WO2022247478A1 - 时间同步方法、装置、电子设备及存储介质 - Google Patents

时间同步方法、装置、电子设备及存储介质 Download PDF

Info

Publication number
WO2022247478A1
WO2022247478A1 PCT/CN2022/085437 CN2022085437W WO2022247478A1 WO 2022247478 A1 WO2022247478 A1 WO 2022247478A1 CN 2022085437 W CN2022085437 W CN 2022085437W WO 2022247478 A1 WO2022247478 A1 WO 2022247478A1
Authority
WO
WIPO (PCT)
Prior art keywords
network element
time synchronization
subnet
network
time
Prior art date
Application number
PCT/CN2022/085437
Other languages
English (en)
French (fr)
Inventor
韩俊华
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2022247478A1 publication Critical patent/WO2022247478A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0658Clock or time synchronisation among packet nodes
    • H04J3/0661Clock or time synchronisation among packet nodes using timestamps
    • H04J3/0667Bidirectional timestamps, e.g. NTP or PTP for compensation of clock drift and for compensation of propagation delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0677Localisation of faults
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting

Definitions

  • the embodiments of the present invention relate to the field of network synchronization, and in particular to a time synchronization method, device, electronic equipment and storage medium.
  • time synchronization protocols such as the Precision Time Protocol (“PTP") have received more and more attention and are widely used.
  • PTP Precision Time Protocol
  • domestic and foreign operators continue to use the PTP protocol for time synchronization, and gradually replace the method of using the Global Position System (Global Position System, referred to as "GPS”) for time synchronization.
  • GPS Global Position System
  • time synchronization network element or a link connecting two time synchronization network elements fails, it will affect all connections with the network element or the link.
  • the connected time synchronization network elements will generate a large number of alarms in the entire time synchronization network, which will bring great difficulties to fault location, and will further cause recalculation and adjustment of a wide range of time synchronization paths in the time synchronization network.
  • the related time synchronization method has the following problems: a fault in the time synchronization network affects a wide range, the fault location is difficult, and the maintenance cost of the time synchronization network is high.
  • the main purpose of the embodiment of the present application is to provide a time synchronization method, device, electronic equipment and storage medium, which can reduce the scope of faults involved, reduce the difficulty of fault location, and reduce the maintenance cost of time synchronization network.
  • the embodiment of the present application provides a time synchronization method, including: obtaining network element information of the time synchronization network; according to the network element information, dividing the time synchronization network into multi-layer subnets from high to low; wherein, Each subnet except the last subnet is a ring subnet, and each subnet is connected to one or more subnets of the next layer, and each subnet has at least one shared network element with the subnet of the next layer.
  • Each subnet provides unidirectional timing to the lower subnet through the shared network element; the number of the highest subnet in the multi-layer subnet is greater than or equal to 1, and the highest subnet includes the main time source network element of the time synchronization network,
  • the main time source network element is connected to the main clock of the time synchronization network, and obtains timing from the main clock; according to the division result, the port configuration information of each network element of the time synchronization network is generated; the port configuration information is used to indicate that the network element is related to The timing relationship of adjacent network elements; the port configuration information of each network element is correspondingly delivered to each network element.
  • the embodiment of the present application also provides a time synchronization device, including: a collection module, configured to obtain network element information of the time synchronization network; a generation module, configured to convert the time synchronization network from high to high Divide it into multi-layer subnets from bottom to bottom, and generate the port configuration information of each network element of the time synchronization network according to the division results; among them, each layer subnet except the last layer subnet and one or more lower layer subnets Each layer of subnets is a ring subnet, each layer of subnets has at least one shared network element with the next layer of subnets, and each layer of subnets uses the shared network element to provide unidirectional timing to the next layer of subnets.
  • the network includes at least one top-level subnet.
  • Each top-level subnet includes the main time source network element of the time synchronization network.
  • the main time source network element provides one-way time service to the top-level subnet.
  • the main clock is connected to the main clock, and the timing is obtained from the main clock.
  • the port configuration information is used to indicate the timing relationship between the network element and the adjacent network element; the sending module is set to send the port configuration information of each network element to each network element.
  • an embodiment of the present application also provides an electronic device, including: at least one processor; a memory connected to the at least one processor in communication; the memory stores instructions that can be executed by the at least one processor, and the instructions are executed by at least one processor Executed by a processor, so that at least one processor can execute the above time synchronization method.
  • an embodiment of the present application further provides a computer-readable storage medium storing a computer program, and implementing the above time synchronization method when the computer program is executed by a processor.
  • the time synchronization method proposed by the present invention divides the time synchronization network into multi-layer subnets from high to low, and there are multiple subnets in each layer of subnets, wherein all subnets except the last subnet are ring-shaped Each subnet is connected to one or more lower-level subnets, and one-way time delivery to the lower-level subnet. Since the lower-level subnet cannot provide time to the upper-level subnet, if the time synchronization subnet When a fault occurs, the fault will only affect the downstream network elements of the fault-associated network element, and will not affect other subnets and upper-layer subnets at the same level. When a fault occurs in the time synchronization network, the fault can be directly located at the highest level in the fault hierarchy.
  • Hierarchy narrows the scope of faults, reduces the difficulty of fault location, and only needs to recalculate and adjust the time synchronization path for the subnet where the fault is located, to ensure that the shared network element obtains the correct timing, and the lower layer does not need to change the acquisition timing Therefore, there is no need to recalculate and adjust the time synchronization path on a large scale for the time synchronization network, which reduces the maintenance cost of the time synchronization network.
  • FIG. 1 is a flowchart of a time synchronization method provided by an embodiment of the present invention
  • FIG. 2 is a diagram of the relationship between a time synchronization device and a time synchronization network element provided by an embodiment of the present invention
  • Fig. 3 is a schematic diagram of a multi-layer subnet provided by an embodiment of the present invention.
  • Fig. 4 is the topological diagram that the multilayer subnet provided by one embodiment of the present invention is applied to PTN network;
  • FIG. 5 is a schematic diagram of network element port configuration provided by an embodiment of the present invention.
  • FIG. 6 is a flowchart of a time synchronization method provided by another embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a time synchronization device provided by an embodiment of the present invention.
  • Fig. 8 is a schematic structural diagram of an electronic device provided by an embodiment of the present invention.
  • Embodiments of the present invention relate to a time synchronization method, as shown in FIG. 1 , specifically comprising:
  • Step 101 obtaining network element information of the time synchronization network
  • Step 102 the time synchronization network is divided into multi-layer subnets from high to low; wherein, each subnet except the last layer subnet is a ring subnet, and each subnet is connected to one or more subnets respectively.
  • the subnets of the next layer are connected, and each subnet has at least one shared network element with the subnet of the next layer, and each subnet provides unidirectional timing to the subnet of the next layer through the shared network element; the highest layer in the multi-layer subnet
  • the number of subnets is greater than or equal to 1, and the top-level subnet includes the main time source network element of the time synchronization network.
  • the main time source network element is connected to the main clock of the time synchronization network and obtains timing from the main clock;
  • Step 103 according to the division result, generate the port configuration information of each network element of the time synchronization network; wherein, the port configuration information is used to indicate the timing relationship between the network element and the adjacent network element;
  • step 104 correspondingly deliver the port configuration information of each network element to each network element.
  • the time synchronization method of this embodiment is applied to time synchronization network management devices such as network management devices and cloud servers.
  • the management device communicates with each network element node of the time synchronization network to manage each network element node.
  • This embodiment can be used in any time synchronization network management scenario. Whether it is a packet transport network (Packet Transport Network, referred to as "PTN"), IP radio access network (IP Radio Access Network, referred to as "IP RAN”) or optical transport network (optical transport network, referred to as "OTN”) and other networks , as long as the time synchronization function is turned on, the method provided by the patent of the present invention can be used to manage the time synchronization network in a hierarchical and sub-domain manner.
  • PDN Packet Transport Network
  • IP Radio Access Network IP Radio Access Network
  • OTN optical transport network
  • the management device of the time synchronization network can communicate with each time synchronization network element node to manage each time synchronization network element node, and different time synchronization network element nodes are connected through physical links.
  • the time synchronization network is to realize time synchronization, and different network elements are connected through specific physical ports and physical links to form a time synchronization network.
  • the management device of the time synchronization network is responsible for collecting the network element information of the time synchronization network and generating the configuration information of each network element in the multi-layer subnet of the time synchronization network, and sending it to the corresponding network element.
  • Each network element implements the hierarchical and domain-divided function of the time synchronization network based on the relevant configuration information issued by the management device of the time synchronization network.
  • the main time source network element is connected to the clock of the time synchronization network, and obtains time service from the main clock.
  • Each network element of the time synchronization network obtains directly or indirectly from the main time source network element. Time service, so as to achieve the purpose of time synchronization of the entire network.
  • the PTN network is a packet transport network implemented based on the MPLS-TP standard, and usually uses the IEEE1588v2 protocol to implement time synchronization and provide time synchronization signals to base stations.
  • IEEE 1588V2 is a PTP protocol that transparently transmits time information from a node with GPS receiving function to a node without GPS in the form of a boundary clock.
  • each network element node contains a model of a real-time clock.
  • the IEEE1588 standard divides the clocks in the entire network into two types: ordinary clock (Ordinary Clock, referred to as "OC”) and boundary clock (Boundary Clock, referred to as "BC").
  • OC has only one PTP communication port, while BC has multiple PTP communication ports, and each PTP port can carry out independent PTP communication.
  • the PTP communication port configures the timing relationship between the OC or BC node and the adjacent network element nodes connected through the PTP communication port.
  • the OC either serves as the main clock to provide the time source, or as the last level terminal in the time synchronization network, obtains time service from other network elements, but cannot serve time to other nodes as an intermediate node.
  • BC has multiple PTP physical communication ports connected to the network, and each of its PTP ports is the same as the PTP port of OC. One of the ports terminates after receiving the PTP message from the upstream network element, and then generates a new PTP message and pass it down.
  • the port in the Slave state (indicating that the clock is synchronized through this port) obtains the time of the Grandmaster clock through the interaction of PTP messages, and synchronizes the local clock; through the Master port (indicating that the port is used to synchronize other clocks) the local time Then synchronize to other clocks. If the port is in Passive state, it means the port is unavailable.
  • the BC In the existing time synchronization network, the BC needs to generate a new PTP message and transmit it downward according to the PTP message received from the upstream. Therefore, when a time synchronization NE or a link connecting two time synchronization NEs fails, the BC cannot obtain correct timing, nor can it send correct PTP packets to downstream NEs for correct timing, causing downstream The BC cannot continue to provide correct timing to the further downstream BC. Due to the intricate connection relationship of the entire time synchronization network, the occurrence of a fault will spread to all directions, causing a wide range of network elements to generate alarms in the entire time synchronization network.
  • each downstream network element needs to recalculate and adjust the time synchronization path to Obtaining the correct timing will cause the recalculation and adjustment of the time synchronization path in the time synchronization network on a large scale.
  • the time synchronization network is divided into multi-layer subnets from high to low, and there are multiple subnets in each layer of subnets. Among them, all subnets except the last subnet are ring-shaped Each subnet is connected to one or more lower-level subnets, and one-way time delivery to the lower-level subnet. Since the lower-level subnet cannot provide time to the upper-level subnet, if the time synchronization subnet When a fault occurs, the fault will only affect the downstream network elements of the fault-associated network element, and will not affect other subnets and upper-layer subnets at the same level. When a fault occurs in the time synchronization network, the fault can be directly located at the highest level in the fault hierarchy.
  • Hierarchy narrows the scope of faults, reduces the difficulty of fault location, and only needs to recalculate and adjust the time synchronization path for the subnet where the fault is located, to ensure that the shared network element obtains the correct timing, and the lower layer does not need to change the acquisition timing Therefore, there is no need to recalculate and adjust the time synchronization path on a large scale for the time synchronization network, which reduces the maintenance cost of the time synchronization network.
  • the management device receives the network element information reported by each network element node of the time synchronization network, thereby obtaining the network element information of the time synchronization network, wherein the network element information may be the time physical port and link corresponding to each network element Information, identification information of each network element, communication address of each network element, etc.
  • the management device divides the time synchronization network into multi-layer subnets from high to low according to the network element information. Specifically, the management device generates a topology map of the time synchronization network according to the network element information. According to the topology map, the The time synchronization network is divided into multi-layer subnets from high to low. Among them, one subnet corresponds to one management domain.
  • the divided multi-layer subnets are shown in Figure 3. All subnets except the last subnet are ring subnets, and each subnet is connected to one or more lower subnets.
  • each subnet has at least one shared network element with the next layer subnet, and each subnet provides unidirectional timing to the next layer subnet through the shared network element;
  • the subnet of the same level or the time subnet of the same level is used for time service.
  • the number of the highest-level subnet in the multi-layer subnet is greater than or equal to 1, and the highest-level subnet includes the main time source network element of the time synchronization network.
  • the main time source network element is connected to the master clock of the time synchronization network, and the slave master clock Get timing.
  • subnet X and subnet Z are the first layer of subnets
  • subnet Y is the second layer of subnets.
  • the topology graph is a graph obtained by abstracting the entire time synchronization network, including nodes and edges.
  • nodes correspond to time-synchronized network element nodes, and may be of different types
  • edges correspond to links connecting two network elements, and corresponding edge attributes (such as fiber length) may be added.
  • the shared NE is the time source NE of the subnet at the next layer; other NEs in the ring subnet except the time source NE obtain timing from an adjacent After the correct timing is obtained, switch the timing direction and obtain timing from another adjacent network element.
  • network element 1 is the main time source network element
  • subnet X and subnet Z are the first-level subnets with the highest level
  • subnet T and subnet Y are the first-level subnets connected to subnet X.
  • Subnet W and V are the second-tier subnets connected to subnet Z
  • subnet S is the third-tier subnet connected to subnet T
  • subnet R is connected to subnet Y
  • Subnet U is a Layer 3 subnet connected to subnet V, and it is an acyclic subnet.
  • NE 2 is the shared NE of subnet X and subnet Y, and subnet Y is the lower subnet of subnet X, therefore, NE 2 is the time source NE of subnet Y.
  • Network element 5 and/or network element 6 connected to network element 2 in network Y provide unidirectional timing, and network element 5 and network element 6 cannot provide timing to network element 2.
  • NE2 must obtain timing service from the adjacent NE of subnet X, that is, NE3 or NE4.
  • this backup link can exist between any two connected NEs in the ring subnet.
  • Each network element can be controlled by setting an algorithm to switch the timing direction and obtain timing from another adjacent network element when it cannot obtain the correct timing.
  • the timing can be obtained from the original downstream network element, and the timing can be provided to the original upstream network element.
  • the downstream network element, the upstream network element and the connected network elements also switch the timing direction accordingly, so that all network elements in the ring subnet except the network element directly related to the fault can obtain correct timing.
  • the time source network element obtain timing from an adjacent network element, and after the correct timing cannot be obtained, they switch the timing
  • the shared network element is the time source network element of the subnet of the next layer, but it obtains the time service from the adjacent network element of the subnet of this layer. Therefore, when a fault occurs, the fault will only affect The network elements in the subnet of the next level of time service will not affect other network elements in the subnet of the level where the fault is located, thereby further narrowing the scope of faults and reducing the difficulty of fault location and maintenance costs.
  • the management device can divide the time synchronization network into multi-layer subnets from high to low by receiving the multi-layer subnet division information sent by the client, and can also obtain the user-input configuration interface through the configuration interface provided by the time synchronization device.
  • Multi-layer subnetting information This method mainly relies on customer knowledge and experience, and combines the hierarchical structure of the network (such as the core layer, aggregation layer and access layer), divides the time synchronization network into different levels, and then manually configures the time synchronization nodes to which they belong. Tier and corresponding subnet. This method has a large workload and relies on artificial experience and knowledge. It is only suitable for simple network structures. When the network structure is complex, relying on manual planning, it is generally difficult to obtain optimal classification and domain division.
  • the management device divides the time synchronization network into multi-layer subnets from high to low by the following method: S1, with the main time source network element as the starting point, traversing each side to search can return to the starting point along another side
  • the number of optimal search circles is greater than or equal to 1, and the network elements passed by the search circle are free network elements that have not been divided into any subnets, and each optimal search circle is the highest-level subnetwork; S2.
  • the network elements other than the main time source network element traversing the top-level subnet are the new starting points, and searching for the optimal search circle that can return to the new starting point along the other side along each side of the new starting point.
  • the optimal search circle to the new starting point is the second-layer subnet; S3, among the subnets of the last layer currently obtained by traversing, the network elements other than the time source network element are the new starting point, and the new starting point is traversed Searching for each side of each side can return to the optimal search circle of the new starting point along the other side, taking the optimal search circles returning to the new starting point as the next layer of subnetworks, and repeating S3 until the optimal search circle cannot be formed; where , the optimal search circle includes at least three network elements. If there is a search path that cannot form a search circle at the new starting point, the search path is the last subnet.
  • the management device can use the intelligent classification algorithm of the time synchronization network according to the topology map to divide and obtain multi-layer subnets.
  • the algorithm steps are as follows:
  • Step 1 Take the main time source network element as the starting node, start from the starting node, start searching from one edge in the graph in one direction, and find another edge that can pass through at least one network element and go back to the starting node through the starting node.
  • the optimal search circle of the initial node, and this optimal search circle is regarded as a subnetwork with a level of one. A level of one is the highest. In this way, all edges of the search start node are traversed. Therefore, if the start node is connected to multiple network elements at the same time, multiple time subnetworks with one level may be found.
  • Step 2 In the subnet with the lowest level at present, traverse in turn and take each other network element as the starting node, start searching along one edge and one direction in the figure, and find another network element that can pass through at least one network element and pass the starting node.
  • One edge goes back to the optimal search circle of the starting node, and this optimal search circle is used as the next layer of subnetwork.
  • Step 3 Repeat step 2 until all nodes of the time synchronization network are divided into time subnets of corresponding levels.
  • ring networking or mesh networking is usually used. Based on the above steps, all nodes will be divided into time subnets of corresponding levels, and step 4 may not be performed.
  • Step 4 If there are nodes that have not been divided into the corresponding hierarchical subnets by the above steps, usually the network shape is a chain or tree network topology structure, then the remaining nodes will be divided from the nodes that have been divided into subnets Starting from the adjacent node, all the nodes on the chain or tree network connected to it are regarded as the subnet of the next level. Until all the nodes are divided into the time subnet of the corresponding level, that is, there is no free node in the time synchronization network that is not divided into any subnet.
  • the management device calculates the optimal search circle, it first calculates based on the number of hops passed by the search circle (that is, the number of nodes or edges passed in the circle). In principle, the fewer the number of hops passed, the better the search circle best. If there are two search circles with the same number of hops. Then compare the types of different network element nodes that pass through. In principle, the higher the processing performance of the network element device type, the better the search circle passing through the network element node. If two search circles have the same number of hops and the same type of NEs, compare the length or available bandwidth of the link. In principle, the shorter the length of the edge or the greater the available bandwidth, the The time synchronization path is optimal, and thus this search circle is optimal.
  • the optimal search circle is the search circle that passes through the least number of free network elements, that is, the number of network elements in the search circle is as small as possible, so that the number of divided levels is as large as possible, and the divided levels are finer, further reducing faults The scope of influence and reduce the difficulty of fault location and maintenance costs.
  • the management device can continue to divide subnets of the next level along the nodes on this subnet until it reaches the end After layering the subnet, divide the subnet with the next level of 1 from the main time source network element, and continue to divide the subordinate subnets at each level until the network element connected to the main time source network element does not exist in the time synchronization network. until the free network element.
  • the PTN network uses the IEEE 1588v2 PTP protocol to realize time synchronization of all network element devices and provide time information to the base station. If the user chooses the method based on manual planning and manual configuration, the management device will provide an interface for the user to choose how many levels of time synchronization subnets to create, and provide an interface for the user to select which network elements belong to which level, and according to the user's selection information, Divide the time synchronization network into multi-layer subnets from high to low. As shown in Figure 4, the middle of the figure is the time synchronization network, which is composed of the main clock, core layer, convergence layer, routes of the access layer, and bridging points of the second and third layers.
  • the time synchronization network has fewer network elements, and the topology is simple. It can be divided into multi-layer subnets as shown in the figure.
  • the time synchronization network is divided into three levels. The highest level one corresponds to the core layer, and the second level corresponds to the convergence layer, and layer three corresponds to the access layer. There is 1 time subnet in level 1, 1 time subnet in level 2, and 2 time subnets in level 3.
  • manual configuration can only provide one-way time service from the high-level time subnet to the low-level time subnet. Specifically, it is realized by setting the time port configuration of the network elements that belong to both the high-level time subnet and the low-level time subnet.
  • the port on the network side is set as mandatory Master so that reverse timing will not occur.
  • a main clock connected to a network element device (namely the main time source network element) on the core layer side.
  • the main time source network element will be connected to a GPS for timekeeping. Synchronize.
  • the far right in the figure is the service layer of the PTN network, which may include a radio network controller (Radio Network Controller, referred to as "RNC”), a base station controller (Base Station Controller, referred to as “BSC”), a mobility management entity (Mobility Management Entity, referred to as "MME”), serving gateway (Serving GateWay, referred to as "SGW”), gateway GSN (Gateway GSN, referred to as "GGSN”), access gateway (Access GateWay, referred to as "AGW”) and other network elements.
  • RNC Radio Network Controller
  • BSC Base Station Controller
  • MME Mobility Management Entity
  • SGW Serving GateWay
  • GSN Gateway GSN
  • AGW Access GateWay
  • AGW Access GateWay
  • the management device will automatically complete the time synchronization network classification and domain configuration based on the algorithm.
  • the specific algorithm steps are described above. Based on the algorithm of the present invention, the time synchronization network is also divided into three levels, 1 time subnet at level 1, 1 time subnet at level 2, 2 time subnets at level 3, and artificially planned The results are basically the same, and the specific network element settings are also basically the same.
  • IPRAN is based on the IP/MPLS protocol and key technologies. It is mainly oriented to mobile service bearing and also provides Layer 2 and Layer 3 channel service bearing. It takes the province as the unit and relies on the China Telecom Next Carrier Network ("China Telecom Next Carrier Network" for short).
  • CN2 China Telecom Next Carrier Network
  • CN2 backbone layer constitutes an end-to-end service bearer network.
  • the IPRAN network it mainly includes the access layer, the aggregation layer and the core layer, and the core layer is divided into the metropolitan core layer and the provincial core layer.
  • the IPRAN network usually also uses the IEEE 1588v2 protocol to achieve time synchronization and provides time synchronization signals to the base station. Since the time synchronization of the PTN and IPRAN networks is implemented using the IEEE 1588v2 protocol, and the networking architectures of the two are also similar. Therefore, the technical solution for the IPRAN network time synchronization method is basically the same as the technical solution for the PTN network time synchronization method, and will not be repeated here.
  • step 103 the management device generates port configuration information of each network element of the time synchronization network according to the division result; wherein, the port configuration information is used to indicate the timing relationship between the network element and adjacent network elements.
  • the management device may generate port configuration information by acquiring manual configuration information sent by the client, or may automatically generate port configuration information after hierarchical division.
  • BC1 that is, Boundary Clock-1
  • OC2 that is, Ordinary Clock-1 (Grandmaster)
  • BC2 that is, Ordinary Clock-1 (Grandmaster) through link 2.
  • 2 is connected through link 3
  • BC2 is connected with OC3 Ordinary Clock-3 through link 4, and connected with OC4 Ordinary Clock-4 through link 5.
  • BC1 is a downstream network element of OC1, an upstream network element of OC2 and BC2, and BC2 is an upstream network element of OC3 and OC4.
  • the port connected to BC1 in OC1 is configured as Master (i.e. M), and the port connected to BC1 and OC1 is configured as Slave (i.e. S) to instruct OC1 to provide time to BC1 through link 1, and BC1 to transfer time from OC1 through link 1. Get timing.
  • the port connected to OC2 in BC1 is configured as Master (i.e. M), and the port connected to BC1 in OC2 is configured as Slave (i.e. S) to instruct BC1 to provide time to OC2 through link 2, and OC2 to transfer time from BC1 through link 2.
  • the port connected to BC2 in BC1 is configured as Master (i.e. M), and the port connected to BC1 in BC2 is configured as Slave (i.e. S) to indicate that BC1 provides timing to BC2 through link 3, and BC2 transfers time from BC1 through link 3.
  • the port connected to OC3 in BC2 is configured as Master (i.e. M), and the port connected to BC2 in OC3 is configured as Slave (i.e. S) to instruct BC2 to provide time to OC3 through link 4, and OC3 to transfer time from BC2 through link 4.
  • the port connected to OC4 in BC2 is configured as Master (i.e.
  • the port connected to BC2 in OC4 is configured as Slave (i.e. S) to instruct BC2 to provide timing to OC4 through link 5, and OC4 to transfer time from BC2 through link 5.
  • Slave i.e. S
  • the clock of the Grandmaster is synchronized with the specified time source (such as GPS).
  • paths 1, 2, 3, 4, and 5 may include transparent clocks, and the transparent clocks forward PTP packets without caring about port status.
  • Each clock in the figure is a router device.
  • the management device also saves the obtained network element information of the time synchronization network and the generated multi-layer subnet structure of the time synchronization network, and temporarily saves the generated port configuration information of each network element in the memory , and persisted to the database or file for subsequent distribution, modification and other operations.
  • Optional databases include common relational databases such as PostgreSQL, MySQL, Oracle, etc., or graph databases Neo4j, OrientDB, etc.
  • the management device if it receives the fault information reported by the network element, it will update the port configuration information of the network element that cannot obtain the correct timing, and indicate that the network element that cannot obtain the correct timing should switch the timing direction; the updated port The configuration information is delivered to the NEs that cannot obtain correct timing.
  • the network element that finds its time synchronization function faulty may report the fault information to the management device, or the network element downstream of the faulty network element may report the fault information to the management device after receiving wrong timing.
  • the downstream network element in the link can also report the fault information to the management device.
  • the management device After receiving the fault information, the management device updates the port configuration information of the faulty network element or the faulty associated network element according to the result of subnet division, so that it can switch the timing Yuan gets timing.
  • the management device changes the port configuration information of the fault-associated network element, switches the timing direction, reduces the scope of the fault, and reduces the difficulty of fault location and maintenance costs.
  • the management device correspondingly delivers the port configuration information of each network element to each network element. Specifically, the management device may correspondingly send the port configuration information of each network element to each network element in the form of a message.
  • each network element After each network element receives the delivered configuration information, it will take effect according to the delivered configuration information, and set the time port to force the configuration of the master to take effect. Complete the function of time synchronization network classification and domain division.
  • the top-level subnet includes a standby time source network element of the time synchronization network, wherein the standby time source network element is connected to the standby clock of the time synchronization network, and the standby time source network element is set as the
  • the time service is obtained in the network element, that is, the standby time source network element and the standby clock of the time synchronization network are connected through a standby link.
  • the time service is obtained from the network path, but from the adjacent network elements in the subnet.
  • the time synchronization method also includes: if the main clock fails, the management device changes the standby time source network element to the main time source network element, updates the port configuration information of each network element in the subnet where the standby time source network element is located, and instructs the standby time source network
  • Each network element in the subnet where the element is located updates the timing relationship with the adjacent network element; the updated port configuration information is correspondingly delivered to each network element in the subnet where the standby time source network element is located.
  • the master clock fails, the standby link between the standby time source NE and the standby clock is enabled, and the management device changes the standby time source NE One-way timing.
  • the standby time source network element since the standby time source network element is in the highest-level subnet, and each highest-level subnet is connected to the main time source network element, the network element configuration of the subnet where the standby time source network element is located can be changed , so that the backup time source network element can provide the time source to the subnet, each network element changes the timing relationship with the adjacent network element, and can still obtain the correct timing, and the main time source network element can also obtain the correct timing from the adjacent network element.
  • Time service and as the shared network element of the subnet where the backup time source network element is located and other highest-level subnets, one-way time service to other highest-level subnets, therefore, after the master clock fails, only the backup time source network element needs to be changed
  • the configuration of each network element in the subnet will not affect the time synchronization of the entire time synchronization network, so that the entire time synchronization network can maintain normal work, thereby reducing the scope of the main clock fault and reducing the difficulty of fault location and the overall time synchronization network. maintenance costs.
  • the time synchronization method further includes: after step 104, may also include step 105, if the network element change information of the time synchronization network is received, then according to the obtained change After the network element information of the time synchronization network, the time synchronization network is re-divided;
  • Step 106 update the port configuration information of each network element according to the result of re-division
  • step 107 correspondingly deliver the updated port configuration information of each network element to each network element.
  • the network element change information of the time synchronization network may be reported by each network element to the management device, including information on adding new network elements, deleting information on network elements, or changing information on network element links, and so on. If one or some nodes are added or deleted in the time synchronization network, the management device will collect relevant information, update the information of time synchronization network elements and links, and automatically trigger the generation of network element configurations in the time synchronization network. For the latest network element node configuration, the updated network element configuration is sent to the network element node to take effect.
  • the time synchronization network is re-divided according to the acquired network element information of the changed time synchronization network, and the port configuration information of each network element is updated according to the re-division result.
  • the updated port configuration information of each network element is correspondingly sent to each network element, so that when the structure of the time synchronization network changes, the multi-layer subnet can be updated, so that each network element can obtain correct timing.
  • the embodiment of the present invention also relates to a time synchronization device as shown in FIG. 7, including:
  • the collection module 701 is configured to obtain the network element information of the time synchronization network
  • the generation module 702 is configured to divide the time synchronization network into multi-layer subnets from high to low according to the network element information, and generate the port configuration information of each network element of the time synchronization network according to the division result;
  • Each layer of subnets outside the network is connected to one or more lower layer subnets.
  • Each layer of subnets is a ring subnet.
  • Each layer of subnets has at least one shared network element with the next layer of subnets.
  • Each layer of subnets One-way time service to the lower subnet through the shared network element includes at least one highest-level subnet, and each highest-level subnet includes the main time source network element of the time synchronization network, and the main time source network element sends The highest layer subnet unidirectional time service, the main time source network element is connected to the master clock of the time synchronization network, and the time service is obtained from the master clock, and the port configuration information is used to indicate the time service relationship between the network element and the adjacent network element;
  • the sending module 703 is configured to correspondingly send the port configuration information of each network element to each network element.
  • the shared network element is the time source network element of the next layer of subnet; Neighboring network elements obtain timing, and when the correct timing cannot be obtained, switch the timing direction and obtain timing from another adjacent network element.
  • the time synchronization device further includes a storage module, which is configured to save the obtained network element information of the time synchronization network and the generated multi-layer subnetwork structure of the time synchronization network, and store all network elements and The link information is persisted to the database or file, so that relevant information can be read when needed.
  • a storage module which is configured to save the obtained network element information of the time synchronization network and the generated multi-layer subnetwork structure of the time synchronization network, and store all network elements and The link information is persisted to the database or file, so that relevant information can be read when needed.
  • the generation module 702 is further configured to update the port configuration information of the network element that cannot obtain the correct timing if the fault information reported by the network element is received, and indicate that the network element that cannot obtain the correct timing should switch the timing direction.
  • the delivery module 703 is further configured to deliver the updated port configuration information to network elements that cannot obtain correct timing.
  • the generation module 702 is also configured to perform the following steps to divide the time synchronization into multi-layer subnetworks from high to low: S1, starting from the main time source network element, traversing each edge to search for information along another edge Back to the optimal search circle at the starting point, the number of optimal search circles is greater than or equal to 1, and the network elements passed by the search circle are free network elements that have not been divided into any subnets, and each optimal search circle is the highest layer subnetwork; S2, traversing the top-level subnetwork other than the main time source network element is the new starting point, traversing each side of the new starting point to search for the optimal search that can return to the new starting point along the other side Circle, the optimal search circle back to the new starting point is the second layer subnetwork; S3, among the subnetworks of the last layer currently obtained by traversing, other network elements except the time source network element are the new starting point, Traverse each side of the new starting point to search for the optimal search circle that can return to the new starting point along the other side, and use the following steps to
  • the optimal search circle is a search circle passing through the least number of free network elements.
  • the top-level subnet includes a standby time source network element of the time synchronization network; wherein, the standby time source network element is connected to the standby clock of the time synchronization network; the standby time source network element is set as the Obtain timing in the network element; the generation module 702 is also set to change the standby time source network element into the main time source network element when the main clock fails, and update the port configuration information of each network element of the subnet where the standby time source network element is located , indicating that each network element of the subnet where the standby time source network element is located updates the timing relationship with the adjacent network element; the sending module 703 is also configured to correspondingly deliver the updated port configuration information to the subnet where the standby time source network element is located of each network element.
  • the time synchronization device also includes an interface module, which is configured to provide the presentation of the time synchronization network interface, display the topological information of the time synchronization network hierarchically divided domains, and provide an interface for the user to operate, and the user can manually configure, such as setting the time port configuration information, etc., to complete the manual configuration of time synchronization network classification and division.
  • an interface module configured to provide the presentation of the time synchronization network interface, display the topological information of the time synchronization network hierarchically divided domains, and provide an interface for the user to operate, and the user can manually configure, such as setting the time port configuration information, etc., to complete the manual configuration of time synchronization network classification and division.
  • the acquisition module 701 is further configured to receive the network element change information of the time synchronization network
  • the generation module 702 is further configured to, after receiving the network element change information of the time synchronization network, synchronize Network element information of the network, and re-divide the time synchronization network; according to the re-division results, update the port configuration information of each network element; the sending module 703 is also set to correspondingly send the updated port configuration information of each network element to each network Yuan.
  • the embodiment of the present invention also relates to an electronic device, as shown in FIG. 8 , including: at least one processor 801; a memory 802 communicatively connected to the at least one processor; instructions, the instructions are executed by at least one processor 801 in the above time synchronization method.
  • the memory 802 and the processor 801 are connected by a bus, and the bus may include any number of interconnected buses and bridges, and the bus connects one or more processors 801 and various circuits of the memory 802 together.
  • the bus may also connect together various other circuits such as peripherals, voltage regulators, and power management circuits, all of which are well known in the art and therefore will not be further described herein.
  • the bus interface provides an interface between the bus and the transceivers.
  • a transceiver may be a single element or multiple elements, such as multiple receivers and transmitters, providing means for communicating with various other devices over a transmission medium.
  • the information processed by the processor 801 is transmitted on the wireless medium through the antenna, further, the antenna also receives the information and transmits the information to the processor 801 .
  • the processor 801 is responsible for managing the bus and general processing, and may also provide various functions including timing, peripheral interface, voltage regulation, power management and other control functions. Instead, the memory 802 may be configured to store information used by the processor when performing operations.
  • Embodiments of the present invention also relate to a computer-readable storage medium storing a computer program.
  • the above method embodiments are implemented when the computer program is executed by the processor.
  • the program is stored in a storage medium, and includes several instructions to make a device ( It may be a single-chip microcomputer, a chip, etc.) or a processor (processor) to execute all or part of the steps of the methods in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

本发明实施例涉及网络同步技术,公开了一种时间同步方法、装置、电子设备及存储介质。本发明中,上述时间同步方法包括:获取时间同步网的网元信息;根据网元信息,将时间同步网从高到低划分成多层子网;根据划分的结果,生成时间同步网的各网元的端口配置信息;其中,端口配置信息用于指示网元与相邻网元的授时关系;将各网元的端口配置信息对应下发至各网元。本发明的时间同步方法,可以缩小故障涉及范围,降低故障定位难度,降低时间同步网维护成本。

Description

时间同步方法、装置、电子设备及存储介质
本公开要求于2021年5月24日提交中国专利局、申请号为202110565668.0、发明名称“时间同步方法、装置、电子设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本发明实施例涉及网络同步领域,特别涉及一种时间同步方法、装置、电子设备及存储介质。
背景技术
随着网络的高速发展,精确时间协议(Precision Time Protocol,简称“PTP”)等时间同步协议得到越来越多的重视和广泛的应用。国内外运营商不断的使用PTP协议进行时间同步,逐步替换使用全球定位系统(Global Position System,简称“GPS”)进行时间同步的方式。
相关的时间同步网中,网络规模庞大,组网拓扑关系复杂,当一个时间同步网元或连接两个时间同步网元的链路出现故障后,会影响到所有与该网元或该链路相连的时间同步网元,整个时间同步网中产生大量的告警,给故障定位带来极大的困难,更进一步还会引起时间同步网络大范围的时间同步路径的重新计算和调整。
因此,相关的时间同步方法存在以下问题:时间同步网出现故障后波及范围大,故障定位难度大,时间同步网的维护成本高。
发明内容
本申请实施例的主要目的在于提出一种时间同步方法、装置、电子设备及存储介质,可以缩小故障涉及范围,降低故障定位难度,降低时间同步网维护成本。
为实现上述目的,本申请实施例提供了一种时间同步方法,包括:获取时间同步网的网元信息;根据网元信息,将时间同步网从高到低划分成多层子网;其中,除末层子网外的各子网均为环型子网,各子网分别与一个或多个下一层子网相连,且各子网与下一层子网有至少一个共用网元,各子网通过共用网元向下一层子网单向授时;多层子网中的最高层子网的数量大于或等于1,最高层子网中包括时间同步网的主时间源网元,主时间源网元与时间同步网的主时钟相连,从主时钟获取授时;根据划分的结果,生成时间同步网的各网元的端口配置信息;其中,端口配置信息用于指示网元与相邻网元的授时关系;将各网元的端口配置信息对应下发至各网元。
为实现上述目的,本申请实施例还提供了一种时间同步装置,包括:采集模块,设置为获取时间同步网的网元信息;生成模块,设置为根据网元信息,将时间同步网从高到低划分成多层子网,并根据划分结果,生成时间同步网的各网元的端口配置信息;其中,除末层子网外的各层子网与一个或多个下一层子网相连,各层子网为环型子网,各层子网与下一层子网有至少一个共用网元,各层子网通过共用网元向下一层子网单向授时,多层子网包括至少一个最高层子网,各最高层子网中包括时间同步网的主时间源网元,由主时间源网元向最高层子网单向授时,主时间源网元与时间同步网的主时钟相连,从主时钟获取授时,端口配置 信息用于指示网元与相邻网元的授时关系;下发模块,设置为将各网元的端口配置信息对应下发至各网元。
为实现上述目的,本申请实施例还提供了一种电子设备,包括:至少一个处理器;与至少一个处理器通信连接的存储器;存储器存储有可被至少一个处理器执行的指令,指令被至少一个处理器执行,以使至少一个处理器能够执行上述的时间同步方法。
为实现上述目的,本申请实施例还提供了一种计算机可读存储介质,存储有计算机程序,计算机程序被处理器执行时实现上述的时间同步方法。
本发明提出的时间同步方法,通过将时间同步网从高到低划分成多层子网,每层子网中存在多个子网,其中,除末层子网外的各子网均为环型子网,各子网分别与一个或多个下一层子网相连,向下一层子网单向授时,由于下一层子网无法向上层子网授时,因此,若时间同步子网中发生故障,故障只波及故障关联网元的下游网元,不会波及同层级的其他子网和上层子网,当发现时间同步网中发生故障后,故障可以直接被定位在故障层级中的最高层级缩小了故障波及范围,降低了故障定位难度,并且,只需要对故障所在的子网进行时间同步路径的重新计算和调整,保证共用网元获取到正确的授时,下方层级就无需变更获取授时的路径,因此不需要对时间同步网进行大范围的时间同步路径的重新计算和调整,降低了时间同步网的维护成本。
附图说明
图1是本发明一个实施例提供的时间同步方法流程图;
图2是本发明一个实施例提供的时间同步装置与时间同步网元关系图;
图3是本发明一个实施例提供的多层子网示意图;
图4是本发明一个实施例提供的多层子网应用于PTN网络的拓扑图;
图5是本发明一个实施例提供的网元端口配置示意图;
图6是本发明另一个实施例提供的时间同步方法流程图;
图7是本发明一个实施例提供的时间同步装置结构示意图;
图8是本发明一个实施例提供的电子设备结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施例进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施例中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本申请所要求保护的技术方案。以下各个实施例的划分是为了描述方便,不应对本申请的具体实现方式构成任何限定,各个实施例在不矛盾的前提下可以相互结合相互引用。
本发明的实施例涉及一种时间同步方法,如图1所示,具体包括:
步骤101,获取时间同步网的网元信息;
步骤102,根据网元信息,将时间同步网从高到低划分成多层子网;其中,除末层子网外的各子网均为环型子网,各子网分别与一个或多个下一层子网相连,且各子网与下一层子网有至少一个共用网元,各子网通过共用网元向下一层子网单向授时;多层子网中的最高层 子网的数量大于或等于1,最高层子网中包括时间同步网的主时间源网元,主时间源网元与时间同步网的主时钟相连,从主时钟获取授时;
步骤103,根据划分的结果,生成时间同步网的各网元的端口配置信息;其中,端口配置信息用于指示网元与相邻网元的授时关系;
步骤104,将各网元的端口配置信息对应下发至各网元。
本实施例的时间同步方法,应用于网络管理设备、云服务器等时间同步网的管理设备中,管理设备与时间同步网的各个网元节点通信连接,管理各个网元节点。本实施例可用于任何时间同步网管理的场景。无论是分组传送网(Packet Transport Network,简称“PTN”)、IP无线接入网(IP Radio Access Network,简称“IP RAN”)或光传送网(optical transport network,简称“OTN”)等网络中,只要开启了时间同步的功能,均可以使用本发明专利提供的方法进行时间同步网分级分域的管理。
如图2所示,时间同步网的管理设备可以和各个时间同步网元节点通信,管理各个时间同步网元节点,不同时间同步网元节点之间通过物理链路相连。时间同步网是为实现时间同步,不同网元之间通过具体的物理端口和物理链路相连,组成一个时间同步网络。其中,时间同步网的管理设备负责采集时间同步网的网元信息并生成时间同步网的多层子网中各网元的配置信息,下发到对应的网元上。各网元会基于时间同步网的管理设备下发的相关配置信息,实现时间同步网分级分域的功能。一个时间同步网中有一个主时间源网元,主时间源网元与时间同步网的时钟相连,从主时钟获取授时,时间同步网的各网元从主时间源网元中直接或间接获取授时,从而实现整个网络时间同步的目的。
以PTN网络为例,PTN网络是一种基于MPLS-TP标准实现的分组传送网,通常采用IEEE1588v2协议实现时间同步,向基站提供时间同步信号。IEEE 1588V2是一种PTP协议,实现把时间信息从有GPS接收功能的节点,以边界时钟的方式透传到没有GPS的节点。使用PTP协议的时间同步网中,每个网元节点包含一个实时时钟的模型。IEEE1588标准将整个网络内的时钟分为两种:普通时钟(Ordinary Clock,简称“OC”)和边界时钟(Boundary Clock,简称“BC”)。OC只有一个PTP通信端口,而BC有多个PTP通信端口,并且每个PTP端口可以进行独立的PTP通信。PTP通信端口配置了OC或BC节点和通过PTP通信端口相连的相邻网元节点的授时关系。OC要么作为主时钟提供时间源,要么作为时间同步网中的最末一级终端,从其他的网元获取授时,而不能作为中间节点向其他节点授时。BC有多个PTP物理通信端口和网络相连,其每个PTP端口和OC的PTP端口是一样的,其中的一个端口在收到上游网元的PTP报文后进行终结,然后再生成新的PTP报文并向下传递。其中,处于Slave状态(表示本时钟通过该端口被同步)的端口通过PTP报文的交互得到Grandmaster时钟的时间,并同步本地时钟;通过Master端口(表示本端口用来同步其他时钟)将本地时间再同步到其他时钟。如果端口是Passive状态,则表示该端口不可用。
现有的时间同步网中,BC需要根据从上游接收的PTP报文,生成新的PTP报文并向下传递。因此,当一个时间同步网元或连接两个时间同步网元的链路出现故障后,BC无法获取到正确授时,也无法向下游网元发送正确的PTP报文,进行正确的授时,导致下游的BC也无法向更下游的BC继续进行正确的授时,由于整个时间同步网连接关系错综复杂,一个故障的发生会扩散至各个方向,在整个时间同步网中引起大范围的网元产生告警,会给故障定位带来极大的困难,且在修复故障网元或故障链路时,由于故障网元或故障链路不可用, 各下游网元都需要进行时间同步路径的重新计算和调整,以获取到正确的授时,从而引起时间同步网大范围的时间同步路径的重新计算和调整。
而本实例的时间同步方法,通过将时间同步网从高到低划分成多层子网,每层子网中存在多个子网,其中,除末层子网外的各子网均为环型子网,各子网分别与一个或多个下一层子网相连,向下一层子网单向授时,由于下一层子网无法向上层子网授时,因此,若时间同步子网中发生故障,故障只波及故障关联网元的下游网元,不会波及同层级的其他子网和上层子网,当发现时间同步网中发生故障后,故障可以直接被定位在故障层级中的最高层级缩小了故障波及范围,降低了故障定位难度,并且,只需要对故障所在的子网进行时间同步路径的重新计算和调整,保证共用网元获取到正确的授时,下方层级就无需变更获取授时的路径,因此不需要对时间同步网进行大范围的时间同步路径的重新计算和调整,降低了时间同步网的维护成本。
下面对本实施例的时间同步方法的实现细节进行具体的说明,以下内容仅为方便理解提供的实现细节,并非实施本方案的必须。
在步骤101中,管理设备接收时间同步网的各个网元节点上报的网元信息,从而获取时间同步网的网元信息,其中,网元信息可以是各个网元对应的时间物理端口和链路信息、各个网元的标识信息、各网元的通信地址等。
在步骤102中,管理设备根据网元信息,将时间同步网从高到低划分成多层子网,具体地,管理设备根据网元信息,生成时间同步网的拓扑图,根据拓扑图,将时间同步网从高到低划分成多层子网。其中,一个子网对应一个管理域,划分得到的多层子网如图3所示,除末层子网外的各子网均为环型子网,各子网分别与一个或多个下一层子网相连,且各子网与下一层子网有至少一个共用网元,各子网通过共用网元向下一层子网单向授时;处于较低层级的子网不能向高层级子网或同层级的时间子网进行授时。多层子网中的最高层子网的数量大于或等于1,最高层子网中包括时间同步网的主时间源网元,主时间源网元与时间同步网的主时钟相连,从主时钟获取授时。如图3所述,子网X和子网Z为第一层子网,子网Y为第二层子网。其中,拓扑图是将整个时间同步网抽象得到的图,包括节点和边。其中,节点对应时间同步的网元节点,可有不同的类型,边对应连接两个网元之间的链路,可增加对应的边属性(如光纤长度)。
在一个例子中,共用网元为下一层子网的时间源网元;环型子网中的除时间源网元外的其他网元从一个相邻的网元获取授时,并在无法获取到正确授时后,倒换授时方向,从另一个相邻的网元获取授时。
具体地,如图3所示,网元1是主时间源网元,子网X和子网Z是层级最高的第一层子网,子网T、子网Y是与子网X相连的第二层子网,子网W、子网V是与子网Z相连的第二层子网,子网S是与子网T相连的第三层子网,子网R是与子网Y相连的第三层子网,且是非环型子网,子网U是与子网V相连的第三层子网。其中,网元2是子网X和子网Y的共用网元,其中,子网Y是子网X的下一层子网,因此,网元2是子网Y的时间源网元,向子网Y中与网元2相连的网元5和/或网元6单向授时,网元5和网元6不可以向网元2授时。网元2必须从子网X的相邻网元,即网元3或网元4中获取授时。其中,一个子网中必然存在两个网元以备用一条链路相连,却不存在授时关系,以避免子网中存在一个网元从两个上游网元中获取授时,当需要倒换授时方向时,此条备用链路被启用,使网元从另一个方 向获取授时。此条备用链路可以存在于环型子网中的任意两个相连的网元之间。
各网元中,可以通过设置算法,控制其在无法获取到正确授时,倒换授时方向,从另一个相邻的网元获取授时。其中,可以通过更改网元与相邻网元的连接的端口的配置,调换网元的与上游网元和下游网元连接的端口的配置,从原下游网元获取授时,向原上游网元授时。而下游网元、和上游网元及其连接的网元也相应地倒换授时方向,使环型子网中除与故障直接关联的网元以外的其他网元都获取到正确授时。
本实施例中,由于环型子网中的除时间源网元外的其他网元从一个相邻的网元获取授时,并在无法获取到正确授时后,倒换授时方向,从另一个相邻的网元获取授时,共用网元是下一层子网的时间源网元,却从本层子网的相邻网元中获取授时,因此,故障发生时,故障只会影响到从其获取授时的下一层子网中的网元,而不会影响到故障所在的层级的子网中的其他网元,从而近一步缩小故障波及范围和降低故障定位难度和维护成本。
在一个例子中,管理设备可以通过接收客户端发送的多层子网划分信息,将时间同步网从高到低划分成多层子网,也可以通过时间同步装置提供的配置界面获取用户输入的多层子网划分信息。该方法主要依赖于客户知识经验,结合网络的层次结构(如核心层、汇聚层和接入层),将时间同步网划分为不同的层级,然后再通过人工手工配置,配置时间同步节点所属的层级和对应子网。该方法工作量大,且依赖人工经验知识,仅适合网络结构简单的情况,在网络结构复杂时,依赖人工规划,一般很难得到最优的分级和分域划分。
在一个例子中,管理设备通过以下方法将时间同步网从高到低划分成多层子网:S1,以主时间源网元为起始点,遍历各边搜索能够沿另一条边回到起始点的最优搜索圈,最优搜索圈的个数大于或等于1,搜索圈经过的网元是未被划分至任意子网的游离网元,以各最优搜索圈为各最高层子网;S2,遍历最高层子网的除主时间源网元以外的其他网元为新起始点,遍历新起始点的各边搜索能够沿另一条边回到新起始点的最优搜索圈,以各回到新起始点的最优搜索圈为第二层子网;S3,遍历当前得到的最后一层的各子网中,除时间源网元以外的其他网元为新起始点,遍历新起始点的各边搜索能够沿另一条边回到新起始点的最优搜索圈,以各回到新起始点的最优搜索圈为下一层子网,重复执行S3直至无法形成最优搜索圈;其中,最优搜索圈包括至少三个网元,若新起始点存在一条无法形成搜索圈的搜索路径,以搜索路径为最末层子网。
具体地,管理设备可以根据拓扑图,使用时间同步网智能分级算法,划分得到多层子网,算法步骤如下:
步骤一:以主时间源网元为起始节点,从起始节点开始,从图中的一条边沿一个方向开始搜索,找到可以经过至少一个网元并通过起始节点的另一条边回到起始节点的最优搜索圈,将这个最优搜索圈作为层级为一的子网。层级为一表示最高。以此方法遍历搜索起始节点的所有边,因此,如果起始节点同时连接多个网元,可能会找到多个层级为一的时间子网。
步骤二:以目前层级最低的子网中,依次遍历并以各个其他网元为起始节点,沿图中的一条边沿一个方向开始搜索,找到可以经过至少一个网元并通过起始节点的另一条边回到起始节点的最优搜索圈,以此最优搜索圈作为下一层子网。
步骤三:重复步骤二,直到时间同步网的所有节点都被划分到相应层级的时间子网中。一般来说,通常采用环状组网或网状Mesh组网,基于上述步骤,会将所有节点划分到相应层级的时间子网中,可以不执行步骤四。
步骤四:如果存在采用上述步骤未划分到相应层级子网中的节点,通常网络形状为链状或树状的网络拓扑结构,则将剩下的节点,从已经划分至子网中的节点的相邻节点开始,将与其相连的链状或树状网络上的所有节点作为下一层级的子网。直到所有节点都被划分到对应层级的时间子网上,即,时间同步网中不存在未被划分至任一子网中的游离节点为止。
进一步地,管理设备在计算最优搜索圈时,先基于该搜索圈经过的跳数(即圈中经过的节点或者边的个数)来计算,原则上,经过的跳数越少,搜索圈最优。如果存在两个搜索圈跳数相同的情况。则比较所经过不同网元节点的类型,原则上,网元设备类型处理性能越高,则经过该网元节点的搜索圈最优。如果存在两个搜索圈跳数相同且经过的网元类型也相同的情况,则比较链路的长度或可用带宽,原则上,边的长度越短或可用带宽越大,则经过该条边的时间同步路径最优,进而此搜索圈最优。
本实施例中,最优搜索圈为经过游离网元数量最少的搜索圈,即搜索圈中的网元数量尽可能少,从而使划分的层级数量尽可能多,划分层级更细,进一步缩小故障波及范围和降低故障定位难度和维护成本。
在另一个例子中,管理设备也可以在得到第一个最优搜索圈,即一个层级为一的子网后,沿此子网上的节点,继续划分下一层级子网,直到划分至最末层子网后,再从主时间源网元划分下一个层级为一的子网,并继续划分下属的各层级子网,直到主时间源网元连接的网元,且时间同步网中不存在游离网元为止。
一个例子中,PTN网络于IEEE 1588v2 PTP协议,实现所有网元设备的时间同步,并给基站提供时间信息。如果用户选择基于人工规划和手工配置的方法,管理设备会提供界面供用户选择创建多少层级的时间同步子网,并提供界面供用户选择哪些网元属于哪一个层级,并根据用户的选择信息,将时间同步网从高到低划分成多层子网。如图4所示,图的中间为时间同步网,由主时钟、核心层、汇聚层、接入层的各路由、二三层桥接点组成。其时间同步网的网元较少,拓扑简单可以被划分为如图所示的多层子网,图中,时间同步网被划分为3个层级,最高层级一对应核心层,层级二对应汇聚层,层级三对应接入层。层级一的时间子网有1个,层级二的时间子网1个,层级三的时间子网有2个。同时,手工配置只能高层级时间子网向低层级时间子网单向授时,具体通过设置同属于高层级时间子网和低层级时间子网的网元时间端口配置实现,将低层级时间子网侧的端口设置为强制Master,这样就不会反向授时。图中除多层子网的网元外,还有一个主时钟,连接于核心层侧的一个网元设备(即主时间源网元)上,该主时间源网元会接一个GPS进行时间同步。图中的最右侧是PTN网络的业务层,可以包括无线网络控制器(Radio Network Controller,简称“RNC”)、基站控制器(Base Station Controller,简称“BSC”)、移动管理实体(Mobility Management Entity,简称“MME”)、服务网关(Serving GateWay,简称“SGW”)、网关GSN(Gateway GSN,简称“GGSN”)、接入网关(Access GateWay,简称“AGW”)等网元。最左侧是与接入层的各路由相连的NodeB、Enb基站、企业或厂房网络设备等。
如果用户选择基于算法自动完成时间同步网分级,管理设备会基于算法自动的完成时间同步网分级分域配置。具体算法步骤见上文说明。基于本发明的算法,也将时间同步网划分为三个层级,层级一的时间子网1个,层级为二的时间子网1个,层级为三的时间子网2个,与人工规划的结果基本一致,具体网元设置也基本一致。
在另一个例子中,针对IPRAN网络时间同步网的场景,提供了一种针对IPRAN网络的 时间同步方法。IPRAN是指以IP/MPLS协议及关键技术为基础,主要面向移动业务承载并兼顾提供二三层通道类业务承载,以省为单位,依托中国电信下一代承载网(Chinatelecom Next Carrier Network,简称“CN2”)骨干层组成的端到端的业务承载网络。在IPRAN网络中主要包括接入层、汇聚层和核心层,而核心层又分为城域核心层、省核心层。IPRAN网络通常也采用IEEE 1588v2协议实现时间同步,向基站提供时间同步信号。由于PTN和IPRAN网络的时间同步都是采用IEEE 1588v2协议实现的,而且二者的组网架构也类似。因此,针对IPRAN网络时间同步方法的技术方案与PTN网络时间同步方法的技术方案基本一致,不再赘述。
在步骤103中,管理设备根据划分的结果,生成时间同步网的各网元的端口配置信息;其中,端口配置信息用于指示网元与相邻网元的授时关系。
具体地,管理设备可以通过获取客户端发送的人工手工配置信息,生成端口配置信息,也可以在层级划分后自动生成端口配置信息。
以图5中的BC和OC配置方式为例,对于每个网元,进行端口配置,生成各网元的端口配置信息。如图5所示,BC1(即Boundary Clock-1)分别与OC1即Ordinary Clock-1(Grandmaster)通过链路1相连,与OC2即Ordinary Clock-2通过链路2相连,与BC2即Boundary Clock-2通过链路3相连,BC2与OC3 Ordinary Clock-3通过链路4相连,与OC4 Ordinary Clock-4通过链路5相连。其中,BC1是OC1的下游网元,是OC2、BC2的上游网元,BC2是OC3和OC4的上游网元。OC1中与BC1相连的端口被配置为Master(即M),BC1与OC1相连的端口被配置为Slave(即S),以指示OC1通过链路1向BC1授时,BC1通过链路1从OC1中获取授时。BC1中与OC2相连的端口被配置为Master(即M),OC2中与BC1相连的端口被配置为Slave(即S),以指示BC1通过链路2向OC2授时,OC2通过链路2从BC1中获取授时。BC1中与BC2相连的端口被配置为Master(即M),BC2中与BC1相连的端口被配置为Slave(即S),以指示BC1通过链路3向BC2授时,BC2通过链路3从BC1中获取授时。BC2中与OC3相连的端口被配置为Master(即M),OC3中与BC2相连的端口被配置为Slave(即S),以指示BC2通过链路4向OC3授时,OC3通过链路4从BC2中获取授时。BC2中与OC4相连的端口被配置为Master(即M),OC4中与BC2相连的端口被配置为Slave(即S),以指示BC2通过链路5向OC4授时,OC4通过链路5从BC2中获取授时。其中,Grandmaster的时钟同步于指定时间源(如GPS)。其中,路径1,2,3,4,5可以包含透传时钟,透传时钟将PTP报文转发,不关心端口状态,图中每一个时钟就是一个路由器设备。
在一个例子中,管理设备还将获取的时间同步网的网元信息、生成的时间同步网多层子网结构保存下来,在生成的各网元的端口配置信息后,会临时保存到内存中,并持久化保存到数据库或文件中,以供后续下发、修改等操作。可选择数据库包括常见的关系型数据库如PostgreSQL、MySQL、Oracle等,或图数据库Neo4j、OrientDB等。
在一个例子中,若管理设备接收到网元上报的故障信息,则更新无法获取到正确授时的网元的端口配置信息,指示无法获取到正确授时的网元倒换授时方向;将更新后的端口配置信息下发至无法获取到正确授时的网元。
具体地,可以由发现自身时间同步功能故障的网元向管理设备上报故障信息,也可以由故障网元的下游网元在接收到错误授时后,向管理设备上报故障信息。当故障发生在两个网 元之间的相连链路中时,也可以由链路中的下游网元向管理设备上报故障信息。管理设备在接收到故障信息后,根据子网划分结果,更新故障网元、或故障关联网元的端口配置信息,使其倒换授时方向,从所属环型子网中的另一个相邻的网元获取授时。
本实施例中,由管理设备更改故障关联网元的端口配置信息,倒换授时方向,缩小故障波及范围和降低故障定位难度和维护成本。
在步骤104中,管理设备将各网元的端口配置信息对应下发至各网元。具体地,管理设备可以通过报文形式,分别将各网元的端口配置信息对应发送给各网元。
各网元接收到下发配置信息后,会按照下发的配置信息生效,将时间端口设置为强制master的配置生效,不会出现低层级时间子网向高层级时间子网授时的情况,从而完成时间同步网分级分域的功能。
在一个例子中,最高层子网中包括时间同步网的备时间源网元,其中,备时间源网元与时间同步网的备时钟相连,备时间源网元被设置为从所在子网的网元中获取授时,即,备时间源网元与时间同步网的备时钟之间通过备用链路连接,在主时钟正常作用时,备时间源网元不启用与备时钟之间的备用链路获取授时,而是通过所在子网中的相邻网元获取授时。时间同步方法还包括:若主时钟故障,管理设备将备时间源网元变更为主时间源网元,更新备时间源网元所在子网的各网元的端口配置信息,指示备时间源网元所在子网的各网元更新与相邻网元的授时关系;将更新的端口配置信息对应下发至备时间源网元所在子网的各网元。当主时钟故障时,备时间源网元与备时钟之间的备用链路被启用,管理设备将备时间源网元变更为主时间源网元,由备时间源网元向相邻的网元单向授时。
本实施例中,由于备时间源网元在最高层子网中,并且,各最高层子网都与主时间源网元连接,可以通过变更备时间源网元所在子网的各网元配置,使备时间源网元向所在子网提供时间源,各网元变更与相邻网元的授时关系,仍能获取到正确的授时,主时间源网元也可以从相邻网元获取正确授时,并作为备时间源网元所在子网与其他各最高层子网的共用网元,向其他各最高层子网单向授时,因此,主时钟故障后,只需要变更备时间源网元所在子网的各网元配置,就不会影响整个时间同步网的时间同步,使整个时间同步网维持正常的工作,从而可以缩小主时钟故障波及范围和降低故障定位难度和整个时间同步网的维护成本。
在本发明的另一个实施例中,如图6所示,时间同步方法还包括:在步骤104后,还可以包括步骤105,若接收到时间同步网的网元变更信息,则根据获取的变更后的时间同步网的网元信息,重新划分时间同步网;
步骤106,根据重新划分结果,更新各网元的端口配置信息;
步骤107,将更新的各网元的端口配置信息对应下发至各网元。
其中,时间同步网的网元变更信息可以由各网元向管理设备上报的,包括新增网元信息、删除网元信息或网元链路变更信息等等。如果时间同步网络中新增或删除了某一个或一些节点,管理设备会将相关信息采集上来,更新时间同步网元和链路的信息,并自动触发时间同步网的各网元配置生成,生成最新的网元节点的配置,将更新的网元配置下发到网元节点上生效。
本实施例中,通过接收时间同步网的网元变更信息,根据获取的变更后的时间同步网的网元信息,重新划分时间同步网,根据重新划分结果,更新各网元的端口配置信息,将更新的各网元的端口配置信息对应下发至各网元,可以在时间同步网的结构发生变化时,更新多 层子网,使各网元都获取到正确授时。
本发明实施例还涉及一种时间同步装置如图7所示,包括:
采集模块701,设置为获取时间同步网的网元信息;
生成模块702,设置为根据网元信息,将时间同步网从高到低划分成多层子网,并根据划分结果,生成时间同步网的各网元的端口配置信息;其中,除末层子网外的各层子网与一个或多个下一层子网相连,各层子网为环型子网,各层子网与下一层子网有至少一个共用网元,各层子网通过共用网元向下一层子网单向授时,多层子网包括至少一个最高层子网,各最高层子网中包括时间同步网的主时间源网元,由主时间源网元向最高层子网单向授时,主时间源网元与时间同步网的主时钟相连,从主时钟获取授时,端口配置信息用于指示网元与相邻网元的授时关系;
下发模块703,设置为将各网元的端口配置信息对应下发至各网元。
在一个例子中,生成模块702生成的多层子网中,共用网元为下一层子网的时间源网元;环型子网中的除时间源网元外的其他网元从一个相邻的网元获取授时,并在无法获取到正确授时后,倒换授时方向,从另一个相邻的网元获取授时。
在一个例子中,时间同步装置还包括存储模块,设置为将获取的时间同步网的网元信息、生成的时间同步网多层子网结构保存下来,将采集的时间同步网所有的网元和链路信息持久化保存到数据库或文件中,以便再需要时可以读取相关信息。
在一个例子中,生成模块702,还设置为若接收到网元上报的故障信息,则更新无法获取到正确授时的网元的端口配置信息,指示无法获取到正确授时的网元倒换授时方向。下发模块703,还设置为将更新后的端口配置信息下发至无法获取到正确授时的网元。
在一个例子中,生成模块702,还设置为执行如下步骤将时间同步从高到低划分成多层子网:S1,以主时间源网元为起始点,遍历各边搜索能够沿另一条边回到起始点的最优搜索圈,最优搜索圈的个数大于或等于1,搜索圈经过的网元是未被划分至任意子网的游离网元,以各最优搜索圈为各最高层子网;S2,遍历最高层子网的除主时间源网元以外的其他网元为新起始点,遍历新起始点的各边搜索能够沿另一条边回到新起始点的最优搜索圈,以各回到新起始点的最优搜索圈为第二层子网;S3,遍历当前得到的最后一层的各子网中,除时间源网元以外的其他网元为新起始点,遍历新起始点的各边搜索能够沿另一条边回到新起始点的最优搜索圈,以各回到新起始点的最优搜索圈为下一层子网,重复执行S3直至无法形成最优搜索圈;其中,若新起始点存在一条无法形成搜索圈的搜索路径,以搜索路径为最末层子网。
在一个例子中,最优搜索圈为经过游离网元数量最少的搜索圈。
在一个例子中,最高层子网中包括时间同步网的备时间源网元;其中,备时间源网元与时间同步网的备时钟相连;备时间源网元被设置为从所在子网的网元中获取授时;生成模块702,还设置为在主时钟故障时,将备时间源网元变更为主时间源网元,更新备时间源网元所在子网的各网元的端口配置信息,指示备时间源网元所在子网的各网元更新与相邻网元的授时关系;下发模块703,还设置为将更新的端口配置信息对应下发至备时间源网元所在子网的各网元。
在一个例子中,时间同步装置还包括界面模块,设置为提供时间同步网界面的呈现,显示时间同步网分级分域的拓扑信息,同时提供界面供用户操作,用户可以手工配置,比如设置时间端口的配置信息等,完成时间同步网分级分域的手工配置。
在一个例子中,采集模块701,还设置为接收时间同步网的网元变更信息,生成模块702,还设置为在接收到时间同步网的网元变更信息后,根据获取的变更后的时间同步网的网元信息,重新划分时间同步网;根据重新划分结果,更新各网元的端口配置信息;下发模块703,还设置为将更新的各网元的端口配置信息对应下发至各网元。
本发明实施例还涉及一种电子设备,如图8所示,包括:至少一个处理器801;与至少一个处理器通信连接的存储器802;其中,存储器802存储有可被至少一个处理器801执行的指令,指令被至少一个处理器801执行上述时间同步方法。
其中,存储器802和处理器801采用总线方式连接,总线可以包括任意数量的互联的总线和桥,总线将一个或多个处理器801和存储器802的各种电路连接在一起。总线还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路连接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口在总线和收发机之间提供接口。收发机可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器801处理的信息通过天线在无线介质上进行传输,进一步,天线还接收信息并将信息传送给处理器801。
处理器801负责管理总线和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。而存储器802可以被设置为存储处理器在执行操作时所使用的信息。
本发明的实施例还涉及一种计算机可读存储介质,存储有计算机程序。计算机程序被处理器执行时实现上述方法实施例。
即,本领域技术人员可以理解,实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域的普通技术人员可以理解,上述各实施例是实现本发明的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。

Claims (10)

  1. 一种时间同步方法,包括:
    获取时间同步网的网元信息;
    根据所述网元信息,将所述时间同步网从高到低划分成多层子网;其中,除末层子网外的各子网均为环型子网,各子网分别与一个或多个下一层子网相连,且所述各子网与所述下一层子网有至少一个共用网元,所述各子网通过所述共用网元向所述下一层子网单向授时;所述多层子网中的最高层子网的数量大于或等于1,所述最高层子网中包括所述时间同步网的主时间源网元,所述主时间源网元与所述时间同步网的主时钟相连,从所述主时钟获取授时;
    根据所述划分的结果,生成所述时间同步网的各网元的端口配置信息;其中,所述端口配置信息用于指示网元与相邻网元的授时关系;
    将所述各网元的端口配置信息对应下发至所述各网元。
  2. 根据权利要求1所述的时间同步方法,其中,所述共用网元为所述下一层子网的所述时间源网元;
    所述环型子网中的除所述时间源网元外的其他网元从一个相邻的网元获取授时,并在无法获取到正确授时后,倒换授时方向,从另一个相邻的网元获取授时。
  3. 根据权利要求2所述的时间同步方法,其中,所述方法还包括:
    若接收到网元上报的故障信息,则更新所述无法获取到正确授时的网元的端口配置信息,指示所述无法获取到正确授时的网元倒换授时方向;
    将更新后的所述端口配置信息下发至所述无法获取到正确授时的网元。
  4. 根据权利要求2或3所述的时间同步方法,其中,所述将所述时间同步网从高到低划分成多层子网,包括:
    S1,以所述主时间源网元为起始点,遍历各边搜索能够沿另一条边回到所述起始点的最优搜索圈,所述最优搜索圈的个数大于或等于1,所述搜索圈经过的网元是未被划分至任意子网的游离网元,以各所述最优搜索圈为各所述最高层子网;
    S2,遍历所述最高层子网的除所述主时间源网元以外的其他网元为新起始点,遍历所述新起始点的各边搜索能够沿另一条边回到所述新起始点的最优搜索圈,以各所述回到所述新起始点的最优搜索圈为第二层子网;
    S3,遍历当前得到的最后一层的各子网中,除所述时间源网元以外的其他网元为所述新起始点,遍历所述新起始点的各边搜索能够沿另一条边回到所述新起始点的最优搜索圈,以各所述回到所述新起始点的最优搜索圈为下一层子网,重复执行所述S3直至无法形成所述最优搜索圈;
    其中,所述最优搜索圈包括至少三个网元;
    若所述新起始点存在一条无法形成所述搜索圈的搜索路径,以所述搜索路径为最末层子网。
  5. 根据权利要求4所述的时间同步方法,其中,所述最优搜索圈为经过所述游离网元数量最少的搜索圈。
  6. 根据权利要求1至3中任一项所述的时间同步方法,其中,所述最高层子网中包括所述时间同步网的备时间源网元;其中,所述备时间源网元与所述时间同步网的备时钟相连; 所述备时间源网元被设置为从所在子网的网元中获取授时;
    所述方法还包括:若所述主时钟故障,将所述备时间源网元变更为所述主时间源网元,更新所述备时间源网元所在子网的各网元的端口配置信息,指示所述备时间源网元所在子网的各网元更新与相邻网元的授时关系;
    将更新的所述端口配置信息对应下发至所述备时间源网元所在子网的各网元。
  7. 根据权利要求1至3中任一项所述的时间同步方法,其中,所述方法还包括:
    若接收到所述时间同步网的网元变更信息,则根据获取的变更后的时间同步网的网元信息,重新划分所述时间同步网;
    根据重新划分结果,更新所述各网元的端口配置信息;
    将更新的所述各网元的端口配置信息对应下发至所述各网元。
  8. 一种时间同步装置,包括:
    采集模块,设置为获取时间同步网的网元信息;
    生成模块,设置为根据所述网元信息,将所述时间同步网从高到低划分成多层子网,并根据划分结果,生成所述时间同步网的各网元的端口配置信息;其中,除末层子网外的各层子网与一个或多个下一层子网相连,所述各层子网为环型子网,所述各层子网与所述下一层子网有至少一个共用网元,所述各层子网通过所述共用网元向所述下一层子网单向授时,所述多层子网包括至少一个最高层子网,各所述最高层子网中包括所述时间同步网的主时间源网元,由所述主时间源网元向所述最高层子网单向授时,所述主时间源网元与所述时间同步网的主时钟相连,从所述主时钟获取授时,所述端口配置信息用于指示网元与相邻网元的授时关系;
    下发模块,设置为将所述各网元的端口配置信息对应下发至所述各网元。
  9. 一种电子设备,其中,包括:
    至少一个处理器;
    与所述至少一个处理器通信连接的存储器;
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如权利要求1至7中任一项所述的时间同步方法。
  10. 一种计算机可读存储介质,存储有计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求1至7中任一项所述的时间同步方法。
PCT/CN2022/085437 2021-05-24 2022-04-07 时间同步方法、装置、电子设备及存储介质 WO2022247478A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110565668.0A CN115459870A (zh) 2021-05-24 2021-05-24 时间同步方法、装置、电子设备及存储介质
CN202110565668.0 2021-05-24

Publications (1)

Publication Number Publication Date
WO2022247478A1 true WO2022247478A1 (zh) 2022-12-01

Family

ID=84229482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085437 WO2022247478A1 (zh) 2021-05-24 2022-04-07 时间同步方法、装置、电子设备及存储介质

Country Status (2)

Country Link
CN (1) CN115459870A (zh)
WO (1) WO2022247478A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117930622A (zh) * 2024-03-25 2024-04-26 山东师范大学 一种无线电控计时系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102237941A (zh) * 2010-04-28 2011-11-09 中兴通讯股份有限公司 时间同步系统及方法
CN109257133A (zh) * 2018-09-14 2019-01-22 武汉虹信通信技术有限责任公司 一种应用于lte轨道交通网的全网时钟同步方法及装置
CN112514289A (zh) * 2020-10-29 2021-03-16 华为技术有限公司 控制系统、时钟同步方法、控制器、节点设备及车辆

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102237941A (zh) * 2010-04-28 2011-11-09 中兴通讯股份有限公司 时间同步系统及方法
CN109257133A (zh) * 2018-09-14 2019-01-22 武汉虹信通信技术有限责任公司 一种应用于lte轨道交通网的全网时钟同步方法及装置
CN112514289A (zh) * 2020-10-29 2021-03-16 华为技术有限公司 控制系统、时钟同步方法、控制器、节点设备及车辆

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117930622A (zh) * 2024-03-25 2024-04-26 山东师范大学 一种无线电控计时系统
CN117930622B (zh) * 2024-03-25 2024-06-11 山东师范大学 一种无线电控计时系统

Also Published As

Publication number Publication date
CN115459870A (zh) 2022-12-09

Similar Documents

Publication Publication Date Title
US10790921B2 (en) Configuration of synchronisation network
US6711411B1 (en) Management of synchronization network
US10892884B2 (en) Method for updating clock synchronization topology, method for determining clock synchronization path, and device
JP5480977B2 (ja) 時刻同期および周波数同期のための同期トレイルを有する同期ネットワーク構成
CN101286835B (zh) 一种时钟跟踪的方法、装置及网元设备
US8203969B2 (en) Network timing topology via network manager
EP1811713A1 (en) Method for determining clock trace path and method of clock trace in the network
CN111585683A (zh) 一种面向时间敏感网络的高可靠时钟同步系统及方法
CN101986622B (zh) 一种pce状态属性的自动识别方法及系统
WO2013071807A1 (zh) 一种多时钟同步技术混合组网的实现方法、系统和装置
WO2013086833A1 (zh) 时钟时间同步源配置方法及装置
WO2022247478A1 (zh) 时间同步方法、装置、电子设备及存储介质
US10425319B2 (en) Transport software defined networking (SDN)—zero configuration adjacency via packet snooping
CN101335609B (zh) 网络时钟跟踪的方法、网络设备和网络系统
CN115297498A (zh) 一种传输网时延地图的构建方法及装置
CN113423114B (zh) 一种基于虚拟拓扑的飞机组网与路由方法
CN114430387B (zh) 一种节点的配置方法、控制器和节点
CN118354232A (zh) 一种节点交叉受限光网络业务连接的控制方法及装置
CN118264351A (zh) 一种基于时钟仲裁的高精度时钟同步方法
CN118413432A (zh) 一种故障数据聚合方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810211

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/04/2024)