WO2022247042A1 - 双向充放电便携式储能装置的交流并机系统及方法 - Google Patents

双向充放电便携式储能装置的交流并机系统及方法 Download PDF

Info

Publication number
WO2022247042A1
WO2022247042A1 PCT/CN2021/116104 CN2021116104W WO2022247042A1 WO 2022247042 A1 WO2022247042 A1 WO 2022247042A1 CN 2021116104 W CN2021116104 W CN 2021116104W WO 2022247042 A1 WO2022247042 A1 WO 2022247042A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
discharging
host
slave
energy storage
Prior art date
Application number
PCT/CN2021/116104
Other languages
English (en)
French (fr)
Inventor
柳介
江翠平
黄亭
熊冬梅
Original Assignee
深圳赛迪福德技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳赛迪福德技术有限公司 filed Critical 深圳赛迪福德技术有限公司
Publication of WO2022247042A1 publication Critical patent/WO2022247042A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0024Parallel/serial switching of connection of batteries to charge or load circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters

Definitions

  • the invention belongs to the management field of charging and discharging power supply systems, in particular to an AC parallel system and method for bidirectional charging and discharging portable energy storage devices.
  • Portable energy storage device is a commonly used device in the process of going out camping. It is used to supply power for induction cooker, electric oven and other equipment, and is deeply loved by foreign camping enthusiasts; When the rated power is required, multiple portable energy storage devices need to be connected in parallel; output high power to supply energy for electrical equipment.
  • the existing parallel connection technology is applied to the unidirectional inverter power supply, and a bunch of communication lines are connected between two unidirectional inverter power supplies of the same model and a PWM drive control module that connects the power conversion electronic switches of the two machines.
  • a bunch of communication lines are connected between two unidirectional inverter power supplies of the same model and a PWM drive control module that connects the power conversion electronic switches of the two machines.
  • the present invention provides an AC parallel system and method for a bidirectional charging and discharging portable energy storage device, which supports bidirectional charging and discharging functions, and can automatically identify whether the power supply at the charging socket end is powered by a parallel machine or The power grid is connected to the power supply, and it will intelligently choose whether to enable the parallel function or the charging function according to the identification result.
  • the present invention provides an AC parallel system for bidirectional charging and discharging portable energy storage devices, including at least two portable energy storage devices, each portable energy storage device includes a control module, a sampling module, a bidirectional charging and discharging module , the charging port and the discharging port connected to the bidirectional charging and discharging module; the discharging port of at least one portable energy storage device is used to connect to the external load; and the portable energy storage device connected to the discharging port and the load is the host, and the other portable energy storage The device is a slave, and the discharge port of the slave is connected to the charging port of the host;
  • the sampling module of the host is used to collect the current or/and voltage information of the charging port of the host;
  • the control module of the host is used to control the bidirectional charging and discharging module of the host to output the same voltage as the slave to the discharge port of the host; the output current of the discharge port of the slave and the current of the discharge port of the host are superimposed and output from the discharge port of the host to an external load.
  • both the master and the slave include a battery, and the battery is electrically connected to a bidirectional charging and discharging module.
  • the bidirectional charging and discharging module is used to convert the direct current input from the battery into alternating current and then output to the discharge port, or the bidirectional charging and discharging module is used to convert the alternating current input from the charging port into direct current and output it to the battery for charging.
  • the charging ports of the master and the slave include charging zero wire and charging live wire
  • the discharging ports include discharging zero wire and discharging live wire
  • the connection point between the line and the discharge zero line is connected to the zero line of the output terminal of the bidirectional charging and discharging module, and the connection point between the charging live wire and the discharging live wire is connected to the output terminal live wire of the bidirectional charging and discharging module.
  • a first on-off switch is provided between the charging neutral wire and the discharging zero wire or/and the charging live wire and the discharging live wire;
  • a second on-off switch is provided between the discharging live wire or/and the discharging neutral wire and the load; the host
  • the control module controls the second on-off switch of the slave to close, and the first on-off switch of the master to turn off.
  • the sampling module of the host obtains the current or/and voltage information of the charging port of the host, it compares the acquired current or/and voltage information with the preset standard current or/and voltage information, and judges the current connected to the charging port of the host or/and voltage source.
  • control module of the host controls the bidirectional charging and discharging module of the host to output the same voltage as the slave to the discharge port of the host
  • the control module first controls the second on-off of the slave to close, and the first on-off of the host to close. close, the second on-off switch of the host is turned off, forming a no-load parallel state; and then controlling the second on-off switch of the host to form a parallel machine with load.
  • the slave machine or/and the host machine are equipped with a parallel start module.
  • the control module controls the second switch of the slave machine to open and close, and controls the output of the discharge port to be different from the AC output within a fixed time. Electrical signal of the grid.
  • the specific scheme also includes a power sampling module.
  • the current sampling module obtains the battery power information of the master and the slave.
  • the master and the slave output at the same power.
  • the battery power of the master and the slave exceeds the predetermined threshold of the power sampling module, according to the power ratio of the battery, the corresponding output power value of the discharge port of the master and the slave is controlled.
  • the specific scheme also includes multiple portable energy storage devices. After multiple portable energy storage devices are connected in series, the discharge port of one of the portable energy storage devices is connected to the charging port of the slave machine; among them, multiple portable energy storage devices are connected in series. Yes: the discharge port of the former portable energy storage device is connected to the charging port of the latter portable energy storage device.
  • the present invention also provides an AC paralleling method for a bidirectional charging and discharging portable energy storage device, which is characterized in that the method consists of the bidirectional charging and discharging portable energy storage device described in any one of claims 1-8 AC parallel system execution; including the following steps:
  • the charging port of the host is electrically connected to the discharge port of the slave, so that the host and the slave form a circulating current; the sampling module of the host collects the current or/and voltage information of the charging port of the host;
  • the control module of the host controls the battery of the host to output the same current and voltage as the slave to the discharge port of the host; the output current of the discharge port of the slave and the current of the discharge port of the host are superimposed and output from the discharge port of the host to an external load.
  • the AC parallel system of bidirectional charging and discharging portable energy storage devices includes at least two portable energy storage devices, and each portable energy storage device includes a control module, a sampling module, a bidirectional charging and discharging module, a charging port and a discharging port connected to the bidirectional charging and discharging module; the discharging port of at least one portable energy storage device is used to connect to an external load; and the portable energy storage device connected to the discharging port and the load is the host, and the other The energy device is a slave, and the discharge port of the slave is connected to the charging port of the host;
  • the sampling module of the host is used to collect the current or/and voltage information of the charging port of the host;
  • the control module of the host is used to control the battery of the host to output the same current and voltage as the slave to the discharge port of the host; the output current of the discharge port of the slave and the current of the discharge port of the host are superimposed and output from the discharge port of the host to an external load; Compare:
  • the closed loop formed by the charging port of the host and the discharge port of the slave is detected and controlled, and the self-test and verification of the host and the slave are carried out to eliminate the AC output performance caused by the performance error of their respective devices difference, so as to achieve precise control of power distribution, and can effectively reduce the reactive power circulation between parallel machines and improve the reliability of parallel machines.
  • Fig. 1 is prior art circuit diagram
  • Fig. 2 is a system circuit diagram of the present invention
  • Fig. 3 is a structural relationship diagram of each module of the system of the present invention.
  • the parallel solution is mainly used in the camping process.
  • the maximum power of a single portable energy storage device is only 120W, while the rated power of electrical equipment is 220W, such as a microwave oven; at this time, the power of a single portable energy storage device cannot drive the microwave oven to work, so It is necessary to connect two or more portable energy storage devices together, so that the power of multiple portable energy storage devices can be superimposed to supply energy to the electrical equipment; see Figure 1, since the electrical equipment requires AC power, the portable energy storage The current output by the energy storage device must be alternating current.
  • the present invention provides an AC parallel system for bidirectional charging and discharging portable energy storage devices, please refer to Figure 2 and Figure 3, which includes at least two portable energy storage devices, each of which includes a control module 3 , a sampling module 4, a bidirectional charging and discharging module 2, a charging port and a discharging port connected to the bidirectional charging and discharging module 2; the discharging port of at least one portable energy storage device is used to connect to an external load 5; and the discharging port is connected to the load 5
  • the connected portable energy storage device is host #1, and the other portable energy storage device is slave #2, and the discharge port of slave #2 is connected to the charging port of host #1;
  • the sampling module 4 of the host #1 is used to collect the current or/and voltage information of the charging port of the host #1;
  • the control module 3 of the host #1 controls the battery 1 of the host #1 to output the same current and voltage as the slave #2 to the discharge port of the host #1 according to the current or/and voltage information of the charging port of the host #1 collected by the sampling module 4; The output current of the discharge port of machine #2 and the current of the discharge port of host #1 are superimposed and then output from the discharge port of host #1 to the external load 5 .
  • the present invention supports two-way charging and discharging functions, can automatically identify whether the power supply at the charging socket is parallel machine power supply or power grid access power supply, and intelligently choose whether to enable the parallel machine function or the charging function according to the identification result;
  • the sampling module 4 and the control module 3 the closed loop formed by the charging port of the host #1 and the discharge port of the slave #2 is detected and controlled, and the self-test and verification of the host #1 and the slave #2 are carried out, eliminating the The difference in AC output performance caused by the performance error of each device can realize precise control of power distribution, effectively reduce the reactive power circulation between parallel machines, and improve the reliability of parallel machines.
  • the host #1 and the slave #2 share the battery 1, and the bidirectional charging and discharging module 2 is used to convert the direct current output by the battery 1 into an alternating current and then output it to the discharge port for use by external electrical equipment;
  • the host #1 The sampling module 4 is used to collect the phase, frequency and amplitude information of the current or/and voltage of the charging port of the host #1 and the bidirectional charging and discharging module 2;
  • the current phase is negative, the frequency is 50HZ, and the amplitude is 170V; and the output voltage of the bidirectional charging and discharging module 2 is adjusted according to the collected charging port voltage; so that the output voltage of the bidirectional charging and discharging module 2 is the same as that of the slave #2
  • the discharge voltage of the discharge point port is the same.
  • the slave machine #2 or/and the host machine #1 are equipped with a parallel start module, and the start module can start working after receiving an external press start button; after connecting the charging port of the host machine #1 and the slave machine #2 Before the discharge port is connected through the standard charging power cord; you can choose to press the start button to enter the parallel connection mode.
  • the sampling module 4 of the master #1 first collects the output current or/and voltage information of the slave #2, and then passes The control module 3 controls the battery 1 of the host #1 to output the same current and voltage as the slave #2 to the discharge port of the host #1; the output current of the discharge port of the slave #2 and the current of the discharge port of the host #1 are superimposed and discharged from the host #1 Port output to external load 5.
  • the output current is collected first and then controlled by the control module 3, which eliminates the difference in AC output performance caused by the performance error of each device, thereby realizing precise control of power distribution and effectively reducing the difference between parallel machines.
  • Reactive circulating current improves parallel machine reliability.
  • the standard charging power cord is used for parallel connection between the master #1 and the slave #2, and there is no need to customize a dedicated AC connection and communication connection harness.
  • the discharge port of the slave machine #2 first outputs an electrical signal different from the AC power grid within a fixed time.
  • the start button can be replaced by the mobile terminal APP sending an instruction to the control module 3 to control the start of paralleling.
  • the bidirectional charging and discharging module 2 is a bidirectional charging and discharging module with a bidirectional charging and discharging function; #2 can charge the battery of the main unit # through the bidirectional charging and discharging module of the bidirectional charging and discharging function; after entering the parallel connection mode, the bidirectional charging and discharging module of the main unit #1 outputs the same voltage as the charging port of the main unit #1 .
  • the sampling module 4 of the host #1 when the sampling module 4 of the host #1 obtains the current or/and voltage information of the charging port of the host #1, it compares the acquired current or/and voltage information with the preset standard current or/and voltage information, and if the comparison result If they are consistent, it is determined that the charging port of the host #1 is connected to the external power grid; if the comparison results are inconsistent, it is determined that the charging port of the host #1 is connected to the discharge port of the slave #2; because the charging terminal of the host #1 is connected to the slave #2, It may also be connected to an external power grid; therefore, it is necessary to judge the input current and voltage of the charging port; for example, when the slave machine #2 is started, the discharge terminal outputs a low-voltage safe and stable AC limited by safety regulations for at least 1 second, so as to identify the charging port It is connected to a non-AC power grid; when the host #1 is connected to an external power grid, it enters the charging mode.
  • the internal modules of the slave #2 and the master #1 are exactly the same.
  • the slave #2 charging port is connected to the external power grid
  • the slave #2 discharge port is connected to the master #1
  • the slave #2 Enter charging mode is exactly the same.
  • the data information collected by the sampling module 4 can be transmitted to the control module 3 through wired conduction, or can be transmitted to the control module 3 through wireless communication.
  • the charging ports of the master #1 and the slave #2 both include a charging zero wire and a charging live wire
  • the discharge ports both include a discharging zero wire and a discharging live wire
  • the discharge live wire is connected; the connection point of the charging zero line and the discharge zero line is connected to the negative output terminal of the bidirectional charging and discharging module 2, and the connection point of the charging live wire and the discharging live wire is connected to the positive output terminal of the bidirectional charging and discharging module 2.
  • FIG. 1 there is a switch SW1-1 between the charging neutral wire and the discharging neutral wire of the host #1, a switch SW1-2 between the charging live wire and the discharging live wire, and a switch SW1-2 between the discharging live wire and the load 5 3.
  • a switch SW2-1 is set between the charging zero line and the discharging zero line of the slave machine #2, a switch SW2-2 is set between the charging live line and the discharging live line, and a switch SW2- is set between the discharging live line and the load 5.
  • the sampling module 4 of host #1 is directly connected to the charging port of host #1.
  • the switch SW1-3 of the host machine #1 is turned off; the control module 3 of the slave machine #2 controls the slave machine #2 The switch SW2-3 of machine #2 is closed.
  • the control module 3 of the slave #2 controls the switch SW2-3 of the slave #2 to close, and the host #1 The control module 3 controls the switch SW1-1 and SW1-2 of the host computer #1 to close.
  • control module 3 of the master #1 controls the battery 1 of the master #1 to output the same current and voltage as the slave #2 to the discharge port of the master #1
  • the control module 3 first controls the switch SW2 of the slave #2 -3 is off, switches SW1-1 and SW1-2 of host #1 are turned off, switch SW1-3 of host #1 is turned off, and a no-load parallel state is formed; after the no-load parallel is completed, control the The switches SW1-3 are closed to form load parallel operation.
  • the electronic control switch in the present invention can use a circuit composed of relays, contactors, MOSFETs, IGBTs, triodes, silicon controlled rectifiers, photoelectric switches or corresponding electronic components.
  • the combination also belongs to the scope of protection of this patent.
  • the preferred solution also includes a power sampling module 4, and the current sampling module 4 obtains the battery 1 power information of the host #1 and the slave #2.
  • the battery 1 power of the host #1 and the slave #2 does not exceed the power sampling module 4
  • the master #1 and the slave #2 output the same power.
  • the master # is controlled according to the power ratio of the battery 1. 1 and the output power value of the corresponding ratio of slave #2 discharge port.
  • the output power of both master #1 and slave #2 is controlled to be 110W; to supply power for electrical equipment .
  • the solution of the present invention can support parallel discharge of two or more portable energy storage devices with different power levels and different battery 1SOC, and the discharge output power of each single device can be the average power.
  • the normalized power can also be calculated according to the rated power capacity of each machine, battery 1SOC and its weighted ratio coefficient in the parallel system to output the corresponding power.
  • the preferred solution also includes multiple portable energy storage devices. After multiple portable energy storage devices are connected in series, the discharge port of one of the portable energy storage devices is connected to the charging port of slave #2; among them, multiple portable energy storage devices
  • the series connection is: the discharge port of the previous portable energy storage device is connected to the charging port of the latter portable energy storage device; the power of multiple portable energy storage devices is superimposed in sequence to supply energy for the load 5; for example, 5 sets of 50W output power
  • the portable energy storage devices are sequentially connected in series to provide energy for electrical equipment with a rated power of 220W.
  • the closed loop formed by the charging port of the host and the discharge port of the slave is detected and controlled, and the self-test and verification of the host and the slave are carried out to eliminate the AC output performance caused by the performance error of their respective devices difference, so as to achieve precise control of power distribution, and can effectively reduce the reactive power circulation between parallel machines and improve the reliability of parallel machines.
  • the solution of the present invention supports parallel discharge of two or more portable energy storage devices with different power levels and different battery SOCs.
  • the standard charging power cord can be used for parallel connection between the master and the slave, and there is no need to customize the special AC connection and communication connection harness.
  • the bidirectional charging and discharging module in the solution of the present invention is replaced by a unidirectional inverter module, the charging port and the discharging port are replaced by two or more discharging ports with electronic switches to control the interconnected state.
  • design, and the parallel machine technology of the present invention can also be used to realize the AC parallel machine function, so it also belongs to the scope of protection of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明公开了一种双向充放电便携式储能装置的交流并机系统及方法,属于充放电电源系统管理领域,其包括至少两台便携式储能装置,从机的放电端口与主机的充电端口连接,主机的采样模块用于采集主机充电端口电流或/和电压信息;主机的控制模块用于控制主机电池输出与从机相同的电流和电压至主机放电端口;从机放电端口输出电流和主机放电端口电流叠加后从主机放电端口输出至外部负载;与现有技术相比,本发明可以支持双向充放电功能,同时利用采样模块消除了由于各自器件性能误差导致的交流输出性能差异,从而实现对功率分配的精准控制,并能有效的减小并机间的无功环流,提升并机可靠性。

Description

双向充放电便携式储能装置的交流并机系统及方法 技术领域
本发明属于充放电电源系统管理领域,具体为一种双向充放电便携式储能装置的交流并机系统及方法。
背景技术
便携式储能装置是一种在外出露营过程中常用的装置,用于为电磁炉、电烤箱等设备供电,深受国外露营爱好者的喜爱;但是当便携式储能装置的输出功率小于用电设备的额定功率时,就需要将多个便携式储能装置并接起来;输出大功率为用电设备供能。
现有的并接技术均是应用在单向逆变电源中,在两台同型号的单向逆变电源间接入一束通信的线及连接两台机器功率变换电子开关的PWM驱动控制模块,当两台电源执行交流并机时,其中一台电源驱动控制模块不发控制信号,两台共用其中一台单向逆变电源的驱动,来实现两台电源输出功率的叠加;但是该方案存在一些缺陷:
1、两台电源的电池SOC存在有较大差异时不能正常工作;
2、两台机器器件性能上天然会存在误差,会导致两台机器的逆变输出上也会存在差异,这样会导致两台机器间存在较大的环流,而影响其并机输出时的功率不平衡及工作可靠性;
3、在输出未超出单台最大输出功率的场景下,当其中的一台出现异常另一台也无法正常输出,因此,两台都无法为负载供电;
4、不支持具有充放电双向变换功能的机器的交流并机放电。
技术问题
针对上述技术中存在的不足之处,本发明提供一种双向充放电便携式储能装置的交流并机系统及方法,支持双向充放电功能,同时可以自动识别充电插座端的供电是并机机器供电还是电网接入供电,而且会根据识别结果智能的选择是否开启并机功能或充电功能。
技术解决方案
为实现上述目的,本发明提供一种双向充放电便携式储能装置的交流并机系统,包括至少两台便携式储能装置,每台便携式储能装置均包括控制模块、采样模块、双向充放电模块、与双向充放电模块连接的充电端口和放电端口;至少一台便携式储能装置的放电端口用于与外部负载连接;且放电端口与负载连接的便携式储能装置为主机,另一便携式储能装置为从机,从机的放电端口与主机的充电端口连接;
主机的采样模块用于采集主机充电端口的电流或/和电压信息;
主机的控制模块用于控制主机双向充放电模块输出与从机相同的电压至主机放电端口;从机放电端口输出电流和主机放电端口电流叠加后从主机放电端口输出至外部负载。
具体的方案,主机和从机均包括电池,电池与双向充放电模块电连接,双向充放电模块用于将电池输出的直流电转换为交流电后输出至放电端口;主机的采样模块用于采集主机充电端口和双向充放电模块输出的电流或/和电压的相位、频率和幅值信息。
其中,双向充放电模块用于将电池输入的直流电转换为交流电后输出至放电端口,或是双向充放电模块用于将充电端口输入的交流电转换为直流电后输出至电池为其充电。
具体的方案,主机和从机的充电端口均包括充电零线和充电火线,放电端口均包括放电零线和放电火线;且充电零线与放电零线连接,充电火线与放电火线连接;充电零线与放电零线的连接点与双向充放电模块的输出端零线连接,充电火线与放电火线连接点与双向充放电模块的输出端火线连接。
具体的方案,充电零线与放电零线或/和充电火线与放电火线之间设有第一通断开关;放电火线或/和放电零线与负载之间设有第二通断开关;主机的采样模块采集主机充电端口电流或/和电压信息时,控制模块控制从机的第二通断开关闭合,主机的第一通断开关断开。
具体的方案,主机的采样模块获取主机充电端口电流或/和电压信息时,将获取的电流或/和电压信息与预设的标准电流或/和电压信息对比,判断接入主机充电端口的电流或/和电压来源。
具体的方案,主机的控制模块控制主机双向充放电模块输出与从机相同的电压至主机放电端口时,控制模块先控制从机的第二通断开关闭合,主机的第一通断开关闭合,主机的第二通断开关断开,形成空载并机状态;再控制主机的第二通断开关闭合,形成带载并机。
具体的方案,从机或/和主机设有并机启动模块,并机启动模块工作后,控制模块控制从机的第二通断开关闭合,并控制放电端口在固定时间内输出不同于交流电网的电信号。
具体的方案,还包括电量采样模块,电流采样模块获取主机和从机的电池电量信息,当主机和从机的电池电量不超过电量采样模块的预定阈值时,主机和从机以相同功率输出,当主机和从机的电池电量超过电量采样模块的预定阈值时,按照电池的电量比,控制主机和从机放电端口的相应比的输出功率值。
具体的方案,还包括多台便携式储能装置,多台便携式储能装置串接后,其中一台便携式储能装置的放电端口与从机的充电端口连接;其中多台便携式储能装置串接是:前一便携式储能装置的放电端口与后一便携式储能装置的充电端口连接。
为了实现上述目的,本发明还提供了一种双向充放电便携式储能装置的交流并机方法,其特征在于,该方法由权利要求1-8任意一项所述的双向充放电便携式储能装置的交流并机系统执行;包括下述步骤:
S1:主机的充电端口与从机的放电端口电导通,使的主机和从机形成环流;主机的采样模块采集主机充电端口电流或/和电压信息;
S2:主机的控制模块控制主机电池输出与从机相同的电流和电压至主机放电端口;从机放电端口输出电流和主机放电端口电流叠加后从主机放电端口输出至外部负载。
有益效果
本发明的有益效果是:本发明提供的双向充放电便携式储能装置的交流并机系统,包括至少两台便携式储能装置,每台便携式储能装置均包括控制模块、采样模块、双向充放电模块、与双向充放电模块连接的充电端口和放电端口;至少一台便携式储能装置的放电端口用于与外部负载连接;且放电端口与负载连接的便携式储能装置为主机,另一便携式储能装置为从机,从机的放电端口与主机的充电端口连接;
主机的采样模块用于采集主机充电端口电流或/和电压信息;
主机的控制模块用于控制主机电池输出与从机相同的电流和电压至主机放电端口;从机放电端口输出电流和主机放电端口电流叠加后从主机放电端口输出至外部负载;与现有技术相比:
1、支持双向充放电功能,同时可以自动识别充电插座端的供电是并机机器供电还是电网接入供电,而且会根据识别结果智能的选择是否开启并机功能或充电功能;
2、通过采样模块和控制模块对主机充电端口和和从机放电端口形成的闭环进行检测和控制,对主机和从机进行自检和校验,消除了由于各自器件性能误差导致的交流输出性能差异,从而实现对功率分配的精准控制,并能有效的减小并机间的无功环流,提升并机可靠性。
附图说明
图1为现有技术电路图;
图2为本发明的系统电路图;
图3为本发明的系统各个模块构造关系图。
主要元件符号说明如下:
#1、主机;#2、从机;1、电池;2、双向充放电模块;3、控制模块;4、采样模块;5、负载。
本发明的实施方式
为了更清楚地表述本发明,下面结合附图对本发明作进一步地描述。
并机方案,主要应用在野营过程中,例如单个便携式储能装置最大功率只有120W,而用电设备的额定功率为220W,例如微波炉;此时单个便携式储能装置的功率无法驱动微波炉工作,故需要将两个或者多个便携式储能装置并接在一起,使的多个便携式储能装置的功率叠加后为用电设备供能;参阅图1,由于用电设备需要交流电源,因此便携式储能装置输出的电流必须为交流电,交流电在并机时,必须保证电流的相位、频率和幅值均相同,才能使得多个便携式储能装置的输出功率数值叠加,并稳定输出;如背景技术所述,现有技术中是将在两台同型号的单向逆变电源连接后,利用单个PWM驱动控制模块3同时控制两台电源的输出,来实现两台电源输出功率的叠加;但是该方案存在一些缺陷:第一是由于两台机器元件性能上天然会存在误差,会导致两台机器的逆变输出上也会存在差异,这样会导致两台机器间存在较大的环流,而影响其并机输出时的功率不平衡及工作可靠性;第二是该方案不支持具有充放电双向变换功能的机器的交流并机放电。
基于此本发明提供了一种双向充放电便携式储能装置的交流并机系统,请参阅图2和图3,其包括至少两台便携式储能装置,每台便携式储能装置均包括控制模块3、采样模块4、双向充放电模块2、与双向充放电模块2连接的的充电端口和放电端口;至少一台便携式储能装置的放电端口用于与外部负载5连接;且放电端口与负载5连接的便携式储能装置为主机#1,另一便携式储能装置为从机#2,从机#2的放电端口与主机#1的充电端口连接;
主机#1的采样模块4用于采集主机#1充电端口电流或/和电压信息;
主机#1的控制模块3根据采样模块4采集的主机#1充电端口电流或/和电压信息,控制主机#1电池1输出与从机#2相同的电流和电压至主机#1放电端口;从机#2放电端口输出电流和主机#1放电端口电流叠加后从主机#1放电端口输出至外部负载5。
与现有技术相比,本发明支持双向充放电功能,可以自动识别充电插座端的供电是并机机器供电还是电网接入供电,而且会根据识别结果智能的选择是否开启并机功能或充电功能;同时通过采样模块4和控制模块3对主机#1充电端口和和从机#2放电端口形成的闭环进行检测和控制,对主机#1和从机#2进行自检和校验,消除了由于各自器件性能误差导致的交流输出性能差异,从而实现对功率分配的精准控制,并能有效的减小并机间的无功环流,提升并机可靠性。
在本实施例中,主机#1和从机#2均电池1,双向充放电模块2用于将电池1输出的直流电转换为交流电后输出至放电端口,供外部用电设备使用;主机#1的采样模块4用于采集主机#1充电端口和双向充放电模块2的电流或/和电压的相位、频率和幅值信息;例如采集充电端口电压的相位在t0-t1时间内时正的,t1-t2时间内电流相位为负,频率为50HZ,幅值为170V;并根据采集的充电端口电压调整双向充放电模块2的输出电压;使得双向充放电模块2的输出电压与从机#2的放点端口放电电压相同。
在本实施例中,从机#2或/和主机#1设有并机启动模块,启动模块为可以在接收外部按压启动按键后开始工作;在将主机#1的充电端口和从机#2的放电端口通过标配的充电电源线连接好之前;可以选择按压启动按键进入并接模式,此时主机#1的采样模块4先采集从机#2的输出电流或/和电压信息,再通过控制模块3控制主机#1的电池1输出与从机#2相同的电流和电压至主机#1放电端口;从机#2放电端口输出电流和主机#1放电端口电流叠加后从主机#1放电端口输出至外部负载5。
在本实施例中,先采集再由控制模块3控制输出电流,消除了由于各自器件性能误差导致的交流输出性能差异,从而实现对功率分配的精准控制,并能有效的减小并机间的无功环流,提升并机可靠性。
在本实施例中,主机#1和从机#2之间使用标配的充电电源线进行并机连接,无需额外定制专用的交流连接及通信连接线束。
在本实施例中,启动模块开始工作后,从机#2放电端口先在固定时间内输出不同于交流电网的电信号。
在本实施例中,启动按键可以替换为移动端APP发送指令至控住模块3控制启动并机。
在本实施例中,双向充放电模块2为具有双向充放电功能的双向充放电模块;当未启动并接模式时,从机#2的放电端口与主机#1的充电端口连接时,从机#2可以通过该双向充放电功能的双向充放电模块为主机#的电池充电;在进入并接模式后主机#1的双向充放电功能的双向充放电模块输出与主机#1充电端口相同的电压。
优选的方案,主机#1的采样模块4获取主机#1充电端口电流或/和电压信息时,将获取的电流或/和电压信息与预设的标准电流或/和电压信息对比,若对比结果一致,则判定主机#1充电端口与外部电网连接;若对比结果不一致则判定主机#1充电端口与从机#2放电端口连接;因为主机#1的充电端除了与从机#2连接外,还可能会是与外部电网连接;因此需要对充电口的输入电流和电压进行判断;例如从机#2在启动时放电端至少输出1秒的安规限定的低压安全稳定交流,从而识别充电口为非交流电网接入;当主机#1为外部电网接入时,则进入充电模式。
在本实施例中,从机#2与主机#1内部模块完全相同,当从机#2充电端口与外部电网接入时,从机#2放电端口与主机#1连接时,从机#2进入充电模式。
在本实施例中,采样模块4的采集到的数据信息可通过有线传导方式传递给控制模块3,也可采用无线通信的方式传递给控制模块3。
在本实施例中,主机#1和从机#2的充电端口均包括充电零线和充电火线,放电端口均包括放电零线和放电火线;且充电零线与放电零线连接,充电火线与放电火线连接;充电零线与放电零线的连接点与双向充放电模块2的负极输出端连接,充电火线与放电火线连接点与双向充放电模块2的正极输出端连接。
参阅图1,主机#1的充电零线与放电零线之间设有开关SW1-1,充电火线与放电火线之间设有开关SW1-2,放电火线与负载5之间设有开关SW1-3;从机#2的的充电零线与放电零线之间设有开关SW2-1,充电火线与放电火线之间设有开关SW2-2,放电火线与负载5之间设有开关SW2-3;主机#1的采样模块4直接与主机#1的充电端口连接。
在本实施例中,当采样模块4识别出交流充电端口接入为从机#2而非电网的供电后,主机#1的开关SW1-3断开;从机#2的控制模块3控制从机#2的开关SW2-3关闭。
在本实施例中,主机#1的采样模块4采集主机#1充电端口电流或/和电压信息时,从机#2的控制模块3控制从机#2的开关SW2-3关闭,主机#1的控制模块3控制主机#1的开关SW1-1和SW1-2关闭。
在本实施例中,主机#1的控制模块3控制主机#1电池1输出与从机#2相同的电流和电压至主机#1放电端口时,控制模块3先控制从机#2的开关SW2-3关闭,主机#1的开关SW1-1、SW1-2关闭,主机#1的开关SW1-3断开,形成空载并机状态;在空载并机完成后,再控制主机#1的开关SW1-3关闭,形成带载并机。
在本实施例中,本发明中的电子控制开关可以使用继电器、接触器、MOSFET、IGBT、三极管、可控硅、光电开关或相应的电子元件组成的电路,若使用机械开关与诸如上述电子开关的组合亦属于本专利的保护范围。
优选的方案,还包括电量采样模块4,电流采样模块4获取主机#1和从机#2的电池1电量信息,当主机#1和从机#2的电池1电量不超过电量采样模块4的预定阈值时,主机#1和从机#2以相同功率输出,当主机#1和从机#2的电池1电量超过电量采样模块4的预定阈值时,按照电池1的电量比,控制主机#1和从机#2放电端口的相应比的输出功率值。
例如:当主机#1和从机#2的电池1SOC差异不超过5%,用电设备的额定功率为220W,则控制主机#1和从机#2输出功率均为110W;为用电设备供电。
又例如:当主机#1和从机#2的电池1SOC差异超过5%时,可以继续控制主机#1和从机#2均输出110W功率为用电设备供电,但是由于电池1的电量差异,电量较小的设备先放电完,此时主机#1和从机#2无法继续为用电设备供电。
又例如:当主机#1和从机#2的电池1SOC差异超过5%,其主机#1和从机#2的电池1电量比为3:1,则可以控住主机#1输出功率为165W,从机#2的输出功率为55W;主机#1和从机#2可以同时放电完毕;相比与上一主机#1和从机#2均功率放电,该方案的总放电时间更长。
相比与现有技术,本发明的方案,可以支持两台及两台以上的不同功率等级、不同电池1SOC的携式储能装置并机放电,每台单机的放电输出功率可以为平均功率,也可以根据每台机器的额定功率容量、电池1SOC及其在并机系统中的加权比率系数计算出归一化功率来输出相应的功率。
优选的方案,还包括多台便携式储能装置,多台便携式储能装置串接后,其中一台便携式储能装置的放电端口与从机#2的充电端口连接;其中多台便携式储能装置串接是:前一便携式储能装置的放电端口与后一便携式储能装置的充电端口连接;多台便携式储能装置的功率依次叠加后为负载5供能;例如5台输出功率为50W的便携式储能装置依次串接后为额定功率为220W的用电设备供能。
工业实用性
本发明的优势在于:
1、支持双向充放电功能,同时可以自动识别充电插座端的供电是并机机器供电还是电网接入供电,而且会根据识别结果智能的选择是否开启并机功能或充电功能。
2、通过采样模块和控制模块对主机充电端口和和从机放电端口形成的闭环进行检测和控制,对主机和从机进行自检和校验,消除了由于各自器件性能误差导致的交流输出性能差异,从而实现对功率分配的精准控制,并能有效的减小并机间的无功环流,提升并机可靠性。
3、本发明的方案支持两台及两台以上的不同功率等级、不同电池SOC的携式储能装置并机放电。
4、主机和从机之间使用标配的充电电源线进行并机连接即可,无需额外定制专用的交流连接及通信连接线束。
值得一提的是,若将本发明的方案中的双向充放电模块替换为单向逆变模块,充电端口和放电端口使用两个或以上数量的带电子开关控制相互连接状态的放电端口替代的设计,亦可使用本发明的并机技术实现交流并机功能,因此也属于本发明保护的范围。
以上公开的仅为本发明的几个具体实施例,但是本发明并非局限于此,任何本领域的技术人员能思之的变化都应落入本发明的保护范围。

Claims (10)

  1. 一种双向充放电便携式储能装置的交流并机系统,包括至少两台便携式储能装置,其特征在于,每台便携式储能装置均包括控制模块、采样模块、双向充放电模块、与双向充放电模块连接的充电端口和放电端口;至少一台便携式储能装置的放电端口用于与外部负载连接;且放电端口与负载连接的便携式储能装置为主机,另一便携式储能装置为从机,从机的放电端口与主机的充电端口连接;
    主机的采样模块用于采集主机充电端口的电流或/和电压信息;
    主机的控制模块用于控制主机双向充放电模块输出与从机放电端口相同的电压至主机放电端口;从机放电端口输出电流和主机放电端口电流叠加后从主机放电端口输出至外部负载。
  2. 根据权利要求1所述的双向充放电便携式储能装置的交流并机系统,其特征在于,主机和从机均包括电池,电池与双向充放电模块电连接,双向充放电模块用于将电池输出的直流电转换为交流电后输出至放电端口;主机的采样模块用于采集主机充电端口和双向充放电模块输出的电流或/和电压的相位、频率和幅值信息。
  3. 根据权利要求1所述的双向充放电便携式储能装置的交流并机系统,其特征在于,主机和从机的充电端口均包括充电零线和充电火线,放电端口均包括放电零线和放电火线;且充电零线与放电零线连接,充电火线与放电火线连接;充电零线与放电零线的连接点与双向充放电模块的输出端零线连接,充电火线与放电火线连接点与双向充放电模块的输出端火线连接。
  4. 根据权利要求4所述的双向充放电便携式储能装置的交流并机系统,其特征在于,充电零线与放电零线或/和充电火线与放电火线之间设有第一通断开关;放电火线或/和放电零线与负载之间设有第二通断开关;主机的采样模块采集主机充电端口电流或/和电压信息时,控制模块控制从机的第二通断开关闭合,主机的第一通断开关断开。
  5. 根据权利要求4所述的双向充放电便携式储能装置的交流并机系统,其特征在于,主机的采样模块获取主机充电端口电流或/和电压信息时,将获取的电流或/和电压信息与预设的标准电流或/和电压信息对比,判断接入主机充电端口的电流或/和电压来源。
  6. 根据权利要求4所述的双向充放电便携式储能装置的交流并机系统,其特征在于,主机的控制模块控制主机双向充放电模块输出与从机相同的电压至主机放电端口时,从机的控制模块先控制从机的第二通断开关闭合,主机控制模块控制主机的第一通断开关闭合,主机的第二通断开关断开,形成空载并机状态;进入空载并机状态后再控制主机的第二通断开关闭合,形成带载并机。
  7. 根据权利要求3所述的双向充放电便携式储能装置的交流并机系统,其特征在于,从机或/和主机设有并机启动模块,并机启动模块工作后,从机的控制模块控制从机的第二通断开关闭合,并控制放电端口在固定时间内输出不同于交流电网的电信号。
  8. 根据权利要求2所述的双向充放电便携式储能装置的交流并机系统,其特征在于,还包括电量采样模块,电量采样模块获取主机和从机的电池电量信息,当主机和从机的电池电量不超过电量采样模块的预定阈值时,主机和从机以相同功率输出,当主机和从机的电池电量超过电量采样模块的预定阈值时,按照电池的电量比,控制主机和从机放电端口的相应比的输出功率值。
  9. 根据权利要求1-8任意一项所述的双向充放电便携式储能装置的交流并机系统,其特征在于,还包括多台便携式储能装置,多台便携式储能装置串接后,其中一台便携式储能装置的放电端口与从机的充电端口连接;其中,多台便携式储能装置串接是指:前一便携式储能装置的放电端口与后一便携式储能装置的充电端口连接。
  10. 一种双向充放电便携式储能装置的交流并机方法,其特征在于,该方法由权利要求1-8任意一项所述的双向充放电便携式储能装置的交流并机系统执行;包括下述步骤:
    S1:主机的充电端口与从机的放电端口电导通,使的主机和从机形成环流;主机的采样模块采集主机充电端口电流或/和电压信息;
    S2:主机的控制模块控制主机电池输出与从机相同的电流和电压至主机放电端口;从机放电端口输出电流和主机放电端口电流叠加后从主机放电端口输出至外部负载。
PCT/CN2021/116104 2021-05-27 2021-09-02 双向充放电便携式储能装置的交流并机系统及方法 WO2022247042A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110581600.1A CN113258661B (zh) 2021-05-27 2021-05-27 双向充放电便携式储能装置的交流并机系统及方法
CN202110581600.1 2021-05-27

Publications (1)

Publication Number Publication Date
WO2022247042A1 true WO2022247042A1 (zh) 2022-12-01

Family

ID=77184700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116104 WO2022247042A1 (zh) 2021-05-27 2021-09-02 双向充放电便携式储能装置的交流并机系统及方法

Country Status (2)

Country Link
CN (1) CN113258661B (zh)
WO (1) WO2022247042A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113258661B (zh) * 2021-05-27 2022-10-28 深圳赛迪福德技术有限公司 双向充放电便携式储能装置的交流并机系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108312856A (zh) * 2017-01-16 2018-07-24 华为技术有限公司 一种充电桩并机的充电桩系统及方法
US20200067319A1 (en) * 2017-06-06 2020-02-27 Yu Qin Solar energy based mobile electric vehicle fast charger system
CN112248859A (zh) * 2020-11-17 2021-01-22 富能宝能源科技集团有限公司 基于移动储能电池的分布式电动汽车充电装置及充放电系统
CN212518484U (zh) * 2020-07-31 2021-02-09 深圳市华宝新能源股份有限公司 一种储能电源、储能电源并联控制装置
CN113258661A (zh) * 2021-05-27 2021-08-13 深圳赛迪福德技术有限公司 双向充放电便携式储能装置的交流并机系统及方法
CN215009681U (zh) * 2021-05-27 2021-12-03 深圳赛迪福德技术有限公司 双向充放电便携式储能装置的交流并机系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110014977B (zh) * 2017-08-15 2021-06-18 比亚迪股份有限公司 车辆和车辆的车载充电系统及其控制方法
CN110829584B (zh) * 2019-11-28 2021-11-16 广西电网有限责任公司南宁供电局 一种基于电池状态的不间断电源动态功率分配系统
CN111193278B (zh) * 2020-01-19 2021-09-07 西安新艾电气技术有限公司 一种模块化并联储能系统及并联调度管理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108312856A (zh) * 2017-01-16 2018-07-24 华为技术有限公司 一种充电桩并机的充电桩系统及方法
US20200067319A1 (en) * 2017-06-06 2020-02-27 Yu Qin Solar energy based mobile electric vehicle fast charger system
CN212518484U (zh) * 2020-07-31 2021-02-09 深圳市华宝新能源股份有限公司 一种储能电源、储能电源并联控制装置
CN112248859A (zh) * 2020-11-17 2021-01-22 富能宝能源科技集团有限公司 基于移动储能电池的分布式电动汽车充电装置及充放电系统
CN113258661A (zh) * 2021-05-27 2021-08-13 深圳赛迪福德技术有限公司 双向充放电便携式储能装置的交流并机系统及方法
CN215009681U (zh) * 2021-05-27 2021-12-03 深圳赛迪福德技术有限公司 双向充放电便携式储能装置的交流并机系统

Also Published As

Publication number Publication date
CN113258661A (zh) 2021-08-13
CN113258661B (zh) 2022-10-28

Similar Documents

Publication Publication Date Title
WO2022227969A1 (zh) 一种供电方法及供电系统
CN103812209B (zh) 用于在电压扰动期间改善静态转换开关的操作的系统
WO2019095995A1 (zh) 大功率便携式用电设备及其电源控制装置及方法
JP2007116892A (ja) バッテリ充電システムおよび同システムを操作する方法
WO2017215450A1 (zh) 一种电机控制器、电机控制系统和电动汽车
CN112865578B (zh) 一种电源系统集成控制方法、装置及存储介质
CN109494706A (zh) 整合式供电系统
CN215009681U (zh) 双向充放电便携式储能装置的交流并机系统
CN211556979U (zh) 基于飞轮ups系统用电负载自保电控制电路及系统
WO2022247042A1 (zh) 双向充放电便携式储能装置的交流并机系统及方法
KR101153292B1 (ko) 전력회생기능을 가지는 고효율 다기능 전기부하시험장치
CN204046190U (zh) 光伏变频空调器
EP4223580A1 (en) Portable charger for electric vehicle
CN206923115U (zh) 一种舞台灯无线控制系统
WO2022217721A1 (zh) 智慧电池
CN205791789U (zh) 水电站厂用电源切换装置
CN105634373A (zh) 一种抽油机集控专用逆变控制装置
CN204668986U (zh) 一种电池充放电装置
CN113315200B (zh) 掉线防触电交流并机装置及系统
CN103165927B (zh) Bop供电的控制方法、装置及设备
CN106026201A (zh) 一种供电接入装置
WO2019205949A1 (zh) 一种智能蓄电池在线核容放电控制装置
CN201699471U (zh) 变频应急电源
CN105375825A (zh) 电机安全启动的控制装置
CN109149642A (zh) 一种光伏发电智能逆变器控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21942609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/03/2024)