WO2022249311A1 - Display device and display method - Google Patents

Display device and display method Download PDF

Info

Publication number
WO2022249311A1
WO2022249311A1 PCT/JP2021/019920 JP2021019920W WO2022249311A1 WO 2022249311 A1 WO2022249311 A1 WO 2022249311A1 JP 2021019920 W JP2021019920 W JP 2021019920W WO 2022249311 A1 WO2022249311 A1 WO 2022249311A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
voltage
backlight
driver
signal processing
Prior art date
Application number
PCT/JP2021/019920
Other languages
French (fr)
Japanese (ja)
Inventor
秀平 芳賀
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/019920 priority Critical patent/WO2022249311A1/en
Priority to JP2023523786A priority patent/JPWO2022249311A1/ja
Publication of WO2022249311A1 publication Critical patent/WO2022249311A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals

Definitions

  • the present disclosure relates to a display device and a display method.
  • Local dimming divides the backlight into a plurality of areas in a liquid crystal display device, and controls the luminance of the backlight for each area based on the feature value related to the luminance of the image to be displayed, thereby improving the contrast of the image display. It is a technology that improves For example, Patent Literature 1 describes a display device to which local dimming control is applied.
  • the present disclosure is intended to solve the above problems, and an object thereof is to obtain a display device and a display method capable of implementing local dimming without providing a dedicated control circuit for the backlight.
  • a display device includes a display unit, a plurality of light sources, a backlight that illuminates the display unit with light from the light sources, a display driver that drives the display unit, and a display based on input image data. and a signal processing unit for displaying an image in the display device, the display device comprising a signal line connecting a display driver and a light source of the backlight, wherein the signal processing unit receives a lighting signal output from the display driver.
  • the signal processing unit applies the lighting signal output from the display driver to the light source of the backlight through the signal line, thereby turning on the light source determined based on the input image data. Control.
  • the display device can perform local dimming without providing a dedicated backlight control circuit.
  • FIG. 2 is a block diagram showing the hardware configuration of the display device according to Embodiment 1;
  • FIG. 3 is a configuration diagram showing partial configurations of a display unit and a display driver;
  • FIG. 2 is a block diagram showing the functional configuration of the display device according to Embodiment 1;
  • FIG. 4 is a flowchart showing a display method according to Embodiment 1;
  • FIG. 4 is an explanatory diagram showing the relationship between a source driver and a backlight;
  • FIG. 2 is a circuit diagram showing light emitting diodes (LEDs) included in the backlight; 4 is a table showing the relationship between the source voltage and the light emission luminance of an LED; 4 is a graph showing the relationship between gradation and source voltage; 7 is a graph showing the relationship between gradation and source voltage after correction; It is a graph which shows a gamma curve.
  • 11A and 11B are block diagrams showing hardware configurations of signal processing units included in the display device according to Embodiment 1.
  • FIG. 1 is a block diagram showing the hardware configuration of a display device 1 according to Embodiment 1.
  • FIG. 2 is a configuration diagram showing a partial configuration of the display unit 11 and the display driver 13.
  • the display device 1 is a device that performs local dimming control.
  • the display device 1 includes a display section 11 , a backlight 12 , a display driver 13 , a signal processing section 14 , an image output section 15 and signal lines 16 .
  • the display unit 11 is illuminated by a backlight 12 and driven by a display driver 13 .
  • the backlight 12 has a plurality of light sources, is arranged behind the display unit 11, and illuminates the display unit 11 with light from the light sources.
  • multiple light sources are arranged in a matrix.
  • the light source is, for example, a light emitting diode (LED) that emits white light.
  • LED light emitting diode
  • the display driver 13 is a driver that drives the display unit 11, and includes a source driver 13A and a gate driver 13B.
  • the display unit 11 includes a panel filled with a liquid crystal material and a glass substrate arranged on the back surface of this panel.
  • a plurality of TFTs Thin Film Transistors
  • pixels 20 shown in FIG. 2 are arranged in a matrix.
  • the glass substrate is provided with a plurality of scanning lines 17 for each pixel row of the plurality of pixels 20 and a plurality of data lines 18 for each pixel column of the plurality of pixels 20 .
  • a scanning line 17 is a gate line for selecting a pixel row to which the gate voltage of the TFT 19 is applied.
  • a data line 18 is a source line for applying a source voltage to pixels in a selected pixel row.
  • the TFT 19 is turned on or off according to the gate voltage applied to the scanning line 17 from the gate driver 13B.
  • the source voltage applied from the source driver 13A to the data line 18 is held on the pixel 20 side by switching the TFT 19 from ON to OFF.
  • the light transmittance of the pixel 20 changes according to the source voltage applied to the data line 18 .
  • the source driver 13A converts the digital control signal output from the signal processing unit 14 into an analog signal to generate a source voltage corresponding to the gradation value (eg, 0 to 255 gradation) of the image data. It is supplied to the pixels 20 of the display section 11 . Further, the source driver 13A converts the digital control signal output from the signal processing unit 14 into an analog signal, thereby generating an LED lighting voltage corresponding to the gradation value of the image data, and transmitting the voltage to the backlight 12 through the signal line 16. is applied to the LEDs of
  • the gate driver 13B generates a scanning signal for display according to the control signal output from the signal processing section 14, and outputs the generated scanning signal to the scanning line 17.
  • divisions in the pixel column direction of pixel blocks irradiated with light from the LEDs of the backlight 12 are determined based on voltage signals applied to the scanning lines 17 by the gate driver 13B.
  • the signal processing unit 14 displays an image on the display unit 11 based on the image data input from the image output unit 15. In addition, the signal processing unit 14 applies the voltage from the display driver 13 to the light source of the backlight 12 through the signal line 16, thereby turning on the light source of the backlight 12 determined based on the input image data. Control.
  • the image output unit 15 outputs image data stored in a storage device (not shown) or image data from an external device (not shown) to the signal processing unit 14 .
  • the signal processing unit 14 analyzes the brightness of the image indicated by the input image data for each display area of the display unit 11, and determines the LED area of the backlight 12 that illuminates the display area.
  • the signal processing unit 14 sets the maximum gradation in the display area to the brightness of the LED area of the backlight 12 that illuminates the display area. Thereby, the contrast ratio of the image displayed on the display unit 11 is improved.
  • the LEDs of the backlight 12 set the luminance of the area of the LEDs of the backlight 12 that illuminates the display area to be low, so that the display area has pixels with high gradation. , the brightness of the LED area of the backlight 12 that illuminates the display area may be set high.
  • FIG. 3 is a block diagram showing the functional configuration of the display device 1.
  • the signal processing section 14 includes an image processing section 141 and a timing control section 142 .
  • the image processing unit 141 gamma-corrects the image data output from the image output unit 15 and outputs the gamma-corrected image data to the timing control unit 142 .
  • Gamma correction is a process of correcting the luminance of an image represented by input image data so as to have a linear relationship.
  • the timing control unit 142 controls the timing of synchronizing the operation of displaying the gamma-corrected image data on the display unit 11 and the lighting and extinguishing of the LEDs of the backlight 12 .
  • the timing control unit 142 transmits a synchronization signal to the source driver 13A and the gate driver 13B for synchronizing the display of the gamma-corrected image data and the lighting of the LED.
  • the pixel column direction of the pixel block illuminated by one LED in the backlight 12 is divided by the number of scanning lines 17 to which the gate driver 13B applies the gate voltage, and the pixel row direction is divided by the source driver 13A. It is divided by the number of data lines 18 to be applied.
  • FIG. 4 is a flowchart showing a display method according to Embodiment 1.
  • the image processing unit 141 included in the signal processing unit 14 receives image data from the image output unit 15 and gamma-corrects an image represented by the input image data (step ST1). Subsequently, the image processing unit 141 converts the gamma-corrected image data into analog data.
  • the image processing unit 141 applies a display voltage for displaying an image represented by image data after analog conversion on the display unit 11 and an LED lighting voltage for the backlight 12 for illuminating the image displayed on the display unit 11. is determined (step ST2).
  • the image processing unit 141 needs to change the brightness of the LEDs in each region of the backlight 12 according to the brightness of the image indicated by the input image data.
  • LED brightness information in the area corresponding to the image in the backlight 12 is calculated, and a dedicated LED control circuit controls the LED brightness The light emission luminance of the LEDs in each region of the backlight 12 is changed according to the information.
  • the conventional display device that performs local dimming control has the problem that the circuit scale is larger than the display device that does not perform local dimming because it requires a dedicated LED control circuit.
  • the display device 1 does not require a dedicated LED control circuit by lighting the LEDs of the backlight 12 using the lighting voltage from the display driver 13 .
  • the display device 1 suppresses an increase in circuit size due to local dimming control.
  • FIG. 5 is an explanatory diagram showing the relationship between the source driver 13A and the backlight 12.
  • the source driver 13A includes a plurality of lines 18A connected to the data lines 18 of the display unit 11, and signal lines 16A to 16C for lighting LEDs connected to the LEDs 121 of the backlight 12.
  • the display unit 11 is a liquid crystal display with full high definition (FHD) resolution (1920 ⁇ 1080 ⁇ RGB three colors), and the total number of LEDs 121 of the backlight 12 is 12 in the vertical direction and 32 in the horizontal direction. Assume that there are 384 of them.
  • FHD full high definition
  • the image processing unit 141 calculates the pixel block size A in the pixel column direction shown in FIG. 5 by dividing the gate voltage signal output by the gate driver 13B every 90 clocks. Thus, even without providing a dedicated LED control circuit, the image processing unit 141 can determine divisions in the pixel column direction of pixel blocks illuminated by light from one LED 121 of the backlight 12 . be.
  • the image processing unit 141 divides the plurality of lines 18A connected to the plurality of data lines 18 of the display unit 11 into 180 lines by the source driver 13A, so that the pixel block size B in the pixel row direction shown in FIG. Calculate
  • the image processing unit 141 can determine divisions in the pixel row direction of pixel blocks illuminated by light from one LED 121 of the backlight 12 . be.
  • the resolution of the display unit 11 and the total number of LEDs or the number of vertical and horizontal lights of the backlight 12 are examples.
  • the source driver 13A selects the maximum source voltage (peak voltage) among the source voltages applied to the data lines 18 of 180 lines in the pixel block 131A having a size A in the pixel column direction and a size B in the pixel row direction. , the selected source voltage is determined as the LED lighting voltage.
  • the LED lighting voltage is output to the signal lines 16A to 16C and applied to the anode terminal of the LED 121. FIG. In the pixel blocks 131B and 131C, LED lighting voltages are similarly determined.
  • the maximum source voltage in the pixel block 131A is applied as a lighting voltage through the signal line 16A.
  • the maximum source voltage in the pixel block 131B is applied as a lighting voltage to the LED 121B that illuminates the pixel block 131B through the signal line 16B.
  • the maximum source voltage in the pixel block 131C is applied as a lighting voltage to the LED 121C that illuminates the pixel block 131C through the signal line 16C.
  • FIG. 6 is a circuit diagram showing the LEDs 121 included in the backlight 12. As shown in FIG. A signal line 16 from the source driver 13A is connected to the anode terminal of the LED 121 with a resistor R interposed. A current i flows through the LED 121 due to the lighting voltage Vp applied to the signal line 16 and the resistor R, and the current i is adjusted by controlling the lighting voltage Vp.
  • FIG. 7 is a table showing the relationship between the source voltage Vp and the emission luminance of the LED 121.
  • the image processing unit 141 calculates the light emission luminance of the LED 121 corresponding to the source voltage Vp of each gradation of the image indicated by the input image data.
  • the relationship between the light emission luminance of the LED and the current i flowing through the LED is normally proportional, there may be a characteristic deviation.
  • it is assumed that the light emission luminance of the LED and the current i flowing through the LED are in a proportional relationship, and even if there is a deviation between the characteristics of the two, the image quality of the image subjected to local dimming control is not affected.
  • the image processing unit 141 subtracts the lighting voltage Vf from the source voltage Vp. Then, the subtraction value (Vp-Vf) (V) is calculated. Subsequently, the image processing unit 141 calculates the current i (mA) flowing through the LED 121 using the formula (Vp ⁇ Vf) ⁇ resistance ( ⁇ ). Furthermore, the image processing unit 141 calculates the brightness (%) of the LED 121 using the formula of the current i flowing through the LED 121 divided by the maximum current.
  • the image processing unit 141 determines whether or not the gamma curve of the image to be displayed on the display unit 11 matches the target gamma curve (ideal gamma curve).
  • FIG. 8 is a graph showing the relationship between gradation and source voltage Vp. So far, it has been assumed that the source voltage Vp and the light emission luminance of the LED are in a proportional relationship, and that the source voltage Vp and the LED lighting voltage have the same value. However, in reality, as is apparent from the curve C1 in FIG. 8, there is a proportional relationship in the intermediate gradation area, but there is no proportional relationship in the low gradation area and the high gradation area. Therefore, if the gamma curve of the image is determined assuming that the gradation and the source voltage are in a proportional relationship, the gamma curve deviates from the ideal gamma curve.
  • the image processing section 141 returns to step ST1 and changes the voltage from the source driver 13A.
  • the image processing unit 141 performs normal gamma correction on the input image data, multiplies the gamma curve of the corrected image by the correction coefficient, and converts the gradation value multiplied by the correction coefficient into the gamma parameter.
  • the gamma parameter is set to "1”
  • the 0 gradation and 255 gradation are multiplied by the correction coefficient "1”
  • the correction coefficient is increased as the intermediate gradation is reached, and the correction is made gradually as the gradation shifts to the high gradation range. Decrease the coefficient.
  • FIG. 9 is a graph showing the relationship between the gradation and the corrected source voltage Vp.
  • the relationship between the gradation of the image to be displayed on the display unit 11 and the source voltage Vp is a curve C1
  • the relationship of curve C2 is obtained in which the source voltage Vp is increased.
  • FIG. 10 is a graph showing gamma curves.
  • a gamma curve D2 is a gamma curve obtained before performing the above-described correction on the image displayed on the display unit 11.
  • FIG. The source driver 13A performs local dimming by applying the source voltage Vp to the LEDs of the backlight 12 to light them, and the relationship between the gradation and the source voltage Vp is a curve C1 shown in FIG.
  • the source voltage Vp in the intermediate gradation range is out of the proportional relationship. Therefore, in the gamma curve D2, the luminance in the intermediate gradation region is greatly depressed.
  • the intermediate gradation becomes darker than the fineness of the black image due to local dimming, and the image cannot be viewed as a clear image.
  • the gamma curve D3 is a gamma curve that indicates the ideal relationship between gradation and luminance.
  • the gamma curve D1 is a gamma curve obtained by correcting the relationship between the above-described gradation and the source voltage Vp for the image displayed on the display section 11 .
  • the correction coefficient is determined so that the gamma curve C1 and the gamma curve C3 have the same luminance ratio for each gradation.
  • the display unit 11 has the same hierarchy and luminance relationship as the ideal gamma curve C3. Images can be displayed.
  • the source voltage Vp applied to the LEDs of the backlight 12 may be multiplied by a correction coefficient, or the display source voltage applied to the data lines 18 of the display unit 11 may be multiplied by the correction coefficient.
  • the timing control section 142 When the gamma curve of the image matches the target gamma curve (step ST3; YES), the timing control section 142 outputs a timing control signal to the display driver 13 so that the display voltage from the source driver 13A is applied to the data line 18. , and a lighting voltage is applied to the LEDs of the backlight 12 (step ST4).
  • the operation of displaying the image indicated by the corrected image data on the display unit 11 and the lighting and extinguishing of the LEDs of the backlight 12 are performed in synchronization.
  • the functions of the image processing unit 141 and the timing control unit 142 in the signal processing unit 14 are realized by processing circuits. That is, the signal processing unit 14 includes a processing circuit for executing the processing from step ST1 to step ST4 shown in FIG.
  • the processing circuit may be dedicated hardware, or may be a CPU that executes a program stored in memory.
  • FIG. 11A is a block diagram showing the hardware configuration that implements the functions of the signal processing unit 14.
  • FIG. 11B is a block diagram showing a hardware configuration for executing software realizing the functions of the signal processing unit 14.
  • the input interface 100 is an interface that relays image data output from the image output section 15 to the image processing section 141.
  • FIG. The output interface 101 is an interface that relays control signals output from the timing control unit 142 to the display driver 13 .
  • the processing circuit 102 may be, for example, a single circuit, multiple circuits, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or any of these. A combination of is applicable.
  • the functions of the image processing unit 141 and the timing control unit 142 in the signal processing unit 14 may be realized by separate processing circuits, or these functions may be collectively realized by one processing circuit.
  • the processing circuit is the processor 103 shown in FIG. 11B
  • the functions of the image processing unit 141 and the timing control unit 142 in the signal processing unit 14 are realized by software, firmware, or a combination of software and firmware. Note that software or firmware is written as a program and stored in the memory 104 .
  • the processor 103 implements the functions of the image processing unit 141 and the timing control unit 142 in the signal processing unit 14 by reading and executing the programs stored in the memory 104 .
  • the signal processing unit 14 includes a memory 104 for storing a program that, when executed by the processor 103, results in the processing of steps ST1 to ST4 shown in FIG. These programs cause the computer to execute the procedure or method of processing performed by the image processing unit 141 and the timing control unit 142 .
  • the memory 104 may be a computer-readable storage medium storing a program for causing a computer to function as the image processing section 141 and the timing control section 142.
  • the memory 104 corresponds to, for example, nonvolatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, EEPROM, magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD, and the like.
  • a part of the functions of the image processing unit 141 and the timing control unit 142 in the signal processing unit 14 may be realized by dedicated hardware, and a part may be realized by software or firmware.
  • the image processing unit 141 realizes its function by the processing circuit 102, which is dedicated hardware
  • the timing control unit 142 realizes its function by the processor 103 reading and executing a program stored in the memory 104.
  • the processing circuitry may implement the above functions in hardware, software, firmware, or a combination thereof.
  • the signal processing unit 14 applies the lighting signal output from the display driver 13 to the LEDs 121 of the backlight 12 through the signal line 16. , controls lighting of the LED 121 determined based on the input image data.
  • the display device 1 can perform local dimming without providing a dedicated backlight control circuit.
  • the display unit 11 includes a plurality of pixels 20 arranged in a matrix and provided for each pixel row in the plurality of pixels 20, and selects a pixel row to which a gate voltage is applied. and a plurality of data lines 18 provided for each pixel column in the plurality of pixels 20 and for applying a source voltage to pixels in a selected pixel row.
  • the display driver 13 has a source driver 13A that applies source voltages to the plurality of data lines 18 and a gate driver 13B that applies gate voltages to the plurality of scanning lines 17 .
  • a signal line 16 connects the source driver 13A and the LED 121 of the backlight 12 .
  • the signal processing unit 14 applies the source voltage output from the source driver 13A to the LEDs 121 of the backlight 12 through the signal line 16 .
  • the display device 1 can perform local dimming without providing a dedicated backlight control circuit.
  • the signal processing section 14 changes the source voltage output from the source driver 13A so that the gamma curve of the image displayed on the display section 11 matches the target gamma curve. Thereby, the gamma curve of the image to be displayed on the display unit 11 can be corrected to the target gamma curve.
  • the signal processing section 14 changes the source voltage output from the source driver 13A for each gradation of the image to be displayed on the display section 11 . Thereby, the gamma curve of the image to be displayed on the display unit 11 can be corrected to the target gamma curve.
  • the signal processing unit 14 changes the source voltage output from the source driver 13A every several gradations of the image to be displayed on the display unit 11, and changes the gradation without changing the source voltage. linearly interpolate the relationship between gradation and luminance. Thereby, the gamma curve of the image to be displayed on the display unit 11 can be corrected to the target gamma curve.
  • the signal processing unit 14 performs pixel block illumination in the pixel column direction based on the gate voltage signal applied to the scanning line 17 from the gate driver 13B. Decide on a break. This makes it possible to determine a pixel block to be illuminated by local dimming.
  • the cathode terminal of the LED 121 in the backlight 12 is grounded, and the signal line 16 is connected to the anode terminal via a resistor.
  • the LED 121 can be lit with the source voltage output from the source driver 13A without providing a dedicated LED control circuit.
  • the display device according to the present disclosure can be used, for example, as a display device for in-vehicle equipment.
  • 1 display device 11 display unit, 12 backlight, 13 display driver, 13A source driver, 13B gate driver, 14 signal processing unit, 15 image output unit, 16, 16A to 16C signal lines, 17 scanning lines, 18 data lines, 18A lines, 19 TFTs, 20 pixels, 100 input interface, 101 output interface, 102 processing circuit, 103 processor, 104 memory, 121, 121A to 121C LEDs, 131A to 131C pixel blocks, 141 image processing section, 142 timing control section.

Abstract

A display device (1) comprising: a display unit (11); a backlight (12) which is provided with a plurality of light sources and illuminates the display unit with light from the light sources; a display driver (13) which drives the display unit (11); and a signal processing unit (14) which displays an image on the display unit (11) on the basis of input image data. The display device (1) comprises signal lines (16) which connect the display driver (13) to the light sources of the backlight (12). The signal processing unit (14) applies signals which are for lighting and are output from the display driver (13) to the light sources provided to the backlight (12) through the signal lines (16), to thereby control the lighting of the light sources determined on the basis of the input image data.

Description

表示装置および表示方法Display device and display method
 本開示は、表示装置および表示方法に関する。 The present disclosure relates to a display device and a display method.
 ローカルディミングは、液晶表示装置において、バックライトを複数の領域に区分し、表示対象の画像の輝度に関する特徴量に基づいて、バックライトの発光輝度を領域ごとに制御することで、画像表示のコントラストを改善する技術である。例えば、特許文献1には、ローカルディミング制御が適用される表示装置が記載されている。 Local dimming divides the backlight into a plurality of areas in a liquid crystal display device, and controls the luminance of the backlight for each area based on the feature value related to the luminance of the image to be displayed, thereby improving the contrast of the image display. It is a technology that improves For example, Patent Literature 1 describes a display device to which local dimming control is applied.
特開2018-146750号公報JP 2018-146750 A
 従来、ローカルディミングは、液晶表示の制御回路とは別に設けられた、バックライト専用の制御回路が実施していた。このため、ローカルディミングに対応した表示装置は、ローカルディミングに対応していない表示装置よりも回路の規模が増大するという課題があった。なお、特許文献1に記載された従来の表示装置においても、バックライト専用の制御回路がローカルディミングを実施しており、回路規模の増大が懸念される。 Conventionally, local dimming was performed by a control circuit dedicated to the backlight, which was provided separately from the liquid crystal display control circuit. Therefore, there is a problem that a display device compatible with local dimming has a larger circuit scale than a display device not compatible with local dimming. Note that in the conventional display device described in Patent Document 1 as well, the control circuit dedicated to the backlight performs local dimming, and there is concern about an increase in circuit size.
 本開示は上記課題を解決するものであり、バックライト専用の制御回路を設けることなく、ローカルディミングを実施可能な表示装置および表示方法を得ることを目的とする。 The present disclosure is intended to solve the above problems, and an object thereof is to obtain a display device and a display method capable of implementing local dimming without providing a dedicated control circuit for the backlight.
 本開示に係る表示装置は、表示部と、複数の光源を有し、光源からの光で表示部を照明するバックライトと、表示部を駆動する表示ドライバと、入力した画像データに基づいて表示部に画像を表示する信号処理部と、を備えた表示装置であって、表示ドライバとバックライトが有する光源とを接続する信号線を備え、信号処理部は、表示ドライバから出力された点灯用信号を、信号線を通じて、バックライトが有する光源に印加させることにより、入力した画像データに基づいて決定した光源の点灯を制御する。 A display device according to the present disclosure includes a display unit, a plurality of light sources, a backlight that illuminates the display unit with light from the light sources, a display driver that drives the display unit, and a display based on input image data. and a signal processing unit for displaying an image in the display device, the display device comprising a signal line connecting a display driver and a light source of the backlight, wherein the signal processing unit receives a lighting signal output from the display driver. By applying a signal to the light source of the backlight through the signal line, lighting of the light source determined based on the input image data is controlled.
 本開示によれば、信号処理部が、表示ドライバから出力された点灯用信号を、信号線を通じて、バックライトが有する光源に印加させることにより、入力した画像データに基づいて決定した光源の点灯を制御する。これにより、本開示に係る表示装置は、バックライト専用の制御回路を設けることなく、ローカルディミングを実施することができる。 According to the present disclosure, the signal processing unit applies the lighting signal output from the display driver to the light source of the backlight through the signal line, thereby turning on the light source determined based on the input image data. Control. With this, the display device according to the present disclosure can perform local dimming without providing a dedicated backlight control circuit.
実施の形態1に係る表示装置のハードウェア構成を示すブロック図である。2 is a block diagram showing the hardware configuration of the display device according to Embodiment 1; FIG. 表示部および表示ドライバの部分構成を示す構成図である。3 is a configuration diagram showing partial configurations of a display unit and a display driver; FIG. 実施の形態1に係る表示装置の機能構成を示すブロック図である。2 is a block diagram showing the functional configuration of the display device according to Embodiment 1; FIG. 実施の形態1に係る表示方法を示すフローチャートである。4 is a flowchart showing a display method according to Embodiment 1; ソースドライバとバックライトとの関係を示す説明図である。FIG. 4 is an explanatory diagram showing the relationship between a source driver and a backlight; バックライトが有する発光ダイオード(LED)を示す回路図である。FIG. 2 is a circuit diagram showing light emitting diodes (LEDs) included in the backlight; ソース電圧とLEDの発光輝度との関係を示す表である。4 is a table showing the relationship between the source voltage and the light emission luminance of an LED; 階調とソース電圧との関係を示すグラフである。4 is a graph showing the relationship between gradation and source voltage; 階調と補正後のソース電圧との関係を示すグラフである。7 is a graph showing the relationship between gradation and source voltage after correction; ガンマカーブを示すグラフである。It is a graph which shows a gamma curve. 図11Aおよび図11Bは、実施の形態1に係る表示装置が備える信号処理部のハードウェア構成を示すブロック図である。11A and 11B are block diagrams showing hardware configurations of signal processing units included in the display device according to Embodiment 1. FIG.
実施の形態1.
 図1は、実施の形態1に係る表示装置1のハードウェア構成を示すブロック図である。図2は、表示部11および表示ドライバ13の部分構成を示す構成図である。表示装置1は、ローカルディミング制御を行う装置である。図1において、表示装置1は、表示部11、バックライト12、表示ドライバ13、信号処理部14、画像出力部15および信号線16を備える。表示部11は、バックライト12によって照明され、表示ドライバ13によって駆動される。
Embodiment 1.
FIG. 1 is a block diagram showing the hardware configuration of a display device 1 according to Embodiment 1. As shown in FIG. FIG. 2 is a configuration diagram showing a partial configuration of the display unit 11 and the display driver 13. As shown in FIG. The display device 1 is a device that performs local dimming control. In FIG. 1 , the display device 1 includes a display section 11 , a backlight 12 , a display driver 13 , a signal processing section 14 , an image output section 15 and signal lines 16 . The display unit 11 is illuminated by a backlight 12 and driven by a display driver 13 .
 バックライト12は、複数の光源を有し、表示部11の背面に配置されて光源からの光で表示部11を照明する。バックライト12において、複数の光源はマトリクス状に配置されている。光源は、例えば、白色に発光する発光ダイオード(LED)である。以下、バックライト12が有する複数の光源がLEDであるものとして説明する。表示ドライバ13は、表示部11を駆動するドライバであり、ソースドライバ13Aおよびゲートドライバ13Bを備える。 The backlight 12 has a plurality of light sources, is arranged behind the display unit 11, and illuminates the display unit 11 with light from the light sources. In the backlight 12, multiple light sources are arranged in a matrix. The light source is, for example, a light emitting diode (LED) that emits white light. In the following description, it is assumed that the plurality of light sources of the backlight 12 are LEDs. The display driver 13 is a driver that drives the display unit 11, and includes a source driver 13A and a gate driver 13B.
 表示部11は、液晶物質が充填されたパネルと、このパネルの背面に配置されたガラス基板とを備える。パネルには、図2に示すTFT(Thin Film Transistor)および画素20がマトリクス状に複数配置されている。また、ガラス基板には、複数の画素20における画素行ごとに複数の走査線17が設けられ、複数の画素20における画素列ごとに複数のデータ線18が設けられている。走査線17は、TFT19のゲート電圧を印加する画素行を選択するためのゲート線である。データ線18は、選択された画素行の画素に対してソース電圧を印加するためのソース線である。 The display unit 11 includes a panel filled with a liquid crystal material and a glass substrate arranged on the back surface of this panel. In the panel, a plurality of TFTs (Thin Film Transistors) and pixels 20 shown in FIG. 2 are arranged in a matrix. Further, the glass substrate is provided with a plurality of scanning lines 17 for each pixel row of the plurality of pixels 20 and a plurality of data lines 18 for each pixel column of the plurality of pixels 20 . A scanning line 17 is a gate line for selecting a pixel row to which the gate voltage of the TFT 19 is applied. A data line 18 is a source line for applying a source voltage to pixels in a selected pixel row.
 TFT19は、ゲートドライバ13Bから走査線17に印加されたゲート電圧に応じてオンまたはオフ状態になる。ソースドライバ13Aからデータ線18に印加されたソース電圧は、TFT19がオン状態からオフ状態に切り替わることによって画素20側に保持される。画素20の光透過率は、データ線18に印加されているソース電圧に応じて変化する。 The TFT 19 is turned on or off according to the gate voltage applied to the scanning line 17 from the gate driver 13B. The source voltage applied from the source driver 13A to the data line 18 is held on the pixel 20 side by switching the TFT 19 from ON to OFF. The light transmittance of the pixel 20 changes according to the source voltage applied to the data line 18 .
 ソースドライバ13Aは、信号処理部14から出力されたデジタル制御信号をアナログ変換することにより、画像データの階調値(例えば0~255階調)に応じたソース電圧を生成し、データ線18を通じて表示部11の画素20に供給する。さらに、ソースドライバ13Aは、信号処理部14から出力されたデジタル制御信号をアナログ変換することにより、画像データの階調値に応じたLED点灯用電圧を生成し、信号線16を通じて、バックライト12のLEDに印加する。 The source driver 13A converts the digital control signal output from the signal processing unit 14 into an analog signal to generate a source voltage corresponding to the gradation value (eg, 0 to 255 gradation) of the image data. It is supplied to the pixels 20 of the display section 11 . Further, the source driver 13A converts the digital control signal output from the signal processing unit 14 into an analog signal, thereby generating an LED lighting voltage corresponding to the gradation value of the image data, and transmitting the voltage to the backlight 12 through the signal line 16. is applied to the LEDs of
 ゲートドライバ13Bは、信号処理部14から出力された制御信号に応じて、表示用の走査信号を生成し、生成した走査信号を走査線17に出力する。ローカルディミング制御において、バックライト12のLEDからの光が照射される画素ブロックの画素列方向の区切りは、ゲートドライバ13Bが走査線17に印加する電圧信号に基づき決定される。 The gate driver 13B generates a scanning signal for display according to the control signal output from the signal processing section 14, and outputs the generated scanning signal to the scanning line 17. In the local dimming control, divisions in the pixel column direction of pixel blocks irradiated with light from the LEDs of the backlight 12 are determined based on voltage signals applied to the scanning lines 17 by the gate driver 13B.
 信号処理部14は、画像出力部15から入力した画像データに基づいて、表示部11に画像を表示する。また、信号処理部14は、表示ドライバ13からの電圧を、信号線16を通じて、バックライト12が有する光源に印加することにより、入力した画像データに基づいて決定したバックライト12の光源の点灯を制御する。画像出力部15は、記憶装置(不図示)に記憶されている画像データまたは外部装置(不図示)からの画像データを信号処理部14に出力する。 The signal processing unit 14 displays an image on the display unit 11 based on the image data input from the image output unit 15. In addition, the signal processing unit 14 applies the voltage from the display driver 13 to the light source of the backlight 12 through the signal line 16, thereby turning on the light source of the backlight 12 determined based on the input image data. Control. The image output unit 15 outputs image data stored in a storage device (not shown) or image data from an external device (not shown) to the signal processing unit 14 .
 例えば、信号処理部14は、入力した画像データが示す画像の輝度を表示部11の表示領域ごとに解析して、表示領域を照明するバックライト12のLEDの領域を決定する。信号処理部14は、表示領域内の最大階調を、当該表示領域を照明するバックライト12のLEDの領域の輝度に設定する。これにより、表示部11に表示した画像のコントラスト比が向上する。また、バックライト12のLEDは、表示領域が階調の低い画素を多く含む場合、当該表示領域を照明するバックライト12のLEDの領域の輝度を低く設定し、表示領域が階調の高い画素を多く含む場合には、当該表示領域を照明するバックライト12のLEDの領域の輝度を高く設定してもよい。 For example, the signal processing unit 14 analyzes the brightness of the image indicated by the input image data for each display area of the display unit 11, and determines the LED area of the backlight 12 that illuminates the display area. The signal processing unit 14 sets the maximum gradation in the display area to the brightness of the LED area of the backlight 12 that illuminates the display area. Thereby, the contrast ratio of the image displayed on the display unit 11 is improved. In addition, when the display area includes many pixels with low gradation, the LEDs of the backlight 12 set the luminance of the area of the LEDs of the backlight 12 that illuminates the display area to be low, so that the display area has pixels with high gradation. , the brightness of the LED area of the backlight 12 that illuminates the display area may be set high.
 図3は、表示装置1の機能構成を示すブロック図である。図3に示すように、信号処理部14は、画像処理部141およびタイミング制御部142を備える。画像処理部141は、画像出力部15から出力された画像データをガンマ補正し、ガンマ補正した画像データをタイミング制御部142に出力する。ガンマ補正は、入力した画像データが示す画像の輝度が線形関係となるように補正する処理である。 FIG. 3 is a block diagram showing the functional configuration of the display device 1. As shown in FIG. As shown in FIG. 3 , the signal processing section 14 includes an image processing section 141 and a timing control section 142 . The image processing unit 141 gamma-corrects the image data output from the image output unit 15 and outputs the gamma-corrected image data to the timing control unit 142 . Gamma correction is a process of correcting the luminance of an image represented by input image data so as to have a linear relationship.
 タイミング制御部142は、ガンマ補正された画像データを表示部11に表示する動作と、バックライト12が有するLEDの点灯および消灯とを同期させるタイミングを制御する。例えば、タイミング制御部142は、ガンマ補正された画像データの表示とLEDの点灯とのタイミングを同期させるための同期信号をソースドライバ13Aおよびゲートドライバ13Bに送信する。バックライト12における1つのLEDで照明される画素ブロックの画素列方向は、ゲートドライバ13Bがゲート電圧を印加する走査線17の本数で区切られ、上記画素行方向は、ソースドライバ13Aがソース電圧を印加するデータ線18の本数で区切られる。 The timing control unit 142 controls the timing of synchronizing the operation of displaying the gamma-corrected image data on the display unit 11 and the lighting and extinguishing of the LEDs of the backlight 12 . For example, the timing control unit 142 transmits a synchronization signal to the source driver 13A and the gate driver 13B for synchronizing the display of the gamma-corrected image data and the lighting of the LED. The pixel column direction of the pixel block illuminated by one LED in the backlight 12 is divided by the number of scanning lines 17 to which the gate driver 13B applies the gate voltage, and the pixel row direction is divided by the source driver 13A. It is divided by the number of data lines 18 to be applied.
 図4は、実施の形態1に係る表示方法を示すフローチャートである。
 信号処理部14が備える画像処理部141は、画像出力部15からの画像データを入力し、入力した画像データが示す画像をガンマ補正する(ステップST1)。続いて、画像処理部141は、ガンマ補正した画像データを、アナログデータに変換する。画像処理部141は、アナログ変換後の画像データが示す画像を表示部11に表示するための表示用電圧と、表示部11に表示された画像を照明するためのバックライト12のLED点灯用電圧とを決定する(ステップST2)。
4 is a flowchart showing a display method according to Embodiment 1. FIG.
The image processing unit 141 included in the signal processing unit 14 receives image data from the image output unit 15 and gamma-corrects an image represented by the input image data (step ST1). Subsequently, the image processing unit 141 converts the gamma-corrected image data into analog data. The image processing unit 141 applies a display voltage for displaying an image represented by image data after analog conversion on the display unit 11 and an LED lighting voltage for the backlight 12 for illuminating the image displayed on the display unit 11. is determined (step ST2).
 ローカルディミング制御において、画像処理部141は、入力した画像データが示す画像の輝度に合わせてバックライト12の各領域内のLEDの輝度を変更する必要がある。従来のローカルディミング制御では、アナログ変換後の画像データが示す画像の輝度に応じて、バックライト12における当該画像に対応する領域内のLED輝度情報を算出し、専用のLED制御回路が、LED輝度情報に応じて、バックライト12における各領域内のLEDの発光輝度を変更している。 In the local dimming control, the image processing unit 141 needs to change the brightness of the LEDs in each region of the backlight 12 according to the brightness of the image indicated by the input image data. In the conventional local dimming control, according to the brightness of the image indicated by the image data after analog conversion, LED brightness information in the area corresponding to the image in the backlight 12 is calculated, and a dedicated LED control circuit controls the LED brightness The light emission luminance of the LEDs in each region of the backlight 12 is changed according to the information.
 このように、ローカルディミング制御を行う従来の表示装置は、ローカルディミングを行わない表示装置に比べて、専用のLED制御回路が必要である分だけ、回路規模が大型化するという課題があった。これに対し、表示装置1は、表示ドライバ13からの点灯用電圧を用いてバックライト12のLEDを点灯することにより、専用のLED制御回路が不要である。これにより、表示装置1は、ローカルディミング制御を行うことによる回路規模の増加が抑制される。 As described above, the conventional display device that performs local dimming control has the problem that the circuit scale is larger than the display device that does not perform local dimming because it requires a dedicated LED control circuit. In contrast, the display device 1 does not require a dedicated LED control circuit by lighting the LEDs of the backlight 12 using the lighting voltage from the display driver 13 . As a result, the display device 1 suppresses an increase in circuit size due to local dimming control.
 図5は、ソースドライバ13Aとバックライト12との関係を示す説明図である。図5に示すように、ソースドライバ13Aは、表示部11が有するデータ線18に接続された複数のライン18Aに加え、バックライト12が有するLED121に接続されたLED点灯用の信号線16A~16Cを備える。例えば、表示部11が、フルハイビジョン(FHD)解像度(1920x1080xRGB3色)の液晶ディスプレイであり、バックライト12が有するLED121の総数が、バックライト12の縦方向に12個で横方向に32個の計384個であるものとする。 FIG. 5 is an explanatory diagram showing the relationship between the source driver 13A and the backlight 12. FIG. As shown in FIG. 5, the source driver 13A includes a plurality of lines 18A connected to the data lines 18 of the display unit 11, and signal lines 16A to 16C for lighting LEDs connected to the LEDs 121 of the backlight 12. Prepare. For example, the display unit 11 is a liquid crystal display with full high definition (FHD) resolution (1920×1080×RGB three colors), and the total number of LEDs 121 of the backlight 12 is 12 in the vertical direction and 32 in the horizontal direction. Assume that there are 384 of them.
 バックライト12が有する一つのLED121からの光で照明される画素ブロックは、表示部11がFHD解像度である場合、画素列方向の画素数が90個(=1080/12個)である。画像処理部141は、ゲートドライバ13Bが出力するゲート電圧信号を、90クロックごとに区切ることにより、図5に示す画素列方向の画素ブロックサイズAを算出する。このように専用のLED制御回路を設けなくても、画像処理部141は、バックライト12が有する一つのLED121からの光で照明される画素ブロックの画素列方向の区切りを決定することが可能である。 A pixel block illuminated by light from one LED 121 of the backlight 12 has 90 pixels (=1080/12) in the pixel column direction when the display unit 11 has FHD resolution. The image processing unit 141 calculates the pixel block size A in the pixel column direction shown in FIG. 5 by dividing the gate voltage signal output by the gate driver 13B every 90 clocks. Thus, even without providing a dedicated LED control circuit, the image processing unit 141 can determine divisions in the pixel column direction of pixel blocks illuminated by light from one LED 121 of the backlight 12 . be.
 また、バックライト12が有する一つのLED121からの光で照明される画素ブロックは、表示部11がFHD解像度である場合、画素行方向の画素数が180個(=1920xRGB3色/32個)である。画像処理部141は、表示部11が有する複数のデータ線18に接続された複数のライン18Aを、ソースドライバ13Aにおいて180ラインごとに区切ることにより、図5に示す画素行方向の画素ブロックサイズBを算出する。このように専用のLED制御回路を設けなくても、画像処理部141は、バックライト12が有する一つのLED121からの光で照明される画素ブロックの画素行方向の区切りを決定することが可能である。なお、表示部11の解像度およびバックライト12が有するLEDの総数または縦横の灯数は一例である。 In addition, the pixel block illuminated by the light from one LED 121 of the backlight 12 has 180 pixels in the pixel row direction (=1920×3 colors of RGB/32 pixels) when the display unit 11 has FHD resolution. . The image processing unit 141 divides the plurality of lines 18A connected to the plurality of data lines 18 of the display unit 11 into 180 lines by the source driver 13A, so that the pixel block size B in the pixel row direction shown in FIG. Calculate Thus, even without providing a dedicated LED control circuit, the image processing unit 141 can determine divisions in the pixel row direction of pixel blocks illuminated by light from one LED 121 of the backlight 12 . be. Note that the resolution of the display unit 11 and the total number of LEDs or the number of vertical and horizontal lights of the backlight 12 are examples.
 ソースドライバ13Aは、180ラインのデータ線18に印加するソース電圧のうち、画素列方向のサイズAおよび画素行方向のサイズBの画素ブロック131A内で、最大のソース電圧(ピーク電圧)を選択し、選択したソース電圧をLED点灯用電圧として決定する。LED点灯用電圧は、信号線16A~16Cに出力され、LED121のアノード端子に印加される。画素ブロック131Bおよび131Cにおいても、同様に、LED点灯用電圧が決定される。 The source driver 13A selects the maximum source voltage (peak voltage) among the source voltages applied to the data lines 18 of 180 lines in the pixel block 131A having a size A in the pixel column direction and a size B in the pixel row direction. , the selected source voltage is determined as the LED lighting voltage. The LED lighting voltage is output to the signal lines 16A to 16C and applied to the anode terminal of the LED 121. FIG. In the pixel blocks 131B and 131C, LED lighting voltages are similarly determined.
 例えば、画素ブロック131Aを照明するLED121Aには、信号線16Aを通じて画素ブロック131A内で最大のソース電圧が点灯用電圧として印加される。また、画素ブロック131Bを照明するLED121Bには、信号線16Bを通じて、画素ブロック131B内で最大のソース電圧が点灯用電圧として印加される。画素ブロック131Cを照明するLED121Cには、信号線16Cを通じて、画素ブロック131C内で最大のソース電圧が点灯用電圧として印加される。 For example, to the LED 121A that illuminates the pixel block 131A, the maximum source voltage in the pixel block 131A is applied as a lighting voltage through the signal line 16A. Also, the maximum source voltage in the pixel block 131B is applied as a lighting voltage to the LED 121B that illuminates the pixel block 131B through the signal line 16B. The maximum source voltage in the pixel block 131C is applied as a lighting voltage to the LED 121C that illuminates the pixel block 131C through the signal line 16C.
 また、従来のローカルディミングでは、専用のLED制御回路が、バックライト12のLEDに流れる電流iおよびデューティ比を制御することで、LEDを点灯させている。これに対して、表示装置1は、LEDのアノード端子に印加する電圧のみを制御することでLEDを点灯させている。図6は、バックライト12が有するLED121を示す回路図である。ソースドライバ13Aからの信号線16は、抵抗Rを介在させてLED121のアノード端子に接続されている。信号線16に印加された点灯用電圧Vpおよび抵抗Rにより、LED121には電流iが流れ、点灯用電圧Vpを制御することにより電流iが調整される。 Also, in conventional local dimming, a dedicated LED control circuit controls the current i flowing through the LEDs of the backlight 12 and the duty ratio to light the LEDs. In contrast, the display device 1 lights the LED by controlling only the voltage applied to the anode terminal of the LED. FIG. 6 is a circuit diagram showing the LEDs 121 included in the backlight 12. As shown in FIG. A signal line 16 from the source driver 13A is connected to the anode terminal of the LED 121 with a resistor R interposed. A current i flows through the LED 121 due to the lighting voltage Vp applied to the signal line 16 and the resistor R, and the current i is adjusted by controlling the lighting voltage Vp.
 図7は、ソース電圧VpとLED121の発光輝度との関係を示す表である。画像処理部141は、入力した画像データが示す画像の各階調のソース電圧Vpに対応したLED121の発光輝度を算出する。なお、LEDの発光輝度とLEDに流れる電流iとの関係は、通常、比例関係にあるが、特性ずれが生じる場合もある。以下、LEDの発光輝度とLEDに流れる電流iとが比例関係になるものとし、両者の特性にずれが生じた場合であっても、ローカルディミング制御を行った画像の画質への影響はないものとする。
 一般的に、ソース電圧はコモン(COM)に対して正側電圧と負側電圧との二種類存在するが、ソース電圧VpはLED121の点灯に必要な点灯電圧Vfを上回る必要があるため、正側電圧である必要がある。
FIG. 7 is a table showing the relationship between the source voltage Vp and the emission luminance of the LED 121. As shown in FIG. The image processing unit 141 calculates the light emission luminance of the LED 121 corresponding to the source voltage Vp of each gradation of the image indicated by the input image data. Although the relationship between the light emission luminance of the LED and the current i flowing through the LED is normally proportional, there may be a characteristic deviation. Hereinafter, it is assumed that the light emission luminance of the LED and the current i flowing through the LED are in a proportional relationship, and even if there is a deviation between the characteristics of the two, the image quality of the image subjected to local dimming control is not affected. and
In general, there are two types of source voltages with respect to the common (COM), a positive voltage and a negative voltage. side voltage.
 例えば、LED121の点灯に必要な点灯電圧Vfを6.0(V)とし、LED121に流れる最大電流iが100(mA)である場合、画像処理部141は、ソース電圧Vpから点灯電圧Vfを減算し、減算値(Vp-Vf)(V)を算出する。続いて、画像処理部141は、(Vp-Vf)÷抵抗(Ω)の式を用いてLED121に流れる電流i(mA)を算出する。さらに、画像処理部141は、LED121に流れる電流i÷最大電流の式を用いてLED121の輝度(%)を算出する。 For example, when the lighting voltage Vf necessary for lighting the LED 121 is 6.0 (V) and the maximum current i flowing through the LED 121 is 100 (mA), the image processing unit 141 subtracts the lighting voltage Vf from the source voltage Vp. Then, the subtraction value (Vp-Vf) (V) is calculated. Subsequently, the image processing unit 141 calculates the current i (mA) flowing through the LED 121 using the formula (Vp−Vf)÷resistance (Ω). Furthermore, the image processing unit 141 calculates the brightness (%) of the LED 121 using the formula of the current i flowing through the LED 121 divided by the maximum current.
 図6に示した抵抗Rを55.0(Ω)とした場合に、階調が「白」であるとき、ソース電圧VpとLEDの発光輝度との関係は、図7に示すように、Vp=11.5(V)、(Vp-Vf)=5.5(V)、電流i=100(mA)、LEDの発光輝度は、100(%)である。また、階調が「グレー」(128/255)であるとき、ソース電圧VpとLEDの発光輝度との関係は、Vp=8.5(V)、(Vp-Vf)=2.5(V)、電流i=45.5(mA)、LEDの発光輝度は、45.5(%)である。階調が「黒」であるとき、ソース電圧VpとLEDの発光輝度との関係は、Vp=6.0(V)、(Vp-Vf)=0(V)、電流i=0(mA)、LEDの発光輝度は、0(%)である。
 なお、このソース電圧VpとLEDの発光輝度との関係は一例である。
When the resistance R shown in FIG. 6 is 55.0 (Ω) and the gradation is “white”, the relationship between the source voltage Vp and the emission luminance of the LED is Vp = 11.5 (V), (Vp-Vf) = 5.5 (V), current i = 100 (mA), and the light emission luminance of the LED is 100 (%). Further, when the gradation is “gray” (128/255), the relationship between the source voltage Vp and the light emission luminance of the LED is Vp=8.5 (V), (Vp−Vf)=2.5 (V ), the current i=45.5 (mA), and the light emission luminance of the LED is 45.5 (%). When the gradation is "black", the relationship between the source voltage Vp and the light emission luminance of the LED is Vp=6.0 (V), (Vp-Vf)=0 (V), current i=0 (mA). , the emission luminance of the LED is 0 (%).
Note that this relationship between the source voltage Vp and the light emission luminance of the LED is an example.
 図4の説明に戻る。
 表示用電圧およびLED点灯用電圧が決定されると、画像処理部141は、表示部11に表示させる画像のガンマカーブが目標のガンマカーブ(理想のガンマカーブ)と一致するか否かを判定する(ステップST3)。図8は、階調とソース電圧Vpとの関係を示すグラフである。これまでソース電圧VpとLEDの発光輝度とが比例関係であり、ソース電圧VpとLED点灯用電圧とが同一値である場合を前提としていた。しかしながら、実際には、図8で曲線C1から明らかなように、中間階調域は比例関係にあるが、低階調域と高階調域は比例関係にない。このため、階調とソース電圧とが比例関係にあるものとして画像のガンマカーブを決定すると、理想のガンマカーブから外れてしまう。
Returning to the description of FIG.
When the display voltage and the LED lighting voltage are determined, the image processing unit 141 determines whether or not the gamma curve of the image to be displayed on the display unit 11 matches the target gamma curve (ideal gamma curve). (Step ST3). FIG. 8 is a graph showing the relationship between gradation and source voltage Vp. So far, it has been assumed that the source voltage Vp and the light emission luminance of the LED are in a proportional relationship, and that the source voltage Vp and the LED lighting voltage have the same value. However, in reality, as is apparent from the curve C1 in FIG. 8, there is a proportional relationship in the intermediate gradation area, but there is no proportional relationship in the low gradation area and the high gradation area. Therefore, if the gamma curve of the image is determined assuming that the gradation and the source voltage are in a proportional relationship, the gamma curve deviates from the ideal gamma curve.
 そこで、画像のガンマカーブが目標のガンマカーブと一致しない場合(ステップST3;NO)、画像処理部141は、ステップST1に戻り、ソースドライバ13Aからの電圧を変更する。例えば、画像処理部141は、入力した画像データに対し通常のガンマ補正を実施し、補正後の画像のガンマカーブに対して補正係数を掛け算して、補正係数が掛け算された階調値をガンマパラメータとする。当該ガンマパラメータを「1」としたときに、0階調および255階調では補正係数「1」を掛け算し、中間階調になるにつれて補正係数を上げ、高階調域へ移行するにつれて徐々に補正係数を下げる。 Therefore, if the gamma curve of the image does not match the target gamma curve (step ST3; NO), the image processing section 141 returns to step ST1 and changes the voltage from the source driver 13A. For example, the image processing unit 141 performs normal gamma correction on the input image data, multiplies the gamma curve of the corrected image by the correction coefficient, and converts the gradation value multiplied by the correction coefficient into the gamma parameter. When the gamma parameter is set to "1", the 0 gradation and 255 gradation are multiplied by the correction coefficient "1", the correction coefficient is increased as the intermediate gradation is reached, and the correction is made gradually as the gradation shifts to the high gradation range. Decrease the coefficient.
 図9は、階調と補正後のソース電圧Vpとの関係を示すグラフである。図9において、表示部11に表示させる画像の階調とソース電圧Vpとの関係が曲線C1である場合に、階調ごとに補正係数をソース電圧Vpに掛け算することで、中間階調域のソース電圧Vpが高くなった曲線C2の関係となる。 FIG. 9 is a graph showing the relationship between the gradation and the corrected source voltage Vp. In FIG. 9, when the relationship between the gradation of the image to be displayed on the display unit 11 and the source voltage Vp is a curve C1, by multiplying the source voltage Vp by the correction coefficient for each gradation, The relationship of curve C2 is obtained in which the source voltage Vp is increased.
 図10は、ガンマカーブを示すグラフである。図10において、ガンマカーブD2は、表示部11に表示した画像に対し、上述の補正を行う前に得られたガンマカーブである。ソースドライバ13Aが、バックライト12が有するLEDにソース電圧Vpを印加して点灯させたローカルディミングを実施しており、階調とソース電圧Vpとの関係は、図8に示す曲線C1である。曲線C1では、中間階調域のソース電圧Vpが比例関係から外れている。このため、ガンマカーブD2は、中間階調域の輝度が大きく沈み込んでいる。
 ガンマカーブD2の画像は、ローカルディミングによる黒映像の精細さ以前に中間階調が暗くなってしまい、綺麗な映像として見ることができない。
FIG. 10 is a graph showing gamma curves. In FIG. 10, a gamma curve D2 is a gamma curve obtained before performing the above-described correction on the image displayed on the display unit 11. FIG. The source driver 13A performs local dimming by applying the source voltage Vp to the LEDs of the backlight 12 to light them, and the relationship between the gradation and the source voltage Vp is a curve C1 shown in FIG. In the curve C1, the source voltage Vp in the intermediate gradation range is out of the proportional relationship. Therefore, in the gamma curve D2, the luminance in the intermediate gradation region is greatly depressed.
In the image with the gamma curve D2, the intermediate gradation becomes darker than the fineness of the black image due to local dimming, and the image cannot be viewed as a clear image.
 ガンマカーブD3は、理想的な階調と輝度の関係を示すガンマカーブである。ガンマカーブD1は、表示部11に表示した画像に対し、上述した階調とソース電圧Vpとの関係を補正したガンマカーブである。図10に示すように、ガンマカーブC1を、ガンマカーブC3との間で各階調に対する輝度の割合が同じになるように補正係数を決める。これにより、バックライト12が有するLEDにソース電圧Vpを印加して点灯させたローカルディミングを実施した場合であっても、理想的なガンマカーブC3と同様な階層と輝度の関係で表示部11に画像を表示することができる。 The gamma curve D3 is a gamma curve that indicates the ideal relationship between gradation and luminance. The gamma curve D1 is a gamma curve obtained by correcting the relationship between the above-described gradation and the source voltage Vp for the image displayed on the display section 11 . As shown in FIG. 10, the correction coefficient is determined so that the gamma curve C1 and the gamma curve C3 have the same luminance ratio for each gradation. As a result, even when local dimming is performed by applying the source voltage Vp to the LEDs of the backlight 12 to turn them on, the display unit 11 has the same hierarchy and luminance relationship as the ideal gamma curve C3. Images can be displayed.
 なお、階調とソース電圧Vpとの関係を階調ごとに補正(階調ごとのソース電圧Vpに補正係数を掛け算する処理)する場合を示した。ただし、全ての階調で補正を行う必要はなく、数階調おきに補正を行い、ソース電圧Vpを変更しない階調間の階調と輝度との関係は線形補間してもよい。例えば、補正係数を掛け算していない階調間では、ソース電圧Vpが線形変化するものと推定する。このようにしても、階調とソース電圧Vpとの関係を補正することが可能である。 A case where the relationship between the gradation and the source voltage Vp is corrected for each gradation (processing of multiplying the source voltage Vp for each gradation by a correction coefficient) is shown. However, it is not necessary to perform correction at all gradations, and correction may be performed at intervals of several gradations, and the relationship between gradation and luminance between gradations without changing the source voltage Vp may be linearly interpolated. For example, it is assumed that the source voltage Vp varies linearly between grayscales not multiplied by the correction coefficient. Even in this way, it is possible to correct the relationship between the gradation and the source voltage Vp.
 また、上記の補正では、バックライト12が有するLEDに印加するソース電圧Vpに補正係数を掛け算してもよいし、表示部11のデータ線18に印加する表示用のソース電圧に補正係数を掛け算してもよい。 In the above correction, the source voltage Vp applied to the LEDs of the backlight 12 may be multiplied by a correction coefficient, or the display source voltage applied to the data lines 18 of the display unit 11 may be multiplied by the correction coefficient. You may
 画像のガンマカーブが目標のガンマカーブと一致すると(ステップST3;YES)、タイミング制御部142は、タイミング制御信号を表示ドライバ13に出力することで、ソースドライバ13Aからの表示用電圧がデータ線18に印加され、バックライト12が有するLEDに点灯用電圧が印加される(ステップST4)。これにより、補正された画像データが示す画像を表示部11に表示する動作と、バックライト12が有するLEDの点灯および消灯とが同期して実行される。 When the gamma curve of the image matches the target gamma curve (step ST3; YES), the timing control section 142 outputs a timing control signal to the display driver 13 so that the display voltage from the source driver 13A is applied to the data line 18. , and a lighting voltage is applied to the LEDs of the backlight 12 (step ST4). As a result, the operation of displaying the image indicated by the corrected image data on the display unit 11 and the lighting and extinguishing of the LEDs of the backlight 12 are performed in synchronization.
 信号処理部14における、画像処理部141およびタイミング制御部142の機能は、処理回路により実現される。すなわち、信号処理部14は、図4に示したステップST1からステップST4の処理を実行するための処理回路を備える。処理回路は、専用のハードウェアであってもよいが、メモリに記憶されたプログラムを実行するCPUであってもよい。 The functions of the image processing unit 141 and the timing control unit 142 in the signal processing unit 14 are realized by processing circuits. That is, the signal processing unit 14 includes a processing circuit for executing the processing from step ST1 to step ST4 shown in FIG. The processing circuit may be dedicated hardware, or may be a CPU that executes a program stored in memory.
 図11Aは、信号処理部14の機能を実現するハードウェア構成を示すブロック図である。図11Bは、信号処理部14の機能を実現するソフトウェアを実行するハードウェア構成を示すブロック図である。図11Aおよび図11Bにおいて、入力インタフェース100は、画像出力部15から画像処理部141へ出力される画像データを中継するインタフェースである。出力インタフェース101は、タイミング制御部142から表示ドライバ13へ出力される制御信号を中継するインタフェースである。 FIG. 11A is a block diagram showing the hardware configuration that implements the functions of the signal processing unit 14. FIG. FIG. 11B is a block diagram showing a hardware configuration for executing software realizing the functions of the signal processing unit 14. As shown in FIG. 11A and 11B, the input interface 100 is an interface that relays image data output from the image output section 15 to the image processing section 141. FIG. The output interface 101 is an interface that relays control signals output from the timing control unit 142 to the display driver 13 .
 処理回路が図11Aに示す専用のハードウェアの処理回路102である場合、処理回路102は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、またはこれらを組み合わせたものが該当する。信号処理部14における画像処理部141およびタイミング制御部142の機能を別々の処理回路で実現してもよく、これらの機能をまとめて一つの処理回路で実現してもよい。 If the processing circuit is the dedicated hardware processing circuit 102 shown in FIG. 11A, the processing circuit 102 may be, for example, a single circuit, multiple circuits, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or any of these. A combination of is applicable. The functions of the image processing unit 141 and the timing control unit 142 in the signal processing unit 14 may be realized by separate processing circuits, or these functions may be collectively realized by one processing circuit.
 処理回路が図11Bに示すプロセッサ103である場合、信号処理部14における画像処理部141およびタイミング制御部142の機能は、ソフトウェア、ファームウェアまたはソフトウェアとファームウェアとの組み合わせによって実現される。なお、ソフトウェアまたはファームウェアは、プログラムとして記述されてメモリ104に記憶される。 When the processing circuit is the processor 103 shown in FIG. 11B, the functions of the image processing unit 141 and the timing control unit 142 in the signal processing unit 14 are realized by software, firmware, or a combination of software and firmware. Note that software or firmware is written as a program and stored in the memory 104 .
 プロセッサ103は、メモリ104に記憶されたプログラムを読み出して実行することにより、信号処理部14における画像処理部141およびタイミング制御部142の機能を実現する。例えば、信号処理部14は、プロセッサ103によって実行されるときに、図4に示したステップST1からステップST4の処理が結果的に実行されるプログラムを記憶するためのメモリ104を備える。これらのプログラムは、画像処理部141およびタイミング制御部142が行う処理の手順または方法を、コンピュータに実行させる。 The processor 103 implements the functions of the image processing unit 141 and the timing control unit 142 in the signal processing unit 14 by reading and executing the programs stored in the memory 104 . For example, the signal processing unit 14 includes a memory 104 for storing a program that, when executed by the processor 103, results in the processing of steps ST1 to ST4 shown in FIG. These programs cause the computer to execute the procedure or method of processing performed by the image processing unit 141 and the timing control unit 142 .
 メモリ104は、コンピュータを画像処理部141およびタイミング制御部142として機能させるためのプログラムが記憶されたコンピュータ可読記憶媒体であってもよい。メモリ104は、例えば、RAM、ROM、フラッシュメモリ、EPROM、EEPROMなどの不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVDなどが該当する。 The memory 104 may be a computer-readable storage medium storing a program for causing a computer to function as the image processing section 141 and the timing control section 142. The memory 104 corresponds to, for example, nonvolatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, EEPROM, magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD, and the like.
 信号処理部14における画像処理部141およびタイミング制御部142の機能の一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現してもよい。例えば、画像処理部141は、専用のハードウェアである処理回路102によってその機能を実現し、タイミング制御部142は、プロセッサ103がメモリ104に記憶されたプログラムを読み出して実行することによりその機能を実現してもよい。このように、処理回路は、ハードウェア、ソフトウェア、ファームウェアまたはこれらの組み合わせにより上記機能を実現することができる。 A part of the functions of the image processing unit 141 and the timing control unit 142 in the signal processing unit 14 may be realized by dedicated hardware, and a part may be realized by software or firmware. For example, the image processing unit 141 realizes its function by the processing circuit 102, which is dedicated hardware, and the timing control unit 142 realizes its function by the processor 103 reading and executing a program stored in the memory 104. may be realized. As such, the processing circuitry may implement the above functions in hardware, software, firmware, or a combination thereof.
 以上のように、実施の形態1に係る表示装置1において、信号処理部14が、表示ドライバ13から出力された点灯用信号を、信号線16を通じて、バックライト12が有するLED121に印加させることにより、入力した画像データに基づいて決定したLED121の点灯を制御する。これにより、表示装置1は、バックライト専用の制御回路を設けることなく、ローカルディミングを実施することができる。 As described above, in the display device 1 according to Embodiment 1, the signal processing unit 14 applies the lighting signal output from the display driver 13 to the LEDs 121 of the backlight 12 through the signal line 16. , controls lighting of the LED 121 determined based on the input image data. As a result, the display device 1 can perform local dimming without providing a dedicated backlight control circuit.
 実施の形態1に係る表示装置1において、表示部11は、マトリクス状に配置された複数の画素20と、複数の画素20における画素行ごとに設けられ、ゲート電圧を印加する画素行を選択するための複数の走査線17と、複数の画素20における画素列ごとに設けられ、選択された画素行の画素に対してソース電圧を印加するための複数のデータ線18とを有する。表示ドライバ13は、複数のデータ線18にソース電圧を印加するソースドライバ13Aと、複数の走査線17にゲート電圧を印加するゲートドライバ13Bとを有する。信号線16は、ソースドライバ13Aとバックライト12が有するLED121とを接続する。信号処理部14は、ソースドライバ13Aから出力されたソース電圧を、信号線16を通じて、バックライト12が有するLED121に印加させる。これにより、表示装置1は、バックライト専用の制御回路を設けることなく、ローカルディミングを実施することができる。 In the display device 1 according to Embodiment 1, the display unit 11 includes a plurality of pixels 20 arranged in a matrix and provided for each pixel row in the plurality of pixels 20, and selects a pixel row to which a gate voltage is applied. and a plurality of data lines 18 provided for each pixel column in the plurality of pixels 20 and for applying a source voltage to pixels in a selected pixel row. The display driver 13 has a source driver 13A that applies source voltages to the plurality of data lines 18 and a gate driver 13B that applies gate voltages to the plurality of scanning lines 17 . A signal line 16 connects the source driver 13A and the LED 121 of the backlight 12 . The signal processing unit 14 applies the source voltage output from the source driver 13A to the LEDs 121 of the backlight 12 through the signal line 16 . As a result, the display device 1 can perform local dimming without providing a dedicated backlight control circuit.
 実施の形態1に係る表示装置1において、信号処理部14は、表示部11に表示させる画像のガンマカーブが目標のガンマカーブと一致するように、ソースドライバ13Aから出力するソース電圧を変更する。これにより、表示部11に表示させる画像のガンマカーブを、目標のガンマカーブに補正することができる。 In the display device 1 according to Embodiment 1, the signal processing section 14 changes the source voltage output from the source driver 13A so that the gamma curve of the image displayed on the display section 11 matches the target gamma curve. Thereby, the gamma curve of the image to be displayed on the display unit 11 can be corrected to the target gamma curve.
 実施の形態1に係る表示装置1において、信号処理部14は、ソースドライバ13Aから出力するソース電圧を、表示部11に表示させる画像の階調ごとに変更する。これにより、表示部11に表示させる画像のガンマカーブを、目標のガンマカーブに補正することができる。 In the display device 1 according to Embodiment 1, the signal processing section 14 changes the source voltage output from the source driver 13A for each gradation of the image to be displayed on the display section 11 . Thereby, the gamma curve of the image to be displayed on the display unit 11 can be corrected to the target gamma curve.
 実施の形態1に係る表示装置1において、信号処理部14は、ソースドライバ13Aから出力するソース電圧を、表示部11に表示させる画像の数階調おきに変更し、ソース電圧を変更しない階調間の階調と輝度との関係を線形補間する。これにより、表示部11に表示させる画像のガンマカーブを、目標のガンマカーブに補正することができる。 In the display device 1 according to the first embodiment, the signal processing unit 14 changes the source voltage output from the source driver 13A every several gradations of the image to be displayed on the display unit 11, and changes the gradation without changing the source voltage. linearly interpolate the relationship between gradation and luminance. Thereby, the gamma curve of the image to be displayed on the display unit 11 can be corrected to the target gamma curve.
 実施の形態1に係る表示装置1において、信号処理部14は、ゲートドライバ13Bから走査線17に印加されるゲート電圧信号に基づいて、LED121からの光で照明される画素ブロックの画素列方向の区切りを決定する。これにより、ローカルディミングで照明する画素ブロックを決定できる。 In the display device 1 according to Embodiment 1, the signal processing unit 14 performs pixel block illumination in the pixel column direction based on the gate voltage signal applied to the scanning line 17 from the gate driver 13B. Decide on a break. This makes it possible to determine a pixel block to be illuminated by local dimming.
 実施の形態1に係る表示装置1において、バックライト12におけるLED121は、カソード端子が接地され、抵抗を介して信号線16がアノード端子に接続されている。
 専用のLED制御回路を設けなくても、ソースドライバ13Aから出力するソース電圧で、LED121を点灯させることができる。
In the display device 1 according to Embodiment 1, the cathode terminal of the LED 121 in the backlight 12 is grounded, and the signal line 16 is connected to the anode terminal via a resistor.
The LED 121 can be lit with the source voltage output from the source driver 13A without providing a dedicated LED control circuit.
 なお、実施の形態の任意の構成要素の変形もしくは実施の形態の任意の構成要素の省略が可能である。 It should be noted that any component of the embodiment can be modified or any component of the embodiment can be omitted.
 本開示に係る表示装置は、例えば、車載機器の表示装置として利用可能である。 The display device according to the present disclosure can be used, for example, as a display device for in-vehicle equipment.
 1 表示装置、11 表示部、12 バックライト、13 表示ドライバ、13A ソースドライバ、13B ゲートドライバ、14 信号処理部、15 画像出力部、16,16A~16C 信号線、17 走査線、18 データ線、18A ライン、19 TFT、20 画素、100 入力インタフェース、101 出力インタフェース、102 処理回路、103 プロセッサ、104 メモリ、121,121A~121C LED、131A~131C 画素ブロック、141 画像処理部、142 タイミング制御部。 1 display device, 11 display unit, 12 backlight, 13 display driver, 13A source driver, 13B gate driver, 14 signal processing unit, 15 image output unit, 16, 16A to 16C signal lines, 17 scanning lines, 18 data lines, 18A lines, 19 TFTs, 20 pixels, 100 input interface, 101 output interface, 102 processing circuit, 103 processor, 104 memory, 121, 121A to 121C LEDs, 131A to 131C pixel blocks, 141 image processing section, 142 timing control section.

Claims (8)

  1.  表示部と、
     複数の光源を有し、前記光源からの光で前記表示部を照明するバックライトと、
     前記表示部を駆動する表示ドライバと、
     入力した画像データに基づいて前記表示部に画像を表示する信号処理部と、
     を備えた表示装置であって、
     前記表示ドライバと前記バックライトが有する前記光源とを接続する信号線を備え、
     前記信号処理部は、前記表示ドライバからの電圧を、前記信号線を通じて、前記バックライトが有する前記光源に印加することにより、入力した画像データに基づいて決定した前記光源の点灯を制御する
     ことを特徴とする表示装置。
    a display unit;
    a backlight having a plurality of light sources and illuminating the display section with light from the light sources;
    a display driver that drives the display unit;
    a signal processing unit that displays an image on the display unit based on input image data;
    A display device comprising
    a signal line connecting the display driver and the light source of the backlight;
    The signal processing unit controls lighting of the light source determined based on input image data by applying a voltage from the display driver to the light source of the backlight through the signal line. A display device characterized by:
  2.  前記表示部は、マトリクス状に配置された複数の画素と、前記複数の画素における画素行ごとに設けられて、電圧を印加する画素行を選択するための複数の走査線と、前記複数の画素における画素列ごとに設けられて、選択された画素行の画素に電圧を印加するための複数のデータ線と、を有し、
     前記表示ドライバは、前記複数のデータ線に電圧を印加するソースドライバと、前記複数の走査線に電圧を印加するゲートドライバと、を有し、
     前記信号線は、前記ソースドライバと前記バックライトが有する前記光源とを接続し、
     前記信号処理部は、前記ソースドライバからの電圧を、前記信号線を通じて前記バックライトが有する前記光源に印加する
     ことを特徴とする請求項1に記載の表示装置。
    The display unit includes a plurality of pixels arranged in a matrix, a plurality of scanning lines provided for each pixel row in the plurality of pixels for selecting a pixel row to which a voltage is applied, and the plurality of pixels. and a plurality of data lines provided for each pixel column in and for applying a voltage to the pixels of the selected pixel row,
    The display driver has a source driver that applies voltages to the plurality of data lines and a gate driver that applies voltages to the plurality of scanning lines,
    the signal line connects the source driver and the light source of the backlight;
    2. The display device according to claim 1, wherein the signal processing section applies a voltage from the source driver to the light source of the backlight through the signal line.
  3.  前記信号処理部は、前記表示部に表示させる画像のガンマカーブが目標のガンマカーブと一致するように、前記ソースドライバからの電圧を変更する
     ことを特徴とする請求項2に記載の表示装置。
    3. The display device according to claim 2, wherein the signal processing section changes the voltage from the source driver so that the gamma curve of the image to be displayed on the display section matches a target gamma curve.
  4.  前記信号処理部は、前記ソースドライバからの電圧を、前記表示部に表示させる画像の階調ごとに変更する
     ことを特徴とする請求項3に記載の表示装置。
    4. The display device according to claim 3, wherein the signal processing section changes the voltage from the source driver for each gradation of an image to be displayed on the display section.
  5.  前記信号処理部は、前記ソースドライバからの電圧を、前記表示部に表示させる画像の数階調おきに変更し、前記ソースドライバからの電圧を変更しない階調間の階調と輝度との関係を線形補間する
     ことを特徴とする請求項3に記載の表示装置。
    The signal processing unit changes the voltage from the source driver every several gradations of an image to be displayed on the display unit, and changes the relationship between gradation and luminance between gradations without changing the voltage from the source driver. 4. The display device according to claim 3, wherein the linear interpolation is performed on .
  6.  前記信号処理部は、前記ゲートドライバが前記走査線に印加する電圧信号に基づいて、前記光源からの光で照明される画素ブロックの画素列方向の区切りを決定する
     ことを特徴とする請求項2から請求項5のいずれか1項に記載の表示装置。
    2. The signal processing unit determines, based on the voltage signal applied to the scanning line by the gate driver, the division of the pixel blocks illuminated by the light from the light source in the pixel column direction. 6. The display device according to any one of claims 1 to 5.
  7.  前記バックライトにおける前記光源は、発光ダイオードであり、
     前記発光ダイオードは、カソード端子が接地され、抵抗を介して前記信号線がアノード端子に接続されている
     ことを特徴とする請求項2から請求項5のいずれか1項に記載の表示装置。
    the light source in the backlight is a light emitting diode;
    6. The display device according to any one of claims 2 to 5, wherein the light emitting diode has a cathode terminal grounded, and the signal line is connected to an anode terminal via a resistor.
  8.  マトリクス状に配置された複数の画素と、前記複数の画素における画素行ごとに設けられて、電圧を印加する画素行を選択するための複数の走査線と、前記複数の画素における画素列ごとに設けられ、選択された画素行の画素に電圧を印加するための複数のデータ線と、を有した表示部と、
     複数の光源を有し、前記光源からの光で前記表示部を照明するバックライトと、
     前記複数のデータ線に電圧を印加するソースドライバと、
     入力した画像データに基づいて前記表示部に画像を表示する信号処理部と、
     を備えた表示装置の表示方法であって、
     前記信号処理部が、入力した画像データにおける階調と輝度との関係をガンマ補正するステップと、
     前記ソースドライバが、ガンマ補正した画像データに基づいて、前記複数のデータ線に印加する電圧と前記光源に印加する電圧とを決定するステップと、
     前記信号処理部が、前記表示部に表示させる画像のガンマカーブが目標のガンマカーブと一致するか否かを判定するステップと、
     両ガンマカーブが一致しない場合、前記ソースドライバからの電圧を変更するステップと、
     前記信号処理部が、両ガンマカーブが一致した場合に、前記表示部に画像を表示させ、前記バックライトが有する前記光源の点灯を制御するステップと、を備えた
     ことを特徴とする表示方法。
    a plurality of pixels arranged in a matrix; a plurality of scanning lines provided for each pixel row in the plurality of pixels for selecting a pixel row to which a voltage is applied; a display unit provided with a plurality of data lines for applying voltages to pixels in a selected pixel row;
    a backlight having a plurality of light sources and illuminating the display section with light from the light sources;
    a source driver that applies a voltage to the plurality of data lines;
    a signal processing unit that displays an image on the display unit based on input image data;
    A display method for a display device comprising
    a step in which the signal processing unit gamma-corrects the relationship between gradation and luminance in the input image data;
    determining, by the source driver, voltages to be applied to the plurality of data lines and voltages to be applied to the light source based on gamma-corrected image data;
    a step in which the signal processing unit determines whether or not the gamma curve of the image to be displayed on the display unit matches a target gamma curve;
    changing the voltage from the source driver if both gamma curves do not match;
    A display method comprising: when the gamma curves match, the signal processing unit causes the display unit to display an image, and controls lighting of the light source of the backlight.
PCT/JP2021/019920 2021-05-26 2021-05-26 Display device and display method WO2022249311A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/019920 WO2022249311A1 (en) 2021-05-26 2021-05-26 Display device and display method
JP2023523786A JPWO2022249311A1 (en) 2021-05-26 2021-05-26

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/019920 WO2022249311A1 (en) 2021-05-26 2021-05-26 Display device and display method

Publications (1)

Publication Number Publication Date
WO2022249311A1 true WO2022249311A1 (en) 2022-12-01

Family

ID=84228623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019920 WO2022249311A1 (en) 2021-05-26 2021-05-26 Display device and display method

Country Status (2)

Country Link
JP (1) JPWO2022249311A1 (en)
WO (1) WO2022249311A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004096556A (en) * 2002-09-02 2004-03-25 Sharp Corp DISPLAY DEVICE, gamma CORRECTION METHOD, gamma CORRECTION PROGRAM AND COMPUTER READABLE RECORDING MEDIUM HAVING PROGRAM RECORDED THEREON
US20070002000A1 (en) * 2005-06-30 2007-01-04 Lg.Philips Lcd Co., Ltd. Liquid crystal display and method for driving the same
WO2012081222A1 (en) * 2010-12-13 2012-06-21 ローム株式会社 Power supply circuit and display device using same
JP2018036639A (en) * 2016-08-26 2018-03-08 株式会社半導体エネルギー研究所 Display device and electronic apparatus
JP2018173619A (en) * 2016-09-30 2018-11-08 株式会社半導体エネルギー研究所 Display system and electronic apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004096556A (en) * 2002-09-02 2004-03-25 Sharp Corp DISPLAY DEVICE, gamma CORRECTION METHOD, gamma CORRECTION PROGRAM AND COMPUTER READABLE RECORDING MEDIUM HAVING PROGRAM RECORDED THEREON
US20070002000A1 (en) * 2005-06-30 2007-01-04 Lg.Philips Lcd Co., Ltd. Liquid crystal display and method for driving the same
WO2012081222A1 (en) * 2010-12-13 2012-06-21 ローム株式会社 Power supply circuit and display device using same
JP2018036639A (en) * 2016-08-26 2018-03-08 株式会社半導体エネルギー研究所 Display device and electronic apparatus
JP2018173619A (en) * 2016-09-30 2018-11-08 株式会社半導体エネルギー研究所 Display system and electronic apparatus

Also Published As

Publication number Publication date
JPWO2022249311A1 (en) 2022-12-01

Similar Documents

Publication Publication Date Title
JP5734580B2 (en) Pixel data correction method and display device for performing the same
KR101148394B1 (en) Image processing device and image display device
KR101405155B1 (en) Display device and display control method
US8207953B2 (en) Backlight apparatus and display apparatus
CN102483899B (en) Image display device and image display method
JP4720757B2 (en) Light source device and liquid crystal display device
US7609240B2 (en) Light generating device, display apparatus having the same and method of driving the same
JP5666163B2 (en) Light source driving method
KR101161522B1 (en) Image display device
US20100110112A1 (en) Backlight apparatus and display apparatus
JP2005309338A (en) Apparatus and method for image display
KR100753318B1 (en) Display device
US20110285611A1 (en) Liquid crystal display
US11948522B2 (en) Display device with light adjustment for divided areas using an adjustment coefficient
JP2019095559A (en) Image display device and image display method
JP2007281893A (en) Projector system
KR102438252B1 (en) Display device with 4-colors for high dynamic range (hdr)
WO2022249311A1 (en) Display device and display method
KR20200042564A (en) Display apparatus and method of driving the same
JPWO2010084619A1 (en) Liquid crystal display device, driving circuit and driving method
KR102642018B1 (en) Transparent display device and method for driving the same
WO2020012938A1 (en) Display device
JPWO2022249311A5 (en)
KR20090035978A (en) Data modulation method, data modulation unit, and display device having the same
KR20100077819A (en) Liquid crystal display device and method of driving the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21942965

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023523786

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE