WO2022246524A1 - Concrete with a unique feature - Google Patents

Concrete with a unique feature Download PDF

Info

Publication number
WO2022246524A1
WO2022246524A1 PCT/BR2021/050231 BR2021050231W WO2022246524A1 WO 2022246524 A1 WO2022246524 A1 WO 2022246524A1 BR 2021050231 W BR2021050231 W BR 2021050231W WO 2022246524 A1 WO2022246524 A1 WO 2022246524A1
Authority
WO
WIPO (PCT)
Prior art keywords
concrete
present
water
cement
structural
Prior art date
Application number
PCT/BR2021/050231
Other languages
French (fr)
Portuguese (pt)
Inventor
Maria Fernanda ALONSO S. DE OLIVEIRA
Janaina ALVES DE MORAIS
Ivan DE SOUZA SILVA
Original Assignee
Votorantim Cimentos S/A
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Votorantim Cimentos S/A filed Critical Votorantim Cimentos S/A
Priority to BR112023024152A priority Critical patent/BR112023024152A2/en
Priority to PCT/BR2021/050231 priority patent/WO2022246524A1/en
Publication of WO2022246524A1 publication Critical patent/WO2022246524A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/30Water reducers, plasticisers, air-entrainers, flow improvers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/30Water reducers, plasticisers, air-entrainers, flow improvers
    • C04B2103/32Superplasticisers

Definitions

  • the present invention reveals a concrete for application in works in general, especially works aimed at vertical real estate developments.
  • the concrete of the present invention is a line of concrete that, through its technology and characteristics, allows the execution of concreting with greater productivity, with concrete of differentiated performance and greater resistance, allowing the entire structure to be carried out with a single type of concrete ("single trace"). Concrete is supplied through concrete mixer trucks and is known as central dosed concrete (CDC).
  • CDC central dosed concrete
  • the concretes of the present invention are basically composed of a homogeneous mixture of Portland cement, coarse and fine mineral aggregates, with controlled granulometry, water and chemical additives.
  • the concrete mix also known as dosage, is characterized by the proportion of water, sand, cement and gravel needed to make the concrete for the work. Any change to this measurement can result in a dough that has an irregular texture and is difficult to work with.
  • Document PI 0705850-0 discloses a structural concrete with defined trait dry mixed and stored in bags.
  • Document MU 8102012-0 also reveals concrete in bags with a water dispenser which, according to its characteristics, has the principle of generating concrete packed in bags with its previously defined mix, with a view to taking more practice its use and based on a resistant and safe product.
  • Document PI 0010670-4 discloses an additive for use in the preparation of light weight concrete, in which said additive includes a combination of about 40% to 99% of organic polymeric material and from 1% to about 60 % of an air entrainment agent.
  • the additive is particularly suitable for the preparation of lightweight concrete using polystyrene aggregate.
  • the concrete of the present invention solves the existing problem in the state of the art, since the use of a single trace throughout the structure, allows the production of concrete of greater resistance, providing more support and, therefore, increasing safety structural.
  • single mix concrete allows for increased productivity in concreting, which reduces losses for the construction company, impacting productivity costs.
  • This concrete has numerous advantages compared to the state of the art, such as less variability of the concrete produced, greater compatibility of deformations along the structure, simplification of management, increased productivity, optimization of projects, lower consumption of steel, lower consumption of concrete, greater performance of the structure.
  • structures produced with the concrete of the present invention have greater durability, generating a longer useful life in relation to structures produced with conventional concrete;
  • the present invention allows the execution of concreting of greater productivity, with concrete of different performance in relation to the usual concrete.
  • the concrete of the present invention is the first concrete that allows the entire structure to be made with a single type of concrete, thus replacing the numerous traces of concrete used in a structure.
  • the concrete of the present invention is the only material that allows works already designed with different types of concrete, even with different resistances, to be executed with only one concrete.
  • figure 1 presents selected images extracted from example 01, showing the detail of the Shape Plan of the low floor type (2nd to 7th floor );
  • figure 2 shows selected images extracted from example 01, showing the layout of the low floor forms (2nd to 7th floor);
  • figure 3 presents selected images extracted from example 01, showing the detail of the shape plan of the 8th floor;
  • figure 4 shows selected images extracted from example 01, showing the layout plan for the 8th floor
  • figure 5 presents selected images extracted from example 01, showing the detail of the formwork plan of the 9th floor;
  • figure 6 shows selected images extracted from example 01, showing the ground plan of the 9th floor
  • figure 7 presents selected images extracted from example 01, showing the detail of the plan of forms of the high floor (10th to 14th floor);
  • figure 8 shows selected images extracted from example 01, showing the shape plan of the high-type floor (10th to 14th floor).
  • the present invention consists of a homogeneous mixture of Portland cement, coarse aggregates and mineral fines, with controlled granulometry, water and chemical additives.
  • the coarse and fine aggregates are derived from the crushing of limestone rocks and quartz sand deposits, with optimized and controlled granulometry to obtain greater compactness.
  • the chemical additives used are of the type: a) RA2 - high-performance synthetic superplasticizer based on polycarboxylate polymers (PCE), which promotes water reduction in concrete and considerably increases its fluidity, b) AI incorporating air, which adds a controlled amount of stable microbubbles to the concrete, promoting better rheological behavior and c) CH - hydration controller, which controls the hydration of the cement used, allowing better quality in the application of the concrete.
  • PCE polycarboxylate polymers
  • the amount of mixing water used to produce the concrete of the present invention is lower than conventional concrete. This significant reduction provides improvement in concrete quality parameters in the hardened state, such as such as improved mechanical resistance, improved durability, lower porosity, higher modulus of elasticity and lower shrinkage.
  • the low amount of water used allows the reduction of the amount of cement used. Compared to conventional concrete, this reduction in the amount of water results in a decrease of up to 20% in the emission of CCh/m 3 of concrete.
  • the present invention presents a minimum compressive strength at 28 days of age of 40 MPa and 50 MPa, slump class S220 and uses gravel with grading 0 and 1.
  • the properties of the present invention allow replacing concrete of different strengths used in the structure of a building by a single concrete. Also, due to the high fluidity of the present invention, it is possible replace concrete of different slump classes used in the structure of a building by a single concrete.
  • the structure of the analyzed building is composed of slabs supported by beams that transmit the efforts to the pillars, all of these elements being molded in loco in reinforced concrete.
  • the 8th and 9th floors have variations in structure due to changes in the architectural design, as well as transition beams and changes in pillar sections following the variations in the facades.
  • Structural Model 01 is the original model of the structure, with restrictions and compatibility due to other parts of the building as described in the previous item.
  • the specification of the concrete used in this model is as follows:
  • Structural Model 02 is identical to Structural Model 01, except for the concrete specifications, which are described below:
  • Structural Model 03 was based on Structural Model 01, optimizing the thicknesses of the slabs, disregarding the restriction of guide tubes as explained in item 04. Thus, the thicknesses of the slabs of the standard floors were reduced from 14 cm to 12 cm, and the dimensions of the other structural elements were maintained.
  • the concrete specification was kept identical to Structural Model 01; d.
  • Structural Model 04 was based on Structural Model 02, optimizing the thicknesses of the slabs, disregarding the restriction of guide tubes as explained in item 04.
  • the thicknesses of the slabs of the standard floors were reduced from 14 cm to 12 and 11 cm (due to the Modulus of Elasticity of the single-trace concrete adopted), and the dimensions of the other structural elements were maintained.
  • the concrete specification was kept identical to Structural Model 02.
  • Table 03 Floor Type Tall (10th to 14th floor)
  • Model 01 due to the requirement of NBR 6118 - Design of Concrete Structures - Procedure regarding the minimum reinforcement for slabs and beams being linked - among other factors - to the characteristic resistance of concrete to compression, the comparison between Model 01 and Model 02 presents a distortion because the structural elements - especially the slabs - have the same dimensions, but with higher minimum reinforcement values in Model 02 (Single Trace Concrete) due to the higher value of the characteristic compressive strength of concrete.
  • Models 03 and 04 this distortion is smaller because the slabs have different thicknesses as explained in item 05; d.
  • the dimensions of the pillars were not modified in the models due to the initial premise of the study, but the adoption of Concrete with Single Trace can lead to smaller sections with consequent savings in forms, volume of concrete and amount of steel.
  • Table 7 shows the performance of the two concretes analyzed against the axial compression strength test:
  • Table 8 shows the performance of the two concretes analyzed against the modulus of elasticity test:
  • Table 9 shows the performance of the two concretes analyzed against the chloride ion diffusion test: Table 9. Performance of concrete in the chloride ion diffusion test
  • the performance of the Concrete of the present invention is superior to the reference standard concrete, presenting a low diffusivity and, consequently, greater resistance to the penetration of chloride ions.
  • Table 10 shows the performance of the two concretes analyzed against the capillary water absorption test:
  • Table 11 shows the performance of the two concretes analyzed against the water absorption test by immersion and boiling and void ratio:
  • good quality concrete has a void ratio of less than 15%, and water absorption of less than 5%, and therefore, in this regard, the concrete of the present invention is superior to the standard concrete of reference.
  • Table 12 shows the performance of the two concretes analyzed against the penetration test of water under pressure:
  • the concrete of the present invention presented better indices of durability properties: a. ionic diffusion index (diffusivity): 51.2% of the reference standard concrete; B. capillary absorption index (absorbed volume): 77.6% of the reference standard concrete; ç. Capillary rise (capillary height): 91.7% of reference standard concrete; d. Water absorption (volume): 75.2% of reference standard concrete, and e. void index (porosity): 75.1% of the reference standard concrete.
  • VUP (ABNT NBR 15575), which corresponds to the reference useful life RSL of ISO 15686.
  • the results of the replacement analyzes of standard CAA II class concretes by the concretes of the present invention for service life prediction were obtained through the models TUUTTI (1982), BOB and BOB (1991), MORINAGA (1990) and is presented in the following examples.
  • Example 3 Calculation of Project Useful Life, VUP, according to TUUTTI
  • Concrete of the present invention presented an average coefficient of durability indexes 25.8% higher than that of the reference concrete. In other words, it would correspond to reducing the global coefficient of deterioration and aging due to the risk of depassivation of steel by carbonation to 74.2% in relation to the reference concrete that meets the 50-year VUP.
  • K represent the environmental conditions (in this study, same environment)
  • d represent the C02 concentration on the concrete surface (in this study, the same environment)
  • T ambient temperature (°C); (in this study the same)
  • t time (days).
  • VUP design lifetime
  • the concrete of the present invention presented a VUP design lifetime, or RSL reference lifetime, superior to the reference standard concrete, thus being more durable and stronger than required and prescribed by ABNT NBR 6118 and ABNT NBR 12655 for the condition of exposure and aggressiveness class CAA II.

Abstract

The present invention relates to concrete with a unique feature and comprising a homogeneous mixture of Portland cement, coarse and fine mineral aggregates of controlled grain size, water and chemical additives. The concrete also has a much smaller amount of mixing water than conventional concretes.

Description

"CONCRETO COM TRAÇO ÚNICO" "SINGLE STRETCH CONCRETE"
Campo da Invenção Field of Invention
[001] A presente invenção revela um concreto para aplicação em obras em geral, especialmente obras voltadas para empreendimentos imobiliários verticais. [001] The present invention reveals a concrete for application in works in general, especially works aimed at vertical real estate developments.
[002] O concreto da presente invenção é uma linha de concretos que, através de sua tecnologia e características, permite a execução de concretagens com maior produtividade, com concretos de desempenho diferenciado e maior resistência, permitindo que toda a estrutura possa ser realizada com um único tipo de concreto ("traço único"). O concreto é fornecido através de caminhões betoneira e são conhecidos como concreto dosado em central (CDC). [002] The concrete of the present invention is a line of concrete that, through its technology and characteristics, allows the execution of concreting with greater productivity, with concrete of differentiated performance and greater resistance, allowing the entire structure to be carried out with a single type of concrete ("single trace"). Concrete is supplied through concrete mixer trucks and is known as central dosed concrete (CDC).
[003] Os concretos da presente invenção são compostos, basicamente, por uma mistura homogénea de cimento Portland, agregados graúdos e miúdos minerais, com granulometria controlada, água e aditivos químicos. [003] The concretes of the present invention are basically composed of a homogeneous mixture of Portland cement, coarse and fine mineral aggregates, with controlled granulometry, water and chemical additives.
Antecedentes da Invenção Background of the Invention
[004] O traço do concreto, também conhecido como dosagem, é caracterizado pela proporção de água, areia, cimento e brita necessária para fazer o concreto da obra. Qualquer alteração nessa medida pode resultar em uma massa com textura irregular e difícil de operar. [004] The concrete mix, also known as dosage, is characterized by the proportion of water, sand, cement and gravel needed to make the concrete for the work. Any change to this measurement can result in a dough that has an irregular texture and is difficult to work with.
[005] É de conhecimento comum no estado da técnica que a medição é uma das partes mais importantes da obra. Afinal, é essa mistura que vai garantir sustentação e resistência adequada para paredes, pisos e fundações. [005] It is common knowledge in the state of the art that measurement is one of the most important parts of the work. After all, it is this mixture that will guarantee adequate support and resistance for walls, floors and foundations.
[006] Atualmente, a construção civil produz concretos para cada característica e necessidade específica, por exemplo, em função de seu projeto estrutural e etapa de construção, o que gera uma quantidade e variabilidade grande de concretos a serem gerenciados pelo construtor, desde a fase de planejamento, passando pelas fases de orçamento, compra, execução e controle de qualidade. [006] Currently, civil construction produces concrete for each specific characteristic and need, for example, depending on its structural design and construction stage, which generates a large amount and variability of concrete to be managed by the builder, from the of planning, going through the stages of budgeting, purchasing, execution and quality control.
[007] Esse fluxo complexo gera perda para as construtoras, pois demanda maior quantidade de pessoas e tempo no gerenciamento, assim como apresenta maior risco de qualidade. [007] This complex flow generates loss for construction companies, as it demands more people and time in management, as well as presents a greater risk of quality.
[008] Concretos convencionais caso não dosados, produzidos e/ou aplicados adequadamente apresentam baixa durabilidade e uma série de manifestações patológicas, diminuindo assim a vida útil das estruturas. [008] Conventional concrete, if not properly dosed, produced and/or applied, has low durability and a series of pathological manifestations, thus reducing the useful life of structures.
[009] Os concretos convencionais com baixo módulo de elasticidade produzem estruturas mais deformáveis que são mais suscetíveis a fissuras, diminuindo a segurança estrutural. [009] Conventional concrete with a low modulus of elasticity produces more deformable structures that are more susceptible to cracking, reducing structural safety.
[0010] De modo a superar essas desvantagens dos concretos convencionais, a busca por novas composições de concreto tem sido constante. [0010] In order to overcome these disadvantages of conventional concretes, the search for new concrete compositions has been constant.
[0011] O documento PI 0705850-0 revela um concreto estrutural com traço definido misturado a seco e armazenados em sacos. [0011] Document PI 0705850-0 discloses a structural concrete with defined trait dry mixed and stored in bags.
[0012] Também o documento MU 8102012-0 revela um concreto em saco com dosador de água que, de acordo com as suas características, possui como principio gerar um concreto acondicionado em saco com o seu traço previamente definido, com vistas a tomar mais prática a sua utilização e, tendo como base um produto resistente e seguro. [0012] Document MU 8102012-0 also reveals concrete in bags with a water dispenser which, according to its characteristics, has the principle of generating concrete packed in bags with its previously defined mix, with a view to taking more practice its use and based on a resistant and safe product.
[0013] O documento PI 0010670-4 revela um aditivo para uso na preparação de concreto de peso leve, no qual o dito aditivo inclui uma combinação de cerca de 40% a 99% de material polimérico orgânico e de 1% a cerca de 60% de um agente de arraste de ar. O aditivo é particularmente apropriado para a preparação de concreto de peso leve que usa agregado de poliestireno. [0013] Document PI 0010670-4 discloses an additive for use in the preparation of light weight concrete, in which said additive includes a combination of about 40% to 99% of organic polymeric material and from 1% to about 60 % of an air entrainment agent. The additive is particularly suitable for the preparation of lightweight concrete using polystyrene aggregate.
[0014] No entanto, permanece a necessidade de um concreto de traço único para construção em larga escala que atenda às necessidades especificas de um projeto estrutural, como variações de resistências (fck), variações de abatimento (slump), variações de módulos de elasticidade e complexidades de aplicações diferenciadas . [0014] However, there remains a need for a single-mix concrete for large-scale construction that meets the specific needs of a structural project, such as variations of resistances (fck), variations of slump (slump), variations of modulus of elasticity and complexities of differentiated applications.
Objetivos da invenção Objectives of the invention
[0015] O concreto da presente invenção soluciona o problema existente no estado da técnica, uma vez que a utilização de um único traço em toda a estrutura, permite a produção de concretos de maior resistência, proporcionando mais sustentação e, portanto, aumentando a segurança estrutural. Além disso, o concreto de traço único permite o aumento de produtividade na concretagem o que diminui perdas para a construtora, impactando nos custos de produtividade. [0015] The concrete of the present invention solves the existing problem in the state of the art, since the use of a single trace throughout the structure, allows the production of concrete of greater resistance, providing more support and, therefore, increasing safety structural. In addition, single mix concrete allows for increased productivity in concreting, which reduces losses for the construction company, impacting productivity costs.
[0016] Para atender as necessidades especificas de um projeto estrutural, onde em uma estrutura de um mesmo empreendimento imobiliário há variações de resistências (fck), variações de abatimento (slump), variações de módulos de elasticidade e complexidades de aplicações diferenciadas, são necessários diversos concretos. A solução apresentada pela presente invenção permite a execução de toda a estrutura com um único tipo de concreto. [0016] To meet the specific needs of a structural project, where in a structure of the same real estate development there are variations in resistance (fck), variations in slump (slump), variations in modulus of elasticity and complexities of different applications, it is necessary various concretes. The solution presented by the present invention allows the execution of the entire structure with a single type of concrete.
[0017] O presente concreto possui inúmeras vantagens frente ao estado da técnica, como menor variabilidade do concreto produzido, maior compatibilidade de deformações ao longo da estrutura, simplificação de gestão, aumento de produtividade, otimização de projetos, menor consumo de aço, menor consumo de concreto, maior desempenho da estrutura. [0017] This concrete has numerous advantages compared to the state of the art, such as less variability of the concrete produced, greater compatibility of deformations along the structure, simplification of management, increased productivity, optimization of projects, lower consumption of steel, lower consumption of concrete, greater performance of the structure.
[0018] Sendo assim, a solução proposta pela presente invenção supera as deficiências técnicas dos concretos convencionais, pois: [0018] Therefore, the solution proposed by the present invention overcomes the technical deficiencies of conventional concrete, because:
• apresenta maior módulo de elasticidade em relação aos concretos convencionais produzidos com os mesmos materiais; • apresenta maior resistência à penetração de agentes agressivos em relação ao concretos usuais produzidos com os mesmos materiais; • has a higher modulus of elasticity compared to conventional concrete produced with the same materials; • it presents greater resistance to the penetration of aggressive agents in relation to the usual concrete produced with the same materials;
• estruturas produzidas com o concreto da presente invenção apresentam maior durabilidade gerando uma maior vida útil em relação a estruturas produzidas com concretos convencionais; • structures produced with the concrete of the present invention have greater durability, generating a longer useful life in relation to structures produced with conventional concrete;
• obtém-se a mesma resistência à compressão de concretos convencionais com menor consumo de cimento; • the same compressive strength as conventional concrete is obtained with less cement consumption;
• os concretos são produzidos com menor quantidade de água em relação aos concretos usuais; • Concretes are produced with less water than usual concrete;
• apresenta menor liberação de calor em relação a concretos convencionais; e • presents less heat release compared to conventional concrete; and
• produção de estruturas com maior vida útil, redução do número de manifestações patológicas na estrutura, produção de estruturas menos deformáveis, concreto com maior durabilidade, menor necessidade de reparos e consequente menor impacto ambiental . • Production of structures with longer service life, reduction in the number of pathological manifestations in the structure, production of less deformable structures, concrete with greater durability, less need for repairs and consequent lower environmental impact.
[0019] Assim, a presente invenção permite a execução de concretagens de maior produtividade, com concretos de desempenho diferenciado em relação ao concreto usual. O concreto da presente invenção é o primeiro concreto que permite que toda a estrutura possa ser realizada com um único tipo de concreto, substituindo, assim, os inúmeros traços de concreto empregadas em uma estrutura. Além disso, o concreto da presente invenção é o único material que permite que obras já projetadas com diferentes tipos de concreto, mesmo com diferentes resistências, sejam executadas por um só concreto . [0019] Thus, the present invention allows the execution of concreting of greater productivity, with concrete of different performance in relation to the usual concrete. The concrete of the present invention is the first concrete that allows the entire structure to be made with a single type of concrete, thus replacing the numerous traces of concrete used in a structure. Furthermore, the concrete of the present invention is the only material that allows works already designed with different types of concrete, even with different resistances, to be executed with only one concrete.
[0020] O uso do concreto da presente invenção permite ainda que as construtoras gerenciem melhor a quantidade de tipos de concreto utilizados nas estruturas, pois reduz diversos concretos presentes na rotina usual das obras por um único concreto. Evitando erros de programações, produzindo uma estrutura com menor variabilidade de resistências e deformações e também simplificará os processos de planejamento, orçamento e compra de concreto. Descrição das figuras [0020] The use of the concrete of the present invention also allows construction companies to better manage the amount of types of concrete used in structures, as it reduces several types of concrete present in the usual routine of works by a single concrete. Avoiding programming errors, producing a structure with less variability of strengths and deformations and will also simplify the concrete planning, budgeting and purchasing processes. Description of figures
[0021] A presente invenção será mais bem compreendida a partir da descrição detalhada que segue e de suas formas preferenciais de realização, a qual tem por suporte as imagens abaixo relacionadas, trazidas a titulo ilustrativo e não limitativo, nas quais: [0021] The present invention will be better understood from the detailed description that follows and its preferred embodiments, which is supported by the images listed below, brought for illustrative and non-limiting purposes, in which:
• a figura 1 apresenta imagens selecionadas e extraídas do exemplo 01, mostrando o detalhe da Planta de Formas do pavimento tipo baixo (2o ao 7o pavimento); • figure 1 presents selected images extracted from example 01, showing the detail of the Shape Plan of the low floor type (2nd to 7th floor );
• a figura 2 apresenta imagens selecionadas e extraídas do exemplo 01, mostrando a planta de Formas do pavimento tipo baixo (2o ao 7o pavimento); • figure 2 shows selected images extracted from example 01, showing the layout of the low floor forms (2nd to 7th floor);
• a figura 3 apresenta imagens selecionadas e extraídas do exemplo 01, mostrando o detalhe da planta de formas do 8o pavimento; • figure 3 presents selected images extracted from example 01, showing the detail of the shape plan of the 8th floor;
• a figura 4 apresenta imagens selecionadas e extraídas do exemplo 01, mostrando a planta de formas do 8o pavimento; • figure 4 shows selected images extracted from example 01, showing the layout plan for the 8th floor;
• a figura 5 apresenta imagens selecionadas e extraídas do exemplo 01, mostrando o detalhe da planta de formas do 9o pavimento; • figure 5 presents selected images extracted from example 01, showing the detail of the formwork plan of the 9th floor;
• a figura 6 apresenta imagens selecionadas e extraídas do exemplo 01, mostrando a planta de formas do 9o pavimento; • figure 6 shows selected images extracted from example 01, showing the ground plan of the 9th floor;
• a figura 7 apresenta imagens selecionadas e extraídas do exemplo 01, mostrando o detalhe da planta de formas do pavimento tipo alto (10° ao 14° pavimento); e • figure 7 presents selected images extracted from example 01, showing the detail of the plan of forms of the high floor (10th to 14th floor); and
• a figura 8 apresenta imagens selecionadas e extraídas do exemplo 01, mostrando a planta de formas do Pavimento tipo alto (10° ao 14° pavimento). • figure 8 shows selected images extracted from example 01, showing the shape plan of the high-type floor (10th to 14th floor).
Descrição Detalhada da Invenção Detailed Description of the Invention
[001] Durante dois anos foram feitos estudos laboratoriais testando-se diversas dosagens de concretos diferentes para se chegar a presente invenção. Foram efetuados testes avaliando diferentes: [001] Laboratory studies were carried out for two years, testing different dosages of concrete different to arrive at the present invention. Tests were carried out evaluating different:
• tipos de brita; • types of gravel;
• tipos de areia; • types of sand;
• composição de britas; • gravel composition;
• composição de areias; • composition of sands;
• composição granulométrica; • granulometric composition;
• tipos de aditivos; • types of additives;
• composição de aditivos; • composition of additives;
• doses de aditivos; • doses of additives;
• tipos de cimento; • types of cement;
• quantidade de cimento; • quantity of cement;
• quantidade de água; • amount of water;
[002] As diferentes dosagens foram ensaiadas para análise de suas propriedades conforme os procedimentos abaixo: [002] The different dosages were tested to analyze their properties according to the procedures below:
• ABNT NBR 12821 - Preparação de concreto em laboratório - Procedimento • ABNT NBR 12821 - Preparation of concrete in the laboratory - Procedure
• ABNT NBR 9833 - Concreto Fresco - Determinação da massa especifica, do rendimento e do teor de ar pelo método gravimétrico• ABNT NBR 9833 - Fresh Concrete - Determination of specific mass, yield and air content by the gravimetric method
• ABNT NM 67 - Concreto - Determinação da consistência pelo abatimento do tronco de cone • ABNT NM 67 - Concrete - Determination of consistency by slumping the truncated cone
• ABNT NBR 5738 - Concreto - Procedimento para moldagem e cura de corpos de prova • ABNT NBR 5738 - Concrete - Procedure for molding and curing specimens
• ABNT NBR 10342 - Concreto - Perda de abatimento - Método de ensaio • ABNT NBR 10342 - Concrete - Loss of slump - Test method
• ABNT NBR 5739 - Concreto - Ensaio de compressão de corpos de prova cilíndricos • ABNT NBR 5739 - Concrete - Compression test of cylindrical specimens
• ABNT NBR 8522 - Concreto - Determinação dos módulos estáticos de elasticidade e de deformação à compressão • ABNT NBR 8522 - Concrete - Determination of static modulus of elasticity and compressive strain
• ABNT NBR 9778 Argamassa e concreto endurecidos Determinação da absorção de água, índice de vazios e massa específica • ABNT NBR 10787 Concreto endurecido — Determinação da penetração de água sob pressão (adaptado). • ABNT NBR 9778 Mortar and hardened concrete Determination of water absorption, void ratio and specific mass • ABNT NBR 10787 Hardened concrete — Determination of water penetration under pressure (adapted).
• ABNT NBR 9779 Argamassa e concreto endurecido Determinação da absorção da água por capilaridade - Método de ensaio • ABNT NBR 9779 Mortar and hardened concrete Determination of water absorption by capillarity - Test method
• ABNT NBR 12142 - Concreto - Determinação da resistência à tração na flexão de corpos de prova prismáticos • ABNT NBR 12142 - Concrete - Determination of tensile strength in bending of prismatic specimens
• ABNT NBR 9204 - Concreto endurecido - Determinação da resistividade elétrico-volumétrica - Método de ensaio • ABNT NBR 9204 - Hardened concrete - Determination of electrical-volumetric resistivity - Test method
• ASTM C 1202 - Standard Test Method for Eletrical Indication of Concrete's Ability to Resist Chloride Ion Penetration • ASTM C 1202 - Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration
[003] Após os testes laboratoriais foram efetuados aproximadamente 250 protótipos até se chegar a presente invenção. [003] After the laboratory tests, approximately 250 prototypes were carried out until the present invention was reached.
[004] A presente invenção consiste de uma mistura homogénea de cimento Portland, agregados graúdos e miúdos minerais, com granulometria controlada, água e aditivos químicos. [004] The present invention consists of a homogeneous mixture of Portland cement, coarse aggregates and mineral fines, with controlled granulometry, water and chemical additives.
[005] Os agregados graúdos e miúdos são derivados da britagem de rochas calcárias e jazidas de areia de quartzo, com granulometria otimizada e controlada para obtenção de maior compacidade. Os aditivos químicos usados são do tipo: a) RA2 - superplastificante sintético de alto desempenho com base de polímeros policarboxilatos (PCE), que promove a redução de água do concreto e aumenta consideravelmente sua fluidez, b) IA incorporador de ar, que adiciona uma quantidade controlada de microbolhas estáveis ao concreto, promovendo melhor comportamento reológico e c) CH - controlador de hidratação, que controla a hidratação do cimento utilizado, permitindo melhor qualidade na aplicação do concreto. [005] The coarse and fine aggregates are derived from the crushing of limestone rocks and quartz sand deposits, with optimized and controlled granulometry to obtain greater compactness. The chemical additives used are of the type: a) RA2 - high-performance synthetic superplasticizer based on polycarboxylate polymers (PCE), which promotes water reduction in concrete and considerably increases its fluidity, b) AI incorporating air, which adds a controlled amount of stable microbubbles to the concrete, promoting better rheological behavior and c) CH - hydration controller, which controls the hydration of the cement used, allowing better quality in the application of the concrete.
[006] A quantidade de água de amassamento utilizada para produção do concreto da presente invenção é inferior aos concretos convencionais. Essa redução significativa proporciona melhoria dos parâmetros de qualidade do concreto no estado endurecido, tais como melhoria da resistência mecânica, melhoria da durabilidade, menor porosidade, maior modulo de elasticidade e menor retração. [006] The amount of mixing water used to produce the concrete of the present invention is lower than conventional concrete. This significant reduction provides improvement in concrete quality parameters in the hardened state, such as such as improved mechanical resistance, improved durability, lower porosity, higher modulus of elasticity and lower shrinkage.
[007] Adicionalmente, a baixa quantidade de água utilizada permite a redução da quantidade de cimento utilizada. Em comparação com concretos convencionais, essa redução da quantidade de água resulta em uma diminuição de até 20% da emissão de CCh/m3 de concreto. [007] Additionally, the low amount of water used allows the reduction of the amount of cement used. Compared to conventional concrete, this reduction in the amount of water results in a decrease of up to 20% in the emission of CCh/m 3 of concrete.
[008] Teoricamente, concretos com quantidade de água reduzida tendem a sofrer impacto na sua reologia, porém de forma antagónica, a presente invenção foi desenvolvida para garantir alta fluidez, proporcionando facilidades no uso do concreto no estado fresco e promovendo melhor trabalhabilidade nas obras, com ganhos de produtividade, qualidade de acabamento, gerando menos ruido por não necessitar da mesma intensidade de adensamento que um concreto convencional, redução de retrabalhos com tamponamento de falhas de concretagem e redução da mão de obra dedicada à concretagem. [008] Theoretically, concrete with a reduced amount of water tends to have an impact on its rheology, but in an antagonistic way, the present invention was developed to guarantee high fluidity, providing ease in the use of concrete in the fresh state and promoting better workability in the works, with gains in productivity, quality of finish, generating less noise as it does not require the same compaction intensity as conventional concrete, reduction of rework with plugging flaws in concreting and reduction of labor dedicated to concreting.
[009] Uma forma de realização da presente invenção é demonstrada abaixo: [009] An embodiment of the present invention is demonstrated below:
Tabela 1: Formulação concreto por m3 :
Figure imgf000010_0001
Table 1: Concrete formulation per m 3 :
Figure imgf000010_0001
[0010] A presente invenção apresenta resistência a compressão mínima aos 28 dias de idade de 40 MPa e 50MPa, classe de abatimento S220 e emprega britas com graduação 0 e 1. [0010] The present invention presents a minimum compressive strength at 28 days of age of 40 MPa and 50 MPa, slump class S220 and uses gravel with grading 0 and 1.
[0011] Assim, as propriedades da presente invenção permitem substituir os concretos de diferentes resistências empregados na estrutura de um edifício por um único concreto. Também, devido a alta fluidez da presente invenção, é possível substituir os concretos de diferentes classes de abatimento empregados na estrutura de um edifício por um único concreto. [0011] Thus, the properties of the present invention allow replacing concrete of different strengths used in the structure of a building by a single concrete. Also, due to the high fluidity of the present invention, it is possible replace concrete of different slump classes used in the structure of a building by a single concrete.
[0012] Os exemplos apresentados a seguir evidenciam a invenção com base em dados experimentais, mas não devem servir como limitantes ao escopo da mesma. [0012] The examples presented below demonstrate the invention based on experimental data, but should not serve as a limitation to its scope.
Exemplo 1- Comparativo da utilização de concreto trago único com concreto convencional Example 1- Comparison of the use of single-trago concrete with conventional concrete
[0013] A estrutura da edificação analisada é composta por lajes apoiadas em vigas que transmitem os esforços para os pilares, sendo todos estes elementos moldados in loco em concreto armado. [0013] The structure of the analyzed building is composed of slabs supported by beams that transmit the efforts to the pillars, all of these elements being molded in loco in reinforced concrete.
[0014] Para a passagem de instalações hidráulicas foi necessário prever tubos camisa embutidos nas lajes, bem como sulcos para embutimento de instalações de gás combustível. Estas demandas condicionaram o dimensionamento das lajes onde esses detalhes são necessários, de modo que a espessura das mesmas foi fixada em 14 (catorze) cm. A altura padrão das vigas foi estabelecida em 55 (cinquenta e cinco) cm para permitir a modulação vertical das alvenarias. Já as dimensões dos pilares foram definidas de acordo com os esforços solicitantes e exigências arquitetônicas. [0014] For the passage of hydraulic installations, it was necessary to foresee jacket tubes embedded in the slabs, as well as grooves for embedding fuel gas installations. These demands conditioned the dimensioning of the slabs where these details are necessary, so that their thickness was fixed at 14 (fourteen) cm. The standard height of the beams was established at 55 (fifty-five) cm to allow the vertical modulation of the masonry. The dimensions of the pillars were defined according to the requesting efforts and architectural requirements.
[0015] O 8o e o 9o pavimentos possuem variações na estrutura devido às modificações no partido arquitetônico, bem como vigas de transição e mudança de seção de pilares acompanhando as variações das fachadas. [0015] The 8th and 9th floors have variations in structure due to changes in the architectural design, as well as transition beams and changes in pillar sections following the variations in the facades.
[0016] Para efetuar as análises e comparações entre a utilização do concreto convencional e o concreto da presente invenção foi estabelecida a seguinte metodologia: a. O Modelo Estrutural 01 é o modelo original da estrutura, com as restrições e compatibilizações devido às outras partes do edifício conforme descrito no item anterior. A especificação do concreto utilizado neste modelo é a seguinte: [0016] To carry out the analyzes and comparisons between the use of conventional concrete and the concrete of the present invention, the following methodology was established: a. Structural Model 01 is the original model of the structure, with restrictions and compatibility due to other parts of the building as described in the previous item. The specification of the concrete used in this model is as follows:
• Fundação ao 9o Pavimento - Concreto de Classe C35 (fck ³ 35 MPa) com Módulo de Elasticidade Ecs ³ 29 GPa correspondente à tensão de 12 MPa conforme o item 6.2.2.1 da NBR 8522 - Concreto - Determinação do Módulo Estático de Elasticidade à Compressão; • Foundation to the 9th Floor - Class C35 Concrete (fck ³ 35 MPa) with Elasticity Modulus Ecs ³ 29 GPa corresponding to a stress of 12 MPa according to item 6.2.2.1 of NBR 8522 - Concrete - Determination of the Static Modulus of Elasticity to Compression;
• 10o Pavimento à Cobertura - Concreto de Classe C30 (fck ³ 30 MPa) com Módulo de Elasticidade Ecs ³ 27 GPa correspondente à tensão de 10 MPa conforme o item 6.2.2.1 da NBR 8522 - Concreto - Determinação do Módulo Estático de Elasticidade à Compressão; b. O Modelo Estrutural 02 é idêntico ao Modelo Estrutural 01, exceto quanto às especificações do concreto, que são descritas abaixo: • 10th Floor to Roof - Class C30 Concrete (fck ³ 30 MPa) with Elasticity Modulus Ecs ³ 27 GPa corresponding to a stress of 10 MPa according to item 6.2.2.1 of NBR 8522 - Concrete - Determination of the Static Compressive Elastic Modulus ; B. Structural Model 02 is identical to Structural Model 01, except for the concrete specifications, which are described below:
• Fundação à Cobertura - Concreto de Traço Único Classe C40 (fck ³ 40 MPa) com Módulo de Elasticidade Ecs ³ 38 GPa correspondente à tensão de 12 MPa conforme o item 6.2.2.1 da NBR 8522 - Concreto - Determinação do Módulo Estático de Elasticidade à Compressão; c. O Modelo Estrutural 03 foi baseado no Modelo Estrutural 01, sendo otimizadas as espessuras das lajes desconsiderando a restrição de tubos guia conforme exposto no item 04. Deste modo, as espessuras das lajes dos pavimentos-tipo foram reduzidas de 14 cm para 12 cm, e foram mantidas as dimensões dos demais elementos estruturais. A especificação do concreto foi mantida idêntica ao Modelo Estrutural 01; d. O Modelo Estrutural 04 foi baseado no Modelo Estrutural 02, sendo otimizadas as espessuras das lajes desconsiderando a restrição de tubos guia conforme exposto no item 04. Deste modo, as espessuras das lajes dos pavimentos-tipo foram reduzidas de 14 cm para 12 e 11 cm (devido ao valor do Módulo de Elasticidade do concreto de Traço Único adotado), e foram mantidas as dimensões dos demais elementos estruturais. A especificação do concreto foi mantida idêntica ao Modelo Estrutural 02. • Foundation to Roof - Class C40 Single Trace Concrete (fck ³ 40 MPa) with Elasticity Modulus Ecs ³ 38 GPa corresponding to a stress of 12 MPa according to item 6.2.2.1 of NBR 8522 - Concrete - Determination of the Static Modulus of Elasticity at Compression; ç. Structural Model 03 was based on Structural Model 01, optimizing the thicknesses of the slabs, disregarding the restriction of guide tubes as explained in item 04. Thus, the thicknesses of the slabs of the standard floors were reduced from 14 cm to 12 cm, and the dimensions of the other structural elements were maintained. The concrete specification was kept identical to Structural Model 01; d. Structural Model 04 was based on Structural Model 02, optimizing the thicknesses of the slabs, disregarding the restriction of guide tubes as explained in item 04. Thus, the thicknesses of the slabs of the standard floors were reduced from 14 cm to 12 and 11 cm (due to the Modulus of Elasticity of the single-trace concrete adopted), and the dimensions of the other structural elements were maintained. The concrete specification was kept identical to Structural Model 02.
[0017] Utilizando-se softwares de análise estrutural, foram criados modelos da estrutura de concreto armado com a geometria dos elementos estruturais conforme as caracteristicas listadas acima. As cargas devido ao peso próprio da estrutura, cargas permanentes como alvenarias, jardins e revestimento de pisos e as cargas variáveis devido ao uso da edificação (como garagens e compartimentos de apartamentos residenciais) foram lançadas nos modelos estruturais de acordo com a norma da ABNT NBR6120:2019 - Ações para o Cálculo de Estruturas de Edificações. Terminada a fase de modelagem estrutural e lançamento de cargas, procedeu-se se à análise propriamente dita, onde foram obtidos os esforços atuantes nos elementos estruturais, bem como os deslocamentos verticais dos pavimentos tipo, respeitando-se os valores prescritos pelas normas. [0017] Using structural analysis software, models of the reinforced concrete structure were created with the geometry of the structural elements according to the characteristics listed above. Loads due to the structure's own weight, permanent loads such as masonry, gardens and floor coverings and variable loads due to the use of the building (such as garages and residential apartment compartments) were entered in the structural models in accordance with the ABNT NBR6120 standard. :2019 - Actions for the Calculation of Building Structures. Once the structural modeling and loading phase was over, the analysis itself was carried out, where the forces acting on the structural elements were obtained, as well as the vertical displacements of the standard floors, respecting the values prescribed by the standards.
[0018] Após a determinação dos esforços em cada elemento, foi efetuado o dimensionamento estrutural dos mesmos (cálculo e detalhamento das armações), e em seguida comparou-se os resultados dos modelos estruturais. [0018] After determining the efforts in each element, their structural design was carried out (calculation and detailing of the frames), and then the results of the structural models were compared.
[0019] Para comparar os resultados entre os modelos estruturais primeiramente foram analisadas as deformações verticais nos pavimentos tipo baixo e alto. As Tabelas 2 e 3 abaixo apresentam o comparativo entre os diversos modelos: [0019] To compare the results between the structural models, first the vertical deformations in the low and high floors were analyzed. Tables 2 and 3 below show the comparison between the different models:
Tabela 2: Pavimento Tipo Baixo (2° ao 7° Pav.)
Figure imgf000013_0001
Table 2: Floor Type Low (2nd to 7th Floor)
Figure imgf000013_0001
Tabela 03: Pavimento Tipo Alto (10° ao 14° Pav.)
Figure imgf000013_0002
Figure imgf000014_0001
Table 03: Floor Type Tall (10th to 14th floor)
Figure imgf000013_0002
Figure imgf000014_0001
[0020] Após a análise das deformações, foram apuradas as quantidades de concreto e aço dos diferentes modelos após o dimensionamento e detalhamento dos elementos estruturais. Os dados deste comparativo encontram-se na Tabela 04 abaixo: [0020] After analyzing the deformations, the amounts of concrete and steel of the different models were determined after the design and detailing of the structural elements. The data for this comparison can be found in Table 04 below:
Tabela 04: Quantitativos da Estrutura
Figure imgf000014_0002
Table 04: Structure Quantities
Figure imgf000014_0002
* - em relação ao Modelo 01; * - in relation to Model 01;
** - em relação ao Modelo 03; *** - em relação ao Modelo 01; **** _ em relação ao Modelo 03. [0021] Os dados apresentados acima confirmam que a utilização do concreto com Traço Único apresenta economia em relação ao uso do concreto convencional. Esta economia pode ser explicada pelos seguintes fatores: a. O Módulo de Elasticidade do concreto de Traço Único é cerca 30% maior do que o concreto convencional, permitindo que as lajes e vigas sejam mais esbeltas em relação à estrutura com concreto convencional; b. Devido também ao maior valor do Módulo de Elasticidade, a estrutura com concreto com Traço Único apresenta melhor comportamento global, por ter maior rigidez. Entretanto este ganho de rigidez global também ocorre devido ao valor da resistência caracteristica à compressão do concreto com Traço Único ser maior do que a resistência do concreto convencional, portanto o ideal seria comparar estruturas com concretos semelhantes quanto à resistência; c. A utilização de concreto com Traço Único acarretou em redução de cerca de 6,0% em ambos cenários (estrutura original e estrutura otimizada - conforme descrito acima). Cabe lembrar que, devido à exigência da NBR 6118 - Projeto de Estruturas de Concreto - Procedimento quanto à armaduras mínimas para lajes e vigas estar atrelada - entre outros fatores - à resistência caracteristica do concreto à compressão, a comparação entre o Modelo 01 e o Modelo 02 apresenta uma distorção pois os elementos estruturais - em especial as lajes - possuem as mesmas dimensões, porém com valores de armadura mínima maiores no Modelo 02 (Concreto com Traço Único) devido ao maior valor da resistência caracteristica do concreto à compressão. Para os Modelos 03 e 04 esta distorção é menor pois as lajes apresentam espessuras diferentes conforme explicitado no item 05; d. As dimensões dos pilares não foram modificadas nos modelos por premissa inicial do estudo, mas a adoção do Concreto com Traço Único pode conduzir a seções menores com consequente economia de formas, volume de concreto e quantidade de aço. ** - in relation to Model 03; *** - in relation to Model 01; **** _ in relation to Model 03. [0021] The data presented above confirm that the use of concrete with Single Trace presents savings in relation to the use of conventional concrete. This economy can be explained by the following factors: a. The Modulus of Elasticity of Single Trace concrete is about 30% greater than that of conventional concrete, allowing slabs and beams to be more slender in relation to the structure with conventional concrete; B. Also due to the higher value of the Modulus of Elasticity, the structure with concrete with Single Trace presents better global behavior, due to its greater stiffness. However, this global stiffness gain also occurs due to the characteristic compressive strength value of Single Trace concrete being greater than the strength of conventional concrete, so the ideal would be to compare structures with similar concretes in terms of strength; ç. The use of Single Trace concrete resulted in a reduction of about 6.0% in both scenarios (original structure and optimized structure - as described above). It should be remembered that, due to the requirement of NBR 6118 - Design of Concrete Structures - Procedure regarding the minimum reinforcement for slabs and beams being linked - among other factors - to the characteristic resistance of concrete to compression, the comparison between Model 01 and Model 02 presents a distortion because the structural elements - especially the slabs - have the same dimensions, but with higher minimum reinforcement values in Model 02 (Single Trace Concrete) due to the higher value of the characteristic compressive strength of concrete. For Models 03 and 04 this distortion is smaller because the slabs have different thicknesses as explained in item 05; d. The dimensions of the pillars were not modified in the models due to the initial premise of the study, but the adoption of Concrete with Single Trace can lead to smaller sections with consequent savings in forms, volume of concrete and amount of steel.
Exemplo 2- Análise da substituição de concretos padrão de classe CAA II pelo concreto da presente invenção para incremento de durabilidade Example 2- Analysis of the replacement of standard CAA II class concrete by the concrete of the present invention to increase durability
[0022] Foram realizados testes para a substituição do concreto padrão pelo concreto da presente invenção, considerando a Classe de Agressividade Ambiental II. [0022] Tests were carried out for the replacement of standard concrete by the concrete of the present invention, considering the Environmental Aggressiveness Class II.
[0023] O concreto padrão de referência está discriminado na tabela 5 abaixo: [0023] The reference standard concrete is detailed in table 5 below:
Tabela 5. Traço de referência para atendimento à Classe de Agressividade Ambiental II.
Figure imgf000016_0001
Table 5. Reference trait for compliance with Environmental Aggressiveness Class II.
Figure imgf000016_0001
[0024] O traço do concreto da presente invenção está indicado na tabela 6 abaixo: [0024] The mix of the concrete of the present invention is indicated in table 6 below:
Tabela 6 - Composição do concreto da presente invenção
Figure imgf000016_0002
Figure imgf000017_0001
Table 6 - Composition of the concrete of the present invention
Figure imgf000016_0002
Figure imgf000017_0001
[0025] Para a análise comparativa dos concretos foram avaliados os fatores de Resistência à compressão axial, Módulo de elasticidade, Difusão de ions cloreto, Absorção de Água por Capilaridade, por Imersão e Fervura e índice de Vazios e Penetração de Água sob Pressão. [0025] For the comparative analysis of the concretes, the factors of Strength to axial compression, Modulus of elasticity, Diffusion of chloride ions, Water Absorption by Capillarity, by Immersion and Boiling and Void Index and Water Penetration under Pressure were evaluated.
[0026] A tabela 7 a seguir apresenta o desempenho dos dois concretos analisados frente ao ensaio de resistência à compressão axial: [0026] Table 7 below shows the performance of the two concretes analyzed against the axial compression strength test:
Tabela 7 - Desempenho dos concretos no ensaio de resistência à compressão axial.
Figure imgf000017_0002
Table 7 - Performance of concrete in the axial compression strength test.
Figure imgf000017_0002
[0027] Em função das resistências obtidas, verificou-se que os dois concretos pertencem à classe de resistência C40 e C45, respectivamente, e atendem com folga à classe CAA II, onde o Concreto da presente invenção apresentou resistência de aproximadamente 15% superior em relação ao concreto padrão de referência, tanto aos 7 dias como aos 28 dias. [0027] Depending on the resistances obtained, it was verified that the two concretes belong to the resistance class C40 and C45, respectively, and easily meet the CAA II class, where the Concrete of the present invention presented resistance of approximately 15% higher in relation to the reference standard concrete, both at 7 days and at 28 days.
[0028] A Tabela 8 abaixo apresenta o desempenho dos dois concretos analisados frente ao ensaio de módulo de elasticidade: [0028] Table 8 below shows the performance of the two concretes analyzed against the modulus of elasticity test:
Tabela 8. Desempenho dos concretos no ensaio de módulo de elasticidade
Figure imgf000018_0001
Table 8. Performance of concrete in the modulus of elasticity test
Figure imgf000018_0001
[0029] A Tabela 9 a seguir apresenta o desempenho dos dois concretos analisados frente ao ensaio de difusão de ions cloreto: Tabela 9. Desempenho dos concretos no ensaio de difusão de ions cloreto
Figure imgf000018_0002
[0029] Table 9 below shows the performance of the two concretes analyzed against the chloride ion diffusion test: Table 9. Performance of concrete in the chloride ion diffusion test
Figure imgf000018_0002
[0030] Conforme observado, o desempenho do Concreto da presente invenção é superior ao concreto padrão de referência, apresentando uma baixa difusividade e, consequentemente, maior resistência à penetração dos ions cloreto. [0030] As observed, the performance of the Concrete of the present invention is superior to the reference standard concrete, presenting a low diffusivity and, consequently, greater resistance to the penetration of chloride ions.
[0031] A Tabela 10 abaixo apresenta o desempenho dos dois concretos analisados frente ao ensaio de absorção de água por capilaridade : [0031] Table 10 below shows the performance of the two concretes analyzed against the capillary water absorption test:
Tabela 10. Desempenho dos concretos no ensaio de absorção de água por capilaridade.
Figure imgf000018_0003
[0032] Os resultados de absorção por capilaridade mostram que o Concreto da presente invenção apresenta um desempenho superior ao concreto padrão de referência com relação à sua compacidade, sendo mais resistente à penetração de agentes agressivos.
Table 10. Performance of concrete in the capillary water absorption test.
Figure imgf000018_0003
[0032] The results of capillary absorption show that the Concrete of the present invention performs better than the reference standard concrete with respect to its compactness, being more resistant to the penetration of aggressive agents.
[0033] A Tabela 11 a seguir apresenta o desempenho dos dois concretos analisados frente ao ensaio de absorção de água por imersão e fervura e índice de vazios: [0033] Table 11 below shows the performance of the two concretes analyzed against the water absorption test by immersion and boiling and void ratio:
Tabela 11. Desempenho dos concretos no ensaio de absorção de água por imersão e fervura e índice de vazios
Figure imgf000019_0001
Table 11. Performance of concrete in the water absorption test by immersion and boiling and void ratio
Figure imgf000019_0001
[0034] De acordo com a literatura, concretos de boa qualidade apresentem índice de vazios inferiores a 15%, e de absorção de água inferior a 5%, e, portanto, neste quesito, o concreto da presente invenção é superior ao concreto padrão de referência. [0034] According to the literature, good quality concrete has a void ratio of less than 15%, and water absorption of less than 5%, and therefore, in this regard, the concrete of the present invention is superior to the standard concrete of reference.
[0035] A Tabela 12 abaixo apresenta o desempenho dos dois concretos analisados frente ao ensaio de penetração de água sob pressão: [0035] Table 12 below shows the performance of the two concretes analyzed against the penetration test of water under pressure:
Tabela 12. Desempenho dos concretos no ensaio de penetração de água sob pressão.
Figure imgf000019_0002
[0036] De acordo com os resultados obtidos, o concreto da presente invenção apresentou 40% da penetração observada no concreto padrão de referência, demonstrando assim um desempenho muito superior.
Table 12. Performance of concrete in the pressure water penetration test.
Figure imgf000019_0002
[0036] According to the results obtained, the concrete of the present invention presented 40% of the penetration observed in the reference standard concrete, thus demonstrating a much superior performance.
[0037] De um modo geral, observa-se que concreto da presente invenção apresentou melhores índices das propriedades de durabilidade : a. índice de difusão iônica (difusividade): 51,2% do concreto padrão de referência; b. índice de absorção capilar (volume absorvido): 77,6% do concreto padrão de referência; c. Ascensão capilar (altura capilar): 91,7% do concreto padrão de referência; d. Absorção de água (volume): 75,2% do concreto padrão de referência, e e. índice de vazios (porosidade): 75,1% do concreto padrão de referência . [0037] In general, it is observed that the concrete of the present invention presented better indices of durability properties: a. ionic diffusion index (diffusivity): 51.2% of the reference standard concrete; B. capillary absorption index (absorbed volume): 77.6% of the reference standard concrete; ç. Capillary rise (capillary height): 91.7% of reference standard concrete; d. Water absorption (volume): 75.2% of reference standard concrete, and e. void index (porosity): 75.1% of the reference standard concrete.
[0038] Na média geral observa-se índice de 74,2% em relação ao concreto padrão de referência que atende à CAA II, ou seja, pode-se considerar que o concreto da presente invenção é, na média, 25,8% superior ou mais "durável" que o concreto padrão de referência . [0038] In the general average, an index of 74.2% is observed in relation to the reference standard concrete that meets the CAA II, that is, it can be considered that the concrete of the present invention is, on average, 25.8% superior or more "durable" than reference standard concrete.
[0039] Com relação a análise de vida útil, a literatura apresenta diversos modelos de previsão da vida útil de um projeto, VUP (ABNT NBR 15575), que corresponde à vida útil de referência RSL da ISO 15686. Os resultados das análises da substituição de concretos padrão de classe CAA II pelos concretos da presente invenção para previsão de vida útil foram obtidos através dos modelos TUUTTI (1982), BOB e BOB (1991), MORINAGA (1990) e é apresentado nos exemplos a seguir. [0039] Regarding the useful life analysis, the literature presents several models for predicting the useful life of a project, VUP (ABNT NBR 15575), which corresponds to the reference useful life RSL of ISO 15686. The results of the replacement analyzes of standard CAA II class concretes by the concretes of the present invention for service life prediction were obtained through the models TUUTTI (1982), BOB and BOB (1991), MORINAGA (1990) and is presented in the following examples.
Exemplo 3 - Cálculo da Vida Útil de Projeto, VUP, segundo TUUTTI [0040] Considerando o caso de exposição ao C02, pode-se escrever c = k. Vt onde: c = cobrimento nominal em mm, no caso de 25 a 30 mm para concreto moldado no local; k = coeficiente global de penetração por difusão dos agentes agressivos (C02, H20, 02 e gases ácidos) em mm , para a/c = vano Example 3 - Calculation of Project Useful Life, VUP, according to TUUTTI [0040] Considering the case of exposure to C02, one can write c = k. Vt where: c = nominal cover in mm, in the case of 25 to 30 mm for cast-in-place concrete; k = global coefficient of penetration by diffusion of aggressive agents (C02, H20, 02 and acid gases) in mm , for w/c = vano
0,60, consumo de 280 kg/m3, fck = 25 MPa; t = vida útil de projeto em anos. 0.60, consumption of 280 kg/m3, fck = 25 MPa; t = design lifetime in years.
[0041] Considerando uma vida útil de 50 anos e um cobrimento de 25 mm, situação mais desfavorável, obtêm-se um coeficiente global de deterioração e envelhecimento por risco de despassivação do aço por carbonatação de: k — 3,5mm /yano [0041] Considering a service life of 50 years and a covering of 25 mm, the most unfavorable situation, a global coefficient of deterioration and aging due to the risk of depassivation of steel due to carbonation of: k — 3.5 mm /yano is obtained
[0042] Segundo os resultados de ensaio obtidos o concreto[0042] According to the test results obtained, the concrete
Concreto da presente invenção apresentou um coeficiente médio de índices de durabilidade 25,8% superior ao do concreto de referência. Em outras palavras, corresponderia a reduzir o coeficiente global de deterioração e envelhecimento por risco de despassivação do aço por carbonatação a 74,2% em relação ao concreto de referência que atende à VUP de 50 anos. Concrete of the present invention presented an average coefficient of durability indexes 25.8% higher than that of the reference concrete. In other words, it would correspond to reducing the global coefficient of deterioration and aging due to the risk of depassivation of steel by carbonation to 74.2% in relation to the reference concrete that meets the 50-year VUP.
[0043] Então, o coeficiente global de deterioração e envelhecimento por risco de despassivação do aço por carbonatação para o concreto Concreto da presente invenção pode ser calculado como: k= 3,5*0,742(mm /yano)= 2,60mm/y'ano [0043] So, the global coefficient of deterioration and aging due to the risk of depassivation of steel by carbonation for the concrete Concrete of the present invention can be calculated as: k= 3.5*0.742(mm /yano)= 2.60mm/y 'year
[0044] Nestas condições, a vida útil de projeto de uma estrutura construída com o concreto Concreto da presente invenção, passaria a ter, uma previsão de t = c2/k2 = 252/2,62 ®VUP = 92 anos. [0044] Under these conditions, the design lifetime of a structure built with the concrete Concrete of the present invention would have a prediction of t = c2/k2 = 252/2.62 ®VUP = 92 years.
[0045] Segundo este modelo e estas hipóteses, ao utilizar o concreto Concreto da presente invenção, obtém-se um incremento de vida útil de projeto, VUP, de cerca de, 1,84 em relação à VUP do concreto de referência que atende à classe CAA II da ABNT NBR 12655. [0045] According to this model and these hypotheses, when using the concrete Concrete of the present invention, an increase is obtained of design service life, VUP, of about 1.84 in relation to the VUP of the reference concrete that meets the CAA II class of ABNT NBR 12655.
Exemplo 4 - Cálculo da Vida Útil de Projeto, VUP, segundo BOB e BOB (1991) Example 4 - Calculation of the Useful Life of the Project, VUP, according to BOB and BOB (1991)
[0046] O modelo proposto por estes autores está baseado em estudos de casos reais, modelos já disponíveis e publicados e experiências próprias, o qual está apresentado abaixo: xc — 150. (
Figure imgf000022_0001
[0046] The model proposed by these authors is based on real case studies, models already available and published and their own experiences, which is presented below: x c — 150. (
Figure imgf000022_0001
Onde: xc = é a profundidade de carbonatação (mm) fc = resistência a compressão do concreto (N/mm2) t = tempo de exposição (anos) c = capacidade de fixação de C02 no cimento (neste estudo, mesmo cimento) Where: xc = carbonation depth (mm) fc = concrete compressive strength (N/mm 2 ) t = exposure time (years) c = C02 fixation capacity in cement (in this study, same cement)
K = representam as condições ambientais (neste estudo, mesmo ambiente) d = representa a concentração de C02 na superfície do concreto (neste estudo o mesmo ambiente) K = represent the environmental conditions (in this study, same environment) d = represent the C02 concentration on the concrete surface (in this study, the same environment)
[0047] A capacidade de fixação de C02 no cimento é considerada através do parâmetro c referente ao tipo de cimento: c = 1,0 para cimento Portland classe CP40 e CP45 e, 0,8 p/ CP50 e CP55 [0047] The ability to fix C02 in cement is considered through parameter c referring to the type of cement: c = 1.0 for Portland cement class CP40 and CP45 and 0.8 for CP50 and CP55
= 1,2 p/ cimento Portland com 15% de adições = 1.2 for Portland cement with 15% additions
= 1,4 e 2,0 p/ cimento Portland com o máximo de 30% e 50% de adições = 1.4 and 2.0 for Portland cement with a maximum of 30% and 50% additions
[0048] Os parâmetros K e d representam as condições ambientais e a concentração do dióxido de carbono na superfície respectivamente : [0048] The parameters K and d represent the environmental conditions and the concentration of carbon dioxide on the surface respectively:
K = 1,0 p/ condições interiores (UR £ 60) K = 1.0 for indoor conditions (UR £60)
= 0,7 p/ condições exteriores protegidas de molhagem (70 £ UR £= 0.7 for outdoor conditions protected from wetness (70 £ UR £
75) = 0,5 p/ condições exteriores médias (80 £ UR £ 85)75) = 0.5 for medium outdoor conditions (80 £UR £85)
= 0,3 p/ concreto exposto a umidade (UR > 90) d = 1,0 e 2,0 p/ concentrações de <302 de 0,03% e 0,1% = 0.3 for concrete exposed to humidity (RH > 90) d = 1.0 and 2.0 for concentrations of <302 of 0.03% and 0.1%
[0049] Levando em consideração os insumos adotados no estudo e o ambiente agressivo em questão, os resultados obtidos foram: [0049] Taking into account the inputs adopted in the study and the aggressive environment in question, the results obtained were:
- Concreto de referência t = (25/(150*1,2*0,3*2/40))2 t = 86 anos - Reference concrete t = (25/(150*1.2*0.3*2/40)) 2 t = 86 years
Concreto Concreto da presente invenção t = (25/(150*1,2*0,3*2/45))2 t = 109 anos Concrete Concrete of the present invention t = (25/(150*1.2*0.3*2/45)) 2 t = 109 years
Exemplo 5 - Cálculo da Vida Útil de Projeto, VUP, segundo MORINAGA (1990) Example 5 - Calculation of the Useful Life of the Project, VUP, according to MORINAGA (1990)
[0050] Esse modelo se baseia em uma série de experimentos orientados ao estudo da velocidade de carbonatação. Para os casos de umidade relativa superior a 60%, foi proposto o modelo a seguir:
Figure imgf000023_0001
[0050] This model is based on a series of experiments aimed at studying the rate of carbonation. For cases of relative humidity greater than 60%, the following model was proposed:
Figure imgf000023_0001
Onde: xc = a profundidade de carbonatação (mm) Where: xc = the depth of carbonation (mm)
W = relação água / cimento (kg/kg) W = water / cement ratio (kg/kg)
C = concentração de C02 na atmosfera (%) (neste estudo, a mesma) C = concentration of C02 in the atmosphere (%) (in this study, the same)
UR = umidade relativa (%) (neste estudo a mesma) RH = relative humidity (%) (in this study the same)
T = temperatura ambiental (°C); (neste estudo a mesma) t = tempo (dias). T = ambient temperature (°C); (in this study the same) t = time (days).
[0051] Para este estudo, os fatores adotados estão apresentados na tabela 13 abaixo:
Figure imgf000023_0002
[0052] Levando em consideração os insumos adotados no estudo, os resultados obtidos foram:
Figure imgf000024_0001
[0051] For this study, the factors adopted are shown in Table 13 below:
Figure imgf000023_0002
[0052] Taking into account the inputs adopted in the study, the results obtained were:
Figure imgf000024_0001
[0053] Segundo este modelo, ao utilizar o concreto da presente invenção, obtém-se um incremento de vida útil de projeto, VUP, de, cerca de, 1,30 em relação à VUP do concreto de referência. [0053] According to this model, when using the concrete of the present invention, an increase in the design lifetime, VUP, of approximately 1.30 is obtained in relation to the VUP of the reference concrete.
[0054] Conforme se observa, em todos os modelos analisados, o concreto da presente invenção apresentou vida útil de projeto VUP, ou vida útil de referência RSL, superior ao concreto padrão de referência, sendo assim mais durável e mais resistente que o exigido e prescrito pela ABNT NBR 6118 e ABNT NBR 12655 para a condição de exposição e agressividade classe CAA II. [0054] As can be seen, in all analyzed models, the concrete of the present invention presented a VUP design lifetime, or RSL reference lifetime, superior to the reference standard concrete, thus being more durable and stronger than required and prescribed by ABNT NBR 6118 and ABNT NBR 12655 for the condition of exposure and aggressiveness class CAA II.

Claims

REIVINDICAÇÕES
1. Concreto caracterizado pelo fato de que compreende por m3 : 1. Concrete characterized by the fact that it comprises by m 3 :
• Cimento de 240 a 330 kg; • Cement from 240 to 330 kg;
• Brita de 900 a 1100 kg; • Gravel from 900 to 1100 kg;
• Areia de 800 a 1000 kg; • Sand from 800 to 1000 kg;
• Aditivo RA2 de 2 a 4 kg; • Additive RA2 from 2 to 4 kg;
• Aditivo IA de 0,2 a 0,7 kg; • Additive AI from 0.2 to 0.7 kg;
• Aditivo CH de 0,3 a 1,5 kg; e • CH additive from 0.3 to 1.5 kg; and
• Água de 140 a 160 litros. • Water from 140 to 160 liters.
2. O concreto, de acordo com a reivindicação 1, caracterizado pelo fato de que o cimento é um cimento Portland. 2. Concrete, according to claim 1, characterized in that the cement is Portland cement.
3. O concreto, de acordo com a reivindicação 1, caracterizado pelo fato de que o aditivo RA2 é um superplastificante sintético de alto desempenho com base de polímeros policarboxilatos (PCE). 3. Concrete, according to claim 1, characterized by the fact that the RA2 additive is a high-performance synthetic superplasticizer based on polycarboxylate polymers (PCE).
4. O concreto, de acordo com a reivindicação 1, caracterizado pelo fato de que o aditivo IA é um incorporador de ar. 4. Concrete, according to claim 1, characterized by the fact that the AI additive is an air entrainer.
5. O concreto, de acordo com a reivindicação 1, caracterizado pelo fato de que o aditivo CH é um controlador de hidratação. 5. Concrete, according to claim 1, characterized by the fact that the CH additive is a hydration controller.
6. O concreto, de acordo com a reivindicação 1, caracterizado pelo fato de que o concreto possui resistência à compressão maior ou igual à 30 MPa. 6. The concrete, according to claim 1, characterized by the fact that the concrete has compressive strength greater than or equal to 30 MPa.
PCT/BR2021/050231 2021-05-28 2021-05-28 Concrete with a unique feature WO2022246524A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
BR112023024152A BR112023024152A2 (en) 2021-05-28 2021-05-28 CONCRETE WITH A UNIQUE CHARGE
PCT/BR2021/050231 WO2022246524A1 (en) 2021-05-28 2021-05-28 Concrete with a unique feature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/BR2021/050231 WO2022246524A1 (en) 2021-05-28 2021-05-28 Concrete with a unique feature

Publications (1)

Publication Number Publication Date
WO2022246524A1 true WO2022246524A1 (en) 2022-12-01

Family

ID=84228231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2021/050231 WO2022246524A1 (en) 2021-05-28 2021-05-28 Concrete with a unique feature

Country Status (2)

Country Link
BR (1) BR112023024152A2 (en)
WO (1) WO2022246524A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0208535A1 (en) * 1985-07-12 1987-01-14 SHIMIZU CONSTRUCTION Co. LTD. Process of producing a flowing concrete
US5181961A (en) * 1989-05-22 1993-01-26 Nihon Cement Co., Ltd. Cement composition
EP0990629A1 (en) * 1998-04-17 2000-04-05 New Tokyo International Airport Authority Concrete for jointing and method of jointing using said concrete
GB2377930B (en) * 2001-06-08 2004-03-10 Rmc Readymix Ltd A cementitious composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0208535A1 (en) * 1985-07-12 1987-01-14 SHIMIZU CONSTRUCTION Co. LTD. Process of producing a flowing concrete
US5181961A (en) * 1989-05-22 1993-01-26 Nihon Cement Co., Ltd. Cement composition
EP0990629A1 (en) * 1998-04-17 2000-04-05 New Tokyo International Airport Authority Concrete for jointing and method of jointing using said concrete
GB2377930B (en) * 2001-06-08 2004-03-10 Rmc Readymix Ltd A cementitious composition

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BASTOS, A. R O.: "ANALISE DA INFLUENCIA DE ADITIVOS SUPERPLASTIFICANTES NO COMPORTAMENTO DE PASTAS DE CIMENTO PORTLAND COM E SEM ADIQAO DE FILER CALCARIO", TRABALHO DE CONCLUSAO DE CURSO, DEPARTAMENTO DE ENGENHARIA CIVIL, UFRGS, 2016 *
CORREA A. C., ET AL.: "AUGUSTO CESAR ABDUCHE CORRÊA ESTUDO DO DESEMPENHO DOS ADITIVOS PLASTIFICANTES E POLIFUNCIONAIS EM CONCRETOS DE CIMENTO PORTLAND TIPO CPIII-40", MASTER DISSERTATION, CIVIL ENGINEERING GRADUATE PROGRAM, UFF, 1 January 2010 (2010-01-01), XP093011075, [retrieved on 20230102] *
ELAINE CRISTINA ZUQUETTI, ESTHER FERREIRA DE AMORIM, ISABELA ALDA ALVES, JÉSSICA LORRANY FERNANDES DE BORGES, LAURA RODRIGUES BERN: "Aditivos e Adições no Concreto = [Additives and Additions in Concrete]", GLOBAL SCIENCE AND TECHNOLOGY, vol. 13, no. 1, 10 June 2020 (2020-06-10), Rio Verde, BR, pages 88 - 102, XP009541691, ISSN: 1984-3801 *
MARTINS V C: "OTIMIZAÇÃO DOS PROCESSOS DE DOSAGEM E PROPORCIONAMENTO DO CONCRETO DOSADO EM CENTRAL COM A UTILIZAÇÃO DE ADITIVOS: ESTUDO DE CASO VANESSA DA COSTA MARTINS", UNIVERSIDADE FEDERAL DE SANTA CATARINA -UFSC PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL -PPGEC, 1 January 2005 (2005-01-01), XP093011084, Retrieved from the Internet <URL:https://repositorio.ufsc.br/bitstream/handle/123456789/101966/211524.pdf?sequence=1&isAllowed=y> [retrieved on 20230102] *
NETO A M: "ESTUDO DA INFLUENCIA DE ADITIVOS EM CONCRETO", TRABALHO DE CONCLUSAO DE CURSO, 1 January 2018 (2018-01-01), XP093011081, Retrieved from the Internet <URL:http://186.251.225.226:8080/bitstream/handle/123456789/149/Nardy%20Neto,%20Arnaldo%20Martin%202018.pdf?sequence=1&isAllowed=y> [retrieved on 20230102] *

Also Published As

Publication number Publication date
BR112023024152A2 (en) 2024-01-30

Similar Documents

Publication Publication Date Title
Beushausen et al. Performance-based approaches for concrete durability: State of the art and future research needs
Piasta et al. The effect of cement paste volume and w/c ratio on shrinkage strain, water absorption and compressive strength of high performance concrete
Carević et al. Model for practical carbonation depth prediction for high volume fly ash concrete and recycled aggregate concrete
Fernández-Ruiz et al. Epoxy resin and ground tyre rubber replacement for cement in concrete: Compressive behaviour and durability properties
Van den Heede et al. A service life based global warming potential for high-volume fly ash concrete exposed to carbonation
Van den Heede et al. Transport properties of high-volume fly ash concrete: Capillary water sorption, water sorption under vacuum and gas permeability
Strzałkowski et al. Thermal and strength properties of lightweight concretes with the addition of aerogel particles
Nguyen et al. Autogenous and total shrinkage of limestone calcined clay cement (LC3) concretes
Calvo et al. Durability performance of sustainable self compacting concretes in precast products due to heat curing
Kirchheim et al. Comparative study of white and ordinary concretes with respect of carbonation and water absorption
KR20200095129A (en) A curing method of concrete specimens and an evaluation method of early concrete solidity that is using thereof
Tibbetts et al. Improving the utility of MIP analysis for cementitious systems through Gaussian process regression modeling to predict electrical resistivity
Allard et al. Isothermal Strength Development Models of Ultra-High-Performance Concrete.
Yokoyama et al. Influences of moisture change and pore structure alteration on transport properties of concrete cover
JP5709653B2 (en) Method for obtaining dynamic elastic modulus of coarse aggregate and method for predicting drying shrinkage strain of concrete
Woyciechowski et al. Self-terminated carbonation model as a useful support for durable concrete structure designing
Wang Simulation of temperature rises in hardening Portland cement concrete and fly ash blended concrete
WO2022246524A1 (en) Concrete with a unique feature
Tiburzi et al. Evaluation of precast bridge girder cracking: The role of volume change
Papadakis et al. Computer-aided approach of parameters influencing concrete service life and field validation
Mohammed Bangladesh–Sustainable development of concrete technology
Kim et al. Internally cured concrete for use in concrete pavement using accelerated pavement testing and finite-element analysis
Ghourchian Plastic Shrinkage Cracking in Concrete: From Mechanisms to Mitigation Strategies
Kurtis et al. Consider functional equivalence: a (faster) path to upscaling sustainable infrastructure materials compositions
Lukefahr et al. Coefficients of Thermal Expansion of Concrete with Different Coarse Aggregates–Texas Data

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21942169

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023024152

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112023024152

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20231117