WO2022247313A1 - 光学装置和显示设备 - Google Patents

光学装置和显示设备 Download PDF

Info

Publication number
WO2022247313A1
WO2022247313A1 PCT/CN2022/072122 CN2022072122W WO2022247313A1 WO 2022247313 A1 WO2022247313 A1 WO 2022247313A1 CN 2022072122 W CN2022072122 W CN 2022072122W WO 2022247313 A1 WO2022247313 A1 WO 2022247313A1
Authority
WO
WIPO (PCT)
Prior art keywords
grating
pupil
grating unit
light
unit
Prior art date
Application number
PCT/CN2022/072122
Other languages
English (en)
French (fr)
Inventor
蒋厚强
朱以胜
Original Assignee
深圳市光舟半导体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市光舟半导体技术有限公司 filed Critical 深圳市光舟半导体技术有限公司
Priority to EP22810051.7A priority Critical patent/EP4290294A4/en
Publication of WO2022247313A1 publication Critical patent/WO2022247313A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0081Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. enlarging, the entrance or exit pupil
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4205Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4272Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having plural diffractive elements positioned sequentially along the optical path
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • G02B5/1819Plural gratings positioned on the same surface, e.g. array of gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0016Grooves, prisms, gratings, scattering particles or rough surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/002Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide, e.g. with collimating, focussing or diverging surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0132Head-up displays characterised by optical features comprising binocular systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type

Definitions

  • the application belongs to the field of waveguide technology, and in particular relates to an optical device and a display device.
  • Near-eye display technology is one of the key technologies that must be used in current AR glasses.
  • the near-eye display system is generally composed of an image remote and an optical transmission system.
  • the image frame emitted by the image source is transmitted to the human eye through the optical transmission system.
  • the optical transmission system here needs to have a certain transmittance, so that the wearer can see the external environment while seeing the image.
  • optical waveguide technology has become the mainstream path of major companies due to its large eyebox characteristics and its light and thin characteristics, obviously due to other optical solutions.
  • the current optical waveguide can only realize monocular display.
  • binocular display there are problems of high hardware cost and high power consumption.
  • the present application provides an optical device and a display device to solve the problem that the current optical waveguide can only realize monocular display.
  • an optical device including a waveguide plate, on which an entrance pupil grating unit is formed, and the input light is diffracted by the entrance pupil grating unit to form the first left guided light and the first Right transmitted light; left pupil expansion grating unit, located on the left side of the entrance pupil grating unit; the first left transmitted light is diffracted by the left pupil expansion grating unit to form a second left transmitted light; right pupil expansion grating unit, Located on the right side of the entrance pupil grating unit; the first right transmitted light is diffracted by the right pupil expansion grating unit to form the second right transmitted light; the left exit pupil grating unit is located under the left pupil expansion grating unit side; the second left transmitted light is diffracted by the left exit pupil grating unit to form left output light; the right exit pupil grating unit is located on the lower side of the right pupil expanding grating unit; the second right transmitted light passes through the The right exit pupil grating unit is diffracted to
  • the entrance pupil grating unit is a surface grating or a holographic volume grating
  • the entrance pupil grating unit is circular with a diameter of 2.5 mm to 7 mm
  • the grating period of the entrance pupil grating unit is 330 nm to 450 nm .
  • both the left pupil dilation grating unit and the right pupil dilation grating unit are pupil dilation grating structures, and in the direction away from the entrance pupil grating unit horizontally, the pupil dilation grating structure is vertically The height in the direction gradually increases; the maximum height of the pupil expansion grating structure in the vertical direction is 2 to 5 times the diameter of the entrance pupil grating unit, and the width in the horizontal direction is the entrance pupil 5 to 10 times the diameter of the grating unit.
  • the pupil expansion grating structure is divided into 5 to 15 pupil expansion sub-areas, and the angle between the dividing line between the adjacent pupil expansion sub-areas and the horizontal direction is 20 degrees to 160 degrees; In the direction of the entrance pupil grating unit, the diffraction efficiency of each of the pupil-expanding sub-regions increases gradually, and the diffraction efficiency of the pupil-expanding sub-regions is 5%-95%.
  • both the left exit pupil grating unit and the right exit pupil grating unit are exit pupil grating structures, the exit pupil grating structure is rectangular, and the height in the vertical direction is the entrance pupil grating The diameter of the unit is 3 to 6 times, and the width in the horizontal direction is 80% to 95% of the width of the pupil expansion grating structure.
  • the exit pupil grating structure is divided into 5 to 15 sub-exit pupil areas in the vertical direction, and in the direction vertically away from the entrance pupil grating unit, the diffraction of each of the sub-exit pupil areas The efficiency increases gradually, and the diffraction efficiency of the sub-exit pupil area is 5% to 95%.
  • the pupil expansion grating structure is quadrilateral, and the four corners of the pupil expansion grating structure and the four corners of the exit pupil grating structure are arc-shaped, and the radius of curvature of the arc is 0mm-20mm.
  • the horizontal distance from the center of the left exit pupil grating unit to the center of the right exit pupil grating unit is the interpupillary distance of the human eye, and the interpupillary distance of the human eye is 60 mm to 70 mm; the center of the entrance pupil grating unit to The vertical distance between the centers of the left exit pupil grating unit is 8 mm to 25 mm.
  • the grating vector direction of the entrance pupil grating unit is -1 degree to 1 degree, and the grating vector direction of the left pupil expanding grating unit is 30 degree to 60 degree , the grating vector direction of the right pupil expansion grating unit is 120 degrees to 150 degrees, the grating vector direction of the left exit pupil grating unit is 88 degrees to 92 degrees, and the grating vector direction of the right exit pupil grating unit is 88 degrees degrees ⁇ 92 degrees.
  • the wave vector areas of the left output light, the right output light and the input light overlap, the first left guided light and the first right guided light, the second The wave vector regions of the left guided light and the second right guided light are between the minimum wave vector of total internal reflection and the maximum wave vector of total internal reflection of the waveguide plate, the second left guided light and the second right guided light The wave vector regions coincide.
  • the grating vector of the entrance pupil grating unit is directed to the left, and the sum of the grating vectors of the entrance pupil grating unit, the left pupil expanding grating unit and the left exit pupil grating unit is zero;
  • the grating vector of the pupil grating unit is in the right direction, and the sum of the grating vectors of the entrance pupil grating unit, the right pupil expanding grating unit and the right exit pupil grating unit is zero.
  • the present application also proposes a display device, including a light engine and the above optical device; the light engine is used to generate the input light.
  • the entrance pupil grating unit is formed on the waveguide plate of the present application, and the input light is diffracted into left and right guided light by using positive and negative diffraction orders; left and right symmetrical pupil dilation is also formed on the same waveguide plate
  • the grating unit and the symmetrical exit pupil grating unit can realize binocular display. Since the waveguide plate is a whole with basic flatness, the left and right eyes can achieve binocular fusion without any additional adjustments. Due to the overall left-right symmetrical relationship, the images of the left and right eyes achieve complementary colors, thereby achieving better color uniformity and a larger FOV. By partitioning the left and right pupil expansion units and the left and right exit pupil units, better color uniformity is further achieved.
  • the positive and negative diffraction orders of the entrance pupil unit are used, which greatly improves the utilization and utilization of light energy of the system, so the power consumption of the binocular system is far lower than that of the conventional binocular display solution.
  • Fig. 1 is a schematic structural view of an embodiment of the optical device of the present application
  • Fig. 2 is a schematic diagram of partitions of grating units in an embodiment of the optical device shown in Fig. 1;
  • Fig. 3 is a schematic diagram of the vector direction of the grating unit in an embodiment of the optical device shown in Fig. 1;
  • Fig. 4 is a side view of an embodiment of the optical device shown in Fig. 1;
  • Fig. 5 is a wave vector diagram of light in an embodiment of the optical device shown in Fig. 1;
  • Fig. 6 is a schematic structural diagram of another embodiment of the optical device of the present application.
  • the optical device EPE1 may include a waveguide SUB01, which is a plane with good flatness. flatness.
  • An entrance pupil grating unit DOE1, a left pupil expansion grating unit DOE2a, a right pupil expansion grating unit DOE2b, a left exit pupil DOE3a, and a right exit pupil grating unit DOE3b are formed on the waveguide plate SUB01.
  • the entrance pupil DOE1 can receive the input light beam IN1, and the left and right exit pupil DOE3a and DOE3b can provide the expanded output beams OUT1 and OUT2 respectively, among which the left and right pupil expansion DOE2a and DOE2b, and the left and right exit pupil DOE3a and DOE3b Under the action, the length and width of the output light beams OUT1 and OUT2 are greater than the length and width of the input light beam IN1, realizing the function of pupil dilation.
  • the optical device EPE1 can expand the light beam IN1 in two dimensions (for example, in the horizontal direction SX and in the vertical direction SY).
  • the expansion process may also be called exit pupil expansion, ray expansion, etc.
  • the optical device EPE1 may be called a beam expander or an exit pupil expander or the like.
  • Entrance pupil unit DOE1 can be used as incoupling unit.
  • the entrance pupil grating unit DOE1 may form the first left guided light B1a and the first right guided light B1b by diffracting the input light beam IN1.
  • the input light beam IN1 can be incident from the front side of the optical device EPE1 or from the back side of the EPE1.
  • the first left guided light B1a and the first right guided light B1b can propagate inside the planar waveguide plate SUB01, and the main directions of propagation are left-right symmetrical.
  • the first left guided light B1a and the first right guided light B1b can be confined to the planar waveguide plate SUB01 for total internal reflection (Total Internal Reflection).
  • conducting may mean that said light propagates inside the planar waveguide plate SUB01, confining light rays inside the plate by total internal reflection (TIR).
  • waveguide may be the same as the term “optical waveguide”.
  • the left pupil expansion grating unit DOE2a is used to receive the first left guided light B1a and form the second left guided light B2a through diffraction.
  • the left pupil expansion grating unit DOE2a can distribute the second left guided light B2a to the left exit pupil grating unit DOE3a nearly uniformly, and the light width of the second left guided light B2a is much larger than that of the first left guided light B1a.
  • the second left guided light B2a can be confined to propagate in the waveguide plate SUB01 by total internal reflection.
  • the right pupil expansion grating unit DOE2b is configured to receive the first right transmitted light B1b and form the second right transmitted light B2b through diffraction.
  • the right pupil expansion grating unit DOE2b can nearly evenly distribute the second right transmitted light B2b to the right exit pupil grating unit DOE3b, and the light width of the second right transmitted light B2b is much larger than that of the first right transmitted light B1b.
  • the second right guided light B2b can be confined to propagate in the waveguide plate SUB01 by total internal reflection.
  • the directions of the first left guided light B1a and the first right guided light B1b are left-right symmetrical, and the main directions of the second left guided light B2a and the second right guided light B2b are the same.
  • the left exit pupil grating unit DOE3a can diffract the expanded guided light B2a to form the left output light OB1, which further expands in the Y direction and maintains good uniformity to form the left output light beam OUT1 as a whole.
  • the direction of the left output light OB1 and the left output light beam OUT1 is DIR0'.
  • the right exit pupil grating unit DOE3b can diffract the expanded guided light B2b to form the right output light OB2, which further expands in the Y direction and maintains good uniformity to form the right output light beam OUT2 as a whole.
  • the direction of the right output light OB2 and the right output light beam OUT2 is also DIR0'.
  • the direction DIR0 of the incident light beam IN1 is consistent with the directions DIR0' of the left and right output light beams OUT1 and OUT2, no matter how the direction of the incident light beam IN1 changes, this relationship always holds true. Since the directions DIR0' of the left and right output light beams OUT1 and OUT2 are the same, the virtual image VIMG1 received by the left eye EYE1 and the virtual image VIMG2 received by the right eye EYE2 can be naturally fused together without angular deviation, and the virtual image VIGM1 and virtual The content of the image VIGM2 is exactly the same.
  • SX, SY and SZ are orthogonal directions.
  • the waveguide plate SUB1 may be parallel to the plane defined by SX and SY.
  • FIG. 2 shows the division and size of different grating regions of the optical device EPE1.
  • the diameter of the entrance pupil grating unit DOE1 is D1, and the area of D1 ranges from 2.5mm to 7mm.
  • the entrance pupil grating unit DOE1 can be a surface grating or a holographic volume grating. This grating has a high diffraction efficiency and can transmit energy to the left and right sides The first left guided light B1a and the first right guided light B1a.
  • the left pupil expansion grating unit DOE2a is a quadrilateral with a maximum width of W2, a maximum height of H2 and the highest left side.
  • the width W2 can be 5-10 times of the diameter D1
  • the height H2 can be 2-5 times of the diameter D1.
  • There are two upper and lower sides of the quadrilateral The angles between the sides and the horizontal direction are a21 and a22 respectively.
  • the left pupil dilation grating unit DOE2a needs to be further divided into 5-15 sub pupil dilation areas. Taking 6 areas as an example, the left pupil expansion grating unit DOE2a includes sub-areas L11, L12, L13, L14, L15, and L16, and the angle between the dividing lines between different sub-areas is a23.
  • the range of this angle can be set is 20° to 160°, and the included angles of the boundary lines of different adjacent sub-regions can be different, so as to achieve a better uniformity effect.
  • the grating period can be fixed in different sub-regions, and the shape characteristics, depth, duty cycle, or exposure conditions of the grating can be controlled, so that the diffraction efficiency of different sub-regions gradually increases, that is, when i is greater than j, the grating in the sub-region L1i
  • the diffraction efficiency is greater than the diffraction efficiency of the grating in the sub-region L1j, and the efficiency setting range of the diffraction grating corresponding to the sub-region can be 5%-95%.
  • the right pupil expansion grating unit DOE2b is a quadrilateral with a maximum width of W4, a maximum height of H4 and the highest right side.
  • the width W4 can be 5-10 times of the diameter D1
  • the height H4 can be 2-5 times of the diameter D1.
  • the included angles between the strip sides and the horizontal direction are b21 and b22 respectively.
  • the right pupil dilation grating unit DOE2b needs to be further divided into 5-15 sub pupil dilation areas. Taking 6 areas as an example, the right pupil expansion grating unit DOE2b includes sub-areas R11, R12, R13, R14, R15, R16, and the angle between the dividing lines between different sub-areas is b23.
  • the range of this angle can be set is 20° to 160°, and the included angles of the boundary lines of different adjacent sub-regions can be different, so as to achieve a better uniformity effect.
  • the grating period can be fixed in different sub-regions, and the shape characteristics, depth, duty cycle, or exposure conditions of the grating can be controlled, so that the diffraction efficiency of different sub-regions gradually increases, that is, when i is greater than j, the grating in the sub-region R1i
  • the diffraction efficiency is greater than the diffraction efficiency of the grating in the sub-region R1j, and the efficiency setting range of the diffraction grating corresponding to the sub-region can be 5%-95%.
  • the left exit pupil grating unit DOE3a is a rectangle with a length of W3 and a height of H3, the width W3 may be 80%-95% of the width W2, and the height H3 may be 3-6 times of the diameter D1.
  • the left exit pupil grating unit DOE3a needs to be further divided into 5-15 sub-exit pupil areas. Taking seven areas as an example, the left exit pupil grating unit DOE3a includes sub-areas L21, L22, L23, L24, L25, L26, and L27 to achieve better uniformity.
  • the grating period can be fixed in different sub-regions, and the shape characteristics, depth, duty cycle, or exposure conditions of the grating can be controlled, so that the diffraction efficiency of different sub-regions gradually increases, that is, when i is greater than j, the grating in the sub-region L2i
  • the diffraction efficiency is greater than the diffraction efficiency of the grating in the subregion L2j, and the efficiency setting range of the diffraction grating corresponding to the subregion can be 5%-95%.
  • the right exit pupil grating unit DOE3b is a rectangle with a length of W5 and a height of H5, the width W5 may be 80%-95% of the width W4, and the height H5 may be 3-6 times of the diameter D1.
  • the right exit pupil grating unit DOE3b needs to be further divided into 5-15 sub-regions. Taking 7 regions as an example, the right exit pupil grating unit DOE3b includes sub-regions R21, R22, R23, R24, R25, R26, and R27 to achieve better uniformity.
  • the grating period can be fixed in different sub-regions, and the shape characteristics, depth, duty cycle, or exposure conditions of the grating can be controlled, so that the diffraction efficiency of different sub-regions gradually increases, that is, when i is greater than j, the grating in the sub-region R2i
  • the diffraction efficiency is greater than the diffraction efficiency of the grating in the sub-region R2j, and the efficiency setting range of the diffraction grating corresponding to the sub-region can be 5%-95%.
  • the vertical distance between the center of the entrance pupil grating unit DOE1 and the center of the left exit pupil grating unit DOE3a is Y1, and Y1 is set to 8mm-25mm.
  • Figure 3 shows the period and orientation of the different grating areas of the optical device EPE1.
  • Each unit DOE1, DOE2a, DOE2b, DOE3a, DOE3b may contain one or more diffraction grating regions.
  • unit DOE1 may contain a raster area.
  • unit DOE2a may contain multiple sub-areas, while each sub-area gratings the period and direction.
  • the unit DOE2b may contain multiple sub-regions, while the direction of the period of the grating of the sub-regions remains consistent.
  • the unit DOE3a may contain multiple sub-regions, while the period and direction of the gratings in each sub-region remain consistent.
  • the unit DOE3b may contain multiple sub-regions, while the period and direction of the gratings in each sub-region remain consistent.
  • the grating period (d) of the diffraction grating and the orientation ( ⁇ ) of the diffractive features of the diffraction grating can be determined from the grating vector V of said diffraction grating.
  • a diffraction grating contains a plurality of diffractive features (F) that can act as diffraction lines. Diffractive features may be, for example, tiny ridges or grooves. Diffractive features can also be, for example, microscopic protrusions (or depressions), wherein adjacent protrusions (or depressions) can act as diffraction lines.
  • a grating vector V can be defined as a vector having a direction perpendicular to the diffraction lines of a diffraction grating and a magnitude given by 2 ⁇ /d, where d is the grating period.
  • the grating period has the same meaning as the length of the grating period.
  • the grating period may be the length between successive diffractive features of the grating.
  • the grating period may be equal to a unit length divided by the number of diffractive features lying within said unit length.
  • the grating period d1a of the entrance pupil grating unit DOE1 may be in the range of, for example, 330nm to 450nm, and the optimal value depends on the refractive index of SUB1 and the wavelength ⁇ of the diffracted light.
  • the entrance pupil raster unit DOE1 may have a raster vector V1.
  • the left pupil expansion raster unit DOE2a may have a raster vector V2a.
  • the right pupil expansion raster unit DOE2b may have a raster vector V2b.
  • the left exit pupil raster unit DOE3a may have a raster vector V3a.
  • the right exit pupil raster unit DOE3b may have a raster vector V3b.
  • the grating vector V1 has a direction ⁇ 1 and a magnitude 2 ⁇ /d1.
  • the raster vector V2a has a direction ⁇ 2a and a magnitude 2 ⁇ /d2a.
  • the grating vector V2b has a direction ⁇ 2b and a magnitude 2 ⁇ /d2b.
  • the raster vector V3a has a direction ⁇ 3a and a magnitude 2 ⁇ /d3a.
  • the raster vector V3b has a direction ⁇ 3b and a magnitude 2 ⁇ /d3b.
  • the direction ( ⁇ ) of the grating vector may be defined as the angle between the grating vector and a reference direction (eg direction SX).
  • the grating periods (d) and the orientations ( ⁇ ) of the diffraction gratings of the optical units DOE1, DOE2a, DOE3a can be chosen such that the propagation direction DIR0' of the light at the central point in the output beam OUT1 is parallel to the direction of propagation of the central point in the input light IN1 Light propagation direction DIR0.
  • the grating periods (d) and the orientation ( ⁇ ) of the diffraction gratings of the optical units DOE1, DOE2b, DOE3b can be chosen such that the propagation direction DIR0' of the light at the center point in the output beam OUT2 is also parallel to the center point in the input light IN1 The direction of light propagation DIR0.
  • the direction ⁇ 1 of the grating vector V1 of the entrance pupil grating unit DOE1 can be about 0°, such as -1° ⁇ 1°, the direction ⁇ 2a of the grating vector V2a of the left pupil dilation grating unit DOE2a can be 30° to 60°, and the right pupil dilation
  • the direction ⁇ 2b of the grating vector V2b of the grating unit DOE2b may be 120° to 150°, and the grating vector V2a and the grating vector V2b are mirror-symmetrical.
  • the direction ⁇ 3a of the grating vector V3a of the left exit pupil grating unit DOE3a can be around 90°, such as 88° ⁇ 92°;
  • the direction ⁇ 3b of the grating vector V3b of the right exit pupil grating unit DOE3b can be around 90°, such as 88° ⁇ 92° °;
  • the grating vector V3a and the grating vector V3b are mirror-symmetrical.
  • the grating period (d) and direction ( ⁇ ) of the grating vector can be satisfied, the vector sum (m1V1+m2aV2a+m3aV3a) is zero, and the vector sum (-m1V1+m2bV2b+ m3bV3b) is zero.
  • the values of these predetermined integers are usually +1 or -1.
  • the values of the integers m1, m2a, m2b, m3a, m3b can be +1 or -1.
  • V1 is directed to the left, and the sum of V1, V2a, and V3a is zero; V1 is directed to the right, and the sum of V1, V2b, and V3b is zero.
  • the optical device EPE1 may form the output light OUT1 by diffracting and conducting the input light IN1 obtained from the optical engine ENG1 .
  • the display apparatus 500 may include an optical engine ENG1 and an optical device EPE1.
  • the input light IN1 may contain multiple beams traveling in different directions. Each beam of input light IN1 may correspond to a different point of the input image IMG0.
  • the output lights OUT1 and OUT2 may include a plurality of light beams traveling in different directions, respectively entering the left eye EYE1 and the right eye EYE2. Each beam of the output lights OUT1 and OUT2 may correspond to a different point of the displayed virtual image VIMG1.
  • the pupil expanding unit EPE1 may form left and right output lights OUT1 and OUT2 from the input light IN1 such that directions and intensities of beams of the output lights OUT1 and OUT2 correspond to points of the input image IMG0.
  • a beam of input light IN1 may correspond to a single image point of a display image.
  • the optical device EPE1 can form the left output beam OB1 and the right output beam OB2 with the same direction from the beam of the input light IN1, so that the direction DIR0' of the output beam is parallel to the direction DIR0 of the corresponding input light beam IN1.
  • the display apparatus 500 may include an optical engine ENG1 to form a main image IMG0 and convert the main image IMG0 into a plurality of light beams of the input light IN1.
  • the light of the light engine ENG1 can be coupled in from the entrance pupil grating unit DOE1 of the optical device EPE1.
  • the input light IN1 may be coupled in from the entrance pupil grating unit DOE1 of the optical device EPE1.
  • Apparatus 500 may be a display device for displaying virtual images. Apparatus 500 may also be a myopic optical device.
  • the optical device EPE1 can propagate virtual image content from the light engine ENG1 in front of the user's left eye EYE1 and right eye EYE2.
  • the optical device EPE1 can expand the pupil, thereby enlarging the eyebox.
  • the light engine ENG1 may contain a microdisplay DISP1 to generate the main image IMG0.
  • the microdisplay DISP1 may comprise a two-dimensional array of light-emitting pixels.
  • the display DISP1 can generate, for example, the main image IMG0 with a resolution of 1280 ⁇ 720 (HD).
  • the display DISP1 can generate for example the main image IMG0 with a resolution of 1920 ⁇ 1080 (Full HD)).
  • the display DISP1 can generate, for example, the main image IMG0 with a resolution of 3840 ⁇ 2160 (4K UHD).
  • the light engine ENG1 may contain collimating optics LNS1 to form a different light beam for each image pixel.
  • the light engine ENG1 may include a collimating optical device LNS1, so that the light emitted from a certain pixel point forms a substantially collimated beam. Different pixel points correspond to different collimation directions.
  • the light engine ENG1 may provide a plurality of light beams corresponding to the generated main image IMG0. One or more light beams provided by the light engine ENG1 can be coupled into the optical device EPE1 as input light IN1.
  • the light engine ENG1 may comprise, for example, one or more light emitting diodes (LEDs).
  • the display DISP1 may include one or more microdisplay imagers, such as liquid crystal on silicon (LCOS), liquid crystal display (LCD), and digital micromirror device (DMD).
  • LCOS liquid crystal on silicon
  • LCD liquid crystal display
  • DMD digital micromirror device
  • the waveguide plate SUB1 may have a first main surface SRF1 and a second main surface SRF2.
  • the surfaces SRF1, SRF2 may be substantially parallel to the plane defined by the directions SX and SY.
  • the waveguide plate SUB1 may have a thickness t1.
  • the waveguide plate contains a planar waveguide core.
  • the waveguide plate SUB1 may optionally include, for example, one or more cladding layers, one or more protective layers and/or one or more mechanical support layers.
  • the thickness t1 may refer to the thickness of the planar waveguide core portion of the waveguide plate SUB1.
  • the grating structure of the entrance pupil grating unit DOE1 may be disposed on the first main surface SRF1 or the second main surface SRF2 of the waveguide plate SUB1 to form the first left guided light B1a and the first right guided light B1b by diffracting the input beam IN1.
  • the input light beam IN1 can be incident from the front side of the optical device EPE1 or from the back side of the EPE1.
  • the first left guided light B1a and the first right guided light B1b can propagate inside the planar waveguide plate SUB01, and the main directions of propagation are left-right symmetrical.
  • the first left guided light B1a and the first right guided light B1b may be confined to the planar waveguide plate SUB1 for total internal reflection (Total Internal Reflection).
  • the right pupil expansion grating unit DOE2b and the grating structure of the right pupil expansion grating unit DOE2b may be disposed on the first main surface SRF1 or the second main surface SRF2 of the waveguide plate SUB1.
  • the left pupil expansion grating unit DOE2a is used to receive the first left guided light B1a and form the second left guided light B2a through diffraction.
  • the left pupil expansion grating unit DOE2a can nearly uniformly distribute the second left guided light B2a to the left exit pupil grating unit DOE3a, and the second left guided light B2a can be restricted to propagate in the waveguide plate SUB1 through total internal reflection.
  • the right pupil expansion grating unit DOE2b is used to receive the first right transmitted light B1a and form the second right transmitted light B2b through diffraction.
  • the right pupil expansion grating unit DOE2b can distribute the second right transmitted light B2b to the right exit pupil grating unit DOE3b nearly uniformly.
  • the second left guided light B2a can be confined to propagate in the waveguide plate SUB1 by total internal reflection.
  • the grating structures of the left pupil grating unit DOE3a and the right pupil grating unit DOE3b may be disposed on the first main surface SRF1 or the second main surface SRF2 of the waveguide plate SUB1.
  • the left exit pupil grating unit DOE3a can diffract the expanded guided light B2a to form the left output light OB1, and form the left output light beam OUT1 as a whole.
  • the direction of the left output light OB1 and the left output light beam OUT1 is DIR0'.
  • the right exit pupil grating unit DOE3b can diffract the expanded guided light B2b to form the left output light OB2, and form the right output beam OUT2 as a whole.
  • the direction of the right output light OB2 and the right output light beam OUT2 is also DIR0'.
  • the left output light beam OUT1 and the right output light beam OUT2 enter the left eye EYE1 and the right eye EYE2 respectively. Since the light beams have the same direction, the left and right eyes can achieve binocular fusion without any additional adjustments. Due to the overall left-right symmetrical relationship, the images of the left and right eyes achieve complementary colors, thereby achieving better color uniformity and a larger FOV.
  • the waveguide plate SUB1 may comprise or consist essentially of a transparent solid material.
  • the waveguide plate SUB1 may comprise, for example, glass, polycarbonate or polymethylmethacrylate (PMMA).
  • the diffractive optical elements DOE1, DOE2a, DOE2b, DOE3a, DOE3b may be formed by eg molding, embossing and/or etching.
  • the units DOE1, DOE2a, DOE2b, DOE3a, DOE3b can be realized eg by one or more surface diffraction gratings or by one or more volume diffraction gratings.
  • Fig. 5 shows the wave vector diagram of light by way of example, the light of this wavelength can propagate in the waveguide plate SUB along the left path and the right path.
  • the wave vector of the input light IN1 may exist in one region BOX0 of the wave vector space defined by the initial wave vectors kx and ky.
  • Each corner of the area BOX0 can represent a wave vector of light at a corner point of the input image IMG0.
  • the wave vector of the first left guided light B1a can be in the area BOX1a
  • the wave vector of the first right guided light B1b can be in the area BOX1a
  • the wave vector of the second left guided light B2a can be in the area BOX2a
  • the wave vector of the second right guided light can be in the area BOX2a.
  • the wavevector of B2b may be within region BOX2b
  • the wavevector of the left output beam OUT1 may be within region BOX3a.
  • the wave vector of the right output beam OUT2 may be within region BOX3b.
  • BND1 represents the minimum boundary for satisfying the total internal reflection (TIR) criterion in the waveguide plate SUB1
  • BND2 represents the maximum boundary of the total internal reflection (TIR) criterion in the waveguide plate SUB1, which can be determined by the refractive index of the waveguide plate.
  • Light can be waveguided in the slab SUB1 only if the wave vector of said light is in the zone ZONE1 between the first boundary BND1 and the second boundary BND2. If the wavevector of the light is outside zone ZONE1, the light may leak out of the waveguide plate or not propagate at all.
  • the grating period (d) and the orientation ( ⁇ ) of the diffraction grating of the optical units DOE1, DOE2a, DOE3a, DOE2b, DOE3b can be selected so that the area BOX0, the area BOX3a, and the area BOX3b in the wave vector space almost coincide.
  • the wave vectors of the zone BOX1a, the zone BOX1b, the zone BOX2a, and the zone BOX2b are all within the zone ZONE1 defined by the boundaries BND1 and BND2.
  • the area BOX2a and the area BOX2b in the wave vector space almost coincide.
  • the left path is counterclockwise.
  • the entrance pupil grating unit DOE1 can diffract the input light IN1 to form the first left guided light B1a, that is, add the grating vector -m1V1 of the entrance pupil grating unit DOE1 to the wave vector of the input light IN1 to represent the wave vector diffracted into the first left guided light B1a.
  • the wave vector of the second left guided light B2a can be determined by adding the grating vector m2aV2a to the wave vector of the first guided light B1a.
  • the wave vector of the outgoing light OUT1 can be determined by adding the grating vector m3a V3a to the wave vector of the second left guided light B2a.
  • the right path is counterclockwise.
  • the entrance pupil grating unit DOE1 can diffract the input light IN1 to form the first right guided light B1b, that is, by adding the grating vector m1V1 of the entrance pupil grating unit DOE1 to the wave vector of the input light IN1. represents the wave vector diffracted into the first right guided light B1b.
  • the wave vector of the second right guided light B2b can be determined by adding the grating vector m2bV2b to the wave vector of the first guided light B1b.
  • the wave vector of the outgoing light OUT2 can be determined by adding the grating vector m3b V3b to the wave vector of the second right guided light B2b.
  • the grating period (d) and the orientation ( ⁇ ) of the diffraction grating of the optical unit DOE1, DOE2a, DOE3a, DOE2b, DOE3b can be selected so that the angle between the grating vector -V1 and V2a can be 30° to 60°, and the grating vector V1 and The included angle of V2b can be 120° to 150°, the included angle of grating vector V2a and V3a can be 30° to 60°, the included angle of grating vector V2b and V3b can be 30° to 60°, and the left path of light propagation mirror-symmetric to the right path.
  • kx represents the direction in the wave vector space, where the direction kx is parallel to the direction SX in the actual space.
  • ky represents the direction in the wave vector space, where the ky direction is parallel to the SY direction in the actual space.
  • the symbol kz (not shown in the figure) indicates the direction in the wave vector space, where the direction kz is parallel to the direction SZ in the real space.
  • the wave vector k can have components in the directions kx, ky and/or kz.
  • FIG. 6 illustrates the front view of the optical device EPE1, illustrating that the corners of the grating area can be made into arcs to better adapt to the shape of the glasses.
  • the left upper arc of the second left pupil dilating area DOE2a is r1, the left lower arc is r2, and the right arc is r5; the right upper arc of the second right pupil dilating area DOE2b is r3, the right lower arc is r4, and the left arc is r6.
  • the square arc of the third left exit pupil area DOE3a may be r7, and the square arc of the third right exit pupil area DOE3b may be r8.
  • the radius of curvature of all radians ranges from 2mm to 20mm.
  • the optical device of this embodiment can divide the entrance pupil light into the left and right eyes, and only needs one light engine, which improves the overall efficiency of the diffractive waveguide.
  • the accuracy of the glass wafer is used to control the binocular coupling, which reduces the difficulty of generating binocular coupling and improves the coupling degree.
  • the optical symmetry of the left and right eyes can compensate each other, and the uniformity of the color can be felt better.
  • the integrated waveguide design can match the radian shape and is more suitable for human body use.
  • connection it may be a fixed connection or a detachable connection, or integrated; it may be a mechanical connection or an electrical connection; it may be a direct connection or an indirect connection through an intermediary , or it can be the internal communication of two elements or the interaction relationship between two elements. Therefore, unless otherwise clearly defined in this specification, those skilled in the art can understand the specific meanings of the above terms in this application according to specific situations.
  • first or second used in this specification to refer to numbers or ordinal numbers are used for descriptive purposes only, and should not be interpreted as express or implied relative importance or implied indications The number of technical characteristics. Thus, a feature defined as “first” or “second” may explicitly or implicitly include at least one of such features. In the description of this specification, “plurality” means at least two, such as two, three or more, etc., unless otherwise specifically defined.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

一种光学装置(EPE1)和显示设备(500),光学装置(EPE1)包括波导板(SUB01),其上形成有:入瞳光栅单元(DOE1),位于其左侧的左扩瞳光栅单元(DOE2a),位于其右侧的右扩瞳光栅单元(DOE2b),左、右扩瞳光栅单元(DOE2a 、DOE2b)以入瞳光栅单元(DOE1)为中心左右镜像对称;位于左、右扩瞳光栅单元(DOE2a 、DOE2b)下方的左、右出瞳光栅单元(DOE3a、DOE3b),也左右镜像对称设置;输入光(IN1)通过入瞳光栅单元(DOE1)衍射形成第一左传导光(B1a)和第一右传导光(B1b),第一左传导光(B1a)通过左扩瞳光栅单元(DOE2a)衍射成第二左传导光(B2a),第一右传导光(B1b)通过右扩瞳光栅单元(DOE2b)衍射成第二右传导光(B2b);第二左传导光(B2a)通过左出瞳光栅单元(DOE3a)衍射成左输出光(OUT1);第二右传导光(B2b)通过右出瞳光栅单元(DOE3b)衍射成右输出光(OUT2);输入光(IN1)、左输出光(OUT1)和右输出光(OUT2)的方向一致。通过波导实现双目显示,且能提升色彩均匀性。

Description

光学装置和显示设备 技术领域
本申请属于波导技术领域,特别涉及一种光学装置和显示设备。
背景技术
近眼显示技术是当前AR眼镜中必须用到的关键技术之一。近眼显示系统一般由图像远及光传输系统组成,图像源发出的图像画面,通过光学传输系统传递到人眼中。这里的光学传输系统是需要有一定透过率的,从而使佩戴者在看到图像画面的同时,可以看到外界的环境。
对于光学传输系统,业界有很多种方案,例如,自由空间光学,自由曲面光学,及显示光波导。其中,光波导技术由于其大eyebox的特点,及其轻薄的特性,明显由于其他光学方案,成为各大公司的主流路径。但当前光波导只能实现单目显示,要实现双目显示,则存在硬件成本高,功耗高的问题。
发明内容
本申请提供一种光学装置和显示设备,以解决当前光波导只能实现单目显示的问题。
为解决上述技术问题,本申请提出一种光学装置,包括波导板,所述波导板上形成有:入瞳光栅单元,输入光通过所述入瞳光栅单元衍射形成第一左传导光和第一右传导光;左扩瞳光栅单元,位于所述入瞳光栅单元的左侧;所述第一左传导光通过所述左扩瞳光栅单元衍射形成第二左传导光;右扩瞳光栅单元,位于所述入瞳光栅单元的右侧;所述第一右传导光通过所述右扩瞳光栅单元衍射形成第二右传导光;左出瞳光栅单元,位于所述左扩瞳光栅单元的下侧;所述第二左传导光通过所述左出瞳光栅单元衍射形成左输出光;右出瞳光栅单元,位于所述右扩瞳光栅单元的下侧; 所述第二右传导光通过所述右出瞳光栅单元衍射形成右输出光;所述左扩瞳光栅单元和右扩瞳光栅单元以所述入瞳光栅单元为中心左右镜像对称,所述左出瞳光栅单元和右出瞳光栅单元以所述入瞳光栅单元为中心左右镜像对称,所述输入光、所述左输出光和所述右输出光的方向一致。
在一个实施例中,所述入瞳光栅单元为表面光栅或全息体光栅,所述入瞳光栅单元为圆形,直径为2.5mm~7mm,所述入瞳光栅单元的光栅周期为330nm~450nm。
在一个实施例中,所述左扩瞳光栅单元和所述右扩瞳光栅单元均为扩瞳光栅结构,在水平远离所述入瞳光栅单元的方向上,所述扩瞳光栅结构在竖直方向上的高度逐渐增大;所述扩瞳光栅结构在竖直方向上的最大高度为所述入瞳光栅单元的直径的2~5倍,所述在水平方向上的宽度为所述入瞳光栅单元的直径的5~10倍。
在一个实施例中,所述扩瞳光栅结构划分为5~15个子扩瞳区域,相邻所述子扩瞳区域之间的分界线与水平方向的夹角为20度~160度;在远离所述入瞳光栅单元的方向上,各个所述子扩瞳区域的衍射效率逐渐上升,所述子扩瞳区域的衍射效率为5%~95%。
在一个实施例中,所述左出瞳光栅单元和所述右出瞳光栅单元均为出瞳光栅结构,所述出瞳光栅结构为矩形,在竖直方向上的高度为所述入瞳光栅单元的直径的3~6倍,在水平方向上的宽度为所述扩瞳光栅结构的宽度的80%~95%。
在一个实施例中,所述出瞳光栅结构在竖直方向上划分为5~15个子出瞳区域,在竖直远离所述入瞳光栅单元的方向上,各个所述子出瞳区域的衍射效率逐渐上升,所述子出瞳区域的衍射效率为5%~95%。
在一个实施例中,所述扩瞳光栅结构为四边形,所述扩瞳光栅结构的四角和所述出瞳光栅结构的四角均进行了弧形处理,弧形的曲率半径为0mm~20mm。
在一个实施例中,所述左出瞳光栅单元中心到所述右出瞳光栅单元中心的水平距离为人眼瞳距,所述人眼瞳距为60mm~70mm;所述入瞳光栅单元中心到所述左出瞳光栅单元中心的竖直距离为8mm~25mm。
在一个实施例中,以左到右的方向为基准,所述入瞳光栅单元的光栅矢量方向为-1度~1度,所述左扩瞳光栅单元的光栅矢量方向为30度~60度,所述右扩瞳光栅单元的光栅矢量方向为120度~150度,所述左出瞳光栅单元的光栅矢量方向为88度~92度,所述右出瞳光栅单元的光栅矢量方向为88度~92度。
在一个实施例中,在波矢空间内,所述左输出光、右输出光和所述输入光的波矢区域重合,所述第一左传导光和所述第一右传导光、第二左传导光和第二右传导光的波矢区域在所述波导板的全内反射最小波矢和全内反射最大波矢之间,所述第二左传导光和所述第二右传导光的波矢区域重合。
在一个实施例中,所述入瞳光栅单元的光栅矢量以向左为方向,所述入瞳光栅单元、左扩瞳光栅单元及左出瞳光栅单元的光栅矢量之和为零;所述入瞳光栅单元的光栅矢量以向右为方向,所述入瞳光栅单元、右扩瞳光栅单元及右出瞳光栅单元的光栅矢量和为零。
为解决上述技术问题,本申请还提出一种显示设备,包括光引擎以及上述光学装置;所述光引擎用于产生所述输入光。
区别于现有技术,本申请光学装置中波导板上形成有入瞳光栅单元,利用正负衍射级次将输入光衍射成左右传导光;在同一片波导板上还形成有左右对称的扩瞳光栅单元和左右对称的出瞳光栅单元,可实现双目显示。由于波导板是一个整体,具备基本的平整度,左右眼可以实现双目融合而不需要其他额外的调节。由于整体的左右对称关系,左右眼的图像实现色彩的互补,从而实现更好的色彩均匀,更大的FOV。通过左右扩瞳单元和左右出瞳的单元的分区,进一步实现更好的色彩均匀性。同时,入瞳单元的正负衍射级次都利用上了,大大提升了系统光能的利用与,所以双眼系统功耗远远低于常规的双目显示方案。
附图说明
通过参考附图阅读下文的详细描述,本公开示例性实施方式的上述以及其他目的、特征和优点将变得易于理解。在附图中,以示例性而非限制 性的方式示出了本公开的若干实施方式,并且相同或对应的标号表示相同或对应的部分,其中:
图1是本申请光学装置一实施例的结构示意图;
图2是图1所示光学装置一实施例中光栅单元的分区示意图;
图3是图1所示光学装置一实施例中光栅单元的矢量方向示意图;
图4是图1所示光学装置一实施例的侧视图;
图5是图1所示光学装置一实施例中光的波矢图;
图6是本申请光学装置另一实施例的结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
下面结合附图来详细描述本公开的具体实施方式。
如图1所示,光学装置EPE1可以包括波导板SUB01,波导板SUB01为平面度好的平面,但波导板SUB01的形状可以为平板,也可以为契合人脸的弯折板,均具有较好的平面度。
在波导板SUB01上形成有入瞳光栅单元DOE1,左扩瞳光栅单元DOE2a,右扩瞳光栅单元DOE2b,左出瞳光栅单元DOE3a,和右出瞳光栅单元DOE3b。
入瞳光栅单元DOE1可以接收输入光束IN1,而左右出瞳光栅单元DOE3a和DOE3b可以分别提供扩展的输出光束OUT1和OUT2,其中左右扩瞳光栅单元DOE2a和DOE2b,以及左右出瞳光栅单元DOE3a和DOE3b作用下,输出光束OUT1和OUT2的长度和宽度大于输入光束IN1的长度和宽度,实现扩瞳的功能。
光学装置EPE1可以在二维上(例如,沿水平方向SX和沿竖直方向SY)扩展光束IN1。扩展过程也可以称为出瞳扩展,光线扩展等。光学装置EPE1可以称为光束扩展器或出射光瞳扩展器等。
入瞳光栅单元DOE1可以用作入耦合单元。入瞳光栅单元DOE1可以通过衍射输入光束IN1来形成第一左传导光B1a和第一右传导光B1b。输入光束IN1可以从光学装置EPE1的正面入射也可以从EPE1的反面入射。第一左传导光B1a和第一右传导光B1b可以在平面波导板SUB01内部传播,传播的主方向左右对称。第一左传导光B1a和第一右传导光B1b可以被限制在平面波导板SUB01进行全内反射(Total Internal Reflection)。
其中术语“传导”可能意味着该所述光在平面波导板SUB01内部传播,通过全内反射(TIR)将光线限制在板内部。术语“波导”可以与术语“光波导”相同。
左扩瞳光栅单元DOE2a,用于接收第一左传导光B1a,并通过衍射形成第二左传导光B2a。左扩瞳光栅单元DOE2a可以将第二左传导光B2a接近均匀的分配到左出瞳光栅单元DOE3a,第二左传导光B2a的光线宽度比第一左传导光B1a的光线宽度大很多。第二左传导光B2a可以通过全内反射限制在波导板SUB01中传播。
右扩瞳光栅单元DOE2b,用于接收第一右传导光B1b,并通过衍射形成第二右传导光B2b。右扩瞳光栅单元DOE2b可以将第二右传导光B2b接近均匀的分配到右出瞳光栅单元DOE3b,第二右传导光B2b的光线宽度比第一右传导光B1b的光线宽度大很多。第二右传导光B2b可以通过全内反射限制在波导板SUB01中传播。
其中,第一左传导光B1a和第一右传导光B1b的方向左右对称,第二左传导光B2a和第二右传导光B2b的主方向相同。
左出瞳光栅单元DOE3a,可以将扩展的传导光B2a衍射而形成左输出光OB1,左输出光OB1在Y方向进一步展宽,并保持良好的均匀性,整体形成左输出光束OUT1。左输出光OB1和左输出光束OUT1的方向为DIR0’。
右出瞳光栅单元DOE3b,可以将扩展的传导光B2b衍射而形成右输出光OB2,右输出光OB2在Y方向进一步展宽,并保持良好的均匀性,整体形成右输出光束OUT2。右输出光OB2和右输出光束OUT2的方向也为DIR0’。
其中,入射光束IN1的方向DIR0与左右输出光束OUT1和OUT2的方向DIR0’保持一致,无论入射光束IN1的方向如何变化,这一关系始终保持成立。由于左右输出光束OUT1和OUT2的方向DIR0’相同,左眼EYE1接收到的虚拟图像VIMG1和右眼EYE2接收到的虚拟图像VIMG2,可以自然的融合在一起,没有角度偏差,且虚拟图像VIGM1和虚拟图像VIGM2的内容完全相同。
SX,SY和SZ是正交的方向。波导板SUB1可以与SX和SY限定的平面平行。
如图2给出了光学装置EPE1的不同光栅区域的分区及尺寸情况。入瞳光栅单元DOE1的直径为D1,D1的面积范围是2.5mm~7mm,入瞳光栅单元DOE1可以是表面光栅或者全息体光栅,此光栅的衍射效率很高,并可以将能量向左右两边传播的第一左传导光B1a和第一右传导光B1a。
左扩瞳光栅单元DOE2a是最大宽度为W2,最大高度为H2且左边最高的四边形,宽度W2可以是直径D1的5-10倍,高度H2可以是直径D1的2-5倍,四边形上下两条边与水平方向的夹角分别为a21和a22。左扩瞳光栅单元DOE2a需要内部继续分割为5-15个子扩瞳区域。以6个区域为例,左扩瞳光栅单元DOE2a包含子区域L11,L12,L13,L14,L15,L16,不同子区域之间的分界线的夹角为a23,这一夹角可以设置的范围是20°至160°,且不同相邻子区域分界线的夹角可以不同,以达到更好的均匀性效果。另外,不同子区域内可以固定光栅周期,控制光栅的形状特征,深度,占空比,或者曝光条件,使得的不同子区域的衍射效率逐渐上升,即当i大于j时,子区域L1i的光栅衍射效率大于子区域L1j的光栅衍射效率,所有对应子区域衍射光栅的效率设置的范围可以是5%-95%。
右扩瞳光栅单元DOE2b,是最大宽度为W4,最大高度为H4且右边最高的四边形,宽度W4可以是直径D1的5-10倍,高度H4可以是直径D1的2-5倍,四边形上下两条边与水平方向的夹角分别为b21和b22。右扩瞳光栅单元DOE2b需要内部继续分割为5-15个子扩瞳区域。以6个区域为例,右扩瞳光栅单元DOE2b包含子区域R11,R12,R13,R14,R15,R16,不同子区域之间的分界线的夹角为b23,这一夹角可以设置的范围是20° 至160°,且不同相邻子区域分界线的夹角可以不同,以达到更好的均匀性效果。另外,不同子区域内可以固定光栅周期,控制光栅的形状特征,深度,占空比,或者曝光条件,使得的不同子区域的衍射效率逐渐上升,即当i大于j时,子区域R1i的光栅衍射效率大于子区域R1j的光栅衍射效率,所有对应子区域衍射光栅的效率设置的范围可以是5%-95%。
左扩瞳光栅单元DOE2a和右扩瞳光栅单元DOE2b具有相同的扩瞳光栅结构,其结构尺寸,光栅参数,分区特性必须严格成左右镜像对称,且各子区域衍射效率也必须相同即L1i=R1i。
左出瞳光栅单元DOE3a,是长度为W3,高度为H3的矩形,宽度W3可以是宽度W2的80%-95%,高度H3可以是直径D1的3-6倍。左出瞳光栅单元DOE3a需要内部继续分割为5-15个子出瞳区域。以7个区域为例,左出瞳光栅单元DOE3a包含子区域L21,L22,L23,L24,L25,L26,L27,以达到更好的均匀性效果。另外,不同子区域内可以固定光栅周期,控制光栅的形状特征,深度,占空比,或者曝光条件,使得的不同子区域的衍射效率逐渐上升,即当i大于j时,子区域L2i的光栅衍射效率大于子区域L2j的光栅衍射效率,所有对应子区域衍射光栅的效率设置的范围可以是5%-95%。
右出瞳光栅单元DOE3b,是长度为W5,高度为H5的矩形,宽度W5可以是宽度W4的80%-95%,高度H5可以是直径D1的3-6倍。右出瞳光栅单元DOE3b需要内部继续分割为5-15个子区域。以7个区域为例,右出瞳光栅单元DOE3b包含子区域R21,R22,R23,R24,R25,R26,R27,以达到更好的均匀性效果。另外,不同子区域内可以固定光栅周期,控制光栅的形状特征,深度,占空比,或者曝光条件,使得的不同子区域的衍射效率逐渐上升,即当i大于j时,子区域R2i的光栅衍射效率大于子区域R2j的光栅衍射效率,所有对应子区域衍射光栅的效率设置的范围可以是5%-95%。
左出瞳光栅单元DOE3a和右出瞳光栅单元DOE3b具有相同的出瞳光栅结构,其结构尺寸,光栅参数,分区特性必须严格成左右镜像对称,且各子区域衍射效率也必须相同即L2i=R2i。
左出瞳光栅单元DOE3a中心位置与右出瞳光栅单元DOE3b中心位置的距离为人眼瞳距IPD,设置为IPD=60mm-70mm范围内,其中左半距离X1等于右半距离X2,X1+X2=IPD。入瞳光栅单元DOE1的中心与左出瞳光栅单元DOE3a中心位置的垂直距离为Y1,Y1设置为8mm-25mm。
图3给出了光学装置EPE1的不同光栅区域的周期和方向。每个单元DOE1,DOE2a,DOE2b,DOE3a,DOE3b可以包含一个或多个衍射光栅区域。例如,单元DOE1可以包含一个光栅区域。例如,单元DOE2a可以包含多个子区域,同时各个子区域光栅的周期和方向。例如,单元DOE2b可以包含多个子区域,同时子区域光栅的周期的方向保持一致。例如,单元DOE3a可以包含多个子区域,同时各个子区域光栅的周期和方向保持一致。例如,单元DOE3b可以包含多个子区域,同时各个子区域光栅的周期和方向保持一致。
衍射光栅的光栅周期(d)和衍射光栅的衍射特征的取向(β)可以由所述衍射光栅的光栅矢量V确定。衍射光栅包含可以用作衍射线的多个衍射特征(F)。衍射特征可以是,例如微小的脊或凹槽。衍射特征也可以是,例如微观的突起(或凹陷),其中相邻的突起(或凹陷)可以作为衍射线。光栅矢量V可以定义为具有垂直于衍射光栅的衍射线的方向和由2π/d给出的幅度的矢量,其中d是光栅周期。光栅周期与光栅周期的长度意思相同。光栅周期可以是光栅的连续衍射特征之间的长度。光栅周期可以等于单位长度除以位于所述单位长度内的衍射特征的数量。入瞳光栅单元DOE1的光栅周期d1a可以在例如330nm至450nm的范围内,最佳值取决于SUB1的折射率和衍射光的波长λ。
入瞳光栅单元DOE1可以具有光栅矢量V1。左扩瞳光栅单元DOE2a可以具有光栅矢量V2a。右扩瞳光栅单元DOE2b可以具有光栅矢量V2b。左出瞳光栅单元DOE3a可以具有光栅矢量V3a。右出瞳光栅单元DOE3b可以具有光栅矢量V3b。
光栅矢量V1具有方向β1和大小2π/d1。光栅矢量V2a具有方向β2a和大小2π/d2a。光栅矢量V2b具有方向β2b和大小2π/d2b。光栅矢量V3a具有方向β3a和幅度2π/d3a。光栅矢量V3b具有方向β3b和大小 2π/d3b。光栅矢量的方向(β)可以被定义为光栅矢量和参考方向(例如方向SX)之间的夹角。
可以选择光学单元DOE1,DOE2a,DOE3a的光栅周期(d)和衍射光栅的取向(β),使得在输出光束OUT1中的中心点的光的传播方向DIR0’平行于输入光IN1中的中心点的光的传播方向DIR0。
可以选择光学单元DOE1,DOE2b,DOE3b的光栅周期(d)和衍射光栅的取向(β),使得在输出光束OUT2中的中心点的光的传播方向DIR0’也平行于输入光IN1中的中心点的光的传播方向DIR0。
入瞳光栅单元DOE1的光栅矢量V1的方向β1可以是0°左右,例如-1°~1°,左扩瞳光栅单元DOE2a的光栅矢量V2a的方向β2a可以是30°至60°,右扩瞳光栅单元DOE2b的光栅矢量V2b的方向β2b可以是120°至150°,且光栅矢量V2a和光栅矢量V2b镜像对称。左出瞳光栅单元DOE3a的光栅矢量V3a的方向β3a可以是90°附近,例如88°~92°;右出瞳光栅单元DOE3b的光栅矢量V3b的方向β3b可以是90°附近,例如88°~92°;且光栅矢量V3a和光栅矢量V3b镜像对称。
对于预定整数m1,m2a,m2b,m3a,m3b时,光栅矢量的光栅周期(d)和方向(β)可以满足,矢量和(m1V1+m2aV2a+m3aV3a)为零,矢量和(-m1V1+m2bV2b+m3bV3b)为零。这些预定整数的值通常为+1或-1。例如整数m1,m2a,m2b,m3a,m3b的值可以是+1或-1。具体来说,V1以向左为方向,V1,V2a,V3a的和为零;V1以向右为方向,V1,V2b,V3b的和为零。
如图4所示,光学装置EPE1可以通过衍射并传导从光学引擎ENG1获得的输入光IN1来形成输出光OUT1。显示设备500可以包含光学引擎ENG1和光学装置EPE1。
输入光IN1可以包含在不同方向上传播的多个光束。输入光IN1的每个光束可以对应于输入图像IMG0的不同点。输出光OUT1和OUT2可以包含在不同方向上传播的多个光束,分别进入左眼EYE1和右眼EYE2。输出光OUT1和OUT2的每个光束可以对应于所显示的虚像VIMG1的不同点。扩瞳单元EPE1可以由输入光IN1形成左输出光OUT1和右输出光 OUT2,使得输出光OUT1和OUT2的光束的方向和强度对应于输入图像IMG0的点。
输入光IN1的光束可以对应于显示图像的单个图像点。光学装置EPE1可以从由输入光IN1的光束形成方向相同的左出光束OB1和右输出光束OB2,使得输出光束的方向DIR0’平行于相应输入光IN1的光束的方向DIR0。
显示设备500可以包含光学引擎ENG1,以形成主图像IMG0并将主图像IMG0转换成输入光IN1的多个光束。光引擎ENG1的光可以从光学装置EPE1的入瞳光栅单元DOE1耦入。输入光IN1可以从光学装置EPE1的入瞳光栅单元DOE1耦入。装置500可以是用于显示虚拟图像的显示设备。装置500也可以是近视眼光学设备。
光学装置EPE1可以将虚拟图像内容从光引擎ENG1传播到用户的左眼EYE1和右眼EYE2前面。光学装置EPE1可以扩展视瞳,从而扩大了eyebox。
光引擎ENG1可以包含微显示器DISP1以生成主图像IMG0。微型显示器DISP1可以包含发光像素的二维阵列。显示器DISP1可以产生例如主图像IMG0,分辨率为1280×720(HD)。显示器DISP1可以产生例如主图像IMG0,分辨率为1920×1080(Full HD))。显示器DISP1可以产生例如主图像IMG0,分辨率为3840×2160(4K UHD)。光引擎ENG1可以包含准直光学器件LNS1,以形成与每个图像像素不同的光束。光引擎ENG1可以包含准直光学器件LNS1,让从某个像素点的发出光形成基本准直的光束。不同像素点对应的准直方向不同。
光引擎ENG1可以提供与所生成的主图像IMG0相对应的多个光束。由光引擎ENG1提供的一个或多个光束可以耦合到光学装置EPE1中,并作为输入光IN1。
光引擎ENG1可以包含例如一个或多个发光二极管(LED)。显示器DISP1可以包含一台或多台微显示器成像仪,例如硅基液晶(LCOS),液晶显示器(LCD),数字微镜器件(DMD)。
波导板SUB1可以具有第一主表面SRF1和第二主表面SRF2。表面 SRF1,SRF2可以与方向SX和SY限定的平面基本平行。波导板SUB1可以具有厚度t1。波导板包含平面波导核心部分。在实施例中,波导板SUB1可以选择性的包含例如,一个或多个覆层,一个或多个保护层和/或一个或多个机械支撑层。厚度t1可以指波导板SUB1的平面波导核心部分的厚度。
入瞳光栅单元DOE1的光栅结构可以被设置在波导板SUB1的第一主表面SRF1或第二主表面SRF2上,通过衍射输入光束IN1来形成第一左传导光B1a和第一右传导光B1b。输入光束IN1可以从光学装置EPE1的正面入射也可以从EPE1的反面入射。第一左传导光B1a和第一右传导光B1b可以在平面波导板SUB01内部传播,传播的主方向左右对称。第一左传导光B1a和第一右传导光B1b可以被限制在平面波导板SUB1进行全内反射(Total Internal Reflection)。
右扩瞳光栅单元DOE2b和右扩瞳光栅单元DOE2b的光栅结构可以被设置在波导板SUB1的第一主表面SRF1或第二主表面SRF2上。左扩瞳光栅单元DOE2a,用于接收第一左传导光B1a,并通过衍射形成第二左传导光B2a。左扩瞳光栅单元DOE2a可以将第二左传导光B2a接近均匀的分配到左出瞳光栅单元DOE3a,第二左传导光B2a可以通过全内反射限制在波导板SUB1中传播。右扩瞳光栅单元DOE2b,用于接收第一右传导光B1a,并通过衍射形成第二右传导光B2b。右扩瞳光栅单元DOE2b可以将第二右传导光B2b接近均匀的分配到右出瞳光栅单元DOE3b。第二左传导光B2a可以通过全内反射限制在波导板SUB1中传播。
左出瞳光栅单元DOE3a和右出瞳光栅单元DOE3b的光栅结构可以被设置在波导板SUB1的第一主表面SRF1或第二主表面SRF2上。左出瞳光栅单元DOE3a,可以将扩展的传导光B2a衍射而形成左输出光OB1,整体形成左输出光束OUT1。左输出光OB1和左输出光束OUT1的方向为DIR0’。右出瞳光栅单元DOE3b,可以将扩展的传导光B2b衍射而形成左输出光OB2,整体形成右输出光束OUT2。右输出光OB2和右输出光束OUT2的方向也为DIR0’。
左输出光束OUT1和右输出光束OUT2分别进入左眼EYE1和右眼 EYE2中,由于光束方向相同,左右眼可以实现双目融合而不需要其他额外的调节。由于整体的左右对称关系,左右眼的图像实现色彩的互补,从而实现更好的色彩均匀,更大的FOV。
波导板SUB1可以包含或基本上由透明固体材料组成。波导板SUB1可包含例如玻璃,聚碳酸酯或聚甲基丙烯酸甲酯(PMMA)。衍射光学单元DOE1,DOE2a,DOE2b,DOE3a,DOE3b可以通过例如模制,压花和/或蚀刻形成。单元DOE1,DOE2a,DOE2b,DOE3a,DOE3b可以通过例如一个或多个表面衍射光栅或通过一个或多个体积衍射光栅实现。
图5通过示例给出光的波矢图,该波长的光可以沿着左路径和右路径在波导板SUB内传播。输入光IN1的波矢可以存在于以初始波矢kx和ky定义的波矢空间的一个区域BOX0中。区域BOX0的每个角落都可以代表一个输入图像IMG0的角落点的光的波矢。
第一左传导光B1a的波矢可以在区域BOX1a内,第一右传导光B1b的波矢可以在区域BOX1a内,第二左传导光B2a的波矢可以在区域BOX2a内,第二右传导光B2b的波矢可以在区域BOX2b内,左输出光束OUT1的波矢可以在区域BOX3a内。右输出光束OUT2的波矢可以在区域BOX3b内。
BND1表示用于满足波导板SUB1中的全内反射(TIR)标准的最小边界,BND2表示波导板SUB1中的全内反射(TIR)标准的最大边界,可以由波导板的折射率确定。仅当所述光的波矢在第一边界BND1与第二边界BND2之间的区域ZONE1中时,光才可以在板SUB1中波导。如果光的波矢在区域ZONE1之外,则光可能会泄漏出波导板或根本不传播。
可以选择光学单元DOE1,DOE2a,DOE3a,DOE2b,DOE3b的光栅周期(d)和衍射光栅的取向(β),使得波矢空间中的区域BOX0,区域BOX3a,区域BOX3b几乎重合。同时针对三个颜色RGB的波长,区域BOX1a和区域BOX1b,区域BOX2a,区域BOX2b的波矢都在由边界BND1,BND2限定的区域ZONE1内。同时波矢空间中的区域BOX2a,区域BOX2b几乎重合。
左路径为逆时针,例如入瞳光栅单元DOE1可以通过衍射输入光IN1, 来形成第一左传导光B1a,即通过将入瞳光栅单元DOE1的光栅矢量-m1V1与输入光IN1的波矢相加来表示衍射成第一左传导光B1a的波矢。第二左传导光B2a的波矢可以通过将光栅矢量m2aV2a与第一导光B1a的波矢相加来确定。最后可以通过将光栅向量m3a V3a加到第二左传导光B2a的波矢上来确定出射光OUT1的波矢。
右路径为逆时针,例如入瞳光栅单元DOE1可以通过衍射输入光IN1,来形成第一右传导光B1b,即通过将入瞳光栅单元DOE1的光栅矢量m1V1与输入光IN1的波矢相加来表示衍射成第一右传导光B1b的波矢。第二右传导光B2b的波矢可以通过将光栅矢量m2bV2b与第一导光B1b的波矢相加来确定。最后可以通过将光栅向量m3b V3b加到第二右传导光B2b的波矢上来确定出射光OUT2的波矢。
可以选择光学单元DOE1,DOE2a,DOE3a,DOE2b,DOE3b的光栅周期(d)和衍射光栅的取向(β),使得光栅矢量-V1与V2a的夹角可以是30°至60°,光栅矢量V1与V2b的夹角可以是120°至150°,光栅矢量V2a与V3a的夹角可以是30°至60°,光栅矢量V2b与V3b的夹角可以是30°至60°,且光传播的左路径和右路径镜面对称。
kx表示波矢空间中的方向,其中方向kx与实际空间的方向SX平行。ky表示波矢空间中的方向,其中ky方向与实际空间的SY方向平行。符号kz(图中未示出)表示波矢空间中的方向,其中方向kz与实际空间的方向SZ平行。波矢k可以具有在方向kx,ky和/或kz上的分量。
图6通过光学装置EPE1正视图,说明光栅区域的角落可以做成弧形,以更好的适应眼镜的外形。
第二左扩瞳区域DOE2a的左上弧度为r1,左下弧度为r2,右弧度为r5,第二右扩瞳区域DOE2b的右上弧度为r3,右下弧度为r4,左弧度为r6。第三左出瞳区域DOE3a的四角弧度可以是r7,第三右出瞳区域DOE3b的四角弧度可以是r8。其中所有弧度的曲率半径范围是2mm-20mm。
本实施例光学装置可将入瞳光线氛围左右眼,只需要一个光引擎,提高了衍射波导整体效率。利用波导板的光栅设置,采用玻璃wafer的精度来控制双目耦合,降低双目耦合生成难度,提高耦合度。且左右眼光学对 称可相互补偿,色彩的均匀性感受更好。一体化波导设计,可配合弧度造型,更适用于人体使用。
在本说明书的上述描述中,除非另有明确的规定和限定,术语“固定”、“安装”、“相连”或“连接”等术语应该做广义的理解。例如,就术语“连接”来说,其可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,或者可以是两个元件内部的连通或两个元件的相互作用关系。因此,除非本说明书另有明确的限定,本领域技术人员可以根据具体情况理解上述术语在本申请中的具体含义。
根据本说明书的上述描述,本领域技术人员还可以理解如下使用的术语,例如“上”、“下”、“前”、“后”、“左”、“右”、“长度”、“宽度”、“厚度”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“轴向”、“径向”、“周向”、“中心”、“纵向”、“横向”、“顺时针”或“逆时针”等指示方位或位置关系的术语是基于本说明书的附图所示的方位或位置关系的,其仅是为了便于阐述本申请的方案和简化描述的目的,而不是明示或暗示所涉及的装置或元件必须要具有所述特定的方位、以特定的方位来构造和进行操作,因此上述的方位或位置关系术语不能被理解或解释为对本申请方案的限制。
另外,本说明书中所使用的术语“第一”或“第二”等用于指代编号或序数的术语仅用于描述目的,而不能理解为明示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”或“第二”的特征可以明示或者隐含地包括至少一个该特征。在本说明书的描述中,“多个”的含义是至少两个,例如两个,三个或更多个等,除非另有明确具体的限定。
虽然本说明书已经示出和描述了本申请的多个实施例,但对于本领域技术人员显而易见的是,这样的实施例只是以示例的方式提供的。本领域技术人员会在不偏离本申请思想和精神的情况下想到许多更改、改变和替 代的方式。应当理解的是在实践本申请的过程中,可以采用对本文所描述的本申请实施例的各种替代方案。所附权利要求书旨在限定本申请的保护范围,并因此覆盖这些权利要求范围内的模块组成、等同或替代方案。

Claims (12)

  1. 一种光学装置,其特征在于,所述光学装置包括波导板,所述波导板上形成有:
    入瞳光栅单元,输入光通过所述入瞳光栅单元衍射形成第一左传导光和第一右传导光;
    左扩瞳光栅单元,位于所述入瞳光栅单元的左侧;所述第一左传导光通过所述左扩瞳光栅单元衍射形成第二左传导光;
    右扩瞳光栅单元,位于所述入瞳光栅单元的右侧;所述第一右传导光通过所述右扩瞳光栅单元衍射形成第二右传导光;
    左出瞳光栅单元,位于所述左扩瞳光栅单元的下侧;所述第二左传导光通过所述左出瞳光栅单元衍射形成左输出光;
    右出瞳光栅单元,位于所述右扩瞳光栅单元的下侧;所述第二右传导光通过所述右出瞳光栅单元衍射形成右输出光;
    所述左扩瞳光栅单元和右扩瞳光栅单元以所述入瞳光栅单元为中心左右镜像对称,所述左出瞳光栅单元和右出瞳光栅单元以所述入瞳光栅单元为中心左右镜像对称,所述输入光、所述左输出光和所述右输出光的方向一致。
  2. 根据权利要求1所述的光学装置,其特征在于,所述入瞳光栅单元为表面光栅或全息体光栅,所述入瞳光栅单元为圆形,直径为2.5mm~7mm,所述入瞳光栅单元的光栅周期为330nm~450nm。
  3. 根据权利要求2所述的光学装置,其特征在于,所述左扩瞳光栅单元和所述右扩瞳光栅单元均为扩瞳光栅结构,在水平远离所述入瞳光栅单元的方向上,所述扩瞳光栅结构在竖直方向上的高度逐渐增大;所述扩瞳光栅结构在竖直方向上的最大高度为所述入瞳光栅单元的直径的2~5倍,所述在水平方向上的宽度为所述入瞳光栅单元的直径的5~10倍。
  4. 根据权利要求3所述的光学装置,其特征在于,所述扩瞳光栅结构划分为5~15个子扩瞳区域,相邻所述子扩瞳区域之间的分界线与水平方向的夹角为20度~160度;在远离所述入瞳光栅单元的方向上,各个所述 子扩瞳区域的衍射效率逐渐上升,所述子扩瞳区域的衍射效率为5%~95%。
  5. 根据权利要求3所述的光学装置,其特征在于,所述左出瞳光栅单元和所述右出瞳光栅单元均为出瞳光栅结构,所述出瞳光栅结构为矩形,在竖直方向上的高度为所述入瞳光栅单元的直径的3~6倍,在水平方向上的宽度为所述扩瞳光栅结构的宽度的80%~95%。
  6. 根据权利要求5所述的光学装置,其特征在于,所述出瞳光栅结构在竖直方向上划分为5~15个子出瞳区域,在竖直远离所述入瞳光栅单元的方向上,各个所述子出瞳区域的衍射效率逐渐上升,所述子出瞳区域的衍射效率为5%~95%。
  7. 根据权利要求5所述的光学装置,其特征在于,所述扩瞳光栅结构为四边形,所述扩瞳光栅结构的四角和所述出瞳光栅结构的四角均进行了弧形处理,弧形的曲率半径为0mm~20mm。
  8. 根据权利要求1所述的光学装置,其特征在于,所述左出瞳光栅单元中心到所述右出瞳光栅单元中心的水平距离为人眼瞳距,所述人眼瞳距为60mm~70mm;所述入瞳光栅单元中心到所述左出瞳光栅单元中心的竖直距离为8mm~25mm。
  9. 根据权利要求1所述的光学装置,其特征在于,以左到右的方向为基准,所述入瞳光栅单元的光栅矢量方向为-1度~1度,所述左扩瞳光栅单元的光栅矢量方向为30度~60度,所述右扩瞳光栅单元的光栅矢量方向为120度~150度,所述左出瞳光栅单元的光栅矢量方向为88度~92度,所述右出瞳光栅单元的光栅矢量方向为88度~92度。
  10. 根据权利要求9所述的光学装置,其特征在于,在波矢空间内,所述左输出光、右输出光和所述输入光的波矢区域重合,所述第一左传导光和所述第一右传导光、第二左传导光和第二右传导光的波矢区域在所述波导板的全内反射最小波矢和全内反射最大波矢之间,所述第二左传导光和所述第二右传导光的波矢区域重合。
  11. 根据权利要求9所述的光学装置,其特征在于,所述入瞳光栅单元的光栅矢量以向左为方向,所述入瞳光栅单元、左扩瞳光栅单元及左出瞳光栅单元的光栅矢量之和为零;所述入瞳光栅单元的光栅矢量以向右为 方向,所述入瞳光栅单元、右扩瞳光栅单元及右出瞳光栅单元的光栅矢量和为零。
  12. 一种显示设备,其特征在于,所述显示设备包括光引擎以及权利要求1-11中任一项所述的光学装置;所述光引擎用于产生所述输入光。
PCT/CN2022/072122 2021-05-25 2022-01-14 光学装置和显示设备 WO2022247313A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22810051.7A EP4290294A4 (en) 2021-05-25 2022-01-14 OPTICAL DEVICE AND DISPLAY DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110569358.6 2021-05-25
CN202110569358.6A CN113219671A (zh) 2021-05-25 2021-05-25 光学装置和显示设备

Publications (1)

Publication Number Publication Date
WO2022247313A1 true WO2022247313A1 (zh) 2022-12-01

Family

ID=77098289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/072122 WO2022247313A1 (zh) 2021-05-25 2022-01-14 光学装置和显示设备

Country Status (4)

Country Link
US (1) US11960087B2 (zh)
EP (1) EP4290294A4 (zh)
CN (1) CN113219671A (zh)
WO (1) WO2022247313A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113219671A (zh) * 2021-05-25 2021-08-06 深圳市光舟半导体技术有限公司 光学装置和显示设备
CN113504607B (zh) * 2021-09-09 2021-11-26 泉州市德源轴承实业有限公司 一种基于衍射光波导的玻璃框架结构及其加工方法
CN118020015A (zh) * 2021-09-30 2024-05-10 松下知识产权经营株式会社 光学系统以及图像显示装置
CN114019697B (zh) * 2021-11-22 2023-07-28 深圳市光舟半导体技术有限公司 一种反向光路通道波导组件、ar眼镜及其亮度调节方法
CN115166896B (zh) * 2022-01-13 2023-04-18 北京驭光科技发展有限公司 显示设备、显示用衍射光波导及其设计方法
CN114217436A (zh) * 2022-02-10 2022-03-22 深圳七泽技术合伙企业(有限合伙) 大出瞳的显示设备、显示方法、扩展方法及车用显示装置
CN114859553B (zh) * 2022-06-06 2023-08-04 深圳市光舟半导体技术有限公司 一种大视场左右分色双通道波导及ar眼镜
CN117215073B (zh) * 2023-11-08 2024-02-27 深圳市光舟半导体技术有限公司 一种双目融合的ar眼镜

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101103297A (zh) * 2004-12-13 2008-01-09 诺基亚公司 用于扩展出瞳的通用衍射光学方法
US20130250431A1 (en) * 2012-03-21 2013-09-26 Steve Robbins Two-dimensional exit-pupil expansion
CN110582716A (zh) * 2017-05-03 2019-12-17 迪斯帕列斯有限公司 显示元件、个人显示装置、用于在个人显示器上显示图像的方法及用途
CN110603467A (zh) * 2017-05-08 2019-12-20 迪斯帕列斯有限公司 衍射式显示器、其光导元件及投影仪以及显示图像的方法
CN110764261A (zh) * 2019-09-18 2020-02-07 深圳市瞐客科技有限公司 一种光波导结构、ar设备光学成像系统及ar设备
CN110809730A (zh) * 2017-06-30 2020-02-18 微软技术许可有限责任公司 在一块板上支持红色、绿色和蓝色的大视场波导
EP3726272A1 (en) * 2019-04-18 2020-10-21 BAE SYSTEMS plc Optical arrangement for a display
CN113219671A (zh) * 2021-05-25 2021-08-06 深圳市光舟半导体技术有限公司 光学装置和显示设备
CN113253465A (zh) * 2021-06-11 2021-08-13 深圳市光舟半导体技术有限公司 波导片组件及光机前置的折叠ar目镜
CN113687512A (zh) * 2021-08-17 2021-11-23 深圳市光舟半导体技术有限公司 Ar眼镜

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4946253A (en) * 1989-10-16 1990-08-07 Arizona Board Of Regents For And On Behalf Of The University Of Arizona Reconfigurable substrate-mode holographic interconnect apparatus and method
CA2326767C (en) * 1998-04-02 2009-06-23 Yeda Research And Development Co., Ltd. Holographic optical devices
US6833955B2 (en) * 2001-10-09 2004-12-21 Planop Planar Optics Ltd. Compact two-plane optical device
US7573640B2 (en) * 2005-04-04 2009-08-11 Mirage Innovations Ltd. Multi-plane optical apparatus
EP1932051A1 (en) * 2005-09-14 2008-06-18 Mirage Innovations Ltd. Diffraction grating with a spatially varying duty-cycle
WO2007036936A1 (en) * 2005-09-28 2007-04-05 Mirage Innovations Ltd. Stereoscopic binocular system, device and method
WO2007141588A1 (en) * 2006-06-02 2007-12-13 Nokia Corporation Split exit pupil expander
WO2008081070A1 (en) * 2006-12-28 2008-07-10 Nokia Corporation Device for expanding an exit pupil in two dimensions
CN101688977B (zh) * 2007-06-04 2011-12-07 诺基亚公司 衍射扩束器和基于衍射扩束器的虚拟显示器
WO2009077802A1 (en) * 2007-12-18 2009-06-25 Nokia Corporation Exit pupil expanders with wide field-of-view
US8467643B2 (en) * 2010-08-13 2013-06-18 Toyota Motor Engineering & Mfg. North America, Inc. Optical device using double-groove grating
US9298168B2 (en) * 2013-01-31 2016-03-29 Leia Inc. Multiview 3D wrist watch
WO2015091282A1 (en) * 2013-12-19 2015-06-25 Bae Systems Plc Improvements in and relating to waveguides
WO2015091277A1 (en) * 2013-12-19 2015-06-25 Bae Systems Plc Improvements in and relating to waveguides
EP3129980B1 (en) * 2014-07-18 2021-08-25 Vuzix Corporation Near-eye display with self-emitting microdisplay engine
US9372347B1 (en) * 2015-02-09 2016-06-21 Microsoft Technology Licensing, Llc Display system
US9535253B2 (en) * 2015-02-09 2017-01-03 Microsoft Technology Licensing, Llc Display system
US10018844B2 (en) * 2015-02-09 2018-07-10 Microsoft Technology Licensing, Llc Wearable image display system
EP3062142B1 (en) * 2015-02-26 2018-10-03 Nokia Technologies OY Apparatus for a near-eye display
US10126552B2 (en) * 2015-05-18 2018-11-13 Rockwell Collins, Inc. Micro collimator system and method for a head up display (HUD)
US10690916B2 (en) * 2015-10-05 2020-06-23 Digilens Inc. Apparatus for providing waveguide displays with two-dimensional pupil expansion
EP3433659B1 (en) * 2016-03-24 2024-10-23 DigiLens, Inc. Method and apparatus for providing a polarization selective holographic waveguide device
US10067347B2 (en) * 2016-04-13 2018-09-04 Microsoft Technology Licensing, Llc Waveguides with improved intensity distributions
US9791703B1 (en) * 2016-04-13 2017-10-17 Microsoft Technology Licensing, Llc Waveguides with extended field of view
US9939647B2 (en) * 2016-06-20 2018-04-10 Microsoft Technology Licensing, Llc Extended field of view in near-eye display using optically stitched imaging
CN106324847B (zh) * 2016-10-21 2018-01-23 京东方科技集团股份有限公司 一种三维显示装置
EP4300160A3 (en) * 2016-12-30 2024-05-29 Magic Leap, Inc. Polychromatic light out-coupling apparatus, near-eye displays comprising the same, and method of out-coupling polychromatic light
US10545346B2 (en) * 2017-01-05 2020-01-28 Digilens Inc. Wearable heads up displays
IL268135B2 (en) * 2017-01-23 2024-03-01 Magic Leap Inc Eyepiece for virtual, augmented or mixed reality systems
KR102655450B1 (ko) * 2017-02-22 2024-04-05 루머스 리미티드 광 가이드 광학 어셈블리
WO2018174057A1 (ja) * 2017-03-23 2018-09-27 大日本印刷株式会社 回折光学素子
US10281726B2 (en) * 2017-04-04 2019-05-07 Microsoft Technology Licensing, Llc Refractive-diffractive display system with wide field of view
US10969585B2 (en) * 2017-04-06 2021-04-06 Microsoft Technology Licensing, Llc Waveguide display with increased uniformity and reduced cross-coupling between colors
US10295723B1 (en) * 2018-05-01 2019-05-21 Facebook Technologies, Llc 2D pupil expander using holographic Bragg grating
US10546523B2 (en) * 2018-06-22 2020-01-28 Microsoft Technology Licensing, Llc Display system with a single plate optical waveguide and independently adjustable micro display arrays
CN111239878A (zh) * 2018-11-09 2020-06-05 英属开曼群岛商音飞光电科技股份有限公司 光栅板装置
WO2020167427A1 (en) * 2019-02-13 2020-08-20 Corning Incorporated Waveguide for transmitting light
WO2020235816A1 (en) * 2019-05-21 2020-11-26 Samsung Electronics Co., Ltd. Glasses-type display apparatus
EP3987343A4 (en) * 2019-06-20 2023-07-19 Magic Leap, Inc. EYEWEARS FOR AUGMENTED REALITY DISPLAY SYSTEM
US20210055551A1 (en) * 2019-08-23 2021-02-25 Facebook Technologies, Llc Dispersion compensation in volume bragg grating-based waveguide display
TWI696851B (zh) * 2019-09-12 2020-06-21 揚明光學股份有限公司 光源模組
US10935730B1 (en) * 2019-11-25 2021-03-02 Shanghai North Ocean Photonics Co., Ltd. Waveguide display device
US10962787B1 (en) * 2019-11-25 2021-03-30 Shanghai North Ocean Photonics Co., Ltd. Waveguide display device
US11119262B1 (en) * 2020-06-19 2021-09-14 Shenzhen Optiark Semiconductor Technologies Limited Optical device, display device, and method for outputting light and displaying image thereof
CN112180589B (zh) * 2020-09-18 2021-08-27 深圳市光舟半导体技术有限公司 光学扩瞳装置及其显示设备和输出光及显示图像的方法
FR3118172B1 (fr) * 2020-12-21 2023-12-29 Commissariat Energie Atomique Composant optique pour un dispositif d’imagerie atr
US20220413194A1 (en) * 2021-06-29 2022-12-29 Himax Technologies Limited Diffractive optical element

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101103297A (zh) * 2004-12-13 2008-01-09 诺基亚公司 用于扩展出瞳的通用衍射光学方法
US20130250431A1 (en) * 2012-03-21 2013-09-26 Steve Robbins Two-dimensional exit-pupil expansion
CN110582716A (zh) * 2017-05-03 2019-12-17 迪斯帕列斯有限公司 显示元件、个人显示装置、用于在个人显示器上显示图像的方法及用途
CN110603467A (zh) * 2017-05-08 2019-12-20 迪斯帕列斯有限公司 衍射式显示器、其光导元件及投影仪以及显示图像的方法
CN110809730A (zh) * 2017-06-30 2020-02-18 微软技术许可有限责任公司 在一块板上支持红色、绿色和蓝色的大视场波导
EP3726272A1 (en) * 2019-04-18 2020-10-21 BAE SYSTEMS plc Optical arrangement for a display
CN110764261A (zh) * 2019-09-18 2020-02-07 深圳市瞐客科技有限公司 一种光波导结构、ar设备光学成像系统及ar设备
CN113219671A (zh) * 2021-05-25 2021-08-06 深圳市光舟半导体技术有限公司 光学装置和显示设备
CN113253465A (zh) * 2021-06-11 2021-08-13 深圳市光舟半导体技术有限公司 波导片组件及光机前置的折叠ar目镜
CN113687512A (zh) * 2021-08-17 2021-11-23 深圳市光舟半导体技术有限公司 Ar眼镜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4290294A4 *

Also Published As

Publication number Publication date
CN113219671A (zh) 2021-08-06
US11960087B2 (en) 2024-04-16
EP4290294A4 (en) 2024-07-17
US20220382057A1 (en) 2022-12-01
EP4290294A1 (en) 2023-12-13

Similar Documents

Publication Publication Date Title
WO2022247313A1 (zh) 光学装置和显示设备
AU2020205208B2 (en) Multiple depth plane three-dimensional display using a wave guide reflector array projector
US11143866B2 (en) Waveguide including volume Bragg gratings
Kress et al. 11‐1: invited paper: towards the ultimate mixed reality experience: HoloLens display architecture choices
JP6867999B2 (ja) 反射型転換アレイを有する結像光ガイド
US11624869B2 (en) Optical expander device for providing an extended field of view
CN106291958B (zh) 一种显示装置及图像显示方法
CN1726412B (zh) 用于平衡衍射效率的衍射光栅元件
Kress et al. Optical architecture of HoloLens mixed reality headset
KR101169446B1 (ko) 구면 및 비구면 기판들을 가지는 출사동공 확장기들
CN112867957B (zh) 用于传送视场的多个部分的波导
CN109521506B (zh) 纳米镜片、近眼显示方法及近眼显示装置
CN113568167B (zh) 镜片单元和包括镜片单元的ar设备
US11994684B2 (en) Image light guide with zoned diffractive optic
CN105700145B (zh) 一种头戴式图像显示装置
WO2022008378A1 (en) Reflective in-coupler design with high refractive index element using second diffraction order for near-eye displays
EP4127820A1 (en) Waveguide display system with wide field of view
TW202117374A (zh) 全像波導
US20230296883A1 (en) Optical expander apparatus of large field of view and display apparatus
CN218122364U (zh) 光学装置和显示设备
CN116324587A (zh) 通过c形平面光学架构的低失真成像
CN213544957U (zh) 一种光学器件及其显示设备
Mohedano et al. Visual Interfaces in XR
EP4191293A1 (en) Waveguide-type display apparatus
WO2021253385A1 (zh) 一种光学器件、显示设备及其输出光和显示图像的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810051

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022810051

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022810051

Country of ref document: EP

Effective date: 20230906

NENP Non-entry into the national phase

Ref country code: DE