WO2022247315A1 - 一种面向区域寻址的地理标识转发方法及装置 - Google Patents

一种面向区域寻址的地理标识转发方法及装置 Download PDF

Info

Publication number
WO2022247315A1
WO2022247315A1 PCT/CN2022/072213 CN2022072213W WO2022247315A1 WO 2022247315 A1 WO2022247315 A1 WO 2022247315A1 CN 2022072213 W CN2022072213 W CN 2022072213W WO 2022247315 A1 WO2022247315 A1 WO 2022247315A1
Authority
WO
WIPO (PCT)
Prior art keywords
coverage
message
flow table
latitude
longitude
Prior art date
Application number
PCT/CN2022/072213
Other languages
English (en)
French (fr)
Inventor
沈丛麒
姚少峰
潘仲夏
骆汉光
邹涛
Original Assignee
之江实验室
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 之江实验室 filed Critical 之江实验室
Priority to US17/966,917 priority Critical patent/US11870560B2/en
Publication of WO2022247315A1 publication Critical patent/WO2022247315A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/74Address processing for routing
    • H04L45/745Address table lookup; Address filtering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/29Geographical information databases
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/54Organization of routing tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/76Routing in software-defined topologies, e.g. routing between virtual machines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/021Services related to particular areas, e.g. point of interest [POI] services, venue services or geofences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing

Definitions

  • the present application relates to the technical field of data/network transmission, and in particular to an area-addressing-oriented geographic identifier forwarding method and device.
  • one category proposes solutions mainly in network performance optimization from the perspective of business applications.
  • another type starts with network protocols and builds on top of the IP layer to meet professional business needs Compliant session protocols, such as content-addressed information-centric networks, identity- and location-separated networks, etc.
  • IP addressing is still required, and the problem of single IP bearer in the current network is not solved. Solving the single bearer of IP is a key technology to break through the rigid network structure and the inability to significantly improve the performance of the current network. Therefore, it has become a consensus to propose addressing transmission methods other than IP, but there is still a lack of relevant implementation methods for how to realize the new transmission method.
  • the purpose of the embodiments of the present application is to provide an area-addressing-oriented geographic identifier forwarding method and device, so as to solve the problem of narrow network IP in the related art.
  • an area addressing-oriented geographic identifier forwarding method which is applied to an SDN switch, and the method includes:
  • a network flow table is generated for each geographical area.
  • a network flow table contains multiple flow entries. Each flow entry contains a matching rule and a corresponding flow table action.
  • a matching rule contains multiple matching domains;
  • the message is generated by the sender and forwarded via the roadside base station corresponding to the sender, and the message includes the geographic location of the sender information and geographical location information of the targeted area;
  • the message is forwarded according to the flow entry in the hit network flow table until the roadside base station corresponding to the target addressing area, wherein the message is broadcasted by the roadside base station corresponding to the target addressing area and received by the target The receiving end within the addressing area receives.
  • the SDN controller collects the geographical location information and coverage information of the roadside base station itself, uses the collected information to segment geographical areas, and generates a network flow table according to each segmented geographical area, including:
  • the self-location information is represented by a longitude value and a latitude value
  • the coverage area is represented by a wireless signal coverage radius of the roadside base station
  • each of the matching rules includes two matching domains, namely a longitude range and a latitude range;
  • receiving the message and matching the message with the network flow table includes:
  • the next-hop switch continues to parse the message, obtains the latitude and longitude coverage upper and lower limits of the target addressing area, and matches the network flow table, and executes the flow table action corresponding to the matching rule until the message is forwarded to the path of the target addressing area. side base station.
  • an area-addressing-oriented geographical identifier forwarding device which is applied to an SDN switch, and the device includes:
  • the first receiving module is used to receive its own geographical location information and coverage sent by the roadside base station;
  • the first sending module is configured to send the self-location information and coverage to the SDN controller, so that the SDN controller collects the self-location information and coverage information of the roadside base stations, and uses the collected information to segment Geographical area, and generate a network flow table based on each segmented geographical area.
  • a network flow table contains multiple flow entries, and each flow entry contains a matching rule and the corresponding flow table action.
  • One of the matching rules Contains multiple match fields;
  • the second receiving module is configured to receive the network flow table sent by the SDN controller
  • a matching module configured to receive a message, and match the message with the network flow table, wherein the message is generated by the sending end and forwarded by the roadside base station corresponding to the sending end, and the message Including the geographic location information of the sender and the geographic location information of the target addressing area;
  • a forwarding module configured to forward the message according to the flow entry in the hit network flow table until the roadside base station corresponding to the target addressing area, wherein the message is broadcasted by the roadside base station corresponding to the target addressing area out and be received by receivers within the target's addressing area.
  • an area addressing-oriented geographic identifier forwarding method which is applied to an SDN controller, and the method includes:
  • the roadside base station corresponding to the area wherein the message is generated by the sender and forwarded by the roadside base station corresponding to the sender, and the message is broadcasted by the roadside base station corresponding to the target addressing area and received by the target Received by the receiving end in the addressing area, the message includes the geographic location information of the sending end and the geographic location information of the target addressing area.
  • segment the geographic area using the geographic location information and coverage, segment the geographic area, and generate a network flow table based on each segmented geographic area, including:
  • the self-location information is represented by a longitude value and a latitude value
  • the coverage area is represented by a wireless signal coverage radius of the roadside base station
  • each of the matching rules includes two matching domains, namely a longitude range and a latitude range;
  • matching the message with the network flow table includes:
  • forwarding according to the flow entry that can match the message until reaching the roadside base station corresponding to the target addressing area including:
  • the next-hop switch continues to analyze the message, obtains the upper and lower limits of latitude and longitude coverage of the target addressing area, and matches the network flow table, and executes the flow table action corresponding to the matching rule until the message is forwarded to the roadside of the target addressing area base station.
  • an area addressing-oriented geographical identifier forwarding device which is applied to an SDN controller, and the device includes:
  • the third receiving module is used to receive the geographic location information and coverage of the roadside base station itself forwarded by the SDN switch;
  • a generating module configured to use the geographic location information and coverage to segment geographic areas, and generate a network flow table based on each segmented geographic area;
  • the second sending module is configured to send the network flow table to the SDN switch, so as to trigger the SDN switch to receive the network flow table, and match the packet with the network flow table, according to the matched flow
  • the entry is forwarded until the roadside base station corresponding to the request area, wherein the message is generated by the sender and forwarded by the roadside base station corresponding to the sender, and the message is sent by the roadside base station corresponding to the target addressing area
  • the base station broadcasts and is received by the receiving end in the target addressing area, and the message includes the geographic location information of the sending end and the geographic location information of the target addressing area.
  • the present application defines the target addressing area and constructs the message by using geographic location information such as longitude and latitude, and overcomes the problem that the receiving end IP must be specified in the current IP network and cannot communicate with the receiving end in the designated area. From the perspective of identification addressing, the problem of IP single bearer is solved, and it has strong practical significance for improving the flexibility of network structure.
  • the present application utilizes geographical region segmentation to generate network flow tables, which solves the problem of explosive growth of the number of flow tables caused by diversification of target addressing areas, and achieves the effect that the number of flow tables on the SDN switch is controllable.
  • Fig. 1 is a flow chart of an area-addressing-oriented geographic identifier forwarding method according to an exemplary embodiment.
  • Fig. 2 is a flowchart of step S102 according to an exemplary embodiment.
  • Fig. 3 is a schematic diagram of an application environment of an area-addressing-oriented geographic identifier forwarding method according to an exemplary embodiment.
  • Fig. 4 is a flow chart of step S104 according to an exemplary embodiment.
  • Fig. 5 is a flow chart of step S105 shown according to an exemplary embodiment.
  • Fig. 6 is a flow chart showing another geographical identifier forwarding method oriented to area addressing according to an exemplary embodiment.
  • Fig. 7 is a schematic structural diagram of an apparatus for forwarding geographic identifiers oriented to area addressing according to an exemplary embodiment.
  • Fig. 8 is a schematic structural diagram of another geographic identifier forwarding device oriented to area addressing according to an exemplary embodiment.
  • first, second, third, etc. may be used in this application to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another. For example, without departing from the scope of the present application, first information may also be called second information, and similarly, second information may also be called first information. Depending on the context, the word “if” as used herein may be interpreted as “at” or “when” or “in response to a determination.”
  • Fig. 1 is a system model diagram of an area-addressing-oriented geographic identifier forwarding method shown according to an exemplary embodiment. As shown in Fig. 1, the method is applied to an SDN switch and may include:
  • Step S101 receiving the geographical location information and coverage of the roadside base station
  • Step S102 sending the geographical location information and coverage of the self to the SDN controller, so that the SDN controller collects the geographical location information and coverage information of the roadside base station itself, uses the collected information to divide the geographical area, and Generate a network flow table based on each segmented geographical area;
  • Step S103 receiving the network flow table sent by the SDN controller
  • Step S104 receiving a message and matching the message with the network flow table, wherein the message is generated by the sending end and forwarded by the roadside base station corresponding to the sending end, and the message includes sending The geographic location information of the terminal and the geographic location information of the target addressing area;
  • Step S105 forwarding according to the matching flow entry until reaching the roadside base station corresponding to the request area, wherein the message is broadcast by the roadside base station corresponding to the request area and received by the receiving end in the target addressing area.
  • the present application defines the target addressing area and constructs the message by using geographic location information such as longitude and latitude, and overcomes the problem that the receiving end IP must be specified in the current IP network and cannot communicate with the receiving end in the designated area. From the perspective of identification addressing, the problem of IP single bearer is solved, and it has strong practical significance for improving the flexibility of network structure.
  • the present application utilizes geographical region segmentation to generate network flow tables, which solves the problem of explosive growth of the number of flow tables caused by diversification of target addressing areas, and achieves the effect that the number of flow tables on the SDN switch is controllable.
  • this step may include:
  • the own geographic location information and coverage range sent by the roadside base station in the form of a message, wherein the own geographic location information is represented by a longitude value and a latitude value, and the coverage range is represented by a wireless signal coverage radius of the roadside base station.
  • the switch receives the geographical location information sent by the roadside base station R1 as longitude 10, latitude 40, and coverage radius 10; the roadside base station R2 sends its own geographic location information as longitude 10, latitude 10, and coverage radius 10.
  • the roadside base station R3 sends its own geographic location information as longitude 25, latitude 25, and coverage radius 10; the roadside base station R4 sends its own geographic location information as longitude 40, latitude 40, and coverage radius 10.
  • step S102 the self-location information and coverage are sent to the SDN controller, so that the SDN controller collects the self-location information and coverage information of the roadside base stations, and uses the collected information Segment the geographical area, and generate a network flow table according to each segmented geographical area; the configuration of the network flow table is calculated and generated by the SDN controller and sent to the SDN switch.
  • this step may include:
  • Step S201 receiving the own geographic location information and coverage area sent by each roadside base station through the SDN switch, wherein the own geographic location information is represented by longitude value and latitude value, and the coverage area is represented by the wireless signal coverage radius of the roadside base station representation;
  • Step S202 converting the self-location information and coverage range into the upper and lower limits of longitude and latitude coverage of the corresponding roadside base station;
  • the upper and lower limits of longitude of R1 are 20, 0, and the upper and lower limits of latitude are 50, 30 respectively;
  • the upper and lower limits of R2 longitude are 20, 0, and the upper and lower limits of latitude are 20, 0 respectively;
  • the upper and lower limits of latitude are 35 and 15 respectively;
  • the upper and lower limits of R4 longitude are 50 and 30 respectively, and the upper and lower limits of latitude are 50 and 30 respectively;
  • Step S203 sorting the upper and lower limits of the longitude coverage to form a longitude set, and sorting the upper and lower limits of the latitude coverage to form a latitude set;
  • the longitude set is ⁇ 50,35,30,20,15,0 ⁇ ;
  • the latitude set is ⁇ 50,35,30,20,15,0 ⁇ ;
  • Step S204 generating a matching rule set according to the longitude set and latitude set, specifically as follows: take out the maximum and minimum values in the longitude set and latitude set each time to form a matching rule, and remove the taken out from the corresponding set The maximum and minimum values until the longitude set and the latitude set become an empty set to obtain a matching rule set; each of the matching rules includes two matching domains, namely a longitude range and a latitude range;
  • each rule includes a longitude matching field and a latitude matching field.
  • the first rule is range(0,50) for longitude and range(0,50) for latitude.
  • the second matching rule is longitude range(15,35) and latitude range(15,35).
  • the third matching rule is longitude range(20,30) and latitude range(20,30).
  • Step S205 count the roadside base stations corresponding to each matching rule in the matching rule set, and calculate for each switch the list of ports that need to be forwarded to reach the corresponding roadside base station, and the port list is the flow table corresponding to the matching rule action;
  • Step S206 matching the matching rules with the flow table actions one by one, and each SDN switch obtains the network flow table issued by the controller.
  • FIG. 3 shows the application environment of the geographical identifier forwarding method for area addressing, including an SDN controller C0 and four SDN switches, which are respectively SDN switch S1, SDN switch S2, SDN switch S3, SDN switch S4, four roadside base stations, respectively roadside base station R1, roadside base station R2, roadside base station R3, roadside base station R4, the sending end TR1 is connected with the roadside base station R1, and the roadside base station R1 forwards and sends TR1 The message is forwarded to the switch S1.
  • the SDN controller C0 calculates the network flow table and sends the network flow table to the four SDN switches.
  • the flow table obtained by the SDN switch S1 contains three flow entries.
  • the matching rule is longitude range(20,30), latitude range(20,30), and the flow table action is forwarding from port 3.
  • the matching rule is longitude range(15,35), latitude range(15,35), and the flow table action is forwarding from ports 2 and 3.
  • the matching rule is longitude range(0,50), latitude range(0,50), and the flow table action is forwarding from ports 2 and 3.
  • the flow table obtained by the SDN switch S2 contains three flow entries.
  • the matching rule is longitude range(20,30), latitude range(20,30), and the flow table action is forwarding from port 3.
  • the matching rule is longitude range(15,35), latitude range(15,35), and the flow table action is forwarding from ports 2 and 3.
  • the matching rule is longitude range(0,50), latitude range(0,50), and the flow table action is forwarding from ports 2 and 3.
  • the flow table obtained by the SDN switch S3 contains three flow entries.
  • the matching rule is longitude range(20,30), latitude range(20,30), and the flow table action is forwarding from port 2.
  • the matching rule is longitude range(15,35), latitude range(15,35), and the flow table action is forwarding from ports 2 and 3.
  • the matching rule is longitude range(0,50), latitude range(0,50), and the flow table action is forwarding from ports 2 and 3.
  • the flow table obtained by the SDN switch S4 contains three flow entries.
  • the matching rule is longitude range(20,30), latitude range(20,30), and the flow table action is forwarding from port 1.
  • the matching rule is longitude range(15,35), latitude range(15,35), and the flow table action is forwarding from ports 1 and 2.
  • the matching rule is longitude range(0,50), latitude range(0,50), and the flow table action is forwarding from ports 1 and 2.
  • step S104 the message is received, and the message is matched with the network flow table.
  • this step may include:
  • Step S401 receiving the message, analyzing the message, and obtaining the longitude and latitude coverage upper and lower limit values of the target addressing area;
  • the message includes a basic header, a common header, a data packet sequence number, the sending end's own geographic location information, the geographic location information of the target addressing area, message payload, etc.;
  • the basic header includes message version number, next message, reserved bit, time-to-live, and remaining available hops, occupying 4bit, 4bit, 8bit, 8bit, and 8bit respectively, wherein the time-to-live indicates that the packet is on the forwarding path
  • the queuing time in the buffer of each switch, and the remaining available hops indicate the remaining hops that the message is allowed to be forwarded;
  • the public header includes message type, message subtype, traffic type, flag bit, payload length, and maximum hop count, respectively occupying 4bit, 4bit, 8bit, 8bit, 16bit, and 8bit, wherein the message type and message subtype are jointly defined
  • the type of the message is specified, and the maximum hop count indicates the maximum hop count of the message on the forwarding path;
  • the geographic location information of the sender itself includes information such as the directly connected router address, latitude and longitude information, precise identification, moving speed, and moving direction, occupying 64bit, 32bit, 32bit, 1bit, 15bit, and 16bit respectively, wherein the precise identification refers to the longitude and latitude information Is it accurate;
  • the geographical location information of the target addressing area includes the longitude information of the center point of the target addressing area, the latitude information of the center point of the target addressing area, the horizontal distance of the target addressing area, and the vertical direction distance of the target addressing area, Occupies 32bit, 32bit, 16bit, and 16bit respectively.
  • the message type and message subtype in the public header are 3 and 0 respectively, it means that the request area is a circle; if the message type and message subtype are 3 and 1 respectively
  • the message payload is the message content defined by the sending end TR1.
  • the longitude range of the message sent by the sending end TR1 is 20 to 30, and the latitude range is 20 to 30, then the longitude and latitude of the center point of the target addressing area are 15 and 15 respectively, and the horizontal and vertical directions
  • the distances are 10 and 10 respectively, the upper and lower limits of longitude coverage are 30 and 20 respectively, and the upper and lower limits of latitude coverage are 30 and 20 respectively.
  • Step S402 comparing the longitude and latitude coverage upper and lower limits with the matching rules in the network flow table, and comparing the geographical areas corresponding to the matching rules from small to large, if the longitude and latitude coverage upper and lower limits in the message belong to The longitude range in the matching rule and the upper and lower latitude coverage limits in the message belong to the latitude range in the matching rule, then the message hits the matching rule, and once the message hits a matching rule, it will no longer match other rules for comparison.
  • the switch S1 closest to the sending end TR1 receives the message sent by the sending end TR1
  • the upper and lower limits of the longitude of the target addressing area are 30 and 20 respectively
  • the upper and lower limits of the latitude are 30 and 20 respectively.
  • the SDN switch S1 Since the geographical area corresponding to the first matching rule is the smallest, the SDN switch S1 first matches the first rule.
  • the upper and lower limits of latitude and longitude coverage of the target addressing area are both within the range of latitude and longitude, which conforms to the matching rule of the first flow entry. Therefore, the packet hits the first matching rule and is no longer matched with other rules. Match to complete the rule matching.
  • step S105 the forwarding is carried out according to the matching flow entry until the roadside base station corresponding to the target addressing area.
  • this step may include:
  • Step S501 execute the flow table action corresponding to the matching rule that can match the message, copy the message to the forwarding port specified in the flow table action, and forward the message to the next-hop SDN switch;
  • the packet matches the first rule of the SDN switch S1, therefore, the flow table action corresponding to the first matching rule is executed, that is, the SDN switch S1 transfers the packet from the SDN Port 3 of the switch S1 is forwarded to the next hop SDN switch S2.
  • Step S502 the next-hop switch continues to analyze the message, obtains the latitude and longitude coverage upper and lower limits of the target addressing area, and matches the network flow table, and executes the flow table action corresponding to the matching rule until the message is forwarded to the target addressing area Roadside base stations in the area.
  • the SDN switch S2 analyzes and obtains that the upper and lower limits of the longitude and the upper and lower limits of the target addressing area are 30 and 20 respectively, and the upper and lower limits of the latitude are 30 and 20 respectively, and match the upper and lower limits of the SDN switch S2.
  • the packet is forwarded from port 3 of the SDN switch S2.
  • the SDN switch S3 analyzes and obtains that the upper and lower limits of the longitude and the upper and lower limits of the target addressing area are 30 and 20 respectively, and the upper and lower limits of the latitude are respectively 30 and 20, and match the upper and lower limits of the SDN switch S3.
  • a flow entry the message is forwarded from port 2 of the SDN switch S3.
  • the roadside base station R3 broadcasts the message, so that all receivers in the target addressing area receive the message.
  • an embodiment of the present invention also provides an area addressing-oriented geographic identifier forwarding method, which is applied to an SDN controller, and the method includes:
  • Step S601 receiving the geographic location information and coverage of the roadside base station itself forwarded by the SDN switch;
  • Step S602 using the geographic location information and the coverage area to segment geographical areas, and generate a network flow table according to each segmented geographical area;
  • Step S603 sending the network flow table to the SDN switch to trigger the SDN switch to receive the network flow table, match the message with the network flow table, and forward according to the matched flow table item , until the roadside base station corresponding to the request area, wherein the message is generated by the sending end and forwarded by the roadside base station corresponding to the sending end, and the message is broadcast by the roadside base station corresponding to the target addressing area and sent Received by the receiving end in the target addressing area, the message includes the geographic location information of the sending end and the geographic location information of the target addressing area.
  • the present application defines the target addressing area and constructs the message by using geographic location information such as longitude and latitude, and overcomes the problem that the receiving end IP must be specified in the current IP network and cannot communicate with the receiving end in the designated area. From the perspective of identification addressing, the problem of IP single bearer is solved, and it has strong practical significance for improving the flexibility of network structure.
  • the present application utilizes geographical region segmentation to generate network flow tables, which solves the problem of explosive growth of the number of flow tables caused by diversification of target addressing areas, and achieves the effect that the number of flow tables on the SDN switch is controllable.
  • step S601-step S603 please refer to the methods provided in the previous embodiments.
  • the present application also provides embodiments of an apparatus for forwarding geographical indication oriented to area addressing.
  • Fig. 7 is a block diagram of an apparatus for forwarding geographic identifiers oriented to area addressing according to an exemplary embodiment.
  • the device is applied to an SDN switch, and the device includes:
  • the first receiving module 71 is used to receive the geographical location information and coverage of the roadside base station;
  • the first sending module 72 is configured to send the self-location information and coverage to the SDN controller, so that the SDN controller collects the self-location information and coverage information of the roadside base stations, and utilizes the collected information Segment geographic regions and generate network flow tables based on each segmented geographic region.
  • a network flow table contains multiple flow entries, and each flow entry contains a matching rule and a corresponding flow table action.
  • One of the matching A rule contains multiple match fields;
  • the second receiving module 73 is configured to receive the network flow table sent by the SDN controller
  • the matching module 74 is configured to receive a message, and match the message with the network flow table, wherein the message is generated by the sender and forwarded by the roadside base station corresponding to the sender, and the report
  • the text includes the geographic location information of the sender and the geographic location information of the target addressing area;
  • the forwarding module 75 is configured to forward the message according to the flow entry in the hit network flow table until the roadside base station corresponding to the target addressing area, wherein the message is sent by the roadside base station corresponding to the target addressing area Broadcast out and be received by receivers within the target addressing area.
  • Fig. 8 is a block diagram of another geographic identifier forwarding device oriented to area addressing according to an exemplary embodiment. Referring to Figure 8, the device is applied to an SDN controller, and the device includes:
  • the third receiving module 81 is used to receive the geographic location information and coverage of the roadside base station itself forwarded by the SDN switch;
  • a generating module 82 configured to use the geographic location information and coverage to segment geographical areas, and generate a network flow table according to each segmented geographical area;
  • the second sending module 83 is configured to send the network flow table to the SDN switch, so as to trigger the SDN switch to receive the network flow table, and match the packet with the network flow table, according to the matching
  • the flow entry is forwarded until the roadside base station corresponding to the request area, wherein the message is generated by the sender and forwarded by the roadside base station corresponding to the sender, and the message is sent by the roadside base station corresponding to the target addressing area
  • the side base station broadcasts and is received by the receiving end in the target addressing area, and the message includes the geographic location information of the sending end and the geographic location information of the target addressing area.
  • the device embodiment since it basically corresponds to the method embodiment, for related parts, please refer to the part description of the method embodiment.
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network elements. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this application. It can be understood and implemented by those skilled in the art without creative effort.
  • the present application also provides an electronic device, including: one or more processors; a memory for storing one or more programs; when the one or more programs are executed by the one or more processors , so that the one or more processors implement the above-mentioned method for forwarding geographical identifiers oriented to area addressing.
  • the present application also provides a computer-readable storage medium, on which computer instructions are stored, which is characterized in that, when the instructions are executed by a processor, the above-mentioned method for forwarding geographical identifiers oriented to area addressing is implemented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Remote Sensing (AREA)
  • Data Mining & Analysis (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种面向区域寻址的地理标识转发方法。本发明利用地理位置信息作为传输标识,通过构建基于SDN的地理标识传输架构,实现基于地理标识的通信过程。本方法利用地理标识代替传统的IP标识进行网络传输,有效缓解当前网络IP单一承载的窄腰问题。同时,通过流表分解设计,有效控制了交换机的流表大小,对于提升网络性能具有较强的现实意义。另外,本发明提供的方法可扩展至多个地理标识区域,实现大面积地实时跨域传输。本发明操作简单,容易实现,具有较高的实时性;适用范围广,可用于构建新型网络,提升网络性能。

Description

一种面向区域寻址的地理标识转发方法及装置 技术领域
本申请涉及数据/网络传输技术领域,尤其涉及一种面向区域寻址的地理标识转发方法及装置。
背景技术
随着网络技术和应用的不断发展,特别是大数据、云计算、人工智能等的出现和应用,互联网迎来了加速裂变式的新一轮革命,促使社会各方面发生颠覆性变化,互联网与经济社会加速深度融合发展,互联网业务出现了专业化服务承载的需求。
面对上述需求,目前主流技术可分为两大类:一类从业务应用角度,主要在网络性能优化方面提出解决方案。通过建设高带宽网络、专有网络等为业务提供性能保障的网络环境,例如,利用网络功能虚拟化以灵活提供网络服务;另一类从网络协议入手,在IP层之上构建与专业业务需求相符的会话协议,例如,以内容为寻址方式的信息中心网络、身份与位置分离网络等。
在实现本发明过程中,本发明人发现现有技术至少存在如下问题:
通过业务应用优化来提供互联网专业化服务,会带来网络建设开销的显著增加,难以面向民用广泛推广;另外,通过在IP层之上构建新型网络仅在会话层满足了业务多样性需求,而在IP层仍然需要以IP进行寻址,没有解决当前网络IP单一承载的问题,而解决IP单一承载是突破目前网络结构僵化、性能无法显著提升的关键技术。因此,提出除IP之外的其他寻址传输方式已经成为共识,但是,如何实现新型传输方式,目前仍然缺乏相关实施方法。
发明内容
本申请实施例的目的是提供一种面向区域寻址的地理标识转发方法及装置,以解决相关技术中存在的网络IP窄腰的问题。
根据本申请实施例的第一方面,提供一种面向区域寻址的地理标识转发方法,应用于SDN交换机,该方法包括:
接收路边基站发送其自身地理位置信息及覆盖范围;
将所述自身地理位置信息及覆盖范围发送给SDN控制器,以使得所述SDN控制器收集路边基站的自身地理位置信息及覆盖范围信息,利用收集到的信息分割地理区域,并依据分割的每块地理区域生成网络流表,一张网络流表包含多条流表项,每条流表项包含一个匹配规则和与之对应的流表动作,其中一个匹配规则包含多个匹配域;
接收所述SDN控制器发送的网络流表;
接收报文,并将所述报文与所述网络流表进行匹配,其中所述报文由发送端生成并经由所述发送端对应的路边基站转发,所述报文包括发送端的地理位置信息和目标寻址区域的地理位置信息;
将报文按照命中的网络流表中的流表项进行转发,直至目标寻址区域对应的路边基站,其中所述报文又由目标寻址区域对应的路边基站广播出去并被该目标寻址区域内的接收端接收。
进一步地,所述SDN控制器收集路边基站的自身地理位置信息及覆盖范围信息,利用收集到的信息分割地理区域,并依据分割的每块地理区域生成网络流表,包括:
通过SDN交换机接收每个路边基站发送的自身地理位置信息及覆盖范围,其中所述自身地理位置信息由经度数值、纬度数值表征,所述覆盖范围由路边基站的无线信号覆盖半径表征;
将所述自身地理位置信息及覆盖范围换算为对应路边基站的经、纬度覆盖上下限;
将所有经度覆盖上下限进行大小排序,形成经度集合,将所有纬度覆盖上下限进行大小排序,形成纬度集合;
根据所述经度集合和纬度集合生成匹配规则集合,具体如下:每次分别取出所述经度集合和纬度集合中的最大最小值,形成一条匹配规则,并在相应集合中剔除已经取出的所述最大最小值,直至所述经度集合和纬度集合变为空集,获得匹配规则集合;每条所述匹配规则都包含两个匹配域,即经度范围、纬度范围;
统计所述匹配规则集合中每条匹配规则对应的路边基站,并为每个交换机计算到达对应的路边基站需要转发出去的端口列表,所述端口列表为匹配规则对应的流表动作;
将所述匹配规则与所述流表动作一一对应,为每个交换机获得网络流表。
进一步地,接收报文,并将所述报文与所述网络流表进行匹配,包括:
接收报文,解析所述报文,获得目标寻址区域的经度、纬度覆盖上下限数值;
将所述经度、纬度覆盖上下限数值与所述网络流表中的匹配规则进行比较,按匹配规则对应的地理区域从小到大进行比较,如果报文中的经度覆盖上下限均属于匹配规则中的经度范围且报文中的纬度覆盖上下限均属于匹配规则中的纬度范围,则该报文命中匹配规则,所述报文一旦命中某条匹配规则后,就不再与其他匹配规则进行比较。
进一步地,按照命中的流表项进行转发,直至目标寻址区域对应的路边基站,包括:
执行能与所述报文匹配上的匹配规则对应的流表动作,将报文复制到流表动作中规定的转发出端口,将报文向下一跳SDN交换机转发;
下一跳交换机继续解析报文,获取目标寻址区域的经纬度覆盖上下限数值,并匹配网络流表,执行匹配上的规则对应的流表动作,直至将报文转发至目标寻址区域的路边基站。
根据本发明实施例的第二方面,提供一种面向区域寻址的地理标识转发装 置,应用于SDN交换机,该装置包括:
第一接收模块,用于接收路边基站发送其自身地理位置信息及覆盖范围;
第一发送模块,用于将所述自身地理位置信息及覆盖范围发送给SDN控制器,以使得所述SDN控制器收集路边基站的自身地理位置信息及覆盖范围信息,利用收集到的信息分割地理区域,并依据分割的每块地理区域生成网络流表,一张网络流表包含多条流表项,每条流表项包含一个匹配规则和与之对应的流表动作,其中一个匹配规则包含多个匹配域;
第二接收模块,用于接收所述SDN控制器发送的网络流表;
匹配模块,用于接收报文,并将所述报文与所述网络流表进行匹配,其中所述报文由发送端生成并经由所述发送端对应的路边基站转发,所述报文包括发送端的地理位置信息和目标寻址区域的地理位置信息;
转发模块,用于将报文按照命中的网络流表中的流表项进行转发,直至目标寻址区域对应的路边基站,其中所述报文又由目标寻址区域对应的路边基站广播出去并被该目标寻址区域内的接收端接收。
根据本发明实施例的第三方面,提供一种面向区域寻址的地理标识转发方法,应用于SDN控制器,该方法包括:
接收SDN交换机转发的路边基站自身的地理位置信息及覆盖范围;
利用所述地理位置信息及覆盖范围,分割地理区域,并依据分割的每块地理区域生成网络流表;
将所述网络流表发送给SDN交换机,以触发所述SDN交换机接收所述网络流表,并将报文与所述网络流表进行匹配,按照所述匹配的流表项进行转发,直至请求区域对应的路边基站,其中所述报文由发送端生成并经由所述发送端对应的路边基站转发,所述报文又由目标寻址区域对应的路边基站广播出去并被该目标寻址区域内的接收端接收,所述报文包括发送端的地理位置信息和目标寻址区域的地理位置信息。
进一步地,利用所述地理位置信息及覆盖范围,分割地理区域,并依据分割的每块地理区域生成网络流表,包括:
通过SDN交换机接收每个路边基站发送的自身地理位置信息及覆盖范围,其中所述自身地理位置信息由经度数值、纬度数值表征,所述覆盖范围由路边基站的无线信号覆盖半径表征;
将所述自身地理位置信息及覆盖范围换算为对应路边基站的经、纬度覆盖上下限;
将所有经度覆盖上下限进行大小排序,形成经度集合,将所有纬度覆盖上下限进行大小排序,形成纬度集合;
根据所述经度集合和纬度集合生成匹配规则集合,具体如下:每次分别取出所述经度集合和纬度集合中的最大最小值,形成一条匹配规则,并在相应集合中剔除已经取出的所述最大最小值,直至所述经度集合和纬度集合变为空集,获得匹配规则集合;每条所述匹配规则都包含两个匹配域,即经度范围、纬度范围;
统计所述匹配规则集合中每条匹配规则对应的路边基站,并为每个交换机计算到达对应的路边基站需要转发出去的端口列表,所述端口列表为匹配规则对应的流表动作;
将所述匹配规则与所述流表动作一一对应,为每个交换机获得网络流表。
进一步地,将报文与所述网络流表进行匹配,包括:
解析所述报文,获得目标寻址区域的经度、纬度覆盖上下限数值;
将所述经度、纬度覆盖上下限数值与所述网络流表中的经度、纬度匹配规则进行比较,按匹配规则对应的地理区域从小到大进行比较,如果报文中的经度覆盖上下限均属于匹配规则中的经度范围且报文中的纬度覆盖上下限均属于匹配规则中的纬度范围,则该报文命中匹配规则,所述报文一旦命中某条匹配规则后,就不再与其他匹配规则进行比较。
进一步地,按照能与所述报文匹配的流表项进行转发,直至目标寻址区域对应的路边基站,包括:
执行能与所述报文匹配上的匹配规则对应的流表动作,将报文复制到流表动作中规定的转发出端口,将报文向下一跳SDN交换机转发;
下一跳交换机继续解析报文,获取目标寻址区域的经纬度覆盖上下限,并匹配网络流表,执行匹配上的规则对应的流表动作,直至将报文转发至目标寻址区域的路边基站。
根据本发明实施例的第四方面,提供一种面向区域寻址的地理标识转发装置,应用于SDN控制器,该装置包括:
第三接收模块,用于接收SDN交换机转发的路边基站自身的地理位置信息及覆盖范围;
生成模块,用于利用所述地理位置信息及覆盖范围,分割地理区域,并依据分割的每块地理区域生成网络流表;
第二发送模块,用于将所述网络流表发送给SDN交换机,以触发所述SDN交换机接收所述网络流表,并将报文与所述网络流表进行匹配,按照所述匹配的流表项进行转发,直至请求区域对应的路边基站,其中所述报文由发送端生成并经由所述发送端对应的路边基站转发,所述报文又由目标寻址区域对应的路边基站广播出去并被该目标寻址区域内的接收端接收,所述报文包括发送端的地理位置信息和目标寻址区域的地理位置信息。
本申请的实施例提供的技术方案可以包括以下有益效果:
由上述实施例可知,本申请利用经纬度等地理位置信息定义目标寻址区域并构建报文,克服了目前IP网络中必须指定接收端IP、无法与指定区域内的接收端通信的问题,从地理标识寻址的角度解决了IP单一承载的问题,对于提升网结构灵活性有较强的现实意义。另外,本申请利用地理区域分割生成网络流表,解决了因目标寻址区域多样化导致的流表数量爆炸式增长问题,达到SDN交换机上流表数量可控的效果。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请 的实施例,并与说明书一起用于解释本申请的原理。
图1是根据一示例性实施例示出的一种面向区域寻址的地理标识转发方法的流程图。
图2是根据一示例性实施例示出的步骤S102的流程图。
图3是根据一示例性实施例示出的一种面向区域寻址的地理标识转发方法的应用环境示意图。
图4是根据一示例性实施例示出的步骤S104的流程图。
图5是根据一示例性实施例示出的步骤S105的流程图。
图6是根据一示例性实施例示出的另一种面向区域寻址的地理标识转发方法的流程图。
图7是根据一示例性实施例示出的一种面向区域寻址的地理标识转发装置的结构示意图。
图8是根据一示例性实施例示出的另一种面向区域寻址的地理标识转发装置的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本申请可能采用术语第一、第二、第三等来描述各种信 息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本申请范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
图1是根据一示例性实施例示出的一种面向区域寻址的地理标识转发方法的系统模型图,如图1所示,该方法应用于SDN交换机,可包括:
步骤S101,接收路边基站发送其自身地理位置信息及覆盖范围;
步骤S102,将所述自身地理位置信息及覆盖范围发送给SDN控制器,以使得所述SDN控制器收集路边基站的自身地理位置信息及覆盖范围信息,利用收集到的信息分割地理区域,并依据分割的每块地理区域生成网络流表;
步骤S103,接收所述SDN控制器发送的网络流表;
步骤S104,接收报文,并将所述报文与所述网络流表进行匹配,其中所述报文由发送端生成并经由所述发送端对应的路边基站转发,所述报文包括发送端的地理位置信息和目标寻址区域的地理位置信息;
步骤S105,按照匹配的流表项进行转发,直至请求区域对应的路边基站,其中所述报文由请求区域对应的路边基站广播出去并被该目标寻址区域内的接收端接收。
由上述实施例可知,本申请利用经纬度等地理位置信息定义目标寻址区域并构建报文,克服了目前IP网络中必须指定接收端IP、无法与指定区域内的接收端通信的问题,从地理标识寻址的角度解决了IP单一承载的问题,对于提升网结构灵活性有较强的现实意义。另外,本申请利用地理区域分割生成网络流表,解决了因目标寻址区域多样化导致的流表数量爆炸式增长问题,达到SDN交换机上流表数量可控的效果。
在步骤S101的具体实施中,接收路边基站发送的自身地理位置信息及覆盖范围,参考图2,该步骤可包括:
接收路边基站以报文形式发送的自身地理位置信息及覆盖范围,其中所述自身地理位置信息由经度数值、纬度数值表征,所述覆盖范围由路边基站 的无线信号覆盖半径表征。
具体地,在本实施例中,交换机收到路边基站R1发送自身地理位置信息为经度10,纬度40,覆盖半径10;路边基站R2发送自身地理位置信息为经度10,纬度10,覆盖半径10;路边基站R3发送自身地理位置信息为经度25,纬度25,覆盖半径10;路边基站R4发送自身地理位置信息为经度40,纬度40,覆盖半径10。
在步骤S102的具体实施中,将所述自身地理位置信息及覆盖范围发送给SDN控制器,以使得所述SDN控制器收集路边基站的自身地理位置信息及覆盖范围信息,利用收集到的信息分割地理区域,并依据分割的每块地理区域生成网络流表;所述网络流表的配置由SDN控制器计算生成并下发至SDN交换机,参考图2,该步骤可包括:
步骤S201,通过SDN交换机接收每个路边基站发送的自身地理位置信息及覆盖范围,其中所述自身地理位置信息由经度数值、纬度数值表征,所述覆盖范围由路边基站的无线信号覆盖半径表征;
步骤S202,将所述自身地理位置信息及覆盖范围换算为对应路边基站的经、纬度覆盖上下限;
具体地,R1经度上下限分别为20、0,纬度上下限分别为50、30;R2经度上下限分别为20、0,纬度上下限分别为20、0;R3经度上下限分别为35、15,纬度上下限分别为35、15;R4经度上下限分别为50、30,纬度上下限分别为50、30;
步骤S203,将所有经度覆盖上下限进行大小排序,形成经度集合,将所有纬度覆盖上下限进行大小排序,形成纬度集合;
具体地,经度集合为{50,35,30,20,15,0};纬度集合为{50,35,30,20,15,0};
步骤S204,根据所述经度集合和纬度集合生成匹配规则集合,具体如下:每次分别取出所述经度集合和纬度集合中的最大最小值,形成一条匹配规则,并在相应集合中剔除已经取出的所述最大最小值,直至所述经度集合和纬度集合变为空集,获得匹配规则集合;每条所述匹配规则都包含两个匹配域, 即经度范围、纬度范围;
具体地,形成3条匹配规则,每条规则包含经度匹配域及纬度匹配域。第一条规则为经度range(0,50),纬度range(0,50)。第二条匹配规则为经度range(15,35),纬度range(15,35)。第三条匹配规则为经度range(20,30),纬度range(20,30)。
步骤S205,统计所述匹配规则集合中每条匹配规则对应的路边基站,并为每个交换机计算到达对应的路边基站需要转发出去的端口列表,所述端口列表为匹配规则对应的流表动作;
步骤S206,将所述匹配规则与所述流表动作一一对应,每个SDN交换机获得控制器下发的网络流表。
具体地,参考图3,图3给出了面向区域寻址的地理标识转发方法的应用环境,包括SDN控制器C0,四台SDN交换机,分别为SDN交换机S1、SDN交换机S2、SDN交换机S3、SDN交换机S4,四个路边基站,分别为路边基站R1、路边基站R2、路边基站R3、路边基站R4,发送端TR1与路边基站R1相连,路边基站R1转发发送TR1的报文给交换机S1进行转发。SDN控制器C0计算网络流表并向四台SDN交换机发送网络流表。SDN交换机S1获得的流表包含三条流表项,第一条流表项中,匹配规则为经度range(20,30),纬度range(20,30),流表动作为从端口3转发。第二条流表项中,匹配规则为经度range(15,35),纬度range(15,35),流表动作为从端口2、3转发。第三条流表项中,匹配规则为经度range(0,50),纬度range(0,50),流表动作为从端口2、3转发。
SDN交换机S2获得的流表包含三条流表项,第一条流表项中,匹配规则为经度range(20,30),纬度range(20,30),流表动作为从端口3转发。第二条流表项中,匹配规则为经度range(15,35),纬度range(15,35),流表动作为从端口2、3转发。第三条流表项中,匹配规则为经度range(0,50),纬度range(0,50),流表动作为从端口2、3转发。
SDN交换机S3获得的流表包含三条流表项,第一条流表项中,匹配规 则为经度range(20,30),纬度range(20,30),流表动作为从端口2转发。第二条流表项中,匹配规则为经度range(15,35),纬度range(15,35),流表动作为从端口2、3转发。第三条流表项中,匹配规则为经度range(0,50),纬度range(0,50),流表动作为从端口2、3转发。
SDN交换机S4获得的流表包含三条流表项,第一条流表项中,匹配规则为经度range(20,30),纬度range(20,30),流表动作为从端口1转发。第二条流表项中,匹配规则为经度range(15,35),纬度range(15,35),流表动作为从端口1、2转发。第三条流表项中,匹配规则为经度range(0,50),纬度range(0,50),流表动作为从端口1、2转发。
在步骤S104的具体实施中,接收报文,并将所述报文与所述网络流表进行匹配,参考图4,该步骤可包括:
步骤S401,接收报文,解析所述报文,获得目标寻址区域的经度、纬度覆盖上下限数值;
具体地,接收由发送端TR1发送、路边基站R1转发的报文,该报文包括基本报头、公共报头、数据包序列号、发送端自身地理位置信息、目标寻址区域的地理位置信息、报文载荷等;
所述基本报头包括报文版本号、下一报文、保留位、生存时间、剩余可用跳数,分别占用4bit、4bit、8bit、8bit、8bit,其中,生存时间表示数据包在转发路径上在各交换机缓冲区内的排队时间,剩余可用跳数表示该报文允许被转发的剩余跳数;
所述公共报头包括报文类型、报文子类型、流量类型、标志位、载荷长度、最大跳数,分别占用4bit、4bit、8bit、8bit、16bit、8bit,其中报文类型与报文子类型共同定义了报文的类型,最大跳数表示该报文在转发路径上的最大跳数;
所述发送端自身地理位置信息包括直连路由器地址、经纬度信息、精确标识、移动速度、移动方向等信息,分别占用64bit、32bit、32bit、1bit、15bit、16bit,其中精确标识是指该经纬度信息是否精确;
所述目标寻址区域的地理位置信息包括目标寻址区域的中心点经度信息、目标寻址区域的中心点纬度信息、目标寻址区域的水平方向距离、目标寻址区域的竖直方向距离,分别占用32bit、32bit、16bit、16bit,其中,当公共报头中的报文类型、报文子类型分别为3、0时表示请求区域为圆形;如果报文类型、报文子类型分别为3、1时,表示请求区域为矩形,当目标寻址区域的水平方向距离与竖直方向距离相同时,则矩形特殊化为正方形。
所述报文载荷为发送端TR1定义的报文内容。
在本实施例中,假设发送端TR1发送报文的经度范围为20至30,纬度范围为20至30的,则目标寻址区域的中心点经度、纬度分别为15、15,水平竖直方向距离分别为10、10,经度覆盖上下限数值分别为30、20,纬度覆盖上下限数值分别为30、20。
步骤S402,将所述经度、纬度覆盖上下限数值与所述网络流表中的匹配规则进行比较,按匹配规则对应的地理区域从小到大进行比较,如果报文中的经度覆盖上下限均属于匹配规则中的经度范围且报文中的纬度覆盖上下限均属于匹配规则中的纬度范围,则该报文命中匹配规则,所述报文一旦命中某条匹配规则后,就不再与其他匹配规则进行比较。
具体地,在本实施例中,当与发送端TR1最近的交换机S1收到所述发送端TR1发送的报文时,解析得到目标寻址区域的经度上下限分别为30、20,纬度上下限分别为30、20。
由于第一条匹配规则对应的地理区域最小,因此,SDN交换机S1优先匹配第一条规则。在本实施例中,目标寻址区域经纬度覆盖上下限均在经纬度范围内,符合第一条流表项的匹配规则,因此,所述报文命中第一条匹配规则,不再与其他规则进行匹配,完成规则匹配。
在步骤S105的具体实施中,所述按照匹配的流表项进行转发,直至目标寻址区域对应的路边基站,参考图5,该步骤可包括:
步骤S501,执行能与所述报文匹配上的匹配规则对应的流表动作,将报文复制到流表动作中规定的转发出端口,将报文向下一跳SDN交换机转发;
具体地,在本实施例中,所述报文与SDN交换机S1的第一条规则相匹配,因此,执行第一条匹配规则对应的流表动作,即SDN交换机S1将所述报文从SDN交换机S1的3端口转发出去,向下一跳SDN交换机S2转发。
步骤S502,下一跳交换机继续解析报文,获取目标寻址区域的经纬度覆盖上下限数值,并匹配网络流表,执行匹配上的规则对应的流表动作,直至将报文转发至目标寻址区域的路边基站。
具体地,当SDN交换机S2收到所述报文时,SDN交换机S2解析得到目标寻址区域的经度上下限分别为30、20,纬度上下限分别为30、20,并匹配上SDN交换机S2的第一条流表项,所述报文从SDN交换机S2的3端口转发出去。
当所述报文到达SDN交换机S3时,类似地,SDN交换机S3解析得到目标寻址区域的经度上下限分别为30、20,纬度上下限分别为30、20,并匹配上SDN交换机S3的第一条流表项,所述报文从SDN交换机S3的2端口转发出去。
当所述报文到达路边基站R3时,路边基站R3广播该报文,从而目标寻址区域内的接收端都接收到该报文。
参考图6,本发明实施例还提供一种面向区域寻址的地理标识转发方法,应用于SDN控制器,该方法包括:
步骤S601,接收SDN交换机转发的路边基站自身的地理位置信息及覆盖范围;
步骤S602,利用所述地理位置信息及覆盖范围,分割地理区域,并依据分割的每块地理区域生成网络流表;
步骤S603,将所述网络流表发送给SDN交换机,以触发所述SDN交换机接收所述网络流表,并将报文与所述网络流表进行匹配,按照所述匹配的流表项进行转发,直至请求区域对应的路边基站,其中所述报文由发送端生成并经由所述发送端对应的路边基站转发,所述报文又由目标寻址区域对应的路边基站广播出去并被该目标寻址区域内的接收端接收,所述报文包括发送端的地理 位置信息和目标寻址区域的地理位置信息。
由上述实施例可知,本申请利用经纬度等地理位置信息定义目标寻址区域并构建报文,克服了目前IP网络中必须指定接收端IP、无法与指定区域内的接收端通信的问题,从地理标识寻址的角度解决了IP单一承载的问题,对于提升网结构灵活性有较强的现实意义。另外,本申请利用地理区域分割生成网络流表,解决了因目标寻址区域多样化导致的流表数量爆炸式增长问题,达到SDN交换机上流表数量可控的效果。
步骤S601-步骤S603的详细内容请参考前面实施例提供的方法。
与前述的面向区域寻址的地理标识转发方法的实施例相对应,本申请还提供了面向区域寻址的地理标识转发装置的实施例。
图7是根据一示例性实施例示出的一种面向区域寻址的地理标识转发装置框图。参照图7,该装置应用于SDN交换机,该装置包括:
第一接收模块71,用于接收路边基站发送其自身地理位置信息及覆盖范围;
第一发送模块72,用于将所述自身地理位置信息及覆盖范围发送给SDN控制器,以使得所述SDN控制器收集路边基站的自身地理位置信息及覆盖范围信息,利用收集到的信息分割地理区域,并依据分割的每块地理区域生成网络流表,一张网络流表包含多条流表项,每条流表项包含一个匹配规则和与之对应的流表动作,其中一个匹配规则包含多个匹配域;
第二接收模块73,用于接收所述SDN控制器发送的网络流表;
匹配模块74,用于接收报文,并将所述报文与所述网络流表进行匹配,其中所述报文由发送端生成并经由所述发送端对应的路边基站转发,所述报文包括发送端的地理位置信息和目标寻址区域的地理位置信息;
转发模块75,用于将报文按照命中的网络流表中的流表项进行转发,直至目标寻址区域对应的路边基站,其中所述报文又由目标寻址区域对应的路边基站广播出去并被该目标寻址区域内的接收端接收。
图8是根据一示例性实施例示出的另一种面向区域寻址的地理标识转发 装置框图。参照图8,该装置应用于SDN控制器,该装置包括:
第三接收模块81,用于接收SDN交换机转发的路边基站自身的地理位置信息及覆盖范围;
生成模块82,用于利用所述地理位置信息及覆盖范围,分割地理区域,并依据分割的每块地理区域生成网络流表;
第二发送模块83,用于将所述网络流表发送给SDN交换机,以触发所述SDN交换机接收所述网络流表,并将报文与所述网络流表进行匹配,按照所述匹配的流表项进行转发,直至请求区域对应的路边基站,其中所述报文由发送端生成并经由所述发送端对应的路边基站转发,所述报文又由目标寻址区域对应的路边基站广播出去并被该目标寻址区域内的接收端接收,所述报文包括发送端的地理位置信息和目标寻址区域的地理位置信息。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本申请方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
相应的,本申请还提供一种电子设备,包括:一个或多个处理器;存储器,用于存储一个或多个程序;当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如上述的面向区域寻址的地理标识转发方法。
相应的,本申请还提供一种计算机可读存储介质,其上存储有计算机指令,其特征在于,该指令被处理器执行时实现如上述的面向区域寻址的地理标识转发方法。
本领域技术人员在考虑说明书及实践这里公开的内容后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由下面的权利要求指出。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求来限制。

Claims (8)

  1. 一种面向区域寻址的地理标识转发方法,应用于SDN交换机,该方法包括:
    接收路边基站发送其自身地理位置信息及覆盖范围;
    将所述自身地理位置信息及覆盖范围发送给SDN控制器,以使得所述SDN控制器收集路边基站的自身地理位置信息及覆盖范围信息,利用收集到的信息分割地理区域,并依据分割的每块地理区域生成网络流表,一张网络流表包含多条流表项,每条流表项包含一个匹配规则和与之对应的流表动作,其中一个匹配规则包含多个匹配域;
    接收所述SDN控制器发送的网络流表;
    接收报文,并将所述报文与所述网络流表进行匹配,其中所述报文由发送端生成并经由所述发送端对应的路边基站转发,所述报文包括发送端的地理位置信息和目标寻址区域的地理位置信息;
    将报文按照命中的网络流表中的流表项进行转发,直至目标寻址区域对应的路边基站,其中所述报文又由目标寻址区域对应的路边基站广播出去并被该目标寻址区域内的接收端接收;
    其中所述SDN控制器收集路边基站的自身地理位置信息及覆盖范围信息,利用收集到的信息分割地理区域,并依据分割的每块地理区域生成网络流表,包括:
    通过SDN交换机接收每个路边基站发送的自身地理位置信息及覆盖范围,其中所述自身地理位置信息由经度数值、纬度数值表征,所述覆盖范围由路边基站的无线信号覆盖半径表征;
    将所述自身地理位置信息及覆盖范围换算为对应路边基站的经、纬度覆盖上下限;
    将所有经度覆盖上下限进行大小排序,形成经度集合,将所有纬度覆盖上下限进行大小排序,形成纬度集合;
    根据所述经度集合和纬度集合生成匹配规则集合,具体如下:每次分别取出所述经度集合和纬度集合中的最大最小值,形成一条匹配规则,并在相应集合中剔除已经取出的所述最大最小值,直至所述经度集合和纬度集合变为空集,获得匹配规则集合;每条所述匹配规则都包含两个匹配域,即经度范围、纬度范围;
    统计所述匹配规则集合中每条匹配规则对应的路边基站,并为每个交换机计算到达对应的路边基站需要转发出去的端口列表,所述端口列表为匹配规则对应的流表动作;
    将所述匹配规则与所述流表动作一一对应,为每个交换机获得网络流表。
  2. 根据权利要求1所述的方法,其特征在于,接收报文,并将所述报文与所述网络流表进行匹配,包括:
    接收报文,解析所述报文,获得目标寻址区域的经度、纬度覆盖上下限数值;
    将所述经度、纬度覆盖上下限数值与所述网络流表中的匹配规则进行比较,按匹配规则对应的地理区域从小到大进行比较,如果报文中的经度覆盖上下限均属于匹配规则中的经度范围且报文中的纬度覆盖上下限均属于匹配规则中的纬度范围,则该报文命中匹配规则,所述报文一旦命中某条匹配规则后,就不再与其他匹配规则进行比较。
  3. 根据权利要求1所述的方法,其特征在于,按照命中的流表项进行转发,直至目标寻址区域对应的路边基站,包括:
    执行能与所述报文匹配上的匹配规则对应的流表动作,将报文复制到流表动作中规定的转发出端口,将报文向下一跳SDN交换机转发;
    下一跳交换机继续解析报文,获取目标寻址区域的经纬度覆盖上下限数值,并匹配网络流表,执行匹配上的规则对应的流表动作,直至将报文转发至目标寻址区域的路边基站。
  4. 一种面向区域寻址的地理标识转发装置,应用于SDN交换机,该装置包括:
    第一接收模块,用于接收路边基站发送其自身地理位置信息及覆盖范围;
    第一发送模块,用于将所述自身地理位置信息及覆盖范围发送给SDN控制器,以使得所述SDN控制器收集路边基站的自身地理位置信息及覆盖范围信息,利用收集到的信息分割地理区域,并依据分割的每块地理区域生成网络流表,一张网络流表包含多条流表项,每条流表项包含一个匹配规则和与之对应的流表动作,其中一个匹配规则包含多个匹配域;
    第二接收模块,用于接收所述SDN控制器发送的网络流表;
    匹配模块,用于接收报文,并将所述报文与所述网络流表进行匹配,其中所述报文由发送端生成并经由所述发送端对应的路边基站转发,所述报文包括发送端的地理位置信息和目标寻址区域的地理位置信息;
    转发模块,用于将报文按照命中的网络流表中的流表项进行转发,直至目标寻址区域对应的路边基站,其中所述报文又由目标寻址区域对应的路边基站广播出去并被该目标寻址区域内的接收端接收;
    其中所述SDN控制器收集路边基站的自身地理位置信息及覆盖范围信息,利用收集到的信息分割地理区域,并依据分割的每块地理区域生成网络流表,包括:
    通过SDN交换机接收每个路边基站发送的自身地理位置信息及覆盖范围,其中所述自身地理位置信息由经度数值、纬度数值表征,所述覆盖范围由路边基站的无线信号覆盖半径表征;
    将所述自身地理位置信息及覆盖范围换算为对应路边基站的经、纬度覆盖上下限;
    将所有经度覆盖上下限进行大小排序,形成经度集合,将所有纬度覆盖上下限进行大小排序,形成纬度集合;
    根据所述经度集合和纬度集合生成匹配规则集合,具体如下:每次分别取出所述经度集合和纬度集合中的最大最小值,形成一条匹配规则,并在相应集合中剔除已经取出的所述最大最小值,直至所述经度集合和纬度集合变为空集,获得匹配规则集合;每条所述匹配规则都包含两个匹配域,即经度 范围、纬度范围;
    统计所述匹配规则集合中每条匹配规则对应的路边基站,并为每个交换机计算到达对应的路边基站需要转发出去的端口列表,所述端口列表为匹配规则对应的流表动作;
    将所述匹配规则与所述流表动作一一对应,为每个交换机获得网络流表。
  5. 一种面向区域寻址的地理标识转发方法,应用于SDN控制器,该方法包括:
    接收SDN交换机转发的路边基站自身的地理位置信息及覆盖范围;
    利用所述地理位置信息及覆盖范围,分割地理区域,并依据分割的每块地理区域生成网络流表;
    将所述网络流表发送给SDN交换机,以触发所述SDN交换机接收所述网络流表,并将报文与所述网络流表进行匹配,按照所述匹配的流表项进行转发,直至请求区域对应的路边基站,其中所述报文由发送端生成并经由所述发送端对应的路边基站转发,所述报文又由目标寻址区域对应的路边基站广播出去并被该目标寻址区域内的接收端接收,所述报文包括发送端的地理位置信息和目标寻址区域的地理位置信息;
    其中,利用所述地理位置信息及覆盖范围,分割地理区域,并依据分割的每块地理区域生成网络流表,包括:
    通过SDN交换机接收每个路边基站发送的自身地理位置信息及覆盖范围,其中所述自身地理位置信息由经度数值、纬度数值表征,所述覆盖范围由路边基站的无线信号覆盖半径表征;
    将所述自身地理位置信息及覆盖范围换算为对应路边基站的经、纬度覆盖上下限;
    将所有经度覆盖上下限进行大小排序,形成经度集合,将所有纬度覆盖上下限进行大小排序,形成纬度集合;
    根据所述经度集合和纬度集合生成匹配规则集合,具体如下:每次分别取出所述经度集合和纬度集合中的最大最小值,形成一条匹配规则,并在相 应集合中剔除已经取出的所述最大最小值,直至所述经度集合和纬度集合变为空集,获得匹配规则集合;每条所述匹配规则都包含两个匹配域,即经度范围、纬度范围;
    统计所述匹配规则集合中每条匹配规则对应的路边基站,并为每个交换机计算到达对应的路边基站需要转发出去的端口列表,所述端口列表为匹配规则对应的流表动作;
    将所述匹配规则与所述流表动作一一对应,为每个交换机获得网络流表。
  6. 根据权利要求5所述的方法,其特征在于,将报文与所述网络流表进行匹配,包括:
    解析所述报文,获得目标寻址区域的经度、纬度覆盖上下限数值;
    将所述经度、纬度覆盖上下限数值与所述网络流表中的经度、纬度匹配规则进行比较,按匹配规则对应的地理区域从小到大进行比较,如果报文中的经度覆盖上下限均属于匹配规则中的经度范围且报文中的纬度覆盖上下限均属于匹配规则中的纬度范围,则该报文命中匹配规则,所述报文一旦命中某条匹配规则后,就不再与其他匹配规则进行比较。
  7. 根据权利要求5所述的方法,其特征在于,按照能与所述报文匹配的流表项进行转发,直至目标寻址区域对应的路边基站,包括:
    执行能与所述报文匹配上的匹配规则对应的流表动作,将报文复制到流表动作中规定的转发出端口,将报文向下一跳SDN交换机转发;
    下一跳交换机继续解析报文,获取目标寻址区域的经纬度覆盖上下限,并匹配网络流表,执行匹配上的规则对应的流表动作,直至将报文转发至目标寻址区域的路边基站。
  8. 一种面向区域寻址的地理标识转发装置,应用于SDN控制器,该装置包括:
    第三接收模块,用于接收SDN交换机转发的路边基站自身的地理位置信息及覆盖范围;
    生成模块,用于利用所述地理位置信息及覆盖范围,分割地理区域,并 依据分割的每块地理区域生成网络流表;
    第二发送模块,用于将所述网络流表发送给SDN交换机,以触发所述SDN交换机接收所述网络流表,并将报文与所述网络流表进行匹配,按照所述匹配的流表项进行转发,直至请求区域对应的路边基站,其中所述报文由发送端生成并经由所述发送端对应的路边基站转发,所述报文又由目标寻址区域对应的路边基站广播出去并被该目标寻址区域内的接收端接收,所述报文包括发送端的地理位置信息和目标寻址区域的地理位置信息;
    其中,利用所述地理位置信息及覆盖范围,分割地理区域,并依据分割的每块地理区域生成网络流表,包括:
    通过SDN交换机接收每个路边基站发送的自身地理位置信息及覆盖范围,其中所述自身地理位置信息由经度数值、纬度数值表征,所述覆盖范围由路边基站的无线信号覆盖半径表征;
    将所述自身地理位置信息及覆盖范围换算为对应路边基站的经、纬度覆盖上下限;
    将所有经度覆盖上下限进行大小排序,形成经度集合,将所有纬度覆盖上下限进行大小排序,形成纬度集合;
    根据所述经度集合和纬度集合生成匹配规则集合,具体如下:每次分别取出所述经度集合和纬度集合中的最大最小值,形成一条匹配规则,并在相应集合中剔除已经取出的所述最大最小值,直至所述经度集合和纬度集合变为空集,获得匹配规则集合;每条所述匹配规则都包含两个匹配域,即经度范围、纬度范围;
    统计所述匹配规则集合中每条匹配规则对应的路边基站,并为每个交换机计算到达对应的路边基站需要转发出去的端口列表,所述端口列表为匹配规则对应的流表动作;
    将所述匹配规则与所述流表动作一一对应,为每个交换机获得网络流表。
PCT/CN2022/072213 2021-05-27 2022-01-17 一种面向区域寻址的地理标识转发方法及装置 WO2022247315A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/966,917 US11870560B2 (en) 2021-05-27 2022-10-17 Geographical identification forwarding method and device for area-oriented addressing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110583603.9A CN113259859B (zh) 2021-05-27 2021-05-27 一种面向区域寻址的地理标识转发方法及装置
CN202110583603.9 2021-05-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/966,917 Continuation US11870560B2 (en) 2021-05-27 2022-10-17 Geographical identification forwarding method and device for area-oriented addressing

Publications (1)

Publication Number Publication Date
WO2022247315A1 true WO2022247315A1 (zh) 2022-12-01

Family

ID=77184794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/072213 WO2022247315A1 (zh) 2021-05-27 2022-01-17 一种面向区域寻址的地理标识转发方法及装置

Country Status (3)

Country Link
US (1) US11870560B2 (zh)
CN (1) CN113259859B (zh)
WO (1) WO2022247315A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113259859B (zh) 2021-05-27 2021-10-29 之江实验室 一种面向区域寻址的地理标识转发方法及装置
CN114285796B (zh) * 2021-11-30 2023-05-19 中国人民解放军战略支援部队信息工程大学 基于地理空间标识的路由寻址方法及系统
CN115426312B (zh) * 2022-11-04 2023-02-07 之江实验室 一种大规模多模态网络中标识管理及优化转发方法和装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104093181A (zh) * 2014-07-10 2014-10-08 北京邮电大学 内容中心多跳蜂窝网络路由方法及装置
CN104320757A (zh) * 2014-07-30 2015-01-28 杭州承联通信技术有限公司 一种集群无线通信系统中基于地理位置寻呼的方法
CN105357024A (zh) * 2015-09-23 2016-02-24 清华大学 用于sdn网络的区域控制设备、域控制设备和控制系统
CN106413019A (zh) * 2015-07-31 2017-02-15 华为技术有限公司 一种车联网数据传输方法及第一转发设备
US20190222055A1 (en) * 2016-12-14 2019-07-18 Ajay Khoche Energy harvesting sensing nodes
CN113259848A (zh) * 2021-07-02 2021-08-13 之江实验室 一种基于sdn的地理标识网络构建方法
CN113259859A (zh) * 2021-05-27 2021-08-13 之江实验室 一种面向区域寻址的地理标识转发方法及装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9843504B2 (en) * 2013-08-09 2017-12-12 Futurewei Technologies, Inc. Extending OpenFlow to support packet encapsulation for transport over software-defined networks
CN104639451B (zh) * 2013-11-14 2019-03-22 中兴通讯股份有限公司 数据流分流方法及控制器
CN105471954B (zh) * 2014-09-11 2017-07-07 北京智梵网络科技有限公司 基于sdn网络的分布式控制系统与用户流量优化方法
CN105847157B (zh) * 2016-03-21 2018-12-18 中国人民解放军国防科学技术大学 基于sdn的标识网络间端到端的通信方法
CN108040268B (zh) * 2017-11-30 2021-03-09 浙江宇视科技有限公司 一种基于sdn的视频监控网络安全控制方法及系统
US11323944B2 (en) * 2019-10-04 2022-05-03 Samsung Electronics Co., Ltd. Virtual tracking or registration areas for non terrestrial networks
WO2021209803A1 (en) * 2020-04-17 2021-10-21 Telefonaktiebolaget Lm Ericsson (Publ) Method and system to share data across network operators to support wireless quality of service (qos) for connected vehicles

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104093181A (zh) * 2014-07-10 2014-10-08 北京邮电大学 内容中心多跳蜂窝网络路由方法及装置
CN104320757A (zh) * 2014-07-30 2015-01-28 杭州承联通信技术有限公司 一种集群无线通信系统中基于地理位置寻呼的方法
CN106413019A (zh) * 2015-07-31 2017-02-15 华为技术有限公司 一种车联网数据传输方法及第一转发设备
CN105357024A (zh) * 2015-09-23 2016-02-24 清华大学 用于sdn网络的区域控制设备、域控制设备和控制系统
US20190222055A1 (en) * 2016-12-14 2019-07-18 Ajay Khoche Energy harvesting sensing nodes
CN113259859A (zh) * 2021-05-27 2021-08-13 之江实验室 一种面向区域寻址的地理标识转发方法及装置
CN113259848A (zh) * 2021-07-02 2021-08-13 之江实验室 一种基于sdn的地理标识网络构建方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUE ZHI-PENG;ZHOU YONG;HUANG HONG: "Research on VANET Routing Algorithm", MODERN COMPUTER, 15 February 2016 (2016-02-15), pages 12 - 17, XP093007765, ISSN: 1007-1423, DOI: 10.3969/j.issn.1007-1423.2016.05.003 *

Also Published As

Publication number Publication date
CN113259859A (zh) 2021-08-13
US11870560B2 (en) 2024-01-09
US20230047278A1 (en) 2023-02-16
CN113259859B (zh) 2021-10-29

Similar Documents

Publication Publication Date Title
WO2022247315A1 (zh) 一种面向区域寻址的地理标识转发方法及装置
Ko et al. Geocasting in mobile ad hoc networks: Location-based multicast algorithms
CN104935516B (zh) 基于软件定义网络的通信系统及方法
US7389359B2 (en) Method and system for intelligently forwarding multicast packets
KR101787867B1 (ko) 라우트 포워딩 방법, 장치 및 시스템
US20030026268A1 (en) Characteristic routing
CN109714274B (zh) 一种获取对应关系的方法和路由设备
US11979315B2 (en) Information centric network interworking techniques
CN112187644B (zh) 一种基于标识解析路由的组播系统及组播方法
US10085132B2 (en) System and method for downlink machine-to-machine communications
WO2020200436A1 (en) Apparatus, method and computer program for group communication
CN109218111B (zh) 一种处理报文的方法和转发器
CN107948073B (zh) 基于ndn架构的无线数据传输方法、装置及系统
CN108111424B (zh) 基于卫星通信系统的组播快速建立方法及系统
US20020093943A1 (en) System and method of updating radio network data
CA2395347A1 (en) Characteristic routing
US20060209774A1 (en) Wireless base station, wireless mobile device, and wireless access network
CN113259848B (zh) 一种基于sdn的地理标识网络构建方法
Jin et al. MANET for Disaster Relief based on NDN
Craig et al. Bloomflow: Openflow extensions for memory efficient, scalable multicast with multi-stage bloom filters
WO2018177353A1 (zh) 组播数据的转发方法和装置
Ko et al. Location-based multicast in mobile ad hoc networks
Narayana Rao et al. Way-point multicast routing framework for improving QoS in hybrid wireless mesh networks
CN100508467C (zh) 一种转发层代理pim的方法及路由设备
Azgin et al. Location-driven mobility support architecture for information centric networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810053

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE