WO2022246872A1 - 无创 oct 直接应用于子宫内膜的检测方法、设备及系统 - Google Patents

无创 oct 直接应用于子宫内膜的检测方法、设备及系统 Download PDF

Info

Publication number
WO2022246872A1
WO2022246872A1 PCT/CN2021/097270 CN2021097270W WO2022246872A1 WO 2022246872 A1 WO2022246872 A1 WO 2022246872A1 CN 2021097270 W CN2021097270 W CN 2021097270W WO 2022246872 A1 WO2022246872 A1 WO 2022246872A1
Authority
WO
WIPO (PCT)
Prior art keywords
oct
image
uterus
images
probe
Prior art date
Application number
PCT/CN2021/097270
Other languages
English (en)
French (fr)
Inventor
黄志超
张睿喆
耿科
李业菁
李百灵
高峻
Original Assignee
汤姆飞思(香港)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 汤姆飞思(香港)有限公司 filed Critical 汤姆飞思(香港)有限公司
Priority to EP21942443.9A priority Critical patent/EP4349244A1/en
Publication of WO2022246872A1 publication Critical patent/WO2022246872A1/zh
Priority to US18/515,325 priority patent/US20240081725A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/43Detecting, measuring or recording for evaluating the reproductive systems
    • A61B5/4306Detecting, measuring or recording for evaluating the reproductive systems for evaluating the female reproductive systems, e.g. gynaecological evaluations
    • A61B5/4318Evaluation of the lower reproductive system
    • A61B5/4325Evaluation of the lower reproductive system of the uterine cavities, e.g. uterus, fallopian tubes, ovaries
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0066Optical coherence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6852Catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6867Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive specially adapted to be attached or implanted in a specific body part
    • A61B5/6875Uterus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2576/00Medical imaging apparatus involving image processing or analysis
    • A61B2576/02Medical imaging apparatus involving image processing or analysis specially adapted for a particular organ or body part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems

Definitions

  • the invention relates to the technical field of OCT equipment, in particular to a detection method, equipment and system for direct application of non-invasive OCT to endometrium.
  • Existing endometrial detection mainly has the following methods: for example, B-ultrasound examination can be used to see the thickness of the endometrium and observe whether there are lesions in the uterine cavity; it can also be used to stop bleeding and make pathological diagnosis through diagnostic curettage; A biopsy of tissue is taken through a hysteroscope.
  • the above-mentioned first method obtains less information. If you need to obtain accurate information, you need to use the second or third method, but the latter two methods will cause certain damage to the human body, and the detection cost is relatively high. longer.
  • the embodiment of the present invention discloses a non-invasive OCT detection method, equipment and system directly applied to the endometrium, which can obtain endometrial images through OCT to complete the detection of the endometrium and the like.
  • the first aspect of the embodiments of the present invention discloses a non-invasive OCT detection method directly applied to the endometrium, the method comprising:
  • each region has one or more OCT images, and the OCT images were analyzed.
  • the OCT probe is inserted into the uterine cavity through the cervix to the fundus of the uterus, including:
  • Manual or automatic control of the reproductive tract introducer drives the catheter through the cervix and inserts it into the uterine cavity until it reaches the fundus of the uterus.
  • the manual or automatic control speed is not greater than 0.3 cm/s.
  • the OCT probe is retracted, and the image acquisition device is started at the same time to acquire multiple OCT images, including:
  • the image acquisition device is started to collect multiple OCT images during the retraction process at a fixed frequency.
  • the OCT probe is retracted, and the image acquisition device is started at the same time to acquire multiple OCT images, including:
  • the image acquisition device is started to acquire multiple OCT images during the retraction process.
  • the multiple OCT images are divided into four regions, including:
  • the OCT image is divided into four according to a certain ratio, and each OCT image is sequentially divided into an image of the fundus region, an image of the upper segment of the uterus, an image of the lower segment of the uterus, and an image of the cervical region according to the order in which each OCT image is collected.
  • the image acquisition device includes a light source, a beam splitter, and a detector; the startup of the image acquisition device to acquire multiple OCT images includes:
  • the light emitted by the light source is divided into reference light and signal light by the beam splitter;
  • the signal light is emitted to the image acquisition area through the probe, and the light reflected and scattered by the image acquisition area returns to the detector to form a signal arm;
  • the reference light is directly sent to the detector through an optical path equal to the optical path of the signal arm, forming a reference arm;
  • the signal arm and the reference arm interfere with each other to form an interference optical signal, which is photoelectrically converted into an electrical signal by the detector;
  • OCT images are obtained through analog-to-digital conversion and Fourier transform.
  • the first aspect of the embodiments of the present invention after acquiring multiple OCT images, it also includes:
  • the image enhancement processing is to use different pseudo-color palettes to perform RGB three-color mapping on the OCT image to obtain pseudo-color images with different hues.
  • the second aspect of the embodiment of the present invention discloses an electronic device, which includes:
  • the first driving unit is used to drive the OCT probe to be inserted into the uterine cavity through the cervix to the fundus of the uterus;
  • the second driving unit is used to drive and retract the OCT probe
  • the image acquisition unit is used to start the image acquisition device to acquire multiple OCT images
  • the image receiving unit is used to receive the multiple OCT images and divide the multiple OCT images into four areas, namely the fundus area, the upper segment area of the uterus, the lower segment area of the uterus, and the cervical area, and each area has one or Multiple OCT images.
  • the third aspect of the embodiment of the present invention discloses a non-invasive OCT detection system directly applied to the endometrium, which includes:
  • the OCT equipment for collecting multiple OCT images, the OCT equipment includes an image acquisition device and an OCT probe, and the image acquisition device and the OCT probe are connected through an optical path;
  • a power mechanism used to drive the catheter to move through the reproductive tract introducer
  • the electronic equipment is used to drive the OCT probe through the cervix to insert into the uterine cavity through the cervix to the fundus of the uterus, and to drive the OCT probe back through the power mechanism, and to start the image acquisition device to obtain multiple OCT images;
  • the electronic device is also used to receive the multiple OCT images and divide the multiple OCT images into four areas, which are respectively the fundus area, the upper segment area of the uterus, the lower segment area of the uterus, and the cervical area, and each area has one or Multiple OCT images.
  • the fourth aspect of the embodiment of the present invention discloses a computer-readable storage medium, which stores a computer program, wherein the computer program enables the computer to execute the non-invasive OCT directly applied to the endometrium disclosed in the first aspect of the embodiment of the present invention. Detection method.
  • the fifth aspect of the embodiment of the present invention discloses a computer program product.
  • the computer program product runs on a computer, the computer executes the non-invasive OCT disclosed in the first aspect of the embodiment of the present invention and directly applies it to the endometrium detection method.
  • the sixth aspect of the embodiments of the present invention discloses an application distribution platform, the application distribution platform is used to distribute computer program products, wherein, when the computer program products run on a computer, the computer is made to execute the first embodiment of the present invention
  • a non-invasive OCT is disclosed, which is directly applied to the detection method of endometrium.
  • the OCT probe is inserted into the uterine cavity through the cervix to the fundus of the uterus; the OCT probe is retracted, and the image acquisition device is started at the same time to obtain multiple OCT images; the multiple OCT images are divided into four There are three regions, namely the fundus region, the upper segment region of the uterus, the lower segment region of the uterus and the cervical region, each region has one or more OCT images, and the OCT images of each region are analyzed. It can be seen that, implementing the embodiment of the present invention, each region can be analyzed according to the OCT image without causing damage to the human body, and the detection is accurate.
  • Fig. 1 is a schematic flow chart of a non-invasive OCT method directly applied to endometrial detection disclosed in an embodiment of the present invention
  • Fig. 2 is a schematic structural diagram of an electronic device disclosed in an embodiment of the present invention.
  • the embodiment of the present invention discloses a non-invasive OCT detection method, electronic equipment and system directly applied to the endometrium, which can analyze each region according to the OCT image, will not cause damage to the human body, and the detection is accurate, as follows
  • the accompanying drawings are described in detail.
  • FIG. 1 is a schematic flowchart of a non-invasive OCT detection method directly applied to endometrium disclosed in an embodiment of the present invention. As shown in Figure 1, the non-invasive OCT detection method directly applied to the endometrium includes the following steps:
  • the electronic device Before use, first connect the device to the power supply, and open the electronic device connected to the OCT device.
  • the electronic device can be a computer system, of course, it can also be other terminal devices that can control the action of the OCT device or/and receive OCT images, such as Tablet PC, cloud server, etc. New case information can be created through electronic equipment, and personal information of relevant tested personnel can be entered. Of course, in some cases, the electronic device can also be integrated in the OCT device.
  • the OCT equipment is divided into an image acquisition device and an OCT probe, wherein the OCT probe is installed in the conduit, the OCT probe and the reflector are installed in the conduit, and when light passes through the probe, it passes through the reflector through the conduit.
  • the light exit window emits.
  • the probe can use an optical lens such as a cylindrical self-focusing lens (G-Lens).
  • G-Lens cylindrical self-focusing lens
  • the front end of the self-focusing lens forms an inclined surface, and the front end of the catheter is provided with a light exit window.
  • the rear end of the self-focusing lens is welded to the optical fiber;
  • the light reflection structure is a light reflection film, and the reflectivity of the light reflection film to the incident light can be greater than 99%; when the light emitted by the image acquisition device is transmitted to the probe through the optical fiber, it passes The inclined surface emits to the external environment through the light exit window, which corresponds to the corresponding detection position.
  • the subject In use, in order to detect accurately and operate conveniently, the subject empties the bladder, takes the bladder lithotomy position, routinely disinfects the vulva and vagina, and exposes the uterine cavity with a speculum.
  • the reproductive tract introducer can be used to connect the catheter, and the reproductive tract introducer can be manually or automatically controlled to drive the catheter through the cervical os to insert into the cervix, and then pass through the uterine cavity to the fundus of the uterus.
  • the reproductive tract introducer can be manually or automatically controlled to drive the catheter through the cervical os to insert into the cervix, and then pass through the uterine cavity to the fundus of the uterus.
  • Automatically for example, use a servo motor to control the reproductive tract introducer to drive the catheter through the cervix into the uterine cavity.
  • the OCT probe In order to prevent the OCT probe from causing damage to the human body, in a preferred embodiment of the present invention, after being inserted into the cervix, it should slowly reach the fundus of the uterus, preferably at a speed not greater than 0.3 cm/s.
  • the OCT probe retraction process is realized in a uniform manner, for example, the OCT probe is driven to retract from the fundus of the uterus to the cervix at a uniform speed by a power mechanism at a constant speed; while the OCT probe is retracted, start
  • the image acquisition device acquires multiple OCT images during the retraction process at a fixed frequency, that is, at a fixed time interval such as 10 ms. In this way, it is preferable to determine the retraction speed according to the number of images to be collected.
  • the retraction speed is preferably 0.1-0.3cm/s, so that the number of captured images meets the demand, and at the same time, a balance can be achieved in terms of time and efficiency .
  • the OCT probe is driven to withdraw from the fundus of the uterus to the cervix, and the moving position of the OCT probe is collected by a displacement sensor; the distance between two adjacent moving positions is equal to the set distance (set Multiple fixed distances can be preset, select one of them according to needs, or set one before use according to needs), start the image acquisition device to collect multiple OCT images during the retraction process.
  • the moving speed of the OCT probe should enable the image acquisition device to acquire corresponding images at a set distance position such as 30 mm.
  • the image acquisition frequency is higher, and the frequency of other areas can be appropriately reduced.
  • the withdrawal speed at this stage may be less than 0.1 cm/s.
  • the retraction speed can be selected as 0.1cm/s at this stage, and 0.3cm/s can be selected for other areas.
  • the actual length of each region can be obtained according to the total length and the conventional length ratio of each region.
  • the length of the uterus can be obtained through step 110.
  • the conventional length can be obtained by obtaining the measurement data of multiple people in different age groups, and then averaged, that is Regular length ratios for each region are available for each age group.
  • the length of each region can be determined according to the basic personal information filled in, combined with the conventional length ratio and the length of the uterus obtained in step 110, and then the number or speed of image acquisition for each region can be limited as needed .
  • the process of determining the number of images to be collected in each area according to the weight can be withdrawing the OCT probe at a constant speed and collecting images at fixed time intervals, or it can be achieved by combining a displacement sensor with a set distance, which is not limited here.
  • the image acquisition device may include a light source, a beam splitter, a detector, and the like. Start the image acquisition device to acquire multiple OCT images, including: start the light source.
  • the way to start the light source can be realized by electronic equipment or manually.
  • the light source can be a frequency-sweeping laser.
  • the light emitted by the light source is divided into reference light and signal light by the beam splitter; the signal light is sent to the image acquisition area through the probe, and the light reflected and scattered by the image acquisition area returns to the detector to form a signal arm; the reference light directly passes through the
  • the optical path of equal optical path of the signal arm is sent to the detector to form a reference arm; the realization of equal optical path can be achieved by adjusting the optical delay device on the reference arm (also by adjusting the laser wavelength, scanning frequency and polarization state), through Adjust the optical delay device so that the optical paths of the two are equal, thereby generating interference phenomenon.
  • the signal arm and the reference arm interfere with each other to form an interference optical signal, which is photoelectrically converted into an analog electrical signal by the detector, and an OCT image is obtained through analog-to-digital conversion and Fourier transform.
  • RGB three-color mapping different pseudo-color palettes
  • pseudo-color images of different tones such as reddish, purple, green, etc.
  • each area has one or more OCT images, and each OCT images of the region were analyzed.
  • a generalized uterine image it can be divided into four regions, namely the fundus region, the upper segment region of the uterus, the lower segment region of the uterus and the cervical region. Division, such as the above-mentioned division according to the conventional length ratio, of course, if the requirements for the result are not too strict, it can also be divided equally.
  • the OCT image can be divided into four parts on average, and divided into fundus region images, upper uterine region images, lower uterine region images, and cervical region images sequentially according to the time sequence of each OCT image acquisition.
  • the OCT image of each region can be referred to as an OCT region image.
  • the OCT images are divided into four parts according to a certain ratio (such as the above-mentioned conventional length ratio of different age groups or other ratio methods), and the OCT images are divided into palaces according to the time sequence of each OCT image acquisition.
  • the above division is a circular horizontal image division.
  • these OCT images can also be integrated into a square longitudinal image.
  • Images with acquisition defects caused by OCT equipment in the transverse image can be deleted. For example, to delete uncontinuous parts through the continuity of the epithelial layer or intima layer to prevent accidental deletion, it can be set as the number of continuous parts in the horizontal image. For example, when there are more than 5 non-contiguous images, these images are considered Flawed, these images were discarded when analyzing the endometrium.
  • the image of the OCT region may be analyzed by an electronic device, or the image of the OCT region may be analyzed manually. During analysis, for each region, a certain number of, for example, 5 OCT region images can be selected for analysis. Of course, for regions with greater weight, more OCT images can also be selected as analysis objects.
  • the epithelial layer and intima layer are mainly analyzed, for example:
  • the epithelial edge is regular and smooth, it is regular, and if there are depressions, wrinkles or bulges, it is irregular; if the epithelial edge is complete, it is continuous, and if it is broken or missing, it is discontinuous;
  • the above-mentioned indicators can also be realized by means of artificial intelligence, for example, by collecting OCT images of multiple age groups and different health levels of the uterus, and then model the OCT images of each age group based on the above indicators. The network model is trained and tested, and then the subsequent detected persons are analyzed according to the model.
  • the above-mentioned preprocessing of the longitudinal image can also be realized by means of artificial intelligence.
  • FIG. 2 is a schematic structural diagram of an electronic device disclosed in an embodiment of the present invention.
  • the electronic device may be a computer system, and of course, it may also be other terminal devices capable of controlling the action of the OCT device or/and receiving OCT images, such as a tablet computer, a cloud server, and the like.
  • the electronic device may include: a memory storing executable program codes; and a processor coupled to the memory; wherein the processor invokes the executable program codes stored in the memory.
  • processing may include:
  • the first driving unit 210 is used to drive the OCT probe to be inserted into the uterine cavity through the cervix until it reaches the fundus of the uterus;
  • the second driving unit 220 is used to drive and retract the OCT probe
  • the image acquisition unit 230 is used to start the image acquisition device to acquire multiple OCT images
  • the image receiving unit 240 is configured to receive the multiple OCT images and divide the multiple OCT images into four areas, namely the fundus area, the upper uterine segment area, the lower uterine segment area and the cervical area, each area has a or multiple OCT images.
  • the first driving unit 210 may include: driving a reproductive tract guide to drive a catheter through the cervix to insert into the uterine cavity until the fundus of the uterus, and the reproductive tract guide is connected to the a catheter, and the OCT probe is installed in the catheter.
  • the speed of insertion into the uterine cavity is not greater than 0.3cm/s.
  • the second driving unit 220 may include:
  • the first withdrawal subunit is used to start the power mechanism to drive the OCT probe to withdraw from the fundus of the uterus to the cervix at a constant speed, and the withdrawal speed is 0.1-0.3cm/s;
  • the first acquisition subunit is configured to start the image acquisition device to acquire multiple OCT images during the retraction process at fixed time intervals while the OCT probe is retracted.
  • the second driving unit 220 may include:
  • the second withdrawal subunit is used to drive the OCT probe to withdraw from the fundus of the uterus to the cervix, and collect the moving position of the OCT probe through a displacement sensor;
  • the second acquisition subunit is configured to start the image acquisition device to acquire multiple OCT images during the retraction process when the distance between two adjacent moving positions is equal to the set distance.
  • the image receiving unit 240 may include:
  • the OCT image is divided into four according to a certain ratio, and each OCT image is sequentially divided into an image of the fundus region, an image of the upper segment of the uterus, an image of the lower segment of the uterus, and an image of the cervical region according to the order in which each OCT image is collected.
  • the image acquisition device includes a light source, a beam splitter, and a detector; the image acquisition unit 230 may include:
  • the promoter unit is used to start the light source, and the light emitted by the light source is divided into reference light and signal light by the optical splitter;
  • the first detection subunit is configured to transmit signal light to the image acquisition area via the probe, and the light reflected and scattered back through the image acquisition area returns to the detector to form a signal arm;
  • the second detection subunit is used to make the reference light directly transmit to the detector through an optical path equal to the optical path of the signal arm to form a reference arm;
  • the interference subunit is used to make the signal arm and the reference arm interfere with each other to form an interference optical signal, which is photoelectrically converted into an electrical signal by the detector;
  • the processing subunit is used to obtain an OCT image through analog-to-digital conversion and Fourier transform.
  • the image acquisition unit 230 may also include:
  • the enhancement subunit is configured to perform image enhancement processing on the OCT image, and the image enhancement processing is to perform RGB three-color mapping on the OCT image using different pseudo-color palettes to obtain pseudo-color images with different hues.
  • a non-invasive OCT disclosed in Embodiment 3 of the present invention is directly applied to a detection system for endometrium, which may include:
  • the OCT equipment for collecting multiple OCT images, the OCT equipment includes an image acquisition device and an OCT probe, and the image acquisition device and the OCT probe are connected through an optical path;
  • a power mechanism used to drive the catheter to move through the reproductive tract introducer
  • the electronic equipment is used to drive the OCT probe through the cervix to insert into the uterine cavity through the cervix to the fundus of the uterus, and to drive the OCT probe back through the power mechanism, and to start the image acquisition device to obtain multiple OCT images;
  • the electronic device is also used to receive the multiple OCT images and divide the multiple OCT images into four areas, which are respectively the fundus area, the upper segment area of the uterus, the lower segment area of the uterus, and the cervical area, and each area has one or Multiple OCT images.
  • the embodiment of the present invention discloses a computer-readable storage medium, which stores a computer program, wherein the computer program causes the computer to execute some or all of the steps in the method for directly applying non-invasive OCT to the endometrium disclosed in Embodiment 1 .
  • the embodiment of the present invention also discloses a computer program product, wherein, when the computer program product runs on the computer, the computer executes part or all of a non-invasive OCT method disclosed in Embodiment 1 directly applied to the endometrium step.
  • the embodiment of the present invention also discloses an application distribution platform, wherein the application distribution platform is used to distribute computer program products, wherein, when the computer program products run on the computer, the computer executes the non-invasive OCT disclosed in Embodiment 1 to directly apply Part or all of the steps in the method for detecting endometrium.
  • sequence number of each process does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, rather than by the embodiment of the present invention.
  • the implementation process constitutes any limitation.
  • a unit described as a separate component may or may not be physically separated, and a component displayed as a unit may or may not be a physical unit, that is, it may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the integrated unit can be realized in the form of hardware or in the form of software functional unit.
  • an integrated unit When an integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-accessible memory.
  • the technical solution of the present invention or the part that contributes to the prior art, or all or part of the technical solution, can be embodied in the form of a software product, and the computer software product is stored in a memory , including several requests to make a computer device (which may be a personal computer, a server, or a network device, etc., specifically, a processor in the computer device) execute some or all of the steps of the method in each embodiment of the present invention.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B based on A does not mean determining B only based on A, and B can also be determined based on A and/or other information.
  • Read-Only Memory ROM
  • random access memory Random Access Memory, RAM
  • Programmable Read Only Memory PROM
  • Erasable Programmable Read-Only Memory Erasable Programmable Read-Only Memory
  • EPROM Erasable Programmable Read-Only Memory
  • One-time Programmable Read-Only Memory One-time Programmable Read-Only Memory
  • OTPROM One-time Programmable Read-Only Memory
  • EEPROM Electronically Erasable Rewritable Read-Only Memory
  • CD-ROM Compact Disc Read-Only Memory
  • CD-ROM Compact Disc Read-Only Memory

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Gynecology & Obstetrics (AREA)
  • Reproductive Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physiology (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Endoscopes (AREA)

Abstract

一种无创OCT直接应用于子宫内膜的检测方法、设备及系统。该方法包括:将OCT探头经宫颈口插入宫腔内,直至宫底;回撤OCT探头,并同时启动图像采集装置,获取多张OCT图像;将多张OCT图像分成四个区域,分别为宫底区、子宫上段区、子宫下段区以及宫颈区.每个区域具有一张或多张的OCT图像,并对所述每个区域的OCT图像进行分析,对人体不会造成损伤,并且检测准确。

Description

无创OCT直接应用于子宫内膜的检测方法、设备及系统 技术领域
本发明涉及OCT设备技术领域,具体涉及一种无创OCT直接应用于子宫内膜的检测方法、设备及系统。
背景技术
现有子宫内膜检测主要有以下方式:例如,可以通过B超检查来看子宫内膜的厚度以及观察宫腔内是否有病变;还可以通过诊断性刮宫来止血以及做病理诊断;另外还可以通过宫腔镜取组织进行活检。
技术问题
上述第一种方式得到的信息较少,如果需要获取准确信息,还需要采用第二或第三种方式,但是后两种方式均会对人体造成一定的损伤,而且检测成本较高,检测周期较长。
技术解决方案
针对所述缺陷,本发明实施例公开了一种无创OCT直接应用于子宫内膜的检测方法、设备及系统,可以通过OCT方式获取子宫内膜图像,完成子宫内膜等的检测。
本发明实施例第一方面公开一种无创OCT直接应用于子宫内膜的检测方法,所述方法包括:
将OCT探头经宫颈口插入宫腔内,直至宫底;
回撤所述OCT探头,并同时启动图像采集装置,获取多张OCT图像;
将所述多张OCT图像分成四个区域,分别为宫底区、子宫上段区、子宫下段区以及宫颈区,每个区域具有一张或多张的OCT图像,并对所述每个区域的OCT图像进行分析。
作为一种可选的实施方式,在本发明实施例第一方面中,将OCT探头经宫颈口插入宫腔内,直至宫底,包括:
利用生殖道导引器连接安装有OCT探头的导管;
手动或自动控制生殖道导引器带动所述导管经宫颈口插入宫腔内,直至宫底。
作为一种可选的实施方式,在本发明实施例第一方面中,所述手动或自动控制的速度不大于0.3cm/s。
作为一种可选的实施方式,在本发明实施例第一方面中,回撤所述OCT探头,并同时启动图像采集装置,获取多张OCT图像,包括:
启动动力机构匀速带动所述OCT探头匀速从所述宫底回撤到所述宫颈口,所述回撤速度为0.1-0.3cm/s;
在OCT探头回撤的同时,启动图像采集装置以固定频率采集回撤过程中的多张OCT图像。
作为一种可选的实施方式,在本发明实施例第一方面中,回撤所述OCT探头,并同时启动图像采集装置,获取多张OCT图像,包括:
带动OCT探头从所述宫底回撤到所述宫颈口,通过位移传感器采集OCT探头的移动位置;
在相邻两次移动位置之间的距离等于设定距离时,启动图像采集装置采集回撤过程中的多张OCT图像。
作为一种可选的实施方式,在本发明实施例第一方面中,将所述多张OCT图像分成四个区域,包括:
将所述OCT图像平均分成四份,根据每份OCT图像采集的时间顺序依次划分为宫底区图像、子宫上段区图像、子宫下段区图像以及宫颈区图像;
或者,
根据一定的比例将所述OCT图像分成四份,根据每份OCT图像采集的时间顺序依次划分为宫底区图像、子宫上段区图像、子宫下段区图像以及宫颈区图像。
作为一种可选的实施方式,在本发明实施例第一方面中,所述图像采集装置包括光源、分光器以及探测器;所述启动图像采集装置,获取多张OCT图像,包括:
启动光源,光源发出的光被分光器分为参考光和信号光;
信号光经由探头发射到图像采集区域,经由图像采集区域反射和散射回来的光返回至探测器,形成信号臂;
参考光则直接通过与信号臂相等光程的光路发射到探测器,形成参考臂;
信号臂和参考臂相互干涉形成干涉光信号,经由探测器进行光电转换成电信号;
通过模数转换以及傅里叶变换,得到OCT图像。
作为一种可选的实施方式,在本发明实施例第一方面中,获取多张OCT图像后,还包括:
对所述OCT图像进行图像增强处理,所述图像增强处理为对所述OCT图像使用不同的伪彩色调色板进行RGB三色映射,得到不同色调的伪彩色图像。
本发明实施例第二方面公开一种电子设备,其包括:
第一驱动单元,用于驱动所述OCT探头经由宫颈口插入宫腔内,直至宫底;
第二驱动单元,用于驱动回撤所述OCT探头;
图像采集单元,用于启动图像采集装置,获取多张OCT图像;
图像接收单元,用于接收所述多张OCT图像并将所述多张OCT图像分成四个区域,分别为宫底区、子宫上段区、子宫下段区以及宫颈区,每个区域具有一张或多张的OCT图像。
本发明实施例第三方面公开一种无创OCT直接应用于子宫内膜的检测系统,其包括:
OCT设备,用于采集多张OCT图像,所述OCT设备包括图像采集装置和OCT探头,所述图像采集装置和所述OCT探头通过光路连接;
导管,用于安装所述OCT探头;
生殖道导引器,用于连接所述导管;
动力机构,用于通过所述生殖道导引器带动所述导管动作;
电子设备,用于通过动力机构驱动所述OCT探头经由宫颈口插入宫腔内,直至宫底,通过动力机构驱动回撤所述OCT探头,并用于启动图像采集装置,获取多张OCT图像;所述电子设备还用于接收所述多张OCT图像并将所述多张OCT图像分成四个区域,分别为宫底区、子宫上段区、子宫下段区以及宫颈区,每个区域具有一张或多张的OCT图像。
本发明实施例第四方面公开一种计算机可读存储介质,其存储计算机程序,其中,所述计算机程序使得计算机执行本发明实施例第一方面公开的一种无创OCT直接应用于子宫内膜的检测方法。
本发明实施例第五方面公开一种计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行本发明实施例第一方面公开的一种无创OCT直接应用于子宫内膜的检测方法。
本发明实施例第六方面公开一种应用发布平台,所述应用发布平台用于发布计算机程序产品,其中,当所述计算机程序产品在计算机上运行时,使得所述计算机执行本发明实施例第一方面公开的一种无创OCT直接应用于子宫内膜的检测方法。
有益效果
与现有技术相比,本发明实施例具有以下有益效果:
本发明实施例中,将OCT探头经宫颈口插入宫腔内,直至宫底;回撤所述OCT探头,并同时启动图像采集装置,获取多张OCT图像;将所述多张OCT图像分成四个区域,分别为宫底区、子宫上段区、子宫下段区以及宫颈区,每个区域具有一张或多张的OCT图像,并对所述每个区域的OCT图像进行分析。可见,实施本发明实施例,可以根据OCT图像对每个区域进行分析,对人体不会造成损伤,并且检测准确。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人体来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例公开的一种无创OCT直接应用于子宫内膜的检测方法的流程示意图;
图2是本发明实施例公开的一种电子设备的结构示意图。
本发明的最佳实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人体在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书中的术语“第一”、“第二”、“第三”、“第四”等是用于区别不同的对象,而不是用于描述特定顺序。本发明实施例的术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,示例性地,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本发明实施例公开了一种无创OCT直接应用于子宫内膜的检测方法、电子设备及系统,其可以根据OCT图像对每个区域进行分析,对人体不会造成损伤,并且检测准确,以下结合附图进行详细描述。
实施例一
请参阅图1,图1是本发明实施例公开的一种无创OCT直接应用于子宫内膜的检测方法的流程示意图。如图1所示,该无创OCT直接应用于子宫内膜的检测方法包括以下步骤:
110,将OCT探头经宫颈口插入宫腔内,直至宫底。
在使用前,先将设备接通电源,开通与OCT设备连接的电子设备,该电子设备可以是计算机系统,当然,也可以是其他能够控制OCT设备动作或/和接收OCT图像的终端设备,例如平板电脑,云端服务器等。通过电子设备新建病例信息,可以录入相关被检测人员的个人信息等。当然,在一些情况下,电子设备也可以集成于OCT设备中。
将电子设备与OCT设备连接。为示区分,将OCT设备分为图像采集装置和OCT探头,其中,OCT探头安装于导管中,OCT探头和反射镜安装于该导管中,当有光线经过所述探头时,通过反射镜经由该出光窗发出。探头可以采用光学透镜例如圆柱形的自聚焦透镜(G-Lens),自聚焦透镜的前端形成倾斜面,导管的前端开设有出光窗,倾斜面与出光窗相对应,在倾斜面设置光反射膜,自聚焦透镜的后端与光纤熔接;光反射结构为光反射膜,光反射膜对入射光的反射率可以大于99%;当图像采集装置的发出的光经由光纤传递到该探头,则通过倾斜面经由出光窗发射到外部环境,即对应相应的检测位置。
在使用中,为了检测准确以及操作方便,被检测者排空膀胱,并取膀胱截石位,常规消毒外阴和阴道,用窥器暴露宫腔。
OCT设备使用时,从宫底部开始图像采集,因此,需要先将OCT探头推送至宫底部。示例性地,可以通过使用生殖道导引器连接导管,手动或自动控制生殖道导引器带动导管经宫颈口插入宫颈内,再通过宫腔直至宫底。手动方式,例如可以手持生殖道导引器手柄,将导管缓慢经宫颈口插入宫腔内,自动方式,例如通过伺服电机等控制生殖道导引器带动导管经宫颈口插入宫腔内。
为了防止OCT探头对人体造成损伤,在本发明较佳的实施例中,插入宫颈后,要缓慢到达宫底,速度优选不大于0.3cm/s。
在本发明较佳的实施例中,还可以记录到达宫底时,导管位于阴道外的长度,或者确定导管伸入子宫内的长度,或者通过其他方式获取被检测者的子宫长度,以备后用。
120,回撤所述OCT探头,并同时启动图像采集装置,获取多张OCT图像。
缓缓取出OCT探头,在OCT探头回撤的过程中,启动图像采集装置,得到多张OCT图像。
作为一种实施方式,OCT探头回撤过程采用匀速方式实现,例如,通过动力机构匀速带动所述OCT探头匀速从所述宫底回撤到所述宫颈口;在OCT探头回撤的同时,启动图像采集装置以固定频率,也就是固定时间间隔例如10ms等采集回撤过程中的多张OCT图像。该方式下,优选根据需要采集的图像数量确定回撤速度,一般地,回撤速度优选在0.1-0.3cm/s,这样拍摄的图像数量满足需求,同时,在时间和效率上也能达到平衡。
作为又一种实施方式,带动OCT探头从所述宫底回撤到所述宫颈口,通过位移传感器采集OCT探头的移动位置;在相邻两次移动位置之间的距离等于设定距离(设定距离可以预先设定多个,根据需要选择其中一个,或者根据需要在使用前设定一个)时,启动图像采集装置采集回撤过程中的多张OCT图像。该方式下,尽管可以不采用匀速方式进行回撤,但是一般地,OCT探头的移动速度要使得图像采集装置在设定的距离位置例如30mm等能够采集到相应的图像。
另外,还有一种实施方式,根据不同图像采集位置的权重,即针对需要重点分析的区域,其图像采集频率要高一些,其他区域的频率可以适当降低一些。示例性地,当需要对子宫上段区进行重点分析时,则在此阶段回撤的速度可以小于0.1cm/s。例如,如果回撤采用匀速方式实现,且回撤速度在0.1-0.3cm/s范围时,在该阶段回撤速度可以选择0.1cm/s,其他区域可以选择0.3cm/s。
每个区域的实际长度,可以根据总长度以及各个区域的常规长度比例得到,子宫长度通过步骤110可以获取,常规长度,可以通过获取不同年龄段的多个人员的测量数据,然后取平均,即可得到各个年龄阶段的各个区域的常规长度比例。针对被检测者,即可根据填写的个人基本信息,结合该常规长度比例以及步骤110得到的其子宫长度,确定每个区域的长度,然后根据需要,对各个区域的图像采集数量或者速度进行限定。
根据权重确定每个区域的图像采集数量的过程,可以是匀速回撤OCT探头,固定时间间隔采集图像,也可以是通过位移传感器和设定距离结合的方式实现图像采集,这里不做限定。
图像采集装置可以包括光源、分光器以及探测器等。启动图像采集装置,获取多张OCT图像,包括:启动光源,启动光源的方式可以是通过电子设备实现,也可以通过人工实现,光源可以采用扫频激光。
光源发出的光被分光器分为参考光和信号光;信号光经由探头发射到图像采集区域,经由图像采集区域反射和散射回来的光返回至探测器,形成信号臂;参考光则直接通过与信号臂相等光程的光路发射到探测器,形成参考臂;相等光程的实现方式,可以在参考臂上可调的光学延迟装置(还可以通过调整激光波长、扫频率和偏振态),通过调节光学延迟装置,使得二者的光程相等,从而产生干涉现象。
信号臂和参考臂相互干涉形成干涉光信号,经由探测器进行光电转换成模拟的电信号,通过模数转换以及傅里叶变换,得到OCT图像。
最后通过三色映射,便可以得到组织内部高分辨率断层图像。如果我们把OCT图像的采样点强度数值进行RGB三色映射(不同的伪彩色调色板),就可以得到不同色调(如偏红、偏紫、偏绿等)的伪彩色图像。
130,将所述多张OCT图像分成四个区域,分别为宫底区、子宫上段区、子宫下段区以及宫颈区,每个区域具有一张或多张的OCT图像,并对所述每个区域的OCT图像进行分析。
在本发明较佳的实施例中,作为广义的子宫图像,可以划分为四个区域,分别为宫底区、子宫上段区、子宫下段区以及宫颈区,每个区域可以根据被检测者实际情况划分,例如上述的根据常规长度比例划分,当然,再对结果要求并不是太严格的情况下,也可以平均分配。
基于此,作为一种实施方式,可以将所述OCT图像平均分成四份,根据每份OCT图像采集的时间顺序依次划分为宫底区图像、子宫上段区图像、子宫下段区图像以及宫颈区图像,每个区域的OCT图像可以称为OCT区域图像。
作为另一种实施方式,根据一定的比例(例如上述的不同年龄段的常规长度比例或者其他的比例方式)将所述OCT图像分成四份,根据每份OCT图像采集的时间顺序依次划分为宫底区图像、子宫上段区图像、子宫下段区图像以及宫颈区图像。
可以理解的是,上述划分针对于子宫而言,是呈环形的横向图像的划分,在区域划分前后,还可以将这些OCT图像整合为一张进行方形纵向图像,通过对纵向图像进行预处理,可以删除横向图像中存在因OCT设备原因导致的采集存在缺陷的图像。例如,通过上皮层或内膜层的连续性删除未连续部分,未防止误删,可以设置为连续部分在横向图像中的数量,示例性地,当未连续图像超过5张时,认为这些图像存在缺陷,在对子宫内膜进行分析时,放弃采用这些图像。
在一些其他的实施例中,可以通过电子设备对OCT区域图像进行分析,也可以人工对OCT区域图像进行分析。分析时,对于每一个区域,可以选择一定数量例如5张OCT区域图像进行分析,当然,针对较大权重的区域,也可以多选取一些OCT图像作为分析对象。
示例性地,以人工分析为例,主要分析上皮层和内膜层,例如:
分析上皮层规则性和连续性,如果上皮边缘规整圆滑,则具有规则性,出现凹陷、皱褶或隆起则为不规则;上皮边缘完整为具有连续性,出现断裂、缺失为不连续;
分析内膜层的腺体大小、囊性改变、是否存在红点区域以及内膜是否存在缺损:观察腺体形态,是否扩大、变多,观察内膜出现囊性特征的区域;当OCT图像的像素值(灰度值)在一定范围内,例如101-255,则这些像素点形成的区域为红点区域,当内膜组织出现暗影或孔洞等低信号区域,则说明内膜存在缺损。
上述的各个指标,也可以通过人工智能的方式实现,例如,通过对多个不同年龄段、子宫的不同健康程度进行OCT图像采集,然后对每个年龄段的OCT图像基于上述指标进行模型例如神经网络模型训练和测试,进而根据该模型对后续的被检测者进行分析。
当然,上述纵向图像的预处理也可以通过人工智能方式实现。
实施本发明实施例,其可以根据OCT图像对每个区域进行分析,对人体不会造成损伤,并且检测准确。
实施例二
请参阅图2,图2是本发明实施例公开的一种电子设备的结构示意图。如图2所示,该电子设备可以是计算机系统,当然,也可以是其他能够控制OCT设备动作或/和接收OCT图像的终端设备,例如平板电脑,云端服务器等。电子设备可以包括:存储有可执行程序代码的存储器;以及与存储器耦合的处理器;其中,处理器调用存储器中存储的可执行程序代码。
作为电子设备的虚拟单元,处理可以包括:
第一驱动单元210,用于驱动所述OCT探头经由宫颈口插入宫腔内,直至宫底;
第二驱动单元220,用于驱动回撤所述OCT探头;
图像采集单元230,用于启动图像采集装置,获取多张OCT图像;
图像接收单元240,用于接收所述多张OCT图像并将所述多张OCT图像分成四个区域,分别为宫底区、子宫上段区、子宫下段区以及宫颈区,每个区域具有一张或多张的OCT图像。
作为一种可选的实施方式,所述第一驱动单元210,可以包括:驱动生殖道导引器带动导管经宫颈口插入宫腔内,直至宫底,所述生殖道导引器连接所述导管,所述OCT探头安装于导管中。插入宫腔内的速度不大于0.3cm/s。
作为一种可选的实施方式,所述第二驱动单元220,可以包括:
第一回撤子单元,用于启动动力机构匀速带动所述OCT探头匀速从所述宫底回撤到所述宫颈口,所述回撤速度为0.1-0.3cm/s;
第一采集子单元,用于在OCT探头回撤的同时,启动图像采集装置以固定时间间隔采集回撤过程中的多张OCT图像。
作为一种可选的实施方式,所述第二驱动单元220,可以包括:
第二回撤子单元,用于带动OCT探头从所述宫底回撤到所述宫颈口,通过位移传感器采集OCT探头的移动位置;
第二采集子单元,用于在相邻两次移动位置之间的距离等于设定距离时,启动图像采集装置采集回撤过程中的多张OCT图像。
作为一种可选的实施方式,所述图像接收单元240,可以包括:
将所述OCT图像平均分成四份,根据每份OCT图像采集的时间顺序依次划分为宫底区图像、子宫上段区图像、子宫下段区图像以及宫颈区图像;
或者,
根据一定的比例将所述OCT图像分成四份,根据每份OCT图像采集的时间顺序依次划分为宫底区图像、子宫上段区图像、子宫下段区图像以及宫颈区图像。
作为一种可选的实施方式,所述图像采集装置包括光源、分光器以及探测器;所述图像采集单元230,可以包括:
启动子单元,用于启动光源,光源发出的光被分光器分为参考光和信号光;
第一探测子单元,用于使得信号光经由探头发射到图像采集区域,经由图像采集区域反射和散射回来的光返回至探测器,形成信号臂;
第二探测子单元,用于使得参考光直接通过与信号臂相等光程的光路发射到探测器,形成参考臂;
干涉子单元,用于使得信号臂和参考臂相互干涉形成干涉光信号,经由探测器进行光电转换成电信号;
处理子单元,用于通过模数转换以及傅里叶变换,得到OCT图像。
作为一种可选的实施方式,所述图像采集单元230,还可以包括:
增强子单元,用于对所述OCT图像进行图像增强处理,所述图像增强处理为对所述OCT图像使用不同的伪彩色调色板进行RGB三色映射,得到不同色调的伪彩色图像。
实施例三
本发明实施例三公开的一种无创OCT直接应用于子宫内膜的检测系统,其可以包括:
OCT设备,用于采集多张OCT图像,所述OCT设备包括图像采集装置和OCT探头,所述图像采集装置和所述OCT探头通过光路连接;
导管,用于安装所述OCT探头;
生殖道导引器,用于连接所述导管;
动力机构,用于通过所述生殖道导引器带动所述导管动作;
电子设备,用于通过动力机构驱动所述OCT探头经由宫颈口插入宫腔内,直至宫底,通过动力机构驱动回撤所述OCT探头,并用于启动图像采集装置,获取多张OCT图像;所述电子设备还用于接收所述多张OCT图像并将所述多张OCT图像分成四个区域,分别为宫底区、子宫上段区、子宫下段区以及宫颈区,每个区域具有一张或多张的OCT图像。
本发明实施例公开一种计算机可读存储介质,其存储计算机程序,其中,该计算机程序使得计算机执行实施例一公开的一种无创OCT直接应用于子宫内膜的检测方法中的部分或全部步骤。
本发明实施例还公开一种计算机程序产品,其中,当计算机程序产品在计算机上运行时,使得计算机执行实施例一公开的一种无创OCT直接应用于子宫内膜的检测方法中的部分或全部步骤。
本发明实施例还公开一种应用发布平台,其中,应用发布平台用于发布计算机程序产品,其中,当计算机程序产品在计算机上运行时,使得计算机执行实施例一公开的一种无创OCT直接应用于子宫内膜的检测方法中的部分或全部步骤。
在本发明的各种实施例中,应理解,各过程的序号的大小并不意味着执行顺序的必然先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可位于一个地方,或者也可以分布到多个网络单元上。可根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本发明各实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
集成的单元若以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可获取的存储器中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或者部分,可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储器中,包括若干请求用以使得一台计算机设备(可以为个人计算机、服务器或者网络设备等,具体可以是计算机设备中的处理器)执行本发明的各个实施例方法的部分或全部步骤。
在本发明所提供的实施例中,应理解,“与A对应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其他信息确定B。
本领域普通技术人体可以理解实施例的各种方法中的部分或全部步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质包括只读存储器(Read-Only Memory,ROM)、随机存储器(Random Access Memory,RAM)、可编程只读存储器(Programmable Read-only Memory,PROM)、可擦除可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)、一次可编程只读存储器(One-time Programmable Read-Only Memory,OTPROM)、电子抹除式可复写只读存储器(Electrically-Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储器、磁盘存储器、磁带存储器、或者能够用于携带或存储数据的计算机可读的任何其他介质。
以上对本发明实施例公开的一种无创OCT直接应用于子宫内膜的检测方法、设备及系统进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本发明的限制。

Claims (10)

  1. 一种无创OCT直接应用于子宫内膜的检测方法,其特征在于,包括:
    将OCT探头经宫颈口插入宫腔内,直至宫底;
    回撤所述OCT探头,并同时启动图像采集装置,获取多张OCT图像;
    将所述多张OCT图像分成四个区域,分别为宫底区、子宫上段区、子宫下段区以及宫颈区,每个区域具有一张或多张的OCT图像,对所述每个区域的OCT图像进行分析。
  2. 根据权利要求1所述的无创OCT直接应用于子宫内膜的检测方法,其特征在于,将OCT探头经宫颈口插入宫腔内,直至宫底,包括:
    利用生殖道导引器连接安装有OCT探头的导管;
    手动或自动控制生殖道导引器带动所述导管经宫颈口插入宫腔内,直至宫底。
  3. 根据权利要求2所述的无创OCT直接应用于子宫内膜的检测方法,其特征在于,所述手动或自动控制的速度不大于0.3cm/s。
  4. 根据权利要求1-3任一项所述的无创OCT直接应用于子宫内膜的检测方法,其特征在于,回撤所述OCT探头,并同时启动图像采集装置,获取多张OCT图像,包括:
    启动动力机构匀速带动所述OCT探头匀速从所述宫底回撤到所述宫颈口,所述回撤速度为0.1-0.3cm/s;
    在OCT探头回撤的同时,启动图像采集装置以固定频率采集回撤过程中的多张OCT图像。
  5. 根据权利要求1-4任一项所述的无创OCT直接应用于子宫内膜的检测方法,其特征在于,回撤所述OCT探头,并同时启动图像采集装置,获取多张OCT图像,包括:
    带动OCT探头从所述宫底回撤到所述宫颈口,通过位移传感器采集OCT探头的移动位置;
    在相邻两次移动位置之间的距离等于设定距离时,启动图像采集装置采集回撤过程中的多张OCT图像。
  6. 根据权利要求1-5任一项所述的无创OCT直接应用于子宫内膜的检测方法,其特征在于,将所述多张OCT图像分成四个区域,包括:
    将所述OCT图像平均分成四份,根据每份OCT图像采集的时间顺序依次划分为宫底区图像、子宫上段区图像、子宫下段区图像以及宫颈区图像;
    或者,
    根据一定的比例将所述OCT图像分成四份,根据每份OCT图像采集的时间顺序依次划分为宫底区图像、子宫上段区图像、子宫下段区图像以及宫颈区图像。
  7. 根据权利要求1-6任一项所述的无创OCT直接应用于子宫内膜的检测方法,其特征在于,所述图像采集装置包括光源、分光器以及探测器;所述启动图像采集装置,获取多张OCT图像,包括:
    启动光源,光源发出的光被分光器分为参考光和信号光;
    信号光经由探头发射到图像采集区域,经由图像采集区域反射和散射回来的光返回至探测器,形成信号臂;
    参考光则直接通过与信号臂相等光程的光路发射到探测器,形成参考臂;
    信号臂和参考臂相互干涉形成干涉光信号,经由探测器进行光电转换成电信号;
    通过模数转换以及傅里叶变换,得到OCT图像。
  8. 根据权利要求1-6任一项所述的无创OCT直接应用于子宫内膜的检测方法,其特征在于,获取多张OCT图像后,还包括:
    对所述OCT图像进行图像增强处理,所述图像增强处理为对所述OCT图像使用不同的伪彩色调色板进行RGB三色映射,得到不同色调的伪彩色图像。
  9. 一种电子设备,其特征在于,其包括:
    第一驱动单元,用于驱动所述OCT探头经由宫颈口插入宫腔内,直至宫底;
    第二驱动单元,用于驱动回撤所述OCT探头;
    图像采集单元,用于启动图像采集装置,获取多张OCT图像;
    图像接收单元,用于接收所述多张OCT图像并将所述多张OCT图像分成四个区域,分别为宫底区、子宫上段区、子宫下段区以及宫颈区,每个区域具有一张或多张的OCT图像。
  10. 一种无创OCT直接应用于子宫内膜的检测系统,其特征在于,其包括:
    OCT设备,用于采集多张OCT图像,所述OCT设备包括图像采集装置和OCT探头,所述图像采集装置和所述OCT探头通过光路连接;
    导管,用于安装所述OCT探头;
    生殖道导引器,用于连接所述导管;
    动力机构,用于通过所述生殖道导引器带动所述导管动作;
    电子设备,用于通过动力机构驱动所述OCT探头经由宫颈口插入宫腔内,直至宫底,通过动力机构驱动回撤所述OCT探头,并用于启动图像采集装置,获取多张OCT图像;所述电子设备还用于接收所述多张OCT图像并将所述多张OCT图像分成四个区域,分别为宫底区、子宫上段区、子宫下段区以及宫颈区,每个区域具有一张或多张的OCT图像。
PCT/CN2021/097270 2021-05-24 2021-05-31 无创 oct 直接应用于子宫内膜的检测方法、设备及系统 WO2022246872A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21942443.9A EP4349244A1 (en) 2021-05-24 2021-05-31 Inspection method and system directly applying noninvasive oct to endometrium, and device
US18/515,325 US20240081725A1 (en) 2021-05-24 2023-11-21 Detection method and system directly applying noninvasive oct to endometrium, and detection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110567731.4A CN113273968A (zh) 2021-05-24 2021-05-24 无创oct直接应用于子宫内膜的检测方法、设备及系统
CN202110567731.4 2021-05-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/515,325 Continuation US20240081725A1 (en) 2021-05-24 2023-11-21 Detection method and system directly applying noninvasive oct to endometrium, and detection device

Publications (1)

Publication Number Publication Date
WO2022246872A1 true WO2022246872A1 (zh) 2022-12-01

Family

ID=77281254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/097270 WO2022246872A1 (zh) 2021-05-24 2021-05-31 无创 oct 直接应用于子宫内膜的检测方法、设备及系统

Country Status (4)

Country Link
US (1) US20240081725A1 (zh)
EP (1) EP4349244A1 (zh)
CN (1) CN113273968A (zh)
WO (1) WO2022246872A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004023992A1 (en) * 2002-09-11 2004-03-25 University Of Maryland, Baltimore Optical coherence tomography probe
KR20090021480A (ko) * 2007-08-27 2009-03-04 연세대학교 산학협력단 자궁경부 진단용 편광감도-광간섭 영상시스템
US7720526B1 (en) * 2003-02-04 2010-05-18 Modell Mark D Self-interfering tomography system
US20100158339A1 (en) * 2008-12-19 2010-06-24 Toshihiko Omori Optical structure observation apparatus and structure information processing method of the same
CN204379228U (zh) * 2014-12-10 2015-06-10 佛山市南海区欧谱曼迪科技有限责任公司 一种基于光学相干断层成像的宫腔镜系统
CN105761218A (zh) * 2016-02-02 2016-07-13 中国科学院上海光学精密机械研究所 光学相干层析成像的图像伪彩色处理方法
CN105792747A (zh) * 2013-11-18 2016-07-20 火山公司 跟踪腔内导管
CN106880339A (zh) * 2017-03-09 2017-06-23 广州永士达医疗科技有限责任公司 一种呼吸道oct系统
CN108042125A (zh) * 2017-05-27 2018-05-18 天津海仁医疗技术有限公司 一种高速内窥光学相干血流成像系统
CN208677365U (zh) * 2017-10-26 2019-04-02 深圳永士达医疗科技有限公司 一种子宫oct导管及具有回抽功能的子宫oct设备
CN111110195A (zh) * 2019-12-31 2020-05-08 广州永士达医疗科技有限责任公司 一种具有手动和自动回抽功能的oct探头驱动装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7884945B2 (en) * 2005-01-21 2011-02-08 Massachusetts Institute Of Technology Methods and apparatus for optical coherence tomography scanning
CN201286695Y (zh) * 2008-10-28 2009-08-12 茂晖科技股份有限公司 一种具启动控制的胶囊内视镜装置
CN102697526B (zh) * 2012-06-15 2014-06-18 华东医院 超声浅表组织与器官容积扫描断层成像设备
CN104523216B (zh) * 2014-12-10 2016-04-20 佛山市南海区欧谱曼迪科技有限责任公司 一种基于光学相干断层成像的宫腔镜系统及其实现方法
CN107582026B (zh) * 2017-08-25 2021-12-03 深圳永士达医疗科技有限公司 一种应用于子宫的导管
CN107837071A (zh) * 2017-10-26 2018-03-27 广州永士达医疗科技有限责任公司 一种子宫oct导管及具有回抽功能的子宫oct设备

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004023992A1 (en) * 2002-09-11 2004-03-25 University Of Maryland, Baltimore Optical coherence tomography probe
US7720526B1 (en) * 2003-02-04 2010-05-18 Modell Mark D Self-interfering tomography system
KR20090021480A (ko) * 2007-08-27 2009-03-04 연세대학교 산학협력단 자궁경부 진단용 편광감도-광간섭 영상시스템
US20100158339A1 (en) * 2008-12-19 2010-06-24 Toshihiko Omori Optical structure observation apparatus and structure information processing method of the same
CN105792747A (zh) * 2013-11-18 2016-07-20 火山公司 跟踪腔内导管
CN204379228U (zh) * 2014-12-10 2015-06-10 佛山市南海区欧谱曼迪科技有限责任公司 一种基于光学相干断层成像的宫腔镜系统
CN105761218A (zh) * 2016-02-02 2016-07-13 中国科学院上海光学精密机械研究所 光学相干层析成像的图像伪彩色处理方法
CN106880339A (zh) * 2017-03-09 2017-06-23 广州永士达医疗科技有限责任公司 一种呼吸道oct系统
CN108042125A (zh) * 2017-05-27 2018-05-18 天津海仁医疗技术有限公司 一种高速内窥光学相干血流成像系统
CN208677365U (zh) * 2017-10-26 2019-04-02 深圳永士达医疗科技有限公司 一种子宫oct导管及具有回抽功能的子宫oct设备
CN111110195A (zh) * 2019-12-31 2020-05-08 广州永士达医疗科技有限责任公司 一种具有手动和自动回抽功能的oct探头驱动装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LAW TRACY SZE MAN, CHEUNG WING CHING, WU FANGRONG, ZHANG RUIZHE, CHUNG JACQUELINE PUI WAH, WANG CHI CHIU, CHEN XIAOYAN, LI TIN CHI: "Endometrial Vascularization Characterized by Optical Coherence Tomography and Immunohistochemistry in Women Undergoing In Vitro Fertilization-Embryo Transfer Treatment", MEDICINA, KAUNO MEDICINOS UNIVERSITETAS (KAUNAS UNIVERSITY OF MEDICINE),, LT, vol. 55, no. 4, 1 April 2019 (2019-04-01), LT , pages 81 - 11, XP093007478, ISSN: 1010-660X, DOI: 10.3390/medicina55040081 *

Also Published As

Publication number Publication date
EP4349244A1 (en) 2024-04-10
CN113273968A (zh) 2021-08-20
US20240081725A1 (en) 2024-03-14

Similar Documents

Publication Publication Date Title
Jaffe et al. Color Doppler imaging and in vivo assessment of the anatomy and physiology of the early uteroplacental circulation
US6101408A (en) Probe and method to obtain accurate area measurements from cervical lesions
US6922583B1 (en) Method for measuring tissue morphology
US5172693A (en) Prenatal non-invasive detection of meconium stained amniotic fluid
CA2400702A1 (en) Method and system for characterization and mapping of tissue lesions
JP2018094395A (ja) 診断用スペクトル符号化内視鏡検査装置およびシステム、ならびにこれらと共に使用するための方法
US20190200851A1 (en) Optical biopsy applicators for treatment planning, monitoring, and image-guided therapy
CA2805706A1 (en) Cervical, fetal-membrane, and amniotic examination and assessment device and method
McPherson et al. High frequency epicardial echocardiography for coronary artery evaluation: in vitro and in vivo validation of arterial lumen and wall thickness measurements
Guimaraes Filho et al. Reproducibility of three-dimensional power Doppler placental vascular indices in pregnancies between 26 and 35 weeks
US20240115190A1 (en) Ultrasound, photoacoustic, and viscoelastic imaging systems and methods for cervical analysis to assess risk of preterm delivery
Pomorski et al. Quantitative assessment of placental vasculature and placental volume in normal pregnancies with the use of 3D Power Doppler
Yan et al. Spectroscopic photoacoustic imaging of cervical tissue composition in excised human samples
WO2018161384A1 (zh) 一种呼吸道oct系统
WO2019037145A1 (zh) 一种应用于子宫的导管
WO2022246872A1 (zh) 无创 oct 直接应用于子宫内膜的检测方法、设备及系统
JP2013048671A (ja) 被検体情報取得装置および被検体情報取得方法
CN113520317A (zh) 基于oct的子宫内膜检测分析方法、装置、设备及存储介质
CN110960267B (zh) 一种病理细胞检测用智能穿刺设备
Rovas et al. Reference data representative of normal findings at three‐dimensional power Doppler ultrasound examination of the cervix from 17 to 41 gestational weeks
Perez-Medina et al. Three-dimensional angioultrasonography for the prediction of malignancy in ovarian masses
US9039621B2 (en) Non-invasive ultrasonic gingival tissue diagnosis
Law et al. Endometrium imaging using real-time rotational optical coherence tomography imaging system: A pilot, prospective and ex-vivo study
JP2017192569A (ja) 被検体情報取得装置およびその制御方法
US20200289095A1 (en) Ultrasound diagnostic system and method of operating ultrasound diagnostic system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21942443

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2021942443

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021942443

Country of ref document: EP

Effective date: 20240102