WO2022247918A1 - 发送、接收数据的方法、资源指示方法、装置及系统 - Google Patents

发送、接收数据的方法、资源指示方法、装置及系统 Download PDF

Info

Publication number
WO2022247918A1
WO2022247918A1 PCT/CN2022/095424 CN2022095424W WO2022247918A1 WO 2022247918 A1 WO2022247918 A1 WO 2022247918A1 CN 2022095424 W CN2022095424 W CN 2022095424W WO 2022247918 A1 WO2022247918 A1 WO 2022247918A1
Authority
WO
WIPO (PCT)
Prior art keywords
message
terminal device
time window
data
transmission resource
Prior art date
Application number
PCT/CN2022/095424
Other languages
English (en)
French (fr)
Inventor
范巍巍
张鹏
张佳胤
周国华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22810642.3A priority Critical patent/EP4325973A4/en
Publication of WO2022247918A1 publication Critical patent/WO2022247918A1/zh
Priority to US18/510,690 priority patent/US20240098766A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/40Resource management for direct mode communication, e.g. D2D or sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/115Grant-free or autonomous transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance

Definitions

  • the present application relates to the technical field of wireless communication, and in particular to a method for sending and receiving data, a resource indication method, device and system.
  • the base station configures a configured grant (CG) resource to the source user equipment (source UE, SUE), and the SUE sends a CG resource to the cooperative user equipment (cooperation UE, CUE) ) to send the uplink data to be transmitted, and then the SUE and the CUE send the uplink data to the base station.
  • CG configured grant
  • the base station can configure parameters related to the CG resource through radio resource control (radio resource control, RRC) signaling, and activate and deactivate the transmission resource for the SUE to send data to the CUE through the RRC signaling.
  • RRC radio resource control
  • the base station can jointly configure parameters related to CG resources through RRC signaling and downlink control information (DCI), and activate and deactivate the transmission resources for SUE to send data to CUE by DCI.
  • DCI downlink control information
  • the transmission resource remains valid, resulting in resource waste.
  • Embodiments of the present application provide a method for sending and receiving data, a resource indication method, device, and system, which are applied in a sidelink scenario, can reduce the occupation and waste of transmission resources, and can improve the flexibility of resource scheduling.
  • a method for sending data including the following process: a first terminal device receives a first message, where the first message is used to indicate a first time window. The first terminal device sends first data to the at least one second terminal device on at least one first transmission resource within the first time window, and the at least one first transmission resource belongs to a preconfigured side Resources in Uplink Transport Resources.
  • the first terminal device within the first time window, can use part or all of the pre-configured transmission resources to send data to at least one second terminal device, and the first time window can be dynamically configured, so the transmission resources can be reduced occupancy and waste, improving the flexibility of resource scheduling.
  • the sidelink transmission resources may be periodic sidelink transmission resources, such as CG resources.
  • the sidelink transmission resources may be aperiodic sidelink transmission resources.
  • the transmission resources other than the first time window are in an inactive state and are not used for data transmission between terminal devices, but can be used for other purposes, which can further reduce the occupation and waste of transmission resources.
  • the network device does not need to additionally send an instruction to deactivate the transmission resource to the first terminal device, which can further improve resource scheduling flexibility and reduce signaling overhead.
  • the start time of the first time window is located after k time slots of receiving the first message, and the end time of the first time window is located before the first uplink transmission resource, so
  • the first uplink transmission resource is used for the first terminal device to send the second data to the network device, and k is a positive integer.
  • the first time window may be indicated implicitly.
  • the value of k may be related to the time spent by the terminal device to demodulate the first message. For example, the value of k is determined according to the longest time spent by each terminal device to demodulate the first message, so as to ensure that each terminal device can accurately demodulate the first message.
  • the value of k may be indicated by radio resource control RRC signaling.
  • the first terminal device may also receive first RRC signaling, and the first RRC signaling may include the value of k, or the first RRC signaling may include information for determining the value of k.
  • each terminal device may determine/estimate the duration required to demodulate the first message according to its own capabilities, and then report to the network device, and the network device determines the value of k and sends it to the terminal device.
  • the first message is further used to indicate a first configuration parameter
  • the first configuration parameter includes an offset of the starting time of the first time window relative to the receiving time of the first message. shift value and the duration of the first time window.
  • the first time window may be indicated in an explicit manner.
  • the offset value of the starting time of the first time window relative to the receiving time of the first message may be equal to the value of k, or may not be equal to the value of k.
  • the first terminal device may further determine a start time and an end time of the first time window.
  • the The first terminal device may perform channel sensing on the at least one first transmission resource; the first terminal device preempts the detected idle first transmission resource in the at least one first transmission resource, and sends The at least one second terminal device sends the first data.
  • the first terminal device works on an unlicensed frequency band, there may be occupied transmission resources among the activated at least one first transmission resource, and the first terminal device transmits Channel sensing is attempted on the resource, so as to perform data distribution on the unoccupied idle first transmission resource, which can improve the success rate of sending data and ensure the reliability of sending data.
  • the sensed idle first transmission resource is the first transmission resource with successful listen before talk (LBT).
  • the first message includes at least one piece of identification information, and the at least one first transmission resource belongs to resources in the sidelink transmission resources identified by the at least one piece of identification information.
  • the network device may indicate a sidelink transmission resource used by the first terminal device to send data, and the first terminal device may use at least one first transmission resource belonging to the sidelink transmission resource indicated by the network device send data on.
  • the first terminal device may also send the second data to the network device on the first uplink transmission resource. After the first terminal device sends data to at least one second terminal device, the first terminal device may perform cooperative transmission with at least one second terminal device, and send uplink data to the network device.
  • a method for receiving data including the following process: a second terminal device receives a second message, and the second message is used to indicate a first time window; Within the window, first data from the first terminal device is received.
  • the transmission resources outside the first time window are in an inactive state and are not used for data reception between terminal devices, but can be used for other purposes, which can further reduce the occupation and waste of transmission resources.
  • the network device does not need to additionally send an instruction to deactivate the transmission resource to the second terminal device, which can further improve resource scheduling flexibility and reduce signaling overhead.
  • the start time of the first time window is located after k time slots of receiving the second message, and the end time of the first time window is located before the first uplink transmission resource, so
  • the first uplink transmission resource is used for the second terminal device to send the first data to the network device, and k is a positive integer.
  • the value of k may be indicated by radio resource control RRC signaling.
  • the second terminal device may also receive second RRC signaling, and the second RRC signaling may include the value of k, or the second RRC signaling may include information for determining the value of k.
  • the second message is further used to indicate a second configuration parameter
  • the second configuration parameter includes an offset of the starting time of the first time window relative to the receiving time of the second message. shift value and the duration of the first time window.
  • the second terminal device may further determine a start time and an end time of the first time window.
  • the second terminal device may also send the first data to the network device on the first uplink transmission resource.
  • a resource indication method including the following process:
  • the network device sends a first message to the first terminal device, where the first message is used to indicate the first time window; the network device sends a second message to at least one second terminal device, where the second message is used to indicate the first time window.
  • the first time window is used to instruct the first terminal device to send first data to at least one second terminal device on at least one first transmission resource within the first time window, and the at least one first transmission resource A transmission resource belongs to resources in pre-configured sidelink transmission resources.
  • the first time window is used to instruct the at least one second terminal device to receive the first data from the first terminal device within the first time window.
  • the start time of the first time window is located after k time slots for sending the first message or the second message, and the end time of the first time window is located at the first Before the uplink transmission resource, the first uplink transmission resource is used by the network device to receive the second data from the first terminal device and/or the first data from the at least one second terminal device, k is a positive integer.
  • the network device can send the first message and the second message at the same time (such as a time slot), and the first terminal device and at least one second terminal device can respectively receive the first message and the second message at the same time In this way, the starting moment of the first time window determined by the first terminal device is the same as the starting moment of the first time window determined by at least one second terminal device.
  • the value of k is indicated through radio resource control RRC signaling.
  • the network device may also send first RRC signaling to the first terminal device, where the first RRC signaling may include the value of k, or the first RRC signaling may include information for determining the value of k .
  • the network device may also send second RRC signaling to at least one second terminal device, where the second RRC signaling may include the value of k, or the second RRC signaling may include information for determining the value of k.
  • the first message is further used to indicate a first configuration parameter
  • the first configuration parameter includes an offset of the starting time of the first time window relative to the receiving time of the first message. Shift value and first time window duration.
  • the second message is also used to indicate a second configuration parameter
  • the second configuration parameter includes an offset value of the starting time of the first time window relative to the receiving time of the second message and the first time window window duration.
  • the first message includes at least one piece of identification information
  • the at least one first transmission resource belongs to resources in the sidelink transmission resources identified by the at least one piece of identification information.
  • the network device may also receive the second data from the first terminal device on the first uplink transmission resource, and/or receive the second data from the at least one second terminal device first data.
  • a communication system in a fourth aspect, includes a network device, a first terminal device, and at least one second terminal device;
  • the network device is configured to send a first message to the first terminal device, the first message is used to indicate the first time window, and send a second message to at least one second terminal device, the second message is used to indicate the first time window a time window;
  • the first terminal device is configured to receive the first message, and send first data to the at least one second terminal device on at least one first transmission resource within the first time window, and the at least one The first transmission resource belongs to resources in preconfigured sidelink transmission resources;
  • the at least one second terminal device is configured to receive the second message, and receive the first data within the first time window.
  • the start time of the first time window is located k time slots after receiving the first message or the second message, and the end time of the first time window is located at the first Before the uplink transmission resource, the first uplink transmission resource is used for the first terminal device to send second data to the network device, and/or the first uplink transmission resource is used for the at least one second terminal device Send the first data to the network device, where k is a positive integer.
  • the value of k is indicated through radio resource control RRC signaling.
  • the first message is further used to indicate a first configuration parameter
  • the first configuration parameter includes an offset of the starting time of the first time window relative to the receiving time of the first message. shift value and the duration of the first time window.
  • the second message is also used to indicate a second configuration parameter, and the second configuration parameter includes an offset value of the starting time of the first time window relative to the receiving time of the second message and the first time window window duration.
  • the first terminal device is configured to perform channel sensing on the at least one first transmission resource, and detect an idle first transmission resource detected in the at least one first transmission resource Send the first data to the at least one second terminal device on a transmission resource.
  • the sensed idle first transmission resource is the first transmission resource with successful LBT.
  • the first message includes at least one piece of identification information
  • the at least one first transmission resource belongs to resources in the sidelink transmission resources identified by the at least one piece of identification information.
  • the first terminal device is further configured to send second data on the first uplink transmission resource
  • the at least one second terminal device is further configured to send the first data on the first uplink transmission resource
  • the network device is further configured to receive, on the first uplink transmission resource, the second data from the first terminal device, and/or the first data from the at least one second terminal device data.
  • a communication device in a fifth aspect, has the function of realizing the above-mentioned method aspect, and includes corresponding means for performing the steps or functions described in the above-mentioned method aspect.
  • the steps or functions may be realized by software, or by hardware (such as a circuit), or by a combination of hardware and software.
  • the above device includes one or more processing units and communication units.
  • the one or more processing units are configured to support the apparatus to perform the functions in the above methods.
  • the device may further include one or more storage units, which are used to be coupled with the processing unit, and store necessary computer programs (also referred to as instructions) and/or data of the device.
  • the one or more storage units can be integrated with the processing unit, or can be set separately from the processing unit. This application is not limiting.
  • the above device includes a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver or the input/output circuit to send and receive signals
  • the memory is used to store the computer program
  • the processor is used to run the computer program in the memory, so that the device executes the first aspect, the second aspect, and the third aspect , or a method in any possible implementation manner of the first aspect, the second aspect, or the third aspect.
  • a computer-readable storage medium for storing a computer program
  • the computer program includes a method for executing the first aspect, the second aspect, and the third aspect, or the first aspect, the second aspect, and the third aspect An instruction for a method in any of the possible implementations.
  • a computer program product includes: a computer program, when the computer program is run on a computer, it causes the computer to execute the first aspect, the second aspect, the third aspect, or the first aspect A method in any possible implementation manner of the first aspect, the second aspect, or the third aspect.
  • the computer may implement the function of a communication device, or the computer may be a communication device.
  • the computer may implement the functions of the first terminal device or the second terminal device or the network device, or the computer may be the first terminal device or the second terminal device or the network device.
  • a chip in an eighth aspect, includes a transceiver configured to implement functions in the methods of the above aspects, for example, receive or send the data and/or information involved in the above methods.
  • the chip further includes a memory, and the memory is used for storing computer programs and/or data.
  • a communication device including: a logic circuit and an interface circuit, the interface circuit is used to communicate with a module other than the communication device; the logic circuit is used to run a computer program to execute the method described in any one of the above aspects. method.
  • the communication device may be the first terminal device or the second terminal device or the network device in the above-mentioned first aspect or the second aspect or the third aspect, or a device including the above-mentioned first terminal device or the second terminal device or the network device, Or a device, such as a chip, contained in the above-mentioned first terminal device or second terminal device or network device.
  • the interface circuit may be a code/data read/write interface circuit, which is used to receive a computer program (the computer program is stored in the memory, may be read directly from the memory, or may pass through other devices) and transmit it to the interface circuit , so that the interface circuit runs a computer program to perform the method described in any one of the above aspects.
  • the communication device may be a chip.
  • FIG. 1 is a schematic diagram of a cooperative transmission process
  • FIG. 2 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • Figure 3(a) is a schematic diagram of configuring authorization type 1;
  • Figure 3(b) is a schematic diagram of configuring authorization type 2;
  • FIG. 4 is a schematic diagram of a communication process provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of configuring authorization resources provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of communication provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another communication provided by the embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another communication system provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the present application presents various aspects, embodiments or features in terms of a system that can include a number of devices, components, modules and the like. It is to be understood and appreciated that the various systems may include additional devices, components, modules, etc. and/or may not include all of the devices, components, modules etc. discussed in connection with the figures. In addition, combinations of these schemes can also be used.
  • the network architecture and business scenarios described in the embodiments of the present application are for more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute limitations on the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of this application are also applicable to similar technical problems.
  • D2D communication also known as sidelink (Sidelink, SL) communication
  • SL sidelink
  • D2D communication refers to a communication method that directly communicates between two user equipments.
  • the D2D communication technology can enable user equipment within a certain range to communicate directly, reducing the load on the serving base station.
  • D2D communication has different applications in different scenarios, such as Bluetooth connection or Wi-Fi direct connection in a wireless fidelity (Wi-Fi) network.
  • Wi-Fi wireless fidelity
  • Wi-Fi wireless fidelity
  • Wi-Fi wireless fidelity
  • Wi-Fi wireless communication technology
  • Wi-Fi Direct is a communication technology that allows devices in a wireless network to connect to each other without going through a wireless router.
  • the third generation partnership project (3rd generation partnership project, 3GPP) has introduced the D2D communication technology of long term evolution-vehicle (LTE-V) technology in the long term evolution (long term evolution, LTE), which will D2D communication is used in the Internet of Vehicles for communication between vehicles or between vehicles and other devices.
  • LTE-V long term evolution-vehicle
  • LTE long term evolution
  • 5G fifth-generation mobile communication
  • NR new radio access technology
  • NR new radio access technology
  • the 5G protocol introduces NR-vehicle-to-everything (V2X) technology as an enhancement to LTE-V2X technology.
  • V2X NR-vehicle-to-everything
  • Terminal equipment also called user equipment (UE) is a device with wireless transceiver function, which can be accessed via an access network device (or also called an access network) in a radio access network (RAN).
  • UE user equipment
  • RAN radio access network
  • device communicates with one or more core network (core network, CN) devices (or may also be referred to as core devices).
  • core network CN
  • User equipment may also be called an access terminal, terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, user agent, or user device, among others.
  • User equipment can be deployed on land, including indoor or outdoor, hand-held or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as on aircraft, balloons, and satellites, etc.).
  • the user equipment can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a smart phone, a mobile phone, a wireless local loop (WLL) Station, personal digital assistant (PDA), etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the user equipment may also be a handheld device with a wireless communication function, a computing device or other equipment connected to a wireless modem, a vehicle-mounted device, a wearable device, a drone device or a terminal in the Internet of Things, the Internet of Vehicles, a 5G network, and Terminals in any form in the future network, relay user equipment, or terminals in the future evolution of the public land mobile network (public land mobile network, PLMN), etc.
  • the relay user equipment may be, for example, a 5G residential gateway (residential gateway, RG).
  • the user equipment can also be a virtual reality (virtual reality, VR) terminal, an augmented reality (augmented reality, AR) terminal, a wireless terminal in industrial control (industrial control), a wireless terminal in self driving (self driving), telemedicine Wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, and smart home wireless terminals, etc.
  • VR virtual reality
  • AR augmented reality
  • self driving self driving
  • telemedicine Wireless terminals in remote medical wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, and smart home wireless terminals, etc.
  • the embodiment of the present application does not limit the type or category of the terminal device.
  • the user equipment may include a source UE (SUE) and a coordination UE (CUE).
  • SUE source UE
  • CUE coordination UE
  • a scenario in which UEs cooperate to perform uplink transmission is hereinafter referred to as a coordinated transmission scenario, where at least one SUE and at least one CUE may be included in the coordinated transmission scenario.
  • a coordinated transmission scenario includes one SUE and multiple CUEs.
  • a network device refers to a device that can provide a wireless access function for a terminal.
  • the network device may support at least one wireless communication technology, such as LTE, NR, wideband code division multiple access (wideband code division multiple access, WCDMA), Wi-Fi, and the like.
  • network equipment may include access network equipment.
  • the network equipment includes but is not limited to: 5G base station (generation nodeB, gNB), evolved node B (evolved node B, eNB), radio network controller (radio network controller, RNC), node B (node B, NB ), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved node B, or home node B, HNB), baseband unit (baseband unit, BBU) , Transmitting and receiving point (TRP), transmitting point (TP), mobile switching center, small station, micro station, etc.
  • 5G base station generation nodeB, gNB
  • evolved node B evolved node B
  • eNB evolved node B
  • RNC radio network controller
  • node B node B
  • base station controller base station controller
  • BTS base transceiver station
  • home base station for example, home evolved node B, or home node B, H
  • the network device may also be a wireless controller, a centralized unit (centralized unit, CU), and/or a distributed unit (distributed unit, DU) in a cloud radio access network (cloud radio access network, CRAN) scenario, or the network device may For relay stations, access points (Access Point, AP), vehicle-mounted equipment, terminals, wearable devices, and network equipment in future mobile communications or network equipment in the future evolution of public land mobile network (PLMN), etc. .
  • AP access points
  • PLMN public land mobile network
  • the network device may include a core network (CN) device, and the core network device includes, for example, an access and mobility management function (access and mobility management function, AMF) and the like.
  • CN core network
  • AMF access and mobility management function
  • the coordinated transmission includes at least two stages (Stage): Stage1, the SUE sends data to be transmitted to the CUE on the transmission resources configured by the base station, where the data to be transmitted is the uplink data that the SUE needs to send; Stage2, the SUE and the CUE send the uplink data to the base station, wherein the uplink data of the CUE includes the data to be transmitted from the SUE.
  • Stage1 the transmission resources configured by the base station may be SL link transmission resources, and the SUE may directly send data to be transmitted to the CUE through the SL link.
  • the data to be transmitted from the SUE can also be regarded as SL data in this Stage1.
  • the SUE and CUE performing cooperative transmission can be regarded as a virtual (Virtual) UE sending data to the base station. From the perspective of the base station, it can be understood that the base station receives data from a virtual UE.
  • the uplink data sent by the SUE to the base station may be the same as or different from the uplink data sent by the CUE to the base station.
  • the SUE sends the first data to the CUE
  • the CUE sends the first data to the base station
  • the SUE sends the second data to the base station. If the first data and the second data are the same, reliability of uplink data transmission can be improved. If the first data is different from the second data, the efficiency of uplink data transmission can be improved.
  • the data sent by the SUE to the two CUEs may be the same or different, which is not limited in this embodiment of the present application.
  • the 5G industrial scenario requires a large uplink capacity, and the uplink rate requirement can reach 1Gbps (gigabits per second).
  • the number of antennas/uplink bandwidth of the SUE may be limited.
  • the SUE can send part of the data it needs to send to the CUE.
  • the CUE can send part of the data that the SUE needs to send to the base station to improve the efficiency of uplink data transmission.
  • the uplink data sent by the SUE and the CUE are different.
  • Configured Grant is a mechanism introduced by the R15 version of NR to reduce scheduling delays to configure periodic transmission resources for user equipment.
  • the user equipment can send data in the transmission resources pre-configured by the network equipment without waiting for the transmission resources dynamically scheduled by the base station, saving scheduling delay, reducing the transmission delay caused by the base station due to scheduling signaling, and reducing the demodulation scheduling signal of the user equipment. The transmission delay caused by the order.
  • the periodic transmission resources configured by the configured grant are called CG resources.
  • the CG resource can be used by the SUE to send data to the CUE.
  • the SUE can send data to the CUE on the CG resource configured by the base station.
  • the CG resource may be used by the SUE to send data to the base station.
  • the SUE may send data to the base station on the CG resource configured by the base station.
  • a user to network interface-universal (Uu) Grant message is a message between the user equipment and the base station.
  • the Uu Grant message is used to allocate uplink transmission resources, and the uplink transmission resources are used for the user equipment Send uplink data to the base station.
  • the SUE and/or the CUE can send uplink data to the base station on the uplink transmission resource allocated by the Uu Grant message.
  • the uplink transmission resource may be a physical uplink shared channel (PUSCH).
  • PUSCH physical uplink shared channel
  • the Uu Grant message is a downlink control information (DCI) message, for example, the Uu Grant message is DCI format 0_0 or DCI format 0_1. Among them, there is a reserved (Reserved) field in DCI format 0_1.
  • DCI downlink control information
  • a plurality referred to in this application refers to two or more than two.
  • Communication systems generally include but are not limited to 4G network, LTE system, LTE frequency division duplex (FDD) system, LTE time division duplex (TDD), universal mobile telecommunications system (universal mobile telecommunications system, UMTS) ), worldwide interoperability for microwave access (WiMAX) communication system, 5G communication system or NR, and other future communication systems such as 6G.
  • the present application can also be applied to other communication systems, such as short-distance communication systems. Examples of short-range communication systems include Wi-Fi networks.
  • a possible communication system architecture includes one or more network devices (such as base stations in FIG. 2) and one or more terminal devices (UE1-UE6 in FIG. 2).
  • the base station can send data to UE1-UE6, and UE1-UE6 can also send uplink data to the base station.
  • UE4, UE5 and UE6 may form a communication system.
  • the base station can send downlink data to UE1, UE2, UE5, etc., and UE5 can forward the downlink data to UE4 and UE6.
  • UE5 may be a customer-premises equipment (CPE), and data between the UE and the base station may be forwarded through the CPE.
  • CPE customer-premises equipment
  • the network device and the terminal device can work in a licensed frequency band, or work in an unlicensed (Unlicensed) frequency band.
  • a licensed frequency band or work in an unlicensed (Unlicensed) frequency band.
  • network devices and terminal devices communicate in unlicensed frequency bands.
  • the Configured Grant configuration methods include Type 1 and Type 2.
  • radio resource control radio resource control
  • RRC radio resource control
  • the RRC signaling includes one or more of the following parameters: CG resource demodulation reference signal (demodulation reference signal DMRS), modulation and coding scheme (modulation and coding scheme, MCS), time domain resource, frequency domain resource, CG resource Period (periodicity), and the number of repetitions (repK), etc.
  • each block represents a transmission resource unit (such as a time slot).
  • the UE receives the RRC1 signaling from the base station at time t1.
  • the time required for the UE to parse the RRC1 signaling and prepare subsequent data is T1.
  • the RRC1 signaling is used to configure parameters related to the CG resource, for example, the period of the CG resource configured by the RRC1 signaling is T2.
  • the RRC1 signaling is also used to activate CG resources.
  • the UE performs cooperative transmission on the activated CG resources, and the possible CG resources are shown as black blocks in FIG. 3( a ), including, for example, CG resources at time t2, t3, t4 and t5.
  • the UE receives RRC2 signaling from the base station at time t6, the RRC2 signaling is used to deactivate CG resources, and the deactivated CG resources (such as CG resources after time t6) are not used for coordinated transmission.
  • the time delay between the RRC signaling for activating transmission resources and the RRC signaling for deactivating transmission resources is relatively large, which is not suitable for cooperative transmission scenarios requiring fast response. From RRC activation to RRC deactivation of the transmission resource, even if there is no transmission demand, the transmission resource remains valid, and the transmission resource cannot be released by the network device for use by other UEs or downlink transmission, resulting in waste of resources.
  • RRC signaling and DCI jointly configure parameters related to CG resources.
  • parameters related to CG resources parameters related to transmission are configured by DCI.
  • DCI includes one or more of the following parameters: time domain resources, frequency domain resources, and MCS.
  • the remaining parameters except the transmission-related parameters are configured by RRC signaling, for example, the RRC signaling includes one or more of the following parameters: DMRS of CG resources, periodicity of CG resources, and repK, etc.
  • CG resources are activated and deactivated by DCI.
  • the DCI is carried in a physical downlink control channel (physical downlink control channel, PDCCH).
  • each block represents a transmission resource unit (such as a time slot), and the UE receives RRC signaling from the base station at time t7.
  • the RRC signaling is used to configure some parameters related to the CG resource, for example, the period of the CG resource configured by the RRC signaling is T4.
  • the UE receives DCI1 from the base station at time t8, and the DCI1 is used to configure some parameters related to the CG resource and is also used to activate the CG resource.
  • the time required for the UE to parse DCI1 and prepare subsequent data is T3.
  • the UE performs cooperative transmission on the activated CG resources. Possible CG resources are shown as black blocks in FIG.
  • the UE receives DCI2 from the base station at time t13, and the DCI2 is used to deactivate CG resources, and the deactivated CG resources (such as CG resources after time t13) are not used for coordinated transmission.
  • the transmission resource remains valid and cannot be used by other UEs or network devices, resulting in waste of resources.
  • the embodiments of the present application provide a method for sending and receiving data, and a resource indication method.
  • the network device sends a first message to the first terminal device, and the first terminal device sends the first data to at least one second terminal device on at least one first transmission resource within a first time window according to an indication of the first message, wherein The at least one first transmission resource belongs to resources in preconfigured sidelink transmission resources.
  • the first terminal device may use part or all of the transmission resources preconfigured by the network device to send the first data to at least one second terminal.
  • the first time window can be dynamically configured, so the occupation and waste of transmission resources can be reduced, and the flexibility of resource scheduling can be improved.
  • the method for sending and receiving data and the resource indication method provided in the embodiments of the present application may be applied to the communication system shown in FIG. 2 .
  • a possible communication process is used to describe the method for sending and receiving data and the resource indication method provided by the embodiment of the present application. The process includes:
  • S401 The network device sends a first message to the first terminal device, and the first terminal device receives the first message.
  • the network device sends a second message to at least one second terminal device, and at least one second terminal device receives the second message.
  • one or more second terminal devices are cooperative terminal devices of the first terminal device.
  • the network device is mainly an access network device (such as a base station)
  • the first terminal device is an SUE
  • one or more second terminal devices are a CUE for illustration. It can be understood that, in the embodiment of the present application, one second terminal device is mainly used for description, and the implementation process of multiple second terminal devices is similar, and details are not described again.
  • the first message is used to indicate the first time window.
  • the first time window is used for the first terminal device to send at least one second terminal on at least one first transmission resource within the first time window.
  • the device sends first data.
  • the second message is used to indicate the first time window, and for the at least one second terminal device, the first time window is used for at least one second terminal device to receive the first data.
  • the first data belongs to data of cooperative transmission. The following mainly describes the first message, and the second message is similar to the first message, and the similarities will not be repeated.
  • the first message may be a signaling message, or the first message may be a field (field) in the signaling message.
  • the signaling messages involved here may reuse existing signaling messages, or be newly constructed signaling messages.
  • the signaling message may be DCI, and DCI is a layer 1 (L1) message, and L1 refers to the lowest layer in the protocol layer, that is, the physical layer. Since the RRC signaling needs to be forwarded and processed by the physical layer and the upper layer, And the L1 message can be directly responded in the physical layer, so the L1 message can be processed with a fast response. Therefore, the terminal device can quickly respond to processing, and is more suitable for cooperative transmission scenarios that require fast response, and can further improve the efficiency and flexibility of resource scheduling and cooperative transmission.
  • the signaling message may be a Uu Grant message
  • the first message may be a field in the Uu Grant message
  • the Uu Grant message is a DCI message.
  • the first message may be supplemented on the basis of the existing fields in the Uu Grant message, the first message occupies 1 bit (bit) or n bits, and n is a positive integer greater than 1.
  • the first message is added in the reserved field of the Uu Grant message, that is, the first message is carried in the Uu Grant message sent to the first terminal device, for example, an "SL_Configured_enable” field is added in DCI format 0_1, the "SL_Configured_enable”
  • the Reserved field in DCI format 0_1 can be used.
  • the Uu Grant message can be used to schedule transmission resources between terminal devices, and simultaneously schedule uplink transmission resources between terminal devices and the base station, that is, to schedule resources of Stage1 and Stage2 at the same time, improve the flexibility of transmission resource scheduling, and further reduce Signaling overhead.
  • the second message may also be a signaling message, or the second message may be a field in the signaling message.
  • the second message may be added in the reserved field of the Uu Grant message, that is, the second message is carried in the Uu Grant message sent to the second terminal device.
  • the first message is used to activate all transmission resources within the first time window, or the first message is used to activate at least one first transmission resource within the first time window.
  • at least one first transmission resource belongs to resources in preconfigured sidelink transmission resources.
  • the sidelink transmission resources may be periodic sidelink transmission resources, or the sidelink transmission resources may be aperiodic sidelink transmission resources.
  • the activated transmission resources (such as all transmission resources or at least one first transmission resource) within the first time window are in an active state (also called a valid state), and the transmission resources in the activated state can be used by the first terminal device to send At least one second terminal transmits data.
  • transmission resources outside the first time window are in an inactive state (also referred to as an invalid state, or an invalid state), and the transmission resources in an inactive state are not used for the first terminal device to send data to at least one second terminal device. Therefore, the transmission resources within the first time window are occupied, and the transmission resources outside the first time window are not occupied, which can save transmission resources and further reduce the occupation and waste of transmission resources.
  • the network device may optionally not send additional deactivation signaling, further reducing signaling overhead and further improving resource scheduling efficiency. flexibility.
  • the periodic sidelink transmission resources may be CG resources.
  • Periodic sidelink transmission resources may be pre-configured to the first terminal device by default according to a protocol, or may be pre-configured to the first terminal device by the network device through semi-static or dynamic signaling.
  • the network device sends a third message to the first terminal device (for example, the third message may be RRC signaling), and the third message is used to configure multiple periodic sidelink transmission resources, and sidelink transmission resources with different periodicities
  • Channel transmission resources can be distinguished by different identifiers.
  • the duration and periods corresponding to sidelink transmission resources of different periodicities may be different. If the third message is used to configure multiple CG resources, as shown in Figure 5, multiple CG resources are distinguished by different numbers, such as CG#1, CG#2 and CG#3, CG#1, CG#2 and CG# #3 is different in duration and period.
  • the periodic sidelink transmission resource may also be pre-configured to the second terminal device by default according to the protocol, or may be pre-configured to the second terminal device by the network device through semi-static or dynamic signaling.
  • the first message occupies 1 bit.
  • the 1 bit is 1, the first message is used to activate a first transmission resource.
  • the 1 bit is 0, the first message is used to activate a first transmission resource.
  • the first message occupies n bits, and is used to activate part of the transmission resources that are at the front in the time domain within the first time window (that is, in the time sequence, at the front in the time domain), n is an integer greater than or equal to 1. For example, when the n bits are all 1, the first message is used to activate the 2 n first transmission resources that are at the front in the time domain within the first time window.
  • the first time window is exemplarily described, and the first time window may be indicated in an explicit or implicit manner.
  • the first message may also be used to indicate the first configuration parameter.
  • the first configuration parameter includes an offset value of the starting time of the first time window relative to the receiving time of the first message and the duration of the first time window.
  • the duration of the first time window may be represented by L.
  • the first terminal device may determine the first time window according to the first configuration parameter.
  • the offset value of the starting moment of the first time window relative to the receiving moment of the first message can be used to determine the starting moment of the first time window, for example, the offset value of the starting moment of the first time window relative to the receiving moment of the first message
  • the shift value is k (the unit can be time slot or symbol, etc.).
  • the offset value is an offset value of the starting moment of the first time window relative to the receiving moment of the last symbol of the first message.
  • the time slot where the first terminal device receives the last symbol of the first message is taken as the first time slot, and starting from the first time slot, determine the (k+1)th time slot after the k time slot time slot, the (k+1)th time slot is used as the starting moment of the first time window, that is, the starting moment of the first time window is located in the (k+1)th time slot.
  • the offset value k of the first time window may be related to one or more of the following information: a time length for the terminal device to demodulate the first message, and a time length for the first terminal to prepare the first data.
  • the duration for the terminal device to demodulate the first message may be k1, and k may be greater than or equal to k1. In this way, the first terminal may prepare the first data before receiving the first message. In addition, due to the different capabilities of the terminal devices, the time it takes to demodulate the first message may also be different. Therefore, optionally, the value of k can be based on the longest time required for the demodulation of the first message by the first terminal device and the second terminal device. The duration k2 is determined to ensure that all terminal devices can accurately demodulate the first message. The value of k is a positive integer.
  • the first terminal device and/or at least one second terminal device may report the duration required for demodulating the first message by itself.
  • the first terminal device and/or at least one second terminal device report when initially accessing the network device.
  • the duration L of the first time window may be related to the size of the first data to be sent by the first terminal, and the end time of the first time window may be earlier than the first uplink transmission resource.
  • the unit of the duration L of the first time window may be a millisecond (millisecond, ms), or a time slot (slot), or a symbol (symbol).
  • the second message may be used to indicate the second configuration parameter, and the second configuration parameter includes an offset value of the start time of the first time window relative to the receiving time of the second message and the duration of the first time window.
  • the at least one second terminal device may determine the first time window according to the first configuration parameter. If the network device sends the first message and the second message at the same time (such as a time slot), the first terminal device and at least one second terminal device can respectively receive the first message and the second message at the same time, and the first The starting moment of the first time window determined by the terminal device and the at least one second terminal device is the same.
  • the starting moment of the first time window may be located k timeslots after receiving the first message, and the ending moment of the first time window may be located at the beginning of the first uplink transmission resource time.
  • the first terminal device may determine the start time and end time of the first time window.
  • the first uplink transmission resource may be an uplink transmission resource (such as a PUSCH resource) allocated by the Uu Grant message.
  • the k value may be preconfigured in the first terminal device and at least one second terminal device, or the k value may be indicated through RRC signaling.
  • the network device sends first RRC signaling to the first terminal device, the first RRC signaling includes the value of k, or the first RRC signaling includes information used to determine an indication of k, and the first terminal device receives the first RRC signaling After one RRC signaling, after receiving k time slots of the first message, determine the starting moment of the first time window.
  • the value of k may be equal to the value of k2.
  • at least one second terminal device may determine the start time and end time of the first time window after receiving the second message. The start time of the first time window may be located after k time slots of receiving the second message, and the end time of the first time window may be located at the start time of the first uplink transmission resource.
  • the k value may be preconfigured in at least one second terminal device, or the k value may be indicated through RRC signaling.
  • the network device sends second RRC signaling to at least one second terminal device, where the second RRC signaling includes the value of k, or the second RRC signaling includes information used to determine an indication of k.
  • the first message may further include at least one piece of identification information, and the at least one first transmission resource belongs to the sidelink transmission resource identified by the at least one piece of identification information. That is to say, the network device may instruct the first terminal device on which/which pre-configured sidelink transmission resources to send data through the first message.
  • the second message may further include at least one piece of identification information, and the network device may use the second message to instruct the at least one second terminal device on which/which preconfigured sidelink transmission resources to receive data. If the at least one piece of identification information is not included in the first message, the first terminal device may select the sidelink transmission resource closest to the starting moment of the first time window, or the first terminal device may select any (one or multiple) sidelink transmission resources.
  • the first terminal device sends the first data to at least one second terminal device within the first time window, and the at least one second terminal device receives the first data within the first time window.
  • the first terminal device sends the first data on all the transmission resources in the first time window, correspondingly, at least one second terminal device can The first data is received on all transmission resources.
  • the first terminal device may send the first data on the at least one first transmission resource in the first time window.
  • At least one second terminal device may receive the first data on at least one first transmission resource within the first time window (if the second terminal device is pre-configured with the same periodic sidelink transmission as that of the first terminal device) resources), or at least one second terminal device may blindly detect the first data within the first time window (if at least one second terminal device is not configured with the same periodic sidelink transmission resources as the first terminal device ).
  • the first terminal device may send the first data on at least one first transmission resource belonging to the sidelink transmission resource identified by the at least one identification information.
  • CG#1, CG#2, and CG#3 are pre-configured in the first terminal device, and at least one piece of identification information included in the first message is CG#1.
  • the terminal device sends the first data on at least one first transmission resource belonging to CG#1 within the first time window.
  • at least one second terminal device is pre-configured with the same periodic sidelink transmission resource, at least one second terminal device may also be in the first time window and belong to at least one of CG#1 First data is received on the first transmission resource.
  • the terminal device may send the first transmission resource on at least one first transmission resource belonging to CG#1 and CG#2 within the first time window A piece of data, or the terminal device may send the first data on at least one first transmission resource belonging to CG#1 or CG#2 within the first time window.
  • the first data may be carried by a physical side link control channel (physical side link control channel, PSCCH).
  • PSCCH physical side link control channel
  • CG#1, CG#2 and CG#3 are pre-configured in the first terminal device.
  • CG#1 includes a first transmission resource 11, a first transmission resource 12 and the first transmission resource 13
  • CG#2 includes the first transmission resource 21
  • CG#3 includes the first transmission resource 31 and the first transmission resource 32 .
  • CG resources are not configured in at least one second terminal device.
  • the network device sends a Uu Grant message to the first terminal device, the Uu Grant message includes 1-bit indication information, and the Uu Grant message is used to configure PUSCH resources.
  • the first terminal device receives the last symbol of the Uu Grant message at t61, determines that t62, which is k time slots after t61, is the starting time of the first time window, and determines that the PUSCH resource starting time t63 is the first The end moment of the time window.
  • the first terminal device may select the closest CG resource after receiving the Uu Grant message k time slots, that is, CG#1, wherein the first transmission resource of CG#1 within the first time window is the first transmission resource 12 .
  • the first terminal device transmits first data on the first transmission resource 12 .
  • the network device can also send the Uu Grant message to at least one second terminal device, and at least one second terminal device can also receive the last symbol of the Uu Grant message at the t61 moment, and determine the t62 moment of the distance k time slots after the t61 moment is The start time of the first time window, and determine the start time t63 of the PUSCH resource as the end time of the first time window. Since no CG resources are configured in at least one second terminal device, at least one second terminal device blindly detects the first data within the first time window.
  • FIG. 7 Another possible scenario is shown in FIG. 7 , where the first terminal device works in an unlicensed frequency band, that is, the sidelink transmission resources preconfigured in the first terminal device are resources in the unlicensed frequency band. Similar to FIG. 6, CG#1, CG#2 and CG#3 are pre-configured in the first terminal device.
  • CG#1 includes a first transmission resource 11, a first transmission resource 12 and a first transmission resource 13.
  • CG#2 includes the first transmission resource 21, the first transmission resource 22, and the first transmission resource 23, and CG#3 includes the first transmission resource 31 and the first transmission resource 32.
  • CG resources are not configured in at least one second terminal device.
  • the network device sends a Uu Grant message to the first terminal device, the Uu Grant message includes 1-bit indication information, and the Uu Grant message is used to configure PUSCH resources.
  • the first terminal device receives the last symbol of the Uu Grant message at t71, determines that t72, which is k time slots after t71, is the starting time of the first time window, and determines that the PUSCH resource starting time t73 is the first The end moment of the time window.
  • the first terminal device can perform LBT.
  • the first terminal device may respectively attempt channel sensing on at least one first transmission resource within the first time window.
  • the first terminal device sends the first data to at least one second terminal device on the idle first transmission resource within the first time window, but cannot send data on the occupied first transmission resource.
  • the idle first transmission resource is the first transmission resource for successful LBT.
  • the first terminal fails to perform LBT on the first transmission resource 12 of CG#1, and the first terminal device continues to perform LBT on the first transmission resource 22 of CG#2, which can provide the first terminal device with more LBT opportunity, improve the success rate of the first terminal device to send data, and ensure the reliability of sent data. Since no CG resources are configured in the at least one second terminal device, the at least one second terminal device blindly detects the first data within the first time window.
  • At least one second terminal device sends the first data on the first uplink transmission resource, and the network device may receive the first data from the at least one second terminal device.
  • the first terminal device sends the second data on the first uplink transmission resource, and the network device may receive the second data from the first terminal device.
  • first data belongs to the data of cooperative transmission.
  • the content of the first data and the content of the second data may be the same or different.
  • the first uplink transmission resource is a PUSCH resource scheduled by the network device through the Uu Grant message.
  • the second terminal device may not be able to successfully receive the first data.
  • at least one second terminal device may successfully receive the first data, or at least one second terminal device may successfully receive the first data, or at least one second The terminal device may not have successfully received the first data. If the at least one second terminal device successfully receives the first data, the at least one second terminal device may send the first data to the network device on the first uplink transmission resource.
  • At least one second terminal device may not send the first data on the first uplink transmission resource, Or at least one second terminal device sends a non-acknowledgment (NACK) message to the network device.
  • NACK non-acknowledgment
  • the network device may reschedule the first uplink transmission resource (for example, resend the Uu Grant message, the first terminal device resends the first data, and at least one second terminal device resends the first data). receiving the first data), until the at least one second terminal device successfully receives the first data, or the network device receives the first data from the at least one second terminal device.
  • the first terminal device may request the network device to reschedule the first uplink transmission resource until The first terminal device sends all data required for coordinated transmission to at least one second terminal device.
  • the SUE can realize data transmission within the first time window, and the first time window can be dynamically configured, so the occupation and waste of transmission resources can be reduced, and the flexibility of resource scheduling can be improved.
  • transmission resources other than the first time window are in an inactive state and are not used for data transmission between terminal devices, but can be used for other purposes, which can reduce the occupation and waste of transmission resources.
  • the network device can activate part of the periodic sidelink transmission resources (this part of resources are non-periodic sidelink transmission resources) at one time according to service requirements, reducing the occupation and waste of transmission resources. Especially for aperiodic and bursty data transmission, it can reduce the occupation and waste of transmission resources.
  • the optional CUE may not receive data on transmission resources other than the first time window, so as to reduce the receiving power consumption of the CUE.
  • the optional network device does not need to send an additional instruction to deactivate the transmission resource, and can also reduce signaling overhead and further improve the flexibility of transmission resource scheduling. If the first message is sent through the DCI message, the scheduling efficiency of transmission resources can be further improved, and the flexibility of scheduling transmission resources can be further improved.
  • the communication system 800 includes a network device 801 , a first terminal device 802 and at least one second terminal device 803 .
  • the network device 801, the first terminal device 802, and at least one second terminal device 803 may implement the methods described in the foregoing method embodiments.
  • the network device 801 is configured to send a first message to a first terminal device, where the first message is used to indicate a first time window, and to send a second message to at least one second terminal device, where the second message uses to indicate the first time window.
  • the first terminal device 802 is configured to receive the first message, and send first data to the at least one second terminal device 803 on at least one first transmission resource within the first time window, the The at least one first transmission resource belongs to resources in preconfigured sidelink transmission resources.
  • the at least one second terminal device 803 is configured to receive the second message, and receive the first data within the first time window.
  • the start time of the first time window is located after k time slots of receiving the first message or the second message, and the end time of the first time window is located before the first uplink transmission resource
  • the first uplink transmission resource is used for the first terminal device 802 to send second data to the network device 801
  • the first uplink transmission resource is used for the at least one second terminal device 803 to send
  • the network device 801 sends the first data
  • k is a positive integer.
  • the value of k is indicated through RRC signaling.
  • the first message may also indicate a first configuration parameter, where the first configuration parameter includes an offset value of the starting time of the first time window relative to the receiving time of the first message and The duration of the first time window.
  • the second message is also used to indicate a second configuration parameter, and the second configuration parameter includes an offset value of the starting time of the first time window relative to the receiving time of the second message and the first time window window duration.
  • the first terminal device 802 is configured to perform channel sensing on the at least one first transmission resource, and detect an idle first transmission resource detected in the at least one first transmission resource Send the first data to the at least one second terminal device 803 on transmission resources.
  • the sensed idle first transmission resource is the first transmission resource with successful LBT.
  • the first message includes at least one piece of identification information, and the at least one first transmission resource belongs to resources in the sidelink transmission resources identified by the at least one piece of identification information.
  • the first terminal device 802 is further configured to send second data on the first uplink transmission resource.
  • the at least one second terminal device 803 is further configured to send the first data on the first uplink transmission resource.
  • the network device 801 is further configured to receive, on the first uplink transmission resource, the second data from the first terminal device 802 and/or all the data from the at least one second terminal device 803 Describe the first data.
  • FIG. 9 it is a schematic structural diagram of a terminal device 910 and a network device 920 provided in this embodiment of the present application.
  • the terminal device 910 includes a first terminal device and/or at least one second terminal device.
  • FIG. 9 does not show a schematic structural diagram between the first terminal device and at least one second terminal device.
  • the network device 920 may be an access network device.
  • the terminal device 910 includes at least one processor (in FIG. 9, it is illustrated by including a processor 9101 as an example) and at least one transceiver (in FIG. 9, it is illustrated by an example by including a transceiver 9103 ).
  • the terminal device 910 may also include at least one memory (in FIG. 9, a memory 9102 is used as an example for illustration), at least one output device (in FIG. 9, an output device 9104 is used as an example description) and at least one input device (in FIG. 9, an input device 9105 is used as an example for illustration).
  • a communication link may include a pathway for the transfer of information between the aforementioned components.
  • the processor 9101 can be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, a specific application integrated circuit (application-specific integrated circuit, ASIC), one or more integrated circuits for controlling the execution of the program program of this application Circuits, general-purpose processors, digital signal processors (digital signal processors, DSPs), off-the-shelf programmable gate arrays (field programmable gate arrays, FPGAs) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • Various methods, steps, and logic block diagrams disclosed in the embodiments of the present application may be implemented or executed.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software modules may be stored in a storage medium located in the memory 9102.
  • Memory 9102 can be volatile memory or nonvolatile memory, or can include both volatile and nonvolatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchlink DRAM, SLDRAM Direct Memory Bus Random Access Memory
  • Direct Rambus RAM Direct Rambus RAM
  • the memory 9102 is used to store computer-executed instructions for implementing the solutions of the present application, and the execution is controlled by the processor 9101 .
  • the processor 9101 is configured to execute computer-executed instructions stored in the memory 9102, so as to implement the resource scheduling method provided in the following embodiments of the present application.
  • the computer-executed instructions in the embodiments of the present application may also be referred to as application program codes or computer program codes, which are not specifically limited in the embodiments of the present application.
  • the output device 9104 communicates with the processor 9101 and can display information in a variety of ways.
  • the output device 9104 may be a liquid crystal display (liquid crystal display, LCD), a light emitting diode (light emitting diode, LED) display device, a cathode ray tube (cathode ray tube, CRT) display device, or a projector (projector), etc.
  • the input device 9105 communicates with the processor 9101 and can receive user input in various ways.
  • the input device 9105 may be a mouse, a keyboard, a touch screen device, or a sensing device, among others.
  • the transceiver 9103 can use any transceiver-like device for communicating with other devices or communication networks, such as Ethernet, radio access network (radio access network, RAN), or wireless local area networks (wireless local area networks, WLAN) Wait.
  • the transceiver 9103 includes a transmitter (transmitter, Tx) and a receiver (receiver, Rx).
  • the memory 9102 may exist independently and be connected to the processor 9101 through a communication line.
  • the memory 9102 can also be integrated with the processor 9101.
  • the memory 9102 is used to store computer-executed instructions for implementing the solutions of the present application, and the execution is controlled by the processor 9101 .
  • the processor 9101 is configured to execute computer-executed instructions stored in the memory 9102, so as to implement the resource scheduling method described in the embodiment of the present application.
  • the processor 9101 may also perform processing-related functions in the signal generating method provided in the following embodiments of the present application, and the transceiver 9103 is responsible for communicating with other devices or communication networks.
  • the embodiment of the application does not specifically limit this.
  • the network device 920 includes at least one processor (in FIG. 9, a processor 9201 is used as an example for illustration), at least one transceiver (in FIG. 9, a transceiver 9203 is used as an example for illustration), and At least one network interface (in FIG. 9, one network interface 9204 is used as an example for illustration).
  • the network device 920 may further include at least one memory (in FIG. 9 , a memory 9202 is used as an example for illustration).
  • the processor 9201, the memory 9202, the transceiver 9203 and the network interface 9204 are connected through communication lines.
  • the network interface 9204 is used to connect to the core network device through a link (such as an S1 interface), or connect to a network interface (not shown in FIG.
  • the structure shown in FIG. 9 does not constitute a specific limitation on the terminal device 910 and the network device 920 .
  • the terminal device 910 or the network device 920 may include more or fewer components than shown in the figure, or combine some components, or split some components, or arrange different components.
  • the illustrated components can be realized in hardware, software or a combination of software and hardware.
  • an embodiment of the present application further provides a communication device.
  • the communication device 1000 includes a receiving unit 1001 and a sending unit 1002 , and the communication device 1000 may be used to implement the methods described in the foregoing method embodiments.
  • Apparatus 1000 is applied to a first terminal device.
  • the first terminal device may be an SUE.
  • the receiving unit 1001 is configured to receive a first message, where the first message is used to indicate a first time window;
  • the sending unit 1002 is further configured to send first data to the at least one second terminal device on at least one first transmission resource within the first time window, where the at least one first transmission resource belongs to a predetermined A resource in the configured sidelink transmission resources.
  • the start time of the first time window is located k time slots after receiving the first message
  • the end time of the first time window is located before the first uplink transmission resource
  • the first The uplink transmission resource is used for the first terminal device to send the second data to the network device
  • k is a positive integer
  • the value of k is indicated through RRC signaling.
  • the first message is further used to indicate a first configuration parameter
  • the first configuration parameter includes an offset value of the starting time of the first time window relative to the receiving time of the first message and the duration of the first time window.
  • the communications apparatus may further include: a determining unit 1003, configured to determine a start time and an end time of the first time window.
  • the communications apparatus may further include a listening unit 1004, configured to perform channel sensing on the at least one first transmission resource;
  • the sending unit 1002 is further configured to send the first data to the at least one second terminal device on an idle first transmission resource sensed in the at least one first transmission resource.
  • the sensed idle first transmission resource is the first transmission resource with successful LBT.
  • the first message includes at least one piece of identification information, and the at least one first transmission resource belongs to resources in the sidelink transmission resources identified by the at least one piece of identification information.
  • the sending unit 1002 is further configured to send the second data to the network device on the first uplink transmission resource.
  • the communication device 1100 includes a receiving unit 1101 and a determining unit 1102 , and the communication device 1100 may be used to implement the methods described in the foregoing method embodiments.
  • Apparatus 1100 is applied to a second terminal device.
  • the second terminal device may be a CUE.
  • the receiving unit 1101 is configured to receive a second message, where the first message is used to indicate the first time window;
  • the determining unit 1102 is configured to determine the second message
  • the receiving unit 1101 is further configured to receive first data from a first terminal device within the first time window.
  • the start time of the first time window is located after k time slots of receiving the second message
  • the end time of the first time window is located before the first uplink transmission resource
  • the first time window is located before the first uplink transmission resource.
  • An uplink transmission resource is used for the second terminal device to send the first data to the network device, and k is a positive integer.
  • the value of k is indicated through RRC signaling.
  • the second message may also indicate a second configuration parameter, where the second configuration parameter includes an offset value of the start time of the first time window relative to the receiving time of the second message and The duration of the first time window.
  • the determining unit 1102 is further configured to determine a start time and an end time of the first time window.
  • the communications apparatus may further include a sending unit 1103, configured to send the first data to the network device on the second uplink transmission resource.
  • the communication device 1200 includes a determining unit 1201 and a sending unit 1202 , and the communication device 1200 may be used to implement the methods described in the foregoing method embodiments.
  • Apparatus 1200 is applied to network equipment.
  • the determining unit 1201 is configured to determine a first message, where the first message is used to indicate the first time window; determine a second message, where the second message is used to indicate the first time window;
  • the sending unit 1202 is configured to send a first message to a first terminal device, and send a second message to at least one second terminal device.
  • the first time window is used for the first terminal device to send first data to at least one second terminal device on at least one first transmission resource within the first time window, and the at least one first transmission resource belongs to a preconfigured side line A resource in Link Transport Resources. And/or the first time window is used to instruct the at least one second terminal device to receive the first data from the first terminal device within the first time window.
  • the start time of the first time window is located after k time slots for sending the first message or the second message
  • the end time of the first time window is located after the first uplink transmission
  • the first uplink transmission resource is used for the network device to receive the second data from the first terminal device, and/or the first data from the at least one second terminal device, k is positive integer.
  • the value of k is indicated through RRC signaling.
  • the first message further includes a first configuration parameter
  • the first configuration parameter includes an offset value of the starting time of the first time window relative to the receiving time of the first message and the first The length of a time window.
  • the second message is also used to indicate a second configuration parameter
  • the second configuration parameter includes an offset value of the starting time of the first time window relative to the receiving time of the second message and the first time window window duration.
  • the first message includes at least one piece of identification information, and the at least one first transmission resource belongs to the sidelink transmission resource identified by the at least one piece of identification information.
  • the communication apparatus may further include a receiving unit 1203, configured to receive second data from the first terminal device on the first uplink transmission resource, and/or from the at least one first The first data of the second terminal device.
  • each functional unit in each embodiment of the present application It can be integrated in one processing unit, or physically exist separately, or two or more units can be integrated in one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit can be stored in a computer-readable storage medium. Based on this understanding, the integrated unit can be stored in a storage medium as a computer software product, including several instructions to make a computer device (it can be a personal computer, a server, or a network device, etc.) or a processor (processor) Execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the embodiment of the present application also provides a schematic structural diagram of a communication device 1300 .
  • the apparatus 1300 may be used to implement the methods described in the foregoing method embodiments, and reference may be made to the descriptions in the foregoing method embodiments.
  • the apparatus 1300 includes one or more processors 1301 .
  • the processor 1301 may be a general-purpose processor or a special-purpose processor. For example, it may be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processing unit can be used to control communication devices (such as base stations, terminals, or chips, etc.), execute software programs, and process data of software programs.
  • the communication device may include a transceiver unit to implement signal input (reception) and output (transmission).
  • the transceiver unit may be a transceiver, a radio frequency chip and the like.
  • the apparatus 1300 includes one or more processors 1301, and the one or more processors 1301 can implement the methods in the above-mentioned embodiments.
  • processor 1301 may also implement other functions in addition to implementing the methods in the foregoing embodiments.
  • the processor 1301 may execute instructions, so that the apparatus 1300 executes the methods described in the foregoing method embodiments.
  • the instruction may be stored in whole or in part in the processor, such as instruction 1303, or may be stored in whole or in part in the memory 1302 coupled to the processor, such as instruction 1304, or may be jointly made by instructions 1303 and 1304
  • the device 1300 executes the methods described in the foregoing method embodiments.
  • Instructions 1303 are also referred to as computer programs.
  • the communication device 1300 may also include a circuit, and the circuit may implement the functions in the foregoing method embodiments.
  • the device 1300 may include one or more memories 1302, on which are stored instructions 1304, the instructions can be executed on the processor, so that the device 1300 executes the above method Methods described in the Examples.
  • data may also be stored in the memory.
  • Instructions and/or data may also be stored in the optional processor.
  • the one or more memories 1302 may store the correspondence described in the foregoing embodiments, or the relevant parameters or tables involved in the foregoing embodiments, and the like.
  • the processor and memory can be set separately or integrated together.
  • the apparatus 1300 may further include a transceiver 1305 and an antenna 1306 .
  • the processor 1301 may be called a processing unit, and controls the device (terminal or base station).
  • the transceiver 1305 may be called a transceiver, a transceiver circuit, or a transceiver unit, etc., and is used to realize the transceiver function of the device through the antenna 1306 .
  • the embodiment of the present application also provides a computer-readable medium, on which a computer program is stored, and when the computer program is executed by a computer, the method for sending and receiving data and the resource indication method described in any of the above method embodiments are implemented.
  • the embodiment of the present application also provides a computer program product, including a computer program, when the computer program is executed by a computer, the method for sending and receiving data and the resource indication method described in any of the above method embodiments are implemented.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer may be the communication device described above.
  • the computer instructions may be stored in, or transmitted from, one computer-readable storage medium to another computer-readable storage medium.
  • the computer-readable storage medium may be the above-mentioned storage medium or the above-mentioned memory.
  • the determination unit or processor 1301 may be one or more logic circuits, and the sending unit
  • the receiving unit or the transceiver 1305 may be an input-output interface, or called a communication interface, or an interface circuit, or an interface, or the like.
  • the transceiver 1305 may also be a sending unit and a receiving unit, the sending unit may be an output interface, and the receiving unit may be an input interface, and the sending unit and the receiving unit are integrated into one unit, such as an input and output interface.
  • the logic circuit 1401 may be a chip, a processing circuit, an integrated circuit or a system on chip (SoC) chip, etc.
  • the interface circuit 1402 may be a communication interface, an input-output interface, or the like.
  • the logic circuit and the interface circuit may also be coupled to each other. The embodiment of the present application does not limit the specific connection manner of the logic circuit and the interface circuit.
  • the logic circuit and the interface circuit may be used to perform the functions or operations performed by the above-mentioned network device or terminal device.
  • the interface circuit 1402 is configured to receive a first message, and send first data to at least one second terminal device on at least one first transmission resource within a first time window.
  • the logic circuit 1401 is used to determine the start time and end time of the first time window.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or integrated. to another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
  • a unit described as a separate component may or may not be physically separated, and a component displayed as a unit may or may not be a physical unit, that is, it may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of the embodiment of the present application.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage media may be any available media that can be accessed by a computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例涉及一种发送、接收数据的方法、资源指示方法、装置及系统,可以减少传输资源的占用和浪费,以及可以提高资源调度的灵活性。所述方法包括:第一终端设备接收第一消息,所述第一消息用于指示第一时间窗;所述第一终端设备在所述第一时间窗内的至少一个第一传输资源上,向至少一个第二终端设备发送第一数据,所述至少一个第一传输资源属于预配置的侧行链路传输资源中的资源。

Description

发送、接收数据的方法、资源指示方法、装置及系统
相关申请的交叉引用
本申请要求在2021年05月27日提交中华人民共和国知识产权局、申请号为202110584976.8、申请名称为“发送、接收数据的方法、资源指示方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种发送、接收数据的方法、资源指示方法、装置及系统。
背景技术
基于用户设备(user equipment,UE)协作进行上行传输时,基站向源用户设备(source UE,SUE)配置授权(Configured Grant,CG)资源,SUE在CG资源上向协作用户设备(cooperation UE,CUE)发送待传输的上行数据,然后SUE和CUE将上行数据发送给基站。
基站可以通过无线资源控制(radio resource control,RRC)信令配置与CG资源相关的参数,以及由RRC信令激活和去激活SUE向CUE发送数据的传输资源。或者基站可以通过RRC信令和下行控制信息(downlink control information,DCI)共同配置与CG资源相关的参数,以及由DCI激活和去激活SUE向CUE发送数据的传输资源。
从激活传输资源到去激活传输资源的时间段内,即使没有传输需求,传输资源一直保持有效,造成资源浪费。
发明内容
本申请实施例提供一种发送、接收数据的方法、资源指示方法、装置及系统,应用于侧行链路的场景下,可以减少传输资源的占用和浪费,可以提高资源调度的灵活性。
第一方面,提供一种发送数据的方法,包括如下过程:第一终端设备接收第一消息,所述第一消息用于指示第一时间窗。所述第一终端设备在所述第一时间窗内的至少一个第一传输资源上,向所述至少一个第二终端设备发送第一数据,所述至少一个第一传输资源属于预配置的侧行链路传输资源中的资源。
在该方法中,在第一时间窗内,第一终端设备可以利用预配置的部分或全部传输资源向至少一个第二终端设备发送数据,该第一时间窗可以动态配置,因此可以减少传输资源的占用和浪费,提高资源调度的灵活性。
可选的,侧行链路传输资源可以为周期性的侧行链路传输资源,如CG资源。或者侧行链路传输资源可以为非周期性的侧行链路传输资源。
可选的,除第一时间窗外的传输资源处于非激活状态,不用于终端设备之间的数据发送,可以用于其他用途,可以进一步减少传输资源的占用和浪费。
可选的,网络设备不必须额外向第一终端设备发送去激活传输资源的指令,可以进一 步提高资源调度的灵活性,以及可以减少信令开销。
在一种可能的实现中,所述第一时间窗的起始时刻位于接收所述第一消息的k个时隙后,所述第一时间窗的结束时刻位于第一上行传输资源之前,所述第一上行传输资源用于所述第一终端设备向网络设备发送第二数据,k为正整数。所述第一时间窗可以通过隐式的方式指示。其中k的值可以与终端设备解调所述第一消息花费的时长有关。例如k的值根据每个终端设备解调所述第一消息花费的最长时长确定,以保证每个终端设备都可以准确解调所述第一消息。
在一种可能的实现中,所述k的值可以通过无线资源控制RRC信令指示。例如第一终端设备还可以接收第一RRC信令,第一RRC信令可以包括所述k的值,或者第一RRC信令可以包括用于确定所述k的值的信息。可选的,每个终端设备可以根据自身的能力,确定/估计解调第一消息所需的时长,然后上报给所述网络设备,由网络设备确定k的值下发给终端设备。
在一种可能的实现中,所述第一消息还用于指示第一配置参数,所述第一配置参数包括所述第一时间窗的起始时刻相对所述第一消息的接收时刻的偏移值和所述第一时间窗时长。所述第一时间窗可以通过显式的方式指示。可选的,所述第一时间窗的起始时刻相对所述第一消息的接收时刻的偏移值可以等于k的值,或者可以不等于k的值。
在一种可能的实现中,所述第一终端设备接收到第一消息后,还可以确定所述第一时间窗的起始时刻和结束时刻。
在一种可能的实现中,所述第一终端设备在所述第一时间窗内的至少一个第一传输资源上,向所述至少一个第二终端设备发送所述第一数据时,所述第一终端设备可以在所述至少一个第一传输资源上进行信道侦听;所述第一终端设备在所述至少一个第一传输资源中抢占侦听到的空闲的第一传输资源上,向所述至少一个第二终端设备发送所述第一数据。在一些场景中,例如第一终端设备工作在非授权频段上时,被激活的至少一个第一传输资源中可能存在被占用的传输资源,所述第一终端设备在所述至少一个第一传输资源上尝试进行信道侦听,从而在未被占用的空闲的第一传输资源上进行数据分发,这样可以提高发送数据的成功率,保证发送数据的可靠性。
在一种可能的实现中,所述侦听到的空闲的第一传输资源为先听后发(listen before talk,LBT)成功的第一传输资源。
在一种可能的实现中,所述第一消息包括至少一个标识信息,所述至少一个第一传输资源属于所述至少一个标识信息标识的侧行链路传输资源中的资源。网络设备可以指示所述第一终端设备用于发送数据的侧行链路传输资源,所述第一终端设备可以在属于所述网络设备指示的侧行链路传输资源的至少一个第一传输资源上进行数据的发送。
在一种可能的实现中,所述第一终端设备还可以在所述第一上行传输资源上,向所述网络设备发送所述第二数据。第一终端设备向至少一个第二终端设备发送数据之后,所述第一终端设备可以和至少一个第二终端设备进行协作传输,将上行数据发送给所述网络设备。
第二方面,提供一种接收数据的方法,包括如下过程:第二终端设备接收第二消息,所述第二消息用于指示第一时间窗;所述第二终端设备在所述第一时间窗内,接收来自第一终端设备的第一数据。
可选的,除第一时间窗外的传输资源处于非激活状态,不用于终端设备之间的数据接 收,可以用于其他用途,可以进一步减少传输资源的占用和浪费。
可选的,网络设备不必须额外向第二终端设备发送去激活传输资源的指令,可以进一步提高资源调度的灵活性,以及可以减少信令开销。
在一种可能的实现中,所述第一时间窗的起始时刻位于接收所述第二消息的k个时隙后,所述第一时间窗的结束时刻位于第一上行传输资源之前,所述第一上行传输资源用于所述第二终端设备向网络设备发送所述第一数据,k为正整数。
在一种可能的实现中,所述k的值可以通过无线资源控制RRC信令指示。例如所述第二终端设备还可以接收第二RRC信令,第二RRC信令可以包括k的值,或者第二RRC信令可以包括用于确定k的值的信息。
在一种可能的实现中,所述第二消息还用于指示第二配置参数,所述第二配置参数包括所述第一时间窗的起始时刻相对所述第二消息的接收时刻的偏移值和所述第一时间窗时长。
在一种可能的实现中,所述第二终端设备接收到第二消息后,还可以确定所述第一时间窗的起始时刻和结束时刻。
在一种可能的实现中,所述第二终端设备还可以在所述第一上行传输资源上,向所述网络设备发送所述第一数据。
第三方面,提供一种资源指示方法,包括如下过程:
网络设备向第一终端设备发送第一消息,所述第一消息用于指示第一时间窗;网络设备向至少一个第二终端设备发送第二消息,第二消息用于指示第一时间窗。
对于第一终端设备来说,第一时间窗用于指示第一终端设备在第一时间窗内的至少一个第一传输资源上向至少一个第二终端设备发送第一数据,所述至少一个第一传输资源属于预配置的侧行链路传输资源中的资源。
对于至少一个第二终端设备来说,第一时间窗用于指示所述至少一个第二终端设备在所述第一时间窗内接收来自所述第一终端设备的所述第一数据。
在一种可能的实现中,所述第一时间窗的起始时刻位于发送所述第一消息或所述第二消息的k个时隙后,所述第一时间窗的结束时刻位于第一上行传输资源之前,所述第一上行传输资源用于所述网络设备接收来自所述第一终端设备的第二数据和/或来自所述至少一个第二终端设备的所述第一数据,k为正整数。
在一些情况下,网络设备可以在同一时刻(如同一个时隙)发送第一消息和第二消息,第一终端设备和至少一个第二终端设备可以在同一时刻分别接收到第一消息和第二消息,这样,第一终端设备确定的第一时间窗的起始时刻,与至少一个第二终端设备确定的第一时间窗的起始时刻相同。
在一种可能的实现中,k的值通过无线资源控制RRC信令指示。例如所述网络设备还可以向第一终端设备发送第一RRC信令,第一RRC信令可以包括所述k的值,或者第一RRC信令可以包括用于确定所述k的值的信息。网络设备还可以向至少一个第二终端设备发送第二RRC信令,第二RRC信令可以包括k的值,或者第二RRC信令可以包括用于确定k的值的信息。
在一种可能的实现中,所述第一消息还用于指示第一配置参数,所述第一配置参数包括所述第一时间窗的起始时刻相对所述第一消息的接收时刻的偏移值和第一时间窗时长。
所述第二消息还用于指示第二配置参数,所述第二配置参数包括所述第一时间窗的起 始时刻相对所述第二消息的接收时刻的偏移值和所述第一时间窗时长。
在一种可能的实现中,所述第一消息包括至少一个标识信息,所述至少一个第一传输资源属于所述至少一个标识信息标识的侧行链路传输资源中的资源。
在一种可能的实现中,所述网络设备还可以在所述第一上行传输资源上,接收来自所述第一终端设备的第二数据,和/或来自所述至少一个第二终端设备的第一数据。
第四方面,提供一种通信系统,所述通信系统包括网络设备,第一终端设备和至少一个第二终端设备;
所述网络设备,用于向第一终端设备发送第一消息,所述第一消息用于指示第一时间窗,以及向至少一个第二终端设备发送第二消息,第二消息用于指示第一时间窗;
所述第一终端设备,用于接收所述第一消息,在所述第一时间窗内的至少一个第一传输资源上向所述至少一个第二终端设备发送第一数据,所述至少一个第一传输资源属于预配置的侧行链路传输资源中的资源;
所述至少一个第二终端设备,用于接收所述第二消息,在所述第一时间窗内接收所述第一数据。
在一种可能的实现中,所述第一时间窗的起始时刻位于接收所述第一消息或所述第二消息的k个时隙后,所述第一时间窗的结束时刻位于第一上行传输资源之前,所述第一上行传输资源用于所述第一终端设备向所述网络设备发送第二数据,和/或所述第一上行传输资源用于所述至少一个第二终端设备向所述网络设备发送所述第一数据,k为正整数。
在一种可能的实现中,k的值通过无线资源控制RRC信令指示。
在一种可能的实现中,所述第一消息还用于指示第一配置参数,所述第一配置参数包括所述第一时间窗的起始时刻相对所述第一消息的接收时刻的偏移值和所述第一时间窗时长。所述第二消息还用于指示第二配置参数,所述第二配置参数包括所述第一时间窗的起始时刻相对所述第二消息的接收时刻的偏移值和所述第一时间窗时长。
在一种可能的实现中,所述第一终端设备,用于在所述至少一个第一传输资源上进行信道侦听,以及在所述至少一个第一传输资源中侦听到的空闲的第一传输资源上,向所述至少一个第二终端设备发送所述第一数据。
在一种可能的实现中,所述侦听到的空闲的第一传输资源为LBT成功的第一传输资源。
在一种可能的实现中,所述第一消息包括至少一个标识信息,所述至少一个第一传输资源属于所述至少一个标识信息标识的侧行链路传输资源中的资源。
在一种可能的实现中,所述第一终端设备,还用于在所述第一上行传输资源上,发送第二数据;
所述至少一个第二终端设备,还用于在所述第一上行传输资源上,发送所述第一数据;
所述网络设备,还用于在所述第一上行传输资源上,接收来自所述第一终端设备的所述第二数据,和/或来自所述至少一个第二终端设备的所述第一数据。
第五方面,提供一种通信装置。本申请提供的装置具有实现上述方法方面的功能,其包括用于执行上述方法方面所描述的步骤或功能相对应的部件(means)。所述步骤或功能可以通过软件实现,或硬件(如电路)实现,或者通过硬件和软件结合来实现。
在一种可能的设计中,上述装置包括一个或多个处理单元和通信单元。所述一个或多个处理单元被配置为支持所述装置执行上述方法中的功能。
可选的,所述装置还可以包括一个或多个存储单元,所述存储单元用于与处理单元耦合,其保存装置必要的计算机程序(也称指令)和/或数据。所述一个或多个存储单元可以和处理单元集成在一起,也可以与处理单元分离设置。本申请并不限定。
另一个可能的设计中,上述装置,包括收发器、处理器和存储器。该处理器用于控制收发器或输入/输出电路收发信号,该存储器用于存储计算机程序,该处理器用于运行该存储器中的计算机程序,使得该装置执行第一方面、第二方面、第三方面,或第一方面、第二方面、第三方面中任一种可能实现方式中的方法。
第六方面,提供一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行第一方面、第二方面、第三方面,或第一方面、第二方面、第三方面中任一种可能实现方式中的方法的指令。
第七方面,提供一种计算机程序产品,所述计算机程序产品包括:计算机程序,当所述计算机程序在计算机上运行时,使得计算机执行上述第一方面、第二方面、第三方面,或第一方面、第二方面、第三方面中任一种可能实现方式中的方法。
可选的,所述计算机可以实现通信装置的功能,或所述计算机可以为通信装置。
可选的,所述计算机可以实现第一终端设备或第二终端设备或网络设备的功能,或者所述计算机可以为第一终端设备或第二终端设备或网络设备。
第八方面,提供一种芯片,该芯片包括收发器,用于实现上述各方面的方法中的功能,例如,例如接收或发送上述方法中所涉及的数据和/或信息。
在一种可能的设计中,所述芯片还包括存储器,所述存储器,用于保存计算机程序和/或数据。
第九方面,提供一种通信装置,包括:逻辑电路和接口电路,该接口电路用于与该通信装置之外的模块通信;该逻辑电路用于运行计算机程序以执行上述任一方面所述的方法。该通信装置可以为上述第一方面或第二方面或第三方面中的第一终端设备或第二终端设备或网络设备,或者包含上述第一终端设备或第二终端设备或网络设备的装置,或者上述第一终端设备或第二终端设备或网络设备中包含的装置,比如芯片。
或者,该接口电路可以为代码/数据读写接口电路,该接口电路用于接收计算机程序(计算机程序存储在存储器中,可能直接从存储器读取,或可能经过其他器件)并传输至该接口电路,以使该接口电路运行计算机程序以执行上述任一方面所述的方法。
可选的,该通信装置可以为芯片。
上述第二方面至第九方面可以达到的技术效果,请参照上述第一方面可以带来的技术效果描述,这里不再重复赘述。
附图说明
图1为一种协作传输过程的示意图;
图2为本申请实施例提供的一种通信系统的架构示意图;
图3(a)为配置授权类型1的示意图;
图3(b)为配置授权类型2的示意图;
图4为本申请实施例提供的一种通信过程示意图;
图5为本申请实施例提供的一种配置授权资源的示意图;
图6为本申请实施例提供的一种通信的示意图;
图7为本申请实施例提供的又一种通信的示意图;
图8为本申请实施例提供的一种通信系统的架构示意图;
图9为本申请实施例提供的又一种通信系统的架构示意图;
图10为本申请实施例提供的一种通信装置的结构示意图;
图11为本申请实施例提供的一种通信装置的结构示意图;
图12为本申请实施例提供的一种通信装置的结构示意图;
图13为本申请实施例提供的一种通信装置的结构示意图;
图14为本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
下面将结合附图对本申请作进一步地详细描述。
本申请将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本申请实施例中,“示例的”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
以下对本申请实施例的部分用语进行解释说明,以便于本领域技术人员理解。
1)设备到设备(device to device,D2D)通信,也称侧行链路(Sidelink,SL)通信,指两个用户设备之间直接进行通信的一种通信方式。D2D通信技术可以使一定范围内的用户设备直接通信,降低对服务基站的负荷。D2D通信在不同场景中有着不同的应用,例如蓝牙连接或无线保真(wireless fidelity,Wi-Fi)网络中的Wi-Fi直连(direct connection)。其中,蓝牙是一种短距离时分双工通信技术。Wi-Fi是一种无线通信技术,Wi-Fi直连是一种允许无线网络中的设备无需通过无线路由器即可相互连接的通信技术。
第三代移动通信伙伴项目(3rd generation partnership project,3GPP)在长期演进(long term evolution,LTE)中引入了车间通信长期演进技术(long term evolution-vehicle,LTE-V)的D2D通信技术,将D2D通信应用在车联网中,用于车与车之间或车与其他设备之间的通信。第五代移动通信(5th Generation,5G)的接入网技术被称为新无线(new radio access technology,NR),旨在比第四代移动通信(4th-generation,4G)技术提供更快的通信速率和更多的接入数量,5G协议引入了NR-车与任何事物通信(vehicle-to-everything,V2X)技术,作为对LTE-V2X技术的增强。
2)终端设备,也称用户设备(UE),是一种具有无线收发功能的设备,可以经无线接入网(radio access network,RAN)中的接入网设备(或者也可以称为接入设备)与一个或多个核心网(core network,CN)设备(或者也可以称为核心设备)进行通信。
用户设备也可称为接入终端、终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、用户代理或用户装置等。用户设备可以部署在陆地上, 包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。用户设备可以是蜂窝电话(cellular phone)、无绳电话、会话启动协议(session initiation protocol,SIP)电话、智能电话(smart phone)、手机(mobile phone)、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)等。或者,用户设备还可以是具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它设备、车载设备、可穿戴设备、无人机设备或物联网、车联网中的终端、5G网络以及未来网络中的任意形态的终端、中继用户设备或者未来演进的公共陆地移动网(public land mobile network,PLMN)中的终端等。其中,中继用户设备例如可以是5G家庭网关(residential gateway,RG)。用户设备还可以是虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。本申请实施例对终端设备的类型或种类等并不限定。
基于UE协作进行上行传输的场景中,用户设备可以包括源UE(SUE)和协作UE(CUE)等。为了便于描述,基于UE协作进行上行传输的场景在下文中称为协作传输场景,其中,协作传输场景中可以包括至少一个SUE和至少一个CUE。作为一个示例,协作传输场景中包括一个SUE和多个CUE。
3)网络设备,指可以为终端提供无线接入功能的设备。其中,网络设备可以支持至少一种无线通信技术,例如LTE、NR、宽带码分多址(wideband code division multiple access,WCDMA)、Wi-Fi等。
例如网络设备可以包括接入网设备。示例的,网络设备包括但不限于:5G基站(generation nodeB,gNB)、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved node B、或home node B,HNB)、基带单元(baseband unit,BBU)、收发点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心、小站、微型站等。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU)、和/或分布单元(distributed unit,DU),或者网络设备可以为中继站、接入点(Access Point,AP)、车载设备、终端、可穿戴设备以及未来移动通信中的网络设备或者未来演进的公共移动陆地网络(public land mobile network,PLMN)中的网络设备等。
又如,网络设备可以包括核心网(CN)设备,核心网设备例如包括接入和移动性管理功能(access and mobility management function,AMF)等。
4)协作传输,即基于UE协作的上行传输,可以提升上行传输的效率和可靠性。如图1所示,协作传输包括至少两个阶段(Stage):Stage1,SUE在基站配置的传输资源上,向CUE发送待传输数据,其中待传输数据为SUE需要发送的上行数据;Stage2,SUE和CUE将上行数据发送给基站,其中CUE的上行数据中包括来自SUE的待传输数据。Stage1中,基站配置的传输资源可以为SL链路传输资源,SUE可以通过SL链路向CUE直接发送待传输数据。来自SUE的待传输的数据在该Stage1中也可以看作是SL数据。进行协作传输 的SUE和CUE可以看作为一个虚拟(Virtual)UE向基站发送数据,站在基站的角度,可以理解为基站接收来自一个virtual UE的数据。
SUE向基站发送的上行数据,和CUE向基站发送的上行数据可以相同或不同。例如SUE将第一数据发送给CUE,CUE将该第一数据发送给基站,而SUE将第二数据发送给基站。若第一数据和第二数据相同,可以提高上行数据传输的可靠性。若所述第一数据和所述第二数据不同,可以提高上行数据传输的效率。在图1中SUE发送给两个CUE的数据可以相同或不同,在本申请实施例中不做限制。
一种可能的场景中,5G的工业场景对上行提出超大容量的要求,上行速率需求可达1Gbps(吉比特每秒)。针对大数据包传输,SUE可能存在天线数/上行带宽受限的情况,这时SUE可以将自身需要发送的部分数据发送给CUE。CUE可以将SUE需要发送的部分数据发送给基站,提升上行数据传输的效率。这种场景下,SUE和CUE发送的上行数据不同。
5)配置授权(Configured Grant,CG),是NR中R15版本为了减少调度时延引入的为用户设备配置周期性的传输资源的一种机制。用户设备可以在网络设备预先配置的传输资源中发送数据,而不必等待基站动态调度的传输资源,节省调度时延,减少基站由于调度信令导致的传输时延,以及减少用户设备解调调度信令导致的传输时延。
本申请实施例中将configured grant配置的周期性的传输资源称为CG资源。
协作传输场景中,CG资源可以用于SUE向CUE发送数据,换句话说,SUE可以在基站配置的CG资源上向CUE发送数据。可选的,CG资源可以用于SUE向基站发送数据,换句话说,SUE可以在基站配置的CG资源上向基站发送数据。
6)用户网络通用接口(user to network interface-universal,Uu)Grant消息,是用户设备和基站之间的一种消息,该Uu Grant消息用于分配上行传输资源,该上行传输资源用于用户设备向基站发送上行数据。在协作传输场景的Stage2中,SUE和/或CUE可以在该Uu Grant消息分配的上行传输资源上,向基站发送上行数据。
可选的,上行传输资源可以为物理上行共享信道(physical uplink shared channel,PUSCH)。
Uu Grant消息为下行控制信息(downlink control information,DCI)消息,例如Uu Grant消息为DCI format 0_0或DCI format 0_1。其中DCI format 0_1中有保留(Reserved)域。
本申请中的“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本申请中所涉及的多个,是指两个或两个以上。
另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
本申请实施例的技术方案可以应用于各种通信系统(也称移动通信系统或无线通信系统)。通信系统通常包括但不限于4G网络、LTE系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、5G通信系统或NR以及未来的其他通信系统如6G等。本申请也可以应用于其它通信系统,如短距通信系统。例如短距通信系统包括Wi-Fi 网络。
如图2所示为一种可能的通信系统架构,包括一个或多个网络设备(如图2中的基站),和一个或多个终端设备(如图2中的UE1~UE6)。基站可以向UE1~UE6发送数据,UE1~UE6也可以将上行数据发送给基站。可选的,UE4、UE5和UE6可以组成一个通信系统。在该通信系统中,基站可以发送下行数据给UE1、UE2和UE5等,UE5可以将下行数据转发给UE4和UE6。例如UE5可以为客户终端设备(customer-premises equipment,CPE),UE和基站之间的数据可以通过CPE转发。
可选的,网络设备和终端设备可以工作在授权频段,或者工作在非授权(Unlicensed)频段。例如5G NR Unlicensed系统,Wi-Fi通信系统中,网络设备和终端设备在非授权频段通信。在本申请实施例中,对网络设备和终端设备(包括第一终端设备和/或第二终端设备)在授权频段或非授权频段通信不做限制。
下面对NR中Configured Grant配置方式进行简单说明。在NR中,Configured Grant配置方式包括类型(Type)1和Type2。
Type1的配置方式中,无线资源控制(radio resource control,RRC)信令用于配置与CG资源相关的参数,以及由RRC信令激活和去激活CG资源。其中RRC信令包括以下一个或多个参数:CG资源的解调参考信号(demodulation reference signal DMRS),调制和编码方案(modulation and coding scheme,MCS),时域资源,频域资源,CG资源的周期(periodicity),和重复次数(repK)等。
如图3(a)所示,每个块表示一个传输资源单位(如一个时隙),UE在t1时刻接收来自基站的RRC1信令,UE解析RRC1信令和准备后续的数据需要的时长为T1。该RRC1信令用于配置与CG资源相关的参数,例如该RRC1信令配置的CG资源的周期为T2。该RRC1信令还用于激活CG资源。UE在激活的CG资源上进行协作传输,可能的CG资源如在图3(a)中黑块所示,例如包括t2,t3,t4和t5时刻的CG资源。UE在t6时刻接收来自基站的RRC2信令,该RRC2信令用于去激活CG资源,去激活的CG资源(如t6时刻之后的CG资源)不用于协作传输。
用于激活传输资源的RRC信令和用于去激活传输资源的RRC信令之间的时延较大,不适合要求快速响应的协作传输场景。从RRC激活传输资源到RRC去激活传输资源的时间内,即使没有传输需求,传输资源一直保持有效,该传输资源不能被网络设备释放用于其他UE或下行传输等使用,造成资源浪费。
Type2的配置方式中,RRC信令和DCI共同配置与CG资源相关的参数。其中与CG资源相关的参数中与传输相关的参数由DCI配置,例如DCI包括以下一个或多个参数:时域资源,频域资源和MCS等。除与传输相关的参数之外的其余参数由RRC信令配置,例如RRC信令包括以下一个或多个参数:CG资源的DMRS,CG资源的periodicity,和repK等。在Type2中,由DCI激活和去激活CG资源。其中DCI携带在物理下行控制信道(physical downlink control channel,PDCCH)中。
如图3(b)所示,每个块表示一个传输资源单位(如一个时隙),UE在t7时刻接收来自基站的RRC信令。该RRC信令用于配置与CG资源相关的部分参数,例如该RRC信令配置的CG资源的周期为T4。UE在t8时刻接收来自基站的DCI1,该DCI1用于配置与CG资源相关的部分参数,还用于激活CG资源。UE解析DCI1和准备后续的数据需要的时长 为T3。UE在激活的CG资源上进行协作传输,可能的CG资源如图3(b)中黑块所示,例如包括t9,t10,t11和t12时刻的CG资源。UE在t13时刻接收来自基站的DCI2,该DCI2用于去激活CG资源,去激活的CG资源(如t13时刻之后的CG资源)不用于协作传输。
从DCI激活传输资源到DCI去激活传输资源的时间内,即使没有传输需求,传输资源一直保持有效,不能被其他UE或网络设备使用,造成资源浪费。
基于此,本申请实施例提供一种发送、接收数据的方法、资源指示方法。网络设备向第一终端设备发送第一消息,第一终端设备根据第一消息的指示,在第一时间窗内的至少一个第一传输资源上向至少一个第二终端设备发送第一数据,其中至少一个第一传输资源属于预配置的侧行链路传输资源中的资源。这样,在第一时间窗内,第一终端设备可以利用网络设备预配置的部分或全部传输资源向至少一个第二终端发送第一数据。第一时间窗可以动态配置,因此可以减少传输资源的占用和浪费,可以提高资源调度的灵活性。
本申请实施例提供的发送、接收数据的方法、资源指示方法可以应用于图2所示的通信系统中。下面参考图4,以一个可能的通信过程,对本申请实施例提供的发送、接收数据的方法、资源指示方法进行说明,该过程包括:
S401:网络设备向第一终端设备发送第一消息,第一终端设备接收第一消息。
S402:网络设备向至少一个第二终端设备发送第二消息,至少一个第二终端设备接收第二消息。
在协作传输场景中,一个或多个第二终端设备为第一终端设备的协作终端设备。在本申请实施例中,主要以网络设备为接入网设备(例如基站),第一终端设备为SUE,一个或多个第二终端设备为CUE进行说明。可以理解的是,在本申请实施例中主要以一个第二终端设备进行说明,对于多个第二终端设备的实现过程相似,不进行赘述。
第一消息用于指示第一时间窗,对于第一终端设备来说,第一时间窗用于该第一终端设备在第一时间窗内的至少一个第一传输资源上向至少一个第二终端设备发送第一数据。第二消息用于指示第一时间窗,对于至少一个第二终端设备来说,第一时间窗用于至少一个第二终端设备接收第一数据。在协作传输场景中,第一数据属于协作传输的数据。下面主要对第一消息进行说明,第二消息与第一消息类似,相似之处不做赘述。
第一消息可以为信令消息,或者第一消息为信令消息中的域(field)。这里所涉及的信令消息可以复用现有的信令消息,或者为新构建的信令消息。可选的,所述信令消息可以为DCI,DCI作为层1(L1)的消息,L1指协议层中的最底层,即物理层,由于RRC信令需要物理层和高层进行转发和处理,而L1消息可以在物理层内直接响应,因此L1消息可以被快速响应处理。因此终端设备可以快速响应处理,更适用于对快速响应要求高的协作传输场景,并且可以进一步提高资源调度和协作传输的效率和灵活性。例如信令消息可以为Uu Grant消息,第一消息可以为Uu Grant消息中的域,该Uu Grant消息为DCI消息。可选的,可以在Uu Grant消息中现有的域的基础上进行补充该第一消息,该第一消息占用1比特(bit)或n bits,n为大于1的正整数。例如在Uu Grant消息的保留域中添加第一消息,即该第一消息携带在发送给第一终端设备的Uu Grant消息中,例如在DCI format 0_1中添加一个“SL_Configured_enable”域,该“SL_Configured_enable”可以使用DCI format 0_1中的保留(Reserved)域。这里Uu Grant消息可以用于调度终端设备之间的传输资源,同时调度终端设备与基站之间的上行传输资源,即可以同时调度Stage1和Stage2的资源, 提高传输资源调度的灵活性,以及进一步减少信令开销。与第一消息类似的,第二消息也可以为信令消息,或者第二消息可以为信令消息中的field。例如可以在Uu Grant消息的保留域中添加该第二消息,即该第二消息携带在发送给第二终端设备的Uu Grant消息中。
可选的,第一消息用于激活第一时间窗内的全部传输资源,或者第一消息用于激活处于第一时间窗内的至少一个第一传输资源。其中至少一个第一传输资源属于预配置的侧行链路传输资源中的资源。可选的,侧行链路传输资源可以为周期性的侧行链路传输资源,或者侧行链路传输资源可以为非周期性的侧行链路传输资源。处于第一时间窗内的被激活的传输资源(如全部传输资源或至少一个第一传输资源)处于激活状态(也称有效状态),激活状态的传输资源可以用于所述第一终端设备向至少一个第二终端设备发送数据。可选的,在第一时间窗以外的传输资源处于非激活状态(也称无效状态,或者失效状态),非激活状态的传输资源不用于第一终端设备向至少一个第二终端设备发送数据。因此处于第一时间窗内的传输资源被占用,第一时间窗外的传输资源未被占用,可以节约传输资源,进一步减少传输资源的占用和浪费。相比于激活传输资源和去激活传输资源需要分别通过信令指示,本申请实施例中,网络设备可以可选的不发送额外的去激活信令,进一步降低信令开销和进一步提高资源调度的灵活性。
若至少一个第一传输资源属于预配置的周期性的侧行链路传输资源。该周期性的侧行链路传输资源可以为CG资源。周期性的侧行链路传输资源可以预先按照协议默认配置给第一终端设备,或者可以由网络设备通过半静态或动态信令预配置给第一终端设备。例如,网络设备向第一终端设备发送第三消息(如第三消息可以为RRC信令),第三消息用于配置多个周期性的侧行链路传输资源,不同周期性的侧行链路传输资源可以通过不同标识进行区分。不同周期性的侧行链路传输资源所对应的时长和周期可以不同。若第三消息用于配置多个CG资源,如图5所示,多个CG资源通过不同编号进行区分,例如CG#1,CG#2和CG#3,CG#1,CG#2和CG#3的时长和周期不同。
可选的,周期性的侧行链路传输资源也可以预先按照协议默认配置给第二终端设备,或者可以由网络设备通过半静态或动态信令预配置给第二终端设备。
一种可能的方式中,第一消息占用1bit。当该1bit为1时,第一消息用于激活一个第一传输资源。或者,当该1bit为0时,第一消息用于激活一个第一传输资源。
另一种可能的方式中,第一消息占用n bits,用于激活部分处于第一时间窗内在时域上最靠前(即按照时间先后顺序,在时域上最靠前)的传输资源,n为大于或者等于1的整数。例如当该n bits全为1时,第一消息用于激活处于第一时间窗内在时域上最靠前的2 n个第一传输资源。
以下,对第一时间窗进行示例性地描述,第一时间窗可以通过显式或隐式的方式进行指示。
在通过显式方式指示第一时间窗时,第一消息还可以用于指示第一配置参数。第一配置参数包括第一时间窗的起始时刻相对第一消息的接收时刻的偏移值和第一时间窗时长。第一时间窗时长可以用L表示。第一终端设备可以根据第一配置参数,确定第一时间窗。第一时间窗的起始时刻相对第一消息的接收时刻的偏移值可以用于确定第一时间窗的起始时刻,例如第一时间窗的起始时刻相对第一消息的接收时刻的偏移值为k(单位可以为时隙或符号等)。可选的,偏移值为第一时间窗的起始时刻相对第一消息的最后一个符号的接收时刻的偏移值。例如将第一终端设备从接收到第一消息的最后一个符号所在的时隙 作为第1个时隙,从该第1个时隙开始,确定在k个时隙之后的第(k+1)个时隙,将该第(k+1)个时隙作为第一时间窗的起始时刻,即该第一时间窗的起始时刻位于该第(k+1)个时隙。第一时间窗的偏移值k可以与以下一个或多个信息有关:终端设备解调第一消息的时长、第一终端准备第一数据的时长。其中终端设备解调第一消息的时长可以取值为k1,k可以大于或等于k1,如此,第一终端可以在收到第一消息前将第一数据准备好。另外由于终端设备的能力不同,解调第一消息所花费的时长也可能不同,因此可选的,k值可以根据第一终端设备和第二终端设备解调第一消息所需要的最长的时长k2确定,以保证所有终端设备都能够准确解调第一消息。k值为正整数。可选的,第一终端设备和/或至少一个第二终端设备可以上报自身解调第一消息所需要的时长。例如,第一终端设备和/或至少一个第二终端设备在初始接入网络设备时上报。第一时间窗的时长L可以与第一终端所要发送的第一数据的大小相关,第一时间窗的结束时刻可以早于第一上行传输资源。可选的,第一时间窗时长L的单位可以为毫秒(millisecond,ms),或者时隙(slot),或者符号(symbol)等。与第一消息类似的,第二消息可以用于指示第二配置参数,第二配置参数包括第一时间窗的起始时刻相对第二消息的接收时刻的偏移值和第一时间窗时长。至少一个第二终端设备可以根据第一配置参数,确定第一时间窗。若网络设备在同一时刻(如同一个时隙)发送第一消息和第二消息,则第一终端设备和至少一个第二终端设备可以在同一时刻分别接收到第一消息和第二消息,第一终端设备和至少一个第二终端设备确定出的第一时间窗的起始时刻相同。
在通过隐式方式指示第一时间窗时,第一时间窗的起始时刻可以位于接收第一消息的k个时隙后,第一时间窗的结束时刻可以位于第一上行传输资源的起始时刻。第一终端设备在接收到第一消息后,可以确定第一时间窗的起始时刻和结束时刻。第一上行传输资源可以为Uu Grant消息分配的上行传输资源(如PUSCH资源)。k值可以预配置在第一终端设备和至少一个第二终端设备中,或者k值通过RRC信令指示。例如网络设备向第一终端设备发送第一RRC信令,该第一RRC信令包括k的值,或者该第一RRC信令包括用于确定k的指示的信息,第一终端设备接收到第一RRC信令后,将接收第一消息的k个时隙后,确定第一时间窗的起始时刻。可选的,k的取值可以等于k2的取值。与第一消息类似的,至少一个第二终端设备在接收到第二消息后,可以确定第一时间窗的起始时刻和结束时刻。第一时间窗的起始时刻可以位于接收第二消息的k个时隙后,第一时间窗的结束时刻可以位于第一上行传输资源的起始时刻。k值可以预配置在至少一个第二终端设备中,或者k值通过RRC信令指示。例如网络设备向至少一个第二终端设备发送第二RRC信令,该第二RRC信令包括k的值,或者该第二RRC信令包括用于确定k的指示的信息。
可选的,第一消息还可以包括至少一个标识信息,至少一个第一传输资源属于至少一个标识信息标识的侧行链路传输资源。也就是说,网络设备可以通过第一消息指示第一终端设备在哪个/哪些预配置的侧行链路传输资源上进行数据的发送。可选的,第二消息还可以包括至少一个标识信息,网络设备可以通过第二消息指示至少一个第二终端设备在哪个/哪些预配置的侧行链路传输资源上进行数据的接收。若所述第一消息中未包括该至少一个标识信息,第一终端设备可以选取距离第一时间窗的起始时刻最近的侧行链路传输资源,或者第一终端设备可以选取任意(一个或多个)侧行链路传输资源。
S403:第一终端设备在第一时间窗内向至少一个第二终端设备发送第一数据,至少一个第二终端设备在第一时间窗内接收第一数据。
若第一时间窗内的全部传输资源被激活,第一终端设备在第一时间窗内的全部传输资源上发送第一数据,对应的,至少一个第二终端设备可以在第一时间窗内的全部传输资源上接收第一数据。
若第一时间窗内的部分传输资源被激活,例如至少一个第一传输资源被激活,第一终端设备可以在第一时间窗内的至少一个第一传输资源上发送第一数据。至少一个第二终端设备可以在第一时间窗内的至少一个第一传输资源上接收第一数据(若第二终端设备中预配置有与第一终端设备相同的周期性的侧行链路传输资源),或者至少一个第二终端设备可以在第一时间窗内盲检第一数据(若至少一个第二终端设备中未配置与第一终端设备有相同的周期性的侧行链路传输资源)。
可选的,第一终端设备可以在属于上述至少一个标识信息标识的侧行链路传输资源的至少一个第一传输资源上发送第一数据。例如,第一终端设备中预配置有CG#1,CG#2和CG#3,第一消息包括的至少一个标识信息为CG#1。终端设备在处于第一时间窗内,且属于CG#1的至少一个第一传输资源上发送第一数据。对应的,若至少一个第二终端设备中预配置有相同的周期性的侧行链路传输资源,至少一个第二终端设备还可以在处于第一时间窗内,且属于CG#1的至少一个第一传输资源上接收第一数据。又如第一消息包括的至少一个标识信息为CG#1和CG#2,终端设备可以在处于第一时间窗内,且属于CG#1和CG#2的至少一个第一传输资源上发送第一数据,或者终端设备可以在处于第一时间窗内,且属于CG#1或CG#2的至少一个第一传输资源上发送第一数据。
第一数据可以通过物理侧行链路控制信道(physical side link control channel,PSCCH)承载。
一种可能的场景如图6所示,第一终端设备中预配置有CG#1,CG#2和CG#3,在图6中CG#1包括第一传输资源11,第一传输资源12和第一传输资源13,CG#2包括第一传输资源21,第一传输资源22和第一传输资源23,CG#3包括第一传输资源31和第一传输资源32。至少一个第二终端设备中未配置CG资源。网络设备向第一终端设备发送Uu Grant消息,Uu Grant消息包括1bit的指示信息,且Uu Grant消息用于配置PUSCH资源。第一终端设备在t61时刻接收Uu Grant消息的最后一个符号,确定t61时刻之后的距离k个时隙的t62时刻为第一时间窗的起始时刻,并确定PUSCH资源起始时刻t63为第一时间窗的结束时刻。第一终端设备可以选取距离接收到Uu Grant消息的k个时隙之后最近的CG资源,即CG#1,其中CG#1位于第一时间窗之内的第一传输资源为第一传输资源12。第一终端设备在第一传输资源12上发送第一数据。网络设备也可以向至少一个第二终端设备发送Uu Grant消息,至少一个第二终端设备也可以在t61时刻接收Uu Grant消息的最后一个符号,确定t61时刻之后的距离k个时隙的t62时刻为第一时间窗的起始时刻,并确定PUSCH资源起始时刻t63为第一时间窗的结束时刻。由于至少一个第二终端设备中未配置CG资源,因此至少一个第二终端设备在所述第一时间窗内盲检该第一数据。
另一种可能的场景如图7所示,第一终端设备工作在非授权频段,即第一终端设备中预配置的侧行链路传输资源为非授权频段的资源。和图6相似的,第一终端设备中预配置有CG#1,CG#2和CG#3,在图7中CG#1包括第一传输资源11,第一传输资源12和第一传输资源13,CG#2包括第一传输资源21,第一传输资源22和第一传输资源23,CG#3包括第一传输资源31和第一传输资源32。至少一个第二终端设备中未配置CG资源。网络设备向第一终端设备发送Uu Grant消息,Uu Grant消息包括1bit的指示信息,且Uu Grant 消息用于配置PUSCH资源。第一终端设备在t71时刻接收Uu Grant消息的最后一个符号,确定t71时刻之后的距离k个时隙的t72时刻为第一时间窗的起始时刻,并确定PUSCH资源起始时刻t73为第一时间窗的结束时刻。但是在图7中,由于第一终端设备工作在非授权频段,第一终端设备可以进行LBT。第一终端设备可以对处于第一时间窗内的至少一个第一传输资源分别尝试信道侦听。第一终端设备在第一时间窗内的空闲的第一传输资源上,向至少一个第二终端设备发送第一数据,而无法在被占用的第一传输资源上发送数据。可选的,空闲的第一传输资源为LBT成功的第一传输资源。例如图7中,第一终端在CG#1的第一传输资源12上LBT失败,第一终端设备继续在CG#2的第一传输资源22上进行LBT,这样可以为第一终端设备提供多次LBT机会,提高第一终端设备发送数据的成功率,保证发送数据的可靠性。由于至少一个第二终端设备中未配置CG资源,因此至少一个第二终端设备在第一时间窗内盲检第一数据。
S404:至少一个第二终端设备在第一上行传输资源上发送第一数据,网络设备可以接收到来自至少一个第二终端设备的第一数据。
S405:第一终端设备在第一上行传输资源上发送第二数据,网络设备可以接收到来自第一终端设备的第二数据。
其中第一数据属于协作传输的数据。第一数据的内容和第二数据的内容可以相同或不同。
可选的,第一上行传输资源为网络设备通过Uu Grant消息调度的PUSCH资源。
由于非授权场景下,信道接入的不确定性,第二终端设备有可能不能成功地接收第一数据,换句话说,至少一个第二终端设备可能成功接收第一数据,或者至少一个第二终端设备可能未成功接收第一数据。若至少一个第二终端设备成功接收第一数据,该至少一个第二终端设备可以在第一上行传输资源上向网络设备发送第一数据。可选的,若至少一个第二终端设备未成功接收第一数据,即至少一个第二终端设备接收第一数据失败,至少一个第二终端设备可以不在第一上行传输资源上发送第一数据,或者至少一个第二终端设备向网络设备发送非确认(NACK)消息。网络设备确认至少一个第二终端设备未成功接收第一数据后,可以重新调度第一上行传输资源(例如重新发送Uu Grant消息,第一终端设备重新发送第一数据,至少一个第二终端设备重新接收第一数据),直至该至少一个第二终端设备成功接收第一数据,或者网络设备接收到来自至少一个第二终端设备的第一数据。
可选的,在第一上行传输资源上,若第一终端设备无法向至少一个第二终端设备发送协作传输时的全部数据,第一终端设备可以请求网络设备重新调度第一上行传输资源,直至第一终端设备将协作传输时所需的全部数据发送给至少一个第二终端设备。
通过本申请实施例提供的资源调度方法,SUE在第一时间窗内可以实现数据的发送,该第一时间窗可以动态配置,因此可以减少传输资源的占用和浪费,提高资源调度的灵活性。可选的除第一时间窗外的传输资源处于非激活状态,不用于终端设备之间的数据发送,可以用于其他用途,可以减少传输资源的占用和浪费。如网络设备可以根据业务需求一次激活周期性的侧行链路传输资源中的部分资源(该部分资源为非周期性的侧行链路传输资源),减少传输资源的占用和浪费。尤其是针对非周期,突发性的数据传输,可以减少传输资源的占用和浪费。可选的CUE可以在除第一时间窗外的传输资源上不进行数据的接收,降低CUE的接收功耗。可选的网络设备不必须额外发送去激活传输资源的指令,还可以减少信令开销,进一步提高传输资源调度的灵活性。如果第一消息通过DCI消息发送, 可以进一步提高传输资源的调度效率,以及进一步提高传输资源调度的灵活性。
基于与上述资源调度方法的同一技术构思,本申请实施例还提供了一种通信系统。如图8所示,所述通信系统800包括网络设备801,第一终端设备802和至少一个第二终端设备803。所述网络设备801,第一终端设备802和至少一个第二终端设备803可以实现上述方法实施例中描述的方法。
例如,所述网络设备801,用于向第一终端设备发送第一消息,所述第一消息用于指示第一时间窗,以及向至少一个第二终端设备发送第二消息,第二消息用于指示第一时间窗。
所述第一终端设备802,用于接收所述第一消息,在所述第一时间窗内的至少一个第一传输资源上向所述至少一个第二终端设备803发送第一数据,所述至少一个第一传输资源属于预配置的侧行链路传输资源中的资源。
所述至少一个第二终端设备803,用于接收所述第二消息,在所述第一时间窗内接收所述第一数据。
在一个实现方式中,所述第一时间窗的起始时刻位于接收所述第一消息或第二消息的k个时隙后,所述第一时间窗的结束时刻位于第一上行传输资源之前,所述第一上行传输资源用于所述第一终端设备802向所述网络设备801发送第二数据,和/或所述第一上行传输资源用于所述至少一个第二终端设备803向所述网络设备801发送所述第一数据,k为正整数。
在一个实现方式中,k的值通过RRC信令指示。
在一个实现方式中,所述第一消息还可以指示第一配置参数,所述第一配置参数包括所述第一时间窗的起始时刻相对所述第一消息的接收时刻的偏移值和所述第一时间窗时长。所述第二消息还用于指示第二配置参数,所述第二配置参数包括所述第一时间窗的起始时刻相对所述第二消息的接收时刻的偏移值和所述第一时间窗时长。
在一个实现方式中,所述第一终端设备802,用于在所述至少一个第一传输资源上进行信道侦听,以及在所述至少一个第一传输资源中侦听到的空闲的第一传输资源上,向所述至少一个第二终端设备803发送所述第一数据。
在一个实现方式中,所述侦听到的空闲的第一传输资源为LBT成功的第一传输资源。
在一个实现方式中,所述第一消息包括至少一个标识信息,所述至少一个第一传输资源属于所述至少一个标识信息标识的侧行链路传输资源中的资源。
在一个实现方式中,所述第一终端设备802,还用于在所述第一上行传输资源上,发送第二数据。
所述至少一个第二终端设备803,还用于在所述第一上行传输资源上,发送所述第一数据。
所述网络设备801,还用于在所述第一上行传输资源上,接收来自所述第一终端设备802的所述第二数据,和/或来自所述至少一个第二终端设备803的所述第一数据。
可选的,如图9所示,为本申请实施例提供的终端设备910和网络设备920的结构示意图。所述终端设备910包括第一终端设备和/或至少一个第二终端设备。图9中未示出第一终端设备和至少一个第二终端设备之间的结构示意图。所述网络设备920可以为接入网设备。
其中,终端设备910包括至少一个处理器(图9中示例性的以包括一个处理器9101为例进行说明)和至少一个收发器(图9中示例性的以包括一个收发器9103为例进行说明)。可选的,终端设备910还可以包括至少一个存储器(图9中示例性的以包括一个存储器9102为例进行说明)、至少一个输出设备(图9中示例性的以包括一个输出设备9104为例进行说明)和至少一个输入设备(图9中示例性的以包括一个输入设备9105为例进行说明)。
处理器9101、存储器9102和收发器9103通过通信线路相连接。通信线路可包括一通路,在上述组件之间传送信息。
处理器9101可以是一个通用中央处理器(central processing unit,CPU)、微处理器、特定应用集成电路(application-specific integrated circuit,ASIC)、一个或多个用于控制本申请方案程序执行的集成电路、通用处理器、数字信号处理器(digital signal processor,DSP)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以存储介质中,该存储介质位于存储器9102。
存储器9102可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。存储器可以是独立存在,通过通信线路与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器9102用于存储执行本申请方案的计算机执行指令,并由处理器9101来控制执行。处理器9101用于执行存储器9102中存储的计算机执行指令,从而实现本申请下述实施例提供的资源调度方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码或者计算机程序代码,本申请实施例对此不作具体限定。
输出设备9104和处理器9101通信,可以以多种方式来显示信息。例如,输出设备9104可以是液晶显示器(liquid crystal display,LCD),发光二极管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备9105和处理器9101通信,可以以多种方式接收用户的输入。例如,输入设备9105可以是鼠标、键盘、触摸屏设备或传感设备等。
收发器9103可以使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网、无线接入网(radio access network,RAN)、或者无线局域网(wireless local area networks,WLAN)等。收发器9103包括发射机(transmitter,Tx)和接收机(receiver,Rx)。
存储器9102可以是独立存在,通过通信线路与处理器9101相连接。存储器9102也可以和处理器9101集成在一起。
其中,存储器9102用于存储执行本申请方案的计算机执行指令,并由处理器9101来控制执行。具体的,处理器9101用于执行存储器9102中存储的计算机执行指令,从而实现本申请实施例中所述的资源调度方法。
或者,可选的,本申请实施例中,也可以是处理器9101执行本申请下述实施例提供的信号生成方法中的处理相关的功能,收发器9103负责与其他设备或通信网络通信,本申请实施例对此不作具体限定。
网络设备920包括至少一个处理器(图9中示例性的以包括一个处理器9201为例进行说明)、至少一个收发器(图9中示例性的以包括一个收发器9203为例进行说明)和至少一个网络接口(图9中示例性的以包括一个网络接口9204为例进行说明)。可选的,网络设备920还可以包括至少一个存储器(图9中示例性的以包括一个存储器9202为例进行说明)。其中,处理器9201、存储器9202、收发器9203和网络接口9204通过通信线路相连接。网络接口9204用于通过链路(例如S1接口)与核心网设备连接,或者通过有线或无线链路(例如X2接口)与其它网络设备的网络接口进行连接(图9中未示出),本申请实施例对此不作具体限定。另外,处理器9201、存储器9202和收发器9203的相关描述可参考终端设备910中处理器9101、存储器9102和收发器9103的描述,在此不再赘述。
可以理解的是,图9所示的结构并不构成对终端设备910以及网络设备920的具体限定。比如,在本申请另一些实施例中,终端设备910或网络设备920可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
基于与上述资源调度方法的同一技术构思,本申请实施例还提供了一种通信装置。如图10所示,所述通信装置1000中包含接收单元1001和发送单元1002,所述通信装置1000可以用于实现上述方法实施例中描述的方法。装置1000应用于第一终端设备。所述第一终端设备可以为SUE。
具体的,所述接收单元1001,用于接收第一消息,所述第一消息用于指示第一时间窗;
所述发送单元1002,还用于在所述第一时间窗内的至少一个第一传输资源上,向所述至少一个第二终端设备发送第一数据,所述至少一个第一传输资源属于预配置的侧行链路传输资源中的资源。
在一个实现方式中,所述第一时间窗的起始时刻位于接收所述第一消息k个时隙后,所述第一时间窗的结束时刻位于第一上行传输资源之前,所述第一上行传输资源用于所述第一终端设备向网络设备发送第二数据,k为正整数。
在一个实现方式中,k的值通过RRC信令指示。
在一个实现方式中,所述第一消息还用于指示第一配置参数,所述第一配置参数包括所述第一时间窗的起始时刻相对所述第一消息的接收时刻的偏移值和所述第一时间窗时 长。
在一个实现方式中,该通信装置还可以包括:确定单元1003,用于确定所述第一时间窗的起始时刻和结束时刻。
在一个实现方式中,该通信装置还可以包括侦听单元1004,用于在所述至少一个第一传输资源上进行信道侦听;
所述发送单元1002,还用于在所述至少一个第一传输资源中侦听到的空闲的第一传输资源上,向所述至少一个第二终端设备发送所述第一数据。
在一个实现方式中,所述侦听到的空闲的第一传输资源为LBT成功的第一传输资源。
在一个实现方式中,所述第一消息包括至少一个标识信息,所述至少一个第一传输资源属于所述至少一个标识信息标识的侧行链路传输资源中的资源。
在一个实现方式中,所述发送单元1002,还用于在所述第一上行传输资源上,向所述网络设备发送所述第二数据。
如图11所示,所述通信装置1100中包含接收单元1101和确定单元1102,所述通信装置1100可以用于实现上述方法实施例中描述的方法。装置1100应用于第二终端设备。所述第二终端设备可以为CUE。
具体的,接收单元1101,用于接收第二消息,所述第一消息用于指示第一时间窗;
所述确定单元1102,用于确定所述第二消息;
所述接收单元1101,还用于在所述第一时间窗内,接收来自第一终端设备的第一数据。
在一个实现方式中,所述第一时间窗的起始时刻位于接收所述第二消息的k个时隙后,所述第一时间窗的结束时刻位于第一上行传输资源之前,所述第一上行传输资源用于所述第二终端设备向网络设备发送所述第一数据,k为正整数。
在一个实现方式中,k的值通过RRC信令指示。
在一个实现方式中,所述第二消息还可以指示第二配置参数,所述第二配置参数包括所述第一时间窗的起始时刻相对所述第二消息的接收时刻的偏移值和所述第一时间窗时长。
在一个实现方式中,所述确定单元1102,还用于确定所述第一时间窗的起始时刻和结束时刻。
在一个实现方式中,该通信装置还可以包括发送单元1103,用于在所述第二上行传输资源上,向所述网络设备发送所述第一数据。
如图12所示,所述通信装置1200中包含确定单元1201和发送单元1202,所述通信装置1200可以用于实现上述方法实施例中描述的方法。装置1200应用于网络设备。
具体的,所述确定单元1201,用于确定第一消息,第一消息用于指示第一时间窗;确定第二消息,第二消息用于指示第一时间窗;
所述发送单元1202,用于向第一终端设备发送第一消息,向至少一个第二终端设备发送第二消息。
第一时间窗用于第一终端设备在第一时间窗内的至少一个第一传输资源上向至少一个第二终端设备发送第一数据,所述至少一个第一传输资源属于预配置的侧行链路传输资源中的资源。和/或第一时间窗用于指示所述至少一个第二终端设备在所述第一时间窗内接收来自所述第一终端设备的所述第一数据。
在一个实现方式中,所述第一时间窗的起始时刻位于发送所述第一消息或所述第二消 息的k个时隙后,所述第一时间窗的结束时刻位于第一上行传输资源之前,所述第一上行传输资源用于所述网络设备接收来自所述第一终端设备的第二数据,和/或来自所述至少一个第二终端设备的所述第一数据,k为正整数。
在一个实现方式中,k的值通过RRC信令指示。
在一个实现方式中,所述第一消息还包括第一配置参数,所述第一配置参数包括所述第一时间窗的起始时刻相对所述第一消息的接收时刻的偏移值和第一时间窗时长。
所述第二消息还用于指示第二配置参数,所述第二配置参数包括所述第一时间窗的起始时刻相对所述第二消息的接收时刻的偏移值和所述第一时间窗时长。
在一个实现方式中,所述第一消息包括至少一个标识信息,所述至少一个第一传输资源属于所述至少一个标识信息标识的侧行链路传输资源。
在一个实现方式中,该通信装置还可以包括接收单元1203,用于在所述第一上行传输资源上,接收来自所述第一终端设备的第二数据,和/或来自所述至少一个第二终端设备的第一数据。
需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,该集成的单元可以作为计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。
如图13所示,本申请实施例还提供了一种通信装置1300的结构示意图。装置1300可用于实现上述方法实施例中描述的方法,可以参见上述方法实施例中的说明。
所述装置1300包括一个或多个处理器1301。所述处理器1301可以是通用处理器或者专用处理器等。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、终端、或芯片等)进行控制,执行软件程序,处理软件程序的数据。所述通信装置可以包括收发单元,用以实现信号的输入(接收)和输出(发送)。例如,所述收发单元可以为收发器,射频芯片等。
所述装置1300包括一个或多个所述处理器1301,所述一个或多个处理器1301可实现上述所示的实施例中的方法。
可选的,处理器1301除了实现上述所示的实施例的方法,还可以实现其他功能。
可选的,一种设计中,处理器1301可以执行指令,使得所述装置1300执行上述方法实施例中描述的方法。所述指令可以全部或部分存储在所述处理器内,如指令1303,也可以全部或部分存储在与所述处理器耦合的存储器1302中,如指令1304,也可以通过指令1303和1304共同使得装置1300执行上述方法实施例中描述的方法。指令1303也称为计算机程序。
在又一种可能的设计中,通信装置1300也可以包括电路,所述电路可以实现前述方 法实施例中的功能。
在又一种可能的设计中所述装置1300中可以包括一个或多个存储器1302,其上存有指令1304,所述指令可在所述处理器上被运行,使得所述装置1300执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。可选的处理器中也可以存储指令和/或数据。例如,所述一个或多个存储器1302可以存储上述实施例中所描述的对应关系,或者上述实施例中所涉及的相关的参数或表格等。所述处理器和存储器可以单独设置,也可以集成在一起。
在又一种可能的设计中,所述装置1300还可以包括收发器1305以及天线1306。所述处理器1301可以称为处理单元,对装置(终端或者基站)进行控制。所述收发器1305可以称为收发机、收发电路、或者收发单元等,用于通过天线1306实现装置的收发功能。
本申请实施例还提供了一种计算机可读介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述任一方法实施例所述的发送、接收数据的方法、资源指示方法。
本申请实施例还提供了一种计算机程序产品,包括计算机程序,该计算机程序被计算机执行时实现上述任一方法实施例所述的发送、接收数据的方法、资源指示方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是上述通信装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输。所述计算机可读存储介质可以是上述存储介质或上述存储器。
在一种可能的设计中,当上述通信装置是芯片,如网络设备中的芯片时,或者,如终端设备中的芯片时,确定单元或者处理器1301可以是一个或多个逻辑电路,发送单元或者接收单元或者收发器1305可以是输入输出接口,又或者称为通信接口,或者接口电路,或接口等等。或者收发器1305还可以是发送单元和接收单元,发送单元可以是输出接口,接收单元可以是输入接口,该发送单元和接收单元集成于一个单元,例如输入输出接口。如图14所示,图14所示的通信装置1400包括逻辑电路1401和接口电路1402。即上述确定单元或者处理器1301可以用逻辑电路1401实现,发送单元或者接收单元或者收发器1305可以用接口电路1402实现。其中,该逻辑电路1401可以为芯片、处理电路、集成电路或片上系统(system on chip,SoC)芯片等,接口电路1402可以为通信接口、输入输出接口等。本申请实施例中,逻辑电路和接口电路还可以相互耦合。对于逻辑电路和接口电路的具体连接方式,本申请实施例不作限定。
在本申请的一些实施例中,该逻辑电路和接口电路可用于执行上述网络设备或终端设备执行的功能或操作等。
示例性地,接口电路1402用于接收第一消息,在第一时间窗内的至少一个第一传输资源上,向至少一个第二终端设备发送第一数据。
逻辑电路1401用于确定第一时间窗的起始时刻和结束时刻。
网络设备或终端设备执行的功能或操作可以参照前述方法实施例,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及 算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可以用硬件实现,或固件实现,或它们的组合方式来实现。当使用软件实现时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。
总之,以上所述仅为本申请技术方案的实施例而已,并非用于限定本申请的保护范围。凡在本申请的原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (55)

  1. 一种发送数据的方法,其特征在于,包括:
    第一终端设备接收第一消息,所述第一消息用于指示第一时间窗;
    所述第一终端设备在所述第一时间窗内的至少一个第一传输资源上向至少一个第二终端设备发送第一数据,所述至少一个第一传输资源属于预配置的侧行链路传输资源中的资源。
  2. 如权利要求1所述的方法,其特征在于,所述第一时间窗的起始时刻位于接收所述第一消息的k个时隙后,所述第一时间窗的结束时刻位于第一上行传输资源之前,所述第一上行传输资源用于所述第一终端设备向网络设备发送第二数据,所述k为正整数。
  3. 如权利要求2所述的方法,其特征在于,所述k的值通过无线资源控制RRC信令指示。
  4. 如权利要求1所述的方法,其特征在于,所述第一消息还用于指示第一配置参数,所述第一配置参数包括所述第一时间窗的起始时刻相对所述第一消息的接收时刻的偏移值和所述第一时间窗时长。
  5. 如权利要求4所述的方法,其特征在于,所述第一终端设备接收第一消息之后,所述方法还包括:
    所述第一终端设备确定所述第一时间窗的起始时刻和结束时刻。
  6. 如权利要求1-5任一项所述的方法,其特征在于,所述第一终端设备在所述第一时间窗内的至少一个第一传输资源上,向所述至少一个第二终端设备发送所述第一数据,包括:
    所述第一终端设备在所述至少一个第一传输资源上进行信道侦听;
    所述第一终端设备在所述至少一个第一传输资源中侦听到的空闲的第一传输资源上,向所述至少一个第二终端设备发送所述第一数据。
  7. 如权利要求6所述的方法,其特征在于,所述侦听到的空闲的第一传输资源为先听后发LBT成功的第一传输资源。
  8. 如权利要求1-7任一项所述的方法,其特征在于,所述第一消息包括至少一个标识信息,所述至少一个第一传输资源属于所述至少一个标识信息标识的侧行链路传输资源中的资源。
  9. 如权利要求2所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备在所述第一上行传输资源上,向所述网络设备发送所述第二数据。
  10. 一种接收数据的方法,其特征在于,包括:
    第二终端设备接收第二消息,所述第二消息用于指示第一时间窗;
    所述第二终端设备在所述第一时间窗内接收来自第一终端设备的第一数据。
  11. 如权利要求10所述的方法,其特征在于,所述第一时间窗的起始时刻位于接收所述第二消息的k个时隙后,所述第一时间窗的结束时刻位于第一上行传输资源之前,所述第一上行传输资源用于所述第二终端设备向网络设备发送所述第一数据,所述k为正整数。
  12. 如权利要求11所述的方法,其特征在于,所述k的值通过无线资源控制RRC信令指示。
  13. 如权利要求10所述的方法,其特征在于,所述第二消息还用于指示第二配置参数, 所述第二配置参数包括所述第一时间窗的起始时刻相对所述第二消息的接收时刻的偏移值和所述第一时间窗时长。
  14. 如权利要求13所述的方法,其特征在于,所述第二终端设备接收到第二消息之后,所述方法还包括:
    所述第二终端设备确定所述第一时间窗的起始时刻和结束时刻。
  15. 如权利要求11所述的方法,其特征在于,所述方法还包括:
    所述第二终端设备在所述第一上行传输资源上,向所述网络设备发送所述第一数据。
  16. 一种资源指示方法,其特征在于,包括:
    网络设备向第一终端设备发送第一消息,所述第一消息用于指示第一时间窗;
    所述网络设备向至少一个第二终端设备发送第二消息,所述第二消息用于指示第一时间窗;
    所述第一时间窗用于所述第一终端设备在所述第一时间窗内的至少一个第一传输资源上向至少一个第二终端设备发送第一数据,所述至少一个第一传输资源属于预配置的侧行链路传输资源中的资源,或所述第一时间窗用于所述至少一个第二终端设备在所述第一时间窗内接收所述第一数据。
  17. 如权利要求16所述的方法,其特征在于,所述第一时间窗的起始时刻位于发送所述第一消息或所述第二消息的k个时隙后,所述第一时间窗的结束时刻位于第一上行传输资源之前,所述第一上行传输资源用于所述网络设备接收来自所述第一终端设备的第二数据和来自所述至少一个第二终端设备的所述第一数据,所述k为正整数。
  18. 如权利要求17所述的方法,其特征在于,所述k的值通过无线资源控制RRC信令指示。
  19. 如权利要求16所述的方法,其特征在于,所述第一消息还用于指示第一配置参数,所述第一配置参数包括所述第一时间窗的起始时刻相对所述第一消息的接收时刻的偏移值和第一时间窗时长;
    所述第二消息还用于指示第二配置参数,所述第二配置参数包括所述第一时间窗的起始时刻相对所述第二消息的接收时刻的偏移值和所述第一时间窗时长。
  20. 如权利要求16-19任一项所述的方法,其特征在于,所述第一消息包括至少一个标识信息,所述至少一个第一传输资源属于所述至少一个标识信息标识的侧行链路传输资源中的资源。
  21. 如权利要求17所述的方法,其特征在于,所述方法还包括:
    所述网络设备在所述第一上行传输资源上,接收来自所述第一终端设备的第二数据,和/或来自所述至少一个第二终端设备的第一数据。
  22. 一种通信系统,其特征在于,所述通信系统包括网络设备,第一终端设备和至少一个第二终端设备;
    所述网络设备,用于向所述第一终端设备发送第一消息,所述第一消息用于指示第一时间窗,以及向所述至少一个第二终端设备发送第二消息,所述第二消息用于指示第一时间窗;
    所述第一终端设备,用于接收所述第一消息,在所述第一时间窗内的至少一个第一传输资源上向所述至少一个第二终端设备发送第一数据,所述至少一个第一传输资源属于预配置的侧行链路传输资源中的资源;
    所述至少一个第二终端设备,用于接收所述第二消息,在所述第一时间窗内接收所述第一数据。
  23. 如权利要求22所述的系统,其特征在于,所述第一时间窗的起始时刻位于接收所述第一消息或所述第二消息的k个时隙后,所述第一时间窗的结束时刻位于第一上行传输资源之前,所述第一上行传输资源用于所述第一终端设备向所述网络设备发送第二数据,和所述第一上行传输资源用于所述至少一个第二终端设备向所述网络设备发送所述第一数据,所述k为正整数。
  24. 如权利要求23所述的系统,其特征在于,所述k的值通过无线资源控制RRC信令指示。
  25. 如权利要求22所述的系统,其特征在于,所述第一消息还用于指示第一配置参数,所述第一配置参数包括所述第一时间窗的起始时刻相对所述第一消息的接收时刻的偏移值和所述第一时间窗时长;
    所述第二消息还用于指示第二配置参数,所述第二配置参数包括所述第一时间窗的起始时刻相对所述第二消息的接收时刻的偏移值和所述第一时间窗时长。
  26. 如权利要求22-25任一项所述的系统,其特征在于,所述第一终端设备,用于在所述至少一个第一传输资源上进行信道侦听,以及在所述至少一个第一传输资源中侦听到的空闲的第一传输资源上,向所述至少一个第二终端设备发送所述第一数据。
  27. 如权利要求26所述的系统,其特征在于,所述侦听到的空闲的第一传输资源为先听后发LBT成功的第一传输资源。
  28. 如权利要求22-27任一项所述的系统,其特征在于,所述第一消息包括至少一个标识信息,所述至少一个第一传输资源属于所述至少一个标识信息标识的侧行链路传输资源中的资源。
  29. 如权利要求23所述的系统,其特征在于,所述第一终端设备,还用于在所述第一上行传输资源上,发送第二数据;
    所述至少一个第二终端设备,还用于在所述第一上行传输资源上,发送所述第一数据;
    所述网络设备,还用于在所述第一上行传输资源上,接收来自所述第一终端设备的所述第二数据,和/或来自所述至少一个第二终端设备的所述第一数据。
  30. 一种通信装置,其特征在于,包括:
    接收单元,用于接收第一消息,所述第一消息用于指示第一时间窗;
    发送单元,还用于在所述第一时间窗内的至少一个第一传输资源上,向至少一个第二终端设备发送第一数据,所述至少一个第一传输资源属于预配置的侧行链路传输资源中的资源。
  31. 如权利要求30所述的装置,其特征在于,所述第一时间窗的起始时刻位于接收所述第一消息k个时隙后,所述第一时间窗的结束时刻位于第一上行传输资源之前,所述第一上行传输资源用于所述通信装置向网络设备发送第二数据,k为正整数。
  32. 如权利要求31所述的装置,其特征在于,所述k的值通过无线资源控制RRC信令指示。
  33. 如权利要求30所述的装置,其特征在于,所述第一消息还用于指示第一配置参数,所述第一配置参数包括所述第一时间窗的起始时刻相对所述第一消息的接收时刻的偏移值和所述第一时间窗时长。
  34. 如权利要求33所述的装置,其特征在于,所述通信装置还包括:
    确定单元,用于确定所述第一时间窗的起始时刻和结束时刻。
  35. 如权利要求30-34任一项所述的装置,其特征在于,所述通信装置还包括:
    侦听单元,用于在所述至少一个第一传输资源上进行信道侦听;
    所述发送单元,还用于在所述至少一个第一传输资源中侦听到的空闲的第一传输资源上,向所述至少一个第二终端设备发送所述第一数据。
  36. 如权利要求35所述的装置,其特征在于,所述侦听到的空闲的第一传输资源为先听后发LBT成功的第一传输资源。
  37. 如权利要求30-36任一项所述的装置,其特征在于,所述第一消息包括至少一个标识信息,所述至少一个第一传输资源属于所述至少一个标识信息标识的侧行链路传输资源中的资源。
  38. 如权利要求31所述的装置,其特征在于,所述发送单元,还用于在所述第一上行传输资源上,向所述网络设备发送所述第二数据。
  39. 一种通信装置,其特征在于,包括:
    接收单元,用于接收第二消息,所述第一消息用于指示第一时间窗;
    确定单元,用于确定所述第二消息;
    接收单元,还用于在所述第一时间窗内,接收来自第一终端设备的第一数据。
  40. 如权利要求39所述的装置,其特征在于,所述第一时间窗的起始时刻位于接收所述第二消息的k个时隙后,所述第一时间窗的结束时刻位于第一上行传输资源之前,所述第一上行传输资源用于所述通信装置向网络设备发送所述第一数据,所述k为正整数。
  41. 如权利要求40所述的装置,其特征在于,所述k的值通过无线资源控制RRC信令指示。
  42. 如权利要求39所述的装置,其特征在于,所述第二消息还用于指示第二配置参数,所述第二配置参数包括所述第一时间窗的起始时刻相对所述第二消息的接收时刻的偏移值和所述第一时间窗时长。
  43. 如权利要求42所述的装置,其特征在于,所述确定单元,还用于确定所述第一时间窗的起始时刻和结束时刻。
  44. 如权利要求40所述的装置,其特征在于,所述通信装置还包括:
    发送单元,用于在所述第二上行传输资源上,向所述网络设备发送所述第一数据。
  45. 一种通信装置,其特征在于,包括:
    确定单元,用于确定第一消息,第一消息用于指示第一时间窗;确定第二消息,第二消息用于指示第一时间窗;
    发送单元,用于向第一终端设备发送第一消息,向至少一个第二终端设备发送第二消息;
    所述第一时间窗用于所述第一终端设备在所述第一时间窗内的至少一个第一传输资源上向至少一个第二终端设备发送第一数据,所述至少一个第一传输资源属于预配置的侧行链路传输资源中的资源,或所述第一时间窗用于所述至少一个第二终端设备在所述第一时间窗内接收所述第一数据。
  46. 如权利要求45所述的装置,其特征在于,所述第一时间窗的起始时刻位于发送所述第一消息或所述第二消息的k个时隙后,所述第一时间窗的结束时刻位于第一上行传输 资源之前,所述第一上行传输资源用于所述通信装置接收来自所述第一终端设备的第二数据和来自所述至少一个第二终端设备的所述第一数据,所述k为正整数。
  47. 如权利要求46所述的装置,其特征在于,所述k的值通过无线资源控制RRC信令指示。
  48. 如权利要求45所述的装置,其特征在于,所述第一消息还用于指示第一配置参数,所述第一配置参数包括所述第一时间窗的起始时刻相对所述第一消息的接收时刻的偏移值和第一时间窗时长;
    所述第二消息还用于指示第二配置参数,所述第二配置参数包括所述第一时间窗的起始时刻相对所述第二消息的接收时刻的偏移值和所述第一时间窗时长。
  49. 如权利要求45-48任一项所述的装置,其特征在于,所述第一消息包括至少一个标识信息,所述至少一个第一传输资源属于所述至少一个标识信息标识的侧行链路传输资源中的资源。
  50. 如权利要求46所述的装置,其特征在于,所述通信装置还包括:
    接收单元,用于在所述第一上行传输资源上,接收来自所述第一终端设备的第二数据,和/或来自所述至少一个第二终端设备的第一数据。
  51. 一种通信装置,其特征在于,包括处理器;
    所述处理器,用于执行存储器中存储的计算机程序,以使得所述装置执行如权利要求1-9中任一项所述的方法,或以使得所述装置执行如权利要求10-15中任一项所述的方法,或以使得所述装置执行如权利要求16-21中任一项所述的方法。
  52. 如权利要求51所述的装置,其特征在于,所述装置还包括所述存储器。
  53. 一种计算机可读存储介质,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,使得如权利要求1-9中任一项所述的方法被执行,或使得如权利要求10-15中任一项所述的方法被执行,或使得如权利要求16-21中任一项所述的方法被执行。
  54. 一种通信装置,其特征在于,所述通信装置包括:逻辑电路和接口电路;
    所述接口电路,用于与所述通信装置之外的模块通信;
    所述逻辑电路用于执行计算机程序,以使所述通信装置执行如权利要求1-9中任一项所述的方法,或以使所述通信装置执行如权利要求10-15中任一项所述的方法,或以使所述通信装置执行如权利要求16-21中任一项所述的方法。
  55. 一种计算机程序产品,其特征在于,包括计算机程序,当其在计算机上运行时,使得如权利要求1-9中任一项所述的方法被执行,或使得如权利要求10-15中任一项所述的方法被执行,或使得如权利要求16-21中任一项所述的方法被执行。
PCT/CN2022/095424 2021-05-27 2022-05-27 发送、接收数据的方法、资源指示方法、装置及系统 WO2022247918A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22810642.3A EP4325973A4 (en) 2021-05-27 2022-05-27 METHOD FOR SENDING AND RECEIVING DATA, RESOURCE DISPLAY METHOD AND DEVICE AND SYSTEM
US18/510,690 US20240098766A1 (en) 2021-05-27 2023-11-16 Data sending method, data receiving method, resource indication method, apparatus, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110584976.8A CN115412888A (zh) 2021-05-27 2021-05-27 发送、接收数据的方法、资源指示方法、装置及系统
CN202110584976.8 2021-05-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/510,690 Continuation US20240098766A1 (en) 2021-05-27 2023-11-16 Data sending method, data receiving method, resource indication method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2022247918A1 true WO2022247918A1 (zh) 2022-12-01

Family

ID=84156192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095424 WO2022247918A1 (zh) 2021-05-27 2022-05-27 发送、接收数据的方法、资源指示方法、装置及系统

Country Status (4)

Country Link
US (1) US20240098766A1 (zh)
EP (1) EP4325973A4 (zh)
CN (1) CN115412888A (zh)
WO (1) WO2022247918A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116321329A (zh) * 2022-12-23 2023-06-23 上海山源电子科技股份有限公司 包含5g的异构网的信号切换方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150139197A1 (en) * 2012-08-03 2015-05-21 Hong He Method and system for enabling device-to-device communication
CN110740509A (zh) * 2018-07-18 2020-01-31 华为技术有限公司 一种数据传输方法、网络设备、通信设备及存储介质
US20210014903A1 (en) * 2018-04-04 2021-01-14 Zte Corporation Method and apparatus for performing multiple rach procedures
US20210058881A1 (en) * 2018-04-13 2021-02-25 Google Llc Location-Based Resource Scheduling

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112398613B (zh) * 2019-08-15 2022-05-31 华为技术有限公司 一种用于指示信号传输的方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150139197A1 (en) * 2012-08-03 2015-05-21 Hong He Method and system for enabling device-to-device communication
US20210014903A1 (en) * 2018-04-04 2021-01-14 Zte Corporation Method and apparatus for performing multiple rach procedures
US20210058881A1 (en) * 2018-04-13 2021-02-25 Google Llc Location-Based Resource Scheduling
CN110740509A (zh) * 2018-07-18 2020-01-31 华为技术有限公司 一种数据传输方法、网络设备、通信设备及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4325973A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116321329A (zh) * 2022-12-23 2023-06-23 上海山源电子科技股份有限公司 包含5g的异构网的信号切换方法及装置
CN116321329B (zh) * 2022-12-23 2024-04-12 上海山源电子科技股份有限公司 包含5g的异构网的信号切换方法及装置

Also Published As

Publication number Publication date
EP4325973A1 (en) 2024-02-21
EP4325973A4 (en) 2024-10-16
US20240098766A1 (en) 2024-03-21
CN115412888A (zh) 2022-11-29

Similar Documents

Publication Publication Date Title
US10548154B2 (en) Uplink multi-user transmission method in wireless LAN system and apparatus therefor
US20200137782A1 (en) Data transmission method, access network device, and terminal device
JP2022111242A (ja) 通信装置、通信方法および集積回路
US11678401B2 (en) Transmission timing information sending method, transmission timing information receiving method, and apparatus
US11129217B2 (en) Data sending method and apparatus, and base station
WO2018028269A1 (zh) 一种资源调度方法和装置
WO2022110233A1 (zh) 无线通信的方法、终端设备和网络设备
WO2020056696A1 (zh) 一种资源分配方法及装置、终端
WO2021237702A1 (zh) Harq-ack码本的反馈方法和终端设备
EP3595384B1 (en) Information transmission method and related device
US11564246B2 (en) Information transmission method, communications device, and network device
US20220052796A1 (en) Harq information feedback method and device
US20220368505A1 (en) Data feedback method and apparatus
US20240098766A1 (en) Data sending method, data receiving method, resource indication method, apparatus, and system
US11063718B1 (en) Response rules of trigger frame
WO2021164035A1 (zh) 信号传输方法及装置
WO2022252967A1 (zh) 半静态调度的方法和通信装置
CN113950865A (zh) 信息传输方法及相关产品
US20240204966A1 (en) Feedback method, user equipment, and storage medium
US11395350B2 (en) Random access method, terminal device, and network device
WO2023279390A1 (zh) 一种资源指示方法及装置、终端设备
WO2020211737A1 (zh) 无线通信方法和装置
WO2022077473A1 (zh) 无线通信方法、终端设备和网络设备
WO2021227142A1 (zh) Harq-ack码本的反馈方法、终端设备和网络设备
CN113939019A (zh) 通信方法及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810642

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202327076241

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2022810642

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022810642

Country of ref document: EP

Effective date: 20231113

NENP Non-entry into the national phase

Ref country code: DE