WO2022248425A1 - Echangeur thermique avec extracteurs de vapeur - Google Patents

Echangeur thermique avec extracteurs de vapeur Download PDF

Info

Publication number
WO2022248425A1
WO2022248425A1 PCT/EP2022/063959 EP2022063959W WO2022248425A1 WO 2022248425 A1 WO2022248425 A1 WO 2022248425A1 EP 2022063959 W EP2022063959 W EP 2022063959W WO 2022248425 A1 WO2022248425 A1 WO 2022248425A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
zones
condensation
vapor
exchanger according
Prior art date
Application number
PCT/EP2022/063959
Other languages
English (en)
Inventor
François-Mathieu Winandy
Mohammed Kassem BENABDERRAZIK
Maximilien-Paul WINANDY
Original Assignee
Industrial Advanced Services Fze
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Advanced Services Fze filed Critical Industrial Advanced Services Fze
Priority to CN202280042100.3A priority Critical patent/CN117479987A/zh
Priority to AU2022282500A priority patent/AU2022282500A1/en
Priority to EP22730436.7A priority patent/EP4347076A1/fr
Priority to US18/563,273 priority patent/US20240219127A1/en
Priority to IL308817A priority patent/IL308817A/en
Publication of WO2022248425A1 publication Critical patent/WO2022248425A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/0011Heating features
    • B01D1/0041Use of fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/04Evaporators with horizontal tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/06Evaporators with vertical tubes
    • B01D1/065Evaporators with vertical tubes by film evaporating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/22Evaporating by bringing a thin layer of the liquid into contact with a heated surface
    • B01D1/221Composite plate evaporators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0003Condensation of vapours; Recovering volatile solvents by condensation by using heat-exchange surfaces for indirect contact between gases or vapours and the cooling medium
    • B01D5/0009Horizontal tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0003Condensation of vapours; Recovering volatile solvents by condensation by using heat-exchange surfaces for indirect contact between gases or vapours and the cooling medium
    • B01D5/0015Plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0057Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes
    • B01D5/006Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes with evaporation or distillation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/043Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0015Heat and mass exchangers, e.g. with permeable walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D3/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/003Arrangements for modifying heat-transfer, e.g. increasing, decreasing by using permeable mass, perforated or porous materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0061Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
    • F28D2021/0066Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications with combined condensation and evaporation

Definitions

  • the present invention relates to the field of water treatment for the purpose of producing drinking water and/or water for industrial use.
  • demineralized water process water or service water
  • drink water we are mainly talking about that produced by utility companies to supply public or community distribution networks.
  • the invention relates to water desalination processes, in particular to distillation processes using one or more heat exchangers.
  • heat exchanger is meant within the meaning of the present invention, an evapo-condenser, an evaporator-condenser exchanger or even a latent heat exchanger.
  • Such processes in particular make it possible to produce drinking water and/or water for industrial use of water by desalination by implementing a process for distilling a liquid to be treated on at least one heat exchanger which ensures by heat transfers, d on the one hand, evaporation and, on the other hand, condensation.
  • sea water any water taken from the marine environment whose salt concentration is typically greater than or approximately equal to 30 g/L.
  • brackish water covers raw water whose salinity is between approximately 1 g/L and the salinity of seawater. mixtures between borehole water and sea water.
  • industrial waste water or domestic waste water can also be considered.
  • the product of the treatment of this water is generally either used as water for industrial use, or reinjected into the natural environment, or, if the quality allows it, used in irrigation networks or directly diluted in drinking water networks.
  • heat exchangers used in such processes are typically built in one piece and comprise an upper part with the aid of which the liquid to be treated is introduced therein and a lower part with the aid of which at least one product is extracted from the treated liquid after treatment of the liquid to be treated.
  • heat exchangers are characterized, among other things, by an overall heat transfer coefficient, a layer assembly configuration, an exchange surface and a bulk or volume.
  • the heat exchangers currently used are typically installed in an enclosure which first serves as a means of collecting the primary steam.
  • the enclosure also allows the implementation of the evaporation condensation process at a pressure different from atmospheric pressure, and in this case the heat exchangers work at an equilibrium temperature, or vapor temperature, different from 100°C.
  • this equilibrium temperature is lower than 65° C. in order, on the one hand, to reduce the problems and risks related to scaling, and secondly to increase the efficiency of the thermodynamic cycles of these heat exchangers.
  • Each subassembly is defined as a portion of a given heat exchanger.
  • Each of the heat exchanger sub-assemblies includes:
  • the layer of thermally conductive material being located between the evaporation surface and the condensing surface, this material being configured to transfer at least part of the latent heat of condensation from the condensing surface to the evaporating surface, the evaporating surface being typically opposed to the condensing surface.
  • the heat transfers carried out by the thermally conductive materials of each of the subsets of current heat exchangers mainly consist of a latent heat of condensation which is directly restored through the thermally conductive material and which ensures the phenomenon of evaporation.
  • These heat transfers are made possible thanks, among other things, to the application of a temperature differential, and also of pressure in particular, between the evaporation surface and the condensation surface of one of the sub-assemblies of the exchanger thermal.
  • the primary vapor resulting from the evaporation of the liquid to be treated which spreads over the evaporation surfaces of the heat exchanger.
  • This primary vapor circulates on the side of the evaporation surfaces in the primary vapor spaces.
  • the secondary steam which is intended to be condensed on the heat exchanger, circulates on the side of the condensing surfaces of the heat exchanger, in the secondary steam spaces.
  • Each of the condensation surfaces is generally opposed, for a layer of thermally conductive material of the heat exchanger, to one of the evaporation surfaces of the heat exchanger.
  • the secondary vapor is condensed on the same heat exchanger, whereas in a multiple-effect configuration (either multi-stage mechanical compression or a MED), the secondary steam is condensed on a heat exchanger arranged downstream, that is to say on the heat exchanger of the next effect.
  • a multiple-effect configuration either multi-stage mechanical compression or a MED
  • the primary vapor generated at an evaporation surface of a sub-assembly is caused to flow into the heat exchanger through, in particular, any primary vapor space present in each subsets.
  • this primary vapor circulates from the evaporation surface linked to a thermally conductive material of a subset towards another conductive material, in particular towards another evaporation surface, of another subset of the heat exchanger, said other sub-assembly possibly being a sub-assembly adjacent to said sub-assembly but not necessarily.
  • the steam generated by the evaporation called primary steam
  • the primary vapor spaces until it leaves the volume of the exchanger, then is brought by the process implemented on the condensation surfaces of the heat exchanger.
  • the vapors of the liquid being treated called secondary vapor and in particular the water vapours, condense and produce the condensate, and the vapors of the compounds whose boiling point is lower than the process temperature constitute the non-condensable gases which must be extracted from the condensation spaces.
  • the primary steam also circulates along available paths between the evaporation surfaces of the thermally conductive materials of the heat exchanger and the outer limits of the heat exchanger. For example, these paths can, or must as the case may be, cross primary vapor spaces linked to the evaporation surfaces of other subsets.
  • the liquid to be treated is typically supplied and distributed over the upper part of the heat exchanger and travels, under the effect of gravity and thanks to the design of the exchanger, all the evaporation surfaces of the heat exchanger. exchanger until the extraction or less partial of the treatment product in its lower part.
  • the evaporation-condensation process only part of the liquid to be treated is evaporated. For example, given that the salts contained in the liquid to be treated cannot be evaporated under the conditions of implementation of the process, they remain in the liquid to be treated and as a result the salinity of the liquid to be treated increases as the process progresses. and as the latter progresses over the surfaces of the exchanger during its movement between its upper part and its lower part.
  • heat exchangers There are a multitude of types of heat exchangers that can be used in such processes. These heat exchangers come in different shapes and configurations. For example, heat exchangers can comprise several layers of thermally conductive materials in the form of tube bundles (FIG. 13) or in the form of plates forming alternate evaporation and condensation chambers (FIG. 12). According to different configurations, the evaporation can thus be implemented inside these tubes or these chambers, or else outside. It should also be noted that the tubes or chambers of the heat exchangers can be arranged horizontally or vertically or can even be inclined. It should be noted that heat exchangers designed to implement a thin film of falling water (film falling in French and commonly referred to by the English acronym TFF for Thin Falling Film) display the best overall heat transfer coefficients but are d greater volume or bulk.
  • TFF Thin Falling Film
  • state-of-the-art heat exchangers that do not use a thin falling film are not very compatible with uses with a low temperature differential between the condensation surfaces and the evaporation surfaces.
  • state-of-the-art heat exchangers that do not employ thin falling film may be those whose primary vapor spaces are at least partially filled with the liquid to be treated or being treated.
  • the primary vapors must escape from the volume of the heat exchanger crossing a space at least partially filled with the liquid to be treated, or being treated, and this generates hydraulic pressure drops which require the implementation of a higher pressure differential, namely an associated differential of temperatures above 2 to 5°C.
  • the installation generally also includes other elements such as ducts which are necessary for the collection and extraction of non-condensable gases in particular.
  • the condensate that is collected and extracted from such an installation can be intended for the domestic or industrial user.
  • the concentrate which is collected and extracted from such an installation is generally discharged into the natural environment.
  • concentrate is meant within the meaning of the present invention, the portion of a liquid to be treated, or during treatment, which has not evaporated during its progression on the evaporation and/or condensation surfaces of the heat exchanger, and whose salinity has increased. The concentrate is usually discarded.
  • non-condensable gas is meant within the meaning of the present invention, the vapors of the compounds of a liquid to be treated whose boiling point is lower than the setting temperature. implementation of the process and which, therefore, have been evaporated but cannot condense at the conditions implemented.
  • condensate is meant within the meaning of the present invention, the product of the condensation of a water vapor generated by the evaporation of part of the liquid to be treated.
  • the condensate which may also be referred to as distillate when it is a single-effect unit, is the product of the treatment.
  • the interior volume of currently known heat exchangers are made up of layers of thermally conductive materials with thicknesses of the order of 0.8 to 1.5mm, in particular to meet three constraints:
  • the high thickness of the external walls also serves to integrate the phenomenon of reduction in the thickness of the external wall by erosion or corrosion in order to allow operation over a period of more than 20 years or more.
  • the performance of large heat exchangers is limited.
  • the specific exchange surface per volume that characterizes them is, in the case of thin falling film heat exchangers, limited to 40, or even 80m 2 /m 3 and their overall heat transfer coefficient is also limited to 3500 W/m 2 .K, even at 6500 W/m 2 .K.
  • the heat exchangers currently used are generally made to measure and in one piece in their enclosure and have large volumes and weights making them difficult to dismantle or move.
  • One of the aims of the invention is to remedy the shortcomings of the methods and devices or liquid desalination systems of the state of the art.
  • the present invention relates to a heat exchanger comprising several subassemblies consisting in part of a layer of a thermally conductive material, the heat exchanger comprising:
  • the heat exchanger being defined by a volume divided into several zones, the heat exchanger being characterized in that each of the zones comprises at least:
  • an extractor means configured to channel at least part of the primary steam generated in the zone towards the outside of said volume.
  • the heat exchanger is configured in particular so that the primary steam is found in conditions which allow its evaporation and the secondary steam, in conditions allowing its condensation.
  • the secondary steam is defined by a temperature and a pressure higher than those of the primary steam.
  • zone within the meaning of the present invention, is meant a portion of the heat exchanger, which is virtually defined or materially separable, comprising at least one subassembly and one extractor means.
  • Two successive zones can be separated from each other by a part of the heat exchanger.
  • two successive zones may or may not be adjacent.
  • a zone can comprise several sub-assemblies and several extractor means.
  • an area can take the form of a locker.
  • a locker within the meaning of the present invention, is meant a portion of the heat exchanger which is materially separable.
  • a locker or an area may consist, according to the invention, of one or more layers of a thermally conductive material, of one or more evaporation surfaces, of one or more condensation surfaces and of one or more extractor means.
  • thermally conductive material within the meaning of the present invention, is meant a material with the aid of which it is possible to maintain both the phenomenon of evaporation and also of condensation of a liquid to be treated, namely a material whose thermal properties are sufficient under the conditions of implementation of the heat exchanger to transmit, from a condensation surface to the evaporation surface, at least the latent heat of condensation generated per unit area.
  • thermally conductive material also having sufficient qualities of resistance to corrosion induced by the liquid to be treated, mention may be made of cast aluminum, cupronickel, stainless steels, titanium, and composite materials of performance of improved thermal conductivity.
  • the overall heat transfer coefficient of the heat exchanger is increased.
  • the extractor means make it possible to extract at least part of the primary vapor generated by an evaporation surface of a given subset before it moves into a primary vapor space of a subset. - adjacent set.
  • the evaporation phenomenon is favored if the vapor atmosphere adjacent to a given evaporation surface is less loaded with saturated vapor.
  • the pressure of saturated primary steam in the vicinity of the surfaces of the heat exchanger is reduced either at any point or globally. evaporation.
  • the primary steam for example in a conduit independent of the primary steam spaces, one avoids creating pressure drops within said primary steam space, pressure drops which have the effect of reducing in certain places the differential of negative pressure which is necessary for the phenomenon of evaporation.
  • the channeling or extraction of the primary steam therefore favors the homogeneity of the negative pressure differentials and tends to eliminate the reduction of this necessary negative differential. This therefore makes it possible not only to increase the overall heat transfer coefficient of the heat exchanger, but also to use the heat exchanger with very low pressure differential and temperature differential, which makes it possible to reduce consumption in energy of the process implementing such a heat exchanger.
  • the overall performance increase of the heat exchanger is variable depending on the mode of implementation of the vapor extractor means.
  • the extractor means is configured to channel at least part of the primary vapor generated close to an evaporation surface of a subassembly and to evacuate it from the heat exchanger without this primary vapor passing in particular in front of evaporation surfaces of other adjacent subassemblies.
  • the more the extractor means is complex and branched the more the performance of the heat exchanger can be increased.
  • a balance between the costs of implementing a more or less branched extractor means and the desired performance improvements relating to the heat exchanger must be chosen for each application and by each manufacturer.
  • extractor means it is possible to have at least one tube and/or a parallelepipedal chamber which can be formed from two main plates, the tube and/or the chamber being pierced with holes inserted into at least one primary vapor space at the within the volume of the exchanger, or at least one tube, one end of which is used to suck in and extract primary steam within the volume of the exchanger, or any other section pierced with orifices arranged according to a similar principle and which can be of any shape.
  • heat exchangers spaced out and of large sizes that is to say having a volume of the order of 1 m 3 or more, for example with horizontal tubes of rows spaced apart by approximately 20 to 30 mm, and/or more compact heat exchangers, for example plate heat exchangers, but of small size, that is to say having a volume less than or equal to 0.5m 3 , make it possible to maintain performance ranging from 3500 W/m 2 .K even up to 6500 W/m 2 .K.
  • the heat exchanger according to the invention can be defined by a specific volume lower than those of the heat exchangers currently used and made from materials characterized by lower mechanical strengths than the materials currently used in heat exchangers. Indeed, the materials used in the heat exchanger thermal according to the invention must withstand mechanical stresses lower than those which must withstand the materials used in current heat exchangers.
  • the heat exchanger according to the invention can preferably be a thin falling film type heat exchanger.
  • the heat exchanger according to the invention may comprise, by way of zones, several compartments of small dimensions.
  • the layer thicknesses of a thermally conductive material which were not sufficient on large volumes relative to current heat exchangers are now sufficient according to the invention.
  • a greater density of layer of thermally conductive material of smaller thicknesses therefore makes it possible to build sub-assemblies of small dimensions which can be integrated into lockers, which are light and which do not require a support structure other than, for example , side flanges. Said side flanges also making it possible to facilitate the connection between each locker.
  • each of the zones can comprise several extractor means.
  • each zone may further comprise collector means connected to one or more extractor means of said zone, the collector means being configured to collect the primary vapor extracted by said one or more extractor means from said zone.
  • the collector means of one of the zones can preferably be interconnected to the collector means of another of said zones, the interconnected collector means being further connected to a pipe configured to channel the vapor primary collected by the collector means interconnected to the outside of said volume.
  • each of said zones may further comprise a means for introducing secondary steam.
  • each zone for example of the locker type, it is advantageous for each zone, for example of the locker type, to be autonomous. Accordingly, in this embodiment, each of the zones may preferably further comprise a removal means configured to remove condensate and non-condensable gases.
  • each of the layers of a thermally conductive material may comprise an evaporation surface and a condensation surface, the evaporation surface being opposite the condensation surface.
  • the layer of a thermally conductive material can be in any form, in particular in the form of a two-dimensional or three-dimensional object.
  • two-dimensional object is meant within the meaning of the present invention, an element whose length and width are much greater than the thickness.
  • a two-dimensional object can be a film, a sheet, or a plate.
  • three-dimensional object is meant within the meaning of the present invention, an object in volume which is not a two-dimensional object.
  • a three-dimensional object can be a tube, a sphere, a parallelepiped
  • the thickness of said layer of a thermally conductive material is less than 400 ⁇ m, preferably less than 300 ⁇ m, or even preferably less than 200 ⁇ m.
  • the thickness of the layer of thermally conductive material can be between 25 ⁇ m and 100 ⁇ m when this material is a noble metal, and can be between 40 ⁇ m and 250 ⁇ m when this material is made of composite plastic.
  • the structure of the heat exchanger is advantageously equivalent to that of the heat exchangers currently used. Consequently, in this embodiment, the layer of a thermally conductive material can be in the form of a plate comprising one of the evaporation surfaces and one of the condensation surfaces.
  • the layer of a thermally conductive material is in the form of a plate
  • large-size heat exchangers with acceptable performance according to the state of the art have a specific exchange surface per volume of the order of 40 to 60m 2 /m 3 while using the plate heat exchanger according to the invention, it is possible to have a much higher specific exchange surface per volume, up to 100m 2 /m 3 , or even 200m 2 /m 3 or even 250m 2 /m 3 .
  • two adjacent plates can preferably be separated by a distance d of between 2 mm and 15 mm.
  • the extractor means can be found, but not necessarily.
  • the distance d can preferably be between 2mm and 7mm.
  • Said extractor means can take the form of an extraction chamber whose thickness, namely the distance between the outer walls of the two main plates which constitute it is between 0.5 and 5 mm, the thickness of each of said plates possibly being between 25 and 500 ⁇ m.
  • the heat exchanger according to the invention also has several advantages if one works with a low temperature differential applied between the condensation surface and the evaporation surface of the same plate, that is to say a low temperature differential between secondary and primary steam. It should be noted that current heat exchangers typically work with temperature differentials significantly greater than 1°C, often between 2.0 and 2.5°C, or even greater than or equal to approximately 5°C for heat exchangers that do not have a thin falling film.
  • the temperature differentials, with saturated steam, are associated according to the laws of physics with pressure differentials, and a temperature differential between 2.0 and 2.5°C corresponds to a compression factor, in the case of a work according to the single-acting MVC, respectively between 1.11 and 1.14.
  • the heat exchanger has, for its part, a temperature differential applied between said condensation surface and said evaporation surface of the same plate, comprised between 0.4 and 1.2 °C when the liquid to be treated is sea water, and 0.1 and 0.9 °C when the liquid to be treated is brackish water.
  • the ebullioscopic difference is approximately equal to 0.4° C.; if it is desired to operate the evapo-condensation process with a total temperature differential between the condensation surface and the saturated primary steam which is between 0.5°C and 0.7°C for example, the effective temperature differential between the two sides of a layer will therefore be between 0.1°C and 0.3°C.
  • a large heat exchanger is operated without extractor means with an effective temperature differential equal to 0.3°C, for example, and the hydraulic head losses on certain paths of the primary vapors are such that they correspond, according to Mollier, to a saturated steam temperature differential of, for example, 0.1 °C or more, the heat exchange capacity of the heat exchanger would be reduced by one third or more , at the places concerned. Thanks to the invention, we can operate heat exchangers large and compact heaters, with an effective temperature differential as low as, for example, 0.1°C, without loss of efficiency.
  • the heat exchanger is used with seawater at 35 g/l, a conversion rate of 30 to 40%, an equilibrium temperature, that is to say of primary steam, from 40 to 45°C, an absolute pressure of the enclosure of 0.05 to 0.1 bar, and an effective temperature differential between the two surfaces of evaporation and condensation of a layer of thermally conductive material between 0.1 at 0.3°C, which corresponds to a total temperature differential between the condensation surface and the saturated primary steam of 0.5 to 0.7°C.
  • the heat exchanger can be used effectively with effective temperature differentials as low as 0.1 to 0.5°C for any other type of water to be treated whose ebullioscopic difference is different, using the same method of calculation to determine the total temperature differential of each different configuration.
  • the heat exchanger is preferably characterized in that the effective temperature differential between the condensation surface and the evaporation surface of a layer of a thermally conductive material can be less than 0.5°C.
  • the heat exchanger is advantageous for the heat exchanger to be made up of a number of zones, for example of the compartment type, these compartments being monobloc and self-supporting and comprising layers of thermally conductive materials having very small thicknesses, in particular less than 250 ⁇ m, and very close together, in particular by a distance d of less than 2 to 7 mm. Therefore, in this embodiment, the ratio between the number of zones, which may be lockers, and said volume is between 4 and several thousand.
  • self-supporting locker within the meaning of the present invention, is meant an assembly by welding or gluing of layers of thermally conductive materials constituting at least a part of the heat exchanger, or a locker, the assembly holding together alone or using welded or glued side flanges, which can be transported, installed and implemented without deforming or requiring a means of reinforcement or external support.
  • these zones have a section of a size smaller than that of an access door to the enclosure of the manhole type, the internal diameter of which is typically 600 to 800 mm.
  • This option allows one or two men only, without cumbersome or special tools, and without having to open a whole side of the enclosure, or at least a large part of the latter, to disassemble the heat exchanger and to transport the racks by hand to a maintenance workshop.
  • the invention relates to the use of a heat exchanger as described above in a method implementing mechanical vapor compression.
  • the mechanical vapor compression may be single-acting.
  • FIG 1 schematically represents part of a heat exchanger comprising plates according to one embodiment of the invention
  • FIG 2 schematically represents an extractor means included in a heat exchanger according to one embodiment of the invention
  • FIG 3 schematically represents part of a heat exchanger comprising tubes according to one embodiment of the invention
  • FIG 4 schematically represents an extractor means included in a heat exchanger according to one embodiment of the invention
  • FIG 5 schematically represents part of a heat exchanger according to one embodiment of the invention.
  • FIG 6A and FIG 6B schematically represent sections of a heat exchanger according to one embodiment of the invention
  • FIG 7 represents a heat exchanger according to one embodiment of the invention.
  • FIG 8 illustrates a heat exchanger according to one embodiment of the invention which implements materially separable subassemblies of the locker type
  • FIG 9A], [Fig 9B] and [Fig 9C] represent views of a subassembly of a simplified locker and its compatibility in a heat exchanger according to one embodiment of the invention
  • FIG 10 schematically represents part of a heat exchanger comprising inclined plates according to one embodiment of the invention
  • FIG 11 A schematically represents a heat exchanger comprising an assembly of racks according to one embodiment of the invention
  • FIG 11 B schematically represents a heat exchanger comprising tubes according to one embodiment of the invention.
  • FIG 12 represents part of a heat exchanger comprising plates according to the state of the art.
  • FIG 13 represents part of a heat exchanger comprising tubes according to the state of the art.
  • the following description presents at least parts of heat exchangers, evaporator-condenser type, produced according to the invention and comprising several zones.
  • the heat exchanger is configured to desalinate seawater.
  • Each zone is either a virtual division or a physically separable compartment of the heat exchanger and is made up of several elements of the heat exchanger.
  • the heat exchanger is delimited by its volume Vec. Some of the zones or compartments can for example be stacked on top of each other.
  • the heat exchanger is made up of several sub-assemblies which are each partly made up of a layer of a thermally conductive material.
  • This layer of a thermally conductive material comprises an evaporation surface configured to generate, in a vapor space to be evaporated or primary vapor space, a primary vapor from seawater, and a condensation surface configured to condense , in a vapor space to be condensed or secondary vapor space, a secondary vapor into condensate and to generate a latent heat of condensation, the secondary vapor being the vapor to be condensed.
  • each subassembly consists in part of a layer of a thermally conductive material having a thickness of less than 400 ⁇ m, for example titanium, duplex or superduplex steel or equivalent, or composite plastic material of thermal performance improved.
  • each evaporation surface is opposite each condensation surface.
  • the thermally conductive material is configured to transfer at least part of the heat condensation latent from the condensation surface to the evaporation surface of a given subset.
  • the heat exchanger further comprises an upper part through which the seawater is introduced.
  • the seawater to be desalinated is distributed over the upper part of the heat exchanger and percolates by gravity over all the surfaces. evaporation of the sub-assemblies.
  • the sea water which percolates by gravity in the lower part of the first sub-assembly sprinkles the upper part of the surfaces to be wetted in the second sub-assembly, and so on for the other possible sub-assemblies, until reaching at the very bottom of the heat exchanger in order to constitute the concentrate.
  • the invention relates to all possible configurations of heat exchangers, but in order to present an intelligible description, the following examples focus on heat exchangers employing thermally conductive materials in the form of plates or in the form of a bundle of tubes.
  • the following examples illustrate configurations with vertical plates or horizontal tubes, with condensation inside the chambers or tubes, but the invention can be implemented with any type of configuration. In some configurations, the plates may or may not be parallel.
  • FIG. 1 illustrates part of a vertical plate heat exchanger. Specifically, each of the vertical plates represents a first part of the heat exchanger. Each of these first parts represents an evapo-condensation chamber 100 in continuous lines. Each evapo-condensation chamber 100 notably comprises a thermally conductive material as well as an evaporation surface and a condensation surface. Each of these evapo-condensation chambers 100 in particular also comprises a primary vapor space located on the side of the evaporation surface and a secondary vapor space located on the side of the condensation surface. On the side of the evaporation surface is therefore generated the primary vapor.
  • each of these extraction chambers 200 comprises at least one extractor means 210 which is represented as being a rectangular parallelepiped comprising in particular two large faces, in particular two main plates, each pierced with a network of holes 220 , the extractor means 210 being inserted into at least one primary vapor space within the volume of the exchanger.
  • the distance d between an evapo-condensation chamber 100 and an adjacent extraction chamber 200 is between 2 mm and 7 mm.
  • the thickness of an extraction chamber 200, or more precisely the distance which separates the outer ends of the two main plates which constitute it, is between 0.5 and 10 mm; the thickness of said two main plates being between 25 ⁇ m and 500 ⁇ m.
  • the extraction chamber 200 is located between two evaporation surfaces of two adjacent sub-assemblies, and is connected to a suction means which can also be connected to a system of ducts representing a network suction of primary steam.
  • This extraction chamber 200 in dotted line constitutes the second part of the heat exchanger. It should be noted that each of the extraction chambers 200 is shown in dotted lines in the figures for the sole purpose of visually differentiating them from the evapo-condensation chambers 100.
  • each primary vapor extraction chamber 200 is installed between two evapo-condensation chambers 100. Using the extraction chamber 200, at least part of this vapor primary is then channeled, i.e. collected and directed to other elements to be further processed (for example a recompression in the case of MVC, or a transfer to a next effect or stage in the case of MED or multi-effect MVC).
  • a means of introducing secondary steam ensures the delivery of secondary steam inside each of the evapo-condensation chambers 100, in particular in its condensation space.
  • the primary steam generated is channeled and extracted out of the heat exchanger without passing through the evaporation surfaces of other zones.
  • each smaller zone in FIG. 1 is defined by a virtual division into rectangular parallelepipeds of the exchanger.
  • Each smaller zone comprises a single hole drilled in an extraction chamber 200, a part of the adjacent evapo-condensation chamber 100, and the volumes necessary around these chambers in order to register the virtual cutting in a continuous network.
  • said smaller zone indeed comprises at least one layer of heat-conducting material, an evaporation face and a primary vapor space, a condensation face and a secondary vapor space, an extractor means consisting of said single hole pierced, and a pipe (consisting of the extraction chamber which is itself connected to a collector means) which extracts the primary vapor from the exchanger.
  • each of the zones can comprise several extractor means.
  • each zone can also further comprise a collector means connected to one or more extractor means of the zone.
  • the collector means is configured to collect the primary vapor extracted by said one or more extractor means from the zone.
  • the collector means of one of said zones is interconnected to the collector means of another of said zones.
  • the interconnected collector means are also connected to a pipe configured to channel the primary steam collected by the interconnected collector means to the outside of the volume defining the heat exchanger, that is to say outside the delimited interior volume by the outer walls of the heat exchanger.
  • each of the zones further comprises a withdrawal means configured to withdraw condensate and non-condensable gases.
  • Each of the zones as defined further comprises a means of extracting the primary vapor to ensure its transport to the extractor means of one or more other zones.
  • the primary vapors are channeled locally and routed to the outside of the heat exchanger.
  • Figures 3 and 4 illustrate another implementation of the same principle with evapo-condensation chambers 100 in the form of tubes rather than in the form of plates as illustrated in Figures 1 and 2.
  • the primary vapor extractor means can be constructed as an assembly of tubes which take a direction or the same direction as that of the columns 300 of tubes of the heat exchanger.
  • the tube assembly is connected to a manifold means in the same manner as the 200 vapor extraction chambers.
  • protections preventing the liquid to be treated to wet the extracting means can take the form of profiles, for example of V-section open downwards, installed above each extraction chamber 200, so that said profiles return the sprinkled water to the thermally conductive layers of the heat exchanger.
  • Figure 5 illustrates an assembly of the heat exchanger 400 according to Figure 1, provided with side flanges (a left flange 410 and a right flange 420).
  • the assembly is made of two parts.
  • the first part is a successive stack of several glued or welded assemblies, each composed of a layer of a thermally conductive material, then of a spacer closing the condensation space, then of a second layer of a thermally conductive material. conductor, then a spacer closing the primary vapor space and provided with an extraction chamber 200.
  • the second part comprises: a means for collecting the primary vapor, a means for introducing the secondary vapor, a means removal of condensate and non-condensable gases. If we observe the longitudinal section of a spacer closing the condensation space (FIG.
  • Figure 7 illustrates a variation of the exchanger according to the example shown in Figure 5 where the evapo-condensation chambers 100 are tubular as shown in Figures 3 and 4.
  • FIG. 8 illustrates another embodiment of the invention which implements materially separable zones or compartments 500.
  • the heat exchanger presented is of the same size, of the same exchange capacity, and of the same volume as that of FIG. 5.
  • the heat exchanger of FIG. 8 consists of several bins 500 (36 in our example) which are materially separate and stackable.
  • the racks 500 may also themselves be made up, or not, of a large number of sub-zones.
  • the compartments 500 can also be made identically to a heat exchanger according to FIG. 5 of reduced size.
  • Each locker 500 is provided with its own primary vapor sub-collector which is preferably connected to each extractor means of the other lockers.
  • Each rack 500 may also include a set of ducts which may be its own sub-means for introducing secondary steam, which may be the right flange 420, and for removing condensate and non-condensable gases which may be the left 410 .
  • the sub-means of the lockers 500 are, in an optimized embodiment, interconnected in their upper and lower parts of the stacks to form ducts 510 and 520 which are themselves connected to the main collectors 550 of vapors, distillate and non-condensable gases of the heat exchanger.
  • Each of the ducts 510 and 520 is formed by a vertical or horizontal assembly respectively of the left flanges 410, and of the right flanges 420.
  • the ducts 510 are primary steam, condensate and non-condensable gas extraction ducts.
  • Ducts 520 are secondary steam supply ducts.
  • FIG. 9A which is a perspective view of a locker 500 does not show the evapo-condensation chambers 100 to facilitate reading.
  • FIG. 9A shows the left flange 410 of a simplified locker, where the primary steam extractor means is reduced to a network 430 of slots or orifices drilled in the left flange 410 adapted to collect the primary steam, without it is necessary that an extraction chamber 200 be present between each evapo-condensation chamber 100 as illustrated in figure 1.
  • Figures 9B and 9C show horizontal sections of the simplified rack of Figure 9A. They show that this simplified configuration is advantageously compatible with an assembly of evapo-condensation chambers 100 with plates whose sections increase on the path of the primary steam and decrease on the path of the secondary steam.
  • Figure 10 shows an example of implementation of the invention for an assembly of inclined evapo-condensation plates, where only one face of the resulting evapo-condensation chambers 100 is thermally active. Indeed, in this configuration, it is the evapo-condensation chamber 100 adjacent to that considered which forms the extraction chamber 200 of the primary steam.
  • Figure 11A shows a simplified rack assembly; this representation clearly shows the networks 430 of slots (dotted, appearing darker) of primary steam inserted within the heat exchanger.
  • the networks 430 of slots are, for example, directly linked to the extraction ducts 510, formed by the interlocking of the flanges of the compartments.
  • FIG 11B illustrates a horizontal tube bundle heat exchanger, in which only a few vapor extractor means have been placed (dotted, appearing darker) within it.
  • This heat exchanger according to a particular mode of the invention, consists of several virtual zones, each zone comprising at least one hole for extracting vapor collected and extracted from the volume of the heat exchanger.
  • This example shows a partial implementation of the invention by installing only a few primary vapor collectors or extractor means within the heat exchanger, with the aim of improving the performance only partially but at a lower cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Beverage Vending Machines With Cups, And Gas Or Electricity Vending Machines (AREA)

Abstract

L'invention concerne un échangeur thermique de type évapo-condensateur comprenant plusieurs zones, chaque zone comprenant au moins un moyen extracteur configuré pour canaliser une partie au moins de la vapeur primaire générée dans la zone vers l'extérieur de l'échangeur thermique.

Description

Titre : Echangeur thermique avec extracteurs de vapeur
Domaine d’application
La présente invention se rapporte au domaine du traitement d’eau aux fins de production d’eau potable et/ou d’eau à usage industriel.
Par exemple, comme eau à usage industriel, on peut citer l’eau déminéralisée, les eaux de procédés ou l’eau de service ; dans le cas de l’eau potable, on parle principalement de celle produite par les sociétés d’utilités afin d’approvisionner les réseaux de distributions publics ou communautaires.
Plus particulièrement, l’invention se rapporte aux procédés de dessalement d’eau, en particulier aux procédés de distillation mettant en œuvre un ou plusieurs échangeurs thermiques.
Par échangeur thermique, on entend au sens de la présente invention, un évapo-condenseur, un échangeur évaporateur condenseur ou encore un échangeur de chaleurs latentes.
Etat de l’art
Dans l’état de la technique, des procédés de dessalement d’eau, tels que les procédés mettant en œuvre la distillation par multiples effets (communément désigné par l’acronyme français DEM ou anglais MED pour « multi-effect distillation ») ou encore par compression mécanique de vapeur (communément désigné par l’acronyme français CMV ou anglais MVC pour « mechanical vapor compression ») sont actuellement connus et utilisés.
De tels procédés notamment permettent de produire une eau potable et/ou une eau à usage industriel d’eau par dessalement en mettant en œuvre un procédé de distillation d’un liquide à traiter sur au moins un échangeur thermique qui assure par transferts thermiques, d’une part, l’évaporation et, d’autre part, la condensation.
Par exemple, comme liquide à traiter, on peut citer l’eau de mer ou les eaux saumâtres. On entend par eau de mer, toute eau prélevée dans le milieu marin dont la concentration en sel est typiquement supérieure ou environ égale à 30 g/L. Notons que les eaux saumâtres couvrent les eaux brutes dont la salinité est comprise entre environ 1 g/L et la salinité de l’eau de mer. Par ailleurs, les eaux saumâtres sont généralement des eaux extraites de nappes aquifères dites eaux de forage, ou de mélanges entre eaux de forage et eaux de mer. Comme liquide à traiter, on peut également considérer les eaux usées industrielles ou les eaux usées domestiques. Le produit du traitement de ces eaux est généralement soit utilisé comme eau à usage industriel, soit réinjecté dans le milieu naturel, soit, si la qualité le permet, utilisé dans des réseaux d’irrigation ou directement dilué dans des réseaux d’eau potable.
Dans l’état de l’art, les échangeurs thermiques utilisés dans de tels procédés sont typiquement construits en monobloc et comprennent une partie supérieure à l’aide de laquelle le liquide à traiter y est introduit et une partie inférieure à l’aide de laquelle on extrait au moins un produit issu du liquide traité après traitement du liquide à traiter. Généralement, les échangeurs thermiques sont caractérisés entre autres par un coefficient de transfert thermique global, une configuration d’assemblage de couches, une surface d’échange et un encombrement ou volume.
Il est à noter par ailleurs que les échangeurs thermiques actuellement utilisés sont typiquement installés dans une enceinte qui sert d’abord de moyen collecteur de la vapeur primaire. L’enceinte permet également la mise en œuvre du procédé d’évaporation condensation à une pression différente de la pression atmosphérique, et dans ce cas les échangeurs thermiques travaillent à une température d’équilibre, ou température de vapeur, différente de 100°C. En particulier, le plus souvent et notamment dans les configurations qui visent à diminuer la consommation en énergie du procédé d’évaporation condensation, cette température d’équilibre est inférieure à 65°C afin, d’une part, de diminuer les problèmes et risques liés à l’entartrage, et d’autre part d’augmenter l’efficacité des cycles thermodynamiques de ces échangeurs thermiques.
Pour permettre la compréhension de l’invention, nous ajoutons aux caractéristiques des échangeurs thermiques connus la notion de sous-ensembles. Chaque sous-ensemble est défini comme étant une portion d’un échangeur thermique donné.
Chacun des sous-ensembles de l’échangeur thermique comprend :
- une surface d’évaporation qui, au contact du liquide à traiter, lui transfère de la chaleur et permet la formation d’une vapeur primaire,
- un espace de vapeur évaporée ou espace de vapeur primaire,
- une surface de condensation qui, à la fois, condense en condensât une vapeur secondaire et capte une chaleur latente de condensation, la vapeur secondaire étant la vapeur à condenser,
- un espace de vapeur à condenser ou espace de vapeur secondaire, et
- une couche de matériau thermiquement conducteur qui assure le transfert thermique, la couche de matériau thermiquement conducteur étant située entre la surface d’évaporation et la surface de condensation, ce matériau étant configuré pour transférer une partie au moins de la chaleur latente de condensation depuis la surface de condensation vers la surface d’évaporation, la surface d’évaporation étant typiquement opposée à la surface de condensation.
Les transferts thermiques réalisés par les matériaux thermiquement conducteurs de chacun des sous-ensembles des échangeurs thermiques actuels sont principalement constitués d’une chaleur latente de condensation qui est directement restituée au travers du matériau thermiquement conducteur et qui assure le phénomène d’évaporation. Ces transferts thermiques sont rendus possibles grâce, entre autres, à l’application d’un différentiel de température, et également de pression notamment, entre la surface d’évaporation et la surface de condensation d’un des sous-ensembles de l’échangeur thermique.
En particulier, lors de la mise en œuvre du procédé d’évaporation condensation, il y a une distinction entre deux types de vapeurs. La vapeur primaire qui est issue de l’évaporation du liquide à traiter qui se propage sur les surfaces d’évaporation de l’échangeur thermique. Cette vapeur primaire circule du côté des surfaces d’évaporation dans les espaces de vapeur primaire. La vapeur secondaire qui est, quant à elle, destinée à être condensée sur l’échangeur thermique circule du côté des surfaces de condensation de l’échangeur thermique, dans les espaces de vapeur secondaire. Chacune des surfaces de condensation est généralement opposée, pour une couche de matériau thermiquement conducteur de l’échangeur thermique, à une des surfaces d’évaporation de l’échangeur thermique.
Par exemple, dans un échangeur thermique opéré par une compression mécanique de vapeur à un étage ou effet, la vapeur secondaire est condensée sur le même échangeur thermique, alors que dans une configuration à multiples effets (soit une compression mécanique à plusieurs étages, soit un MED), la vapeur secondaire est condensée sur un échangeur thermique disposé en aval, c’est-à-dire sur l’échangeur thermique de l’effet suivant.
Dans les échangeurs thermiques actuellement connus, la vapeur primaire générée au niveau d’une surface d’évaporation d’un sous-ensemble est amenée à circuler dans l’échangeur thermique au travers, en particulier, de tout espace de vapeur primaire présent dans chacun des sous-ensembles. En particulier, cette vapeur primaire circule depuis la surface d’évaporation liée à un matériau thermiquement conducteur d’un sous ensemble vers un autre matériau conducteur, en particulier vers une autre surface d’évaporation, d’un autre sous- ensemble de l’échangeur thermique, ledit autre sous-ensemble pouvant être un sous- ensemble adjacent audit sous-ensemble mais pas nécessairement. En effet, la vapeur générée par l’évaporation, dite vapeur primaire, d’une partie du liquide à traiter ou en cours de traitement est canalisée par les espaces de vapeur primaire jusqu’à sortir du volume de l’échangeur, puis est apportée par le procédé mis en œuvre sur des surfaces de condensation de l’échangeur thermique. Ainsi, au niveau des surfaces de condensation, les vapeurs du liquide en cours de traitement, dite vapeur secondaire et en particulier les vapeurs d’eau, condensent et produisent le condensât, et les vapeurs des composés dont le point d’ébullition est inférieur à la température du procédé constituent les gaz non condensables qui doivent être extraits des espaces de condensation.
La vapeur primaire circule par ailleurs suivant des chemins disponibles entre les surfaces d’évaporation des matériaux thermiquement conducteurs de l’échangeur thermique et les limites extérieures à l’échangeur thermique. Par exemple, ces chemins peuvent, ou doivent selon le cas, traverser des espaces de vapeur primaire liés aux surfaces d’évaporation d’autres sous-ensembles.
Pour ce faire, le liquide à traiter est typiquement apporté et réparti sur la partie supérieure de l’échangeur thermique et parcourt, sous l’effet de la gravité et grâce à la conception de l’échangeur, toutes les surfaces d’évaporation de l’échangeur jusqu’à l’extraction ou moins partielle du produit du traitement en sa partie basse. Lors de la mise en œuvre du procédé d’évaporation condensation, seule une partie du liquide à traiter est évaporée. Par exemple, étant donné que les sels contenus dans le liquide à traiter ne peuvent pas être évaporés dans les conditions de mise en œuvre du procédé, ils restent dans le liquide à traiter et il en résulte que la salinité du liquide à traiter augmente au fur et à mesure que ce dernier progresse sur les surfaces de l’échangeur lors de son déplacement entre sa partie supérieure et sa partie inférieure.
Il est à noter qu’à l’aide des échangeurs thermiques actuellement connus, il est possible d’avoir un coefficient de transfert thermique global de l’ordre de 3000 à 6500W/m2.K, coefficient dépendant de la configuration et de la taille de l’échangeur thermique en question.
Il existe une multitude de types d’échangeurs thermiques utilisables dans de tels procédés. Ces échangeurs thermiques sont de formes et de configurations différentes. Par exemple, les échangeurs thermiques peuvent comprendre plusieurs couches de matériaux thermiquement conducteurs sous forme de faisceaux de tubes (figure 13) ou sous-forme de plaques formant des chambres alternées d’évaporation et de condensation (figure 12). Selon des configurations différentes, l’évaporation peut ainsi être mise en œuvre à l’intérieur de ces tubes ou de ces chambres, ou bien à l’extérieur. Il est à noter par ailleurs que les tubes ou chambres des échangeurs thermiques peuvent être disposés horizontalement ou verticalement ou peuvent encore être inclinés. Il est à noter que les échangeurs thermiques conçus pour mettre en œuvre un fin film d’eau tombant (film tombant en français et communément désigné par l’acronyme anglais TFF pour Thin Falling Film) affichent les meilleurs coefficients de transfert thermique globaux mais sont d’un plus grand volume ou encombrement.
Par ailleurs, les échangeurs thermiques de l’état de l’art qui ne mettent pas en œuvre un fin film tombant (TFF) sont peu compatibles avec des utilisations à faible différentiel de températures entre les surfaces de condensation et les surfaces d’évaporation. Par exemple, les échangeurs thermiques de l’état de l’art qui ne mettent pas en œuvre un fin film tombant (TFF) peuvent être ceux dont les espaces de vapeur primaire sont au moins partiellement emplis du liquide à traiter ou en cours de traitement. Par exemple, on peut citer les échangeurs thermiques à plaques dont les distances entre deux surfaces d’évaporations sont faibles, en particulier de l’ordre de un à quelques millimètres, et dans lesquels le liquide à traiter est apporté de manière turbulente et désorganisée où le phénomène d’ébullition est accompagné d’explosions de bulles qui mélangent des flux de liquide à traiter, ou en cours de traitement, et de vapeur primaire, En effet, dans ces configurations, les vapeurs primaires doivent s’échapper du volume de l’échangeur thermique en traversant un espace au moins partiellement empli du liquide à traiter, ou en cours de traitement, et cela génère des pertes de charge hydrauliques qui nécessitent la mise en œuvre d’un différentiel de pression supérieur, à savoir un différentiel associé de températures supérieures à 2 à 5°C.
Dans les installations de l’état de l’art mettant en œuvre un tel procédé d’évaporation condensation employant au moins un échangeur thermique tel que décrit précédemment, il est possible de produire à la fois un condensât et également un concentrât. Il est à noter que l’installation comprend généralement également d’autres éléments comme des conduits qui sont nécessaires à la collecte et à l’extraction de gaz non condensables notamment. Par ailleurs, le condensât qui est collecté et extrait d’une telle installation peut être destiné à l’utilisateur domestique ou industriel. Le concentrât qui, quant à lui, est collecté et extrait d’une telle installation, est généralement rejeté dans le milieu naturel.
Par concentrât, on entend au sens de la présente invention, la portion d’un liquide à traiter, ou en cours de traitement, qui ne s’est pas évaporée lors de sa progression sur les surfaces d’évaporation et/ou de condensation de l’échangeur thermique, et dont la salinité a augmenté. Le concentrât est généralement jeté.
Par gaz non condensables, on entend au sens de la présente invention, les vapeurs des composés d’un liquide à traiter dont le point d’ébullition est inférieur à la température de mise en œuvre du procédé et qui, par conséquent, ont été évaporés mais ne peuvent pas condenser aux conditions mises en œuvre.
Par condensât, on entend au sens de la présente invention, le produit de la condensation d’une vapeur d’eau générée par l’évaporation d’une partie du liquide à traiter. Le condensât, qui peut également être désigné par distillât lorsqu’il s’agit d’une unité à simple effet, constitue le produit du traitement.
Par ailleurs, le volume intérieur des échangeurs thermiques actuellement connus sont constituées de couches de matériaux thermiquement conducteurs présentant des épaisseurs de l’ordre de 0.8 à 1.5mm, pour répondre notamment à trois contraintes :
- la résistance mécanique de l’ensemble des échangeurs thermiques de grandes tailles est partiellement fournie par des plaques ou tubes échangeurs de chaleur qui font partie intégrante de la structure ;
- puisque les épaisseurs des parois extérieures mises en œuvre sont importantes, les constructeurs choisissent des matériaux moins onéreux tels que le cupronickel, ou la fonte d’aluminium. Ils réservent les matériaux plus nobles tels que le Titane ou les aciers inoxydables Duplex ou Superduplex pour les petites parties les plus fragiles des échangeurs thermiques qui sont généralement les parties supérieures arrosées qui sont soumises à de la corrosion et à de l’érosion ;
- l’épaisseur élevée des parois extérieures sert aussi à intégrer le phénomène de diminution d’épaisseur de paroi extérieure par érosion ou corrosion afin de permettre un fonctionnement sur une durée supérieure à 20 ans ou plus.
Cependant, dans l’état actuel de la technique, les performances des échangeurs thermiques de grandes tailles sont limitées. Par exemple, la surface d’échange spécifique par volume qui les caractérise est, dans le cas des échangeurs thermiques à fin film tombant, limitée à 40, voire à 80m2/m3 et leur coefficient de transfert thermique global est également limité à 3500 W/m2.K, voire à 6500 W/m2.K. Par ailleurs, les échangeurs thermiques utilisés actuellement sont généralement construits sur mesure et de manière monobloc dans leur enceinte et présentent des volumes et poids importants les rendant difficilement démontables ou déplaçables.
Un des buts de l’invention est de remédier aux insuffisances des procédés et dispositifs ou systèmes de dessalement de liquide de l’état de la technique.
Description de l’invention La présente invention concerne un échangeur thermique comprenant plusieurs sous- ensembles constitués en partie d’une couche d’un matériau thermiquement conducteur, l’échangeur thermique comprenant :
- des surfaces d’évaporation configurées pour générer une vapeur primaire issue d’un liquide à traiter,
- des surfaces de condensation configurées pour condenser une vapeur secondaire en condensât et pour capter une chaleur latente de condensation, la vapeur secondaire étant la vapeur à condenser, le matériau thermiquement conducteur étant configuré pour transférer une partie au moins de la chaleur latente de condensation depuis une ou plusieurs des surfaces de condensation vers une ou plusieurs des surfaces d’évaporation, l’échangeur thermique étant défini par un volume divisé en plusieurs zones, l’échangeur thermique étant caractérisé en ce que chacune des zones comprend au moins :
- un des sous-ensembles, et
- un moyen extracteur configuré pour canaliser une partie au moins de la vapeur primaire générée dans la zone vers l’extérieur dudit volume.
Il est à noter que l’échangeur thermique est notamment configuré pour que la vapeur primaire se retrouve dans des conditions qui permettent son évaporation et la vapeur secondaire, dans des conditions permettant sa condensation. En particulier, au niveau d’un sous-ensemble donné, la vapeur secondaire est définie par une température et une pression supérieures à celles de la vapeur primaire.
Par zone, au sens de la présente invention, on entend une portion de l’échangeur thermique, qui est virtuellement définie ou matériellement dissociable, comprenant au moins un sous- ensemble et un moyen extracteur.
Deux zones successives peuvent être séparées l’une de l’autre par une partie de l’échangeur thermique. Autrement dit, deux zones successives peuvent être adjacentes ou non.
Une zone peut comprendre plusieurs sous-ensembles et plusieurs moyens extracteurs.
Il est à noter également qu’une zone peut prendre la forme d’un casier.
Par casier, au sens de la présente invention, on entend une portion de l’échangeur thermique qui est matériellement dissociable. Par exemple, un casier ou une zone peut être constitué, selon l’invention, d’une ou plusieurs couches d’un matériau thermiquement conducteur, d’une ou plusieurs surfaces d’évaporation, d’une ou plusieurs surfaces de condensation et d’un ou plusieurs moyens extracteurs.
Par matériau thermiquement conducteur, au sens de la présente invention, on entend un matériau à l’aide duquel il est possible d’entretenir à la fois le phénomène d’évaporation et également de condensation d’un liquide à traiter, à savoir un matériau dont les propriétés thermiques sont suffisantes dans les conditions de mise en œuvre de l’échangeur thermique pour transmettre, d’une surface de condensation à la surface d’évaporation, au moins la chaleur latente de condensation générée par unité de surface. Par exemple, comme matériau thermiquement conducteur présentant également des qualités suffisantes de résistance à la corrosion induite par le liquide à traiter, on peut citer la fonte d’aluminium, le cupronickel, les aciers inoxydables, le titane, et les matériaux composites de performances de conductivité thermique améliorées.
Selon l’invention, le coefficient de transfert thermique global de l’échangeur thermique est augmenté. En particulier, les moyens extracteurs permettent d’extraire une partie au moins de la vapeur primaire générée par une surface d’évaporation d’un sous-ensemble donnée avant que celle-ci ne se déplace dans un espace de vapeur primaire d’un sous-ensemble adjacent. En effet, le phénomène d’évaporation est favorisé si l’atmosphère de vapeur adjacente à une surface d’évaporation donnée est moins chargée en vapeur saturée. Ainsi, en extrayant ladite partie au moins de la vapeur primaire directement où elle est générée, ou dans différentes zones de l’échangeur thermique, on diminue soit en tout point, soit globalement, la pression de vapeur primaire saturée au voisinage des surfaces d’évaporation. Aussi, en canalisant la vapeur primaire, par exemple dans un conduit indépendant des espaces de vapeur primaire, on évite de créer des pertes de charges au sein dudit espace de vapeur primaire, pertes de charges qui ont pour effet de diminuer en certains endroits le différentiel de pression négatif qui est nécessaire au phénomène d’évaporation. La canalisation ou extraction de la vapeur primaire favorise donc l’homogénéité des différentiels de pression négatifs et tend à éliminer la diminution de ce différentiel négatif nécessaire. Cela permet donc non seulement d’augmenter le coefficient de transfert thermique global de l’échangeur thermique, mais également, d’utiliser l’échangeur thermique avec de très faibles différentiel de pression et différentiel de température, ce qui permet de diminuer la consommation en énergie du procédé mettant en œuvre un tel échangeur thermique.
Cependant, il est à noter que l’augmentation de performance globale de l’échangeur thermique est variable selon le mode de mise en œuvre du moyen extracteur de vapeur. En particulier, le moyen extracteur est configuré pour canaliser une partie au moins de la vapeur primaire générée proche d’une surface d’évaporation d’un sous-ensemble et pour l’évacuer hors de l’échangeur thermique sans que cette vapeur primaire passe en particulier devant des surfaces d’évaporation d’autres sous-ensembles adjacents.
En particulier, plus le moyen extracteur est complexe et ramifié, plus la performance de l’échangeur thermique peut être accrue. Un équilibre entre les coûts de mise en œuvre d’un moyen extracteur plus ou moins ramifié et les améliorations de performances recherchées relatives à l’échangeur thermique devra être choisi pour chaque application et par chaque constructeur.
Par exemple, comme moyen extracteur, on peut avoir au moins un tube et/ou une chambre parallélépipédique qui peut être formée de deux plaques principales, le tube et/ou la chambre étant percé de trous inséré dans au moins un espace de vapeurs primaires au sein du volume de l’échangeur, ou au moins un tube dont une extrémité sert à aspirer et extraire de la vapeur primaire au sein du volume de l’échangeur, ou tout autre profilé percé d’orifices disposé selon un principe similaire et qui peut être de toute forme.
Par ailleurs, à l’aide du moyen extracteur, il est possible d’obtenir un échangeur thermique présentant un volume spécifique plus faible (volume de l’échangeur thermique par surface d’échange) que ceux actuellement utilisés, principalement lors de la mise en œuvre des échangeurs thermiques à fin film tombant ou ceux fonctionnant à faible différentiel de températures. En effet, il est maintenant possible de proposer un échangeur thermique compact, dense, en diminuant l’espace contenu entre deux surfaces d’évaporation d’un sous- ensemble donné à quelques millimètres seulement tout en maintenant le coefficient de transfert thermique global maximal, ce qui était impossible avec des échangeurs thermiques actuels. En effet, actuellement, des échangeur thermiques espacés et de grandes tailles, c’est-à-dire présentant un volume de l’ordre de 1 m3 ou plus, par exemple à tubes horizontaux de rangées espacées de environ 20 à 30 mm, et/ou des échangeurs thermiques plus compacts, par exemple à plaques, mais de petites tailles, c’est-à-dire présentant un volume inférieur ou égal 0.5m3, permettent de maintenir des performances allant de 3500 W/m2.K voire jusqu’à 6500 W/m2.K.
L’échangeur thermique selon l’invention peut être défini par un volume spécifique inférieur à ceux des échangeurs thermiques actuellement utilisés et réalisé à base de matériaux caractérisés par des résistances mécaniques inférieures aux matériaux actuellement employées dans les échangeurs thermiques. En effet, les matériaux utilisés dans l’échangeur thermique selon l’invention doivent résister à des contraintes mécaniques inférieures à celles auxquelles doivent résister les matériaux employés dans les échangeurs thermiques actuels.
En particulier, il est donc possible de remplacer les matériaux des couches de matériau thermiquement conducteur par des matériaux plus nobles. En effet, actuellement pour les échangeurs de grandes tailles, à fin film tombant par exemple, les matériaux nobles tels que le Titane ou les aciers inoxydables Duplex ou Superduplex sont réservées aux parties sensibles de l’échangeur thermique, par exemple à la partie supérieure de l’échangeur thermique au travers de laquelle on arrose le liquide à traiter, cette partie supérieure étant soumise à la corrosion et à l’érosion. Mais avec les économies de fabrication réalisées à l’aide de la présente invention, il est maintenant possible de fabriquer un échangeur thermique présentant des couches entièrement composées du même matériau noble.
Il est à noter que l’échangeur thermique selon l’invention peut être de préférence un échangeur thermique de type à fin film tombant.
A plus forte raison, l’échangeur thermique selon l’invention peut comprendre, en guise de zones, plusieurs casiers de faibles dimensions. Dans ce cas, les épaisseurs de couches d’un matériau thermiquement conducteur qui n’étaient pas suffisantes sur des grands volumes relatifs aux échangeurs thermiques actuels le sont maintenant selon l’invention. Une plus grande densité de couche de matériau thermiquement conducteur de plus faibles épaisseurs permet donc de construire des sous-ensembles de faibles dimensions qui peuvent être intégrés dans des casiers, qui sont légers et qui ne nécessitent pas de structure de supportage autre que, par exemple, des brides latérales. Lesdites brides latérales permettant en outre de faciliter la liaison entre chaque casier.
Dans un mode particulier de l’invention, il est avantageux d’extraire de manière optimale la vapeur primaire. Par conséquent, dans ce mode de réalisation, chacune des zones peut comprendre plusieurs moyens extracteurs.
Dans un mode particulier de l’invention, il est avantageux de collecter la vapeur primaire extraite par les moyens extracteurs pour la réinjecter dans l’échangeur thermique ou l’utiliser autrement. Par conséquent, dans ce mode de réalisation chaque zone peut comprendre en outre un moyen collecteur connecté à un ou plusieurs moyens extracteurs de ladite zone, le moyen collecteur étant configuré pour collecter la vapeur primaire extraite par lesdits un ou plusieurs moyens extracteurs de ladite zone.
Dans ce mode particulier de l’invention, il est avantageux d’utiliser le moins de moyens collecteurs possibles pour faciliter la confection d’un tel échangeur thermique tout en limitant les coûts liés à l’utilisation d’un grand nombre de moyens collecteurs. Par conséquent, dans ce mode de réalisation, le moyen collecteur d’une des zones peut, de préférence, être interconnecté au moyen collecteur d’une autre desdites zones, les moyens collecteurs interconnectés étant en outre connectés à une canalisation configurée pour canaliser la vapeur primaire collectée par les moyens collecteurs interconnectés vers l’extérieur dudit volume.
Dans un mode particulier de l’invention, on souhaite densifier un maximum le volume de l’échangeur thermique pour qu’il puisse contenir le plus grand nombre de sous-ensembles. Par conséquent, dans ce mode de réalisation, deux desdites zones successives peuvent être adjacentes.
Dans un mode particulier de l’invention, il est avantageux de faciliter davantage la confection et l’entretien de l’échangeur thermique. Par conséquent, dans ce mode de réalisation, deux desdites zones successives peuvent être égales.
Par deux zones égales, on entend au sens de la présente invention, deux zones qui comprennent les mêmes éléments et qui sont configurées de la même façon.
Dans un mode particulier de l’invention, il est avantageux d’utiliser des zones, par exemple de type casier, et de connecter ces casiers entre eux pour qu’un deuxième casier connecté en aval d’un premier casier puisse véhiculer et extraire sa vapeur primaire. Dans ce mode de réalisation, chacune desdites zones peut comprendre en outre un moyen d’introduction de la vapeur secondaire.
Dans ce mode particulier de l’invention, il est avantageux que chaque zone, par exemple de type casier, soit autonome. Par conséquent, dans ce mode de réalisation, chacune des zones peut, de préférence, comprendre en outre un moyen de retrait configuré pour retirer le condensât et des gaz non condensables.
Il est à noter que chacune des couches d’un matériau thermiquement conducteur peut comprendre une surface d’évaporation et une surface de condensation, la surface d’évaporation étant opposée à la surface de condensation.
La couche d’un matériau thermiquement conducteur peut se présenter sous toute forme, en particulier sous la forme d’un objet bidimensionnel ou tridimensionnel.
Par objet bidimensionnel, on entend au sens de la présente invention, un élément dont la longueur et la largeur sont bien plus importantes que l'épaisseur. Par exemple, un objet bidimensionnel peut être un film, une feuille, ou une plaque. Par objet tridimensionnel, on entend au sens de la présente invention, un objet en volume qui n'est pas un objet bidimensionnel. Par exemple, un objet tridimensionnel peut être un tube, une sphère, un parallélépipède
Dans un mode particulier de l’invention, il est avantageux d’utiliser des matériaux nobles sans pour autant élever déraisonnablement les coûts liés à une telle utilisation. Par conséquent, dans ce mode de réalisation, l’épaisseur de ladite couche d’un matériau thermiquement conducteur est inférieure à 400 pm, de préférence inférieure à 300 pm, ou encore de préférence inférieure à 200 pm.
Par exemple, l’épaisseur de la couche de matériau thermiquement conducteur peut être comprise entre 25 pm et 100 pm lorsque ce matériau est un métal noble, et peut être comprise entre 40 pm et 250 pm lorsque ce matériau est en plastique composite.
Dans un mode particulier de l’invention, la structure de l’échangeur thermique est avantageusement équivalente à celle des échangeurs thermiques actuellement utilisés. Par conséquent, dans ce mode de réalisation, la couche d’un matériau thermiquement conducteur peut être sous forme d’une plaque comprenant une des surfaces d’évaporation et une des surfaces de condensation.
Dans ce mode particulier de l’invention, lorsque la couche d’un matériau thermiquement conducteur est sous forme d’une plaque, il est avantageux de réaliser un échangeur thermique de grande taille et très compact, affichant des coefficients de transfert thermique global optimaux allant jusqu’à 6500 W/m2.K, ou encore 7000 à 8000 W/m2.K. Pour information, les échangeurs thermiques de grandes tailles à performances acceptables selon l’état de l’art présentent une surface d’échange spécifique par volume de l’ordre de 40 à 60m2/m3 alors qu’à l’aide de l’échangeur thermique à plaques selon l’invention, il est possible d’avoir une surface d’échange spécifique par volume très largement supérieure, pouvant aller jusqu’à 100m2/m3, voire 200m2/m3 voire 250m2/m3. Cette augmentation importante de surface spécifique par volume ajoutée au maintien d’une capacité de transfert thermique élevée permet de diminuer substantiellement la taille et le coût des installations de distillation mettant en œuvre ce type d’échangeur thermique. Par conséquent, dans ce mode de réalisation, y compris en mettant en œuvre un fin film tombant, deux plaques adjacentes peuvent, de préférence, être éloignées d’une distance d comprise entre 2mm et 15mm. Dans l’espace délimité par cette distance d peut se retrouver le moyen extracteur, mais pas nécessairement. La distance d peut de préférence être comprise entre 2mm et 7mm. Ledit moyen extracteur peut prendre la forme d’une chambre d’extraction dont l’épaisseur, à savoir la distance d’ entre les parois extérieures des deux plaques principales qui la constituent est comprise entre 0.5 et 5 mm, l’épaisseur de chacune desdites plaques pouvant être comprise entre 25 et 500pm.
L’échangeur thermique selon l’invention présente également plusieurs avantages si l’on travaille avec un faible différentiel de température appliqué entre la surface de condensation et la surface d’évaporation d’une même plaque, c’est-à-dire un faible différentiel de température entre la vapeur secondaire et primaire. Il est à noter que les échangeurs thermiques actuels travaillent typiquement avec des différentiels de température nettement supérieurs à 1°C, souvent entre 2.0 et 2.5°C, voire supérieurs ou égaux à environ 5°C pour les échangeurs thermiques non à fin film tombant. Les différentiels de température, à vapeur saturée, sont associés selon les lois de la physique à des différentiels de pression, et un différentiel de température compris entre 2.0 et 2.5°C correspond à un facteur de compression, dans le cas d’une mise en œuvre selon la MVC à simple effet, respectivement compris entre 1 ,11 et 1 ,14. De tels différentiels de température et de pression sont régis par la taille et la capacité d’échange thermique des échangeurs thermiques actuellement utilisés. Dans un mode particulier de l’invention, l’échangeur thermique présente, quant à lui, un différentiel de température appliqué entre ladite surface de condensation et ladite surface d’évaporation d’une même plaque, compris entre 0,4 et 1 ,2 °C lorsque le liquide à traiter est une eau de mer, et 0,1 et 0,9 °C lorsque le liquide à traiter est une eau saumâtre. De tels différentiels étant possibles grâce à l’utilisation des moyens extracteurs qui permettent d’installer une très grande capacité d’échange dans un volume typique sans affecter ou diminuer le différentiel de pression négatif ni augmenter la saturation de vapeur saturée qui sont deux phénomènes qui diminuent le coefficient de transfert thermique global des échangeurs, voire empêchent son fonctionnement correct à des différentiels de température proches de l’écart ébullioscopique. Dans le cas de l’eau de mer, avec un procédé fonctionnant avec une température de vapeur environ égale à 45°C par exemple, l’écart ébullioscopique est environ égal 0.4°C ; si l’on souhaite opérer le procédé d’évapo-condensation avec un différentiel de température total entre la surface de condensation et la vapeur primaire saturée qui soit compris entre 0.5°C et 0.7°C par exemple, le différentiel de température effectif entre les deux faces d’une couche sera donc compris entre 0.1 °C et 0.3°C. Si, selon l’état de l’art, on opère un échangeur thermique de grande taille sans moyen extracteur avec un différentiel de température effectif égal à 0.3°C, par exemple, et que les pertes de charges hydrauliques sur certains trajets des vapeurs primaires sont telles qu’elles correspondent, selon Mollier, à un différentiel de température à vapeur saturée de, par exemple, 0.1 °C, ou davantage, la capacité d’échange thermique de l’échangeur thermique serait diminuée d’un tiers, ou davantage, aux endroits concernés. Grâce à l’invention, nous pouvons opérer des échangeurs thermiques de grandes tailles et compacts, avec un différentiel de température effectif aussi faible que par exemple 0.1 °C, sans perte d’efficacité.
Dans un mode préféré de l’invention, l’échangeur thermique est utilisé avec de l’eau de mer à 35g/l, un taux de conversion de 30 à 40%, une température d’équilibre, c’est-à-dire de vapeur primaire, de 40 à 45°C, une pression absolue de l’enceinte de 0.05 à 0.1 bar, et un différentiel de température effectif entre les deux surfaces d’évaporation et de condensation d’une couche de matériau thermiquement conducteur entre 0.1 à 0.3°C, ce qui correspond à un différentiel de température total entre surface de condensation et vapeur primaire saturée de 0.5 à 0.7°C.
Dans d’autres modes de réalisation de l’invention, l’échangeur thermique peut être utilisé de manière efficace avec des différentiels de température effectif aussi faibles que 0.1 à 0.5°C pour tout autre type d’eau à traiter dont l’écart ébullioscopique est différent, selon le même mode de calcul pour déterminer le différentiel de température total de chaque configuration différente. Ainsi, l’échangeur thermique est de préférence caractérisé en ce que le différentiel de température effectif entre la surface de condensation et la surface d’évaporation d’une couche d’un matériau thermiquement conducteur peut être inférieur à 0.5°C.
Dans un mode particulier de l’invention, il est avantageux que l’échangeur thermique puisse être constitué d’un nombre de zones, par exemple de type casiers, ces casiers étant monoblocs et autoportés et comprennent des couches de matériaux thermiquement conducteurs présentant de très faibles épaisseurs, en particulier inférieures à 250pm, et très rapprochées entre elles, en particulier d’une distance d inférieure à 2 à 7mm. Par conséquent, dans ce mode de réalisation, le rapport entre le nombre de zones, qui peuvent être des casiers, et ledit volume est compris entre 4 et plusieurs milliers.
Par casier autoporté, au sens de la présente invention, on entend un assemblage par soudure ou collage de couches de matériaux thermiquement conducteurs constituant au moins une partie de l’échangeur thermique, ou un casier, l’assemblage tenant ensemble seul ou à l’aide de brides latérales soudées ou collées, pouvant être transporté, installé et mis en œuvre sans se déformer ni nécessiter un moyen de renfort ou support externe.
Grâce à la conception d’un échangeur thermique par assemblage de zones, par exemple de type casiers, selon un mode préférentiel de mise en œuvre, ces zones présentent une section d’une taille inférieure à celle d’une porte d’accès à l’enceinte de type trou d’homme, dont le diamètre intérieur est typiquement de 600 à 800mm. Cette faculté permet à un ou deux hommes seulement, sans outillage encombrant ni spécial, et sans devoir ouvrir toute une face de l’enceinte, ou au moins une grande partie de cette dernière, de désassembler l’échangeur thermique et de transporter à la main les casiers vers un atelier de maintenance.
Selon un autre aspect, l’invention concerne l’utilisation d’un échangeur thermique tel que décrit précédemment dans un procédé mettent en œuvre une compression mécanique de vapeur.
De préférence, la compression mécanique de vapeur peut être à simple effet.
L’invention sera mieux comprise à la lecture de la description qui suit, faite uniquement à titre d’exemple, et en référence aux figures en annexe dans lesquelles :
[Fig 1] représente schématiquement une partie d’un échangeur thermique comprenant des plaques selon un mode de réalisation de l’invention ;
[Fig 2] représente schématiquement un moyen extracteur compris dans un échangeur thermique selon un mode de réalisation de l’invention ;
[Fig 3] représente schématiquement une partie d’un échangeur thermique comprenant des tubes selon un mode de réalisation de l’invention ;
[Fig 4] représente schématiquement un moyen extracteur compris dans un échangeur thermique selon un mode de réalisation de l’invention ;
[Fig 5] représente schématiquement une partie d’un échangeur thermique selon un mode de réalisation de l’invention ;
[Fig 6A] et [Fig 6B] représentent schématiquement des sections d’un échangeur thermique selon un mode de réalisation de l’invention ;
[Fig 7] représente un échangeur thermique selon un mode de réalisation de l’invention ;
[Fig 8] illustre un échangeur thermique selon un mode de réalisation de l’invention qui met en œuvre des sous-ensembles matériellement dissociables de type casier ;
[Fig 9A], [Fig 9B] et [Fig 9C] représentent des vues d’un sous ensemble d’un casier simplifié et sa compatibilité dans un échangeur thermique selon un mode de réalisation de l’invention ;
[Fig 10] représente schématiquement une partie d’un échangeur thermique comprenant de plaques inclinées selon un mode de réalisation de l’invention ; [Fig 11 A] représente schématiquement un échangeur thermique comprenant un assemblage de casiers selon un mode de réalisation de l’invention ;
[Fig 11 B] représente schématiquement un échangeur thermique comprenant des tubes selon un mode de réalisation de l’invention ;
[Fig 12] représente une partie d’un échangeur thermique comprenant des plaques selon l’état de l’art ; et
[Fig 13] représente une partie d’un échangeur thermique comprenant des tubes selon l’état de l’art.
La description qui suit présente des parties au moins d’échangeurs thermiques, type évapo- condenseur, réalisées selon l’invention et comprenant plusieurs zones. L’échangeur thermique est configuré pour dessaler une eau de mer. Chaque zone est soit une division virtuelle soit un casier matériellement dissociable de l’échangeur thermique et est constituée de plusieurs éléments de l’échangeur thermique. L’assemblage de plusieurs zones, par exemple en réseau, forme l’échangeur thermique. L’échangeur thermique est délimité par son volume Vec. Certains des zones ou casiers peuvent par exemple être empilés les uns sur les autres.
L’échangeur thermique est constitué de plusieurs sous-ensembles qui sont chacun constitués en partie d’une couche d’un matériau thermiquement conducteur. Cette couche d’un matériau thermiquement conducteur comprend une surface d’évaporation configurée pour générer, dans un espace de vapeur à évaporer ou espace de vapeur primaire, une vapeur primaire issue de l’eau de mer, et une surface de condensation configurée pour condenser, dans un espace de vapeur à condenser ou espace de vapeur secondaire, une vapeur secondaire en condensât et pour générer une chaleur latente de condensation, la vapeur secondaire étant la vapeur à condenser.
Il est à noter que chaque sous-ensemble est constitué en partie d’une couche d’un matériau thermiquement conducteur présentant une épaisseur inférieure à 400 pm, par exemple en titane, acier duplex ou superduplex ou équivalent, ou matériau plastique composite de performance thermique améliorée.
En particulier, pour une couche d’un matériau thermiquement conducteur, chaque surface d’évaporation est opposée à chaque surface de condensation. Par ailleurs, le matériau thermiquement conducteur est configuré pour transférer une partie au moins de la chaleur latente de condensation depuis la surface de condensation vers la surface d’évaporation d’un sous-ensemble donnée.
L’échangeur thermique comprend en outre une partie supérieure au travers de laquelle est introduite l’eau de mer. Ainsi, l’eau de mer à dessaler est répartie sur la partie supérieure de l’échangeur thermique et percole par gravité sur toutes les surfaces d’évaporation des sous- ensembles. Par exemple, prenons le cas de deux sous-ensembles empilés, un premier sous- ensemble étant disposé sur un deuxième sous-ensemble. Dans cette configuration, l’eau de mer qui percole par gravité en partie basse du premier sous ensemble arrose la partie supérieure des surfaces à mouiller du deuxième sous-ensemble, et ainsi de suite pour les autres sous-ensembles éventuels, jusqu’à arriver tout en bas de l’échangeur thermique afin de constituer le concentrât.
L’invention porte sur toutes les configurations possibles d’échangeurs thermiques, mais afin de présenter une description intelligible, les exemples qui suivent se focalisent sur des échangeurs thermiques employant des matériaux thermiquement conducteurs sous forme de plaques ou sous forme de faisceau de tubes. Les exemples suivants illustrent des configurations à plaques verticales ou à tubes horizontaux, avec condensation à l’intérieur des chambres ou des tubes, mais l’invention peut être mise en œuvre avec tout type de configuration. Dans certaines configurations, les plaques peuvent être parallèles ou non.
La figure 1 illustre une partie d’un échangeur thermique à plaques verticales. Particulièrement, chacune des plaques verticales représente une première partie de l’échangeur thermique. Chacune de ces premières parties représente une chambre d’évapo-condensation 100 en trait continu. Chaque chambre d’évapo-condensation 100 comprend notamment un matériau thermiquement conducteur ainsi qu’une surface d’évaporation et une surface de condensation. Chacune de ces chambres d’évapo-condensation 100 comprend en particulier également un espace de vapeur primaire situé du côté de la surface d’évaporation et un espace de vapeur secondaire situé du côté de la surface de condensation. Du côté de la surface d’évaporation est donc générée la vapeur primaire.
Sur toutes les figures, les pointillés représentent des chambres d’extraction 200 de vapeur primaire. Comme illustré en figure 2, chacune de ces chambres d’extraction 200 comprend au moins un moyen extracteur 210 qui se représente comme étant un parallélépipède rectangle comprenant notamment deux grandes faces, en particulier deux plaques principales, percées chacune d’un réseau de trous 220, le moyen extracteur 210 étant inséré dans au moins un espace de vapeurs primaires au sein du volume de l’échangeur. Il est à noter par ailleurs que la distance d entre une chambre d’évapo-condensation 100 et une chambre d’extraction 200 adjacente est comprise entre 2 mm et 7 mm. L’épaisseur d’une chambre d’extraction 200, ou plus précisément la distance qui sépare les extrémités extérieures des deux plaques principales qui la constitue, est comprise entre 0.5 et 10 mm ; l’épaisseur desdites deux plaques principales étant comprise entre 25 pm et 500 pm.
En particulier, selon un exemple de réalisation, la chambre d’extraction 200 est située entre deux surfaces d’évaporation de deux sous-ensembles adjacents, et est connectée à un moyen aspirateur pouvant en outre être connectée à un système de conduits représentant un réseau d’aspiration de la vapeur primaire. Cette chambre d’extraction 200 en trait pointillé constitue la deuxième partie de l’échangeur thermique. Il est à noter que chacune des chambres d’extraction 200 est représentée en pointillés sur les figures dans le seul but de les différentier visuellement des chambres d’évapo-condensation 100.
En particulier, comme illustré sur la figure 1, chaque chambre d’extraction 200 de vapeur primaire est installée entre deux chambres d’évapo-condensation 100. A l’aide de la chambre d’extraction 200, une partie au moins de cette vapeur primaire est alors canalisée, c’est à dire collectée et dirigée vers d’autres éléments pour être ultérieurement traitée (par exemple une recompressions dans le cas de la MVC, ou un transfert vers un effet ou étage suivant dans le cas de la MED ou de MVC à plusieurs effets).
Par ailleurs, selon l’exemple illustré dans cette figure 1 , un moyen d’introduction de la vapeur secondaire (non représenté) assure la livraison de la vapeur secondaire à l’intérieur de chacune des chambres d’évapo-condensation 100, en particulier dans son espace de condensation. Ainsi, dans chacune des zones telles que définie précédemment, il y a génération de vapeur primaire par la chambre d’évapo-condensation 100 et également extraction de celle-ci par la chambre d’extraction 200. La vapeur primaire générée est canalisée et extraite hors de l’échangeur thermique sans passer par les surfaces d’évaporation d’autres zones.
Il est à noter que la plus petite zone possible sur la figure 1 est définie par un découpage virtuel en parallélépipèdes rectangles de l’échangeur. Chaque plus petite zone comprend un seul trou percé dans une chambre d’extraction 200, une partie de la chambre d’évapo- condensation 100 adjacente, et des volumes nécessaires autour de ces chambres afin d’inscrire le découpage virtuel en réseau continu. De cette manière, ladite plus petite zone comprend bien au moins une couche de matériau conducteur de chaleur, une face d’évaporation et un espace de vapeur primaire, une face de condensation et un espace de vapeur secondaire, un moyen extracteur constitué dudit seul trou percé, et une canalisation (constituée de la chambre d’extraction qui est elle-même reliée à un moyen collecteur) qui extrait la vapeur primaire hors de l’échangeur.
Dans une variante de réalisation non illustrée, chacune des zones peut comprendre plusieurs moyens extracteurs. Par ailleurs, chaque zone peut également comprendre en outre un moyen collecteur connecté à un ou plusieurs moyens extracteurs de la zone. Dans cette configuration, le moyen collecteur est configuré pour collecter la vapeur primaire extraite par lesdits un ou plusieurs moyens extracteurs de la zone.
Dans une variante de réalisation non également illustrée, le moyen collecteur d’une desdites zones est interconnecté au moyen collecteur d’une autre desdites zones. Dans cette configuration, les moyens collecteurs interconnectés sont en outre connectés à une canalisation configurée pour canaliser la vapeur primaire collectée par les moyens collecteurs interconnectés vers l’extérieur du volume définissant l’échangeur thermique, c’est à-dire hors du volume intérieur délimité par les parois extérieures de l’échangeur thermique.
Dans une variante de réalisation non également illustré, chacune des zones comprend en outre un moyen de retrait configurée pour retirer le condensât et des gaz non condensables.
Chacune des zones telle que définie comprend en outre un moyen d’extraction de la vapeur primaire pour assurer son transport vers le moyen extracteur de une ou plusieurs autres zones.
Ainsi, selon ces exemples, les vapeurs primaires sont canalisées localement et acheminées vers l’extérieur de l’échangeur thermique.
Les figures 3 et 4 illustrent une autre mise en œuvre du même principe avec des chambres d’évapo-condensation 100 en forme de tubes plutôt qu’en forme de plaques comme c’est illustré dans les figures 1 et 2.
De la même manière qu’avec des échangeurs thermiques à plaques, il est possible d’insérer une chambre d’extraction 200 de vapeur primaire entre deux colonnes 300 de tubes de l’échangeur thermique, lorsque ce dernier est réalisé sous forme de faisceaux de tubes. Comme illustré sur la figure 4, le moyen extracteur de vapeur primaire peut être construit en assemblage de tubes qui empruntent une direction ou la même direction que celle des colonnes 300 de tubes de l’échangeur thermique. L’assemblage de tubes est connecté à un moyen collecteur de la même manière que les chambres d’extraction 200 de vapeur.
Dans le cas où l’arrosage du liquide à traiter est fait sur toute la face supérieure de l’échangeur thermique sans distinction, il convient d’installer des protections empêchant le liquide à traiter de mouiller les moyens extracteurs. Ces protections peuvent prendre la forme de profilés, par exemple de section en V ouverts vers le bas, installés au-dessus de chaque chambre d’extraction 200, de manière à ce que lesdits profilés renvoient l’eau arrosée sur les couches thermiquement conductrice de l’échangeur thermique.
La figure 5 illustre quant à elle un assemblage de l’échangeur thermique 400 selon la figure 1, pourvu de brides latérales (une bride gauche 410 et une bride droite 420). L’assemblage est réalisé de deux parties. La première partie est un empilage successif de plusieurs ensembles collés ou soudés, chacun composé d’une couche d’un matériau thermiquement conducteur, puis d’une entretoise fermant l’espace de condensation, puis d’une seconde couche d’un matériau thermiquement conducteur, puis d’une entretoise fermant l’espace de vapeur primaire et pourvue d’une chambre d’extraction 200. La deuxième partie comprend : un moyen collecteur de la vapeur primaire, un moyen d’introduction de la vapeur secondaire, un moyen de retrait de condensât et de gaz non condensables. Si l’on observe la section longitudinale d’une entretoise fermant l’espace de condensation (figure 6A) et la représentation d’une entretoise fermant l’espace de vapeur primaire et pourvue d’une chambre d’extraction 200 (figure 6B) , on comprend que la bride de droite 420 en figure 5 permet d’introduire la vapeur secondaire dans les chambres d’évapo-condensation 100, et que la bride de gauche 410, en sa partie centrale permet de collecter la vapeur primaire, en sa partie inférieure permet de collecter le condensât et les gaz non condensables lourds, et en sa partie supérieure de collecter les gaz non condensables légers.
La figure 7 illustre une déclinaison de l’échangeur selon l’exemple illustré à la figure 5 où les chambres d’évapo-condensation 100 sont tubulaires comme illustré aux figures 3 et 4.
La figure 8 illustre quant à elle une autre forme de réalisation de l’invention qui met en œuvre des zones matériellement dissociables ou casiers 500. L’échangeur thermique présenté est de même taille, de même capacité d’échange, et de même volume que celui de la figure 5. L’échangeur thermique de la figure 8 est constitué de plusieurs casiers 500 (36 dans notre exemple) matériellement distincts et empilables. Les casiers 500 peuvent en outre être eux- mêmes constitués, ou non, d’un grand nombre de sous-zones. Les casiers 500 peuvent également être réalisés de manière identique à un échangeur thermique selon la figure 5 de taille réduite. Chaque casier 500 est muni de son propre sous-collecteur de vapeur primaire qui est connecté préférablement à chaque moyen extracteur des autres casiers. Chaque casier 500 peut également comprendre un ensemble de conduits pouvant être ses propres sous-moyens d’introduction de la vapeur secondaire, qui peut être la bride de droite 420, et de retrait de condensât et de gaz non condensables qui peut être la bride de gauche 410 . Les sous-moyens des casiers 500 sont, dans une forme de réalisation optimisée, interconnectés en leur parties haute et basse des empilements pour former des conduits 510 et 520 qui sont eux-mêmes reliés aux collecteurs principaux 550 de vapeurs, distillât et gaz non condensables de l’échangeur thermique. Chacun des conduits 510 et 520 est formé par un assemblage vertical ou horizontal respectivement des brides gauches 410, et des brides droites 420. Les conduits 510 sont des conduits d’extraction de vapeur primaire, de condensât et de gaz non condensables. Les conduits 520 sont des conduits d’alimentation en vapeur secondaire.
La figure 9A qui est une vue en perspective d’un casier 500 ne montre pas les chambres d’évapo-condensation 100 pour faciliter la lecture. La figure 9A montre la bride gauche 410 d’un casier simplifié, où le moyen extracteur de la vapeur primaire est réduit à un réseau 430 de fentes ou d’orifices percés dans la bride de gauche 410 adaptée à collecter la vapeur primaire, sans qu’il soit nécessaire qu’une chambre d’extraction 200 soit présente entre chaque chambre d’évapo-condensation 100 comme illustré en figure 1.
Les figures 9B et 9C montrent des sections horizontales du casier simplifié de la figure 9A. Elles montrent que cette configuration simplifiée est avantageusement compatible avec un assemblage de chambres d’évapo-condensation 100 à plaques dont les sections sont croissantes sur le chemin de la vapeur primaire et décroissante sur le chemin de la vapeur secondaire.
La figure 10 montre un exemple de mise en œuvre de l’invention pour un assemblage de plaques d’évapo-condensation inclinées, où une seule face des chambres d’évapo- condensation 100 qui en résultent est thermiquement active. En effet, dans cette configuration, c’est la chambre d’évapo-condensation 100 adjacente à celle considérée qui forme la chambre d’extraction 200 de la vapeur primaire.
La figure 11A montre un assemblage de casiers simplifiés ; cette représentation montre bien les réseaux 430 de fentes (en pointillé, apparaissant comme plus sombres) de vapeur primaire insérés au sein de l’échangeur thermique. Les réseaux 430 de fentes sont, par exemple, directement liés aux conduits 510 d’extraction, formées par l’emboitage des brides des casiers.
La figure 11 B illustre un échangeur thermique en faisceau de tubes horizontaux, dans lequel seulement quelques moyens extracteurs de vapeur ont été placés (en pointillé, apparaissant comme plus sombres) en son sein. Cet échangeur thermique selon un mode particulier de l’invention, est constitué de plusieurs zones virtuelles, chaque zone comportant au moins un trou d’extraction de vapeur collectée et extraite hors du volume de l’échangeur thermique. Cet exemple montre une mise en œuvre partielle de l’invention en installant seulement quelques collecteurs ou moyens extracteurs de vapeur primaire au sein de l’échangeur thermique, avec pour but d’améliorer les performances de manière seulement partielle mais à moindre coût.

Claims

REVENDICATIONS
1. Echangeur thermique comprenant plusieurs sous-ensembles constitués en partie d’une couche d’un matériau thermiquement conducteur, ledit échangeur thermique comprenant :
- des surfaces d’évaporation configurées pour générer une vapeur primaire issue d’un liquide à traiter,
- des surfaces de condensation configurées pour condenser une vapeur secondaire en condensât et pour capter une chaleur latente de condensation, la vapeur secondaire étant la vapeur à condenser, ledit matériau thermiquement conducteur étant configuré pour transférer une partie au moins de la chaleur latente de condensation depuis une ou plusieurs desdites surfaces de condensation vers une ou plusieurs desdites surfaces d’évaporation, ledit échangeur thermique étant défini par un volume divisé en plusieurs zones, ledit échangeur thermique étant caractérisé en ce que chacune desdites zones comprend au moins :
- un desdits sous-ensembles, et
- un moyen extracteur configuré pour canaliser une partie au moins de ladite vapeur primaire générée dans ladite zone vers l’extérieur dudit volume.
2. Echangeur thermique selon la revendication 1, caractérisé en ce que chacune desdites zones comprend plusieurs moyens extracteurs.
3. Echangeur thermique selon l’une des revendications 1 ou 2, caractérisé en ce que chaque zone comprend en outre un moyen collecteur connecté à un ou plusieurs moyens extracteurs de ladite zone, ledit moyen collecteur étant configuré pour collecter ladite vapeur primaire extraite par lesdits un ou plusieurs moyens extracteurs de ladite zone.
4. Echangeur thermique selon la revendication 3, caractérisé en ce que ledit moyen collecteur d’une desdites zones est interconnecté audit moyen collecteur d’une autre desdites zones, lesdits moyens collecteurs interconnectés étant en outre connectés à une canalisation configurée pour canaliser ladite vapeur primaire collectée par lesdits moyens collecteurs interconnectés vers l’extérieur dudit volume.
5. Echangeur thermique selon l’une des revendications 1 à 4, caractérisé en ce que deux desdites zones successives sont adjacentes.
6. Echangeur thermique selon l’une des revendications 1 à 5, caractérisé en ce que deux desdites zones successives sont égales.
7. Echangeur thermique selon l’une des revendications 1 à 6, caractérisé en ce que chacune desdites zones comprend en outre un moyen d’introduction de ladite vapeur secondaire.
8. Echangeur thermique selon la revendication 7, caractérisé en ce que chacune desdites zones comprend en outre un moyen de retrait configurée pour retirer ledit condensât et des gaz non condensables.
9. Echangeur thermique selon l’une des revendications 1 à 8, caractérisé en ce que l’épaisseur de ladite couche d’un matériau thermiquement conducteur est inférieure à 400 pm.
10. Echangeur thermique selon l’une des revendications 1 à 9, caractérisé en ce que ladite couche d’un matériau thermiquement conducteur est sous forme d’une plaque comprenant une desdites surfaces d’évaporation et une desdites surfaces de condensation.
11. Echangeur thermique selon la revendication 10, caractérisé en ce que deux plaques adjacentes sont éloignées d’une distance d comprise entre 2 mm et 10 mm.
12. Echangeur thermique selon la revendication 11 , caractérisé en ce qu’il présente une surface spécifique par volume supérieure à 100m2/m3.
13. Echangeur thermique selon l’une des revendications 1 à 12, caractérisé en ce que le différentiel de température effectif entre la surface de condensation et la surface d’évaporation d’une couche d’un matériau thermiquement conducteur est inférieur à 0.5°C.
14. Echangeur thermique selon l’une des revendications 1 à 13, caractérisé en ce qu’il est un échangeur thermique de type à fin film tombant.
15. Utilisation d’un échangeur thermique selon l’une des revendications 1 à 14 dans un procédé mettent en œuvre une compression mécanique de vapeur.
16. Utilisation selon la revendication 15, selon laquelle la compression mécanique de vapeur est à simple effet.
PCT/EP2022/063959 2021-05-25 2022-05-24 Echangeur thermique avec extracteurs de vapeur WO2022248425A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202280042100.3A CN117479987A (zh) 2021-05-25 2022-05-24 具有蒸汽提取器的热交换器
AU2022282500A AU2022282500A1 (en) 2021-05-25 2022-05-24 Heat exchanger with vapour extractors
EP22730436.7A EP4347076A1 (fr) 2021-05-25 2022-05-24 Echangeur thermique avec extracteurs de vapeur
US18/563,273 US20240219127A1 (en) 2021-05-25 2022-05-24 Heat exchanger with vapor extractors
IL308817A IL308817A (en) 2021-05-25 2022-05-24 Heat exchanger with vapor absorbers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE2021/5420 2021-05-25
BE20215420A BE1029506B1 (fr) 2021-05-25 2021-05-25 Echangeur thermique avec extracteurs de vapeur

Publications (1)

Publication Number Publication Date
WO2022248425A1 true WO2022248425A1 (fr) 2022-12-01

Family

ID=76217605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/063959 WO2022248425A1 (fr) 2021-05-25 2022-05-24 Echangeur thermique avec extracteurs de vapeur

Country Status (7)

Country Link
US (1) US20240219127A1 (fr)
EP (1) EP4347076A1 (fr)
CN (1) CN117479987A (fr)
AU (1) AU2022282500A1 (fr)
BE (1) BE1029506B1 (fr)
IL (1) IL308817A (fr)
WO (1) WO2022248425A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4424098A (en) * 1980-11-12 1984-01-03 E. I. Du Pont De Nemours And Company Falling film evaporator
FR2781387A1 (fr) * 1998-07-24 2000-01-28 Eau De Nancy Nan C I E Centre Procede pour la distillation d'un fluide a transfert horizontal de vapeur dans la zone de condensation et dispositif modulaire de mise en oeuvre du procede
WO2001096244A1 (fr) * 2000-06-13 2001-12-20 Third Millenium Water Company Procedes et appareils de distillation notamment pour produire de l'eau douce
WO2012175826A1 (fr) * 2011-06-24 2012-12-27 Michel Bonne Echangeur de chaleur en forme d'anneau concernant des méthodes de dessalement de l'eau de mer ou des eaux usées afin de produire de l'eau douce par un procédé géothermique avec cogénération
WO2019020605A1 (fr) * 2017-07-27 2019-01-31 Industrial Advanced Services Fz, Llc Unite de dessalement d'eau par compression mecanique de vapeur

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4424098A (en) * 1980-11-12 1984-01-03 E. I. Du Pont De Nemours And Company Falling film evaporator
FR2781387A1 (fr) * 1998-07-24 2000-01-28 Eau De Nancy Nan C I E Centre Procede pour la distillation d'un fluide a transfert horizontal de vapeur dans la zone de condensation et dispositif modulaire de mise en oeuvre du procede
WO2001096244A1 (fr) * 2000-06-13 2001-12-20 Third Millenium Water Company Procedes et appareils de distillation notamment pour produire de l'eau douce
WO2012175826A1 (fr) * 2011-06-24 2012-12-27 Michel Bonne Echangeur de chaleur en forme d'anneau concernant des méthodes de dessalement de l'eau de mer ou des eaux usées afin de produire de l'eau douce par un procédé géothermique avec cogénération
WO2019020605A1 (fr) * 2017-07-27 2019-01-31 Industrial Advanced Services Fz, Llc Unite de dessalement d'eau par compression mecanique de vapeur

Also Published As

Publication number Publication date
EP4347076A1 (fr) 2024-04-10
BE1029506A1 (fr) 2023-01-17
AU2022282500A1 (en) 2023-12-21
IL308817A (en) 2024-01-01
BE1029506B1 (fr) 2023-01-23
CN117479987A (zh) 2024-01-30
US20240219127A1 (en) 2024-07-04

Similar Documents

Publication Publication Date Title
CA2033999C (fr) Procede et dispositif de transfert simultane de matiere et de chaleur
EP1113847B1 (fr) Procede pour la distillation d'un fluide a transfert horizontal de vapeur dans la zone de condensation et dispositif modulaire de mise en oeuvre du procede
EP1750823B1 (fr) Procede et installation de dessalement d'eau de mer par distillation a effets multiples avec compression mecanique et thermique, de vapeur
CA2528244A1 (fr) Procede et appareil de distillation notamment pour produire de l'eau douce
US10751666B2 (en) Distillation apparatus with cartridge and use thereof for distilling water
FR2666517A1 (fr) Vaporisateur rapide multi-etages a plaques bosselees.
SA119400454B1 (ar) نظام التحلية بالطاقة الشمسية
EP0566435B1 (fr) Echangeur de chaleur à ruissellement et installation de distillation d'air comportant un tel échangeur
BE1024466B1 (fr) Unité de dessalement d'eau par compression mécanique de vapeur
BE1029506B1 (fr) Echangeur thermique avec extracteurs de vapeur
WO2005075920A2 (fr) Ailette pour échangeur de chaleur et échangeur de chaleur muni de telles ailettes
EP1179724B1 (fr) Echangeur thermique à blocs échangeurs multiples à ligne d'alimentation en fluide à distribution uniforme, et vaporiseur-condenseur comportant un tel échangeur
WO2015162344A1 (fr) Moyens d' échange thermique liquide/gaz, notamment eau/air, et système de production d'eau à partir de l' humidité de l'air comprenant de tels moyens
US20120267231A1 (en) System and method of passive liquid purification
FR2591504A1 (fr) Procede d'evaporation-condensation de films ruisselants, elements pour sa mise en oeuvre et ses applications.
FR2593718A1 (fr) Evaporateur a film descendant
EP3113856B1 (fr) Dispositif de distillation par polarisation et nébulisation dans une bouteille électrostatique
WO2019193056A1 (fr) Dispositif de purification d'eau notamment d'eau salée, par évaporation en basse-pression
EP3118551B1 (fr) Installation thermique de sechage de matiere pateuse
EP3118552B1 (fr) Installation thermique de sechage de matiere pateuse
BE822340R (fr) Amelioration d'un procede et d'une installation pour la distillation de l'eau par compression de vapeur
FR2488379A1 (fr) Procede et dispositifs pour la revalorisation d'energie thermique a bas niveau mettant en oeuvre des phenomenes d'evaporation et de melange de deux fluides en equilibre de pression de vapeur
BE835702A (fr) Appareil et procede pour la vaporisation instantanee adiabatique des liquides
EP0240427A2 (fr) Procédé et installation de distillation d'eau de mer
FR2943555A1 (fr) Enceinte d'evapo-condensation autonome avec surchauffeur immerge

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22730436

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18563273

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 308817

Country of ref document: IL

Ref document number: P6003040/2023

Country of ref document: AE

WWE Wipo information: entry into national phase

Ref document number: 2022282500

Country of ref document: AU

Ref document number: AU2022282500

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 202280042100.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020237043582

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2022282500

Country of ref document: AU

Date of ref document: 20220524

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2022730436

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022730436

Country of ref document: EP

Effective date: 20240102

WWE Wipo information: entry into national phase

Ref document number: 523451661

Country of ref document: SA