WO2022244890A1 - Separating agent carrier for boronate affinity chromatography, column, and measurement method employing same - Google Patents

Separating agent carrier for boronate affinity chromatography, column, and measurement method employing same Download PDF

Info

Publication number
WO2022244890A1
WO2022244890A1 PCT/JP2022/021144 JP2022021144W WO2022244890A1 WO 2022244890 A1 WO2022244890 A1 WO 2022244890A1 JP 2022021144 W JP2022021144 W JP 2022021144W WO 2022244890 A1 WO2022244890 A1 WO 2022244890A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
liquid chromatography
separating agent
agent carrier
column
Prior art date
Application number
PCT/JP2022/021144
Other languages
French (fr)
Japanese (ja)
Inventor
友啓 目黒
和昭 村中
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Priority to JP2023522748A priority Critical patent/JPWO2022244890A1/ja
Publication of WO2022244890A1 publication Critical patent/WO2022244890A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • B01J20/283Porous sorbents based on silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • B01J20/285Porous sorbents based on polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/286Phases chemically bonded to a substrate, e.g. to silica or to polymers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention provides a separating agent carrier, a column, and separation and purification using the same that can adsorb and separate biopolymers having a cis-diol structure in a biological sample, such as glycated proteins, ribonucleic acids (RNA), and sugars, by liquid chromatography. , regarding the method of measurement.
  • Non-Patent Documents 1, 2, 3 Boronic acid affinity chromatography is used for adsorption separation of biopolymers having a cis-diol structure, such as glycated proteins, RNA, and sugars.
  • glycated hemoglobin which reflects the average blood sugar level over the past one to two months, can be separated, it is utilized in diabetes diagnosis.
  • glycated hemoglobin when diagnosing diabetes in patients with hemoglobinopathy (dyshemoglobinopathy, thalassemia), which is not easy to analyze using cation exchange chromatography, which is currently widely used, glycated hemoglobin can be separated without being affected by it.
  • the boronic acid affinity method is utilized from.
  • Separation using the boronic acid affinity method utilizes a boronic ester formation reaction between the phenylboronic acid immobilized on the surface of the separating agent and the cis-diol of the sample. That is, in separation, analysis, and purification including diagnosis of diabetes using high-performance liquid chromatography (HPLC), the boronic acid moiety reacts with the glycated protein to form a boronate ester while passing the first eluent. to elute only samples without cis-diol structures, eg, non-glycated proteins.
  • HPLC high-performance liquid chromatography
  • a second eluent having a cis-diol such as sorbitol is passed through to elute a sample having a cis-diol structure, eg glycated protein, by boronic acid transesterification.
  • a basic eluent having a pH of 8 or more is used in order to promote the formation and exchange reaction of the boronate ester (Patent Documents 1 and 2).
  • Patent Document 3 it is known that when an eluent with a pH lower than this is used for separation, non-glycated proteins may be non-specifically adsorbed.
  • Non-Patent Document 6 a separating agent carrying boronic acid in which the benzene ring portion of phenylboronic acid is replaced with a more electron-deficient heteroaromatic ring has been developed (Non-Patent Document 6).
  • boronic acid affinity chromatography capable of efficiently retaining and eluting glycated proteins, RNA, and polysaccharides, which are biopolymers having a cis-diol structure, under neutral to weakly acidic conditions without requiring basic conditions.
  • a separation agent carrier for graphics is provided. More specifically, the present invention provides a technique for separating a biopolymer having a cis-diol structure from a sample containing a biopolymer having a cis-diol structure using an eluent having a pH of 4.5 to 8.
  • the present inventors have found a separating agent carrier for boronic acid affinity chromatography that is capable of retaining and efficiently eluting biopolymers having a cis-diol structure using a neutral to weakly acidic eluent. , completed the present invention.
  • a separating agent carrier incorporating pyridylboronic acid and a coordinating functional group did not change the pH necessary to retain the cis-diol component. Furthermore, it was found that the retention of the cis-diol component and the elution of the cis-diol component using boronic acid ester exchange can be efficiently performed, so that the shape of the obtained chromatogram is improved, and the present invention has been completed. rice field.
  • a separating agent carrier such as silica gel or a crosslinked polymer has a pyridylboronic acid derivative as a binding site with a biopolymer having a cis-diol structure, and promotion of boronate ester formation and exchange in the vicinity of this derivative.
  • a separating agent carrier for boronic acid affinity chromatography characterized in that a functional group having an amino group or a hydroxyl group as a terminal is covalently bonded as a site.
  • the separating agent carrier for boronic acid affinity chromatography of the present invention comprises a pyridylboronic acid derivative and an alkyl group or poly(ethyleneoxy)ethyl group having an amino group or a hydroxyl group at its end, which is composed of silica gel or a crosslinked polymer. characterized by being covalently bonded to the surface of
  • the separating agent carrier for boronic acid affinity chromatography comprises a pyridylboronic acid derivative represented by the following general formula (I) and an alkyl group or poly(ethyleneoxy ) ethyl groups are covalently bonded to the surface of the silica gel or crosslinked polymer.
  • X is -NH- or -O- or -CH (OH) -NH- or -CH (OH) -O-.
  • X' is -NH- or -O- or -CH (OH)--NH-- or --CH(OH)--O--.
  • X′′ is an amino group or a hydroxyl group.
  • A is an alkyl group having 2 to 10 carbon atoms or a poly(ethyleneoxy)ethyl group.
  • the alkyl group or poly(ethyleneoxy)ethyl group having an amino group or a hydroxyl group at its terminal, which is a site promoting boronic acid ester formation and exchange, is 1 to 200 mol% of the pyridyl boronic acid site, For example, it is preferably 4 mol % to 185 mol %, 4 mol % to 100 mol %, 4 mol % to 80 mol %, or 4.5 mol % to 75 mol %.
  • the separating agent carrier of the present invention can be used as a column for liquid chromatography by packing it into a tube having a hollow inside.
  • a biopolymer having a cis-diol group can be separated from a biological sample by liquid chromatography using the column.
  • glycated hemoglobin can be analyzed from a blood sample.
  • the separating agent carrier of the present invention comprises a site that can be used for covalent bond formation, such as an epoxide site introduced into a silica gel or a crosslinkable polymer, and an amino group that promotes ester formation and exchange with a pyridyl boronic acid derivative. can be produced by reaction with a covalent bond forming site of
  • X is -NH-, -O-, -CH(OH)-NH-, or -CH(OH)-O-
  • R and R' are each independently a hydrogen atom, an alkyl group, or a protective group for boronic acid, and R and R' may be combined to form a ring; * indicates binding sites with particles.
  • the separating agent carrier for liquid chromatography according to item 2-1 wherein the crosslinked polymer is a crosslinked polysaccharide.
  • the crosslinked polymer is a crosslinked polysaccharide.
  • [2-3] from the group consisting of a (meth)acrylic acid ester in which the crosslinked polymer has a hydroxyl group or an amino group in a side chain, a (meth)acrylamide having a hydroxyl group or an amino group in the side chain, vinylpyridine, and vinylimidazole;
  • the separating agent carrier for liquid chromatography according to item 2-1 or 2-2 which is a copolymer of at least one selected monomer and a polyfunctional unsaturated monomer.
  • the separating agent carrier for liquid chromatography according to any one of 2-1 to 2-3, wherein the particles are spherical particles having an average particle diameter of 1 to 200 ⁇ m.
  • [2-11] A column for liquid chromatography packed with the separating agent carrier for liquid chromatography according to any one of items 2-1 to 2-5 and 2-10.
  • [2-12] A measurement method for analyzing a sample containing a biopolymer having a cis-diol structure, using the column for liquid chromatography according to item 2-11.
  • [2-13] The measurement method according to item 2-12, wherein the biopolymer having a cis-diol structure is glycated protein, ribonucleic acid or polysaccharide.
  • the glycated protein is glycated hemoglobin.
  • [2-15] A method for adsorbing and/or purifying ribonucleic acid using the liquid chromatography column according to item 2-11.
  • [2-16] A method for separating and/or removing ribonucleic acid in a sample containing deoxyribonucleic acid and ribonucleic acid using the liquid chromatography column according to item 2-11.
  • the separating agent carrier of the present invention can be used as a column for liquid chromatography by filling a column tube.
  • a neutral to weakly acidic eluent is used, components having cis-diol sites and those not having cis-diol sites can be separated.
  • it can be used for separation of glycated proteins and non-glycated proteins, separation of RNA and contaminants, separation and/or removal of RNA in a sample containing deoxyribonucleic acid (DNA) and ribonucleic acid, particularly hemoglobin and glycated hemoglobin. is useful for the separation of again,
  • FIG. 4 is a diagram showing an example of a chromatogram obtained by measuring a blood sample in Example 1;
  • FIG. 10 is a diagram showing an example of a chromatogram obtained by measuring a blood sample in Example 2;
  • FIG. 10 is a diagram showing an example of a chromatogram obtained by measuring a blood sample in Example 3;
  • FIG. 10 is a diagram showing an example of a chromatogram obtained by measuring a blood sample in Example 4;
  • FIG. 10 is a diagram showing an example of a chromatogram obtained by measuring a blood sample in Example 5;
  • FIG. 10 is a plot diagram of saccharified hemoglobin % in Example 6 in which quantification was investigated.
  • FIG. 10 is a plot diagram of saccharified hemoglobin % in Example 6 in which quantification was investigated.
  • FIG. 10 is a diagram showing an example of a chromatogram obtained by adsorbing and separating crudely purified RNA in Example 7.
  • FIG. 10 is a diagram showing an example of a chromatogram of adsorption removal of RNA in a DNA sample in Example 8.
  • FIG. 10 is a diagram showing an example of a chromatogram obtained by adsorption separation of polysaccharides in Example 9.
  • FIG. 4 is a diagram showing an example of a chromatogram obtained by measuring a blood sample in Comparative Example 1.
  • FIG. FIG. 10 is a diagram showing an example of a chromatogram obtained by measuring a blood sample in Comparative Example 2;
  • FIG. 10 is a diagram showing an example of a chromatogram obtained by measuring a blood sample in Comparative Example 3;
  • FIG. 10 is a diagram showing an example of a chromatogram obtained by measuring a blood sample in Comparative Example 4;
  • the present invention provides a separating agent carrier for liquid affinity chromatography, (1) a functional group containing a pyridylboronic acid derivative represented by the following general formula (II): [in the formula (II), X is -NH-, -O-, -CH(OH)-NH-, or -CH(OH)-O-, R and R' are each independently a hydrogen atom, an alkyl group, or a protective group for boronic acid, and R and R' may be combined to form a ring; * indicates binding sites with particles.
  • a functional group containing a pyridylboronic acid derivative represented by the following general formula (II): [in the formula (II), X is -NH-, -O-, -CH(OH)-NH-, or -CH(OH)-O-, R and R' are each independently a hydrogen atom, an alkyl group, or a protective group for boronic acid, and R and R' may be combined to form
  • X' is -NH-, -O-, -CH(OH)-NH-, -CH(OH)-O- or -CH(OH)-
  • A is an alkyl group having 1 to 10 carbon atoms or a poly(ethyleneoxy)ethyl group
  • X′′ is substituted with an amino group or a hydroxyl group
  • * indicates the binding site of the particle.
  • a separating agent carrier for liquid chromatography characterized by being covalently bonded to the surface of silica gel or crosslinked polymer particles.
  • the present invention also provides a method for producing the separating agent carrier for liquid chromatography, the method comprising: A first surface modifier for introducing the functional group of (1) and a second surface modifier for introducing the functional group of (2) into the silica gel or crosslinked polymer particles having a functional group for linking on the surface. It may include reacting two surface modifiers simultaneously or separately to obtain a separating agent carrier for liquid chromatography.
  • the pyridine ring has a boronic acid site and a linking site used for surface modification of the separating agent carrier.
  • Functional groups that can be used to modify the surface of pyridylboronic acid and the separating agent carrier include hydroxyl group, hydroxymethyl group, amino group, aminomethyl group, carboxy group, formyl group and the like.
  • the form of the boron moiety may be a boronic acid in which the substituent other than the pyridine ring is a hydroxyl group, or a boronic acid ester substituted with a protecting group such as a pinacol ester to form a ring,
  • a protecting group such as a pinacol ester to form a ring
  • Other known boronic acid protecting groups such as diaminonaphthalenamide, MIDA ester, trifluoroborate salt, techol ester, neopentyl glycol ester, pinanediol ester, biscyclohexyldiol ester, or MPMP ester may also be used.
  • Pyridylboronic acid may be in any state such as hydrate, hydrochloride, or sulfate.
  • the first surface modifier for introducing a functional group containing a pyridylboronic acid derivative may be any substance that satisfies the above conditions. Specific examples include 6-hydroxypyridine-3-boronic acid pinacol ester, 6- (Hydroxymethyl)pyridine-3-boronic acid pinacol ester, 2-aminopyridine-5-boronic acid pinacol ester, 2-aminopyridine-4-boronic acid pinacol ester, 5-formylpyridine-5-boronic acid, 6-carboxy Examples include pyridine-3-boronic acid. 2-Aminopyridine-5-boronic acid pinacol ester is particularly preferred.
  • X' is -NH-, -O-, -CH(OH)-NH-, -CH(OH)-O- or -CH(OH)-
  • A is an alkyl group having 1 to 10 carbon atoms or a poly(ethyleneoxy)ethyl group
  • X′′ is substituted with an amino group or a hydroxyl group
  • * indicates the binding site of the particle.
  • the second surface modifier for introducing may have a linking site used for surface modification with the separating agent carrier (particles) at the terminal not substituted with the above nitrogen atom or oxygen atom.
  • this linking site can be used for the covalent bond formation reaction.
  • functional groups include a hydroxyl group, an amino group, a carboxyl group, and a formyl group, but are not particularly limited.
  • Specific examples of the second surface modifier include 1,3-propanediol, propylene glycol, dipropylene glycol, tripropylene glycol, 1,4-butanediol, glycerol, polyglycerol, aminoethanol, aminopropanol, aminobutanol, Examples thereof include 2-(2-(2-aminoethoxy)ethoxy)acetic acid, and it is desirable to have an alkyl group having 2 to 6 carbon atoms or a poly(ethyleneoxy)ethyl group.
  • the above two types of surface modifiers are bound to a separation agent composed of known silica gel, crosslinked polymer, or the like.
  • a known separating agent having a functional group for linking with a modifier on its surface can be used.
  • Functional groups for linking include epoxy group, amino group, hydroxyl group, carboxy group, formyl group and the like, but are not particularly limited.
  • the two types of surface modifiers described above may be reacted simultaneously or separately with the silica gel or crosslinked polymer particles having functional groups for linking on their surfaces.
  • 1 to 200 mol% of the second surface modifier relative to the first surface modifier such as 4 mol% to 185 mol%, 4 mol% to 100 mol%, 4 mol% to 80 mol%, or It is preferable to react in an amount of 4.5 mol % to 75 mol %.
  • the particle size is not limited, but the average particle size is 1 to 200 ⁇ m. Spherical particles having an average particle size of 10 to 200 ⁇ m are preferred for preparative applications. In preparative applications, porous particles having pores are preferable in order to adsorb a large amount of sample at once. is preferred.
  • crosslinked polymer examples include crosslinked polysaccharide particles using cellulose or agarose, (meth)acrylic acid esters having hydroxyl or amino groups in side chains, (meth)acrylamide monomers having hydroxyl or amino groups in side chains, and vinylpyridine.
  • Copolymer particles of vinylimidazole and polyfunctional unsaturated monomers can be used.
  • particles using a (meth)acrylic acid ester or a (meth)acrylic acid amide monomer are preferable because the amounts of hydroxyl groups and amino groups on the particle surface can be easily controlled.
  • Examples of monomers having an alcoholic hydroxyl group include (meth)acrylic acid esters, monomers in which the ester portion is glycerol, 2-hydroxyethyl, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, or tripropylene glycol. , N-(2-hydroxyethyl)methacrylamide, and N-(2-hydroxypropyl)methacrylamide.
  • Examples of monomers having an amino group include vinylpyridines, vinylimidazole, N-(2-aminoethyl)acrylamide, and 2-(dimethylamino)ethyl (meth)acrylate.
  • polyfunctional unsaturated monomers examples include (poly)ethylene glycol-di(meth)acrylate, (poly)glycerol-poly(meth)acrylate, (poly)propylene glycol-poly(meth)acrylate, Divinylbenzene and the like can be exemplified.
  • a crosslinked polymer having a hydroxyl group can be used by partially introducing a functional group necessary for introducing pyridylboronic acid, such as an epoxy group or a carboxylic acid.
  • a method using a crosslinked polymer using a (meth)acrylic acid monomer having an epoxy group, such as glycidyl methacrylate, as a monomer simultaneously attaches a hydroxyl group or an amino group and a pyridylboronic acid compound to the epoxy group of the particles, respectively.
  • a diol compound, or an amine by reacting the epoxy remaining after the introduction of the pyridylboronic acid compound with water, a diol compound, or an amine, hydroxyl groups and amino groups can be introduced, respectively, which is preferable.
  • hydrophilic vinyl polymer particles having an epoxy group can also be used. can easily achieve introduction of pyridylboronic acid and introduction of hydroxyl groups by reacting epoxy groups with water.
  • a covalent bond can be formed through an epoxide ring-opening reaction, an amide bond-forming reaction, a carbamate-forming reaction, an imine-forming reaction, or the like using the linking site described above, but the bond-forming method is not limited.
  • the column tube a tube made of metal, resin, glass, or the like having a hollow inside may be used, and the column filled with the separating agent carrier can be used as a column for liquid chromatography, for example, for HPLC measurement. .
  • a column filled with the separating agent carrier can be used.
  • the eluent two or more types of eluents can be used, ie, an eluent containing no component having a cis-diol moiety and an eluent containing a cis-diol moiety such as galactose, fructose and sorbitol.
  • liquid chromatography column of the present invention by using the liquid chromatography column of the present invention, a sample containing a biopolymer having a cis-diol structure (e.g., glycated protein (e.g., glycated hemoglobin), ribonucleic acid, polysaccharide, etc.) A measurement method to be analyzed can be provided.
  • the use of the liquid chromatography column of the present invention makes it possible to provide a method for adsorbing and/or purifying ribonucleic acid.
  • the use of the liquid chromatography column of the present invention also makes it possible to provide a method for separating and/or removing ribonucleic acid in a sample containing deoxyribonucleic acid and ribonucleic acid.
  • the column for liquid chromatography of the present invention By using the column for liquid chromatography of the present invention, even when using a neutral to weakly acidic eluent, which has been difficult to separate, the chromatogram peaks of biopolymers having cis-diol moieties can be obtained. Shape broadening was suppressed, and biopolymers having cis-diol sites and components not having cis-diol sites could be efficiently separated.
  • Example 1 HPLC measurement was performed using a column filled with a separating agent carrier having a 2-aminopyridine-5-boronic acid derivative supported on the surface of a silica gel carrier.
  • silica gel particles having an epoxide moiety 10 g of the obtained silica gel particles having an epoxide moiety, 400 mg of 2-aminopyridine-5-boronic acid pinacol ester (Mw: 220.08) and 5.5 mg of aminoethanol (Mw: 61.08) were added to 40 g of It was stirred at 40° C. in a phosphate buffer (pH 7.0). After 24 hours, the silica gel was separated from the reaction solution to obtain a silica gel having pyridyl boronic acid and sites promoting boronic ester formation and exchange on the surface.
  • Example 2 Silica gel having epoxide sites on the surface prepared in Example 1 was used. 10 g of silica gel particles having epoxide moieties, 400 mg of 2-aminopyridine-5-boronic acid pinacol ester and 22 mg of aminoethanol were stirred in 40 g of phosphate buffer (pH 7.0) at 40°C. After 24 hours, the silica gel was separated from the reaction solution to obtain a silica gel having pyridyl boronic acid and sites promoting boronic ester formation and exchange on the surface.
  • phosphate buffer pH 7.0
  • the obtained separating agent carrier was packed into a column similar to that used in Example 1 above, and separated under the same conditions.
  • Example 3 Silica gel having epoxide sites on the surface prepared in Example 1 was used. 7 g of silica gel particles having epoxide moieties, 210 mg of 2-aminopyridine-5-boronic acid pinacol ester and 42 mg of aminoethanol were stirred in 40 g of phosphate buffer (pH 7.0) at 40°C. After 24 hours, the silica gel was separated from the reaction solution to obtain a silica gel having pyridyl boronic acid and sites promoting boronic ester formation and exchange on the surface.
  • the obtained separating agent carrier was packed into a column similar to that used in Example 1 above, and separated under the same conditions.
  • Example 4 Silica gel having epoxide sites on the surface prepared in Example 1 was used. 7 g of silica gel particles having epoxide moieties, 210 mg of 2-aminopyridine-5-boronic acid pinacol ester and 105 mg of aminoethanol were stirred in 40 g of phosphate buffer (pH 7.0) at 40°C. After 24 hours, the silica gel was separated from the reaction solution to obtain a silica gel having pyridyl boronic acid and sites promoting boronic ester formation and exchange on the surface.
  • phosphate buffer pH 7.0
  • the obtained separating agent carrier was packed into a column similar to that used in Example 1 above, and separated under the same conditions.
  • Example 5 Silica gel having epoxide sites on the surface prepared in Example 1 was used. 7 g of silica gel particles having epoxide moieties, 210 mg of 2-aminopyridine-5-boronic acid pinacol ester and 21 mg of 1,6-hexamethylenediamine (Mw: 116.20) were added to 40 g of phosphate buffer (pH 7.0). 0) and stirred at 40°C. After 24 hours, the silica gel was separated from the reaction solution to obtain a silica gel having pyridyl boronic acid and sites promoting boronic ester formation and exchange on the surface.
  • phosphate buffer pH 7.0
  • the obtained separating agent carrier was packed into a column similar to that used in Example 1 above, and separated under the same conditions.
  • Example 5 When the column of Example 5 is used, the non-saccharified components and the saccharified components can be separated as shown in FIG. 5, and the peak shape is good.
  • Example 6 In order to examine the quantification of glycated hemoglobin, the column prepared in Example 2 was used to perform HPLC measurement of samples with different amounts of glycated hemoglobin.
  • HPLC measurement was performed using the same conditions as in Example 1.
  • the five samples used for quantitative evaluation were prepared by mixing two samples with different amounts of glycated hemoglobin. That is, samples 1 and 5 were mixed at a ratio of 3:1 (No. 2), 1:1 (No. 3) and 1:3 (No. 4).
  • FIG. 6 the measurement results of glycated hemoglobin % in five kinds of samples show linearity, so that the separating agent carrier for liquid chromatography of the present invention exhibits sufficient quantification. It was revealed.
  • Example 7 200 g of 2-hydroxyethyl methacrylate, 30 g of ethylene glycol dimethacrylate, 700 g of monochlorobenzene and 5 g of polymerization initiator V65 (manufactured by Fujifilm Wako Pure Chemical Industries) were mixed. Polyvinyl alcohol was dissolved at a concentration of 2% in a 3 L separable flask, and the temperature was adjusted to 60°C. The monomer mixture was put into a separable flask and polymerized for 6 hours while stirring.
  • the obtained reaction solution was filtered through a glass filter, washed with warm water and acetone in that order, and further classified into particle sizes of 40 to 100 ⁇ m using a sieve to obtain crosslinked polymer particles having hydroxyl groups.
  • 200 g (wet weight) of the obtained crosslinked polymer particles having hydroxyl groups were dispersed in 300 g of water, 50 g of epichlorohydrin was added, and 40 g of 48% sodium hydroxide heated to 40° C. was gradually added. , introduced an epoxy group.
  • the obtained particles were washed with water, acetone, and water in this order to obtain epoxidized crosslinked polymer particles.
  • 25 g (dry weight) of crosslinked polymer particles were dispersed in 225 mL of deionized water, and 4.5 g of 2-aminopyridine-5-boronic acid pinacol ester was added and dissolved.
  • 25 mL of 0.5 M sodium hydroxide aqueous solution was added, and the mixture was heated at 70° C. for 2 hours.
  • the reaction solution was filtered through a glass filter, washed with 3 times the amount of 80% ethanol aqueous solution, 3 times the amount of deionized water, 3 times the amount of 0.1 M hydrochloric acid aqueous solution, and 3 times the amount of ion exchanged water in this order.
  • 2-Aminopyridine-5-boronic acid immobilized particles having hydroxyl groups bound to the substrate were obtained. The obtained particles were packed into an empty column having an inner diameter of 7.5 mm and a column length of 7.5 cm.
  • RNA was purified under the following conditions.
  • Eluent A solution 0.15 M sodium chloride, 0.1 M phosphate buffer (pH 6.0)
  • B solution 0.1 M sorbitol, 0.15 M sodium chloride, 0.1 M phosphate buffer (pH 6.0)
  • Solution C 20 mM phosphate buffer (pH 1.9)
  • Step gradient :: eluent A (0-16.6 min), eluent B (16.6-33.1 min), eluent C (33.1-49.7 min)
  • Flow rate 1.0 mL/min Monitor wavelength: 260nm
  • Ribonucleic acid from yeast manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., product number 185-00202
  • Example 9 Blue Dextran D5751 manufactured by Merck Co. was dissolved in eluent A to a concentration of 50 g/L, and the elution behavior was confirmed in the same manner as in Example 7 except that the monitor wavelength was set to 620 nm. From the resulting chromatogram (Fig. 9), it was found that dextran was neutrally adsorbed and could be eluted under mild conditions without the need for acidity for elution.
  • the obtained separating agent carrier was packed into a column similar to that used in Example 1 above, and separated under the same conditions.
  • Comparative Example 3 Silica gel having epoxide sites on the surface prepared in Example 1 was used. 10 g of silica gel particles having epoxide moieties and 400 mg of 2-aminopyridine-5-boronic acid pinacol ester were stirred in 40 g of phosphate buffer (pH 7.0) at 40°C. After 24 hours, separation from the reaction solution was performed to obtain silica gel having pyridylboronic acid on its surface.
  • the obtained separating agent carrier was packed into a column similar to that used in Example 1 above, and separated under the same conditions.
  • Comparative Example 4 When the column of Comparative Example 3 was used, the non-saccharified components and the saccharified components could be separated as shown in FIG. 12, but the peak of the saccharified components was broad.
  • Comparative Example 4 Using the gel-filled column produced in Comparative Example 3, HPLC measurement was performed using liquid A having a pH higher than that of Example 1. Eluent A solution: 100 mM phosphate buffer (pH 6.8) B solution: 100 mM phosphoric acid, 100 mM d-sorbitol mixed solution (pH 6.5) Separation was carried out under the same conditions as in Example 1 except for the eluent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

The present invention provides: a separating agent carrier for liquid chromatography that is characterized by having, on surfaces of particles of silica gel or a crosslinked polymer, a functional group that contains a pyridylboronic acid derivative serving as a bonding site with a biopolymer having a cis-diol structure, as well as a functional group that has, at an end thereof, an amino group or a hydroxyl group serving as an acceleration site for boronate ester formation and exchange; a column filled with the separating agent carrier; and a method employing the column for measuring, separating, purifying and/or removing the biopolymer.

Description

ボロン酸アフィニティクロマトグラフィー用分離剤担体、カラム及びそれを用いた測定方法Separating agent carrier for boronic acid affinity chromatography, column and measurement method using the same
 本発明は、液体クロマトグラフィーにより生体試料中のcis-ジオール構造を有する生体高分子、例えば、糖化たんぱく質、リボ核酸(RNA)、糖類を吸着分離できる分離剤担体、カラム及びそれを用いた分離精製、測定方法に関する。 The present invention provides a separating agent carrier, a column, and separation and purification using the same that can adsorb and separate biopolymers having a cis-diol structure in a biological sample, such as glycated proteins, ribonucleic acids (RNA), and sugars, by liquid chromatography. , regarding the method of measurement.
 ボロン酸アフィニティクロマトグラフィーは、cis-ジオール構造を有する生体高分子、例えば、糖化たんぱく質、RNA、糖類の吸着分離に利用されている(非特許文献1、2、3)。なかでも、過去一か月~二か月の間の平均血糖値を反映する糖化ヘモグロビンを分離できることから、糖尿病診断において活用されている。特に、現在汎用されている陽イオン交換クロマトグラフィーを用いた分析では容易ではない血色素異常症(異常ヘモグロビン症、サラセミア症)患者の糖尿病診断をする場合、その影響を受けることなく糖化ヘモグロビンを分離できることからボロン酸アフィニティ法が利用される。 Boronic acid affinity chromatography is used for adsorption separation of biopolymers having a cis-diol structure, such as glycated proteins, RNA, and sugars ( Non-Patent Documents 1, 2, 3). In particular, since glycated hemoglobin, which reflects the average blood sugar level over the past one to two months, can be separated, it is utilized in diabetes diagnosis. In particular, when diagnosing diabetes in patients with hemoglobinopathy (dyshemoglobinopathy, thalassemia), which is not easy to analyze using cation exchange chromatography, which is currently widely used, glycated hemoglobin can be separated without being affected by it. The boronic acid affinity method is utilized from.
 ボロン酸アフィニティ法を用いた分離において、分離剤表面に固定化されたフェニルボロン酸と試料のcis-ジオールとのボロン酸エステル形成反応が利用される。すなわち、高速液体クロマトグラフィー(HPLC)を用いた糖尿病診断を含む分離、分析、精製では、まず1番目の溶離液を通液させながら、ボロン酸部位と糖化たんぱく質との反応でボロン酸エステルを形成させて、cis-ジオール構造を有さない試料、例えば非糖化たんぱく質のみを溶出する。次に、ソルビトールなどのcis-ジオールを有する2番目の溶離液を通液し、ボロン酸エステル交換反応によって、cis-ジオール構造を有する試料、例えば糖化たんぱく質を溶出する。このとき、ボロン酸エステルの形成と交換反応を促進させるために、pH8以上の塩基性の溶離液が使用される(特許文献1,2)。このとき、これよりもpHの低い溶離液を分離に用いた際に、非糖化たんぱく質が非特異的に吸着する場合があることが知られている(特許文献3)。 Separation using the boronic acid affinity method utilizes a boronic ester formation reaction between the phenylboronic acid immobilized on the surface of the separating agent and the cis-diol of the sample. That is, in separation, analysis, and purification including diagnosis of diabetes using high-performance liquid chromatography (HPLC), the boronic acid moiety reacts with the glycated protein to form a boronate ester while passing the first eluent. to elute only samples without cis-diol structures, eg, non-glycated proteins. Next, a second eluent having a cis-diol such as sorbitol is passed through to elute a sample having a cis-diol structure, eg glycated protein, by boronic acid transesterification. At this time, a basic eluent having a pH of 8 or more is used in order to promote the formation and exchange reaction of the boronate ester (Patent Documents 1 and 2). At this time, it is known that when an eluent with a pH lower than this is used for separation, non-glycated proteins may be non-specifically adsorbed (Patent Document 3).
 これに対して、ボロン酸とcis-ジオール部位との反応に使用される溶離液のpHを下げるために、様々な試みがされている。例えば、ボロン酸部位と配位結合できる窒素原子もしくは酸素原子を、ベンゼン環上のホウ素原子のオルト位に配置したフェニルボロン酸を担持した充填剤は、低pHでもcis-ジオールを保持できる。しかし、本手法に利用できるボロン酸は直接入手することができず、効率の悪い多段階反応を経て合成される(非特許文献4)。 In contrast, various attempts have been made to lower the pH of the eluent used for the reaction between the boronic acid and the cis-diol site. For example, phenylboronic acid-loaded packings in which a nitrogen or oxygen atom capable of coordinating a boronic acid moiety is placed ortho to the boron atom on the benzene ring can retain cis-diols even at low pH. However, boronic acids that can be used in this method cannot be obtained directly and are synthesized through inefficient multi-step reactions (Non-Patent Document 4).
 これに対して、充填剤表面に担持されたフェニルボロン酸の近傍に、配位性官能基を配置した充填剤が開発された。本手法において、入手容易な原料を利用できることが特徴であるものの、ベンゼン環上にボロン酸と配位性官能基を併せ持つ場合と比べると、cis-ジオールの保持に必要となるpHが高くなる(非特許文献5)。 In contrast, a filler was developed in which a coordinating functional group was placed near the phenylboronic acid supported on the surface of the filler. This method is characterized by the use of easily available raw materials, but compared to the case of having both a boronic acid and a coordinating functional group on the benzene ring, the pH required to retain the cis-diol is higher ( Non-Patent Document 5).
 これに対して、フェニルボロン酸のベンゼン環部位を、より電子不足なヘテロ芳香環に置き換えたボロン酸を担持した分離剤が開発されている(非特許文献6)。例えば、ベンゼン環の炭素原子のひとつを窒素原子に置き換えたピリジルボロン酸を、ピリジン環の窒素原子を介して担体表面に修飾した充填剤は、低pH(pH5~6)でもcis-ジオールを保持できることが報告されている。しかし、低pHでcis-ジオール部位を保持できるこれらのボロン酸を用いた場合、ボロン酸とcis-ジオール部位との結合が強いため、cis-ジオール成分の溶出に強酸性条件下におけるボロン酸エステルの加水分解が利用される。このとき、中性~弱酸性条件下における上記記載のd-ソルビトールを用いたボロン酸エステル交換を利用して溶出する場合には、エステル交換の遅さからクロマトグラムのピーク形状のブロード化が懸念される。そのため、強酸性条件下で変性又は分解する生体高分子である、糖化タンパク質例えば糖化ヘモグロビン、RNAなどの分離、分析、精製に適さない場合がある。 On the other hand, a separating agent carrying boronic acid in which the benzene ring portion of phenylboronic acid is replaced with a more electron-deficient heteroaromatic ring has been developed (Non-Patent Document 6). For example, a filler in which pyridylboronic acid, in which one of the carbon atoms in the benzene ring is replaced with a nitrogen atom, is modified on the carrier surface via the nitrogen atom in the pyridine ring retains cis-diol even at low pH (pH 5-6). reportedly possible. However, when these boronic acids capable of retaining the cis-diol moiety at low pH are used, the bond between the boronic acid and the cis-diol moiety is strong, so the cis-diol component can be eluted under strongly acidic conditions. hydrolysis of is utilized. At this time, when elution is performed using boronic acid transesterification using d-sorbitol described above under neutral to weakly acidic conditions, there is concern that the peak shape of the chromatogram may become broad due to the slow transesterification. be done. Therefore, it may not be suitable for separation, analysis, and purification of glycated proteins such as glycated hemoglobin, RNA, etc., which are biopolymers that are denatured or degraded under strongly acidic conditions.
 以上のことから、低pHでcis-ジオール部位を保持できるボロン酸が担持された充填剤を用いたカラムは実用的ではなく、糖化たんぱく質、RNA等の生体高分子を試料とした液体クロマトグラフィー分離、分析、精製にはほとんど利用されていない。 From the above, it is not practical to use a column with a packing material loaded with boronic acid that can retain cis-diol moieties at low pH. , is rarely used for analysis and purification.
特開平5-5731号公報JP-A-5-5731 特開2002-139481号公報JP-A-2002-139481 特開2007-284425号公報JP 2007-284425 A
 本発明において、塩基性条件を必要とせずに中性~弱酸性条件下で効率よくcis-ジオール構造を有する生体高分子である糖化たんぱく質、RNA、多糖類の保持と溶出をできるボロン酸アフィニティクロマトグラフィー用分離剤担体を提供する。より具体的には、cis-ジオール構造を有する生体高分子を含むサンプル中から、pH4.5~8の溶離液を用いてcis-ジオール構造を有する生体高分子を分離できる手法を提供する。 In the present invention, boronic acid affinity chromatography capable of efficiently retaining and eluting glycated proteins, RNA, and polysaccharides, which are biopolymers having a cis-diol structure, under neutral to weakly acidic conditions without requiring basic conditions. A separation agent carrier for graphics is provided. More specifically, the present invention provides a technique for separating a biopolymer having a cis-diol structure from a sample containing a biopolymer having a cis-diol structure using an eluent having a pH of 4.5 to 8.
 本発明者は、鋭意検討した結果、中性~弱酸性の溶離液を用いてcis-ジオール構造を有する生体高分子の保持と効率的な溶出ができるボロン酸アフィニティクロマトグラフィー用分離剤担体を見出し、本発明を完成した。 As a result of intensive studies, the present inventors have found a separating agent carrier for boronic acid affinity chromatography that is capable of retaining and efficiently eluting biopolymers having a cis-diol structure using a neutral to weakly acidic eluent. , completed the present invention.
 中性~弱酸性条件でも糖化成分を保持できるピリジルボロン酸を担持した分離剤担体において、cis-ジオール成分の保持とボロン酸エステル交換によるcis-ジオール成分の溶出とが効率よくできる表面構造を検討した。その結果、通常はボロン酸とcis-ジオール成分とのボロン酸エステル形成に必要な溶離液のpHを下げる配位性官能基をボロン酸の近傍に配置した場合に、良好な結果が得られた。具体的には、ピリジルボロン酸のみを導入した分離剤担体と比べて、ピリジルボロン酸と配位性官能基とを導入した分離剤担体は、cis-ジオール成分の保持に必要なpHを変えずに、cis-ジオール成分の保持とボロン酸エステル交換を利用したcis-ジオール成分の溶出とが効率よく行えるため、得られるクロマトグラムの形状が良好になることを見いだし、本発明を完成するに至った。 Investigating a surface structure that can efficiently retain a cis-diol component and elute the cis-diol component by boronic acid transesterification in a separation agent carrier carrying pyridylboronic acid that can retain glycated components even under neutral to weakly acidic conditions. did. As a result, good results were obtained when a coordinating functional group was placed near the boronic acid to lower the pH of the eluent normally required for boronate ester formation between the boronic acid and the cis-diol component. . Specifically, compared to a separating agent carrier incorporating only pyridylboronic acid, a separating agent carrier incorporating pyridylboronic acid and a coordinating functional group did not change the pH necessary to retain the cis-diol component. Furthermore, it was found that the retention of the cis-diol component and the elution of the cis-diol component using boronic acid ester exchange can be efficiently performed, so that the shape of the obtained chromatogram is improved, and the present invention has been completed. rice field.
 すなわち、分離剤担体として例えばシリカゲルもしくは架橋ポリマーの表面に、cis-ジオール構造を有する生体高分子との結合部位としてピリジルボロン酸誘導体を有しており、この近傍にボロン酸エステル形成と交換の促進部位としてアミノ基もしくは水酸基を末端に有する官能基が共有結合していることを特徴とする、ボロン酸アフィニティクロマトグラフィー用分離剤担体を開発するに至った。 That is, the surface of a separating agent carrier such as silica gel or a crosslinked polymer has a pyridylboronic acid derivative as a binding site with a biopolymer having a cis-diol structure, and promotion of boronate ester formation and exchange in the vicinity of this derivative. We have developed a separating agent carrier for boronic acid affinity chromatography, characterized in that a functional group having an amino group or a hydroxyl group as a terminal is covalently bonded as a site.
 以下、本発明について詳細に説明する。 The present invention will be described in detail below.
 [1-1]本発明のボロン酸アフィニティクロマトグラフィー用分離剤担体は、ピリジルボロン酸誘導体と、アミノ基もしくは水酸基を末端に有する、アルキル基もしくはポリ(エチレンオキシ)エチル基が、シリカゲルもしくは架橋ポリマーの表面に共有結合していることを特徴とする。 [1-1] The separating agent carrier for boronic acid affinity chromatography of the present invention comprises a pyridylboronic acid derivative and an alkyl group or poly(ethyleneoxy)ethyl group having an amino group or a hydroxyl group at its end, which is composed of silica gel or a crosslinked polymer. characterized by being covalently bonded to the surface of
 [1-2]前記したボロン酸アフィニティクロマトグラフィー用分離剤担体は、下記一般式(I)で示される、ピリジルボロン酸誘導体と、アミノ基もしくは水酸基を末端に有する、アルキル基もしくはポリ(エチレンオキシ)エチル基とが、シリカゲルもしくは架橋ポリマーの表面に共有結合していることを特徴とする。 [1-2] The separating agent carrier for boronic acid affinity chromatography comprises a pyridylboronic acid derivative represented by the following general formula (I) and an alkyl group or poly(ethyleneoxy ) ethyl groups are covalently bonded to the surface of the silica gel or crosslinked polymer.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式(I)中、Xは-NH-もしくは-O-もしくは-CH(OH)-NH-もしくは-CH(OH)-O-である。X’は-NH-もしくは-O-もしくは-CH(OH)-NH-もしくは-CH(OH)-O-である。X”はアミノ基もしくは水酸基である。RとR’はそれぞれ独立に水素原子もしくはアルキル基であって、一体となって環を形成しても良い。Aは炭素数2~10のアルキル基もしくはポリ(エチレンオキシ)エチル基である。)。なおピリジルボロン酸誘導体は、ピリジン環上におけるボロン酸部位と結合部位(X)の置換位置は問わない。 (In formula (I), X is -NH- or -O- or -CH (OH) -NH- or -CH (OH) -O-. X' is -NH- or -O- or -CH (OH)--NH-- or --CH(OH)--O--. X″ is an amino group or a hydroxyl group. A is an alkyl group having 2 to 10 carbon atoms or a poly(ethyleneoxy)ethyl group.) In the pyridylboronic acid derivative, the boronic acid site and the bonding site (X) on the pyridine ring can be substituted at any position.
 [1-3]前記した、ボロン酸エステル形成と交換の促進部位であるアミノ基もしくは水酸基を末端に有するアルキル基もしくはポリ(エチレンオキシ)エチル基は、ピリジルボロン酸部位の1~200 mol%、例えば、4 mol%~185 mol%、4 mol%~100 mol%、4 mol%~80 mol%、又は4.5 mol%~75 mol%のであることが好ましい。 [1-3] The alkyl group or poly(ethyleneoxy)ethyl group having an amino group or a hydroxyl group at its terminal, which is a site promoting boronic acid ester formation and exchange, is 1 to 200 mol% of the pyridyl boronic acid site, For example, it is preferably 4 mol % to 185 mol %, 4 mol % to 100 mol %, 4 mol % to 80 mol %, or 4.5 mol % to 75 mol %.
 [1-4]本発明の分離剤担体は、内側に空洞がある管に充填して液体クロマトグラフィー用カラムとして利用できる。当該カラムを用いた液体クロマトグラフィーによって、生体試料からcis-ジオール基を有する生体高分子の分離ができる。特に、血液検体から糖化ヘモグロビンの分析ができる。 [1-4] The separating agent carrier of the present invention can be used as a column for liquid chromatography by packing it into a tube having a hollow inside. A biopolymer having a cis-diol group can be separated from a biological sample by liquid chromatography using the column. In particular, glycated hemoglobin can be analyzed from a blood sample.
 [1-5]本発明の分離剤担体は、シリカゲルもしくは架橋性ポリマーに導入したエポキシド部位などの共有結合形成に利用できる部位と、ピリジルボロン酸誘導体とエステル形成と交換の促進剤のアミノ基などの共有結合形成部位との反応によって製造可能である。 [1-5] The separating agent carrier of the present invention comprises a site that can be used for covalent bond formation, such as an epoxide site introduced into a silica gel or a crosslinkable polymer, and an amino group that promotes ester formation and exchange with a pyridyl boronic acid derivative. can be produced by reaction with a covalent bond forming site of
 また、本願は、以下の態様の発明を含んでいる。
[2-1]
 (1)下記一般式(II)で示されるピリジルボロン酸誘導体を含む官能基:
Figure JPOXMLDOC01-appb-C000004
 [式(II)中、
  Xは、-NH-、-O-、-CH(OH)-NH-、又は-CH(OH)-O-であり、
  RとR’はそれぞれ独立に水素原子、アルキル基、又はボロン酸の保護基であり、RとR’は一体となって環を形成してもよく、
  *は、粒子との結合部位を示す。];及び
 (2)下記一般式(III)に示される官能基:
Figure JPOXMLDOC01-appb-C000005
[式(III)中、
 X’は、-NH-、-O-、-CH(OH)-NH-、-CH(OH)-O-又は-CH(OH)-であり、
 Aは、炭素数1~10のアルキル基又はポリ(エチレンオキシ)エチル基であって、X”においてアミノ基もしくは水酸基で置換されており、
 *は、粒子の結合部位を示す。]
とが、
シリカゲルもしくは架橋ポリマーの粒子の表面に共有結合していることを特徴とする液体クロマトグラフィー用分離剤担体。
[2-2] 前記架橋ポリマーが、架橋多糖である項目2-1に記載の液体クロマトグラフィー用分離剤担体。
[2-3] 前記架橋ポリマーが、水酸基又はアミノ基を側鎖に有する(メタ)アクリル酸エステル、水酸基又はアミノ基を側鎖に有する(メタ)アクリルアミド、ビニルピリジン、及びビニルイミダゾールからなる群より選ばれる、少なくとも一種以上のモノマーと多官能不飽和モノマーとの共重合ポリマーで有る項目2-1又は2-2に記載の液体クロマトグラフィー用分離剤担体。
[2-4] 前記粒子の平均粒子径が1~200μmの球状粒子である2-1 ~ 2-3のいずれか1項に記載の液体クロマトグラフィー用分離剤担体。
[2-5]前記粒子が平均10から500nmの大きさの細孔を有する多孔質粒子である項目2-4に記載の液体クロマトグラフィー用分離剤担体。
[2-6] 項目2-1 ~2-5のいずれか1項に記載の液体クロマトグラフィー用分離剤担体の製造方法であって、
 連結用の官能基を表面に有するシリカゲルもしくは架橋ポリマーの粒子に、前記(1)の官能基を導入するための第1の表面修飾剤と、前記(2)の官能基を導入するための第2の表面修飾剤とを同時又は別々に反応させ、項目2-1 ~2-5のいずれか1項に記載の液体クロマトグラフィー用分離剤担体を得ること
を含む、方法。
[2-7] 前記第1の表面修飾剤に対し、前記第2の表面修飾剤が1~200モル%の量で反応させることを特徴とする、項目2-6に記載の方法。
[2-8] 前記連結用の官能基が、エポキシ基、アミノ基、水酸基、カルボキシ基、又はホルミル基である、項目2-6又は2-7に記載の方法。
[2-9] 前記連結用の官能基が、エポキシ基である、項目2-6又は2-7に記載の方法。
[2-10] 項目2-6 ~2-9のいずれか1項に記載の方法により得られる液体クロマトグラフィー用分離剤担体。
[2-11] 項目2-1から2-5及び2-10のいずれか1項に記載の液体クロマトグラフィー用分離剤担体を充填した液体クロマトグラフィー用カラム。
[2-12] 項目2-11に記載の液体クロマトグラフィー用カラムを用いて、cis-ジオール構造を有する生体高分子を含む試料を分析する測定方法。
[2-13] 前記cis-ジオール構造を有する生体高分子が、糖化たんぱく質、リボ核酸又は多糖類である、項目2-12に記載の測定方法。
[2-14] 前記糖化たんぱく質が糖化ヘモグロビンである項目2-13に記載の測定方法。
[2-15] 項目2-11に記載の液体クロマトグラフィー用カラムを用いて、リボ核酸を吸着及び/又は精製する方法。
[2-16] 項目2-11に記載の液体クロマトグラフィー用カラムを用いてデオキシリボ核酸及びリボ核酸を含む試料中のリボ核酸を分離及び/又は除去する方法。
Further, the present application includes inventions of the following aspects.
[2-1]
(1) a functional group containing a pyridylboronic acid derivative represented by the following general formula (II):
Figure JPOXMLDOC01-appb-C000004
[in the formula (II),
X is -NH-, -O-, -CH(OH)-NH-, or -CH(OH)-O-,
R and R' are each independently a hydrogen atom, an alkyl group, or a protective group for boronic acid, and R and R' may be combined to form a ring;
* indicates binding sites with particles. ]; and (2) a functional group represented by the following general formula (III):
Figure JPOXMLDOC01-appb-C000005
[In the formula (III),
X' is -NH-, -O-, -CH(OH)-NH-, -CH(OH)-O- or -CH(OH)-,
A is an alkyl group having 1 to 10 carbon atoms or a poly(ethyleneoxy)ethyl group, and X″ is substituted with an amino group or a hydroxyl group,
* indicates the binding site of the particle. ]
and
A separating agent carrier for liquid chromatography, which is covalently bonded to the surface of silica gel or crosslinked polymer particles.
[2-2] The separating agent carrier for liquid chromatography according to item 2-1, wherein the crosslinked polymer is a crosslinked polysaccharide.
[2-3] from the group consisting of a (meth)acrylic acid ester in which the crosslinked polymer has a hydroxyl group or an amino group in a side chain, a (meth)acrylamide having a hydroxyl group or an amino group in the side chain, vinylpyridine, and vinylimidazole; The separating agent carrier for liquid chromatography according to item 2-1 or 2-2, which is a copolymer of at least one selected monomer and a polyfunctional unsaturated monomer.
[2-4] The separating agent carrier for liquid chromatography according to any one of 2-1 to 2-3, wherein the particles are spherical particles having an average particle diameter of 1 to 200 μm.
[2-5] The separating agent carrier for liquid chromatography according to item 2-4, wherein the particles are porous particles having pores with an average size of 10 to 500 nm.
[2-6] A method for producing the separating agent carrier for liquid chromatography according to any one of items 2-1 to 2-5,
A first surface modifier for introducing the functional group of (1) and a second surface modifier for introducing the functional group of (2) into the silica gel or crosslinked polymer particles having a functional group for linking on the surface. 2 simultaneously or separately to obtain the separating agent carrier for liquid chromatography according to any one of items 2-1 to 2-5.
[2-7] The method according to item 2-6, wherein the second surface modifier is reacted in an amount of 1 to 200 mol % with respect to the first surface modifier.
[2-8] The method according to item 2-6 or 2-7, wherein the linking functional group is an epoxy group, an amino group, a hydroxyl group, a carboxy group, or a formyl group.
[2-9] The method according to item 2-6 or 2-7, wherein the linking functional group is an epoxy group.
[2-10] A separating agent carrier for liquid chromatography obtained by the method according to any one of items 2-6 to 2-9.
[2-11] A column for liquid chromatography packed with the separating agent carrier for liquid chromatography according to any one of items 2-1 to 2-5 and 2-10.
[2-12] A measurement method for analyzing a sample containing a biopolymer having a cis-diol structure, using the column for liquid chromatography according to item 2-11.
[2-13] The measurement method according to item 2-12, wherein the biopolymer having a cis-diol structure is glycated protein, ribonucleic acid or polysaccharide.
[2-14] The measurement method according to item 2-13, wherein the glycated protein is glycated hemoglobin.
[2-15] A method for adsorbing and/or purifying ribonucleic acid using the liquid chromatography column according to item 2-11.
[2-16] A method for separating and/or removing ribonucleic acid in a sample containing deoxyribonucleic acid and ribonucleic acid using the liquid chromatography column according to item 2-11.
 本発明の分離剤担体は、カラム管に充填することで、液体クロマトグラフィー用カラムとして使用できる。本カラムを用いた分析では、中性~弱酸性の溶離液を用いた場合でも、cis-ジオール部位を有する成分と有さない成分とを分離できる。例えば、糖化たんぱく質と非糖化たんぱく質との分離、RNAと夾雑物質の分離、デオキシリボ核酸(DNA)及びリボ核酸を含む試料中のRNAの分離及び/又は除去に利用でき、特に、ヘモグロビンと糖化ヘモグロビンとの分離に有用となる。また、 The separating agent carrier of the present invention can be used as a column for liquid chromatography by filling a column tube. In the analysis using this column, even when a neutral to weakly acidic eluent is used, components having cis-diol sites and those not having cis-diol sites can be separated. For example, it can be used for separation of glycated proteins and non-glycated proteins, separation of RNA and contaminants, separation and/or removal of RNA in a sample containing deoxyribonucleic acid (DNA) and ribonucleic acid, particularly hemoglobin and glycated hemoglobin. is useful for the separation of again,
実施例1における血液検体を測定したクロマトグラム例を示す図である。FIG. 4 is a diagram showing an example of a chromatogram obtained by measuring a blood sample in Example 1; 実施例2における血液検体を測定したクロマトグラム例を示す図である。FIG. 10 is a diagram showing an example of a chromatogram obtained by measuring a blood sample in Example 2; 実施例3における血液検体を測定したクロマトグラム例を示す図である。FIG. 10 is a diagram showing an example of a chromatogram obtained by measuring a blood sample in Example 3; 実施例4における血液検体を測定したクロマトグラム例を示す図である。FIG. 10 is a diagram showing an example of a chromatogram obtained by measuring a blood sample in Example 4; 実施例5における血液検体を測定したクロマトグラム例を示す図である。FIG. 10 is a diagram showing an example of a chromatogram obtained by measuring a blood sample in Example 5; 定量性を検討した実施例6における糖化ヘモグロビン%のプロット図である。FIG. 10 is a plot diagram of saccharified hemoglobin % in Example 6 in which quantification was investigated. 実施例7における粗精製RNAを吸着分離したクロマトグラム例を示す図である。FIG. 10 is a diagram showing an example of a chromatogram obtained by adsorbing and separating crudely purified RNA in Example 7. FIG. 実施例8におけるDNA試料中のRNAを吸着除去したクロマトグラム例を示す図である。FIG. 10 is a diagram showing an example of a chromatogram of adsorption removal of RNA in a DNA sample in Example 8. FIG. 実施例9における多糖を吸着分離したクロマトグラム例を示す図である。FIG. 10 is a diagram showing an example of a chromatogram obtained by adsorption separation of polysaccharides in Example 9. FIG. 比較例1における血液検体を測定したクロマトグラム例を示す図である。4 is a diagram showing an example of a chromatogram obtained by measuring a blood sample in Comparative Example 1. FIG. 比較例2における血液検体を測定したクロマトグラム例を示す図である。FIG. 10 is a diagram showing an example of a chromatogram obtained by measuring a blood sample in Comparative Example 2; 比較例3における血液検体を測定したクロマトグラム例を示す図である。FIG. 10 is a diagram showing an example of a chromatogram obtained by measuring a blood sample in Comparative Example 3; 比較例4における血液検体を測定したクロマトグラム例を示す図である。FIG. 10 is a diagram showing an example of a chromatogram obtained by measuring a blood sample in Comparative Example 4;
 以下に本発明を詳細に説明する。但し本発明は異なる形態による実施が可能であり、以下に示す実施形態、実施例の例示にのみ限定されるものでは無い。 The present invention will be described in detail below. However, the present invention can be embodied in different forms, and is not limited to the embodiments and examples shown below.
 一実施態様において、本発明は、液体アフィニティクロマトグラフィー用分離剤担体を提供するものであり、
 (1)下記一般式(II)で示されるピリジルボロン酸誘導体を含む官能基:
Figure JPOXMLDOC01-appb-C000006
 [式(II)中、
  Xは、-NH-、-O-、-CH(OH)-NH-、又は-CH(OH)-O-であり、
  RとR’はそれぞれ独立に水素原子、アルキル基、又はボロン酸の保護基であり、RとR’は一体となって環を形成してもよく、
  *は、粒子との結合部位を示す。];及び
 (2)下記一般式(III)に示される官能基:
Figure JPOXMLDOC01-appb-C000007
[式(III)中、
 X’は、-NH-、-O-、-CH(OH)-NH-、-CH(OH)-O-又は-CH(OH)-であり、
 Aは、炭素数1~10のアルキル基又はポリ(エチレンオキシ)エチル基であって、X”においてアミノ基もしくは水酸基で置換されており、
 *は、粒子の結合部位を示す。]
とが、
シリカゲルもしくは架橋ポリマーの粒子の表面に共有結合していることを特徴とする液体クロマトグラフィー用分離剤担体を提供する。
In one embodiment, the present invention provides a separating agent carrier for liquid affinity chromatography,
(1) a functional group containing a pyridylboronic acid derivative represented by the following general formula (II):
Figure JPOXMLDOC01-appb-C000006
[in the formula (II),
X is -NH-, -O-, -CH(OH)-NH-, or -CH(OH)-O-,
R and R' are each independently a hydrogen atom, an alkyl group, or a protective group for boronic acid, and R and R' may be combined to form a ring;
* indicates binding sites with particles. ]; and (2) a functional group represented by the following general formula (III):
Figure JPOXMLDOC01-appb-C000007
[in the formula (III),
X' is -NH-, -O-, -CH(OH)-NH-, -CH(OH)-O- or -CH(OH)-,
A is an alkyl group having 1 to 10 carbon atoms or a poly(ethyleneoxy)ethyl group, and X″ is substituted with an amino group or a hydroxyl group,
* indicates the binding site of the particle. ]
and
Provided is a separating agent carrier for liquid chromatography characterized by being covalently bonded to the surface of silica gel or crosslinked polymer particles.
 また、一実施態様において、本発明は、上記の液体クロマトグラフィー用分離剤担体を製造方法を提供するものであって、当該方法は、
 連結用の官能基を表面に有するシリカゲルもしくは架橋ポリマーの粒子に、前記(1)の官能基を導入するための第1の表面修飾剤と、前記(2)の官能基を導入するための第2の表面修飾剤とを同時又は別々に反応させ、液体クロマトグラフィー用分離剤担体を得ること、含むものであってもよい。
In one embodiment, the present invention also provides a method for producing the separating agent carrier for liquid chromatography, the method comprising:
A first surface modifier for introducing the functional group of (1) and a second surface modifier for introducing the functional group of (2) into the silica gel or crosslinked polymer particles having a functional group for linking on the surface. It may include reacting two surface modifiers simultaneously or separately to obtain a separating agent carrier for liquid chromatography.
 上記、ピリジルボロン酸誘導体において、ピリジン環上にボロン酸部位と分離剤担体の表面修飾に利用する連結部位を有していればよく、これらの官能基はピリジン環上のどの位置に結合していてもよい。また、ピリジルボロン酸と分離剤担体との表面修飾に利用できる官能基として、水酸基、ヒドロキシメチル基、アミノ基、アミノメチル基、カルボキシ基、ホルミル基などがあげられる。さらに、ホウ素部位の形態は、ピリジン環以外の置換基が水酸基であるボロン酸であってもよいし、ピナコールエステルなどの保護基で置換され、環を形成するボロン酸エステルであってもよく、その他の公知のボロン酸の保護基、例えば、ジアミノナフタレンアミド、MIDAエステル、トリフルオロボレート塩、テコールエステル、ネオペンチルグリコールエステル、ピナンジオールエステル、ビスシクロヘキシルジオールエステル、又はMPMPエステルであってもよい。ピリジルボロン酸は水和物、塩酸塩、硫酸塩などいずれの状態であってもよい。ピリジルボロン酸誘導体を含む官能基を導入するための第1の表面修飾剤は、上記の条件を満たす物質であればよく、具体例として、6-ヒドロキシピリジン-3-ボロン酸ピナコールエステル、6-(ヒドロキシメチル)ピリジン-3-ボロン酸ピナコールエステル、2-アミノピリジン-5-ボロン酸ピナコールエステル、2-アミノピリジン-4-ボロン酸ピナコールエステル、5-ホルミルピリジン-5-ボロン酸、6-カルボキシピリジン-3-ボロン酸などがあげられる。特に、2-アミノピリジン-5-ボロン酸ピナコールエステルが好ましい。 In the pyridylboronic acid derivative described above, it is sufficient that the pyridine ring has a boronic acid site and a linking site used for surface modification of the separating agent carrier. may Functional groups that can be used to modify the surface of pyridylboronic acid and the separating agent carrier include hydroxyl group, hydroxymethyl group, amino group, aminomethyl group, carboxy group, formyl group and the like. Furthermore, the form of the boron moiety may be a boronic acid in which the substituent other than the pyridine ring is a hydroxyl group, or a boronic acid ester substituted with a protecting group such as a pinacol ester to form a ring, Other known boronic acid protecting groups such as diaminonaphthalenamide, MIDA ester, trifluoroborate salt, techol ester, neopentyl glycol ester, pinanediol ester, biscyclohexyldiol ester, or MPMP ester may also be used. . Pyridylboronic acid may be in any state such as hydrate, hydrochloride, or sulfate. The first surface modifier for introducing a functional group containing a pyridylboronic acid derivative may be any substance that satisfies the above conditions. Specific examples include 6-hydroxypyridine-3-boronic acid pinacol ester, 6- (Hydroxymethyl)pyridine-3-boronic acid pinacol ester, 2-aminopyridine-5-boronic acid pinacol ester, 2-aminopyridine-4-boronic acid pinacol ester, 5-formylpyridine-5-boronic acid, 6-carboxy Examples include pyridine-3-boronic acid. 2-Aminopyridine-5-boronic acid pinacol ester is particularly preferred.
 上記、ボロン酸エステル形成と交換の促進部位である下記一般式(III)に示される官能基:
Figure JPOXMLDOC01-appb-C000008
[式(III)中、
 X’は、-NH-、-O-、-CH(OH)-NH-、-CH(OH)-O-又は-CH(OH)-であり、
 Aは、炭素数1~10のアルキル基又はポリ(エチレンオキシ)エチル基であって、X”においてアミノ基もしくは水酸基で置換されており、
 *は、粒子の結合部位を示す。]
を導入するための第2の表面修飾剤は、上記窒素原子もしくは酸素原子が置換していない末端に分離剤担体(粒子)との表面修飾に利用する連結部位を有していればよい。この連結部位は共有結合形成反応に利用できればよい。このような官能基として水酸基、アミノ基、カルボキシ基、ホルミル基などがあげられるが、特に制限はない。第2の表面修飾剤の具体例として、1,3-プロパンジオール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、1,4-ブタンジオール、グリセロール、ポリグリセロール、アミノエタノール、アミノプロパノール、アミノブタノール、2-(2-(2-アミノエトキシ)エトキシ)酢酸などがあげられるが、炭素数2~6のアルキル基もしくはポリ(エチレンオキシ)エチル基を有することが望ましい。
A functional group represented by the following general formula (III), which is a site promoting boronic acid ester formation and exchange:
Figure JPOXMLDOC01-appb-C000008
[in the formula (III),
X' is -NH-, -O-, -CH(OH)-NH-, -CH(OH)-O- or -CH(OH)-,
A is an alkyl group having 1 to 10 carbon atoms or a poly(ethyleneoxy)ethyl group, and X″ is substituted with an amino group or a hydroxyl group,
* indicates the binding site of the particle. ]
The second surface modifier for introducing may have a linking site used for surface modification with the separating agent carrier (particles) at the terminal not substituted with the above nitrogen atom or oxygen atom. It is sufficient that this linking site can be used for the covalent bond formation reaction. Examples of such functional groups include a hydroxyl group, an amino group, a carboxyl group, and a formyl group, but are not particularly limited. Specific examples of the second surface modifier include 1,3-propanediol, propylene glycol, dipropylene glycol, tripropylene glycol, 1,4-butanediol, glycerol, polyglycerol, aminoethanol, aminopropanol, aminobutanol, Examples thereof include 2-(2-(2-aminoethoxy)ethoxy)acetic acid, and it is desirable to have an alkyl group having 2 to 6 carbon atoms or a poly(ethyleneoxy)ethyl group.
 上記、2種の表面修飾剤は、公知のシリカゲルや架橋ポリマーなどで構成される分離剤に結合させる。このとき、その表面上に修飾剤との連結用の官能基を有している公知の分離剤を利用できる。連結用の官能基としてエポキシ基、アミノ基、水酸基、カルボキシ基、ホルミル基などをあげられるが、特に制限はない。上記、2種の表面修飾剤は、連結用の官能基を表面に有するシリカゲルもしくは架橋ポリマーの粒子に、同時又は別々に反応させてもよい。第1の表面修飾剤に対し、前記第2の表面修飾剤が1~200 mol%、例えば、4 mol%~185 mol%、4 mol%~100 mol%、4 mol%~80 mol%、又は4.5 mol%~75 mol%の量で反応させることが好ましい。 The above two types of surface modifiers are bound to a separation agent composed of known silica gel, crosslinked polymer, or the like. At this time, a known separating agent having a functional group for linking with a modifier on its surface can be used. Functional groups for linking include epoxy group, amino group, hydroxyl group, carboxy group, formyl group and the like, but are not particularly limited. The two types of surface modifiers described above may be reacted simultaneously or separately with the silica gel or crosslinked polymer particles having functional groups for linking on their surfaces. 1 to 200 mol% of the second surface modifier relative to the first surface modifier, such as 4 mol% to 185 mol%, 4 mol% to 100 mol%, 4 mol% to 80 mol%, or It is preferable to react in an amount of 4.5 mol % to 75 mol %.
 上記、修飾に利用するシリカゲルや架橋ポリマーなどで構成される分離剤が、粒子の場合は粒子径に制限はないが、平均粒子径が1~200μmであり、分析用途には平均粒子径が1~10μm、分取用途には平均粒子径が10~200μmの球状粒子であることが好ましい。また分取用途には一度に大量の試料を吸着するために、細孔を有した多孔質粒子であることが好ましく、細孔の大きさとしては、試料に合わせ、平均10~500nmであることが好ましい。 If the separating agent composed of silica gel or crosslinked polymer used for modification is a particle, the particle size is not limited, but the average particle size is 1 to 200 μm. Spherical particles having an average particle size of 10 to 200 μm are preferred for preparative applications. In preparative applications, porous particles having pores are preferable in order to adsorb a large amount of sample at once. is preferred.
 上記、架橋ポリマーとしては、セルロースやアガロースを用いた架橋多糖粒子や水酸基又はアミノ基を側鎖に有する(メタ)アクリル酸エステル、水酸基又はアミノ基を側鎖に有する(メタ)アクリルアミドモノマー、ビニルピリジン類、ビニルイミダゾールと多官能不飽和モノマーの共重合粒子を用いることができる。特に(メタ)アクリル酸エステル、(メタ)アクリル酸アミドモノマーを用いた粒子は、粒子表面の水酸基量、アミノ基量の制御が容易であることから好ましい。アルコール系水酸基を有するモノマーの例としては、(メタ)アクリル酸エステル類である、エステル部がグリセロール、2-ヒドロキシエチル、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコールであるモノマーやN-(2-ヒドロキシエチル)メタクリルアミド、N-(2-ヒドロキシプロピル)メタクリルアミドを例示できる。またアミノ基を有するモノマーとしてはビニルピリジン類、ビニルイミダゾールや、N-(2-アミノエチル)アクリルアミド、(メタ)アクリル酸2-(ジメチルアミノ)エチル等を例示できる。また多官能不飽和モノマーとしては、(ポリ)エチレングリコール-ジ(メタ)アクリル酸エステル、(ポリ)グリセロール-ポリ(メタ)アクリル酸エステル、(ポリ)プロピレングリコール-ポリ(メタ)アクリル酸エステル、ジビニルベンゼン等を例示することができる。 Examples of the above-mentioned crosslinked polymer include crosslinked polysaccharide particles using cellulose or agarose, (meth)acrylic acid esters having hydroxyl or amino groups in side chains, (meth)acrylamide monomers having hydroxyl or amino groups in side chains, and vinylpyridine. Copolymer particles of vinylimidazole and polyfunctional unsaturated monomers can be used. In particular, particles using a (meth)acrylic acid ester or a (meth)acrylic acid amide monomer are preferable because the amounts of hydroxyl groups and amino groups on the particle surface can be easily controlled. Examples of monomers having an alcoholic hydroxyl group include (meth)acrylic acid esters, monomers in which the ester portion is glycerol, 2-hydroxyethyl, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, or tripropylene glycol. , N-(2-hydroxyethyl)methacrylamide, and N-(2-hydroxypropyl)methacrylamide. Examples of monomers having an amino group include vinylpyridines, vinylimidazole, N-(2-aminoethyl)acrylamide, and 2-(dimethylamino)ethyl (meth)acrylate. Examples of polyfunctional unsaturated monomers include (poly)ethylene glycol-di(meth)acrylate, (poly)glycerol-poly(meth)acrylate, (poly)propylene glycol-poly(meth)acrylate, Divinylbenzene and the like can be exemplified.
 水酸基を有する架橋ポリマーはピリジルボロン酸を導入するために必要な官能基である例えばエポキシ基、カルボン酸等を部分的に導入し用いることができる。 A crosslinked polymer having a hydroxyl group can be used by partially introducing a functional group necessary for introducing pyridylboronic acid, such as an epoxy group or a carboxylic acid.
 またエポキシ基を有する(メタ)アクリル酸モノマーである例えば、メタクリル酸グリシジル等をモノマーとして用いた架橋ポリマーを用いる方法は、水酸基又はアミノ基及びピリジルボロン酸化合物をそれぞれ粒子の有するエポキシ基に同時に、又はピリジルボロン酸化合物を導入後残存したエポキシを水またはジオール化合物、アミンと反応させることによりそれぞれ水酸基、アミノ基を導入できることから、好適である。 In addition, a method using a crosslinked polymer using a (meth)acrylic acid monomer having an epoxy group, such as glycidyl methacrylate, as a monomer, simultaneously attaches a hydroxyl group or an amino group and a pyridylboronic acid compound to the epoxy group of the particles, respectively. Alternatively, by reacting the epoxy remaining after the introduction of the pyridylboronic acid compound with water, a diol compound, or an amine, hydroxyl groups and amino groups can be introduced, respectively, which is preferable.
 また、市販のエポキシ基を有する親水性ビニルポリマー粒子を用いることもでき、例えば東ソー株式会社製のTOYOPEARL AF-Epoxy-650を架橋ポリマーとして使用いた場合には、アミノピリジルボロン酸化合物をアルカリ性水溶液中で反応させることで、ピリジルボロン酸導入とエポキシ基が水と反応することによる水酸基導入を容易に達成できる。 In addition, commercially available hydrophilic vinyl polymer particles having an epoxy group can also be used. can easily achieve introduction of pyridylboronic acid and introduction of hydroxyl groups by reacting epoxy groups with water.
 上記、2種の表面修飾剤の分離剤担体との結合方法に制限はなく、公知の結合形成反応を利用できる。例えば、上記記載の連結部位を用いて、エポキシドの開環反応、アミド結合形成反応、カルバメート形成反応、イミン形成反応などを経て共有結合形成することができるが、その結合形成方法に制限はない。 There are no restrictions on the method of binding the above two surface modifiers to the separating agent carrier, and known bond forming reactions can be used. For example, a covalent bond can be formed through an epoxide ring-opening reaction, an amide bond-forming reaction, a carbamate-forming reaction, an imine-forming reaction, or the like using the linking site described above, but the bond-forming method is not limited.
 カラム管として内側に空洞がある金属製、樹脂製、ガラス製等の管を用いて良く、これに前記分離剤担体を充填したカラムを、液体クロマトグラフィー用カラム、例えば、HPLC測定用として利用できる。 As the column tube, a tube made of metal, resin, glass, or the like having a hollow inside may be used, and the column filled with the separating agent carrier can be used as a column for liquid chromatography, for example, for HPLC measurement. .
 HPLC測定を行う際には、前記分離剤担体を充填したカラムを利用できる。溶離液として、cis-ジオール部位を有する成分を含有しない溶離液と、ガラクトース、フルクトース、ソルビトールなどのcis-ジオール部位を含有する溶離液との2種類以上の溶離液を用いることができる。 When performing HPLC measurement, a column filled with the separating agent carrier can be used. As the eluent, two or more types of eluents can be used, ie, an eluent containing no component having a cis-diol moiety and an eluent containing a cis-diol moiety such as galactose, fructose and sorbitol.
 gradientは、Step gradient、linear gradient等で行うことが望ましい。 It is desirable to use a step gradient, linear gradient, etc. for the gradient.
 一実施態様において、本発明の液体クロマトグラフィー用カラムを用いることにより、cis-ジオール構造を有する生体高分子(例えば、糖化たんぱく質(例えば、糖化ヘモグロビン)、リボ核酸又は多糖類など)を含む試料を分析する測定方法が提供可能となる。また、一実施態様において、本発明の液体クロマトグラフィー用カラムを用いることにより、リボ核酸を吸着及び/又は精製する方法を提供可能となる。また、一実施態様において、本発明の液体クロマトグラフィー用カラムを用いることにより、デオキシリボ核酸及びリボ核酸を含む試料中のリボ核酸を分離及び/又は除去する方法も提供可能となる。 In one embodiment, by using the liquid chromatography column of the present invention, a sample containing a biopolymer having a cis-diol structure (e.g., glycated protein (e.g., glycated hemoglobin), ribonucleic acid, polysaccharide, etc.) A measurement method to be analyzed can be provided. In one embodiment, the use of the liquid chromatography column of the present invention makes it possible to provide a method for adsorbing and/or purifying ribonucleic acid. In one embodiment, the use of the liquid chromatography column of the present invention also makes it possible to provide a method for separating and/or removing ribonucleic acid in a sample containing deoxyribonucleic acid and ribonucleic acid.
 本発明の液体クロマトグラフィー用カラムを用いることにより、これまで分離が難しかった中性~弱酸性の溶離液を用いた場合であっても、cis-ジオール部位を有する生体高分子のクロマトグラムのピーク形状のブロード化が抑制され、cis-ジオール部位を有する生体高分子と、cis-ジオール部位を有さない成分とを、効率よく分離可能となった。 By using the column for liquid chromatography of the present invention, even when using a neutral to weakly acidic eluent, which has been difficult to separate, the chromatogram peaks of biopolymers having cis-diol moieties can be obtained. Shape broadening was suppressed, and biopolymers having cis-diol sites and components not having cis-diol sites could be efficiently separated.
 以下、実施例により本発明を詳しく説明するが、本発明は本実施例により限定されるものではない。
(実施例1)
 シリカゲル担体表面に2-アミノピリジン-5-ボロン酸誘導体を担持した分離剤担体を充填したカラムを用いてHPLC測定を実施した。
EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples.
(Example 1)
HPLC measurement was performed using a column filled with a separating agent carrier having a 2-aminopyridine-5-boronic acid derivative supported on the surface of a silica gel carrier.
 30gの球状シリカゲル(7μm)と15gの3-グリシジルオキシプロピルトリメトキシシランとを30gのリン酸緩衝液(pH7.0)中、100℃で攪拌した。24時間経過後、反応溶液との分離を行い、表面にエポキシド部位を有するシリカゲルを得た。 30 g of spherical silica gel (7 μm) and 15 g of 3-glycidyloxypropyltrimethoxysilane were stirred in 30 g of phosphate buffer (pH 7.0) at 100°C. After 24 hours, separation from the reaction solution was performed to obtain silica gel having epoxide sites on its surface.
 得られた10gのエポキシド部位を有するシリカゲル粒子と400mgの2-アミノピリジン-5-ボロン酸ピナコールエステル(Mw:220.08)と5.5mgのアミノエタノール(Mw:61.08)とを40gのリン酸緩衝液(pH7.0)中、40℃で攪拌した。24時間経過後、反応溶液との分離を行い、表面にピリジルボロン酸とボロン酸エステル形成と交換の促進部位とを有するシリカゲルを得た。 10 g of the obtained silica gel particles having an epoxide moiety, 400 mg of 2-aminopyridine-5-boronic acid pinacol ester (Mw: 220.08) and 5.5 mg of aminoethanol (Mw: 61.08) were added to 40 g of It was stirred at 40° C. in a phosphate buffer (pH 7.0). After 24 hours, the silica gel was separated from the reaction solution to obtain a silica gel having pyridyl boronic acid and sites promoting boronic ester formation and exchange on the surface.
 得られた分離剤担体は内径4.6mm、長さ3.5cmのカラムに充填したものを用いて、以下の条件で、血液成分を分離した。
溶離液
A液:100mMリン酸緩衝液(pH6.5)
B液:100mMリン酸、100mM d-ソルビトール混合溶液(pH6.5)
流速:1.0mL/min
モニター波長:415nm
Step gradient:溶離液A液(0-1.0min)、溶離液B液(1.0-4.0min)
 実施例1のカラムを用いた場合、図1のように非糖化成分と糖化成分を分離することができ、ピーク形状は良好であった。
(実施例2)
 実施例1で作製した、表面にエポキシド部位を有するシリカゲルを使用した。10gのエポキシド部位を有するシリカゲル粒子と400mgの2-アミノピリジン-5-ボロン酸ピナコールエステルと22mgのアミノエタノールとを40gのリン酸緩衝液(pH7.0)中、40℃で攪拌した。24時間経過後、反応溶液との分離を行い、表面にピリジルボロン酸とボロン酸エステル形成と交換の促進部位とを有するシリカゲルを得た。
Using the obtained separating agent carrier packed in a column having an inner diameter of 4.6 mm and a length of 3.5 cm, blood components were separated under the following conditions.
Eluent A solution: 100 mM phosphate buffer (pH 6.5)
B solution: 100 mM phosphoric acid, 100 mM d-sorbitol mixed solution (pH 6.5)
Flow rate: 1.0 mL/min
Monitor wavelength: 415nm
Step gradient: eluent A solution (0-1.0 min), eluent B solution (1.0-4.0 min)
When the column of Example 1 was used, the non-saccharified component and the saccharified component could be separated as shown in FIG. 1, and the peak shape was good.
(Example 2)
Silica gel having epoxide sites on the surface prepared in Example 1 was used. 10 g of silica gel particles having epoxide moieties, 400 mg of 2-aminopyridine-5-boronic acid pinacol ester and 22 mg of aminoethanol were stirred in 40 g of phosphate buffer (pH 7.0) at 40°C. After 24 hours, the silica gel was separated from the reaction solution to obtain a silica gel having pyridyl boronic acid and sites promoting boronic ester formation and exchange on the surface.
 得られた分離剤担体は上記実施例1で用いたものと同様のカラムへの充填と、同一条件での分離を実施した。 The obtained separating agent carrier was packed into a column similar to that used in Example 1 above, and separated under the same conditions.
 実施例2のカラムを用いた場合、図2ように非糖化成分と糖化成分を分離することができ、しかもピーク形状は良好であった。
(実施例3)
 実施例1で作製した、表面にエポキシド部位を有するシリカゲルを使用した。7gのエポキシド部位を有するシリカゲル粒子と210mgの2-アミノピリジン-5-ボロン酸ピナコールエステルと42mgのアミノエタノールとを40gのリン酸緩衝液(pH7.0)中、40℃で攪拌した。24時間経過後、反応溶液との分離を行い、表面にピリジルボロン酸とボロン酸エステル形成と交換の促進部位とを有するシリカゲルを得た。
When the column of Example 2 was used, the non-saccharified component and the saccharified component could be separated as shown in FIG. 2, and the peak shape was good.
(Example 3)
Silica gel having epoxide sites on the surface prepared in Example 1 was used. 7 g of silica gel particles having epoxide moieties, 210 mg of 2-aminopyridine-5-boronic acid pinacol ester and 42 mg of aminoethanol were stirred in 40 g of phosphate buffer (pH 7.0) at 40°C. After 24 hours, the silica gel was separated from the reaction solution to obtain a silica gel having pyridyl boronic acid and sites promoting boronic ester formation and exchange on the surface.
 得られた分離剤担体は上記実施例1で用いたものと同様のカラムへの充填と、同一条件での分離を実施した。 The obtained separating agent carrier was packed into a column similar to that used in Example 1 above, and separated under the same conditions.
 実施例3のカラムを用いた場合、図3のように非糖化成分と糖化成分を分離することができ、しかもピーク形状は良好であった。
(実施例4)
 実施例1で作製した、表面にエポキシド部位を有するシリカゲルを使用した。7gのエポキシド部位を有するシリカゲル粒子と210mgの2-アミノピリジン-5-ボロン酸ピナコールエステルと105mgのアミノエタノールとを40gのリン酸緩衝液(pH7.0)中、40℃で攪拌した。24時間経過後、反応溶液との分離を行い、表面にピリジルボロン酸とボロン酸エステル形成と交換の促進部位とを有するシリカゲルを得た。
When the column of Example 3 was used, the non-saccharified components and the saccharified components could be separated as shown in FIG. 3, and the peak shape was good.
(Example 4)
Silica gel having epoxide sites on the surface prepared in Example 1 was used. 7 g of silica gel particles having epoxide moieties, 210 mg of 2-aminopyridine-5-boronic acid pinacol ester and 105 mg of aminoethanol were stirred in 40 g of phosphate buffer (pH 7.0) at 40°C. After 24 hours, the silica gel was separated from the reaction solution to obtain a silica gel having pyridyl boronic acid and sites promoting boronic ester formation and exchange on the surface.
 得られた分離剤担体は上記実施例1で用いたものと同様のカラムへの充填と、同一条件での分離を実施した。 The obtained separating agent carrier was packed into a column similar to that used in Example 1 above, and separated under the same conditions.
 実施例4のカラムを用いた場合、図4のように非糖化成分と糖化成分を分離することができ、しかもピーク形状は良好であった。
(実施例5)
 実施例1で作製した、表面にエポキシド部位を有するシリカゲルを使用した。7gのエポキシド部位を有するシリカゲル粒子と210mgの2-アミノピリジン-5-ボロン酸ピナコールエステルと21mgの1,6-ヘキサメチレンジアミン(Mw:116.20)とを40gのリン酸緩衝液(pH7.0)中、40℃で攪拌した。24時間経過後、反応溶液との分離を行い、表面にピリジルボロン酸とボロン酸エステル形成と交換の促進部位とを有するシリカゲルを得た。
When the column of Example 4 was used, the non-saccharified components and the saccharified components could be separated as shown in FIG. 4, and the peak shape was good.
(Example 5)
Silica gel having epoxide sites on the surface prepared in Example 1 was used. 7 g of silica gel particles having epoxide moieties, 210 mg of 2-aminopyridine-5-boronic acid pinacol ester and 21 mg of 1,6-hexamethylenediamine (Mw: 116.20) were added to 40 g of phosphate buffer (pH 7.0). 0) and stirred at 40°C. After 24 hours, the silica gel was separated from the reaction solution to obtain a silica gel having pyridyl boronic acid and sites promoting boronic ester formation and exchange on the surface.
 得られた分離剤担体は上記実施例1で用いたものと同様のカラムへの充填と、同一条件での分離を実施した。 The obtained separating agent carrier was packed into a column similar to that used in Example 1 above, and separated under the same conditions.
 実施例5のカラムを用いた場合、図5のように非糖化成分と糖化成分を分離することができ、しかもピーク形状は良好である。
(実施例6)
 糖化ヘモグロビンの定量性を調べるために、実施例2において作製したカラムを用いて、糖化ヘモグロビン量の異なる検体のHPLC測定を実施した。
When the column of Example 5 is used, the non-saccharified components and the saccharified components can be separated as shown in FIG. 5, and the peak shape is good.
(Example 6)
In order to examine the quantification of glycated hemoglobin, the column prepared in Example 2 was used to perform HPLC measurement of samples with different amounts of glycated hemoglobin.
 実施例1と同一条件を用いてHPLC測定をした。定量性評価に利用した5種のサンプルは、糖化ヘモグロビン量の異なる2種のサンプルを混合して作製した。すなわち、サンプル1と5とを、3:1(No.2),1:1(No.3),1:3(No.4)の比率で混合した。図6に示したように、5種のサンプルにおける糖化ヘモグロビン%の測定結果は、直線性を示していることから、本発明である液体クロマトグラフィー用分離剤担体は十分な定量性を示すことが明らかになった。
(実施例7)
 2-ヒドロキシエチルメタクリレート200g、エチレングリコールジメタクリレート30g、モノクロロベンゼン700g及び5gの重合開始剤V65(富士フィルム和光純薬製)を混合した。3Lのセパラブルフラスコに2%濃度でポリビニルアルコールを溶解し、60度に温調した。モノマー混合液をセパラブルフラスコに投入し、攪拌しながら6時間重合した。得られた反応液をガラスフィルターでろ過し、温水、アセトンの順で洗浄し、さらに篩を用いて40から100μmの粒子径に分級し、水酸基を有する架橋ポリマー粒子を得た。500mLセパラブルフラスコに得られた水酸基を有する架橋ポリマー粒子200g(湿潤重量)を水300gに分散し、さらにエピクロロヒドリン50gを加え40度に加熱した、48%水酸化ナトリウム40gを徐々に加え、エポキシ基を導入した。
HPLC measurement was performed using the same conditions as in Example 1. The five samples used for quantitative evaluation were prepared by mixing two samples with different amounts of glycated hemoglobin. That is, samples 1 and 5 were mixed at a ratio of 3:1 (No. 2), 1:1 (No. 3) and 1:3 (No. 4). As shown in FIG. 6, the measurement results of glycated hemoglobin % in five kinds of samples show linearity, so that the separating agent carrier for liquid chromatography of the present invention exhibits sufficient quantification. It was revealed.
(Example 7)
200 g of 2-hydroxyethyl methacrylate, 30 g of ethylene glycol dimethacrylate, 700 g of monochlorobenzene and 5 g of polymerization initiator V65 (manufactured by Fujifilm Wako Pure Chemical Industries) were mixed. Polyvinyl alcohol was dissolved at a concentration of 2% in a 3 L separable flask, and the temperature was adjusted to 60°C. The monomer mixture was put into a separable flask and polymerized for 6 hours while stirring. The obtained reaction solution was filtered through a glass filter, washed with warm water and acetone in that order, and further classified into particle sizes of 40 to 100 μm using a sieve to obtain crosslinked polymer particles having hydroxyl groups. In a 500 mL separable flask, 200 g (wet weight) of the obtained crosslinked polymer particles having hydroxyl groups were dispersed in 300 g of water, 50 g of epichlorohydrin was added, and 40 g of 48% sodium hydroxide heated to 40° C. was gradually added. , introduced an epoxy group.
 得られた粒子を、水、アセトン、水の順で洗浄し、エポキシ化された架橋ポリマー粒子を得た。架橋ポリマー粒子25g(乾燥重量分)を225mLのイオン交換水に分散し、2-アミノピリジン-5-ボロン酸ピナコールエステル4.5gを加え溶解した。0.5M水酸化ナトリウム水溶液を25mL加え、70℃、2時間加熱した。反応液をガラスフィルターでろ過し、さらに3倍量の80%エタノール水溶液、3倍量のイオン交換水、3倍量の0.1M塩酸水溶液、3倍量のイオン交換水の順で洗浄し、基材に結合した水酸基を有する2-アミノピリジン-5-ボロン酸固定化粒子を得た。得られた粒子を内径7.5mm、カラム長さ7.5cmの空カラムに充填した。 The obtained particles were washed with water, acetone, and water in this order to obtain epoxidized crosslinked polymer particles. 25 g (dry weight) of crosslinked polymer particles were dispersed in 225 mL of deionized water, and 4.5 g of 2-aminopyridine-5-boronic acid pinacol ester was added and dissolved. 25 mL of 0.5 M sodium hydroxide aqueous solution was added, and the mixture was heated at 70° C. for 2 hours. The reaction solution was filtered through a glass filter, washed with 3 times the amount of 80% ethanol aqueous solution, 3 times the amount of deionized water, 3 times the amount of 0.1 M hydrochloric acid aqueous solution, and 3 times the amount of ion exchanged water in this order. 2-Aminopyridine-5-boronic acid immobilized particles having hydroxyl groups bound to the substrate were obtained. The obtained particles were packed into an empty column having an inner diameter of 7.5 mm and a column length of 7.5 cm.
 得られたカラムを用いて、以下の条件で粗精製RNAの精製を行った。
溶離液
A液:0.15M塩化ナトリウム、0.1Mリン酸緩衝液(pH6.0)
B液:0.1Mソルビトール、0.15M塩化ナトリウム、0.1Mリン酸緩衝液(pH6.0)
C液 20mMリン酸緩衝液(pH1.9)
Step gradient::溶離液A(0-16.6分)、溶離液B(16.6-33.1分)、溶離液C(33.1-49.7分)
流速:1.0mL/min
モニター波長:260nm
 試料である富士フィルム和光純薬社製 Ribonucleic acid from yeast(品番185-00202)を20g/L濃度となるように、溶離液Aで溶解し、20μLカラムに注入した。
Using the obtained column, crude RNA was purified under the following conditions.
Eluent A solution: 0.15 M sodium chloride, 0.1 M phosphate buffer (pH 6.0)
B solution: 0.1 M sorbitol, 0.15 M sodium chloride, 0.1 M phosphate buffer (pH 6.0)
Solution C 20 mM phosphate buffer (pH 1.9)
Step gradient:: eluent A (0-16.6 min), eluent B (16.6-33.1 min), eluent C (33.1-49.7 min)
Flow rate: 1.0 mL/min
Monitor wavelength: 260nm
A sample, Ribonucleic acid from yeast (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., product number 185-00202), was dissolved in eluent A to a concentration of 20 g/L, and injected into a 20 μL column.
 得られたクロマトグラム(図7)から、溶離液B通液による溶出分が確認され、酸性である溶離液Cでは溶出が確認されなかったことから、吸着にアルカリ性とする必要がなく中性で吸着され、さらに溶出には酸性とする必要がなく、温和な条件でRNAの精製が行えることがわかった。この分画の吸光度を測定したところ、A260/A280が精製前1.69であったものが、2.05となり高い純度で精製できることがわかった。また粗精製400μgから120μgのRNA成分が回収できた。
(実施例8)
 試料としてメルク社製DNA from Salmon testes D-1626を10g/Lとなるように溶離液Aで溶解した以外、実施例7と同様に溶出挙動を確認した。得られたクロマトグラム(図8)から、DNAはカラムに保持されず溶出されることが確認でき、DNA中に存在する不純物としてのRNAを簡易、効果的に除去できることがわかった。
(実施例9)
 試料としてメルク社製Blue Dextran D5751を50g/Lとなるように溶離液Aで溶解し、モニター波長を620nmとした以外、実施例7同様に溶出挙動を確認した。得られたクロマトグラム(図9)から、デキストランが中性で吸着され、溶出に酸性とする必要なく温和な条件で溶出できることがわかった。
From the obtained chromatogram (Fig. 7), elution by eluent B was confirmed, and elution was not confirmed with eluent C, which is acidic. It was found that the purification of RNA can be carried out under mild conditions without the need of acidity for elution, and adsorption. When the absorbance of this fraction was measured, it was found that the A260/A280, which was 1.69 before purification, became 2.05, indicating that the purification can be performed with high purity. Also, 120 μg of RNA component was recovered from 400 μg of crude purification.
(Example 8)
The elution behavior was confirmed in the same manner as in Example 7, except that DNA from Salmon tests D-1626 manufactured by Merck Co., Ltd. was dissolved as a sample with the eluent A to a concentration of 10 g/L. From the obtained chromatogram (Fig. 8), it was confirmed that the DNA was eluted without being retained on the column, and it was found that RNA as an impurity present in the DNA could be easily and effectively removed.
(Example 9)
As a sample, Blue Dextran D5751 manufactured by Merck Co. was dissolved in eluent A to a concentration of 50 g/L, and the elution behavior was confirmed in the same manner as in Example 7 except that the monitor wavelength was set to 620 nm. From the resulting chromatogram (Fig. 9), it was found that dextran was neutrally adsorbed and could be eluted under mild conditions without the need for acidity for elution.
 (比較例1)
 比較用の既存分離剤担体を使用したカラムとして、フェニルボロン酸誘導体が担持されている東ソー株式会社製のBoronate-5PWを上記実施例1で用いたものと同様のカラムへの充填と、同一条件での分離を実施した。
(Comparative example 1)
As a column using an existing separating agent carrier for comparison, Boronate-5PW manufactured by Tosoh Corporation carrying a phenylboronic acid derivative was packed into a column similar to that used in Example 1 above, and under the same conditions. separation was performed.
 比較例1のカラムを用いた場合、図10のクロマトグラムのように非糖化成分は溶離液A液通液時に非特異吸着しているため溶出されず、溶離液B液通液時に糖化成分とともに溶出される。
(比較例2)
 実施例1で作製した、表面にエポキシド部位を有するシリカゲルを使用した。エポキシド部位を有する10gのシリカゲル粒子と400mgの2-アミノフェニル-4-ボロン酸とを40gのリン酸緩衝液(pH7.0)中、40℃で攪拌した。24時間経過後、反応溶液との分離を行い、表面にフェニルボロン酸を有するシリカゲルを得た。
When the column of Comparative Example 1 was used, as shown in the chromatogram in FIG. 10, the non-saccharified components were not eluted because they were non-specifically adsorbed when the eluent A was passed through, and were not eluted together with the saccharified components when the eluent B was passed. eluted.
(Comparative example 2)
Silica gel having epoxide sites on the surface prepared in Example 1 was used. 10 g of silica gel particles having epoxide moieties and 400 mg of 2-aminophenyl-4-boronic acid were stirred in 40 g of phosphate buffer (pH 7.0) at 40°C. After 24 hours, separation from the reaction solution was performed to obtain silica gel having phenylboronic acid on its surface.
 得られた分離剤担体は上記実施例1で用いたものと同様のカラムへの充填と、同一条件での分離を実施した。 The obtained separating agent carrier was packed into a column similar to that used in Example 1 above, and separated under the same conditions.
 図11のように比較例2のカラムを用いた場合にも、比較例1と同様に、非糖化成分は溶離液A液通液時に非特異吸着しているため溶出されず、溶離液B液通液時に糖化成分とともに溶出された。
(比較例3)
 実施例1で作製した、表面にエポキシド部位を有するシリカゲルを使用した。エポキシド部位を有する10gのシリカゲル粒子と400mgの2-アミノピリジン-5-ボロン酸ピナコールエステルとを40gのリン酸緩衝液(pH7.0)中、40℃で攪拌した。24時間経過後、反応溶液との分離を行い、表面にピリジルボロン酸を有するシリカゲルを得た。
Even when the column of Comparative Example 2 is used as shown in FIG. 11, as in Comparative Example 1, the non-saccharified components are not eluted because they are non-specifically adsorbed when the eluent A is passed through, and the eluent B is not eluted. It was eluted together with the saccharified component during passage.
(Comparative Example 3)
Silica gel having epoxide sites on the surface prepared in Example 1 was used. 10 g of silica gel particles having epoxide moieties and 400 mg of 2-aminopyridine-5-boronic acid pinacol ester were stirred in 40 g of phosphate buffer (pH 7.0) at 40°C. After 24 hours, separation from the reaction solution was performed to obtain silica gel having pyridylboronic acid on its surface.
 得られた分離剤担体は上記実施例1で用いたものと同様のカラムへの充填と、同一条件での分離を実施した。 The obtained separating agent carrier was packed into a column similar to that used in Example 1 above, and separated under the same conditions.
 比較例3のカラムを用いた場合、図12のように非糖化成分と糖化成分を分離できるものの、糖化成分のピークがブロードした。
(比較例4)
 比較例3で作製したゲルを充填したカラムを用いて、実施例1よりもpHの高いA液を用いてHPLC測定をした。
溶離液
A液:100mMリン酸緩衝液(pH6.8)
B液:100mMリン酸、100mM d-ソルビトール混合溶液(pH6.5)
 溶離液以外は実施例1と同一条件での分離を実施した。
When the column of Comparative Example 3 was used, the non-saccharified components and the saccharified components could be separated as shown in FIG. 12, but the peak of the saccharified components was broad.
(Comparative Example 4)
Using the gel-filled column produced in Comparative Example 3, HPLC measurement was performed using liquid A having a pH higher than that of Example 1.
Eluent A solution: 100 mM phosphate buffer (pH 6.8)
B solution: 100 mM phosphoric acid, 100 mM d-sorbitol mixed solution (pH 6.5)
Separation was carried out under the same conditions as in Example 1 except for the eluent.
 図13のように、溶離液のpHを高くした場合には、糖化ヘモグロビンがほとんど保持せずに、非糖化ヘモグロビンピークとともに溶出された。本結果より、比較例3で作製したゲルと糖化ヘモグロビンとのボロン酸エステル結合における比較例3の溶離液のpHは十分高く、実施例1から3において導入した配位性官能基がボロン酸エステル形成の最適pHを下げているわけではないことがわかる。 As shown in FIG. 13, when the pH of the eluent was increased, almost no glycated hemoglobin was retained and eluted together with the non-glycated hemoglobin peak. From this result, the pH of the eluent of Comparative Example 3 in the boronic ester bond between the gel prepared in Comparative Example 3 and glycated hemoglobin was sufficiently high, and the coordinating functional group introduced in Examples 1 to 3 was boronic ester. It can be seen that the optimum pH for formation is not lowered.

Claims (16)

  1.  (1)下記一般式(II)で示されるピリジルボロン酸誘導体を含む官能基:
    Figure JPOXMLDOC01-appb-C000001
     [式(II)中、
      Xは、-NH-、-O-、-CH(OH)-NH-、又は-CH(OH)-O-であり、
      RとR’はそれぞれ独立に水素原子、アルキル基、又はボロン酸の保護基であり、RとR’は一体となって環を形成してもよく、
      *は、粒子との結合部位を示す。];及び
     (2)下記一般式(III)に示される官能基:
    Figure JPOXMLDOC01-appb-C000002
    [式(III)中、
     X’は、-NH-、-O-、-CH(OH)-NH-、-CH(OH)-O-又は-CH(OH)-であり、
     Aは、炭素数1~10のアルキル基又はポリ(エチレンオキシ)エチル基であって、X”においてアミノ基もしくは水酸基で置換されており、
     *は、粒子の結合部位を示す。]
    とが、
    シリカゲルもしくは架橋ポリマーの粒子の表面に共有結合していることを特徴とする液体クロマトグラフィー用分離剤担体。
    (1) a functional group containing a pyridylboronic acid derivative represented by the following general formula (II):
    Figure JPOXMLDOC01-appb-C000001
    [in the formula (II),
    X is -NH-, -O-, -CH(OH)-NH-, or -CH(OH)-O-,
    R and R' are each independently a hydrogen atom, an alkyl group, or a protective group for boronic acid, and R and R' may be combined to form a ring;
    * indicates binding sites with particles. ]; and (2) a functional group represented by the following general formula (III):
    Figure JPOXMLDOC01-appb-C000002
    [in the formula (III),
    X' is -NH-, -O-, -CH(OH)-NH-, -CH(OH)-O- or -CH(OH)-,
    A is an alkyl group having 1 to 10 carbon atoms or a poly(ethyleneoxy)ethyl group, and X″ is substituted with an amino group or a hydroxyl group,
    * indicates the binding site of the particle. ]
    and
    A separating agent carrier for liquid chromatography, which is covalently bonded to the surface of silica gel or crosslinked polymer particles.
  2.  前記架橋ポリマーが、架橋多糖である請求項1に記載の液体クロマトグラフィー用分離剤担体。 The separating agent carrier for liquid chromatography according to claim 1, wherein the crosslinked polymer is a crosslinked polysaccharide.
  3.  前記架橋ポリマーが、水酸基又はアミノ基を側鎖に有する(メタ)アクリル酸エステル、水酸基又はアミノ基を側鎖に有する(メタ)アクリルアミド、ビニルピリジン、及びビニルイミダゾールからなる群より選ばれる、少なくとも一種以上のモノマーと多官能不飽和モノマーとの共重合ポリマーで有る請求項1又は2に記載の液体クロマトグラフィー用分離剤担体。 The crosslinked polymer is at least one selected from the group consisting of a (meth)acrylic acid ester having a hydroxyl group or an amino group in a side chain, a (meth)acrylamide having a hydroxyl group or an amino group in a side chain, vinylpyridine, and vinylimidazole. 3. The separating agent carrier for liquid chromatography according to claim 1, which is a copolymer of the above monomers and a polyfunctional unsaturated monomer.
  4.  前記粒子の平均粒子径が1~200μmの球状粒子である請求項1~3のいずれか1項に記載の液体クロマトグラフィー用分離剤担体。 The separating agent carrier for liquid chromatography according to any one of claims 1 to 3, wherein the particles are spherical particles having an average particle diameter of 1 to 200 µm.
  5.  前記粒子が平均10から500nmの大きさの細孔を有する多孔質粒子である請求項4に記載の液体クロマトグラフィー用分離剤担体。 The separating agent carrier for liquid chromatography according to claim 4, wherein said particles are porous particles having pores with an average size of 10 to 500 nm.
  6.  請求項1~5のいずれか1項に記載の液体クロマトグラフィー用分離剤担体の製造方法であって、
     連結用の官能基を表面に有するシリカゲルもしくは架橋ポリマーの粒子に、前記(1)の官能基を導入するための第1の表面修飾剤と、前記(2)の官能基を導入するための第2の表面修飾剤とを同時又は別々に反応させ、請求項1~5のいずれか1項に記載の液体クロマトグラフィー用分離剤担体を得ること
    を含む、方法。
    A method for producing a separating agent carrier for liquid chromatography according to any one of claims 1 to 5,
    A first surface modifier for introducing the functional group of (1) and a second surface modifier for introducing the functional group of (2) into the silica gel or crosslinked polymer particles having a functional group for linking on the surface. A method comprising reacting two surface modifiers simultaneously or separately to obtain the separating agent carrier for liquid chromatography according to any one of claims 1 to 5.
  7.  前記第1の表面修飾剤に対し、前記第2の表面修飾剤が1~200 mol%の量で反応させることを特徴とする、請求項6に記載の方法。 The method according to claim 6, wherein the second surface modifier is reacted in an amount of 1 to 200 mol% with respect to the first surface modifier.
  8.  前記連結用の官能基が、エポキシ基、アミノ基、水酸基、カルボキシ基、又はホルミル基である、請求項6又は7に記載の方法。 The method according to claim 6 or 7, wherein the linking functional group is an epoxy group, an amino group, a hydroxyl group, a carboxy group, or a formyl group.
  9.  前記連結用の官能基が、エポキシ基である、請求項6又は7に記載の方法。 The method according to claim 6 or 7, wherein the linking functional group is an epoxy group.
  10.  請求項6~9のいずれか1項に記載の方法により得られる液体クロマトグラフィー用分離剤担体。 A separating agent carrier for liquid chromatography obtained by the method according to any one of claims 6 to 9.
  11.  請求項1から5及び10のいずれか1項に記載の液体クロマトグラフィー用分離剤担体を充填した液体クロマトグラフィー用カラム。 A column for liquid chromatography packed with the separating agent carrier for liquid chromatography according to any one of claims 1 to 5 and 10.
  12.  請求項11に記載の液体クロマトグラフィー用カラムを用いて、cis-ジオール構造を有する生体高分子を含む試料を分析する測定方法。 A measurement method for analyzing a sample containing a biopolymer having a cis-diol structure using the liquid chromatography column according to claim 11.
  13.  前記cis-ジオール構造を有する生体高分子が、糖化たんぱく質、リボ核酸又は多糖類である、請求項12に記載の測定方法。 The measurement method according to claim 12, wherein the biopolymer having a cis-diol structure is glycated protein, ribonucleic acid or polysaccharide.
  14.  前記糖化たんぱく質が糖化ヘモグロビンである請求項13に記載の測定方法。 The measurement method according to claim 13, wherein the glycated protein is glycated hemoglobin.
  15.  請求項11に記載の液体クロマトグラフィー用カラムを用いて、リボ核酸を吸着及び/又は精製する方法。 A method for adsorbing and/or purifying ribonucleic acid using the liquid chromatography column according to claim 11.
  16.  請求項11に記載の液体クロマトグラフィー用カラムを用いてデオキシリボ核酸及びリボ核酸を含む試料中のリボ核酸を分離及び/又は除去する方法。 A method for separating and/or removing ribonucleic acid in a sample containing deoxyribonucleic acid and ribonucleic acid using the column for liquid chromatography according to claim 11.
PCT/JP2022/021144 2021-05-21 2022-05-23 Separating agent carrier for boronate affinity chromatography, column, and measurement method employing same WO2022244890A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023522748A JPWO2022244890A1 (en) 2021-05-21 2022-05-23

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-085858 2021-05-21
JP2021085858 2021-05-21
JP2021116018 2021-07-13
JP2021-116018 2021-07-13

Publications (1)

Publication Number Publication Date
WO2022244890A1 true WO2022244890A1 (en) 2022-11-24

Family

ID=84141743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021144 WO2022244890A1 (en) 2021-05-21 2022-05-23 Separating agent carrier for boronate affinity chromatography, column, and measurement method employing same

Country Status (2)

Country Link
JP (1) JPWO2022244890A1 (en)
WO (1) WO2022244890A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05310844A (en) * 1992-05-08 1993-11-22 Nippon Oil & Fats Co Ltd Polymer containing phenylboronic group
JP2002139481A (en) * 2000-11-02 2002-05-17 Tosoh Corp Glycohemoglobin measuring device
CN1939568A (en) * 2005-09-28 2007-04-04 中国科学院大连化学物理研究所 Nitro-benzene boric-acid affinity chromatographic pre-column, its production and use
JP2018145115A (en) * 2017-03-02 2018-09-20 国立大学法人 東京大学 Polymer composite

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05310844A (en) * 1992-05-08 1993-11-22 Nippon Oil & Fats Co Ltd Polymer containing phenylboronic group
JP2002139481A (en) * 2000-11-02 2002-05-17 Tosoh Corp Glycohemoglobin measuring device
CN1939568A (en) * 2005-09-28 2007-04-04 中国科学院大连化学物理研究所 Nitro-benzene boric-acid affinity chromatographic pre-column, its production and use
JP2018145115A (en) * 2017-03-02 2018-09-20 国立大学法人 東京大学 Polymer composite

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HENGYE LI; ZHEN LIU;: "Recent advances in monolithic column-based boronate-affinity chromatography", TRAC TRENDS IN ANALYTICAL CHEMISTRY, ELSEVIER, AMSTERDAM, NL, vol. 37, AMSTERDAM, NL , pages 148 - 161, XP028398683, ISSN: 0165-9936, DOI: 10.1016/j.trac.2012.03.010 *
LI DAOJIN, DONG SIHAN: "6-Aminopyridine-3-boronic acid functionalized magnetic nanoparticles for highly efficient enrichment of cis -diol-containing biomolecules", ANALYTICAL METHODS, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 13, no. 20, 27 May 2021 (2021-05-27), GB , pages 2331 - 2337, XP093006179, ISSN: 1759-9660, DOI: 10.1039/D1AY00414J *
LI DAOJIN; LI QIANJIN; WANG SHUANGSHOU; YE JIN; NIE HONGYUAN; LIU ZHEN: "Pyridinylboronic acid-functionalized organic–silica hybrid monolithic capillary for the selective enrichment and separation ofcis-diol-containing biomolecules at acidi", JOURNAL OF CHROMATOGRAPHY A, ELSEVIER, AMSTERDAM, NL, vol. 1339, 6 March 2014 (2014-03-06), AMSTERDAM, NL, pages 103 - 109, XP028842505, ISSN: 0021-9673, DOI: 10.1016/j.chroma.2014.02.084 *

Also Published As

Publication number Publication date
JPWO2022244890A1 (en) 2022-11-24

Similar Documents

Publication Publication Date Title
Liu et al. A review on the use of ionic liquids in preparation of molecularly imprinted polymers for applications in solid-phase extraction
Chen et al. Recent advances of boronate affinity materials in sample preparation
Jiang et al. Covalently bonded polymeric zwitterionic stationary phase for simultaneous separation of inorganic cations and anions
Suksrichavalit et al. “Clickable” affinity ligands for effective separation of glycoproteins
US8999157B2 (en) Method for preparation of a biomolecule adsorbent
US20120125843A1 (en) Methods and materials for performing hydrophobic interaction chromatography
EP1179057A2 (en) pH DEPENDENT ION EXCHANGE MATRIX AND METHOD OF USE IN THE ISOLATION OF NUCLEIC ACIDS
JP3527239B2 (en) Selective affinity materials, their production by monocular imprinting, and use of said materials
CA3109058C (en) Benzeneboronic acid solid-phase extraction column packing and preparation method thereof
Mohammad et al. Chiral‐recognition chromatography of β‐blockers on continuous polymer beds with immobilized cellulase as enantioselective protein
WO2021098075A1 (en) Phenylboronic acid solid phase extraction column filling and preparation method therefor
WO2022244890A1 (en) Separating agent carrier for boronate affinity chromatography, column, and measurement method employing same
US20220258130A1 (en) Chromatography Media
AU2001260852B2 (en) Separation of glyco-containing entities
JP3848459B2 (en) Method for measuring hemoglobins
JPH0337976B2 (en)
Malik et al. Development of bovine serum albumin-bonded silica as a chiral stationary phase and its application in quantitative direct enantiomeric resolution
Rosenfeld et al. Comparison of modified supports on the base of glycoprotein interaction studies and of adsorption investigations
CN100343390C (en) Isolation of antisense oligonucleotides
EP2031394A1 (en) Method for purifying bioactive substances
CN107674112A (en) A kind of affinity chromatography medium using heparin as part
CN110530997B (en) Method for detecting 9- (2-hydroxypropyl) adenine enantiomer
Polyanina et al. Molecularly imprinted inorganic supports in high-performance liquid chromatography and solid-phase extraction
JP2003035704A (en) Separating agent for nucleic acid
Amin et al. Immobilized metal affinity-silica based support for the solid phase extraction of antimicrobials from water

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22804797

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023522748

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22804797

Country of ref document: EP

Kind code of ref document: A1