WO2022246820A1 - 旋转显示装置及其驱动方法 - Google Patents

旋转显示装置及其驱动方法 Download PDF

Info

Publication number
WO2022246820A1
WO2022246820A1 PCT/CN2021/096882 CN2021096882W WO2022246820A1 WO 2022246820 A1 WO2022246820 A1 WO 2022246820A1 CN 2021096882 W CN2021096882 W CN 2021096882W WO 2022246820 A1 WO2022246820 A1 WO 2022246820A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
driver
coupled
pixel unit
data
Prior art date
Application number
PCT/CN2021/096882
Other languages
English (en)
French (fr)
Inventor
吕耀宇
邵继洋
闫桂新
张梦蕾
陈丽莉
张�浩
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/915,848 priority Critical patent/US20240212537A1/en
Priority to CN202180001349.5A priority patent/CN115701308B/zh
Priority to PCT/CN2021/096882 priority patent/WO2022246820A1/zh
Publication of WO2022246820A1 publication Critical patent/WO2022246820A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/005Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes forming an image using a quickly moving array of imaging elements, causing the human eye to perceive an image which has a larger resolution than the array, e.g. an image on a cylinder formed by a rotating line of LEDs parallel to the axis of rotation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • G02B30/54Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels the 3D volume being generated by moving a 2D surface, e.g. by vibrating or rotating the 2D surface
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2003Display of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3275Details of drivers for data electrodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F19/00Advertising or display means not otherwise provided for
    • G09F19/02Advertising or display means not otherwise provided for incorporating moving display members
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F19/00Advertising or display means not otherwise provided for
    • G09F19/12Advertising or display means not otherwise provided for using special optical effects
    • G09F19/125Stereoscopic displays; 3D displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/37Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being movable elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2085Special arrangements for addressing the individual elements of the matrix, other than by driving respective rows and columns in combination
    • G09G3/2088Special arrangements for addressing the individual elements of the matrix, other than by driving respective rows and columns in combination with use of a plurality of processors, each processor controlling a number of individual elements of the matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]

Definitions

  • the present disclosure relates to the field of display technology, in particular to a rotating display device and a driving method thereof.
  • the multiple pixel columns are divided into multiple pixel groups, each pixel group includes: at least one pixel column continuously distributed, and the refresh frequency of each pixel unit in each pixel group is the same ; Among the plurality of pixel columns located on the same side of the rotation axis, the refresh frequency of each pixel group arranged in a direction away from the rotation axis gradually increases.
  • each pixel group includes the same number of pixel columns; or, among the multiple pixel groups, multiple Among the pixel columns, the number of pixel columns included in each pixel group arranged in a direction away from the rotation axis decreases successively.
  • the refresh frequencies of the respective pixel groups arranged in a direction away from the rotation axis form an arithmetic progression.
  • the rotation axis is a symmetry axis of the pixel array; two pixel columns located on different sides of the rotation axis and having the same distance from the rotation axis have the same refresh frequency.
  • the control device includes a plurality of drivers, each driver is coupled to a pixel unit; the driver is configured to receive driving information, and the driving information includes: an identification of at least one pixel unit and pixel data, and identify that the identifier of the at least one pixel unit includes the identifier of the pixel unit coupled to it, according to the refresh frequency of the pixel unit coupled to it, according to the coupled pixel unit described in the driving information
  • the pixel data of the connected pixel unit drives the connected pixel unit to work.
  • the driver is further configured to identify that the identifier of the at least one pixel unit does not include the identifier of the pixel unit coupled to it, and refresh the pixel unit coupled to it according to the frequency, driving the pixel unit coupled to it to maintain the currently displayed color.
  • control device further includes a processor, the processor is coupled to the multiple drivers, and is configured to send the driving information to each driver.
  • the processor is configured to send the driving information to each driver at a first sending frequency corresponding to each driver; the first sending frequency corresponding to each driver equal to the refresh frequency of the pixel unit coupled to the driver; or, the processor is configured to send the driving information to each driver at a second sending frequency; the second sending frequency is greater than or equal to the pixel The refresh rate of each pixel unit in the array.
  • the processor sends the The driving information includes the identification of the pixel unit and the pixel data of the current pixel frame; when the pixel data of the pixel unit coupled with a driver is the same as the pixel data of the previous pixel frame, the The driving information sent by the processor to the driver does not include the identifier of the pixel unit and the pixel data in the current pixel frame.
  • the plurality of pixel units are further arranged into a plurality of pixel rows along a direction perpendicular to the rotation axis;
  • the rotating display device further includes a plurality of grid lines; at least The drivers coupled to each of the two pixel units are coupled to the processor through a gate line;
  • the processor is also configured to send a start signal to each driver coupled to the one gate line, and is also configured to Each driver sends an identification of a pixel unit coupled to each driver;
  • the driver is also configured to receive the turn-on signal, and in response to the turn-on signal, receive an identification of a pixel unit coupled to the driver, and Writing the received identifier of the pixel unit into the driver.
  • the rotating display device further includes a plurality of switches, and the processor is coupled to at least two grid lines through one switch; wherein, the number of grid lines coupled to the one switch is The number of data lines coupled to one pixel column is the same.
  • a method for driving a rotating display device including:
  • the processor sends driving information to each driver coupled to one data line, where the driving information includes: an identification and pixel data of at least one pixel unit among the at least two pixel units coupled to the one data line;
  • the driver receives the drive information, and if the identifier of the at least one pixel unit includes the identifier of the pixel unit coupled to it, according to the refresh frequency of the pixel unit coupled to it, according to the drive information
  • the pixel data of the pixel unit coupled to it drives the pixel unit coupled to it to work; if the identification of the at least one pixel unit does not include the identification of the pixel unit coupled to it, according to the The refresh frequency of the pixel unit coupled to the above-mentioned pixel unit is driven to maintain the currently displayed color.
  • FIG. 1 is a perspective view of voxel distribution of a rotating display device in the related art
  • FIG. 2 is a top view of voxel distribution of a rotating display device in the related art
  • Fig. 3 is a structural diagram of a rotating display device provided by some embodiments of the present disclosure.
  • FIG. 4 is a schematic diagram of rotation of a pixel array in a rotating display device provided by some embodiments of the present disclosure
  • FIG. 5A is a structural diagram of a display panel provided by some embodiments of the present disclosure.
  • FIG. 5B is a structural diagram of another display panel provided by some embodiments of the present disclosure.
  • FIG. 6 is a top view of voxel distribution of two pixel columns in a pixel array provided by some embodiments of the present disclosure
  • FIGS. 7A to 7D are structural diagrams of some display panels provided by some embodiments of the present disclosure.
  • FIG. 8A is a structural diagram of another display panel provided by some embodiments of the present disclosure.
  • FIG. 8B is a distribution diagram of the refresh frequency of the pixel array in the display panel shown in FIG. 8A;
  • Fig. 9 is a top view of voxel distribution of a rotating display device provided by some embodiments of the present disclosure.
  • FIG. 10 is a structural diagram of a display panel provided by some embodiments of the present disclosure.
  • Fig. 11 is a structural diagram of a driver provided by some embodiments of the present disclosure.
  • Fig. 13 is a structural diagram of a rotating display device provided by some embodiments of the present disclosure.
  • Fig. 14 is a structural diagram of another rotating display device provided by some embodiments of the present disclosure.
  • Fig. 15 is a structural diagram of another rotating display device provided by some embodiments of the present disclosure.
  • Fig. 16 is a structural diagram of another rotating display device provided by some embodiments of the present disclosure.
  • the expressions “coupled” and “connected” and their derivatives may be used.
  • the term “connected” may be used in describing some embodiments to indicate that two or more elements are in direct physical or electrical contact with each other.
  • the term “coupled” may be used when describing some embodiments to indicate that two or more elements are in direct physical or electrical contact.
  • the terms “coupled” or “communicatively coupled” may also mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited by the context herein.
  • At least one of A, B and C has the same meaning as “at least one of A, B or C” and both include the following combinations of A, B and C: A only, B only, C only, A and B A combination of A and C, a combination of B and C, and a combination of A, B and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • the term “if” is optionally interpreted to mean “when” or “at” or “in response to determining” or “in response to detecting,” depending on the context.
  • the phrases “if it is determined that " or “if [the stated condition or event] is detected” are optionally construed to mean “when determining ! or “in response to determining ! depending on the context Or “upon detection of [stated condition or event]” or “in response to detection of [stated condition or event]”.
  • Volume frame a three-dimensional image refreshed by the pixel array of the rotating display device rotating once is called a volume frame.
  • Body frame frequency The number of body frames refreshed by the rotating display device within one second is called body frame frequency.
  • the persistence of vision effect of the human eye requires that the body frame frequency is not less than 24Hz, so the rotating display device needs to refresh at least 24 body frames per second, that is to say, the rotation speed of the rotating display device is not less than 24 cycles per second (24r/s ).
  • the rotating display device includes a display panel that rotates around a fixed axis of rotation.
  • the display panel rotates once (i.e., one round)
  • the screen is refreshed once at different rotation angles (i.e., one slice image is displayed, one A sliced image is also called an electronic frame), so that with the rotation of the display panel and the principle of persistence of vision of the human eye, the rotating display device can display a three-dimensional image.
  • each pixel in the display panel rotates together with the display panel, and forms a voxel at the rotation angle of the display panel every time the picture is refreshed, that is, the pixel forms a plurality of voxels during one rotation.
  • FIG. 1 shows the distribution of voxels in the display process of the rotating display device in the first related art.
  • a cube represents a voxel V. Since the pixels in the display panel that are farther away from the rotation axis Z have longer arc lengths during the rotation process, the distribution of voxels V in the rotating display device in the display space is uneven, and there is a phenomenon that the voxels are sparse on the outside and dense on the inside.
  • the non-uniform distribution of voxels further leads to non-uniform brightness of the displayed 3D image, for example, in the displayed 3D image, the closer to the rotation axis, the higher the brightness, and the farther away from the rotation axis, the lower the brightness.
  • the display content can be uniformly processed by software algorithm in advance, and the commonly used processing method includes point cloud compression algorithm, such as octree compression algorithm.
  • point cloud compression algorithm such as octree compression algorithm.
  • part of the voxel data is discarded.
  • this part of the discarded voxel data is not displayed.
  • the corresponding voxel data in the rotating display device Not being lit is equivalent to removing some voxels. For example, the closer the position is to the rotation axis, the more voxels will be removed, so that the overall brightness of the displayed content tends to be uniform.
  • the resolution of the display panel is 120*200
  • the pixel pitch (Pixel Pitch) is 0.6 mm
  • one voxel frame includes 374 electronic frames.
  • the top view rendering of the voxel distribution of the rotating display device See (a) in Figure 2. If the point cloud compression is performed on the display content of the rotating display device, the top-view rendering of the user's visual voxel distribution can be referred to in (b) in FIG. 2 . It can be seen that the uniformity of the overall brightness of the displayed content after the uniform processing of the point cloud compression algorithm has been significantly improved during display.
  • the point cloud compression algorithm does not change the position of voxels, but only discards some voxels from the fixed positions shown in (a) in Figure 2 (that is, does not light up these voxels), resulting in The spacing between some adjacent voxels is small, and the spacing between some adjacent voxels is large, that is, there is still an uneven distribution of voxels.
  • (c) in FIG. 2 shows the distribution of voxels after the T portion of (b) in FIG. 2 is enlarged, and the above-mentioned defects can be clearly seen from the enlarged view of the T portion.
  • Embodiments of the present disclosure provide a rotating display device, which provides a new idea for improving the uneven distribution of voxels during the rotating display process.
  • FIG. 3 shows the structure of a rotating display device provided by an embodiment of the present disclosure.
  • the rotating display device 1 is used for displaying three-dimensional images.
  • the rotating display device 1 includes a display panel DP, and the display panel DP includes a pixel array 10 .
  • the pixel array 10 includes a plurality of pixel units (also referred to as pixels) P. Each pixel unit P in the pixel array 10 can be driven to work according to a pre-configured refresh frequency.
  • the rotating display device 1 further includes a control device 20 configured to control each pixel unit P to work at its own refresh rate.
  • the display panel DP may be a micro LED (including: miniLED or microLED) display panel, an OLED (Organic Light Emitting Diode, organic light emitting diode) display panel, a QLED (Quantum Dot Light Emitting Diodes, quantum dot light emitting diode) display panel Wait.
  • a micro LED display panel as an example, at this time, a pixel unit P may include multiple micro LEDs with different light emitting colors (eg, three primary colors).
  • the pixel array 10 can rotate around a rotation axis Z located in the pixel array 10 . If the pixel array 10 does not rotate, two-dimensional images can be displayed.
  • the axis of rotation Z refers to any axis located in the pixel array 10 .
  • its rotation axis Z may be located on one side of the pixel array 10, and for the convenience of description, the rotation axis Z is located on the side of the pixel array 10 below.
  • the rotating display device on one side is called the first rotating display device.
  • the axis of rotation Z is located at the center of the pixel array 10.
  • the axis of rotation Z is a symmetry axis of the pixel array 10.
  • the axis of rotation Z is located at the center of the pixel array 10.
  • the rotating display device in the center of the array is called the second rotating display device.
  • the display panel DP including the above-mentioned pixel array can be rotatably arranged.
  • the display panel DP is fixed on a rotating shaft in the rotating display device 1, and the rotation of the rotating shaft drives the display panel DP to rotate.
  • the pixel array 10 in the display panel DP rotates periodically around the rotation axis (ie, the extension line of the rotation axis) Z
  • a cylindrical display space W can be formed in the space, and at the same time, the display space W can be displayed by controlling the display panel DP.
  • a static or dynamic three-dimensional image can be displayed in the cylindrical display space W by specifying the image and controlling the transformation of the image.
  • the pixels of the second rotating display device are compared with the pixels of the first rotating display device (shown by (b) in Fig. 4).
  • the array is large, that is, when the display space W is constant, the second rotating display device includes more pixels than the first rotating display device, for example, the relationship between the two is twice.
  • a rotating display device with a larger pixel array can display more content.
  • the display content of the first rotating display device is equivalent to twice that of the second rotating display device. Therefore, when displaying the same three-dimensional image, within one voxel frame, the first rotating display device needs to refresh more images than the second rotating display device, that is, the required refresh frequency is higher.
  • the resolution of the display panel DP in the rotating display device is m ⁇ n, where m is the lateral resolution, the lateral direction refers to the direction perpendicular to the rotation axis Z, and m is the pixel array 10 along the The number of pixels in a row of pixel units P extending horizontally; n is the vertical resolution, the vertical direction refers to the direction parallel to the rotation axis Z, and n is the number of pixels in a row of pixel units P extending longitudinally in the pixel array 10 .
  • the pixel array 10 rotates around the rotation axis Z, the pixel units P in the pixel array 10 rotate together with the pixel array 10.
  • m can be an even number, at this time, the rotation axis Z is located between the two most central columns of pixel units, that is, between the m/2th column and the (m/2+1)th column of pixel units; m can also be an odd number , at this time, the rotation axis Z passes through the most central column of pixel units, that is, passes through the (m+1)/2th column of pixel units.
  • the pixel array 10 includes a plurality of pixel units P arranged in a plurality of pixel columns PL distributed along a direction perpendicular to the rotation axis Z, and each pixel unit P in each pixel column PL is arranged along a direction parallel to the rotation axis Z.
  • the directions of the axes are aligned and work at the same refresh rate.
  • the plurality of pixel units P forming the plurality of pixel columns PL in the pixel array 10 may be all the pixel units P in the pixel array 10 , of course, it may also be only a part of the pixel units P in the pixel array 10 .
  • each pixel PL may include the same number of pixel units P, for example, each pixel unit P is also arranged at equal intervals, so that a plurality of pixel units P in the pixel array 10 are arranged in a matrix
  • each pixel instance PL may also include a different number of pixel units P, for example, a plurality of pixel units P in the pixel array 10 are arranged in a triangular array.
  • the refresh frequency of the pixel units in a pixel column close to the rotation axis Z is smaller (i.e. lower than) the refresh frequency of the pixel units in a pixel column far away from the rotation axis. That is, there are at least two pixel columns with different distances from the rotation axis in the pixel array, and the refreshing frequencies of the two are different.
  • the magnitude of the refresh rate is also referred to as the level of the refresh rate. For example, the refresh rate of a pixel unit increases, that is, the refresh rate of a pixel unit increases.
  • the pixel array 10 includes a first pixel column and a second pixel column, wherein the distance between the first pixel column and the rotation axis Z is greater than the distance between the second pixel column and the rotation axis Z, and the pixels in the first pixel column
  • the refresh frequency of the units is greater than (ie, higher than) the refresh frequency of the pixel units in the second pixel column.
  • the first pixel column and the second pixel column are located on the same side of the rotation axis Z, or the first pixel column and the second pixel column are located on different sides of the rotation axis Z.
  • the first pixel column and the second pixel column may be any two columns in the pixel array.
  • the first pixel column is the pixel column PL(j ⁇ 1)
  • the second pixel column is the pixel column PL(j).
  • a pixel unit in the first pixel column F rotates once to form a plurality of first voxels V1
  • a pixel unit in the second pixel column S rotates once to form a plurality of second voxels V2.
  • each pixel unit in is lit 14 times per rotation
  • each pixel unit in the second pixel column S is lit 7 times per rotation, that is, when the body frame frequency is 24HZ, the pixels in the first pixel column F
  • one pixel unit in the first pixel row F can generate 14 first Voxel V1
  • one pixel unit rotation in the second pixel column S can generate 7 second voxels V2.
  • the first pixel column F Among the multiple voxels V1 generated by a pixel unit in the second pixel column S, the distance between two adjacent voxels V1 is relatively large; among the multiple voxels V2 generated by the pixel unit in the second pixel column S, the distance between two adjacent voxels V2 The distance between voxels is small, that is, the first voxel spacing is greater than the second voxel spacing; wherein, the first voxel spacing is the distance between two adjacent first voxels V1 (that is, the distance between two adjacent first voxels V1 The arc length between V1), the second voxel spacing is the distance between two adjacent second voxels V2 (that is, the arc length between two adjacent second voxels V2), so
  • the refresh frequency of the pixel units in the first pixel row F is doubled (from 168Hz to 336Hz)
  • the number of first voxels V1 generated by each pixel unit in the first pixel row F in a volume frame also increases. Doubled, the distance between two adjacent first voxels V1 decreases, then, compared with before the refresh frequency of the pixel units in the first pixel column F increases, the first voxel spacing is closer to the second voxel spacing
  • the pixel pitch makes the distribution of voxels generated by each pixel unit in the first pixel row F and the second pixel row S more uniform in the circumferential direction.
  • a pixel column far away from the rotation axis in the pixel array has a higher refresh frequency than a pixel column close to the rotation axis, that is, the number of photons generated by the pixel unit per unit time is more, and thus can Increasing the photon density increases the display brightness of a column of pixels away from the axis of rotation.
  • the refresh frequency of the pixel units in a pixel row may be referred to as the refresh frequency of the pixel row for convenience of description hereinafter.
  • the first pixel column is the plurality of pixel columns A pixel column PL(1) or PL(m) farthest from the rotation axis Z in the column
  • the second pixel column is any pixel column between the rotation axis Z and the first pixel column among the plurality of pixel columns , such as the pixel column PL(2).
  • the two pixel columns are two adjacent pixel columns, such as PL(1) and PL(2), wherein, one pixel column PL(1) away from the rotation axis is the first pixel column, and the other The pixel column PL(2) is the second pixel column.
  • every two adjacent pixel columns are respectively the first pixel column and the second pixel column, wherein one pixel away from the rotation axis One column is the first pixel column, and the other is the second pixel column.
  • the partial pixel rows are several consecutively distributed pixel rows PL(1)-PL(3) located on the same side of the rotation axis Z, along the direction away from the rotation axis,
  • the refresh frequency of each pixel row in the pixel rows PL(1)-PL(3) increases sequentially (that is, increases), the pixel row PL(1) is the first pixel row relative to the pixel row PL(2), and the pixel row PL(2) is the first pixel row relative to the pixel row PL(3);
  • the refresh frequencies of the rest of the pixel rows (for example, pixel rows PL(4) to PL(j)) can be equal to each other or not equal to each other , wherein the refresh frequency of the pixel column PL(4) may be equal to or lower than the refresh frequency of the pixel column PL(3).
  • the partial pixel columns may also be several pixel columns located on different sides of the rotation axis. For example, referring to (a) in FIG. 5A, the partial pixel columns are pixel columns PL(2) ⁇ PL(q+
  • every two adjacent pixel columns are respectively the first pixel column and the second pixel column, wherein one pixel column far away from the rotation axis is the first pixel column, and the other pixel column is the first pixel column. is the second pixel column.
  • each pixel row PL(1) ⁇ PL(q) (or pixel row PL(q+1) ⁇ PL(m)) located on the same side of the rotation axis rotates along the In the direction of the axis, the refresh frequency of each pixel column increases sequentially.
  • the refresh frequency of the pixel columns far away from the rotation axis is higher than that of the pixels close to the rotation axis
  • the number of lighting times per unit time of the pixel units of the pixel columns far away from the rotation axis is higher than that of the pixels close to the rotation axis.
  • the control device can control the pixel units in a pixel column to work at the same refresh frequency, and control the refresh frequency of each pixel unit in a pixel column far away from the rotation axis in the pixel array to be higher than that close to
  • the refresh frequency of each pixel unit in a pixel column of the rotation axis makes a pixel column far away from the rotation axis be lit more times than a pixel column close to the rotation axis, so that when the pixel array rotates at a certain angle, A pixel column close to the rotation axis has a short arc length and produces fewer voxels, and a pixel column far from the rotation axis has a long arc length and produces more voxels, which can improve the distance between the two pixel columns.
  • the non-uniform distribution of voxels caused by the different distances of the axes and the different lengths of arcs traversed is beneficial to improve the problem of uneven brightness of images displayed by the rotating display device.
  • a pixel group GP (J) may include one or more pixel columns, and when a pixel group GP includes a plurality of pixel columns, the number of pixel columns included in a part of the pixel group GP (J) may be the same,
  • each pixel group GP(J) in GP(1) ⁇ GP(M) includes two pixel columns, wherein, the number of pixel columns included in each pixel group can be designed according to needs, for example, one A pixel group includes three pixel columns, five pixel columns or ten pixel columns, etc.; in addition, in the case that a pixel group includes multiple pixel columns, the number of pixel columns included in each pixel group may also be different, for example , referring to FIG.
  • a pixel group GP(J) close to the rotation axis includes two pixel columns, and a pixel group GP(1) farthest from the rotation axis includes three pixel columns, wherein each pixel group includes The number of pixel columns can also be designed according to needs.
  • pixel columns in the pixel array are grouped, and the refresh frequency of each pixel group located on the same side of the rotation axis is increased sequentially along the direction away from the rotation axis, so that the pixel groups in the pixel array far away from the rotation axis are compared with those close to the rotation axis. If the refresh frequency of the pixel group on the rotation axis is higher, then the pixel array will show a trend of increasing the refresh frequency in the direction away from the rotation axis in units of pixel groups.
  • the unit is gradually homogenized to optimize the uniformity of voxel distribution to a certain extent.
  • a pixel group GP(J) may also include only one pixel column, and in the case that a pixel group GP(J) includes only one pixel column, the refresh frequency of each pixel column located on the same side of the rotation axis It increases sequentially in the direction away from the axis of rotation.
  • a pixel group includes a plurality of pixel columns
  • the control device since the refresh frequency of each pixel unit in a pixel group is the same, the control device does not need to change the refresh frequency of each pixel column one by one, but can use a refresh rate Simultaneously control multiple pixel columns, thereby simplifying the control method.
  • the groupings of the plurality of pixel columns located on different sides of the rotation axis may be different.
  • each pixel group includes the same number of pixel columns, while among multiple pixel groups located on the other side of the rotation axis, each pixel group includes the same number of pixel columns Different; as another example, among multiple pixel groups located on one side of the rotation axis, each pixel group includes the same number of pixel columns, among multiple pixel groups located on the other side of the rotation axis, each pixel group includes the same number of pixel columns The number of is also the same, however, the number of pixel columns included in each of the two pixel groups located on different sides of the rotation axis is different.
  • the refresh frequency of each pixel group arranged in a direction away from the rotation axis can also be increased according to a certain rule.
  • the refresh frequency of each pixel group arranged in a direction away from the rotation axis increases proportionally.
  • any The difference between the refresh frequencies of two adjacent pixel groups is equal, or the refresh frequency of each pixel group arranged in a direction away from the rotation axis is multiplied, for example, the ratio of the refresh frequencies of any two adjacent pixel groups is equal .
  • the refresh frequency of each pixel group arranged in the direction away from the rotation axis gradually increases, in addition to improving the uniformity of voxel distribution in units of pixel groups, it also takes into account It is difficult for the control device to control each pixel row with different refresh frequencies, which is beneficial to reduce the power consumption of the control device.
  • each pixel group GP(J) when the number of pixel columns included in each pixel group is different, each pixel group GP(J)
  • the specific number of included pixel columns can also be changed according to a certain rule. For example, the number of pixel columns included in each pixel group arranged in a direction away from the rotation axis decreases successively, such as pixel groups GP(3)-GP(1) , wherein the number of pixel columns included in pixel group GP(3) is greater than the number of pixel columns included in pixel group GP(2), and the number of pixel columns included in pixel group GP(2) is greater than that included in pixel group GP(1) The number of pixel columns.
  • the number of pixel columns included in each pixel group arranged in a direction away from the rotation axis is proportionally reduced, for example, the pixel group GP(3) includes three pixel columns, pixel group GP(2) includes two pixel columns, and pixel group GP(1) includes one pixel column.
  • the rotation axis Z of the rotating display device is a symmetry axis of the pixel array, and the refresh rates of two pixel columns located on different sides of the rotation axis Z and at the same distance from the rotation axis Z are same. That is to say, for the second rotating display device, the refresh frequency of each pixel column located on both sides of the rotating axis Z is symmetrical with respect to the rotating axis.
  • both sides of the rotation axis Z include the same number of pixel groups, each pixel group includes the same number of pixel columns, for example, each pixel group includes one pixel column, and the The refresh frequency of each pixel group GP(J) increases sequentially along the direction away from the rotation axis Z, for example, the body frame frequency is 24Hz, and along the direction away from the rotation axis Z, the refresh frequency of each pixel group is 168Hz, 336Hz, 504Hz in turn ... Then, in the second rotating display device, the refresh frequency of several pixel columns located in the center and continuously distributed is the minimum, for example, the minimum refresh frequency of the four pixel columns located in the center of the pixel array 10 and continuously distributed is 168 Hz.
  • each pixel column in the first rotating display device, is numbered 1, 2, 3...m in sequence from the direction farthest from the rotation axis to the direction closest to the rotation axis, and in the second rotation In the display device, each pixel column is numbered 1, 2, 3...m from one side of the pixel array to the other side, pd is the distance between two adjacent pixel units in the pixel array along the direction perpendicular to the rotation axis , can be called pixel pitch or pixel pitch (pixel pitch).
  • each pixel group includes only one pixel column, and the refresh frequency of each pixel column calculated in the above manner can be seen in FIG. 8B.
  • the refresh frequency of each pixel row is generally distributed in two symmetrical triangle shapes with respect to the rotation axis, and the two pixel rows PL(60) located on both sides of the rotation axis Z and closest to the rotation axis and PL(61) have the minimum refresh frequency of 240HZ.
  • the refresh frequency of each pixel column on both sides of the rotation axis gradually increases with the same tolerance, so that the two outermost pixel columns in the pixel array
  • the refresh rate can reach the maximum, for example, the refresh rate of the pixel columns PL(1) and PL(120) can reach 22440Hz.
  • the refresh rates of the pixel columns located on both sides of the rotation axis in the second rotating display device are not symmetrical with respect to the rotation axis, the refresh rates of the pixel columns at the same distance from the rotation axis on both sides of the rotation axis are different, so different refresh frequencies are generated
  • the refresh frequency of each pixel column located on both sides of the rotating axis it is preferable to set the refresh frequency of each pixel column located on both sides of the rotating axis to be symmetrical with respect to the rotating axis, so as to improve the uneven brightness of the three-dimensional image.
  • FIG. 9 shows the uniform distribution of voxels after the pixel array 10 in FIG. 8A is optimized according to the frequency distribution shown in FIG. 8B .
  • Fig. 9 is the voxel distribution diagram before optimization
  • Fig. 9 is the voxel distribution diagram after optimization
  • Fig. 9 is (b) in Fig. 9 Enlarged view of the T section. It can be seen from (c) in Fig. 9 that the voxel distribution ((c) in Fig. 9) of the rotating display device after the refresh frequency adjustment and optimization is compared with the software homogenization in the second related technology (the voxel distribution in Fig. 2 (c)), the distribution of voxels is more uniform.
  • the rotating display device is used as the second rotating display device
  • the control device 20 of the rotating display device includes a plurality of drivers M, and each driver M is coupled to a pixel unit P to form a driving display unit A.
  • one pixel unit P includes three sub-pixels R sub-pixel, G sub-pixel, and B sub-pixel; one driver M corresponds to one pixel unit P and is coupled to the pixel unit P.
  • the driver M may be a pixel driver chip (Pixel IC), the driver M is located on the display panel, and one driver M is arranged next to a pixel unit P, that is, one driver M is arranged next to the corresponding pixel unit P.
  • the driver M is configured to receive the driving information D, the driving information D includes: the identification and pixel data of at least one pixel unit P, and recognize that the identification of at least one pixel unit P includes the identification of the pixel unit coupled to it, according to the The refresh frequency of the pixel unit is driven according to the pixel data of the pixel unit coupled to it in the driving information D to drive the pixel unit coupled to it to work.
  • a pixel unit corresponds to a unique identifier in a rotating display device, that is, according to an identifier, only one corresponding pixel unit can be found in the rotating display device.
  • the identification of the pixel unit can be the name or address of the pixel unit, etc., for example, the identification of a pixel unit can be the position coordinates of the pixel unit in the pixel array, such as the pixel located in the first row and the first column of the pixel array.
  • the identifier of the pixel unit is P11
  • the identifier of the pixel unit located in row 1, column 2 in the pixel array is P12
  • the identifier of the pixel unit located in row i, column j in the pixel array is Pij.
  • the identifier of the pixel unit P may also be the identifier of the driver M, for example, may be an identification number (Chip ID) of the driver.
  • the identification of a pixel unit may be configured when the rotating display device leaves the factory, and written into the driver corresponding to the pixel unit. In this case, the identification of a pixel unit is fixed; or, a The identifiers of the pixel units are configured one by one during the display initialization process of the rotating display device. In this case, the identifier of a pixel unit is variable.
  • the identification of the pixel unit is unique in units of pixel columns, that is, the identification of each pixel unit in a pixel column is unique, and one identification can only be found in a pixel column corresponding to it.
  • the pixel units are identified by an identifier that differs from pixel units found in different pixel columns. For example, each pixel column includes 200 pixel units, then the identifiers of these pixel units may be their serial numbers, which are 1, 2, 3, . . . , 200, respectively.
  • each driver coupled to one pixel column is divided into at least two driver groups, and the identification of the pixel unit is unique in units of the driver group.
  • each pixel column includes 200 pixel units, correspondingly there are 200 drivers coupled to the pixel column, these 200 drivers can be equally divided into two driver groups, and the number of each driver in a driver group can be 1 respectively , 2, 3, .
  • the serial number of each driver may serve as an identification of the pixel unit coupled thereto.
  • a pixel unit is denoted by Pij hereinafter, and a driver coupled (corresponding) to the pixel unit Pij is denoted by Mij, wherein i indicates that the pixel unit is located in the i-th row, and j indicates that the pixel unit is located in the j-th column.
  • the pixel data of a pixel unit includes the pixel data of each sub-pixel in the pixel unit, for example, the pixel data of the pixel unit P is the gray scale of the three sub-pixels R, G, and B in the pixel unit.
  • a driver can drive the pixel unit to work according to the pixel data of the corresponding pixel unit. For example, the driver converts the gray levels of the three sub-pixels R, G, and B in the pixel data into corresponding data signals (such as data voltage) and Pulse Width Modulation (PWM for short) wave, and then drive each sub-pixel to control their respective luminous brightness according to their respective data signals and PWM waveforms, and then make a pixel unit emit light of the color corresponding to the pixel data.
  • data signals such as data voltage
  • PWM Pulse Width Modulation
  • the identifier of a pixel unit corresponds to the pixel data of the pixel unit, and the driving information D may include identifiers and pixel data of multiple pixel units.
  • the driver Mij can find the pixel unit Pij coupled (corresponding) to the driver Mij in the driving information through the identification of the pixel units Pij and drive the pixel unit Pij to work according to the found pixel data of the pixel unit Pij.
  • a piece of driving information Dj includes the identification and pixel data of each pixel unit in a pixel column.
  • each pixel unit in the pixel column PL1 to D120 updates pixel data. Since the pixel units in a pixel column PL(j) work at the same refresh frequency, each driver coupled to a pixel column can receive the driving information Dj at a fixed refresh frequency, and the frequency at which different pixel columns receive driving information can be different. same.
  • the drivers M11 ⁇ Mn1 corresponding to the pixel units P11 ⁇ Pn1 in the pixel column PL1 receive the driving information D1, wherein the driving information D1 includes identifications of all pixel units in the pixel column PL1 (including: 1,2,...,n) and pixel data D11 to Dn1.
  • the driver Mi1 When the driver Mi1 corresponding to a pixel unit Pi1 in the pixel column PL1 receives the driving information D1, the driver Mi1 inquires whether there is an identifier i in the driving information D1 (i is the identifier of the pixel unit Pi1, which can be stored in the driver Mi1, for example
  • the driver Mi1 includes a memory for storing the identification, such as a register, a cache, etc.), if the identification i is found, and the pixel data Di1 corresponding to the identification i is read, and the corresponding pixel is driven according to the read pixel data Di1 Unit Pi1 works.
  • a piece of driving information includes identification and pixel data of some pixel units in a pixel column in the current pixel frame, wherein the part of pixel units is a pixel unit whose pixel data has changed compared with the previous pixel frame . For example, if the pixel data of a pixel unit changes in a whole frame, the corresponding driving information does not include the pixel data of the pixel unit.
  • a pixel frame refers to the content presented when the pixel units in a pixel row are driven to work once (it can also be said to be a sub-image in an integrated frame), and it can also be called a pixel row frame.
  • the driver Mij is further configured to receive a frequency indication signal, the frequency of which is the refresh frequency of the pixel unit Pij coupled to the driver, and drive the pixels according to the frequency of the frequency indication signal according to the driving information Unit Pij works.
  • the driver Mij drives the pixel unit Pij to work according to the latest stored pixel data of the pixel unit Pij in response to the trigger edge (rising edge or falling edge) of the frequency indication signal.
  • the frequency of the frequency indication signal is the above-mentioned Vsync frequency
  • the driver Mij drives the pixel unit Pij to work according to the latest stored pixel data of the pixel unit Pij in response to each trigger edge (rising edge or falling edge) of the Vsync signal.
  • the driving information D1 includes identification and pixel data of the pixel unit P21 and the pixel unit P31.
  • each driver compares the identifier included in the driving information D1 with the identifier stored in itself, for example, the identifier stored in the driver M21 is 2, and the driver M21 can find the Identify the pixel data corresponding to 2; and store the pixel data corresponding to 2, for example, in a memory (for example, a storage circuit such as a register or a cache), and drive the pixel unit P21 according to the stored pixel data and the received Vsync frequency
  • the driver M31 can also read and store the pixel data of the pixel unit P31 from the driving information D1 according to the identification 3, and drive the pixel unit P31 to work according to the Vsync frequency according to the read pixel data.
  • the driving information includes the pixel data of the pixel units whose pixel data needs to be updated, and does not include The corresponding pixel data, in this way, can reduce the amount of data that needs to be transmitted during the display process of the rotating display device.
  • the driver Mij is further configured to identify that the identifier of at least one pixel unit included in the received driving information does not include the identifier of the pixel unit Pij coupled to it, and drive Pixel unit Pij maintains the currently displayed color.
  • the driving information received by the driver Mij this time does not include the pixel unit Pij in the current pixel frame.
  • the pixel data of the frame work needs to drive the pixel unit Pij to work according to the latest one of the historically received pixel data of the pixel unit Pij (hereinafter simply referred to as the latest historical pixel data).
  • the driver Mij works according to the pixel data of the y-1th pixel frame.
  • the driver Mij drives the pixel unit Pij to work according to the pixel data of the y-1 pixel frame according to the pixel data of the y-2 pixel frame, and also according to the pixel data of the y-2 pixel frame in the y-th pixel frame, which is equivalent to according to the pixel data of the y-2 pixel frame
  • the pixel data of the y-1 pixel frame drives the pixel unit Pij to work.
  • a driver Mij can also include a storage circuit (or memory) to store the pixel data of the pixel unit Pij received each time to prevent the drive information received by the next pixel frame from not including the pixel data.
  • pixel data of the unit Pij then the driver Mij can also drive the corresponding pixel unit Pij to work according to the pixel data stored in the storage circuit.
  • the drivers M11-Mn1 corresponding to the pixel units P11-Pn1 in the pixel column PL1 receive the driving information D1, wherein the driving information D1 includes identification and pixel data of some pixel units in the pixel column PL1
  • the driving information D1 includes identification and pixel data of the pixel unit P21 and the pixel unit P31. If the driver M11 does not find the identifier P11 in the driving information, the driver M11 will drive the pixel unit P11 to work according to the stored pixel data and the received Vsync frequency, so that the pixel unit P11 can maintain the currently displayed color.
  • a piece of driving information may also include identifiers of all pixel units in a pixel column and pixel data of some pixel units.
  • a driver Mij finds the logo of the pixel unit Pij in the received driving information D, but the pixel data corresponding to the logo Pij is empty, then, the pixel unit Pij does not need to update the pixel data, and the driver Mij based on the stored pixel data and received The pixel unit Pij is driven to work at the Vsync frequency obtained.
  • the driver can continue to drive the corresponding pixel unit to work according to the pixel data of the last pixel frame (the pixel data used in the display of the last pixel frame), so that the currently displayed color of the pixel unit can be maintained, avoiding the The brightness attenuation problem caused by the failure of the pixel unit to be driven without pixel data update for a long time.
  • the driver Mij is further configured to store the received pixel data of the pixel units Pij coupled to it one by one according to the writing frequency, and read the stored data according to the order of storage at the refresh frequency of the pixel units Pij. pixel data, so that according to the refresh frequency of the pixel unit Pij, the pixel unit Pij is driven to work according to the read pixel data.
  • the write frequency is greater than or equal to the refresh frequency of the pixel unit coupled thereto.
  • the writing frequency of the driver Mij is the frequency at which the driver Mij writes the pixel data of the pixel unit Pij coupled to it.
  • the writing frequency of the driver Mij is the refresh frequency of the pixel unit Pij.
  • a piece of driving information includes the identification and pixel data of each pixel unit in a pixel column PL(j), and the frequency of the driving information received by each driver (M1j, M2j, ..., Mnj) is the pixel coupled to the driver.
  • the refresh rate of the units (P1j, P2j, . . . , Pnj) that is, the refresh rate of the pixel column PL(j).
  • each driver Every time each driver receives a piece of driving information, it can find the pixel data corresponding to the pixel unit from the driving information, and write (store) the pixel data (for example, write the pixel data to the memory of the driver), and according to the written
  • the pixel data drives the corresponding pixel unit to work.
  • a piece of driving information only includes the identification and pixel data of some pixel units in a pixel column PL(j), and the driver (part of M1j, M2j, ..., Mnj) coupled to this part of pixel units writes (store) the read pixel data, and the other drivers (remaining parts of M1j, M2j, .
  • a piece of driving information includes the identification of all pixel units (P1j, P2j, ..., Pnj) in a pixel column PL(j) and the pixel data of some pixel units (a part of P1j, P2j, ..., Pnj).
  • the driver continuously reads or copies the pixel data of the previous pixel frame from the driving information at the refresh frequency of each pixel unit, and writes the corresponding pixel data of each pixel frame, so that the driver can find the corresponding pixel data in each pixel frame.
  • the pixel data drives the corresponding pixel unit to work, which avoids display errors caused by data reading errors, and is conducive to improving display accuracy.
  • the writing frequency of the driver Mij (any driver) is greater than or equal to the refresh frequency of each pixel unit (m*n pixel units), specifically, the writing frequency of each driver (m*n drivers) may be equal to and greater than or equal to the maximum value among the refresh frequencies of m*n pixel units (hereinafter referred to as the maximum refresh frequency in the pixel array).
  • the driver writes the received multiple pixel data of the pixel unit coupled to it one by one according to the writing frequency, and reads the stored pixel data one by one according to the order of storage at the refresh frequency of the corresponding pixel unit , so that the driver drives the pixel unit coupled to the driver to work according to the read pixel data according to the refresh frequency of the pixel unit coupled to the driver.
  • the driver corresponding to each pixel unit will sequentially drive the pixel units according to their respective refresh frequencies according to the plurality of pixel data received at the writing frequency, thereby reducing the difficulty of controlling the writing frequency.
  • driver Mij includes: a store queue.
  • the driver Mij is configured to receive the pixel data of the pixel unit Pij, write the received pixel data of the pixel unit Pij into the storage queue at the write frequency, and read the pixels from the storage queue in the order of writing at the read frequency
  • the pixel data of the unit Pij is used to generate a drive signal based on the read pixel data.
  • the reading frequency is the refresh frequency of the pixel unit coupled thereto; the driving signal is configured to drive the pixel unit Pij to work.
  • the driver Mij includes: a receiver 211 , a memory 212 , a storage queue 213 , a controller 214 , a data driver 215 and a data converter 216 .
  • the receiver 211 is configured to receive the pixel data of the pixel unit Pij coupled thereto; the memory 212 is configured to store the write frequency f1 and the read frequency f2, and the read frequency f2 is the refresh frequency of the pixel unit Pij; the controller 214 is controlled by It is configured to write the pixel data received by the pixel unit Pij into the storage queue 213 at the writing frequency f1; and at the reading frequency f2, read the pixel data from the storage queue 214 in the order of writing, and write the read
  • the pixel data is transmitted to the data driver 215; the data driver 215 is configured to generate a driving signal according to the received pixel data, and the driving signal is configured to drive the pixel unit Pij to work.
  • the write frequencies of the drivers corresponding to each pixel unit are the same and equal to the maximum refresh frequency in the pixel array, and the driver Mij is configured to receive a plurality of pixels of the pixel unit Pij through the receiver 211.
  • the pixel data for example, the pixel data received by the receiver 211 is the pixel data of the pixel unit Pij identified by the controller 214 in the driver Mij.
  • the controller 214 writes the pixel data in the receiver 211 into the storage queue 213 at the writing frequency f1.
  • the controller 214 works according to the first clock signal (a clock signal compatible with the writing frequency f1), for example, at the rising edge of each signal, it is determined whether the receiver 211 has received the pixel data of the pixel unit Pij, and if so, Write the pixel data of the pixel unit Pij received into the storage bit in the storage queue 213 sequentially; if not, copy the pixel data of the pixel unit Pij stored in the previous storage bit to the current storage bit to be written.
  • the controller 214 also sequentially reads the pixel data from the storage queue 214 according to the writing order at the reading frequency f2, and transmits the read pixel data to the data driver 215 .
  • the data converter 216 converts the received pixel data into digital analog signals, and the process may include: the controller 214 controls the data converter 216 to generate a data signal Vdata and a driving time control signal (such as a PWM wave) according to the pixel data output by the storage queue .
  • a driving time control signal such as a PWM wave
  • the data driver 215 generates a driving signal according to the data analog signal, and the process includes: the data driver 215 generates a driving signal for controlling the sub-pixel to emit light according to the corresponding data signal Vdata and PWM wave.
  • the driving signal includes a driving signal Dr of the R sub-pixel, a driving signal Dg of the G sub-pixel, and a driving signal Db of the B sub-pixel.
  • the control device 20 further includes a processor 220 .
  • the processor 220 is coupled to the plurality of drivers M11 -Mnm on the display panel through a plurality of signal lines, and is configured to send driving information to each driver Mij.
  • the processor 220 sends driving information D1 to Dm to each driver Mij in the pixel array at the same time in units of pixel columns, where one piece of driving information Dj may include identifiers and IDs of multiple pixel units.
  • Pixel data may include identifiers and IDs of multiple pixel units.
  • the processor 220 can also use the pixel row as a unit to send driving information to the driver corresponding to a row of pixel units at the same time, for example, a pixel row is coupled to a gate line, and a pixel column is connected to a data line. Line coupling.
  • the rotating display device further includes a plurality of data lines, and the drivers coupled to each of at least two pixel units in a pixel column are coupled to the processor 220 through a data line, and the processor 220 is controlled by It is configured to send driving information to each driver coupled to one data line, and the driving information includes: an identification and pixel data of at least one pixel unit among the at least two pixel units coupled to the one data line.
  • the driver Mij corresponding to each pixel unit in each pixel column is coupled to the processor 220 through the same data line DTj.
  • the processor 220 can transmit the driving information Dj to a corresponding driver Mij through the data line DTj.
  • the drivers M11-Mn1 corresponding to the pixel units in the pixel column PL1 are coupled to the processor 220 through the data line DT1, and the pixel column PL1 receives the driving information D1 sent by the processor 220 through the data line DT1.
  • the drivers M12 - Mn2 corresponding to the pixel units are coupled to the processor 220 through the data line DT2 and the pixel column PL2 receives the driving information D2 sent by the processor 220 through the data line DT2 .
  • each driver coupled to a pixel column is divided into at least two driver groups, wherein each driver in one driver group is coupled to the processor through a data line, and drivers in different driver groups are coupled to the processor through different The data line is coupled with the processor. That is, each driver coupled to one pixel column is coupled to the processor through at least two data lines, wherein each driver of the respective drivers is coupled to the processor through one data line.
  • each driver coupled to a pixel column is coupled to the processor 220 through two data lines, for example, the drivers of the pixel units in the first 1/2 pixel column are coupled to one data line, That is, the pixel units located in the pixel rows RW1-RW100 in a pixel column are coupled to one data line; the drivers of the pixel units in the last 1/2 pixel column are coupled to another data line, that is, the The pixel units located in the pixel rows RW101 - RW200 are coupled to another data line.
  • the driving information transmitted by one data line includes at most the identification and pixel data of half of the pixel units in the pixel column, thereby reducing the cost of one piece of driving information.
  • the amount of data contained When each driver in a pixel column is coupled to the processor through more than two data lines, the amount of data included in the driving information transmitted by one data line can be smaller, but since one data line needs to communicate with one of the processors pin coupling, then, when the number of data lines increases, the number of pins of the processor must increase accordingly. For example, referring to FIG. 14 , when a pixel column is coupled to the processor 220 through two data lines, the number of pins of the processor 220 increases by 120.
  • each driver coupled to a pixel column is coupled to the processor 220 through two data lines
  • the number of drivers coupled to each data line may not be equal, so the maximum number of pixels included in one piece of driving information
  • the identity of the cell and the amount of pixel data may also vary accordingly.
  • the processor is configured to send driving information to each driver at a first sending frequency corresponding to each driver, wherein the first sending frequency corresponding to each driver is equal to the pixel unit coupled to the driver. Refresh frequency; or, the processor is configured to send the driving information to each driver at a second sending frequency, wherein the second sending frequency is greater than or equal to the refresh frequency of each pixel unit in the pixel array.
  • the processor sends driving information to each driver at the first sending frequency corresponding to each driver.
  • the processor since The refresh frequency of each pixel unit in a pixel column is the same, different processors can send driving information to each driver through a data line at the first sending frequency, see Figure 16, which shows the pixel array shown in Figure 8A according to the Schematic diagram of sending driving information to each pixel column at the frequency shown in 8B.
  • the driver information sent by the processor to the driver includes the corresponding pixel data of the driver.
  • a piece of driving information sent by the processor only includes the identification and pixel data of some pixel units, which can be significantly reduced.
  • the plurality of pixel units are also arranged into a plurality of pixel rows RW1 - RW200 along a direction perpendicular to the rotation axis.
  • the rotating display device further includes: a plurality of gate lines G1 - G200 , and the respective drivers coupled to at least two pixel units in a pixel row are coupled to the processor 220 through one gate line.
  • a plurality of gate lines G1 - G200 the respective drivers coupled to at least two pixel units in a pixel row are coupled to the processor 220 through one gate line.
  • each driver M11-M1m corresponding to the pixel row RW1 is coupled to the processor 220 through a gate line G1
  • each driver M21 ⁇ M2m corresponding to the pixel row RW2 is coupled to the processor 220 through the gate line G2 , and so on.
  • the processor 220 is further configured to send a turn-on signal to each driver Mij coupled to one gate line Gi, and to send an identification Pij of the pixel unit coupled to each driver to each driver Mij.
  • the driver Mij is further configured to receive a turn-on signal, and in response to the turn-on signal, receive the identifier Pij of the pixel unit coupled to the driver, and write the received identifier Pij of the pixel unit into the driver Mij.
  • the identifier Pij of each pixel unit can be written one by one during the initialization process of the rotating display device 1.
  • the processor 220 may write the identifier Pij of the corresponding pixel unit to the drivers Mij respectively coupled to the row of pixel units through the data lines DT1 ⁇ DTj.
  • the processor 220 firstly transmits the enable signal to each driver M11-M1 coupled to the pixel row RW1 through the gate line G1, and then writes corresponding The identification of the pixel unit, since the drivers M11 ⁇ M1j corresponding to the pixel row RW1 are respectively located in different pixel columns, the drivers M11 ⁇ M1j are respectively coupled to a data line, and each data line transmits the identification Pij of each driver Mij corresponding to the pixel unit to the corresponding driver Mij; then, the processor 220 transmits the turn-on signal to each driver M21 ⁇ M2j coupled to the pixel row RW2 through the gate line G2, and then couples to the pixel row RW2 through the plurality of data lines DT1 ⁇ DTj respectively Each of the drivers M21 - M2j writes the identifier Pij of the corresponding pixel unit, and so on, until all the pixel units in the pixel array have written their corresponding identifiers.
  • the order in which the processor 220 writes the identifier Pij of the pixel unit to the driver Mij corresponding to each pixel row RW1-RWi may not be implemented in accordance with the order described in the above-mentioned embodiments.
  • the driver corresponding to a pixel row RWn writes the logo, and finally writes the logo to the driver corresponding to the first pixel row RW1 in the pixel array, or, the processor 220 can first write the logo to the pixel row corresponding to the middle pixel row in the pixel array.
  • Drive write ID the order in which the processor 220 writes the identifier Pij of the pixel unit to the driver Mij corresponding to each pixel row RW1-RWi
  • the rotating display device further includes a plurality of switches (such as analog switches), and the processor is coupled to at least two grid lines through one analog switch; wherein, the number of grid lines coupled to one analog switch is the same as one The number of data lines coupled to the pixel columns is the same.
  • switches such as analog switches
  • the rotary display device 1 includes a plurality of analog switches Vcc configured to control the transmission of a turn-on signal to each driver.
  • the processor 220 is coupled to the analog switch Vcc (k) (any one of the plurality of analog switches), the processor 220 can control the opening and closing of the analog switch Vcc (k), and the processor 220 controls an analog
  • the switch Vcc(k) is turned on, the gate line coupled to the analog switch Vcc(k) sends a turn-on signal to the driver coupled to the gate line.
  • the processor 220 can control one analog switch Vcc(k) to be turned on, so that the at least two gate lines can be connected to the at least two gate lines.
  • the coupled driver sends a turn-on signal.
  • the analog switch Vcc1 is coupled to the gate line G1, the gate line G100, the analog switch Vcc100 is coupled to the gate line G101, the gate line G1200, and so on.
  • the processor 220 writes the identification to each driver. Since the gate line G1 and the gate line G100 simultaneously send the start signal to the pixel row RW1 and the pixel row RW100, the corresponding drivers of the pixel row RW1 and the pixel row RW100 After receiving the corresponding turn-on signal, the processor 220 can simultaneously write the identifiers of the corresponding pixel units to the drivers coupled to the pixel row RW1 and the pixel row RW100 . Similarly, the drivers corresponding to other pixel rows may also sequentially write the identifiers of the corresponding pixel units in every two rows, which will not be repeated here.
  • the rotating display device may further include a power supply device PS, for example, the power supply device PS is coupled to the processor 220 and the plurality of analog switches, and is configured to provide power to the processor 220 and the plurality of analog switches, so as to Effective control of the plurality of analog switches by the processor 220 is ensured.
  • the power supply device PS is coupled to the processor 220 and the plurality of analog switches, and is configured to provide power to the processor 220 and the plurality of analog switches, so as to Effective control of the plurality of analog switches by the processor 220 is ensured.
  • Embodiments of the present disclosure also provide a driving method for the rotating display device described in any one of the above embodiments.
  • the driving method includes:
  • the processor 220 sends driving information D to each driver M coupled to one data line DT, and the driving information D includes: at least one pixel in the at least two pixel units coupled to the one data line The cell's identity and pixel data.
  • the processor 220 is coupled to a plurality of drivers M through a plurality of data lines DT, for example, the plurality of drivers M are located in the display panel 10, and one driver corresponds to and is coupled to one pixel unit P.
  • Each pixel column PL1 - PL120 is coupled to the processor 220 through data lines DT1 - DTn respectively.
  • the processor 220 sends the driving information to the driver corresponding to a pixel column through the data line DT, for example, sends the driving information D1 to the drivers M11-Mm1 corresponding to the pixel column PL1 through the data line DT1; sends the driving information D1 to the driver corresponding to the pixel column PLi through the data line DTi M1i to Mmi transmit drive information Di.
  • the driver Mij receives the driving information Di, and when the identifier of the at least one pixel unit includes the identifier Pij of the pixel unit coupled to it, according to the refresh frequency of the pixel unit coupled to it, according to The pixel data Dij of the pixel unit coupled to it in the driving information drives the pixel unit coupled to it to work; the identification of the at least one pixel unit does not include the identification of the pixel unit coupled to it In the case of Pij, the pixel unit coupled to the pixel unit is driven to maintain the currently displayed color according to the refresh frequency of the pixel unit coupled to the pixel unit.
  • the driver Mij compares the multiple identifiers included in the driving information Dj with the identifiers Pij in its internal memory, if the driver information Dj includes the identifier Pij, Then read the pixel data Dij corresponding to the logo Pij, and generate a driving signal according to the pixel data Dij, and drive the corresponding pixel unit to work through the driving signal.
  • the driving signal includes the respective driving signals Dr, Dg of the R, G, and B sub-pixels , Db; if the drive information Dj does not include the identification Pij, then the driver Mij generates a drive signal according to the pixel data Dij' in its memory, and drives the corresponding pixel unit to work through the drive signal, for example, the pixel data Dij' is For the pixel data of a pixel frame, the driving signals Dr', Dg', and Db' of the R, G, and B sub-pixels of this pixel frame are the same as the respective driving signals of the R, G, and B sub-pixels of the previous pixel frame, and the pixel unit Displays the same color as the previous pixel frame.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

本公开的实施例提供一种旋转显示装置及其驱动方法。所述旋转显示装置包括:像素阵列和控制装置。其中。像素阵列可绕位于像素阵列中的一条旋转轴线转动,像素阵列包括多个像素单元,所述多个像素单元排成沿垂直于所述旋转轴线的方向分布的多个像素列,每个像素列中的各个像素单元沿平行于旋转轴线的方向排列,且以相同的刷新频率工作;靠近所述旋转轴线的一个像素列中的像素单元的刷新频率小于远离所述旋转轴线的一个像素列中的像素单元的刷新频率。控制装置被配置为控制所述每个像素列中的像素单元以所述像素列相应的刷新频率工作。

Description

旋转显示装置及其驱动方法 技术领域
本公开涉及显示技术领域,尤其涉及一种旋转显示装置及其驱动方法。
背景技术
旋转立体显示技术是一种真三维的显示技术,用户观看旋转立体显示装置时无需佩戴3D眼镜即可看到立体图像。旋转立体显示装置是利用显示面板的高速旋转结合人眼的视觉暂留效应,形成立体显示空间,从而实现三维显示效果。
发明内容
一方面,提供一种旋转显示装置,包括:像素阵列和控制装置。像素阵列可绕像素阵列中的一条旋转轴线转动,所述像素阵列包括多个像素单元,所述多个像素单元排成沿垂直于所述旋转轴线的方向分布的多个像素列,每个像素列中的各个像素单元沿平行于所述旋转轴线的方向排列,且以相同的刷新频率工作;靠近所述旋转轴线的一个像素列中的像素单元的刷新频率小于远离所述旋转轴线的一个像素列中的像素单元的刷新频率。控制装置被配置为控制所述每个像素列中的像素单元以所述像素列相应的刷新频率工作。
在一种可能的实现方式中,所述多个像素列分成多个像素组,每个像素组包括:连续分布的至少一个像素列,所述每个像素组中的各个像素单元的刷新频率相同;位于所述旋转轴线同侧的多个像素列中,沿远离所述旋转轴线的方向排列的各个像素组的刷新频率逐渐增大。
在一种可能的实现方式中,所述多个像素组中,每个所述像素组包含相同列数的像素列;或者,所述多个像素组中,位于所述旋转轴线同侧的多个像素列中,沿远离所述旋转轴线的方向排列的各个像素组包括的像素列的数量依次减少。
在一种可能的实现方式中,位于所述旋转轴线同侧的多个像素列中,沿远离所述旋转轴线的方向排列的所述各个像素组的刷新频率构成等差数列。
在一种可能的实现方式中,所述远离旋转轴线的一个像素列中的每个像素单元形成多个第一体素,所述远离旋转轴线的一个像素列中的每个像素单元形成多个第二体素。第一体素间距等于第二体素间距,其中,所述第一体素间距为相邻两个第一体素之间的距离;所述第二体素间距为相邻两个第二体素之间的距离。
在一种可能的实现方式中,所述旋转轴线为所述像素阵列的对称轴;位 于所述旋转轴线不同侧且到所述旋转轴线的距离相同的两个像素列的刷新频率相同。
在一种可能的实现方式中,所述控制装置包括多个驱动器,每个驱动器与一个像素单元耦接;所述驱动器被配置为接收驱动信息,所述驱动信息包括:至少一个像素单元的标识和像素数据,并识别所述至少一个像素单元的标识中包含所述与其耦接的像素单元的标识,按照所述与其耦接的像素单元的刷新频率,根据所述驱动信息中所述与其耦接的像素单元的像素数据驱动所述与其耦接的像素单元工作。
在一种可能的实现方式中,所述驱动器还被配置为识别所述至少一个像素单元的标识中不包含所述与其耦接的像素单元的标识,按照所述与其耦接的像素单元的刷新频率,驱动所述与其耦接的像素单元维持当前显示的颜色。
在一种可能的实现方式中,所述驱动器还被配置为接收所述频率指示信号和所述驱动信息,所述频率指示信号的频率为与所述驱动器耦接的像素单元的刷新频率;并按照所述频率指示信号的频率,根据所述驱动信息驱动与所述驱动器耦接的像素单元工作;或者,所述驱动器还被配置为按照写入频率,将接收到的所述与其耦接的像素单元的像素数据逐一存储,并以所述与其耦接的像素单元的刷新频率,按照存储的顺序读取存储的像素数据,以使得按照所述与其耦接的像素单元的刷新频率,根据所述读取的像素数据驱动所述与其耦接的像素单元工作;其中,所述写入频率大于或等于所述与其耦接的像素单元的刷新频率。
在一种可能的实现方式中,所述驱动器包括:存储队列;所述驱动器被配置为接收所述与其耦接的像素单元的像素数据;以所述写入频率,将接收到所述与其耦接的像素单元的像素数据写入所述存储队列;并以读取频率,按照所述写入的顺序从所述存储队列中读取所述像素数据,其中,所述读取频率为所述与其耦接的像素单元的刷新频率;根据读取的所述像素数据,生成驱动信号,所述驱动信号被配置为驱动所述与其耦接的像素单元工作。
在一种可能的实现方式中,所述控制装置还包括处理器,所述处理器与所述多个驱动器耦接,被配置为向每个驱动器发送所述驱动信息。
在一种可能的实现方式中,所述旋转显示装置还包括多条数据线;一个像素列中的至少两个像素单元各自耦接的驱动器通过一条数据线与所述处理器耦接;所述处理器被配置为向与所述一条数据线耦接的各个驱动器发送驱动信息,所述驱动信息包括:与所述一条数据线耦接的所述至少两个像素单元中的至少一个像素单元的标识和像素数据。
在一种可能的实现方式中,一个像素列耦接的各个驱动器分成至少两个驱动器组,其中,一个驱动器组中的各个驱动器通过一条数据线与所述处理器耦接,不同驱动器组中的驱动器通过不同数据线与所述处理器耦接。
在一种可能的实现方式中,所述处理器被配置为以每个驱动器对应的第一发送频率,向所述每个驱动器发送所述驱动信息;所述每个驱动器对应的第一发送频率等于与所述驱动器耦接的像素单元的刷新频率;或者,所述处理器被配置为以第二发送频率,向每个驱动器发送所述驱动信息;所述第二发送频率大于等于所述像素阵列中各个像素单元的刷新频率。
在一种可能的实现方式中,与一个驱动器耦接的像素单元在当前像素帧的像素数据与在上一像素帧的像素数据不同的情况下,所述处理器向所述驱动器发送的所述驱动信息中包括所述像素单元的标识和在当前像素帧的像素数据;与一个驱动器耦接的像素单元在当前像素帧的像素数据与在上一像素帧的像素数据相同的情况下,所述处理器向所述驱动器发送的所述驱动信息中不包括所述像素单元的标识和在当前像素帧的像素数据。
在一种可能的实现方式中,所述多个像素单元还沿垂直于所述旋转轴线的方向排成多个像素排;所述旋转显示装置还包括多条栅线;一个像素排中的至少两个像素单元各自耦接的驱动器通过一条栅线与所述处理器耦接;所述处理器还被配置为向与所述一条栅线耦接的各个驱动器发送开启信号,还被配置为向各个驱动器发送与每个驱动器耦接的像素单元的标识;所述驱动器还被配置为接收所述开启信号,并响应于所述开启信号,接收与所述驱动器耦接的像素单元的标识,并将接收到的所述像素单元的标识写入所述驱动器中。
在一种可能的实现方式中,所述旋转显示装置还包括多个开关,所述处理器通过一个开关与至少两条栅线耦接;其中,与所述一个开关耦接的栅线的数量与一个像素列耦接的数据线的数量相同。
第二方面,提供一种旋转显示装置的驱动方法,包括:
处理器向与一条数据线耦接的各个驱动器发送驱动信息,所述驱动信息包括:与所述一条数据线耦接的所述至少两个像素单元中的至少一个像素单元的标识和像素数据;
驱动器接收所述驱动信息,并在所述至少一个像素单元的标识中包含与其耦接的像素单元的标识的情况下,按照所述与其耦接的像素单元的刷新频率,根据所述驱动信息中所述与其耦接的像素单元的像素数据驱动所述与其耦接的像素单元工作;在所述至少一个像素单元的标识中不包含所述与其耦 接的像素单元的标识的情况下,按照所述与其耦接的像素单元的刷新频率,驱动所述与其耦接的像素单元维持当前显示的颜色。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为相关技术中的旋转显示装置的体素分布的立体图;
图2为相关技术中的旋转显示装置的体素分布的俯视图;
图3为本公开的一些实施例提供的一种旋转显示装置的结构图;
图4为本公开的一些实施例提供的旋转显示装置中像素阵列的转动示意图;
图5A为本公开的一些实施例提供的一种显示面板的结构图;
图5B为本公开的一些实施例提供的另一种显示面板的结构图;
图6为本公开的一些实施例提供的像素阵列中的其中两个像素列的体素分布的俯视图;
图7A~图7D为本公开的一些实施例提供的一些显示面板的结构图;
图8A为本公开的一些实施例提供的又一种显示面板的结构图;
图8B为图8A所示的显示面板中的像素阵列的刷新频率分布图;
图9为本公开的一些实施例提供的旋转显示装置的体素分布的俯视图;
图10为本公开的一些实施例提供的一种显示面板的结构图;
图11为本公开的一些实施例提供的一种驱动器的结构图;
图12为本公开的一些实施例提供的一种控制装置的结构图;
图13为本公开的一些实施例提供的一种旋转显示装置的结构图;
图14为本公开的一些实施例提供的另一种旋转显示装置的结构图;
图15为本公开的一些实施例提供的又一种旋转显示装置的结构图;
图16为本公开的一些实施例提供的又一种旋转显示装置的结构图;
图17为本公开的一些实施例提供的一种旋转显示装置的驱动方法的信号传输图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。又如,描述一些实施例时可能使用了术语“耦接”以表明两个或两个以上部件有直接物理接触或电接触。然而,术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
如本文中所使用,根据上下文,术语“如果”任选地被解释为意思是“当……时”或“在……时”或“响应于确定”或“响应于检测到”。类似地,根据上下文,短语“如果确定……”或“如果检测到[所陈述的条件或事件]”任选地被解释为是指“在确定……时”或“响应于确定……”或“在检 测到[所陈述的条件或事件]时”或“响应于检测到[所陈述的条件或事件]”。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
对本文使用的技术术语进行示意性说明:
体帧:旋转显示装置的像素阵列旋转一周刷新出的一个三维图像称为一个体帧。
体帧频率:一秒内旋转显示装置刷新出的体帧数量称为体帧频率。例如,人眼视觉暂留效应要求体帧频率不小于24Hz,因此旋转显示装置每秒钟至少需要刷新24个体帧,也就是说,旋转显示装置的旋转速度不小于每秒24周(24r/s)。
在相关技术一中,旋转显示装置包括围绕固定的旋转轴线旋转的显示面板,显示面板在旋转一圈(即一周)的过程中,在不同旋转角度处刷新一次画面(即显示一个切片图像,一个切片图像也称为一个电子帧),这样随着显示面板的旋转并结合人眼的视觉暂留原理,旋转显示装置可显示三维图像。其中,显示面板中的每个像素随着显示面板一同旋转,在显示面板每次刷新画面时所处于旋转角度处形成一体素,即在旋转一圈的过程中,该像素形成多个体素。
图1示出了相关技术一中的旋转显示装置在显示过程中的体素分布。参见图1,一个立方体代表一个体素V。由于显示面板中距离旋转轴线Z越远的像素,在旋转过程中划过的弧长越长,使得旋转显示装置的体素V在显示空间中的分布不均匀,存在外疏内密的现象。体素分布的不均匀进一步导致显示的三维图像的亮度不均匀,例如,显示的三维图像中距离旋转轴线越近的部分,亮度越高,距离旋转轴线越远的部分,亮度越低。
在相关技术二中,可以事先通过软件算法对显示内容做均匀化处理,常用的处理方法包括点云压缩算法,例如八叉树压缩算法。经过软件算法处理后的显示内容,舍弃了部分体素数据,在旋转显示装置显示处理后的显示内容时,这部分舍弃了的体素数据不被显示,此时旋转显示装置中相应的体素不被点亮,相当于去掉了部分体素,例如,越靠近旋转轴线的位置,去掉的体素数量越多,进而使得显示内容的整体亮度趋于均匀化。
例如,一旋转显示装置中,显示面板的分辨率为120*200,像素间距(Pixel  Pitch)为0.6mm,一个体帧包括374个电子帧,此时该旋转显示装置体素分布的俯视效果图可以参见图2中的(a)。若对该旋转显示装置的显示内容进行点云压缩,则用户视觉上体素分布的俯视效果图可以参见图2中的(b)。可见,经过点云压缩算法均匀处理后的显示内容,在显示时整体亮度的均匀性有了明显的改善。但是,点云压缩算法并不改变体素的位置,仅从图2中的(a)示出的固定位置的各体素中舍弃部分体素(即不点亮这部分体素),从而导致有些相邻体素之间的间距小,有些相邻体素之间的间距大,即体素分布仍存在不均匀的现象。图2中的(c)示出了将图2中的(b)的T部放大后的体素分布情况,从T部放大图中可以明显地看出上述缺陷。
本公开的实施例提供了一种旋转显示装置,其为改善旋转显示过程中体素分布不均的现象提供了一种新思路。
图3示出了本公开的实施例提供的旋转显示装置的结构。参见图3,旋转显示装置1用于显示三维图像,旋转显示装置1包括显示面板DP,显示面板DP包括像素阵列10,像素阵列10包括多个像素单元(也可以称为像素)P。像素阵列10中的每个像素单元P可以按照预配置的刷新频率被驱动工作。旋转显示装置1还包括控制装置20,控制装置20被配置为控制每个像素单元P按照各自的刷新频率工作。
示例性地,显示面板DP可以是微LED(包括:miniLED或microLED)显示面板、OLED(Organic Light Emitting Diode,有机发光二极管)显示面板、QLED(Quantum Dot Light Emitting Diodes,量子点发光二极管)显示面板等。本公开的实施例以微LED显示面板作为示例,此时一个像素单元P可以包括多种发光颜色(例如,三基色)不同的微LED。
参见图4,像素阵列10可绕位于像素阵列10中的一条旋转轴线Z转动。若像素阵列10不转,则可以显示二维图像。旋转轴线Z是指任一条位于像素阵列10中的轴线。示例性地,参见图4中的(b),当像素阵列10旋转以显示三维图像时,其旋转轴线Z可以位于像素阵列10的一侧,下文中为了便于描述,将旋转轴线Z位于像素阵列一侧的旋转显示装置称为第一旋转显示装置。又示例性地,参见图4中的(a),旋转轴线Z位于像素阵列10的中央,例如,旋转轴线Z为像素阵列10的一条对称轴,下文中为了便于描述,将旋转轴线Z位于像素阵列中央的旋转显示装置称为第二旋转显示装置。当像素阵列10围绕旋转轴线Z转动时,像素阵列10中的每个像素P也围绕旋转轴线Z转动。
示例性地,包含上述像素阵列的显示面板DP可转动设置。例如,显示面 板DP被固定在旋转显示装置1中的一个转轴上,通过转轴的旋转带动显示面板DP旋转。参见图4,当显示面板DP中的像素阵列10绕旋转轴线(即转轴的延伸线)Z周期性旋转时,可以在空间中形成一个圆柱状的显示空间W,同时,通过控制显示面板DP显示特定的图像,以及控制图像的变换,就可以在圆柱形的显示空间W中显示出静态或动态的三维图像。
参见图4,当显示空间W一定时,第二旋转显示装置(由图4中的(a)示出)相比于第一旋转显示装置(由图4中的(b)示出)的像素阵列大,即当显示空间W一定时,第二旋转显示装置所包括的像素比第一旋转显示装置多,例如二者为两倍关系。像素阵列越大的旋转显示装置,显示的内容更多,在显示空间W一定的情况下,第一旋转显示装置的显示内容相当于第二旋转显示装置的两倍。因此,当显示相同的三维图像时,在一个体帧内,第一旋转显示装置要比第二旋转显示装置刷新更多的图像,即所需的刷新频率更高。
示例性地,参见图5A,旋转显示装置中的显示面板DP的分辨率为m×n,其中,m为横向分辨率,横向是指垂直于旋转轴线Z的方向,m为像素阵列10中沿横向延伸的一排像素单元P中的像素数量;n为纵向分辨率,纵向是指平行于旋转轴线Z的方向,n为像素阵列10中沿纵向延伸的一列像素单元P中的像素数量。当像素阵列10围绕旋转轴线Z旋转时,像素阵列10中的像素单元P随着像素阵列10一同旋转,这样,随着各个像素单元P在旋转过程中被不断点亮,可以在显示空间中形成体素。其中,m可以是偶数,此时旋转轴线Z位于最中央的两列像素单元之间,即位于第m/2列和第(m/2+1)列像素单元之间;m还可以是奇数,此时旋转轴线Z穿过最中央的一列像素单元,即穿过第(m+1)/2列像素单元。
图5A和图5B示出了旋转显示装置的像素阵列的分布,其中,图5A中的(a)和图5B中的(a)均以像素阵列10的旋转轴线Z位于像素阵列10的中央作为示例(第二旋转显示装置),图5A中的(b)和图5B中的(b)均以像素阵列10的旋转轴线Z位于像素阵列10的一侧作为示例(第一旋转显示装置)。像素阵列10包括多个像素单元P,所述多个像素单元P排成沿垂直于旋转轴线Z的方向分布的多个像素列PL,每个像素列PL中的各个像素单元P沿平行于旋转轴线的方向排列,且以相同的刷新频率工作。
示例性地,一个像素单元P包括三种不同颜色的子像素,例如,一个像素单元包括三个发光器件,所述三个发光器件分别发出三基色的光,例如红(R)、绿(G)、蓝(B)三种颜色的光,那么,一个像素单元通过对各个子像素发出的不同亮度的光的融合,便可以产生多种颜色的光。又如,一个 像素单元包括三个发光器件,每个发光器件均发出白光,并且所述三个发光器件分别对应红(R)、绿(G)、蓝(B)颜色的滤光片,那么,通过控制各个发光器件发出的白光的亮度,也可以使一个像素单元P产生多种颜色的光。其中,发光器件可以是发光二极管,例如可以是微LED,OLED或QLED等。
值得注意的是,像素阵列10中形成多个像素列PL的多个像素单元P可以是像素阵列10中的全部像素单元P,当然,也可以是仅是像素阵列10中的部分像素单元P。本公开的实施例均以形成所述多个像素列PL的像素单元P包括像素阵列10中的全部像素单元P为作为示例,并且把所述多个像素列中沿垂直于旋转轴线Z的方向排列的各个像素列PL依次命名为PL(1),PL(2),PL(3)…PL(j)…PL(m),其中,PL(j)为PL(1)~PL(m)中的任一个像素列。
示例性地,参见图5A,每个像素例PL可以包括相同数量的像素单元P,例如,每个像素单元P还以相等的间隔排列,使得像素阵列10中的多个像素单元P排成矩阵;又示例性地,参见图5B,每个像素例PL还可以包括不同数量的像素单元P,例如,像素阵列10中的多个像素单元P排成三角阵。
像素阵列10中的每个像素单元P均以一定的刷新频率工作,例如,各个像素单元以一定的刷新频率发光(点亮),其刷新频率为该像素单元被驱动点亮的频率,在本公开的实施例中,对于一个像素列PL来说,其所包括的各个像素单元P均以相同的刷新频率工作,即,一个像素列中的像素单元以相同的频率点亮,那么,该像素列PL就可以以该刷新频率进行显示,其所显示的内容为一个显示图像中的一部分。
值得注意的是,用于驱动一个像素单元的像素数据可以包括该像素单元中各个子像素的灰阶。例如,一个像素单元包括红(R)、绿(G)、蓝(B)三个子像素,每个子像素的灰阶的取值范围为0~255;当三个子像素的灰阶均为0(即R=0,G=0,B=0)时,则表示该像素单元要显示的相应颜色为黑色。即便是某一像素单元P一段时间内一直显示黑色,那么该像素单元P也可以以其对应的刷新频率工作,即以其对应的刷新频率被像素数据(R=0,G=0,B=0)驱动,每驱动一次即刷新一次,也可以被称为被点亮一次,只是其点亮的颜色为纯黑色。
在本公开的实施例中,控制装置被配置为控制每个像素列中的像素单元以像素列相应的刷新频率工作。
参见图5A,像素阵列10中,靠近旋转轴线Z的一个像素列中的像素单 元的刷新频率小于(即低于)远离旋转轴线的一个像素列中的像素单元的刷新频率。即,像素阵列中至少存在两个到旋转轴线距离不同的像素列,且二者的刷新频率不同。其中,刷新频率的大小也称为刷新频率的高低,例如,一个像素单元的刷新频率增大,也就是一个像素单元的刷新频率升高。
也可以说,像素阵列10包括第一像素列和第二像素列,其中,第一像素列到旋转轴线Z的距离大于第二像素列到旋转轴线Z的距离,且第一像素列中的像素单元的刷新频率大于(即高于)第二像素列中的像素单元的刷新频率。其中,第一像素列和第二像素列位于旋转轴线Z的同侧,或者第一像素列和第二像素列位于旋转轴线Z的不同侧。第一像素列和第二像素列可以是像素阵列中的任意两列。例如,第一像素列为像素列PL(j-1),第二像素列为像素列PL(j)。
示例性地,参见图6,图6示出了图5A中的两个像素列(PL(j-1)和PL(j))在一个体帧内的体素分布。其中,第一像素列F(例如像素列PL(j-1))到旋转轴线Z的距离为d1,第二像素列S(例如像素列PL(j))到旋转轴线Z的距离为d2,其中,d1>d2。在显示过程中,第一像素列F中的一像素单元旋转一周形成多个第一体素V1,第二像素列S中的一像素单元旋转一周形成多个第二体素V2。图6中的(a)示出了当第一像素列F中的像素单元的刷新频率与第二像素列S中的像素单元的刷新频率相等时的体素分布,例如,第一像素列F与第二像素列S中的各个像素单元每旋转一周被点亮7次,即当体帧频率为24HZ时,第一像素列F与第二像素列S中的各个像素单元的刷新频率均为24*7=168Hz,那么,第一像素列F的一个像素单元旋转一周可以产生7个第一体素V1,第二像素列S的一个像素单元旋转一周可以产生7个第二体素V2。图6中的(b)示出了当第一像素列F中的像素单元的刷新频率高于第二像素列S中的像素单元的刷新频率时的体素分布,例如,第一像素列F中的各个像素单元每旋转一周被点亮14次,第二像素列S中的各个像素单元每旋转一周被点亮7次,即当体帧频率为24HZ时,第一像素列F中的像素单元的刷新频率为14*24=336Hz,第二像素列S中的像素单元的刷新频率为24*7=168Hz,那么,第一像素列F中的一个像素单元旋转一周可以产生14个第一体素V1,第二像素列S中的一个像素单元旋转可以产生7个第二体素V2。从附图中可以明显地看到,当第一像素列F中的像素单元的刷新频率与第二像素列S中的像素单元的刷新频率相等时(例如均为168Hz),第一像素列F中的一像素单元产生的多个体素V1中,相邻两个体素V1之间的距离较大,第二像素列S中的像素单元产生的多个体素V2中,相邻两个体素V2 之间的距离较小,即第一体素间距大于第二体素间距;其中,第一体素间距为相邻两个第一体素V1之间的距离(即相邻两个第一体素V1之间的弧线长度),第二体素间距为相邻两个第二体素V2之间的距离(即相邻两个第二体素V2之间的弧线长度),使得这两个像素列产生的体素分布是不均匀。而当第一像素列F中的像素单元的刷新频率增加一倍后(由168Hz增加至336Hz),第一像素列F中的各个像素单元在一个体帧内产生的第一体素V1数量也增加一倍,相邻两个第一体素V1之间的距离减小,那么,相比于第一像素列F中的像素单元的刷新频率增加前,第一体素间距更加接近第二体素间距,使得第一像素列F与第二像素列S中的各个像素单元产生的体素在圆周方向上的分布更加均匀。
在一些实施例中,第一体素间距等于第二体素间距,在第一体素间距等于第二体素间距的情况下,第一像素列F与第二像素列S产生的体素(包括第一体素V1和第二体素V2)在圆周方向是完全均匀的。
在上述相关技术一的旋转显示装置中,当像素阵列旋转某一角度时,距离旋转轴线越远的像素列划过的弧长越长,其所包括的像素单元划过的路径也越长,使得该像素列中的每个像素单元在显示过程中扫过的空间越大。然而,一个像素单元刷新一次所产生的光子数是一定的,那么较大空间对应的光子密度较低,在宏观上表现为亮度较低,即在旋转显示装置中,距离旋转轴线越远的像素单元产生的亮度越低。在本公开的实施例提供的旋转显示装置中,像素阵列中远离旋转轴线的一个像素列比靠近旋转轴线的一个像素列刷新频率高,即单位时间内像素单元产生的光子数更多,进而可以增加光子密度,使远离旋转轴线的一个像素列的显示亮度得以提高。
由于一个像素列中的像素单元的刷新频率相等,因此下文中为了便于描述,可以把一个像素列中的像素单元的刷新频率称为该像素列的刷新频率。
示例性地,在像素阵列中,所述多个像素列中的其中两个像素列分别为第一像素列和第二像素列,例如,参见图5A,第一像素列为所述多个像素列中距离旋转轴线Z最远的一个像素列PL(1)或PL(m),第二像素列为所述多个像素列中位于旋转轴线Z与第一像素列之间的任一个像素列,如像素列PL(2)。又如,所述两个像素列是两个相邻的像素列,如PL(1)和PL(2),其中,远离旋转轴线的一个像素列PL(1)为第一像素列,另一个像素列PL(2)为第二像素列。
又示例性地,在像素阵列中,所述多个像素列中的部分像素列,每相邻的两个像素列分别为第一像素列和第二像素列,其中,远离旋转轴线的一个 像素列为第一像素列,另一个为第二像素列。例如,参见图5A中的(a),所述部分像素列为位于旋转轴线Z的同侧的几个连续分布的像素列PL(1)~PL(3),沿着远离旋转轴线的方向,像素列PL(1)~PL(3)中的各个像素列的刷新频率依次增大(即升高),像素列PL(1)相对于像素列PL(2)是第一像素列,像素列PL(2)相对于像素列PL(3)是第一像素列;其余的各个像素列(例如,像素列PL(4)~PL(j))的刷新频率可以彼此均相等也可以彼此不相等,其中,像素列PL(4)的刷新频率可以等于或低于像素列PL(3)的刷新频率。此外,所述部分像素列还可以是位于旋转轴线的不同侧的几个像素列,例如,参见图5A中的(a),所述部分像素列为像素列PL(2)~PL(q+1)。
再示例性地,所述多个像素列中,每相邻的两个像素列分别为第一像素列和第二像素列,其中,远离旋转轴线的一个像素列为第一像素列,另一个为第二像素列。例如,参见图5A中的(a),位于旋转轴线同侧的各个像素列PL(1)~PL(q)(或者像素列PL(q+1)~PL(m)),沿着远离旋转轴线的方向,各个像素列的刷新频率依次增大。
在上述实施例中,由于远离旋转轴线的像素列的刷新频率相对于靠近旋转轴线的像素的刷新频率更高,使得远离旋转轴线的像素列的像素单元在单位时间内的点亮次数比于靠近旋转轴线的像素列的像素单元多,由于在旋转显示装置中,一个像素单元每点亮一次就可以产生一个体素,并且,当像素阵列旋转一定角度时,划过的弧长越长的像素列点亮的次数越多,即产生的体素越多,那么,位于不同列的各个像素单元在单位弧长内产生的体素数量更加接近,这样,像素阵列不断旋转,结合各像素列的刷新频率调整,可以控制旋转显示装置在显示过程中体素的分布达到均匀状态。
在本公开的实施例中,可以通过控制装置控制一个像素列中的像素单元以相同的刷新频率工作,并且,控制像素阵列中远离旋转轴线的一个像素列中的各个像素单元的刷新频率大于靠近转轴线的一个像素列中的各个像素单元的刷新频率,使得远离旋转轴线的一个像素列在单位时间内被点亮次数大于靠近旋转轴线的一个像素列,这样,在像素阵列旋转一定角度时,靠近旋转轴线的一个像素列划过的弧长短,产生的体素少,远离旋转轴线的一个像素列划过的弧长长,产生的体素多,进而可以改善这两个像素列由于距旋转轴线的距离不同、划过的弧长不同而导致的体素分布不均匀现象,有利于改善旋转显示装置显示图像的亮度不均匀的问题。
在一些实施例中,参见图7A~图7D,像素阵列10中的多个像素列分成多个像素组GP(1)~GP(M),每个像素组GP(J)(其中,像素组GP(J)为像素组 GP(1)~GP(M)中的任一个像素组)包括连续分布的至少一个像素列,即包括一个像素列,或连续分布的多个像素列。每个像素组GP(J)中的各个像素单元P的刷新频率相同。位于旋转轴线Z同侧的多个像素列中,沿远离旋转轴线Z的方向排列的各个像素组GP(J)的刷新频率逐渐增大。
参见图7C,一个像素组GP(J)可以包括一个或多个像素列,在一个像素组GP包括多个像素列的情况下,部分像素组GP(J)包括的像素列的数量可以相同,例如,GP(1)~GP(M)中的每个像素组GP(J)均包括两个像素列,其中,每个像素组所包括的像素列的数量可以根据需要进行设计,例如,一个像素组包括三个像素列,五个像素列或十个像素列等;此外,在一个像素组包括多个像素列的情况下,每个像素组包括的像素列的数量也可以不相同,例如,参见图7A,靠近旋转轴线的一个像素组GP(J)包括两个像素列,距离旋转轴线最远的一个像素组GP(1)包括三个像素列,其中,每个像素组所包括的像素列的数量也可以根据需要进行设计的。
将像素阵列中的多个像素列分组,并且位于旋转轴线的同侧的各个像素组沿着远离旋转轴线的方向刷新频率依次增大,使得像素阵列中的远离旋转轴线的像素组相比于靠近旋转轴线的像素组的刷新频率更高,那么像素阵列将以像素组为单位呈现出沿远离旋转轴线的方向,刷新频率递增的趋势,这样,可以使得旋转显示装置中的体素分布以像素组为单位逐渐均匀化,在一定程度上优化体素分布的均匀性。
例如,参见图7B,一个像素组GP(J)还可以仅包括一个像素列,在一个像素组GP(J)仅包括一个像素列的情况下,位于旋转轴线同侧的各个像素列的刷新频率沿远离旋转轴线的方向依次增大。
在一个像素组包括多个像素列的情况下,由于一个像素组中各个像素单元的刷新频率相同,那么,控制装置就无须一一变换各个像素列的刷新频率了,而是可以以一个刷新频率同时控制多个像素列,进而简化控制方法。
值得注意的是,在第二旋转显示装置中,位于旋转轴线不同侧的多个像素列的分组可以不相同。例如,位于旋转轴线一侧的多个像素组中,各个像素组所包括的像素列的数量相同,而位于旋转轴线另一侧的多个像素组中,各个像素组所包括的像素列的数量不同;又如,位于旋转轴线一侧的多个像素组中,每个像素组包括的像素列的数量相同,位于旋转轴线另一侧的多个像素组中,每个像素组包括的像素列的数量也相同,但是,位于旋转轴线不同侧的两个像素组各自所包括的像素列的数量不同。
此外,沿远离旋转轴线的方向排列的各个像素组的刷新频率还可以按照 一定的规律增加,示例性地,沿远离旋转轴线的方向排列的各个像素组的刷新频率等比例增加,例如,任意相邻的两个像素组中的刷新频率的差值相等,或者沿远离旋转轴线的方向排列的各个像素组的刷新频率成倍增加,例如,任意相邻的两个像素组的刷新频率的比值相等。
由于位于旋转轴线同侧的多个像素列中,沿远离旋转轴线的方向排列的各个像素组的刷新频率逐渐增大,除了可以以像素组为单位改善体素分布的均匀度,同时还兼顾了控制装置对各个像素列分别以不同的刷新频率进行控制的难度,有利于降低控制装置的功耗。
在一些实施例中,参见图7D,在所述多个像素组GP(1)~GP(M)中,每个像素组包括的像素列的数量不同的情况下,各个像素组GP(J)所包括的像素列的具体数量也可以按照一定的规律变化,例如,沿远离旋转轴线的方向排列的各个像素组包括的像素列的数量依次减少,如像素组GP(3)~GP(1),其中,像素组GP(3)包括的像素列的数量大于像素组GP(2)包括的像素列的数量,像素组GP(2)包括的像素列的数量大于像素组GP(1)包括的像素列的数量。
示例性地,在所述多个像素组中,位于旋转轴线同侧的多个像素列中,沿远离旋转轴线的方向排列的各个像素组包括的像素列的数量等比例减少,例如,像素组GP(3)包括三个像素列,像素组GP(2)包括两个像素列,像素组GP(1)包括一个像素列。
由于靠近旋转轴线的像素列通常需要以低频率刷新,远离旋转轴线的像素列需要以高频率刷新才能使体素的分布更加均匀,而以高频率刷新的像素列的数量越少越有利于降低整体功耗,因此,像素阵列中沿远离旋转轴线的方向排列的各个像素组包括的像素列的数量依次减少可以在优化旋转显示装置的体素分部均匀度的基础上有效降低功耗。
在一些实施例中,参见图7A~图7D,旋转显示装置的旋转轴线Z为像素阵列的一条对称轴,位于旋转轴线Z不同侧且到旋转轴线Z的距离相同的两个像素列的刷新频率相同。也就是说,对于第二旋转显示装置来说,位于旋转轴线Z两侧的各个像素列的刷新频率关于旋转轴线对称。
示例性地,参见图7B,旋转轴线Z两侧分别包括相同数量的像素组,每个像素组包括相同数量的像素列,例如,每个像素组包括一个像素列,位于旋转轴线Z同侧的各个像素组GP(J)沿远离旋转轴线Z的方向,刷新频率依次增大,例如,体帧频率为24Hz,沿远离旋转轴线Z的方向,各个像素组的刷新频率依次为168Hz,336Hz,504Hz…。那么,在第二旋转显示装置中,位于中央且连续分布的几个像素列的刷新频率最小,例如,位于像素阵列10的 中央且连续分布的四个像素列的刷新频率最小,为168Hz。
在一些实施例中,参见图8A,沿着远离旋转轴线Z的方向,位于旋转轴线Z同侧的各个像素组的刷新频率构成等差数列,即以一定的公差逐渐增加,相邻两个像素的刷新频率的差值相等。例如,像素阵列10中的每个像素组仅包括一个像素列PL。当像素阵列10中每个像素组仅包括一个像素列且到旋转轴线距离相同的像素列的刷新频率相同时,每个像素列PL的刷新频率可以通过以下方式计算出来。
以像素列PL(j)为例,其中,PL(j)代表像素阵列中的任一个像素列,j=1,2,…m,首先,根据公式1:R=|[m/2-(j-1)]*pd-pd/2|计算像素列PL(j)对应的旋转半径R,其中,m为像素阵列中像素列的总数,j为所述像素列PL(j)所在的像素列的编号,例如,参见图5A,在第一旋转显示装置中,各个像素列从最远离旋转轴线的向到最靠近旋转轴线的方向依次编号为1,2,3…m,在第二旋转显示装置中,各个像素列从像素阵列的一侧到另一侧依次编号为1,2,3…m,pd为像素阵列中沿垂直于旋转轴线方向上相邻两个像素单元之间的距离,可以称为像素间距或像素节距(pixel pitch)。
其次,根据公式2:Se=Ceil(2*π/Φ)计算该像素列PL(j)在一个体帧内需要刷新的次数,其中Φ=pd/R,代表像素列PL(j)中的一个像素单元相邻两次点亮过程中转过的夹角,Ceil()为向上取整函数。这样,使得像素列PL(j)中的一个像素单元形成多个体素的体素间距均等于pd。
然后,根据公式3:fj=Se*F计算该像素列PL(j)的刷新频率,其中,F表示旋转显示装置的体帧频率。
例如,参见图8A,像素阵列10中,n=200,m=120,每个像素组仅包括一个像素列,通过上述方式计算出的各个像素列的刷新频率可参见图8B。其中,从图中可以看出,各个像素列的刷新频率整体上关于旋转轴线呈两个对称的三角形形状分布,位于旋转轴线Z两侧的且最靠近旋转轴线的两个像素列PL(60)和PL(61)的刷新频率最小,为240HZ,沿着远离旋转轴线的方向,旋转轴线两侧的各个像素列的刷新频率以相同的公差逐渐增加,使得像素阵列中最外侧的两个像素列的刷新频率可以达到最大,如像素列PL(1)和PL(120)的刷新频率达到22440Hz。
当第二旋转显示装置中位于旋转轴线两侧的各个像素列的刷新频率并非关于旋转轴线对称时,旋转轴线两侧到旋转轴线距离相同的像素列的刷新率不同,那么,不同的刷新频率产生不同数量的体素,在第二旋转显示装置的一个体帧内,显示空间中到旋转轴线距离相同的部分就具有不同的亮度,使 得所显示的三维图像亮度不均。因此,在第二旋转显示装置中,优选将位于旋转轴线两侧的各个像素列的刷新频率设置为关于旋转轴线对称,进而改善三维图像的亮度不均问题。
参见图9,图9示出了图8A中的像素阵列10按照图8B所示的频率分布优化后的体素均分布。其中,图9中的(a)为优化前的体素分布图,图9中的(b)为优化后的体素分布图,图9中的(c)为图9中的(b)的T部的放大图。从图9中的(c)中可以看出,旋转显示装置经刷新频率调整优化后的体素分布(图9中的(c))相比于相关技术二的软件均匀化(图2中的(c)),体素的分布更加均匀。
下面参见图10,以旋转显示装置为第二旋转显示装置,像素阵列为m×n(其中,m=120,n=200)的矩阵且像素阵列中的各个像素列按照图8B所示的刷新频率工作为例,对旋转显示装置中的控制装置进行介绍。
在一些实施例中,继续参见图10,旋转显示装置的控制装置20包括多个驱动器M,每个驱动器M与一个像素单元P耦接,构成一个驱动显示单元A。在一个驱动显示单元A中,一个像素单元P包括三个子像素R子像素、G子像素、B子像素;一个驱动器M与一个像素单元P对应,并与该像素单元P耦接。示例性地,驱动器M可以是像素驱动芯片(Pixel IC),驱动器M位于显示面板上,且一个驱动器M与一个像素单元P紧邻设置,即一个驱动器M挨着与其对应的像素单元P设置。
驱动器M被配置为接收驱动信息D,驱动信息D包括:至少一个像素单元P的标识和像素数据,并识别至少一个像素单元P的标识中包含与其耦接的像素单元的标识,按照与其耦接的像素单元的刷新频率,根据驱动信息D中与其耦接的像素单元的像素数据驱动与其耦接的像素单元工作。
示例性地,一个像素单元在一个旋转显示装置中对应唯一的标识,也就是说,根据一个标识,只能在旋转显示装置中找到唯一一个与之对应的像素单元。其中,像素单元的标识可以是该像素单元的名称或者地址等,例如,一个像素单元的标识可以是该像素单元在像素阵列中的位置坐标,如,位于像素阵列中第1排第1列的像素单元的标识为P11,位于像素阵列中第1排第2列的像素单元的标识为P12,位于像素阵列中第i排第j列的像素单元的标识为Pij。此外,由于驱动器M和像素单元P一一对应,因此像素单元P的标识也可以是驱动器M的标识,例如,可以是驱动器的身份标识号(Chip ID)。一个像素单元的标识可以是在旋转显示装置出厂时就配置好,并写入到与该像素单元对应的驱动器中,在这种情况下,一个像素单元的标识是固定不变 的;或者,一个像素单元的标识是在旋转显示装置的显示初始化过程中逐一配置的,在这种情况下,一个像素单元的标识是可变的。
又示例性地,像素单元的标识以像素列为单位具有唯一性,也就是说,一个像素列中的各个像素单元的标识是唯一的,一个标识只能在一个像素列中找到一个与之对应的像素单元,通过一个标识在不同的像素列中找到的像素单元不相同。例如,每个像素列包括200个像素单元,那么这些像素单元的标识可以是其序号,分别为1,2,3,…,200。
又示例性地,一个像素列耦接的各个驱动器分成至少两个驱动器组,像素单元的标识以驱动器组为单位具有唯一性。例如,每个像素列包括200个像素单元,相应的具有200个驱动器与该像素列耦接,这200个驱动器可以平均分成两个驱动器组,一个驱动器组中的各驱动器的编号可以分别为1,2,3,…,100;另一驱动器组中的各驱动器的编号同样也可以分别为1,2,3,…,100。此时,每个驱动器的编号可以作为与其耦接的像素单元的标识。
为了便于说明,下文中一像素单元用Pij表示,与像素单元Pij耦接(对应)的驱动器用Mij表示,其中,i代表该像素单元位于第i排,j代表该像素单元位于第j列。
一个像素单元的像素数据包括该像素单元中的各个子像素的像素数据,例如,像素单元P的像素数据该像素单元中R、G、B三个子像素的灰阶。一个驱动器可以根据与其对应的像素单元的像素数据驱动该像素单元工作,例如,驱动器将像素数据中的R、G、B三个子像素的灰阶分别转换成对应的数据信号(例如数据电压)和脉冲宽度调制(简称PWM)波,然后驱动各个子像素根据各自的数据信号和PWM波形控制各自的发光亮度,进而使一个像素单元发出像素数据相应颜色的光。
驱动信息D中,一个像素单元的标识与该像素单元的像素数据相对应,驱动信息D可以包括多个像素单元的标识和像素数据。当一个驱动器Mij接收到包括多个像素单元的标识和像素数据的驱动信息D时,该驱动器Mij可以通过像素单元Pij的标识寻找该驱动信息中与该驱动器Mij耦接(对应)的像素单元Pij的像素数据,并根据找到的像素单元Pij的像素数据驱动像素单元Pij工作。
示例性地,参见图10,一条驱动信息Dj包括一个像素列中各个像素单元的标识和像素数据,例如,像素阵列中,像素列PL1至像素列PL120中的各个像素单元分别通过驱动信息D1至D120更新像素数据。由于一个像素列PL(j)中的像素单元以相同的刷新频率工作,因此一个像素列耦接的各个驱动器可 以以固定的刷新频率接收驱动信息Dj,不同的像素列接收驱动信息的频率可以不相同。
以像素列PL1为例,像素列PL1中的各个像素单元P11~Pn1对应的驱动器M11~Mn1均接收的驱动信息D1,其中,驱动信息D1中包括像素列PL1中所有像素单元的标识(包括:1,2,…,n)和像素数据D11~Dn1。当像素列PL1中的一个像素单元Pi1对应的驱动器Mi1接收到驱动信息D1后,该驱动器Mi1查询驱动信息D1中是否存在标识i(i为像素单元Pi1的标识,可以存储在驱动器Mi1中,例如驱动器Mi1包括用于存储该标识的存储器,该存储器例如可以是寄存器、缓存等),若找到标识i,并读取标识i对应的像素数据Di1,根据其读取的像素数据Di1驱动对应的像素单元Pi1工作。
又示例性地,一条驱动信息包括在当前像素帧,一个像素列中部分像素单元的标识和像素数据,其中,所述部分像素单元为相比于上一像素帧,像素数据发生改变的像素单元。例如,若一个像素单元的像素数据在一体帧内均为变化,则相应的驱动信息中不包含该像素单元的像素数据。
在本公开的实施例中,由于像素阵列中是按列刷新,不同像素列的刷新频率不相同,不再适用电子帧的概念,因此提出像素帧的概念来描述像素列的工作情况,其中,一个像素帧是指一个像素列中的像素单元被驱动工作一次所呈现的内容(也可以说是一体帧中的子图像),也可称为像素列帧。
由于像素阵列中各个像素列的刷新频率需要控制装置来控制,因此,控制装置中的驱动器还需要接收各个像素单元的刷新频率。示例性地,驱动器通过一根信号线接收一个像素列的垂直同步(Vertical synchronization,简称Vsync)频率,并且所接收的Vsync频率为该像素列的刷新频率,一个像素列对应的驱动器根据其接收到的Vsync频率与接收到的驱动信息来驱动其耦接的像素单元工作。
在一些实施例中,驱动器Mij还被配置为接收频率指示信号,频率指示信号的频率为与所述驱动器耦接的像素单元Pij的刷新频率,并按照频率指示信号的频率,根据驱动信息驱动像素单元Pij工作。示例性地,驱动器Mij响应于频率指示信号的触发沿(上升沿或下降沿),根据存储的最新像素单元Pij的像素数据驱动像素单元Pij工作。例如,频率指示信号的频率为上述Vsync频率,驱动器Mij响应于每个Vsync信号的触发沿(上升沿或下降沿),根据存储的最新像素单元Pij的像素数据驱动像素单元Pij工作。
以像素列PL1为例,像素列PL1中的各个像素单元P11~Pn1对应的驱动器M11~Mn1均接收的驱动信息D1,其中,驱动信息D1中包括像素列PL1 中部分像素单元的标识和像素数据,例如,驱动信息D1包括像素单元P21和像素单元P31的标识和像素数据。当驱动器M11~Mn1接收到驱动信息D1后,各个驱动器将驱动信息D1中所包括的标识分别与自身存储的标识进行对比,例如,驱动器M21中存储的标识是2,驱动器M21可以找到驱动信息中标识2对应的像素数据;并将标识2对应的像素数据存储,例如存储在存储器(例如可以是寄存器、缓存等存储电路)中,并根据存储的像素数据和接收到的Vsync频率驱动像素单元P21工作,类似的,驱动器M31也可以根据标识3从驱动信息D1中读取并存储像素单元P31的像素数据,并根据读取的像素数据按照Vsync频率驱动像素单元P31工作。
在一条驱动信息包括一个像素列中的部分像素单元的标识和像素数据的情况下,驱动信息中包括需要更新像素数据的像素单元的像素数据,对于不需要更新像素数据的像素单元,则不用包括对应的像素数据,这样,可以降低旋转显示装置在显示过程中需要传输的数据量。
在一些实施例中,驱动器Mij还被配置为识别接收到的驱动信息包含的至少一个像素单元的标识中不包含所述与其耦接的像素单元Pij的标识,按照像素单元Pij的刷新频率,驱动像素单元Pij维持当前显示的颜色。
也就是说,当一个像素单元Pij在当前像素帧的像素数据相对于上一个像素帧的像素数据不变的情况下,驱动器Mij本次接收的驱动信息中便不包括该像素单元Pij在当前像素帧工作的像素数据,于是需要根据历史接收到的像素单元Pij的像素数据中最新的一个(下文简称为历史最新的像素数据),驱动像素单元Pij工作。例如,若当前像素帧是第y像素帧,且第y像素帧的驱动信息中不包含像素单元Pij的像素数据,但第y-1像素帧(上一个像素帧)的驱动信息中包含像素单元Pij的像素数据,驱动器Mij按照第y-1像素帧的像素数据工作。若第y像素帧和第y-1像素帧的驱动信息中均不包含像素单元Pij的像素数据,但第y-2像素帧的驱动信息中包含像素单元Pij的像素数据(即历史最新的像素数据),驱动器Mij在第y-1像素帧按照第y-2像素帧的像素数据驱动像素单元Pij工作,在第y像素帧也按照第y-2像素帧的像素数据,即相当于按照第y-1像素帧的像素数据驱动像素单元Pij工作。于是,该像素单元Pij根据上一个像素帧的像素数据点亮,显示与上一个像素帧相同的颜色。在这种情况下,一个驱动器Mij还可以包括一个存储电路(或者说存储器),以将每次接收到的像素单元Pij的像素数据存储起来,防止下个像素帧接收到的驱动信息不包括像素单元Pij的像素数据,那么,该驱动器Mij还可以根据存储电路中存储的像素数据驱动对应的像素单元Pij工作。
以像素列PL1为例,像素列PL1中的各个像素单元P11~Pn1对应的驱动器M11~Mn1均接收的驱动信息D1,其中,驱动信息D1中包括像素列PL1中部分像素单元的标识和像素数据,例如,驱动信息D1包括像素单元P21和像素单元P31的标识和像素数据。驱动器M11在驱动信息中并未找到标识P11,那么驱动器M11会根据存储的像素数据和接收到的Vsync频率驱动像素单元P11工作,以使得像素单元P11可以维持当前显示的颜色。
再示例性地,一条驱动信息还可以包括一个像素列中所有像素单元的标识和部分像素单元的像素数据。一个驱动器Mij在接收到的驱动信息D中找到像素单元Pij的标识,但标识Pij对应的像素数据为空,那么,像素单元Pij也不需要更新像素数据,驱动器Mij则根据存储的像素数据和接收到的Vsync频率驱动像素单元Pij工作。
在本实施例中,驱动器可以根据上一个像素帧的像素数据(在上一个像素帧显示时使用的像素数据)继续驱动对应的像素单元工作,使得该像素单元当前显示的颜色得以维持,避免了像素单元在长期无像素数据更新的情况下无法驱动而导致的亮度衰减问题。
在一些实施例中,驱动器Mij还被配置为按照写入频率,将接收到的与其耦接的像素单元Pij的像素数据逐一存储,并以像素单元Pij的刷新频率,按照存储的顺序读取存储的像素数据,以使得按照像素单元Pij的刷新频率,根据读取的像素数据驱动像素单元Pij工作。其中,写入频率大于或等于与其耦接的像素单元的刷新频率。
驱动器Mij的写入频率为驱动器Mij写入其所耦接的像素单元Pij的像素数据的频率。示例性地,驱动器Mij的写入频率为像素单元Pij的刷新频率。例如,一条驱动信息包括一个像素列PL(j)中的各个像素单元的标识和像素数据,每个驱动器(M1j,M2j,…,Mnj)接收到的驱动信息的频率为该驱动器耦接的像素单元(P1j,P2j,…,Pnj)的刷新频率,也即像素列PL(j)的刷新频率。各个驱动器每接收一条驱动信息,均可以从该驱动信息中找到各自对应像素单元的像素数据,并写入(存储)像素数据(如,将像素数据写入到驱动器的存储器),并根据写入的像素数据驱动对应的像素单元工作。又如,一条驱动信息仅包括一个像素列PL(j)中的部分像素单元的标识和像素数据,在这部分像素单元耦接的驱动器(M1j,M2j,…,Mnj中的一部分),写入(存储)读取到的像素数据,其余驱动器(M1j,M2j,…,Mnj中的剩余部分)将各自耦接的像素单元上一个像素帧的像素数据复制后存储起来。再如,一条驱动信息括一个像素列PL(j)中所有像素单元(P1j,P2j,…,Pnj)的标识和部分像素单 元(P1j,P2j,…,Pnj中的一部分)的像素数据,此时驱动器M1j,M2j,…,Mij中的一部分能从驱动信息中读取到相应像素单元的像素数据,则存储获取到的像素数据;驱动器M1j,M2j,…,Mij中的其余部分无法从驱动信息中查询到相应像素单元的像素数据(即相应像素单元的像素数据为空),则将相应像素单元上一个像素帧的像素数据复制后存储起来。
通过驱动器以各个像素单元的刷新频率不断从驱动信息中读取或者复制上一个像素帧的像素数据,将每个像素帧对应的像素数据写入,使得驱动器在每个像素帧均可以找到对应的像素数据驱动对应的像素单元工作,避免了因数据读取错误而导致的显示错误,有利于提高显示的准确性。
又示例性地,驱动器Mij(任一驱动器)的写入频率大于或等于各个像素单元(m*n个像素单元)的刷新频率,具体的,各个驱动器(m*n个驱动器)的写入频率可以相等,且大于或等于m*n个像素单元的刷新频率中的最大值(下文称为像素阵列中的最大刷新频率)。在这种情况下,驱动器将接收到的与其耦接的像素单元的多个像素数据按照写入频率逐一写入,并以对应像素单元的刷新频率,按照存储的顺序逐一读取存储的像素数据,以使得该驱动器按照与其耦接的像素单元的刷新频率,根据读取的像素数据驱动与其耦接的像素单元工作。
通过高频率的写入,各个像素单元对应的驱动器将以写入频率接收的多个像素数据按照各自的刷新频率依次对像素单元进行驱动,进而可以降低控制写入频率的难度。
在一些实施例中,驱动器Mij包括:存储队列。驱动器Mij被配置为接收像素单元Pij的像素数据,以写入频率将接收到的像素单元Pij的像素数据写入存储队列,并以读取频率,按照写入的顺序从存储队列中读取像素单元Pij的像素数据,根据读取的像素数据生成驱动信号。其中,读取频率为所述与其耦接的像素单元的刷新频率;所述驱动信号被配置为驱动像素单元Pij工作。
示例性地,参见图11,驱动器Mij包括:接收器211,存储器212,存储队列213,控制器214,数据驱动器215和数据转换器216。
接收器211被配置为接收与其耦接的像素单元Pij的像素数据;存储器212被配置为存储写入频率f1和读取频率f2,读取频率f2为像素单元Pij的刷新频率;控制器214被配置为以写入频率f1,将接收到像素单元Pij的像素数据写入存储队列213;并以读取频率f2,按照写入的顺序从存储队列214中读取像素数据,并将读取的像素数据传输至数据驱动器215;数据驱动器215被配置为根据接收的像素数据,生成驱动信号,驱动信号被配置为驱动像素单元 Pij工作。
示例性地,各个像素单元(m*n个像素单元)对应的驱动器的写入频率均相同且等于像素阵列中的最大刷新频率,驱动器Mij被配置为通过接收器211接收像素单元Pij的多个像素数据,例如,接收器211接收的像素数据为驱动器Mij中控制器214识别到的像素单元Pij的像素数据。
控制器214以写入频率f1将接收器211中的像素数据以写入频率f1写入存储队列213。例如,控制器214根据第一时钟信号(与写入频率f1相适应的时钟信号)工作,例如,在每个信号的上升沿确定接收器211是否接收到像素单元Pij的像素数据,若是,则将接收到的像素单元Pij的像素数据顺序写入存储队列213中的存储位;若否,则将前一个存储位存储的像素单元Pij的像素数据复制到当前待写入的存储位。同时,控制器214还以读取频率f2,按照写入的顺序从存储队列214中依次读取像素数据,并将读取的像素数据传输至数据驱动器215。
数据转换器216根据接收的像素数据转换成数据模拟信号,其过程可以包括:控制器214控制数据转换器216根据存储队列输出的像素数据生成数据信号Vdata和驱动时间控制信号(例如为PWM波)。
数据驱动器215根据数据模拟信号生成驱动信号,其过程包括:数据驱动器215根据对应的数据信号Vdata和PWM波生成控制子像素发光的驱动信号。例如,驱动信号中包括R子像素的驱动信号Dr、G子像素的驱动信号Dg、B子像素的驱动信号Db。在一些实施例中,参见图12,控制装置20还包括处理器220。示例性地,处理器220通过多条信号线与显示面板上的所述多个驱动器M11~Mnm耦接,被配置为向每个驱动器Mij发送驱动信息。
示例性地,参见图12,处理器220以像素列为单位,在同一时刻向像素阵列中的各个驱动器Mij发送驱动信息D1~Dm,其中,一条驱动信息Dj可以包括多个像素单元的标识和像素数据;此外,处理器220还可以以像素排为单位,在同一时刻,向一排像素单元对应的驱动器发送驱动信息,例如,一个像素排与一条栅线耦接,一个像素列与一条数据线耦接,在某一时刻,仅通过栅线打开一排像素单元,使得这排像素单元分对应的驱动器别通过一根数据线接收处理器发送的驱动信息,此时,一条驱动信息中可以仅包括一个像素单元的像素数据。
在一些实施例中,参见图13,旋转显示装置还包括多条数据线,一个像素列中的至少两个像素单元各自耦接的驱动器通过一条数据线与处理器220耦接,处理器220被配置为向与一条数据线耦接的各个驱动器发送驱动信息, 驱动信息包括:与所述一条数据线耦接的所述至少两个像素单元中的至少一个像素单元的标识和像素数据。
示例性地,参见图13,各个像素列中的每个像素单元对应的驱动器Mij通过同一条数据线DTj与处理器220耦接。处理器220可以通过该条数据线DTj向对应的一个驱动器Mij传输驱动信息Dj。例如,像素列PL1中的各个像素单元对应的驱动器M11~Mn1通过数据线DT1与处理器220耦接并且像素列PL1通过数据线DT1接收处理器220发送的驱动信息D1,像素列PL2中的各个像素单元对应的驱动器M12~Mn2通过数据线DT2与处理器220耦接并且像素列PL2通过数据线DT2接收处理器220发送的驱动信息D2。
在一些实施例中,一个像素列耦接的各个驱动器分成至少两个驱动器组,其中,一个驱动器组中的各个驱动器通过一条数据线与所述处理器耦接,不同驱动器组中的驱动器通过不同数据线与所述处理器耦接。也就是,一个像素列耦接的各个驱动器通过至少两条数据线与处理器耦接,其中,所述各个驱动器中的每个驱动器通过一条数据线与处理器耦接。
示例性地,参见图14,一个像素列耦接的各个驱动器通过两条数据线与处理器220耦接,例如,前1/2个像素列中的像素单元的驱动器与一条数据线耦接,即,一个像素列中位于像素排RW1~RW100中的像素单元与一条数据线耦接;后1/2个像素列中的像素单元的驱动器与另一条数据线耦接,即,一个像素列中位于像素排RW101~RW200中的像素单元与另一条数据线耦接。当一个像素列中的各个驱动器通过两条数据线与处理器耦接时,一条数据线传输的驱动信息中最多包括该像素列中一半像素单元的标识和像素数据,进而减少了一条驱动信息所包含的数据量。当一个像素列中的各个驱动器通过两条以上数据线与处理器耦接时,一条数据线传输的驱动信息中包括的数据量可以更小,但是由于一根数据线需要与处理器中的一个pin耦接,那么,当数据线的数量增加时,处理器的pin数必然相应增加。例如,参见图14,当一个像素列通过两条数据线与处理器220耦接时,处理器220的pin数增加了120个。
当然,在一个像素列耦接的各个驱动器通过两条数据线与处理器220耦接的情况下,每条数据线耦接的驱动器的数量可以不相等,那么,一条驱动信息中最多包括的像素单元的标识和像素数据的量也可能随之变化。
在一些实施例中,处理器被配置为以每个驱动器对应的第一发送频率,向每个驱动器发送驱动信息,其中,每个驱动器对应的第一发送频率等于与驱动器耦接的像素单元的刷新频率;或者,处理器被配置为以第二发送频率, 向每个驱动器发送所述驱动信息,其中,第二发送频率大于等于像素阵列中各个像素单元的刷新频率。
示例性地,第一发送频率等于写入频率,又示例性地,第二发送频率为像素阵列刷新频率最大的像素单元的刷新频率。
在第一发送频率等于各个像素单元的刷新频率情况下,例如,处理器以每个驱动器对应的第一发送频率向每个驱动器发送驱动信息,在本公开的实施例提供的像素阵列中,由于一个像素列中的各个像素单元的刷新频率相同,不同处理器可以通过一条数据线以第一发送频率向每个驱动器发送驱动信息,参见图16,示出了图8A所示的像素阵列按照图8B所示的频率向各个像素列发送驱动信息的示意图。
在一些实施例中,与一个驱动器耦接的像素单元在当前像素帧的像素数据与在上一像素帧的像素数据不同的情况下,处理器向该驱动器发送的驱动信息中包括该驱动器对应的像素单元的标识和在当前像素帧的像素数据;与一个驱动器耦接的像素单元在当前像素帧的像素数据与在上一像素帧的像素数据相同的情况下,处理器向驱动器发送的驱动信息中不包括该驱动器对应的像素单元的标识和在当前像素帧的像素数据。
在处理器每次仅发送需要更新像素数据的像素单元的标识和更新后的像素数据的情况下,即,处理器发送的一条驱动信息中仅包括部分像素单元的标识和像素数据,可以明显减少处理器处理和发送的数据量,以及降低数据传输带宽的需求。
在一些实施例中,参见图15,所述多个像素单元还沿垂直于旋转轴线的方向排成多个像素排RW1~RW200。旋转显示装置还包括:多条栅线G1~G200,一个像素排中的至少两个像素单元各自耦接的驱动器通过一条栅线与处理器220耦接。示例性地,参见图15,一个像素排RWi对应的多个驱动器通过一条栅线与处理器220耦接,例如,像素排RW1对应的各个驱动器M11~M1m通过栅线G1与处理器220耦接,像素排RW2对应的各个驱动器M21~M2m通过栅线G2与处理器220耦接,等等。
处理器220还被配置为向与一条栅线Gi耦接的各个驱动器Mij发送开启信号,以及被配置为向各个驱动器Mij发送与每个驱动器耦接的像素单元的标识Pij。驱动器Mij还被配置为接收开启信号,并响应于开启信号,接收与该驱动器耦接的像素单元的标识Pij,并将接收到的像素单元的标识写入所述驱动器中Mij。
每个像素单元的标识Pij可以在旋转显示装置1的初始化过程中被一一写 入,在一条栅线Gi向与其耦接的像素排RWi中的各个驱动器Mij传输开启信号的情况下,处理器220可以通过数据线DT1~DTj向该排像素单元各自耦接的驱动器Mij写入对应像素单元的标识Pij。例如,处理器220首先通过栅线G1向像素排RW1耦接的各个驱动器M11~M1就、传输开启信号,再通过多条数据线分别向像素排RW1耦接的各个驱动器M11~M1j写入对应像素单元的标识,由于像素排RW1对应的各个驱动器M11~M1j分别位于不同的像素列,因此驱动器M11~M1j分别耦接一条数据线,每条数据线将各个驱动器Mij对应像素单元的标识Pij传输给对应的驱动器Mij;接着,处理器220通过栅线G2向像素排RW2耦接的各个驱动器M21~M2j传输到开启信号,再通过所述多条数据线DT1~DTj分别向像素排RW2耦接的各个驱动器M21~M2j写入对应像素单元的标识Pij,以此类推,直到像素阵列中的所有像素单元均写入了各自对应的标识。
当然,处理器220向各个像素排RW1~RWi对应的驱动器Mij写入像素单元的标识Pij的顺序可以不按照上述实施例所述的顺序实施,例如,处理器220可以先向像素阵列中的最后一个像素排RWn对应的驱动器写入标识,最后向像素阵列中的第一个像素排RW1对应的驱动器写入标识,或者,处理器220可以先向像素阵列中的位于中间的一个像素排对应的驱动器写入标识。
值得注意的是,当旋转显示装置中包括多条栅线的情况下,若一条驱动信息中包括多个像素单元的标识和像素数据,那么,在显示过程中,控制装置通过所述多条栅线同时向各自耦接的驱动器传输开启信号,以使各个像素单元耦接的驱动器均可以接收到驱动信息。
在一些实施例中,旋转显示装置还包括多个开关(例如模拟开关),处理器通过一个模拟开关与至少两条栅线耦接;其中,与一个模拟开关耦接的栅线的数量与一个像素列耦接的数据线的数量相同。
示例性地,参见图15,旋转显示装置1包括多个模拟开关Vcc,模拟开关Vcc被配置为控制开启信号向各个驱动器的传输。例如,处理器220与模拟开关Vcc(k)(所述多个模拟开关中的任一个)耦接,处理器220可以控制模拟开关Vcc(k)的开启与关闭,在处理器220控制一个模拟开关Vcc(k)开启的情况下,与所述模拟开关Vcc(k)耦接的栅线向与该条栅线耦接的驱动器发送开启信号。在一个模拟开关Vcc(k)与至少两条栅线耦接的情况下,处理器220通过控制一个模拟开关Vcc(k)开启,便可以通过至少两条栅线向所述至少两条栅线耦接的驱动器发送开启信号。
例如,参见图15,模拟开关Vcc1与栅线G1、栅线G100耦接,模拟开 关Vcc100与栅线G101、栅线G1200耦接,等等。在旋转显示装置的初始化过程中,处理器220向各个驱动器写入标识,由于栅线G1、栅线G100同时向像素排RW1、像素排RW100发送开启信号,像素排RW1、像素排RW100对应的驱动器接收到相应的开启信号后,处理器220可以同时向像素排RW1、像素排RW100耦接的驱动写入各自对应像素单元的标识。类似地,其他像素排对应的驱动器也可以每两排依次写入各自对应像素单元的标识,不再赘述。
此外,旋转显示装置中还可以包括供电装置PS,例如,供电装置PS与处理器220和所述多个模拟开关耦接,被配置为向处理器220和所述多个模拟开关提供电能,以保证处理器220对所述多个模拟开关的有效控制。
本公开的实施例还提供了上述任一实施例所述的旋转显示装置的驱动方法。参见图17,所述驱动方法包括:
S1:处理器220向与一条数据线DT耦接的各个驱动器M发送驱动信息D,所述驱动信息D包括:与所述一条数据线耦接的所述至少两个像素单元中的至少一个像素单元的标识和像素数据。
示例性地,处理器220通过多条数据线DT与多个驱动器M耦接,例如,所述多个驱动器M位于显示面板10中,并且一个驱动器与一个像素单元P对应并耦接。各个像素列PL1~PL120分别通过数据线DT1~DTn与处理器220耦接。
处理器220通过数据线DT向一个像素列对应的驱动器发送驱动信息,例如,通过数据线DT1向像素列PL1对应的驱动器M11~Mm1发送驱动信息D1;通过数据线DTi向像素列PLi对应的驱动器M1i~Mmi发送驱动信息Di。
S2:驱动器Mij接收所述驱动信息Di,并在所述至少一个像素单元的标识中包含与其耦接的像素单元的标识Pij的情况下,按照所述与其耦接的像素单元的刷新频率,根据所述驱动信息中所述与其耦接的像素单元的像素数据Dij驱动所述与其耦接的像素单元工作;在所述至少一个像素单元的标识中不包含所述与其耦接的像素单元的标识Pij的情况下,按照所述与其耦接的像素单元的刷新频率,驱动所述与其耦接的像素单元维持当前显示的颜色。
示例性地,以驱动器Mij为例,当驱动器Mij接收到驱动信息Dj后,驱动器Mij根据驱动信息Dj中包括的多个标识与其内存中的标识Pij比对,若驱动信息Dj中包括标识Pij,则读取标识Pij对应的像素数据Dij,并根据像素数据Dij生成驱动信号,通过驱动信号驱动对应的像素单元工作,例如,驱动信号中包括R、G、B子像素各自的驱动信号Dr、Dg、Db;若驱动信息Dj中不包括标识Pij,那么驱动器Mij根据其存储器中的像素数据Dij’生成驱动 信号,通过驱动信号驱动对应的像素单元工作,例如,像素数据Dij’为该像素单元上一个像素帧的像素数据,本像素帧R、G、B子像素各自的驱动信号Dr’、Dg’、Db’与上一个像素帧R、G、B子像素各自的驱动信号相同,该像素单元显示与上一个像素帧相同的颜色。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (18)

  1. 一种旋转显示装置,包括:
    像素阵列,可绕位于所述像素阵列中的一条的旋转轴线转动,所述像素阵列包括多个像素单元,所述多个像素单元排成沿垂直于所述旋转轴线的方向分布的多个像素列,每个像素列中的各个像素单元沿平行于所述旋转轴线的方向排列,且以相同的刷新频率工作;靠近所述旋转轴线的一个像素列中的像素单元的刷新频率小于远离所述旋转轴线的一个像素列中的像素单元的刷新频率;
    控制装置,被配置为控制所述每个像素列中的像素单元以所述像素列相应的刷新频率工作。
  2. 根据权利要求1所述的旋转显示装置,其中,
    所述多个像素列分成多个像素组,每个像素组包括:连续分布的至少一个像素列,所述每个像素组中的各个像素单元的刷新频率相同;
    位于所述旋转轴线同侧的多个像素列中,沿远离所述旋转轴线的方向排列的各个像素组的刷新频率逐渐增大。
  3. 根据权利要求2所述的旋转显示装置,其中,
    所述多个像素组中,每个所述像素组包含相同列数的像素列;
    或者,
    所述多个像素组中,位于所述旋转轴线同侧的多个像素列中,沿远离所述旋转轴线的方向排列的各个像素组包括的像素列的数量依次减少。
  4. 根据权利要求2或3所述的旋转显示装置,其中,
    位于所述旋转轴线同侧的多个像素列中,沿远离所述旋转轴线的方向排列的所述各个像素组的刷新频率构成等差数列。
  5. 根据权利要求1至4中的任一项所述的旋转显示装置,其中,
    所述远离旋转轴线的一个像素列中的每个像素单元形成多个第一体素,所述远离旋转轴线的一个像素列中的每个像素单元形成多个第二体素;第一体素间距等于第二体素间距;
    其中,所述第一体素间距为相邻两个第一体素之间的距离;所述第二体素间距为相邻两个第二体素之间的距离。
  6. 根据权利要求1至5中的任一项所述的旋转显示装置,其中,
    所述旋转轴线为所述像素阵列的对称轴;
    位于所述旋转轴线不同侧且到所述旋转轴线的距离相同的两个像素列的刷新频率相同。
  7. 根据权利要求1至6中的任一项所述的旋转显示装置,其中,
    所述控制装置包括:多个驱动器,每个驱动器与一个像素单元耦接;
    所述驱动器被配置为接收驱动信息,所述驱动信息包括:至少一个像素单元的标识和像素数据,并识别所述至少一个像素单元的标识中包含所述与其耦接的像素单元的标识,按照所述与其耦接的像素单元的刷新频率,根据所述驱动信息中所述与其耦接的像素单元的像素数据驱动所述与其耦接的像素单元工作。
  8. 根据权利要求7所述的旋转显示装置,其中,
    所述驱动器还被配置为识别所述至少一个像素单元的标识中不包含所述与其耦接的像素单元的标识,按照所述与其耦接的像素单元的刷新频率,驱动所述与其耦接的像素单元维持当前显示的颜色。
  9. 根据权利要求7或8所述的旋转显示装置,其中,
    所述驱动器还被配置为接收频率指示信号和所述驱动信息,所述频率指示信号的频率为与所述驱动器耦接的像素单元的刷新频率;并按照所述频率指示信号的频率,根据所述驱动信息驱动与所述驱动器耦接的像素单元工作;
    或者,
    所述驱动器还被配置为按照写入频率,将接收到的所述与其耦接的像素单元的像素数据逐一存储,并以所述与其耦接的像素单元的刷新频率,按照存储的顺序读取存储的像素数据,以使得按照所述与其耦接的像素单元的刷新频率,根据所述读取的像素数据驱动所述与其耦接的像素单元工作;其中,所述写入频率大于或等于所述与其耦接的像素单元的刷新频率。
  10. 根据权利要求9所述的旋转显示装置,其中,
    所述驱动器包括:存储队列;
    所述驱动器被配置为接收所述与其耦接的像素单元的像素数据;以所述写入频率,将接收到所述与其耦接的像素单元的像素数据写入所述存储队列;并以读取频率,按照所述写入的顺序从所述存储队列中读取所述像素数据,其中,所述读取频率为所述与其耦接的像素单元的刷新频率;根据读取的所述像素数据,生成驱动信号,所述驱动信号被配置为驱动所述与其耦接的像素单元工作。
  11. 根据权利要求7至10中的任一项所述的旋转显示装置,其中,
    所述控制装置还包括:处理器;所述处理器与所述多个驱动器耦接,被配置为向每个驱动器发送所述驱动信息。
  12. 根据权利要求11所述的旋转显示装置,还包括:
    多条数据线;一个像素列中的至少两个像素单元各自耦接的驱动器通过一条数据线与所述处理器耦接;
    所述处理器被配置为向与所述一条数据线耦接的各个驱动器发送驱动信息,所述驱动信息包括:与所述一条数据线耦接的所述至少两个像素单元中的至少一个像素单元的标识和像素数据。
  13. 根据权利要求12所述的旋转显示装置,其中,
    一个像素列耦接的各个驱动器分成至少两个驱动器组,其中,一个驱动器组中的各个驱动器通过一条数据线与所述处理器耦接,不同驱动器组中的驱动器通过不同数据线与所述处理器耦接。
  14. 根据权利要求11至13中的任一项所述的旋转显示装置,其中,
    所述处理器被配置为以每个驱动器对应的第一发送频率,向所述每个驱动器发送所述驱动信息;所述每个驱动器对应的第一发送频率等于与所述驱动器耦接的像素单元的刷新频率;
    或者,
    所述处理器被配置为以第二发送频率,向每个驱动器发送所述驱动信息;所述第二发送频率大于等于所述像素阵列中各个像素单元的刷新频率。
  15. 根据权利要求14所述的旋转显示装置,其中,
    与一个驱动器耦接的像素单元在当前像素帧的像素数据与在上一像素帧的像素数据不同的情况下,所述处理器向所述驱动器发送的所述驱动信息中包括所述像素单元的标识和在当前像素帧的像素数据;
    与一个驱动器耦接的像素单元在当前像素帧的像素数据与在上一像素帧的像素数据相同的情况下,所述处理器向所述驱动器发送的所述驱动信息中不包括所述像素单元的标识和在当前像素帧的像素数据。
  16. 根据权利要求11至15中的任一项所述的旋转显示装置,其中,
    所述多个像素单元还沿垂直于所述旋转轴线的方向排成多个像素排;
    所述旋转显示装置还包括:多条栅线;一个像素排中的至少两个像素单元各自耦接的驱动器通过一条栅线与所述处理器耦接;
    所述处理器还被配置为向与所述一条栅线耦接的各个驱动器发送开启信号;还被配置为向各个驱动器发送与每个驱动器耦接的像素单元的标识;
    所述驱动器还被配置为接收所述开启信号,并响应于所述开启信号,接收与所述驱动器耦接的像素单元的标识,并将接收到的所述像素单元的标识写入所述驱动器中。
  17. 根据权利要求16所述的旋转显示装置,还包括:
    多个开关,所述处理器通过一个开关与至少两条栅线耦接;
    其中,与所述一个开关耦接的栅线的数量与一个像素列耦接的数据线的数量相同。
  18. 一种旋转显示装置的驱动方法,包括:
    处理器向与一条数据线耦接的各个驱动器发送驱动信息,所述驱动信息包括:与所述一条数据线耦接的所述至少两个像素单元中的至少一个像素单元的标识和像素数据;
    驱动器接收所述驱动信息,并在所述至少一个像素单元的标识中包含与其耦接的像素单元的标识的情况下,按照所述与其耦接的像素单元的刷新频率,根据所述驱动信息中所述与其耦接的像素单元的像素数据驱动所述与其耦接的像素单元工作;在所述至少一个像素单元的标识中不包含所述与其耦接的像素单元的标识的情况下,按照所述与其耦接的像素单元的刷新频率,驱动所述与其耦接的像素单元维持当前显示的颜色。
PCT/CN2021/096882 2021-05-28 2021-05-28 旋转显示装置及其驱动方法 WO2022246820A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/915,848 US20240212537A1 (en) 2021-05-28 2021-05-28 Rotating display apparatus and method of driving the same
CN202180001349.5A CN115701308B (zh) 2021-05-28 2021-05-28 旋转显示装置及其驱动方法
PCT/CN2021/096882 WO2022246820A1 (zh) 2021-05-28 2021-05-28 旋转显示装置及其驱动方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/096882 WO2022246820A1 (zh) 2021-05-28 2021-05-28 旋转显示装置及其驱动方法

Publications (1)

Publication Number Publication Date
WO2022246820A1 true WO2022246820A1 (zh) 2022-12-01

Family

ID=84228347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/096882 WO2022246820A1 (zh) 2021-05-28 2021-05-28 旋转显示装置及其驱动方法

Country Status (3)

Country Link
US (1) US20240212537A1 (zh)
CN (1) CN115701308B (zh)
WO (1) WO2022246820A1 (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007033995A (ja) * 2005-07-28 2007-02-08 Ntt Comware Corp 立体表示装置及び立体表示方法並びにそのプログラムと記録媒体
CN101022565A (zh) * 2007-02-15 2007-08-22 浙江大学 体三维显示中体素均匀分布的实现方法
CN102291589A (zh) * 2011-07-30 2011-12-21 福州大学 旋转式体三维显示均匀性优化方法
CN104732592A (zh) * 2015-04-03 2015-06-24 徐超 一种基于二维led旋转屏的实时三维数据生成方法
CN110023881A (zh) * 2016-12-01 2019-07-16 上海云英谷科技有限公司 基于区域的显示数据处理和传输
CN110322801A (zh) * 2019-07-09 2019-10-11 京东方科技集团股份有限公司 一种三维显示装置、其显示方法及三维显示系统
CN110602477A (zh) * 2019-09-26 2019-12-20 京东方科技集团股份有限公司 一种显示方法、显示装置、电子设备及存储介质
CN110996093A (zh) * 2019-11-08 2020-04-10 京东方科技集团股份有限公司 基于二维屏幕旋转体三维显示的体素均匀化方法及装置
KR20200054644A (ko) * 2018-11-12 2020-05-20 최태홍 Led 어레이의 회전을 이용한 3d 디스플레이장치
CN112213867A (zh) * 2020-10-29 2021-01-12 京东方科技集团股份有限公司 显示面板、显示装置及显示面板驱动方法
WO2021046757A1 (zh) * 2019-09-11 2021-03-18 京东方科技集团股份有限公司 显示装置及其驱动方法
CN112634799A (zh) * 2020-07-10 2021-04-09 友达光电股份有限公司 透明显示面板

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8207954B2 (en) * 2008-11-17 2012-06-26 Global Oled Technology Llc Display device with chiplets and hybrid drive

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007033995A (ja) * 2005-07-28 2007-02-08 Ntt Comware Corp 立体表示装置及び立体表示方法並びにそのプログラムと記録媒体
CN101022565A (zh) * 2007-02-15 2007-08-22 浙江大学 体三维显示中体素均匀分布的实现方法
CN102291589A (zh) * 2011-07-30 2011-12-21 福州大学 旋转式体三维显示均匀性优化方法
CN104732592A (zh) * 2015-04-03 2015-06-24 徐超 一种基于二维led旋转屏的实时三维数据生成方法
CN110023881A (zh) * 2016-12-01 2019-07-16 上海云英谷科技有限公司 基于区域的显示数据处理和传输
KR20200054644A (ko) * 2018-11-12 2020-05-20 최태홍 Led 어레이의 회전을 이용한 3d 디스플레이장치
CN110322801A (zh) * 2019-07-09 2019-10-11 京东方科技集团股份有限公司 一种三维显示装置、其显示方法及三维显示系统
WO2021046757A1 (zh) * 2019-09-11 2021-03-18 京东方科技集团股份有限公司 显示装置及其驱动方法
CN110602477A (zh) * 2019-09-26 2019-12-20 京东方科技集团股份有限公司 一种显示方法、显示装置、电子设备及存储介质
CN110996093A (zh) * 2019-11-08 2020-04-10 京东方科技集团股份有限公司 基于二维屏幕旋转体三维显示的体素均匀化方法及装置
CN112634799A (zh) * 2020-07-10 2021-04-09 友达光电股份有限公司 透明显示面板
CN112213867A (zh) * 2020-10-29 2021-01-12 京东方科技集团股份有限公司 显示面板、显示装置及显示面板驱动方法

Also Published As

Publication number Publication date
CN115701308B (zh) 2023-10-24
US20240212537A1 (en) 2024-06-27
CN115701308A (zh) 2023-02-07

Similar Documents

Publication Publication Date Title
TWI538195B (zh) 像素陣列、顯示器以及將圖像呈現於顯示器上的方法
KR100839429B1 (ko) 전자 영상 기기 및 그 구동방법
US8659641B2 (en) Stereoscopic 3D liquid crystal display apparatus with black data insertion
WO2021046757A1 (zh) 显示装置及其驱动方法
EP2584555A1 (en) Display panel and display device
CN202282836U (zh) 立体图像显示设备
WO2019085454A1 (zh) 异形显示屏及显示装置
WO2017118058A1 (zh) 三维显示装置及其驱动方法
WO2017092453A1 (zh) 三维显示装置及其驱动方法
US8289351B2 (en) Method for driving a display
US10140759B2 (en) Three-dimensional display and data generation method
WO2022199020A1 (zh) 显示面板及其驱动方法、显示装置
KR20180044454A (ko) 표시 패널, 입체 영상 표시 패널 및 표시 장치
KR100846707B1 (ko) 전자 영상 기기
WO2017092397A1 (zh) 一种三维显示装置及其驱动方法
US20120188475A1 (en) Display device, barrier device, and method of driving display device
WO2022246820A1 (zh) 旋转显示装置及其驱动方法
US20120162208A1 (en) 2d/3d image display device
US10529287B2 (en) Display device and control method for the same
CN202019419U (zh) 一种三维显示面板、三维显示系统及3d显示器
CN116052612A (zh) 显示面板的驱动方法、显示装置
WO2018170960A1 (zh) 一种裸眼三维显示装置
CN109616074A (zh) 显示方法和显示装置
US20180096658A1 (en) Display apparatus
KR101646494B1 (ko) 입체 영상 디스플레이 장치 및 그 구동 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17915848

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21942394

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/03/2024)