去患者の患者情報から得られるアセスメントベクトル値、即ち、アセスメント空間における過去患者のアセスメント情報に対応する位置を示す。類似度は、図5に示すように、アセスメント空間における予測アセスメントベクトル値である位置Ypと過去患者のアセスメントベクトル値である位置Yiとの位置関係(図5では距離)αでよい。位置関係αが近い或いは小さいほど類似度が高いと判断されてよい。図5に示す例において、位置Y1は位置Y2よりも位置Ypに近い。従って、アセスメントベクトル値Y1の類似度は、アセスメントベクトル値Y2の類似度よりも高いと判断されてよい。
 なお、本システムに係る類似度は、例えば、対象患者の予測アセスメントベクトルと過去患者のアセスメントベクトルだけでなく、対象患者の患者情報及び過去患者の患者情報を考慮して複合的に計算される複合的類似度であってもよい。例えば、複合的類似度は、アセスメント空間における類似度+患者情報空間における類似度として計算されてよい。患者情報空間における類似度に採用される手法は、アセスメント空間における類似度と同じであってもよいし、異なる手法であってもよい。
 類似度計算部122bは、例えば、アセスメント空間における類似度が患者情報で調整されるように、複合的類似度を計算してよい。類似度計算部122bは、例えば、患者情報のうち、アセスメント情報の類似性に大きく関係することが知られているアセスメント関連情報(例えば、身体的情報、疾病情報、過去アセスメント情報のうち少なくとも1つ)を用いてもよい。類似度計算部122bは、例えば、当該アセスメント関連情報の一致度が高いほどアセスメント空間における類似度が高くなるように、複合的類似度を計算してもよい。例えば、類似度計算部122bは、アセスメント関連情報の少なくとも一部が一致しない場合は、類似度を最低レベル(例えば、類似度が距離の場合は無限大)に設定してよい。類似度計算部122bは、例えば、アセスメント関連情報に含まれる情報に応じて重みづけを設定し、複合的類似度を計算してもよい。
 図3に戻り、検索部122cは、例えば、類似度計算部122bによって計算された類似度に基づいて、過去患者から対象患者に類似する類似患者を検索する。例えば、検索部122cは、各過去患者について計算された類似度を高い順にソートして類似患者として出力してよい。検索部122cは、例えば、類似度の高い順から所定数(例えば10人)の過去患者を検索して類似患者として特定してよい。或いは、検索部122cは、例えば、閾値となる類似度以上の過去患者(即ち、類似度が所定値以上の過去患者)を全て類似患者として特定してもよい。検索部122cは、例えば、類似度記憶部121aを参照して、当該検索を行う。検索部122cによる類似患者の特定は、例えば、上述した類似度の高低判断に基づいて行われてよい。類似患者として特定されるべき人数や閾値となる類似度は、ユーザ(例えば、検索端末22を操作するユーザ)によって適宜設定されてよい。なお、検索部122cは、例えば、アセスメント空間における類似度のみによって複数の仮類似患者を選別し、更に、選別された仮類似患者の中から、患者情報(例えば、アセスメント情報の類似性に大きく関係するアセスメント関連情報(例えば、身体的情報、疾病情報、過去アセスメント情報のうち少なくとも1つ))によって、所定条件を満たす患者を絞って、当該所定条件を満たす患者を類似患者として特定してもよい。当該「所定条件」は、例えば、アセスメント関連情報の一致度が相対的に高い仮類似患者が類似患者として相対的に特定されやすくなるように設定されてよい。
 出力制御部122dは、検索部122cによって特定された類似患者を検索端末22のユーザに提示する。出力制御部122dは、例えば、類似患者(例えば、類似度が高い10人)を類似患者リストとして検索端末22のユーザに提示する。出力制御部122dは、例えば、類似患者リストを検索端末22の出力部214(例えば、画面)に表示させてよい。出力制御部122dは、例えば、表示された類似患者リストから少なくとも一人の類似患者を、ユーザに検索端末22の入力部213を介して選択させてよい。少なくとも一人の類似患者が選択されると、出力制御部122dは、例えば、選択された各類似患者のアセスメント情報をデータベース30から取得して、検索端末22の画面に表示、及び/或いは検索端末22にダウンロードしてよい。これにより、ユーザは、対象患者に対して記載すべきアセスメント情報に類似するアセスメント情報を参照することが可能となる。
 本システムは、上述したように、物理的に1つのサーバ装置が、モデル生成サーバ11及び検索サーバ12として機能してもよい。また、モデル生成サーバ11及び検索サーバ12のそれぞれが複数のサーバ装置により実現されてよい。モデル生成サーバ11及び検索サーバ12に共通する共通記憶装置が設けられ、モデル生成サーバ11で生成され検索サーバ12で使用されるデータ(例えば、過去患者のアセスメントベクトル等)は、この共通記憶装置に保持されてよい。
 本システムによれば、看護記録のアセスメントが複数次元のアセスメント空間でベクトル化されたアセスメントベクトルの概念を採用し、過去に作成された実際のアセスメントから得られるアセスメントベクトルと対象患者に対して予測された予測アセスメントベクトルとの関係に基づいて得られる類似度によって、類似患者が検出される。従って、本システムにおける類似度が高い類似患者のアセスメントの記載内容は、例えば、症状が類似するだけの患者のアセスメントの記載内容よりも、対象患者のアセスメントとして記載すべき内容に類似する可能性が高くなる。即ち、本システムは、アセスメントの記載内容に関して、検出される類似患者は対象患者に対してより高い類似性を有しており、アセスメント作成支援として高い信頼性を提供可能である。
 本システムによれば、予測モデルを用いて対象患者の予測アセスメントベクトルを予測することができる。予測モデルの学習は、実際の患者情報及び実際に過去に作成されたアセスメントから得られるアセスメントベクトルにより行われる。従って、本システムによれば、高い精度で予測アセスメントベクトルを予測をすることができる。
 本システムによれば、アセスメントベクトルと予測アセスメントベクトルとの関係だけから得られる類似度を、対象患者に関する患者情報とアセスメントベクトルに対応する患者に関する患者情報との関係で調整することができる。例えば、患者情報のうち、アセスメントの類似性に関連する情報の一致性が考慮されれば、類似患者の検索能力をより高めることが可能である。
 例えば、類似度が計算される際に考慮される患者情報に、身体的情報、疾病情報及び過去アセスメント情報のうち少なくとも1つが含まれることが好ましい。これら3要素は、アセスメントの類似性に大きく関連する要素として知られている。従って、これら要素を考慮して類似度を計算することにより、類似患者の検索能力を更に一層高めることが可能である。
 本システムは、類似患者を類似度が高い順に出力可能である。これにより、ユーザは、アセスメントに関して類似度が高い類似患者を、より速く認識することが可能であり、類似患者の検索作業の効率性が向上する。更に/或いは、本システムは、類似度が所定値以上の類似患者を出力可能である。これにより、類似度が対象外の患者に関する出力処理を省けるため、出力処理負担の軽減化が可能となる。
 また、看護記録のアセスメントが複数次元のアセスメント空間でベクトル化された(即ち、複数次元のアセスメント空間に写像された)アセスメントベクトルの概念を採用した本システムは、実際に過去に作成されたアセスメントからアセスメントベクトルを生成し(アセスメント写像部)、アセスメントの作成対象である対象患者の予測アセスメントベクトルを予測するための予測モデルを、生成されたアセスメントベクトルを用いて学習する(予測モデル学習部)ように構成してもよい。これにより、実際に作成されたアセスメント自体に基づいた予測が可能となる。従って、予測の精度がより一層高められ、信頼性の高いアセスメント支援システムを提供することが可能となる。
 本システムにおける各処理は、少なくとも1つのコンピュータにより実行させる方法として提供されてよい。これにより、例えば、処理負荷を分散させることが可能となる。また、本システムにおける各処理を実現するためのコンピュータプログラムは、当該コンピュータプログラムが記録された記録媒体として提供されてよい。これにより、例えば、本システムに係るコンピュータプログラムの販売や更新が容易となる。
 本発明は、請求の範囲及び明細書全体から読み取るこのできる発明の要旨又は思想に反しない範囲で適宜変更可能であり、そのような変更を伴うアセスメント支援システム、アセスメント支援方法、及び記録媒体もまた本発明の技術思想に含まれる。
 <付記>
 以上説明した実施形態に関して、更に以下の付記を開示する。
(付記1)
 付記1に記載のアセスメント支援システムは、看護記録におけるアセスメントの作成対象である対象患者の患者情報に基づいて、前記対象患者の前記アセスメントがベクトル化されたアセスメントベクトルを、予測アセスメントベクトルとして予測するアセスメント予測部と、予測された前記予測アセスメントベクトルと、前記看護記録に前記アセスメントが記録されている患者の前記アセスメントベクトルとの関係に基づいて、前記予測アセスメントベクトルに対する前記アセスメントベクトルの類似度を計算する類似度計算部と、前記類似度に基づいて、前記対象患者に類似する少なくとも一人の類似患者を検索して出力する検索部と、を備えたアセスメント支援システムである。
(付記2)
 付記2に記載のアセスメント支援システムは、前記アセスメント予測部は、入力された前記患者情報に基づいて前記予測アセスメントベクトルを出力する予測モデルを用いて、前記対象患者の前記患者情報から前記予測アセスメントベクトルを予測し、前記予測モデルは、前記患者の前記患者情報及び前記アセスメントベクトルを用いて学習されたモデルである、付記1に記載のアセスメント支援システムである。
(付記3)
 付記3に記載のアセスメント支援システムは、前記類似度計算部は、前記対象患者の前記患者情報と前記患者の前記患者情報とを用いて、前記類似度を計算する、付記1又は2に記載のアセスメント支援システムである。
(付記4)
 付記4に記載のアセスメント支援システムは、前記患者情報には、各患者に関しての、身体に関する身体的情報、疾病に関する疾病情報、及び過去に作成された前記アセスメントに関する過去アセスメント情報のうち少なくとも1つが含まれる、付記1~3のいずれか一項に記載のアセスメント支援システムである。
(付記5)
 付記5に記載のアセスメント支援システムは、前記類似度計算部は、前記対象患者の前記患者情報と前記患者の前記患者情報との一致度が高いほど前記類似度が高くなるように、前記類似度を計算する、付記3または4に記載のアセスメント支援システムである。
(付記6)
 付記6に記載のアセスメント支援システムは、前記検索部は、複数の前記患者のうち、前記類似度が高い順に前記類似患者として出力する、付記1~5のいずれか一項に記載のアセスメント支援システムである。
(付記7)
 付記7に記載のアセスメント支援システムは、前記検索部は、複数の前記患者のうち、前記類似度が所定値以上の前記患者を前記類似患者として出力する、付記1~6のいずれか一項に記載のアセスメント支援システムである。
(付記8)
 付記8に記載のアセスメント支援システムは、患者の看護記録に記録されたアセスメントをアセスメントベクトルとしてアセスメント空間に写像するアセスメント写像部と、前記アセスメントの作成対象である対象患者の患者情報が入力されると、前記対象患者の前記アセスメントベクトルを予測アセスメントベクトルとして予測する予測モデルを、前記患者の前記アセスメントベクトルと前記患者の前記患者情報とを教師データセットとして学習する予測モデル学習部と、を備えたアセスメント支援システムである。
(付記9)
 付記9に記載のアセスメント支援方法は、少なくとも1つのコンピュータに、看護記録におけるアセスメントの作成対象である対象患者の患者情報に基づいて、前記対象患者の前記アセスメントがベクトル化されたアセスメントベクトルを、予測アセスメントベクトルとして予測させ、予測された前記予測アセスメントベクトルと、前記看護記録に前記アセスメントが記録されている患者の前記アセスメントベクトルとの関係に基づいて、前記予測アセスメントベクトルに対する前記アセスメントベクトルの類似度を計算させ、前記類似度に基づいて、前記対象患者に類似する少なくとも一人の類似患者を検索して出力させる、アセスメント支援方法である。
(付記10)
 付記10に記載の記録媒体は、少なくとも1つのコンピュータを、看護記録におけるアセスメントの作成対象である対象患者の患者情報に基づいて、前記対象患者の前記アセスメントがベクトル化されたアセスメントベクトルを、予測アセスメントベクトルとして予測するアセスメント予測部、予測された前記予測アセスメントベクトルと、前記看護記録に前記アセスメントが記録されている患者の前記アセスメントベクトルとの関係に基づいて、前記予測アセスメントベクトルに対する前記アセスメントベクトルの類似度を計算する類似度計算部、及び、前記類似度に基づいて、前記対象患者に類似する少なくとも一人の類似患者を検索して出力する検索部として機能させるように構成されたコンピュータプログラムが記録された記録媒体である。
11  モデル生成サーバ
112a  アセスメント写像部
112b  予測モデル学習部
12  検索サーバ
122a  アセスメント予測部
122b  類似度計算部
122c  検索部
122d  出力制御部
Asys  アセスメント支援システム

Claims (10)

  1.  看護記録におけるアセスメントの作成対象である対象患者の患者情報に基づいて、前記対象患者の前記アセスメントがベクトル化されたアセスメントベクトルを、予測アセスメントベクトルとして予測するアセスメント予測部と、
     予測された前記予測アセスメントベクトルと、前記看護記録に前記アセスメントが記録されている患者の前記アセスメントベクトルとの関係に基づいて、前記予測アセスメントベクトルに対する前記アセスメントベクトルの類似度を計算する類似度計算部と、
     前記類似度に基づいて、前記対象患者に類似する少なくとも一人の類似患者を検索して出力する検索部と、
    を備えたアセスメント支援システム。
  2.  前記アセスメント予測部は、入力された前記患者情報に基づいて前記予測アセスメントベクトルを出力する予測モデルを用いて、前記対象患者の前記患者情報から前記予測アセスメントベクトルを予測し、
     前記予測モデルは、前記患者の前記患者情報及び前記アセスメントベクトルを用いて学習されたモデルである、
    請求項1に記載のアセスメント支援システム。
  3.  前記類似度計算部は、前記対象患者の前記患者情報と前記患者の前記患者情報とを用いて、前記類似度を計算する、請求項1又は2に記載のアセスメント支援システム。
  4.  前記患者情報には、各患者に関しての、身体に関する身体的情報、疾病に関する疾病情報、及び過去に作成された前記アセスメントに関する過去アセスメント情報のうち少なくとも1つが含まれる、請求項1~3のいずれか一項に記載のアセスメント支援システム。
  5.  前記類似度計算部は、前記対象患者の前記患者情報と前記患者の前記患者情報との一致度が高いほど前記類似度が高くなるように、前記類似度を計算する、請求項3または4に記載のアセスメント支援システム。
  6.  前記検索部は、複数の前記患者のうち、前記類似度が高い順に前記類似患者として出力する、請求項1~5のいずれか一項に記載のアセスメント支援システム。
  7.  前記検索部は、複数の前記患者のうち、前記類似度が所定値以上の前記患者を前記類似患者として出力する、請求項1~6のいずれか一項に記載のアセスメント支援システム。
  8.  患者の看護記録に記録されたアセスメントをアセスメントベクトルとしてアセスメント空間に写像するアセスメント写像部と、
     前記アセスメントの作成対象である対象患者の患者情報が入力されると、前記対象患者の前記アセスメントベクトルを予測アセスメントベクトルとして予測する予測モデルを、前記患者の前記アセスメントベクトルと前記患者の前記患者情報とを教師データセットとして学習する予測モデル学習部と、
    を備えたアセスメント支援システム。
  9.  少なくとも1つのコンピュータに、
     看護記録におけるアセスメントの作成対象である対象患者の患者情報に基づいて、前記対象患者の前記アセスメントがベクトル化されたアセスメントベクトルを、予測アセスメントベクトルとして予測させ、
     予測された前記予測アセスメントベクトルと、前記看護記録に前記アセスメントが記録されている患者の前記アセスメントベクトルとの関係に基づいて、前記予測アセスメントベクトルに対する前記アセスメントベクトルの類似度を計算させ、
     前記類似度に基づいて、前記対象患者に類似する少なくとも一人の類似患者を検索して出力させる、アセスメント支援方法。
  10.  少なくとも1つのコンピュータを、
     看護記録におけるアセスメントの作成対象である対象患者の患者情報に基づいて、前記対象患者の前記アセスメントがベクトル化されたアセスメントベクトルを、予測アセスメントベクトルとして予測するアセスメント予測部、
     予測された前記予測アセスメントベクトルと、前記看護記録に前記アセスメントが記録されている患者の前記アセスメントベクトルとの関係に基づいて、前記予測アセスメントベクトルに対する前記アセスメントベクトルの類似度を計算する類似度計算部、及び、
     前記類似度に基づいて、前記対象患者に類似する少なくとも一人の類似患者を検索して出力する検索部として機能させるように構成されたコンピュータプログラムが記録された記録媒体。
PCT/JP2021/020254 2021-05-27 2021-05-27 アセスメント支援システム、アセスメント支援方法、及び記録媒体 WO2022249407A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2021/020254 WO2022249407A1 (ja) 2021-05-27 2021-05-27 アセスメント支援システム、アセスメント支援方法、及び記録媒体
US18/563,406 US20240242838A1 (en) 2021-05-27 2021-05-27 Assessment support system, assessment support method, and recording medium
JP2023523873A JPWO2022249407A1 (ja) 2021-05-27 2021-05-27

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/020254 WO2022249407A1 (ja) 2021-05-27 2021-05-27 アセスメント支援システム、アセスメント支援方法、及び記録媒体

Publications (1)

Publication Number Publication Date
WO2022249407A1 true WO2022249407A1 (ja) 2022-12-01

Family

ID=84228682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020254 WO2022249407A1 (ja) 2021-05-27 2021-05-27 アセスメント支援システム、アセスメント支援方法、及び記録媒体

Country Status (3)

Country Link
US (1) US20240242838A1 (ja)
JP (1) JPWO2022249407A1 (ja)
WO (1) WO2022249407A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116434975A (zh) * 2023-06-14 2023-07-14 西安交通大学医学院第一附属医院 一种呼吸内科清肺排痰装置智能管理系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000259712A (ja) * 1999-03-04 2000-09-22 Mitsubishi Electric Corp 介護計画作成支援装置および介護計画作成支援装置における介護計画作成方法
WO2020084734A1 (ja) * 2018-10-25 2020-04-30 日本電気株式会社 ナレッジ生成システム、方法およびプログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000259712A (ja) * 1999-03-04 2000-09-22 Mitsubishi Electric Corp 介護計画作成支援装置および介護計画作成支援装置における介護計画作成方法
WO2020084734A1 (ja) * 2018-10-25 2020-04-30 日本電気株式会社 ナレッジ生成システム、方法およびプログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116434975A (zh) * 2023-06-14 2023-07-14 西安交通大学医学院第一附属医院 一种呼吸内科清肺排痰装置智能管理系统
CN116434975B (zh) * 2023-06-14 2023-09-01 西安交通大学医学院第一附属医院 一种呼吸内科清肺排痰装置智能管理系统

Also Published As

Publication number Publication date
JPWO2022249407A1 (ja) 2022-12-01
US20240242838A1 (en) 2024-07-18

Similar Documents

Publication Publication Date Title
US11694297B2 (en) Determining appropriate medical image processing pipeline based on machine learning
US20210043324A1 (en) Computer aided medical method and medical system for medical prediction
Bashir et al. BagMOOV: A novel ensemble for heart disease prediction bootstrap aggregation with multi-objective optimized voting
CN111696661B (zh) 患者分群模型构建方法、患者分群方法及相关设备
CN112149414B (zh) 文本相似度确定方法、装置、设备及存储介质
CN111914562B (zh) 电子信息分析方法、装置、设备及可读存储介质
Shi et al. Multiple disease risk assessment with uniform model based on medical clinical notes
US10936962B1 (en) Methods and systems for confirming an advisory interaction with an artificial intelligence platform
WO2020172607A1 (en) Systems and methods for using deep learning to generate acuity scores for critically ill or injured patients
US20210257067A1 (en) State transition prediction device, and device, method, and program for learning predictive model
Davazdahemami et al. A deep learning approach for predicting early bounce-backs to the emergency departments
Teo et al. Discovering the predictive value of clinical notes: machine learning analysis with text representation
CN111768842A (zh) 中医证素的辨识方法、系统、电子设备及可读存储介质
CN113066531B (zh) 风险预测方法、装置、计算机设备及存储介质
WO2022249407A1 (ja) アセスメント支援システム、アセスメント支援方法、及び記録媒体
US12087442B2 (en) Methods and systems for confirming an advisory interaction with an artificial intelligence platform
CN113656601A (zh) 医患匹配方法、装置、设备及存储介质
US20230325441A1 (en) Personalized health search engine
CN113241198B (zh) 用户数据处理方法、装置、设备及存储介质
US20210183515A1 (en) Methods and systems for confirming an advisory interaction with an artificial intelligence platform
CN114068028A (zh) 医疗问诊数据处理方法及装置、可读存储介质及电子设备
Myrzakerimova et al. A MATHEMATICAL MODEL FOR AN AUTOMATED SYSTEM OF MEDICAL DIAGNOSTICS
US20240363247A1 (en) Method and an apparatus for detecting a level of cardiovascular disease
US12073930B1 (en) Apparatus and a method for generating a user report
US12124966B1 (en) Apparatus and method for generating a text output

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21943054

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023523873

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18563406

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21943054

Country of ref document: EP

Kind code of ref document: A1