WO2022246805A1 - Light emitting diode converter and led device - Google Patents

Light emitting diode converter and led device Download PDF

Info

Publication number
WO2022246805A1
WO2022246805A1 PCT/CN2021/096804 CN2021096804W WO2022246805A1 WO 2022246805 A1 WO2022246805 A1 WO 2022246805A1 CN 2021096804 W CN2021096804 W CN 2021096804W WO 2022246805 A1 WO2022246805 A1 WO 2022246805A1
Authority
WO
WIPO (PCT)
Prior art keywords
push button
controller
led
converter
light emitting
Prior art date
Application number
PCT/CN2021/096804
Other languages
French (fr)
Inventor
Qiuxiang MAO
Zhiwen Chen
Original Assignee
Tridonic Gmbh & Co Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tridonic Gmbh & Co Kg filed Critical Tridonic Gmbh & Co Kg
Priority to PCT/CN2021/096804 priority Critical patent/WO2022246805A1/en
Priority to GB2316658.0A priority patent/GB2621272A/en
Publication of WO2022246805A1 publication Critical patent/WO2022246805A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits

Definitions

  • Embodiments of the present disclosure generally relate to the field of power control circuits, and more particularly, to a light emitting diode (LED) converter and a LED device.
  • LED light emitting diode
  • a push button is popularly used in a LED converter.
  • the push button is directly connected to a primary side of a transformer in a LED device, such that it is dangerous for a user due to a high voltage from the primary side.
  • the push button itself has to be insulated by means of some insulation materials; while in some solutions, the push button has to be isolated by an opto-coupler.
  • those solutions are complex in structure and have a high cost.
  • embodiments of the present disclosure provide a light emitting diode (LED) converter and a LED device. It is expected to isolate the push button to improve safety while with a simple structure and a low cost.
  • LED light emitting diode
  • a light emitting diode (LED) converter includes: a controller which is configured to control a power supply for a LED, and a push button which is configured to couple with the controller, wherein the push button is isolated from the controller by at least one safety capacitor between the push button and the controller.
  • the converter further includes: a resistance which is configured to connect with the controller; wherein the resistance and a first safety capacitor are configured between the controller and the push button.
  • the first safety capacitor is a Y-Cap.
  • the push button is supplied by a voltage
  • a second safety capacitor is configured between the voltage and the push button.
  • the second safety capacitor is a Y-Cap.
  • a current is picked up to the controller through the resistance; when the push button is pushed to be off, there is not current on the resistance.
  • the push button is supplied by a pulse width modulation (PWM) signal
  • a second safety capacitor is configured between the pulse width modulation (PWM) signal and the push button.
  • a signal is picked up to the controller through the resistance; when the push button is pushed to be off, there is not signal on the resistance.
  • a LED device in a second aspect, includes: a transformer having a primary side and a secondary side, wherein the secondary side is connected to a LED; a switching element which is configured to connect to the primary side and control a power supply for the light emitting diode; a controller which is configured to control the switching element, and a push button which is configured to couple with the controller, wherein the push button is isolated from the controller by at least one safety capacitor between the push button and the controller.
  • a push button is configured to couple with a controller, wherein the push button is isolated from the controller by at least one safety capacitor between the push button and the controller. Therefore, the push button can be isolated from the controller to improve safety while with a simple structure and a low cost.
  • Fig. 1 is a diagram which shows a LED device in accordance with an embodiment of the present disclosure
  • Fig. 2 is a diagram which shows another LED device in accordance with an embodiment of the present disclosure.
  • the terms “first” and “second” refer to different elements.
  • the singular forms “a” and “an” are intended to include the plural forms as well, unless the context clearly indicates otherwise.
  • the term “based on” is to be read as “based at least in part on” .
  • the term “cover” is to be read as “at least in part cover” .
  • the term “one embodiment” and “an embodiment” are to be read as “at least one embodiment” .
  • the term “another embodiment” is to be read as “at least one other embodiment” .
  • Other definitions, explicit and implicit, may be included below.
  • a LED converter and a LED device are provided in the embodiments.
  • Fig. 1 is a diagram which shows a LED device in accordance with an embodiment of the present disclosure.
  • a LED device 200 includes a LED converter 100. Furthermore, the LED device 200 includes a transformer 300 having a primary side (P1) 301 and a secondary (S1) side 302, wherein the secondary side 302 is connected to a light emitting diode (LED) 400.
  • P1 primary side
  • S1 secondary side 302
  • the LED device 200 includes switching element (Q1) 500 which is configured to connect to the primary side 301 and control a power supply for the light emitting diode 400.
  • the power supply is supplied from the primary side 301 to the secondary side 302 on the control of the switching element 500.
  • the LED converter 100 includes a controller 101 and a push button 102; the controller 101 is configured to control the switching element 500, so as to control the power supply for the LED 400; the push button 102 is configured to couple with the controller 101, wherein the push button 102 is isolated from the controller 101 by at least one safety capacitor (103, 104) between the push button 102and the controller 101.
  • the controller 101 is configured to control the switching element 500, so as to control the power supply for the LED 400
  • the push button 102 is configured to couple with the controller 101, wherein the push button 102 is isolated from the controller 101 by at least one safety capacitor (103, 104) between the push button 102and the controller 101.
  • the LED device 200 includes a transformer having a primary side and a secondary side, but it is not limited thereto.
  • the LED device may alternatively include a non-isolated converter e.g. a boost converter, buck-boost converter, SEPIC converter or buck converter having at least one inductor or transformer.
  • the controller 101 is a micro controller unit (MCU) , and it is not limited thereto.
  • MCU micro controller unit
  • the converter 100 further includes a resistance (R1) 105, which is configured to connect with the controller 101; wherein a first safety capacitor (C1) 103 and the resistance 105 are configured between the controller 101 and the push button 102.
  • R1 105 a resistance
  • C1 103 and the resistance 105 are configured between the controller 101 and the push button 102.
  • the push button 102 can be isolated from the controller 101 to improve safety while with a simple structure and a low cost.
  • the push button 102 is supplied by a voltage (V1) 600, and a second safety capacitor (C2) 104 is configured between the voltage 600 and the push button 102.
  • the first safety capacitor and/or the second safety capacitor are/is Y-Cap.
  • Y-cap As for the detail about Y-cap, please refer to the relevant art. Therefore, the cost can be further decreased.
  • the push button 102 when the push button 102 is pushed to be on (be work) , a current is picked up to the controller 101 through the resistance 105; when the push button 102 is pushed to be off (not be work) , there is not current on the resistance 105. Therefore, the safety can be further improved.
  • Fig. 2 is a diagram which shows another LED device in accordance with an embodiment of the present disclosure.
  • a LED device 200 includes a LED converter 100. Furthermore, the LED device 200 includes a transformer 300 having a primary side (P1) 301 and a secondary (S1) side 302, wherein the secondary side 302 is connected to a light emitting diode (LED) 400.
  • P1 primary side
  • S1 secondary side 302
  • the LED device 200 includes switching element (Q1) 500 which is configured to connect to the primary side 301 and control a power supply for the light emitting diode 400.
  • the LED converter 100 includes a controller 101 and a push button 102; the controller 101 is configured to control the switching element 500, so as to control the power supply for the LED 400, the push button 102 is configured to couple with the controller 101, wherein the push button 102 is isolated from the controller 101 by at least one safety capacitor (103, 104) between the push button 102 and the controller 101.
  • the controller 101 is configured to control the switching element 500, so as to control the power supply for the LED 400
  • the push button 102 is configured to couple with the controller 101, wherein the push button 102 is isolated from the controller 101 by at least one safety capacitor (103, 104) between the push button 102 and the controller 101.
  • the LED device 200 includes a transformer having a primary side and a secondary side, but it is not limited thereto.
  • the LED device may alternatively include a non-isolated converter e.g. a boost converter, buck-boost converter, SEPIC converter or buck converter having at least one inductor or transformer.
  • the push button 102 is supplied by a pulse width modulation (PWM) signal 700, and a second safety capacitor (C2) 104 is configured between the pulse width modulation (PWM) signal 700 and the push button 102.
  • PWM pulse width modulation
  • C2 second safety capacitor
  • the push button 102 when the push button 102 is pushed to be on (be work) , a signal is picked up to the controller 101 through the resistance 105; when the push button 102 is pushed to be off (not be work) , there is not signal on the resistance 105. Therefore, the safety can be further improved.
  • the push button is not limited as the structure in Fig. 1 and Fig. 2.
  • the push button may be anyway isolated from the converter and the load (e.g. LED load) due to the embodiments of disclosure.
  • a push button is configured to couple with a controller, wherein the push button is isolated from the controller by at least one safety capacitor between the push button and the controller. Therefore, the push button can be isolated from the controller to improve safety while with a simple structure and a low cost.
  • various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Illuminated Signs And Luminous Advertising (AREA)

Abstract

A light emitting diode (LED) converter and device are provided. The LED converter includes: a controller which is configured to control a power supply for a LED, and a push button which is configured to couple with the controller, wherein the push button is isolated from the controller by at least one safety capacitor between the push button and the controller. Therefore, the push button can be isolated from the controller to improve safety while with a simple structure and a low cost.

Description

LIGHT EMITTING DIODE CONVERTER AND LED DEVICE TECHNICAL FIELD
Embodiments of the present disclosure generally relate to the field of power control circuits, and more particularly, to a light emitting diode (LED) converter and a LED device.
BACKGROUND
Nowadays, a push button is popularly used in a LED converter. For example, the push button is directly connected to a primary side of a transformer in a LED device, such that it is dangerous for a user due to a high voltage from the primary side.
This section introduces aspects that may facilitate a better understanding of the disclosure. Accordingly, the statements of this section are to be read in this light and are not to be understood as admissions about what is in the prior art or what is not in the prior art.
SUMMARY
The inventor found that in order to improve the safety, in some solutions, the push button itself has to be insulated by means of some insulation materials; while in some solutions, the push button has to be isolated by an opto-coupler. However, those solutions are complex in structure and have a high cost.
In order to solve at least part of the above problems, methods, apparatus, devices are provided in the present disclosure. Features and advantages of embodiments of the present disclosure will also be understood from the following description of specific embodiments when read in conjunction with the accompanying drawings, which illustrate, by way of example, the principles of embodiments of the present disclosure.
In general, embodiments of the present disclosure provide a light emitting diode (LED) converter and a LED device. It is expected to isolate the push button to improve safety while with a simple structure and a low cost.
In a first aspect, a light emitting diode (LED) converter is provided. The LED converter includes: a controller which is configured to control a power supply for a LED, and a push button which is configured to couple with the controller, wherein the push button is isolated from the controller by at least one safety capacitor between the push button and the controller.
In some embodiments, the converter further includes: a resistance which is configured to connect with the controller; wherein the resistance and a first safety capacitor are configured between the controller and the push button.
In some embodiments, the first safety capacitor is a Y-Cap.
In some embodiments, the push button is supplied by a voltage, and a second safety capacitor is configured between the voltage and the push button.
In some embodiments, the second safety capacitor is a Y-Cap.
In some embodiments, when the push button is pushed to be on, a current is picked up to the controller through the resistance; when the push button is pushed to be off, there is not current on the resistance.
In some embodiments, the push button is supplied by a pulse width modulation (PWM) signal, and a second safety capacitor is configured between the pulse width modulation (PWM) signal and the push button.
In some embodiments, when the push button is pushed to be on, a signal is picked up to the controller through the resistance; when the push button is pushed to be off, there is not signal on the resistance.
In a second aspect, a LED device is provided. The LED device includes: a transformer having a primary side and a secondary side, wherein the secondary side is connected to a LED; a switching element which is configured to connect to the primary side and control a power supply for the light emitting diode; a controller which is configured to control the switching element, and a push button which is configured to couple with the controller, wherein the push button is isolated from the controller by at least one safety capacitor between the push button and the controller.
According to various embodiments of the present disclosure, a push button is  configured to couple with a controller, wherein the push button is isolated from the controller by at least one safety capacitor between the push button and the controller. Therefore, the push button can be isolated from the controller to improve safety while with a simple structure and a low cost.
BRIEF DESCRIPTION OF THE DRAWINGS
The above and other aspects, features, and benefits of various embodiments of the disclosure will become more fully apparent, by way of example, from the following detailed description with reference to the accompanying drawings, in which like reference numerals or letters are used to designate like or equivalent elements. The drawings are illustrated for facilitating better understanding of the embodiments of the disclosure and not necessarily drawn to scale, in which:
Fig. 1 is a diagram which shows a LED device in accordance with an embodiment of the present disclosure;
Fig. 2 is a diagram which shows another LED device in accordance with an embodiment of the present disclosure.
DETAILED DESCRIPTION
The present disclosure will now be described with reference to several example embodiments. It should be understood that these embodiments are discussed only for the purpose of enabling those skilled persons in the art to better understand and thus implement the present disclosure, rather than suggesting any limitations on the scope of the present disclosure.
It should be understood that when an element is referred to as being “connected” or “coupled” or “contacted” to another element, it may be directly connected or coupled or contacted to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” or “directly contacted” to another element, there are no intervening elements present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between” , “adjacent” versus “directly adjacent” , etc. ) .
As used herein, the terms “first” and “second” refer to different elements. The singular forms “a” and “an” are intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises, ” “comprising, ” “has, ” “having, ” “includes” and/or “including” as used herein, specify the presence of stated features, elements, and/or components and the like, but do not preclude the presence or addition of one or more other features, elements, components and/or combinations thereof.
The term “based on” is to be read as “based at least in part on” . The term “cover” is to be read as “at least in part cover” . The term “one embodiment” and “an embodiment” are to be read as “at least one embodiment” . The term “another embodiment” is to be read as “at least one other embodiment” . Other definitions, explicit and implicit, may be included below.
In this disclosure, unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which example embodiments belong. It will be further understood that terms, e.g., those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
A LED converter and a LED device are provided in the embodiments.
Fig. 1 is a diagram which shows a LED device in accordance with an embodiment of the present disclosure.
As shown in Fig. 1, a LED device 200 includes a LED converter 100. Furthermore, the LED device 200 includes a transformer 300 having a primary side (P1) 301 and a secondary (S1) side 302, wherein the secondary side 302 is connected to a light emitting diode (LED) 400.
Furthermore, as shown in Fig. 1, the LED device 200 includes switching element (Q1) 500 which is configured to connect to the primary side 301 and control a power supply for the light emitting diode 400. The power supply is supplied from the primary side 301 to the secondary side 302 on the control of the switching element 500.
As shown in Fig. 1, the LED converter 100 includes a controller 101 and a push  button 102; the controller 101 is configured to control the switching element 500, so as to control the power supply for the LED 400; the push button 102 is configured to couple with the controller 101, wherein the push button 102 is isolated from the controller 101 by at least one safety capacitor (103, 104) between the push button 102and the controller 101.
It should be appreciated that some components or elements are illustrated only as examples in Fig. 1. However, it is not limited thereto, for example, connections or positions of the components or elements may be adjusted, and/or, some components or elements may be omitted. Some element in Fig. 1 such as D1, D2, D3, D4, D5, C3, R2, R3, please refer to relevant art.
As shown in Fig. 1, the LED device 200 includes a transformer having a primary side and a secondary side, but it is not limited thereto. The LED device may alternatively include a non-isolated converter e.g. a boost converter, buck-boost converter, SEPIC converter or buck converter having at least one inductor or transformer.
In some embodiments, the controller 101 is a micro controller unit (MCU) , and it is not limited thereto.
In some embodiments, as shown in Fig. 1, the converter 100 further includes a resistance (R1) 105, which is configured to connect with the controller 101; wherein a first safety capacitor (C1) 103 and the resistance 105 are configured between the controller 101 and the push button 102.
Therefore, the push button 102 can be isolated from the controller 101 to improve safety while with a simple structure and a low cost.
In some embodiments, as shown in Fig. 1, the push button 102 is supplied by a voltage (V1) 600, and a second safety capacitor (C2) 104 is configured between the voltage 600 and the push button 102.
In some embodiments, the first safety capacitor and/or the second safety capacitor are/is Y-Cap. As for the detail about Y-cap, please refer to the relevant art. Therefore, the cost can be further decreased.
In some embodiments, when the push button 102 is pushed to be on (be work) , a current is picked up to the controller 101 through the resistance 105; when the push button 102 is pushed to be off (not be work) , there is not current on the resistance 105. Therefore,  the safety can be further improved.
Fig. 2 is a diagram which shows another LED device in accordance with an embodiment of the present disclosure.
As shown in Fig. 2, a LED device 200 includes a LED converter 100. Furthermore, the LED device 200 includes a transformer 300 having a primary side (P1) 301 and a secondary (S1) side 302, wherein the secondary side 302 is connected to a light emitting diode (LED) 400.
Furthermore, as shown in Fig. 2, the LED device 200 includes switching element (Q1) 500 which is configured to connect to the primary side 301 and control a power supply for the light emitting diode 400.
As shown in Fig. 2, the LED converter 100 includes a controller 101 and a push button 102; the controller 101 is configured to control the switching element 500, so as to control the power supply for the LED 400, the push button 102 is configured to couple with the controller 101, wherein the push button 102 is isolated from the controller 101 by at least one safety capacitor (103, 104) between the push button 102 and the controller 101.
It should be appreciated that some components or elements are illustrated only as examples in Fig. 2. However, it is not limited thereto, for example, connections or positions of the components or elements may be adjusted, and/or, some components or elements may be omitted. Some element in Fig. 1 such as D1, D2, D3, D4, D5, C3, R2, R3, please refer to relevant art.
As shown in Fig. 2, the LED device 200 includes a transformer having a primary side and a secondary side, but it is not limited thereto. The LED device may alternatively include a non-isolated converter e.g. a boost converter, buck-boost converter, SEPIC converter or buck converter having at least one inductor or transformer.
In some embodiments, as shown in Fig. 2, the push button 102 is supplied by a pulse width modulation (PWM) signal 700, and a second safety capacitor (C2) 104 is configured between the pulse width modulation (PWM) signal 700 and the push button 102.
In some embodiments, when the push button 102 is pushed to be on (be work) , a signal is picked up to the controller 101 through the resistance 105; when the push button 102 is pushed to be off (not be work) , there is not signal on the resistance 105. Therefore,  the safety can be further improved.
It is to be understood that, the above examples or embodiments are discussed for illustration, rather than limitation. Those skilled in the art would appreciate that there may be many other embodiments or examples within the scope of the present disclosure. Furthermore, some contents of PWM, LED driving may be referred to relevant art, and these are omitted in this disclosure.
In this disclosure, the push button (interface circuit) is not limited as the structure in Fig. 1 and Fig. 2. The push button (interface circuit) may be anyway isolated from the converter and the load (e.g. LED load) due to the embodiments of disclosure.
It can be seen from the above embodiments, a push button is configured to couple with a controller, wherein the push button is isolated from the controller by at least one safety capacitor between the push button and the controller. Therefore, the push button can be isolated from the controller to improve safety while with a simple structure and a low cost.
Further, it is expected that one of ordinary skill, notwithstanding possibly significant effort and many design choices motivated by, for example, available time, current technology, and economic considerations, when guided by the concepts and principles disclosed herein will be readily capable of generating such software instructions and programs and integrated circuits (ICs) with minimal experimentation.
Generally, various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device.
While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representation, it will be appreciated that the blocks, apparatus, systems, techniques or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
Further, while operations are depicted in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous.
Likewise, while several specific implementation details are contained in the above discussions, these should not be construed as limitations on the scope of the present disclosure, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination.
Although the present disclosure has been described in language specific to structural features and/or methodological acts, it is to be understood that the present disclosure defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims (10)

  1. A light emitting diode (LED) converter, comprising:
    a controller which is configured to control a power supply for a light emitting diode (LED) , and
    a push button which is configured to couple with the controller, wherein the push button is isolated from the controller by at least one safety capacitor between the push button and the controller.
  2. The converter according to claim 1, wherein the converter further comprises:
    a resistance which is configured to connect with the controller; wherein a first safety capacitor and the resistance are configured between the controller and the push button.
  3. The converter according to claim 2, wherein the first safety capacitor is a Y-Cap.
  4. The converter according to claim 2, wherein the push button is supplied by a voltage, and a second safety capacitor is configured between the voltage and the push button.
  5. The converter according to claim 4, wherein the second safety capacitor is a Y-Cap.
  6. The converter according to claim 4, wherein when the push button is pushed to be on, a current is picked up to the controller through the resistance; when the push button is pushed to be off, there is not current on the resistance.
  7. The converter according to claim 2, wherein the push button is supplied by a pulse width modulation (PWM) signal, and a second safety capacitor is configured between the pulse width modulation (PWM) signal and the push button.
  8. The converter according to claim 7, wherein the second safety capacitor is a Y-Cap.
  9. The converter according to claim 7, wherein when the push button is pushed to be on, a signal is picked up to the controller through the resistance; when the push button is pushed to be off, there is not signal on the resistance.
  10. A light emitting diode (LED) device, comprising:
    a transformer having a primary side and a secondary side, wherein the secondary side is connected to a light emitting diode (LED) ;
    a switching element which is configured to connect to the primary side and control a power supply for the light emitting diode;
    a controller which is configured to control the switching element, and
    a push button which is configured to couple with the controller, wherein the push button is isolated from the controller by at least one safety capacitor between the push button and the controller.
PCT/CN2021/096804 2021-05-28 2021-05-28 Light emitting diode converter and led device WO2022246805A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/096804 WO2022246805A1 (en) 2021-05-28 2021-05-28 Light emitting diode converter and led device
GB2316658.0A GB2621272A (en) 2021-05-28 2021-05-28 Light emitting diode converter and LED device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/096804 WO2022246805A1 (en) 2021-05-28 2021-05-28 Light emitting diode converter and led device

Publications (1)

Publication Number Publication Date
WO2022246805A1 true WO2022246805A1 (en) 2022-12-01

Family

ID=84228390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/096804 WO2022246805A1 (en) 2021-05-28 2021-05-28 Light emitting diode converter and led device

Country Status (2)

Country Link
GB (1) GB2621272A (en)
WO (1) WO2022246805A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102428753A (en) * 2009-04-30 2012-04-25 赤多尼科两合股份有限公司 Driver circuit for an led
CN103582248A (en) * 2012-07-24 2014-02-12 松下电器产业株式会社 Power supply device, lighting device, lighting fixture using the same, and vehicle
US20140078233A1 (en) * 2012-09-20 2014-03-20 Canon Kabushiki Kaisha Light emitting apparatus, driving circuit of light emitting element, and driving method
CN107006091A (en) * 2014-11-12 2017-08-01 飞利浦照明控股有限公司 Drive circuit and method
CN107078644A (en) * 2014-10-17 2017-08-18 赤多尼科两合股份有限公司 The operating method of operation circuit, LED converters and the operation circuit powered to lighting means

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102428753A (en) * 2009-04-30 2012-04-25 赤多尼科两合股份有限公司 Driver circuit for an led
CN103582248A (en) * 2012-07-24 2014-02-12 松下电器产业株式会社 Power supply device, lighting device, lighting fixture using the same, and vehicle
US20140078233A1 (en) * 2012-09-20 2014-03-20 Canon Kabushiki Kaisha Light emitting apparatus, driving circuit of light emitting element, and driving method
CN107078644A (en) * 2014-10-17 2017-08-18 赤多尼科两合股份有限公司 The operating method of operation circuit, LED converters and the operation circuit powered to lighting means
CN107006091A (en) * 2014-11-12 2017-08-01 飞利浦照明控股有限公司 Drive circuit and method

Also Published As

Publication number Publication date
GB202316658D0 (en) 2023-12-13
GB2621272A (en) 2024-02-07

Similar Documents

Publication Publication Date Title
US10003263B2 (en) Over voltage protection control method and circuit for four-switch buck-boost converter
US9853556B2 (en) Isolated power conversion system
US11527960B2 (en) Auxiliary power supply apparatus and method for isolated power converters
JP5981337B2 (en) Low cost power supply circuit and method
US20160286614A1 (en) Multichannel constant current led driving circuit, driving method and led driving power
KR101929989B1 (en) Driver circuit with primary side state estimator for inferred output current feed back sensing
US9485819B2 (en) Single stage LED driver system, control circuit and associated control method
Oh An analysis of current accuracies in peak and hysteretic current controlled power LED drivers
US11205947B2 (en) Multi-input single-output DC-DC converter, control circuit and control method thereof
US20140140105A1 (en) High efficiency and fast response ac-dc voltage converters
US9648677B2 (en) LED driving circuit and method using single inductor
US20190059134A1 (en) Power supply circuit and led driving circuit
US10566891B2 (en) Power supply device and control method thereof
US9837901B1 (en) Single-input multiple-output inverting and non-inverting buck/boost switching regulator control method and apparatus
US9059638B2 (en) Control methods and apparatuses for switching mode power supplies
US9337738B2 (en) Transformer-coupled gate-drive power regulator system
US20150326133A1 (en) Multi-mode active clamping power converter
WO2022246805A1 (en) Light emitting diode converter and led device
US10763751B2 (en) Device and method for converting input voltage to output voltage
US20190296647A1 (en) Device and Method for Controlling Power Supply with Delay Behavior in a Power Circuit
CN110299823B (en) Apparatus and method for controlling power supply
Hwu et al. Dimmable LED driver based on twin-bus converter and differential-mode transformer
WO2022027542A1 (en) Dimming device of led and luminaire device
EP3823150A1 (en) Wide input voltage range power converter circuit in a one-stage-two-switch configuration
US8520411B2 (en) Control method and control module for controlling an asymmetric DC-DC converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21942379

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202316658

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20210528

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21942379

Country of ref document: EP

Kind code of ref document: A1