WO2022244885A1 - Coated active material for energy storage device, energy storage device, method for manufacturing coated active material for energy storage device, and coating material - Google Patents

Coated active material for energy storage device, energy storage device, method for manufacturing coated active material for energy storage device, and coating material Download PDF

Info

Publication number
WO2022244885A1
WO2022244885A1 PCT/JP2022/021028 JP2022021028W WO2022244885A1 WO 2022244885 A1 WO2022244885 A1 WO 2022244885A1 JP 2022021028 W JP2022021028 W JP 2022021028W WO 2022244885 A1 WO2022244885 A1 WO 2022244885A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
energy storage
storage device
coated active
coating
Prior art date
Application number
PCT/JP2022/021028
Other languages
French (fr)
Japanese (ja)
Inventor
学 平澤
雅規 北川
明博 織田
裕司 小川
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Priority to JP2023522747A priority Critical patent/JPWO2022244885A1/ja
Publication of WO2022244885A1 publication Critical patent/WO2022244885A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to an active material for an energy storage device, an energy storage device, a method for producing a coated active material for an energy storage device, and a coating material.
  • Energy storage devices are widely used in which charge and discharge are performed by moving alkali metal ions such as lithium ions between the positive and negative electrodes.
  • the positive and negative electrodes of such energy storage devices generally contain particles of a material (active material) capable of absorbing and releasing alkali metal ions.
  • an object of the present disclosure is to provide a coated active material for an energy storage device, an energy storage device, a method for producing the coated active material for an energy storage device, and a coating material that are excellent in initial characteristics.
  • Means for solving the above problems include the following embodiments.
  • a coated active material for an energy storage device comprising particles containing a substance capable of absorbing and releasing alkali metal ions, and a coating material containing cyclized polyacrylonitrile, and satisfying the following (1).
  • (1) The yellowness of the electrolytic solution in which the coated active material is immersed is 100 or less as defined in JIS K 7373:2006.
  • a coated active material for an energy storage device comprising particles containing a substance capable of absorbing and releasing alkali metal ions, and a coating material containing cyclized polyacrylonitrile, and satisfying the following (2).
  • the haze defined by JIS K 7136:2000 of the electrolytic solution in which the coated active material is immersed is 2.5% or less.
  • D50 volume average particle size
  • ⁇ 6> The coated active material for an energy storage device according to any one of ⁇ 1> to ⁇ 5>, wherein the coating material accounts for 0.1% by mass to 50% by mass of the entire coated active material. . ⁇ 7>
  • An energy storage device comprising the coated active material for an energy storage device according to any one of ⁇ 1> to ⁇ 7>.
  • ⁇ 9> The energy storage device according to ⁇ 8>, comprising an electrolytic solution, wherein the electrolytic solution contains an ionic liquid as a solvent.
  • ⁇ 10> The energy storage device according to ⁇ 8>, wherein the electrolytic solution has an electrolyte salt concentration of 3 mol/L or more.
  • a composition containing particles containing a substance capable of absorbing and releasing alkali metal ions and polyacrylonitrile is heat-treated in an atmosphere of 150° C. or more and less than 278° C. and an oxygen concentration of 5% to 30% by volume. and heat-treating the composition in an atmosphere of 278° C. to 600° C. and an oxygen concentration of 4 ppm to 100 ppm, in this order.
  • ⁇ 12> The method for producing a coated active material for an energy storage device according to ⁇ 11>, wherein each heat treatment is performed for 3 to 15 hours.
  • a coating material for coating active material particles for an energy storage device, which contains cyclized polyacrylonitrile, and the electrolytic solution in which the coating material is immersed has a yellowness specified in JIS K 7373:2006.
  • a coating material for coating active material particles for an energy storage device, which contains cyclized polyacrylonitrile, and the electrolytic solution in which the coating material is immersed has a haze of 0 as defined in JIS K 7136:2000. .3% or less of the coating.
  • a coated active material for an energy storage device an energy storage device, a method for producing the coated active material for an energy storage device, and a coating material that are excellent in initial characteristics.
  • FIG. 1 is a conceptual diagram showing an example of the configuration of a coated active material
  • FIG. 1 is a conceptual diagram showing an example of the configuration of a coated active material
  • FIG. 1 is a conceptual diagram showing an example of the configuration of a coated active material
  • FIG. 1 is a conceptual diagram showing an example of the configuration of a coated active material
  • FIG. 1 is a conceptual diagram showing an example of the configuration of a coated active material
  • the term "process” includes a process that is independent of other processes, and even if the purpose of the process is achieved even if it cannot be clearly distinguished from other processes.
  • the numerical range indicated using "-" includes the numerical values before and after "-" as the minimum and maximum values, respectively.
  • the upper limit or lower limit of one numerical range may be replaced with the upper or lower limit of another numerical range described step by step.
  • the upper or lower limits of the numerical ranges may be replaced with the values shown in the examples.
  • each component may contain multiple types of applicable substances.
  • the content rate or content of each component is the total content rate or content of the multiple types of substances present in the composition unless otherwise specified.
  • Particles corresponding to each component in the present disclosure may include a plurality of types.
  • the particle size of each component means a value for a mixture of the multiple types of particles present in the composition, unless otherwise specified.
  • the term "layer" includes not only the case where the layer is formed in the entire region when observing the region where the layer exists, but also the case where it is formed only in part of the region. included.
  • the coated active material for an energy storage device of the present disclosure includes particles containing a substance capable of absorbing and releasing alkali metal ions (hereinafter also referred to as active material particles) and a coating material containing cyclized polyacrylonitrile, and is described below.
  • a coated active material for an energy storage device (hereinafter also referred to as a coated active material) that satisfies either or both of (1) and (2).
  • the yellowness of the electrolytic solution in which the coated active material is immersed is 100 or less as defined in JIS K 7373:2006.
  • the haze defined by JIS K 7136:2000 of the electrolytic solution in which the coated active material is immersed is 2.5% or less.
  • an energy storage device manufactured using a coated active material whose coating material contains cyclized polyacrylonitrile and satisfies the conditions (1) or (2) exhibits excellent initial characteristics. I understood it.
  • the reason is considered as follows, for example.
  • components contained in the coating material for example, low-molecular-weight compounds generated in the cyclization process of polyacrylonitrile
  • the eluted components are dissolved.
  • Decomposition of the electrolyte salt due to the reaction, etc. may occur. These phenomena are considered to be factors affecting the color or transparency of the electrolyte.
  • the coated active material satisfying the conditions (1) or (2) has a low degree of yellowness or haze of the electrolytic solution because the amount of components eluted into the electrolytic solution is small. That is, it is thought that the coated active material satisfying the condition (1) or (2) is excellent in durability against the electrolytic solution, and thus excellent initial characteristics are realized.
  • the yellowness of the electrolytic solution in which the coated active material is immersed is a value specified in JIS K 7373: 2006, and the larger the value of the yellowness, the more the hue of the measurement target is colorless or white. Indicates that it is far away (yellowish).
  • the yellowness is the tristimulus value (X, From the results of measuring Y and Z), it is obtained by the following formula.
  • 1M LiPF 6 was added to a solvent in which EC (ethylene carbonate), EMC (ethyl methyl carbonate) and DEC (diethyl carbonate) were mixed at a ratio of 1:1:1 (volume ratio). used in a dissolved form.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DEC diethyl carbonate
  • the electrolytic solution (25 ml) is placed in a PFA bottle with a diameter of 27.6 mm, and the coated active material is immersed in the electrolytic solution.
  • the amount of the coated active material is adjusted so that the mass of the coating material contained in the coated active material is 10 mg.
  • the coated active material immersed in the electrolyte is allowed to stand in a constant temperature bath at 50° C. for 24 hours. After that, the yellowness of the electrolytic solution is calculated by the method described above. Instead of the coated active material, only the coating material may be immersed in the electrolytic solution to measure the yellowness.
  • the preferred lower limit of the yellowness index is 0.
  • the haze (cloudiness value) of the electrolytic solution in which the coated active material is immersed is a value defined in JIS K 7136:2000, and the higher the haze value, the lower the transparency of the object to be measured.
  • haze is defined as the transmittance (total light transmittance: Tt) of light rays including all parallel components and diffuse components among the light rays that pass through the measurement object (electrolyte solution), and the total light transmittance excluding parallel components. It is obtained by the following formula from the diffused light transmittance (diffused transmittance: Td).
  • a haze meter Model: HZ-V3 manufactured by Suga Test Instruments Co., Ltd.
  • Haze (%) (Td/Tt) x 100
  • 1M LiPF 6 was added to a solvent in which EC (ethylene carbonate), EMC (ethyl methyl carbonate) and DEC (diethyl carbonate) were mixed at a ratio of 1:1:1 (volume ratio). used in a dissolved form.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DEC diethyl carbonate
  • the electrolytic solution (25 ml) is placed in a PFA bottle with a diameter of 27.6 mm, and the coated active material is immersed in the electrolytic solution.
  • the amount of electrode is adjusted so that the mass of the coating material contained in the coated active material is 10 mg.
  • the coated active material immersed in the electrolyte is allowed to stand in a constant temperature bath at 50° C. for 24 hours.
  • the haze of the electrolytic solution is calculated by the method described above. The haze may be measured by immersing only the coating material in the electrolytic solution instead of the coated active material.
  • the preferred lower limit of haze is 0%.
  • the coating material comprises cyclized polyacrylonitrile.
  • cyclized polyacrylonitrile means a material obtained by causing a cyclization reaction of nitrile groups contained in polyacrylonitrile.
  • Characterization of the above reaction can be done with infrared spectroscopy.
  • Infrared spectroscopy may be transmission or reflection.
  • a peak at 2939 cm ⁇ 1 for —CH 2 — before forming a double bond, and a peak at 806 cm ⁇ 1 for a —CH ⁇ C— group after forming a double bond by dehydrogenation can be confirmed.
  • the cyclized polyacrylonitrile can be said to have properties intermediate between those of carbon and polymers, and the greater the degree of ring closure of the nitrile groups, the more similar the properties of the cyclized polyacrylonitrile to those of carbon.
  • absorbance ratio A is also referred to as absorbance ratio A.
  • the absorbance ratio A is preferably 0.01 or more, more preferably 0.02 or more, and even more preferably 0.03 or more.
  • the absorbance ratio A is preferably 6 or less, more preferably 3 or less, and even more preferably 1 or less.
  • the absorbance ratio A is 6 or less, the structure of the coating material obtained by sufficiently ring-closing the nitrile groups becomes strong.
  • Cyclized polyacrylonitrile can be said to be a polymer imparted with electronic conductivity by a cyclization reaction.
  • this absorbance ratio is also referred to as absorbance ratio B.
  • the absorbance ratio B is preferably 0.01 or more, more preferably 0.02 or more, and even more preferably 0.03 or more. When the absorbance ratio B is 0.01 or more, the obtained coating material exhibits sufficient electronic conductivity. Although the upper limit of the absorbance ratio B is not particularly limited, it may be 1 or less, for example.
  • the cyclized polyacrylonitrile itself has various bonding species, so each peak tends to overlap with other peaks, so it is preferable to draw a baseline for calculation.
  • a method of drawing by connecting the tails of both ends of the target peak can be exemplified.
  • the absorbance ratio in infrared spectroscopy is a mixture of cyclized polyacrylonitrile and an active material (provided that the active material is a catalyst for the cyclization and decomposition reactions of polyacrylonitrile) even if the measurement target is only cyclized polyacrylonitrile. A similar tendency is confirmed even in the state of the electrode combined with the current collector. Therefore, the absorbance ratio may be calculated in the state where the object to be measured is a mixture of cyclized polyacrylonitrile and an active material or an electrode in combination with a current collector.
  • the cyclized polyacrylonitrile preferably contains an acridone structure.
  • the acridone structure is the ring structure shown below (the wavy line indicates the binding site) generated during the cyclization reaction of polyacrylonitrile.
  • the cyclized polyacrylonitrile containing the acridone structure can be obtained by performing a heat treatment that causes a cyclization reaction of the polyacrylonitrile in an oxygen-containing environment.
  • cyclized polyacrylonitrile has an acridone structure
  • pyrolysis GC/MS analysis Panolysis Gas Chromatography Mass Spectrometry
  • known techniques for X-ray photoelectron spectrum analysis The presence of the acridone structure can be confirmed by a fragment of mass 177 in pyrolysis GC/MS analysis and by a peak around 532 eV in X-ray photoelectron spectroscopy.
  • the molecular weight of the polyacrylonitrile to be the precursor of the cyclized polyacrylonitrile is not particularly limited, but the weight average molecular weight is preferably 5,000 to 3,000,000, more preferably 10,000 to 1,000,000, and 20,000 to 60,000. 10,000 is more preferable.
  • the weight average molecular weight of polyacrylonitrile is 5,000 or more, a good coating material can be obtained, and when the weight average molecular weight of polyacrylonitrile is 3,000,000 or less, the viscosity is low and mixing with the active material particles becomes easy.
  • the weight-average molecular weight of the polyacrylonitrile is 500 or more, the mass reduction due to the cyclization treatment is suppressed, and the residual amount of the cyclized polyacrylonitrile tends to increase.
  • the molecular weight distribution of the polyacrylonitrile that is the precursor of the cyclized polyacrylonitrile it is preferably 1 to 3, more preferably 1 to 2, and further preferably 1 to 1.5. preferable.
  • the molecular weight distribution of polyacrylonitrile is the value (Mw/Mn) obtained by dividing the weight average molecular weight (Mw) of polyacrylonitrile by the number average molecular weight (Mn).
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) of polyacrylonitrile in this disclosure are measured by Gel Permeation Chromatography.
  • Polyacrylonitrile may be a homopolymer of acrylonitrile or a copolymer of acrylonitrile and a polymerizable component other than acrylonitrile (hereinafter also referred to as an acrylonitrile copolymer).
  • a coated active material containing cyclized polyacrylonitrile, which is a cyclized acrylonitrile copolymer, as a coating material tends to exhibit excellent properties. The reason is considered as follows, for example.
  • the ring closure reaction between adjacent nitrile groups contained in polyacrylonitrile is an exothermic reaction. Since this exothermic reaction progresses abruptly at around 293°C, the temperature in the reaction system rises sharply at around 293°C. As a result, the formation and volatilization of low-molecular-weight by-products due to scission of the molecular chains of polyacrylonitrile rapidly proceed.
  • a copolymerization component is introduced into polyacrylonitrile, the amount of nitrile groups is relatively reduced and the ring closure reaction occurs at a lower temperature (for example, around 278° C.), suppressing rapid heat generation. As a result, the formation and volatilization of low-molecular-weight by-products are suppressed, and the residual amount of cyclized polyacrylonitrile increases.
  • the ring closure reaction of nitrile groups includes those that occur intramolecularly and those that occur intermolecularly.
  • the intramolecular ring-closure reaction of nitrile groups is relatively reduced, and the intermolecular ring-closure reaction of nitrile groups is relatively increased.
  • formation of a three-dimensional crosslinked structure of the cyclized polyacrylonitrile is promoted.
  • a copolymerization component having an ionic functional group when introduced into polyacrylonitrile, in addition to the radical polymerization reaction between adjacent nitrile groups, an ionic polymerization reaction also occurs between the ionic functional group and the nitrile group. resulting in binding of the molecular chains. Ionic polymerization reactions proceed at lower temperatures than radical polymerization reactions. As a result, the formation and volatilization of low-molecular-weight by-products are suppressed, and the residual amount of cyclized polyacrylonitrile increases.
  • the resulting coated active material has improved strength and exhibits excellent properties.
  • the polymerization components other than acrylonitrile that constitute the acrylonitrile copolymer are not particularly limited.
  • it may be selected from polymer components having at least one functional group selected from the group consisting of a sulfo group, a carboxy group, an amino group and an alkyl ester group.
  • a sulfo group in the present disclosure is a monovalent group represented by —SO 3 H.
  • the sulfo group may form a salt with an alkali metal such as sodium.
  • a carboxy group in the present disclosure is a monovalent group represented by —COOH.
  • an amino group is a monovalent group represented by —NR 1 R 2 , where R 1 and R 2 are each independently a hydrogen atom or a monovalent organic group.
  • an alkyl ester group is a monovalent group represented by -COOR, and R is an alkyl group.
  • the number of carbon atoms in the alkyl group is preferably 1-15, more preferably 1-5, even more preferably 1-3.
  • Polymerization components containing a sulfo group include allylsulfonic acid, methallylsulfonic acid, vinylbenzenesulfonic acid, and alkali metal salts (sodium salts, etc.) thereof.
  • Polymerization components containing a carboxy group include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, and alkali metal salts (sodium salts, etc.) thereof.
  • Polymerization components containing amino groups include acrylamide, methacrylamide, dimethylaminopropyl acrylamide, dimethylaminopropyl methacrylamide, and the like.
  • polymerizable components containing an alkyl ester group examples include methyl acrylate, ethyl acrylate, isopropyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, and n-methacrylate. butyl, n-hexyl methacrylate, cyclohexyl methacrylate, lauryl methacrylate and the like.
  • Polymerization components other than the above include vinyl acetate, styrene, vinylidene chloride, and vinyl chloride.
  • the acrylonitrile copolymer preferably contains an ionic group such as a sulfo group, a carboxyl group and an amino group, and may contain an anionic group such as a sulfo group and a carboxyl group. More preferably, it contains a sulfo group or a carboxy group.
  • An acrylonitrile copolymer containing an ionic group can be obtained by using a polymerization component containing an ionic group as a polymerization component other than acrylonitrile.
  • the ratio of the polymerized components other than acrylonitrile in the acrylonitrile copolymer to the total polymerized components is preferably 0.1% by mass or more, and 0.2% by mass or more. and more preferably 0.5% by mass or more.
  • the ratio of the polymer components other than acrylonitrile in the acrylonitrile copolymer to the total polymer components is preferably 20% by mass or less, and is 15% by mass or less. is more preferable, and 10% by mass or less is even more preferable.
  • the proportion of acrylonitrile in the total polymerization components is preferably 80% by mass or more, more preferably 85% by mass or more, and more preferably 90% by mass or more. preferable.
  • the electrodes of the present disclosure may include coating materials other than cyclized polyacrylonitrile as the coating material.
  • Coating materials other than cyclized polyacrylonitrile include polyacrylic acid, polyvinyl acetate, polystyrene, polyvinylidene chloride, polyvinyl chloride, and polymethacrylic acid.
  • the proportion of the cyclized polyacrylonitrile in the entire coating material is preferably 70% by mass to 100% by mass, more preferably 80% by mass to 100% by mass, and 90% by mass to 100% by mass. is more preferred.
  • the proportion of the coating material in the entire coated active material is preferably 0.1% by mass to 50% by mass, more preferably 1% by mass to 20% by mass. , and more preferably 5 to 10% by mass.
  • the ratio of the coating material is 0.1% by mass or more of the entire coated active material, a sufficient effect of improving the initial characteristics can be obtained.
  • the ratio of the coating material is 50% by mass or more of the entire coated active material, the capacity of the energy storage device is sufficiently secured.
  • the ratio of the coating material to the entire coated active material can be calculated from the change in mass before and after the heat treatment when the coated active material is heat-treated at a temperature at which the coating material thermally decomposes.
  • the coating material may contain a conductive aid.
  • conductive aids include carbon materials such as carbon black, carbon nanotubes, carbon nanofibers, fullerenes and carbon nanohorns, conductive oxides, and conductive nitrides.
  • the content is not particularly limited, and may be 1% by mass to 20% by mass of the entire coating material.
  • the active material particles contained in the coated active material of the present disclosure are not particularly limited as long as they contain a material (active material) that can occlude and release alkali metal ions.
  • Alkali metal ions include lithium ions, potassium ions, sodium ions, and the like. Among these, lithium ion is preferred.
  • the active material contained in the active material particles may be of one type or a combination of two or more types.
  • positive electrode active materials include lithium transition metal compounds such as lithium transition metal oxides and lithium transition metal phosphates.
  • Lithium transition metal oxides include compounds containing one or more of transition metals such as Mn, Ni, Co, etc., and some of the transition metals contained in these compounds, one or more of them or a lithium transition metal oxide substituted with a metal element (typical element) such as Mg or Al.
  • active materials for the negative electrode include carbon materials and active materials containing silicon atoms. Carbon materials include graphite, hard carbon, soft carbon, and the like. Examples of active materials containing silicon atoms include Si (metallic silicon) and silicon oxides represented by SiOx (0.8 ⁇ x ⁇ 1.5).
  • the silicon oxide may have a structure in which nano-silicon is dispersed in a silicon oxide matrix by a disproportionation reaction.
  • the active material containing silicon atoms may be doped with boron, phosphorus, or the like to make it a semiconductor.
  • the active material particles may be in a state in which silicon is present on the surfaces of the active material particles made of a carbon material.
  • a method for making silicon exist on the surface of the active material particles made of a carbon material a vapor deposition method, a plasma CVD (Chemical Vapor Deposition) method, and the like can be mentioned.
  • the plasma CVD method may be performed by decomposing raw materials such as silane and chlorosilane.
  • Active materials containing silicon atoms have a large theoretical capacity and are expected to contribute to increasing the capacity of energy storage devices.
  • active materials containing silicon atoms themselves are not electronically conductive.
  • the cyclized polyacrylonitrile used as a coating material for the coated active material of the present disclosure has both sufficient flexibility and electronic conductivity to accommodate changes in volume of the active material. Therefore, it can be particularly suitably used as a coating material for active material particles containing silicon atoms.
  • the active material particles may be further coated with a material other than cyclized polyacrylonitrile.
  • a coating containing the cyclized polyacrylonitrile is located between the active material particles and the coating made of the material other than the cyclized polyacrylonitrile, it is located above the coating made of the material other than the cyclized polyacrylonitrile.
  • a coating containing a cyclized polyacrylonitrile and a coating made of a material other than the cyclized polyacrylonitrile may be mixed.
  • the active material particles may have, for example, a coating (carbon coating) made of a carbon material.
  • the surface of the active material particles By coating the surface of the active material particles with a carbon material, for example, electronic conductivity can be imparted to active material particles that do not have electrical conductivity.
  • electron conductivity can be imparted to the silicon-containing active material particles by coating the silicon-containing active material particles with a carbon material.
  • the material of the carbon material is not particularly limited, and may be graphite or amorphous carbon.
  • the carbon material may be obtained by carbonizing an organic compound. Examples of organic compounds include tar, pitch, and organic polymer compounds. Examples of organic polymer compounds include polyacrylonitrile, polyvinyl chloride, polyvinyl alcohol, polyvinyl acetate, polyvinyl butyral, starch, and cellulose.
  • the shape of the coated active material is not particularly limited.
  • it may be spherical particles, wire-like particles, scale-like particles, massive particles, composite particles composed of a plurality of particles, or the like.
  • the volume average particle diameter (D50) of the coated active material (or active material particles) is preferably 1 ⁇ m to 50 ⁇ m, more preferably 3 ⁇ m to 30 ⁇ m (except for wire-shaped particles).
  • D50 volume average particle diameter of the coated active material (or active material particles)
  • the volume-average particle size of the coated active material (or active material particles) is 50 ⁇ m or less, the electrode can be easily formed into a thin film, and the input/output characteristics of the energy storage device can be easily improved.
  • the volume average particle size of the coated active material is measured by a laser scattering diffraction method.
  • the volume-average particle diameter is defined as the particle diameter when the accumulation from the small diameter side is 50% in the volume-based particle diameter distribution obtained by the laser scattering diffraction method.
  • the volume average particle size is the volume average particle size of the secondary particles.
  • secondary particle means a particle that is the smallest unit of normal behavior formed by agglomeration of a plurality of primary particles, and the term “primary particle” means that it can exist alone. It means the smallest unit particle that can be made.
  • the particle size of the primary particles that make up the secondary particles is not particularly limited.
  • the average primary particle size is preferably 10 nm to 50 ⁇ m. More preferably, it is 30 nm to 10 ⁇ m.
  • the average primary particle size of the coated active material is 10 nm or more, the influence of the natural oxide film formed on the surface can be suppressed.
  • the average primary particle size of the coated active material is 50 ⁇ m or less, deterioration due to charging and discharging is suppressed.
  • the primary particle diameter of the coated active material means the major diameter of the primary particles observed with a scanning electron microscope. Specifically, when the primary particles are spherical, it means the maximum diameter, and when the primary particles are tabular, it means the maximum diameter or maximum diagonal length in the projected image of the particles observed from the thickness direction. "Average primary particle diameter” is the arithmetic mean value of the measured values of the major diameters of 300 or more primary particles observed with a scanning electron microscope.
  • the coated active material (or active material particles) is wire-shaped
  • its length For example, it is preferably 10 nm to 10 ⁇ m.
  • the length of the wire-shaped coated active material (or active material particles) is 10 nm or more, the handleability is improved, and when the length is 10 ⁇ m or less, the stress during expansion of the coated active material tends to be easily dispersed.
  • the diameter of the wire-like particles For example, it is preferably 1 nm to 5 ⁇ m.
  • the wire-shaped coated active material may contain a catalyst component for forming the active material into a wire-like shape.
  • a specific example of the wire-shaped coated active material (or active material particles) is a coated active material (or active material particles) containing metallic silicon.
  • the method for adjusting the particle size of the coated active material (or active material particles) is not particularly limited. Examples thereof include a method of selecting raw materials, a method of adjusting pulverization conditions, a vapor deposition method, a plasma method, and a method of surface treatment with silane or the like.
  • the BET specific surface area of the coated active material is preferably 0.5 m 2 /g to 100 m 2 /g, more preferably 1 m 2 /g to 30 m 2 /g.
  • the BET specific surface area of the coated active material is preferably 0.5 m 2 /g to 100 m 2 /g, more preferably 1 m 2 /g to 30 m 2 /g.
  • the BET specific surface area of the coated active material (or active material particles) is 0.5 m 2 /g or more, sufficient discharge capacity can be easily obtained.
  • the BET specific surface area of the coated active material (or active material particles) is 100 m 2 /g or less, the handleability during electrode production is excellent.
  • the BET specific surface area (or active material particles) of the coated active material can be calculated from the nitrogen adsorption isotherm at -196°C.
  • the coated active material of the present disclosure may be used in combination with another active material.
  • the active material particles in the coated active material of the present disclosure contain silicon atoms
  • the coated active material of the present disclosure and active material particles made of a carbon material may be used together.
  • the coated active material 10 shown in FIG. 1 is in a state in which a coating 2 containing cyclized polyacrylonitrile is formed on the surface of the active material particle 1 (a natural oxide film formed on the surface of the active material particle is omitted).
  • the coated active material 11 shown in FIG. 2 is a modified example of the coated active material 10 shown in FIG. is formed.
  • a coated active material 12 shown in FIG. 3 is a modification of the coated active material 10 shown in FIG. 1, and is in a state in which a coating 3 made of a carbon material or the like is formed on a coating 2 containing cyclized polyacrylonitrile.
  • coated active material 13 shown in FIG. 4 It is a modification of the coated active material 13 shown in FIG. 4 and the coated active material 10 shown in FIG.
  • the coated active material 14 shown in FIG. 5 is a modified example of the coated active material 10 shown in FIG. 1, and the active material particles 1 are in the state of secondary particles composed of a plurality of primary particles.
  • An energy storage device electrode (hereinafter also referred to as an electrode) of the present disclosure includes the above-described coated active material of the present disclosure and a binder.
  • the type of binder is not particularly limited, and can be selected from polyacrylonitrile, carboxymethylcellulose (CMC), CMC/styrene-butadiene rubber (SBR), polyvinylidene fluoride, and the like.
  • CMC carboxymethylcellulose
  • SBR styrene-butadiene rubber
  • polyvinylidene fluoride and the like.
  • the polyacrylonitrile may be in a cyclized state.
  • the electrode may contain only the coated active material of the present disclosure as an active material, or may contain the coated active material of the present disclosure and an active material other than the coated active material of the present disclosure as active materials.
  • the type of active material other than the coated active material of the present disclosure is not particularly limited, and may be selected from the active material particles described above.
  • the content of the active material particles contained in the electrode is preferably 50% by mass or more of the entire electrode (excluding the current collector), and is 55% by mass or more. is more preferable, and 60% by mass or more is even more preferable.
  • the content rate of the active material contained in the electrode is the total electrode (excluding the current collector) is preferably 95% by mass or less, more preferably 90% by mass or less, and even more preferably 80% by mass or less.
  • the electrodes may contain a conductive aid.
  • conductive aids include carbon materials such as carbon black, carbon nanotubes, carbon nanofibers, fullerenes and carbon nanohorns, conductive oxides, and conductive nitrides.
  • the content is not particularly limited, and may be 1% by mass to 20% by mass of the entire electrode (excluding the current collector).
  • the electrode may be in a state in which a layer containing an active material, a binder, and optionally a conductive aid is formed on a current collector.
  • the type of current collector is not particularly limited, and metals or alloys such as aluminum, copper, nickel, titanium, and stainless steel can be used.
  • the current collector may be carbon-coated, surface-roughened, or the like.
  • the energy storage device of the present disclosure comprises the electrodes of the present disclosure as described above.
  • the type of energy storage device is not particularly limited. Examples thereof include devices such as lithium-ion batteries, sodium-ion batteries, and potassium-ion batteries, which utilize movement of alkali metal ions between electrodes for charging and discharging.
  • the energy storage device of the present disclosure is composed of a positive electrode, a negative electrode, an electrolytic solution, and the like.
  • the energy storage device electrode described above may be a positive electrode or a negative electrode, but is preferably a negative electrode.
  • organic solvents, ionic liquids, etc., in which electrolytes are dissolved can be used.
  • the ionic liquid include ionic liquids that are liquid at a temperature of less than 170° C., solvated ionic liquids, and the like.
  • electrolyte salts include LiPF 6 , LiClO 4 , LiBF 4 , LiClF 4 , LiAsF 6 , LiSbF 6 , LiAlO 4 , LiAlCl 4 , LiN(FSO 2 ) 2 , LiN(CF 3 SO 2 ) 2 , LiN( Lithium salts that generate poorly solvated anions such as C 2 F 5 SO 2 ) 2 , LiC(CF 3 SO 2 ) 3 , LiCl, and LiI are included. Only one electrolyte salt may be used, or two or more electrolyte salts may be used.
  • the electrolyte salt concentration in the electrolytic solution is, for example, preferably 0.3 mol or more, more preferably 0.5 mol or more, and even more preferably 0.8 mol or more per 1 L of the electrolytic solution.
  • the electrolyte salt concentration in the electrolytic solution is, for example, preferably 5 mol or less, more preferably 3 mol or less, and even more preferably 1.5 mol or less per liter of the electrolytic solution.
  • organic solvents include carbonates (propylene carbonate, ethylene carbonate, diethyl carbonate, etc.), lactones ( ⁇ -butyrolactone, etc.), chain ethers (1,2-dimethoxyethane, dimethyl ether, diethyl ether, etc.), Cyclic ethers (tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, 4-methyldioxolane, diglyme, triglyme, tetraglyme, etc.), sulfolanes (sulfolane, etc.), sulfoxides (dimethylsulfoxide, etc.), nitriles (acetonitrile, propionitrile, etc.) , benzonitrile, etc.), amides (N,N-dimethylformamide, N,N-dimethylacetamide, etc.), polyoxyalkylene glycols (diethylene glycol, etc.), and other aprotic solvents (t
  • the cation moiety constituting the ionic liquid may be either an organic cation or an inorganic cation, but is preferably an organic cation.
  • organic cations constituting the ionic liquid include imidazolium cations, pyridinium cations, pyrrolidinium cations, phosphonium cations, ammonium cations, and sulfonium cations.
  • the anion part constituting the ionic liquid may be either an organic anion or an inorganic anion.
  • organic anions constituting the ionic liquid include alkyl sulfate anions such as methyl sulfate anion (CH 3 SO 4 ⁇ ) and ethyl sulfate anion (C 2 H 5 SO 4 ⁇ ); tosylate anion (CH 3 C 6 H 4 SO 3 ⁇ ); alkanesulfonate anions such as methanesulfonate anion (CH 3 SO 3 ⁇ ), ethanesulfonate anion (C 2 H 5 SO 3 ⁇ ), butanesulfonate anion (C 4 H 9 SO 3 ⁇ ); romethanesulfonate anion (CF 3 SO 3 ⁇ ), pentafluoroethanesulfonate anion (C 2 F 5 SO 3 ⁇ ), heptafluoropropanesulfonate anion (C 3 H 7 SO
  • hexafluorophosphate anion PF 6 ⁇
  • tetrafluoroborate anion BF 4 ⁇
  • halide anions such as chloride ion (Cl ⁇ ), bromide ion (Br ⁇ ), iodide ion (I ⁇ ); tetrachloro aluminate anion (AlCl 4 ⁇ ); thiocyanate anion (SCN ⁇ ); and the like.
  • ionic liquids include those composed of a combination of any of the above cation moieties and any of the above anion moieties.
  • the ionic liquid whose cation moiety is an imidazolium cation include 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, 1-methyl-3-propylimidazolium bis(trifluoromethanesulfonyl)imide, 1-hexyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, 1-ethyl-3-methylimidazolium chloride, 1-butyl-3 -methylimidazolium chloride, 1-ethyl-3-methylimidazolium methanesulfonate, 1-butyl-3-methylimidazolium methanesulfonate, 1,2,3-trimethylimidazolium methylsulfate, methylimidazolium chloride, methylimid
  • ionic liquids in which the cation portion is a pyrrolidinium cation include 1-methyl-1-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide, 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl) ) imide and the like.
  • Solvated ionic liquids include glyme-lithium salt complexes and the like.
  • Specific examples of the lithium salt in the glyme-lithium salt complex include lithium bis(fluorosulfonyl)imide (LiN(SO 2 F) 2 , sometimes abbreviated as “LiFSI” in the present disclosure), lithium bis(trifluoro romethanesulfonyl)imide (LiN(SO 2 CF 3 ) 2 , sometimes abbreviated as “LiTFSI” in the present disclosure), and the like.
  • glyme in the glyme-lithium salt complex examples include triethylene glycol dimethyl ether (CH 3 (OCH 2 CH 2 ) 3 OCH 3 , triglyme), tetraethylene glycol dimethyl ether (CH 3 (OCH 2 CH 2 ) 4 OCH 3 , tetraglyme) and the like.
  • a glyme-lithium salt complex can be prepared, for example, by mixing a lithium salt and glyme such that the lithium salt:glyme (molar ratio) is preferably from 10:90 to 90:10.
  • the electrolytic solution may contain additives.
  • additives include fluoroethylene carbonate, propanesultone, vinylene carbonate, methanesulfonic acid, cyclohexylbenzene, tert-amylbenzene, adiponitrile, and succinonitrile.
  • the amount of the additive in the electrolytic solution is, for example, preferably 0.1% by mass to 30% by mass, preferably 0.5% by mass to 10% by mass, based on the total amount of the electrolytic solution.
  • the energy storage device may further comprise commonly used members such as separators, gaskets, sealing plates, and cases in addition to the electrodes and electrolyte.
  • the separator used in the energy storage device is not particularly limited, and examples include polyolefin-based porous membranes such as porous polypropylene nonwoven fabrics and porous polyethylene nonwoven fabrics.
  • the shape of the energy storage device can be any shape, such as cylindrical, square, and button.
  • the energy storage device As a distributed or portable battery, it can be used as a power source or auxiliary power source for electronic devices, electrical devices, automobiles, power storage, and the like.
  • a method for producing a coated active material for an energy storage device of the present disclosure comprises heating a composition containing polyacrylonitrile and particles containing a substance capable of occluding and releasing alkali metal ions at a temperature of 150° C. or more and less than 278° C. and an oxygen concentration of 5.
  • a coated active material for an energy storage device comprising, in this order, a step of heat-treating in an atmosphere of vol% to 30% by volume, and a step of heat-treating the composition in an atmosphere of 278°C to 600°C and an oxygen concentration of 4ppm to 100ppm. is a manufacturing method.
  • the step of heat-treating the composition in an atmosphere of 150° C. or more and less than 278° C. is also referred to as “pretreatment”
  • the step of heat-treating the composition in an atmosphere of 278° C. to 600° C. is also referred to as “cyclization treatment”.
  • thermogravimetric-differential thermal analysis polyacrylonitrile exhibits a large exothermic peak at 278°C. Therefore, by heat-treating polyacrylonitrile at 278 ° C. or higher, the cyclization reaction of polyacrylonitrile proceeds and the dehydrogenation reaction proceeds to form double bonds, and the electron conductivity of the obtained cyclized polyacrylonitrile increases. improves.
  • the temperature at which the cyclization treatment is performed is 278° C. or higher, preferably 280° C. or higher, more preferably 290° C. or higher, and even more preferably 300° C. or higher.
  • the temperature at which the cyclization treatment is performed is 600°C or lower, preferably 500°C or lower, more preferably 450°C or lower, and even more preferably 400°C or lower.
  • the oxygen concentration during cyclization is 4 ppm or more, preferably 7.5 ppm or more, and 10 ppm or more. is more preferable, and 15 ppm or more is even more preferable.
  • the oxygen concentration when performing the cyclization treatment is preferably 100 ppm or less, more preferably 80 ppm or less, further preferably 60 ppm or less, and 40 ppm or less. is even more preferred.
  • Components other than oxygen in the atmosphere in which the cyclization treatment is performed are not particularly limited, and may be nitrogen, an inert gas such as argon, or a mixture thereof.
  • the time for performing the cyclization treatment is not particularly limited, and can be selected, for example, from 3 hours to 15 hours.
  • the time for performing the cyclization treatment in the present disclosure means the time during which the temperature of the composition is between 278°C and 600°C.
  • the method of the present disclosure includes heat treating the composition at a temperature of 150° C. or more and less than 278° C. prior to the cyclization treatment. From the results of thermogravimetric-differential thermal analysis, polyacrylonitrile shows a large exothermic peak at 278°C. By performing the pretreatment at a temperature lower than 278°C, the yield of the cyclization reaction of polyacrylonitrile can be increased. This is because the polyacrylonitrile undergoes a rapid reaction and the main chain of polyacrylonitrile is cleaved, thereby suppressing the production of low-molecular-weight components, as compared with the case where the cyclization treatment is performed without pretreatment.
  • the time for performing the pretreatment is not particularly limited, and can be selected, for example, from 3 hours to 15 hours.
  • the time during which the pretreatment is performed in the present disclosure means the time during which the temperature of the composition is 150°C or higher and lower than 278°C.
  • the atmosphere during the pretreatment is not particularly limited as long as it contains 5% to 30% by volume of oxygen.
  • pretreatment may be performed in air.
  • the pretreatment and the cyclization treatment may or may not be performed consecutively.
  • a step of cooling the composition may be performed between the pretreatment and the cyclization treatment.
  • the composition may contain a conductive aid, solvent, etc.
  • Solvents include those capable of dissolving polyacrylonitrile, such as N-methyl-2-pyrrolidone, dimethylformamide, dimethylacetamide, and dimethylsulfoxide.
  • the composition may be a mixture of active material particles and polyacrylonitrile, or may be obtained by polymerizing a monomer in a state in which the active material particles and a monomer that is a raw material of polyacrylonitrile are mixed.
  • monomers that are raw materials for polyacrylonitrile include acrylonitrile and polymerized components of the acrylonitrile copolymer described above.
  • the composition may or may not be particulate when subjected to cyclization. If the composition is not particulate at the time of cyclization, a particulate coated active material can be obtained by subjecting the composition after cyclization to pulverization, pulverization, or the like.
  • the method of pulverization or pulverization is not particularly limited, and known means such as a mortar, ball mill, bead mill, jet mill, vibrating mill, and mixer can be employed. After pulverization or pulverization, classification treatment may be performed as necessary.
  • the composition may be pressurized. By pressurizing the composition, a cyclization reaction occurs in a state where the polyacrylonitrile molecules are oriented, and the molecules stack to increase the crystallinity. When polyacrylonitrile is highly crystallized, the strength of the obtained cyclized polyacrylonitrile tends to improve, and the electron conductivity also tends to improve.
  • the method of applying pressure to the composition is not particularly limited. A method of sandwiching between members and applying surface pressure (for example, 0.1 MPa to 10 MPa) can be used. The pressure treatment may be performed before the cyclization treatment, during the cyclization treatment, or after the cyclization treatment.
  • the coating material of the present disclosure is a coating material for coating active material particles for an energy storage device, comprising cyclized polyacrylonitrile and satisfying either or both of the following (1) or (2): It is wood.
  • the yellowness of the electrolytic solution in which the coating material is immersed is 100 or less as defined in JIS K 7373:2006.
  • the haze defined by JIS K 7136:2000 of the electrolytic solution in which the coating material is immersed is 2.5% or less.
  • An energy storage device produced using a coated active material containing a coating material that contains cyclized polyacrylonitrile and satisfies the conditions of (1) or (2) exhibits excellent initial characteristics.
  • the yellowness and haze of the coating material can be measured in the same manner as the yellowness and haze of the coated active material described above. That is, the yellowness and haze of the coating material can be measured by immersing in the electrolyte solution a coating material having the same mass as that of the coating material contained in the coated active material to be immersed in the electrolyte solution.
  • the details and preferred aspects of the coating material are the same as the details and preferred aspects of the coating material contained in the coated active material described above.
  • Example 1 As polyacrylonitrile (PAN), an acrylonitrile homopolymer (manufactured by Aldrich, Mw 150,000, molecular weight distribution 2.21, atactic type) was added to N-methyl-2-pyrrolidone (NMP) and mixed at room temperature to dissolve PAN. , a PAN/NMP solution (PAN content: 10% by mass) was prepared. As the active material particles, Si particles (manufactured by Beijing Dadi, average secondary particle diameter: about 5 ⁇ m) were used.
  • the cyclized material was pulverized in an agate mortar and sieved through a 390-mesh sieve to obtain a coated active material in which Si particles were coated with cyclized polyacrylonitrile.
  • the volume average particle diameter (D50) of the coated active material was 18.1 ⁇ m, and the BET specific surface area was 5.1 m 2 /g.
  • the coating active material, acetylene black (Li400 manufactured by Denka) as a conductive aid, and polyvinylidene fluoride as a binder were mixed at a mass ratio of 85:5:10 (coating active material: conductive aid: binder). mixed with. Specifically, mixing was performed 5 times for 2 minutes at 1000 rpm (rotation/minute) using a rotation/revolution mixer. In order to adjust the viscosity, N-methyl-2-pyrrolidone was appropriately added and slurried.
  • the resulting slurry was applied to a copper foil (20 ⁇ m thick) as a current collector and dried to obtain an electrode.
  • the thickness of the electrode was 3.1 mAh/cm 2 in terms of capacity (calculated with the capacity of Si being 3600 mAh/g).
  • the electrodes were pressed with a roll press to an electrode density of 1.6 g/cm 3 .
  • LiCo 1/3 Ni 1/3 Mn 1/3 O 2 as a positive electrode active material, acetylene black as a conductive agent, and polyvinylidene fluoride as a binder at a ratio of 94:3:3 (active material: conductive agent: binding agent). Material) was mixed at a mass ratio, and the composition was applied to a current collector to prepare a positive electrode.
  • the thickness of the composition layer was 2.9 mAh/cm 2 in terms of capacity (calculated based on the capacity of LiCo 1/3 Ni 1/3 Mn 1/3 O 2 being 152 mAh/g).
  • the positive electrode was pressed with a roll press to an electrode density of 2.8 g/cm 3 .
  • a laminate type battery was prepared.
  • a porous polypropylene film was used as the separator, and 1M LiPF 6 dissolved in a mixed solvent containing EC, EMC and DEC in a ratio of 1:1:1 (volume ratio) was used as the electrolyte.
  • Example 2 The coated active material was prepared in the same manner as in Example 1 except that the pretreatment conditions were 220° C. for 10 hours in air, and the cyclization treatment conditions were 300° C. for 8 hours in a nitrogen atmosphere with an oxygen concentration of 20 ppm. was produced and evaluated. Table 1 shows the results.
  • Example 3 A PAN/NMP solution (PAN content: 10% by mass) was prepared in the same manner as in Example 1 except that an acrylonitrile homopolymer (Mw 5158, molecular weight distribution 1.92) was used as PAN. A coated active material was prepared and evaluated in the same manner as in Example 1, except that this PAN/NMP solution was used. Table 1 shows the results.
  • Example 4 A PAN/NMP solution (PAN-containing rate: 10% by mass) was prepared. A coated active material was prepared and evaluated in the same manner as in Example 1, except that this PAN/NMP solution was used. Table 1 shows the results.
  • Example 5 PAN/ An NMP solution (PAN content: 10% by mass) was prepared. A coated active material was prepared and evaluated in the same manner as in Example 1, except that this PAN/NMP solution was used. Table 1 shows the results.
  • Example 6 A copolymer (Mw 272353, molecular weight distribution 2.18) of acrylonitrile (93.9% by mass), methyl acrylate (5.8% by mass) and sodium methallylsulfonate (0.3% by mass) was used as PAN.
  • a PAN/NMP solution PAN content: 10% by mass was prepared in the same manner as in Example 1 except that.
  • a coated active material was prepared and evaluated in the same manner as in Example 1, except that this PAN/NMP solution was used. Table 1 shows the results.
  • Example 7 A PAN/NMP solution (PAN content: 10% by mass) was prepared in the same manner as in Example 1 except that an acrylonitrile homopolymer (Mw 728949, molecular weight distribution 1.704) was used as PAN. A coated active material was prepared and evaluated in the same manner as in Example 1, except that this PAN/NMP solution was used. Table 1 shows the results.
  • Example 1 A coated active material was prepared and evaluated in the same manner as in Example 1, except that the pretreatment conditions were 220° C. for 7 hours in an argon atmosphere. Table 1 shows the results.
  • Example 2 A coated active material was prepared and evaluated in the same manner as in Example 1 except that no pretreatment was performed and the cyclization treatment conditions were 300° C. for 10 hours in a nitrogen atmosphere with an oxygen concentration of 1 ppm. Table 1 shows the results.
  • Example 3 A coated active material was prepared and evaluated in the same manner as in Example 1, except that the pretreatment was not performed and the conditions for the cyclization treatment were 300° C. and 4 hours in vacuum. Table 1 shows the results.
  • Example 4 A coated active material was prepared and evaluated in the same manner as in Example 1, except that pretreatment and cyclization treatment were not performed (only drying at 80° C. was performed). Table 1 shows the results.
  • Example 5 A coated active material was prepared and evaluated in the same manner as in Example 1 except that no pretreatment was performed and the cyclization treatment was performed in a nitrogen atmosphere with an oxygen concentration of 1 ppm at 300° C. for 8 hours. Table 1 shows the results.
  • Example 6 A coated active material was produced and evaluated in the same manner as in Example 1, except that no pretreatment was performed and the conditions for cyclization treatment were 300° C. and 8 hours in vacuum. Table 1 shows the results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention provides a coated active material for an energy storage device, the coated active material including: particles containing a substance that can absorb and release alkali metal ions; and a coating material containing cyclized polyacrylonitrile. The coated active material satisfies one or both of (1) and (2): (1) the yellowness, as defined by JIS K 7373:2006, of an electrolyte in which the coated active material has been immersed is 100 or less; and (2) the haze, as defined by JIS K 7136:2000, of an electrolyte in which the coated active material has been immersed is 2.5% or less.

Description

エネルギー貯蔵デバイス用被覆活物質、エネルギー貯蔵デバイス、エネルギー貯蔵デバイス用被覆活物質の製造方法及び被覆材Coated active material for energy storage device, energy storage device, method for producing coated active material for energy storage device, and coating material
 本開示は、エネルギー貯蔵デバイス用活物質、エネルギー貯蔵デバイス、エネルギー貯蔵デバイス用被覆活物質の製造方法及び被覆材に関する。 The present disclosure relates to an active material for an energy storage device, an energy storage device, a method for producing a coated active material for an energy storage device, and a coating material.
 正極と負極との間をリチウムイオン等のアルカリ金属イオンが移動することによって充放電が行われるエネルギー貯蔵デバイスが広く用いられている。このようなエネルギー貯蔵デバイスの正極及び負極は一般に、アルカリ金属イオンを吸蔵及び放出可能な物質(活物質)の粒子を含んでいる。 Energy storage devices are widely used in which charge and discharge are performed by moving alkali metal ions such as lithium ions between the positive and negative electrodes. The positive and negative electrodes of such energy storage devices generally contain particles of a material (active material) capable of absorbing and releasing alkali metal ions.
 活物質はアルカリ金属イオンの吸蔵及び放出に伴って体積が変化するため、充放電を繰り返すと活物質の割れ等が生じて電極の劣化の原因となる。そこで、高分子化合物のような柔軟性を有する材料で活物質の表面を被覆することが検討されている。 Since the volume of the active material changes as it absorbs and releases alkali metal ions, repeated charging and discharging causes cracks in the active material and causes deterioration of the electrode. Therefore, coating the surface of the active material with a flexible material such as a polymer compound has been studied.
 さらに、活物質の中には電子伝導性を持たないか、電子伝導性が低いものがある。そこで、電子伝導性を有する高分子化合物で活物質の表面を被覆することが検討されている。
 例えば、特表2019-535116号公報及び特許第6635283号公報には、環化反応を生じさせたポリアクリロニトリル(環化ポリアクリロニトリル)をエネルギー貯蔵デバイスの電極に用いることが提案されている。
Furthermore, some active materials have no or low electronic conductivity. Therefore, coating the surface of the active material with a polymer compound having electron conductivity has been studied.
For example, Japanese Patent Publication No. 2019-535116 and Japanese Patent No. 6635283 propose to use cyclized polyacrylonitrile (cyclized polyacrylonitrile) for electrodes of energy storage devices.
 ポリアクリロニトリルの環化反応を生じさせる方法として、特表2019-535116号公報にはポリアクリロニトリルを不活性雰囲気下で加熱することが記載され、特許第6635283号公報にはポリアクリロニトリルとアクリル酸ブチルとの共重合体を真空中で加熱することが記載されている。
 本発明者らの検討によると、これらの文献に記載された方法で作製した環化アクリロニトリルを活物質の被覆材として用いるエネルギー貯蔵デバイスは、初期特性に改善の余地があることがわかった。
 上記事情に鑑み、本開示は初期特性に優れるエネルギー貯蔵デバイス用被覆活物質、エネルギー貯蔵デバイス、エネルギー貯蔵デバイス用被覆活物質の製造方法及び被覆材を提供することを課題とする。
As a method for causing a cyclization reaction of polyacrylonitrile, JP 2019-535116 describes heating polyacrylonitrile in an inert atmosphere, and Japanese Patent No. 6635283 describes polyacrylonitrile and butyl acrylate. is described heating a copolymer of .
According to studies by the present inventors, it was found that there is room for improvement in the initial characteristics of energy storage devices using cyclized acrylonitrile produced by the methods described in these documents as a coating material for the active material.
In view of the above circumstances, an object of the present disclosure is to provide a coated active material for an energy storage device, an energy storage device, a method for producing the coated active material for an energy storage device, and a coating material that are excellent in initial characteristics.
 上記課題を解決するための手段には、以下の実施態様が含まれる。
<1>アルカリ金属イオンを吸蔵及び放出可能な物質を含む粒子と、環化ポリアクリロニトリルを含む被覆材と、を含み、下記(1)を満たす、エネルギー貯蔵デバイス用被覆活物質。
(1)前記被覆活物質を浸漬した電解液のJIS K 7373:2006に規定される黄色度が100以下である。
<2>アルカリ金属イオンを吸蔵及び放出可能な物質を含む粒子と、環化ポリアクリロニトリルを含む被覆材と、を含み、下記(2)を満たす、エネルギー貯蔵デバイス用被覆活物質。
(2)前記被覆活物質を浸漬した電解液のJIS K 7136:2000に規定されるヘーズが2.5%以下である。
<3>前記アルカリ金属イオンを吸蔵及び放出可能な物質はケイ素原子を含む、<1>又は<2>に記載のエネルギー貯蔵デバイス用被覆活物質。
<4>体積平均粒子径(D50)が1μm~50μmである、<1>~<3>のいずれか1項に記載のエネルギー貯蔵デバイス用被覆活物質。
<5>BET比表面積が0.5m/g~100m/gである、<1>~<4>のいずれか1項に記載のエネルギー貯蔵デバイス用被覆活物質。
<6>前記被覆活物質全体に占める前記被覆材の割合は0.1質量%~50質量%である、<1>~<5>のいずれか1項に記載のエネルギー貯蔵デバイス用被覆活物質。
<7>炭素材料からなる被覆をさらに有する、<1>~<6>のいずれか1項に記載のエネルギー貯蔵デバイス用被覆活物質。
<8><1>~<7>のいずれか1項に記載のエネルギー貯蔵デバイス用被覆活物質を含む、エネルギー貯蔵デバイス。
<9>電解液を含み、前記電解液は溶媒としてイオン液体を含む、<8>に記載のエネルギー貯蔵デバイス。
<10>前記電解液の電解質塩の濃度が3mol/L以上である、<8>に記載のエネルギー貯蔵デバイス。
<11>アルカリ金属イオンを吸蔵及び放出可能な物質を含む粒子と、ポリアクリロニトリルと、を含む組成物を、150℃以上278℃未満かつ酸素濃度5体積%~30体積%の雰囲気中で熱処理する工程と、前記組成物を278℃~600℃かつ酸素濃度4ppm~100ppmの雰囲気中で熱処理する工程と、をこの順に含む、エネルギー貯蔵デバイス用被覆活物質の製造方法。
<12>前記熱処理はそれぞれ3時間~15時間行う、<11>に記載のエネルギー貯蔵デバイス用被覆活物質の製造方法。
<13>エネルギー貯蔵デバイス用の活物質粒子を被覆するための被覆材であって、環化ポリアクリロニトリルを含み、前記被覆材を浸漬した電解液のJIS K 7373:2006に規定される黄色度が30%以下である、被覆材。
<14>エネルギー貯蔵デバイス用の活物質粒子を被覆するための被覆材であって、環化ポリアクリロニトリルを含み、前記被覆材を浸漬した電解液のJIS K 7136:2000に規定されるヘーズが0.3%以下である、被覆材。
Means for solving the above problems include the following embodiments.
<1> A coated active material for an energy storage device, comprising particles containing a substance capable of absorbing and releasing alkali metal ions, and a coating material containing cyclized polyacrylonitrile, and satisfying the following (1).
(1) The yellowness of the electrolytic solution in which the coated active material is immersed is 100 or less as defined in JIS K 7373:2006.
<2> A coated active material for an energy storage device, comprising particles containing a substance capable of absorbing and releasing alkali metal ions, and a coating material containing cyclized polyacrylonitrile, and satisfying the following (2).
(2) The haze defined by JIS K 7136:2000 of the electrolytic solution in which the coated active material is immersed is 2.5% or less.
<3> The coated active material for an energy storage device according to <1> or <2>, wherein the substance capable of absorbing and releasing alkali metal ions contains a silicon atom.
<4> The coated active material for an energy storage device according to any one of <1> to <3>, which has a volume average particle size (D50) of 1 μm to 50 μm.
<5> The coated active material for an energy storage device according to any one of <1> to <4>, which has a BET specific surface area of 0.5 m 2 /g to 100 m 2 /g.
<6> The coated active material for an energy storage device according to any one of <1> to <5>, wherein the coating material accounts for 0.1% by mass to 50% by mass of the entire coated active material. .
<7> The coated active material for an energy storage device according to any one of <1> to <6>, further comprising a coating made of a carbon material.
<8> An energy storage device comprising the coated active material for an energy storage device according to any one of <1> to <7>.
<9> The energy storage device according to <8>, comprising an electrolytic solution, wherein the electrolytic solution contains an ionic liquid as a solvent.
<10> The energy storage device according to <8>, wherein the electrolytic solution has an electrolyte salt concentration of 3 mol/L or more.
<11> A composition containing particles containing a substance capable of absorbing and releasing alkali metal ions and polyacrylonitrile is heat-treated in an atmosphere of 150° C. or more and less than 278° C. and an oxygen concentration of 5% to 30% by volume. and heat-treating the composition in an atmosphere of 278° C. to 600° C. and an oxygen concentration of 4 ppm to 100 ppm, in this order.
<12> The method for producing a coated active material for an energy storage device according to <11>, wherein each heat treatment is performed for 3 to 15 hours.
<13> A coating material for coating active material particles for an energy storage device, which contains cyclized polyacrylonitrile, and the electrolytic solution in which the coating material is immersed has a yellowness specified in JIS K 7373:2006. A covering material that is 30% or less.
<14> A coating material for coating active material particles for an energy storage device, which contains cyclized polyacrylonitrile, and the electrolytic solution in which the coating material is immersed has a haze of 0 as defined in JIS K 7136:2000. .3% or less of the coating.
 本発明によれば、初期特性に優れるエネルギー貯蔵デバイス用被覆活物質、エネルギー貯蔵デバイス、エネルギー貯蔵デバイス用被覆活物質の製造方法及び被覆材が提供される。 According to the present invention, there are provided a coated active material for an energy storage device, an energy storage device, a method for producing the coated active material for an energy storage device, and a coating material that are excellent in initial characteristics.
被覆活物質の構成の一例を示す概念図である。1 is a conceptual diagram showing an example of the configuration of a coated active material; FIG. 被覆活物質の構成の一例を示す概念図である。1 is a conceptual diagram showing an example of the configuration of a coated active material; FIG. 被覆活物質の構成の一例を示す概念図である。1 is a conceptual diagram showing an example of the configuration of a coated active material; FIG. 被覆活物質の構成の一例を示す概念図である。1 is a conceptual diagram showing an example of the configuration of a coated active material; FIG. 被覆活物質の構成の一例を示す概念図である。1 is a conceptual diagram showing an example of the configuration of a coated active material; FIG.
 以下、本開示を実施するための形態について詳細に説明する。但し、本開示は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本開示を制限するものではない。 A detailed description will be given below of the embodiment for implementing the present disclosure. However, the present disclosure is not limited to the following embodiments. In the following embodiments, the constituent elements (including element steps and the like) are not essential unless otherwise specified. The same applies to numerical values and their ranges, which do not limit the present disclosure.
 本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本開示において「層」との語には、当該層が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
In the present disclosure, the term "process" includes a process that is independent of other processes, and even if the purpose of the process is achieved even if it cannot be clearly distinguished from other processes. .
In the present disclosure, the numerical range indicated using "-" includes the numerical values before and after "-" as the minimum and maximum values, respectively.
In the numerical ranges described step by step in the present disclosure, the upper limit or lower limit of one numerical range may be replaced with the upper or lower limit of another numerical range described step by step. . Moreover, in the numerical ranges described in the present disclosure, the upper or lower limits of the numerical ranges may be replaced with the values shown in the examples.
In the present disclosure, each component may contain multiple types of applicable substances. When there are multiple types of substances corresponding to each component in the composition, the content rate or content of each component is the total content rate or content of the multiple types of substances present in the composition unless otherwise specified. means quantity.
Particles corresponding to each component in the present disclosure may include a plurality of types. When multiple types of particles corresponding to each component are present in the composition, the particle size of each component means a value for a mixture of the multiple types of particles present in the composition, unless otherwise specified.
In the present disclosure, the term "layer" includes not only the case where the layer is formed in the entire region when observing the region where the layer exists, but also the case where it is formed only in part of the region. included.
<エネルギー貯蔵デバイス用被覆活物質>
 本開示のエネルギー貯蔵デバイス用被覆活物質は、アルカリ金属イオンを吸蔵及び放出可能な物質を含む粒子(以下、活物質粒子ともいう)と、環化ポリアクリロニトリルを含む被覆材と、を含み、下記(1)又は(2)のいずれか又は両方を満たす、エネルギー貯蔵デバイス用被覆活物質(以下、被覆活物質ともいう)である。
(1)前記被覆活物質を浸漬した電解液のJIS K 7373:2006に規定される黄色度が100以下である。
(2)前記被覆活物質を浸漬した電解液のJIS K 7136:2000に規定されるヘーズが2.5%以下である。
<Coated active material for energy storage device>
The coated active material for an energy storage device of the present disclosure includes particles containing a substance capable of absorbing and releasing alkali metal ions (hereinafter also referred to as active material particles) and a coating material containing cyclized polyacrylonitrile, and is described below. A coated active material for an energy storage device (hereinafter also referred to as a coated active material) that satisfies either or both of (1) and (2).
(1) The yellowness of the electrolytic solution in which the coated active material is immersed is 100 or less as defined in JIS K 7373:2006.
(2) The haze defined by JIS K 7136:2000 of the electrolytic solution in which the coated active material is immersed is 2.5% or less.
 本発明者らの検討の結果、被覆材が環化ポリアクリロニトリルを含み、かつ(1)又は(2)の条件を満たす被覆活物質を用いて作製したエネルギー貯蔵デバイスは、優れた初期特性を示すことがわかった。その理由は、例えば、下記のように考えられる。
 被覆材が環化ポリアクリロニトリルを含む被覆活物質を電解液に浸漬すると、被覆材に含まれる成分(例えば、ポリアクリロニトリルの環化処理工程で生じた低分子化合物)の溶出、溶出した成分との反応による電解質塩の分解、等が生じる可能性がある。これらの現象が電解液の色又は透明度に影響する要因として考えられる。
 (1)又は(2)の条件を満たす被覆活物質は、電解液中に溶出する成分が少ないために、電解液の黄色度又はヘーズが低く抑えられていると考えられる。すなわち、(1)又は(2)の条件を満たす被覆活物質は電解液に対する耐久性に優れているため、優れた初期特性が実現すると考えられる。
As a result of studies by the present inventors, it was found that an energy storage device manufactured using a coated active material whose coating material contains cyclized polyacrylonitrile and satisfies the conditions (1) or (2) exhibits excellent initial characteristics. I understood it. The reason is considered as follows, for example.
When the coated active material whose coating material contains cyclized polyacrylonitrile is immersed in the electrolytic solution, components contained in the coating material (for example, low-molecular-weight compounds generated in the cyclization process of polyacrylonitrile) are eluted, and the eluted components are dissolved. Decomposition of the electrolyte salt due to the reaction, etc. may occur. These phenomena are considered to be factors affecting the color or transparency of the electrolyte.
It is considered that the coated active material satisfying the conditions (1) or (2) has a low degree of yellowness or haze of the electrolytic solution because the amount of components eluted into the electrolytic solution is small. That is, it is thought that the coated active material satisfying the condition (1) or (2) is excellent in durability against the electrolytic solution, and thus excellent initial characteristics are realized.
(黄色度の測定方法)
 本開示において被覆活物質を浸漬した電解液の黄色度は、JIS K 7373:2006に規定される値であり、黄色度の値が大きいほど測定対象の色相が無色又は白色の状態から黄色方向に離れている(黄色味が強い)ことを示す。
 本開示において黄色度は、JIS Z 8722:2009に規定する分光測色方法により、三刺激値直読方式測色計及び標準イルミナントD65を用いてJIS Z 8701:1999に規定する三刺激値(X、Y及びZ)を測定した結果から、下記式により求める。三刺激値直読方式測色計としては、例えば、スガ試験機株式会社製の型式:CC-iが使用できる。
 黄色度(YI)=100(1.2985X-1.1335Z)/Y
(Method for measuring yellowness)
In the present disclosure, the yellowness of the electrolytic solution in which the coated active material is immersed is a value specified in JIS K 7373: 2006, and the larger the value of the yellowness, the more the hue of the measurement target is colorless or white. Indicates that it is far away (yellowish).
In the present disclosure, the yellowness is the tristimulus value (X, From the results of measuring Y and Z), it is obtained by the following formula. As a tristimulus value direct-reading colorimeter, for example, Model CC-i manufactured by Suga Test Instruments Co., Ltd. can be used.
Yellowness index (YI) = 100 (1.2985X-1.1335Z)/Y
 被覆活物質を浸漬する電解液としては、EC(エチレンカーボネート)、EMC(エチルメチルカーボネート)及びDEC(ジエチルカーボネート)を1:1:1(体積比)の割合で混合した溶媒に1MのLiPFを溶解したものを使用する。 As the electrolytic solution in which the coated active material is immersed, 1M LiPF 6 was added to a solvent in which EC (ethylene carbonate), EMC (ethyl methyl carbonate) and DEC (diethyl carbonate) were mixed at a ratio of 1:1:1 (volume ratio). used in a dissolved form.
 上記電解液(25ml)を直径27.6mmのPFAボトルに入れ、被覆活物質を電解液に浸漬する。被覆活物質の量は、被覆活物質に含まれる被覆材の質量が10mgとなるように調整する。
 被覆活物質を電解液に浸漬した状態で、50℃の恒温槽内に24時間静置する。その後、電解液の黄色度を上記方法により算出する。
 被覆活物質の代わりに被覆材のみを電解液に浸漬して黄色度を測定してもよい。
The electrolytic solution (25 ml) is placed in a PFA bottle with a diameter of 27.6 mm, and the coated active material is immersed in the electrolytic solution. The amount of the coated active material is adjusted so that the mass of the coating material contained in the coated active material is 10 mg.
The coated active material immersed in the electrolyte is allowed to stand in a constant temperature bath at 50° C. for 24 hours. After that, the yellowness of the electrolytic solution is calculated by the method described above.
Instead of the coated active material, only the coating material may be immersed in the electrolytic solution to measure the yellowness.
 初期特性の観点からは、被覆活物質を浸漬した電解液の黄色度は低いほど好ましい。したがって、黄色度の好ましい下限値は0である。 From the viewpoint of initial characteristics, the lower the yellowness of the electrolytic solution in which the coated active material is immersed, the better. Therefore, the preferred lower limit of the yellowness index is 0.
(ヘーズの測定方法)
 本開示において被覆活物質を浸漬した電解液のヘーズ(曇価)は、JIS K 7136:2000に規定される値であり、ヘーズの値が大きいほど測定対象の透明度が低いことを示す。
 本開示においてヘーズは、測定対象(電解液)を透過する光線のうち、平行成分と拡散成分のすべてを含めた光線の透過率(全光線透過率:Tt)と、全光線から平行成分を除いた拡散光の透過率(拡散透過率:Td)とから下記式により求める。測定装置としては、ヘーズメータ(スガ試験機株式会社製の型式:HZ-V3)が使用できる。
 ヘーズ(%)=(Td/Tt)×100
(Method for measuring haze)
In the present disclosure, the haze (cloudiness value) of the electrolytic solution in which the coated active material is immersed is a value defined in JIS K 7136:2000, and the higher the haze value, the lower the transparency of the object to be measured.
In the present disclosure, haze is defined as the transmittance (total light transmittance: Tt) of light rays including all parallel components and diffuse components among the light rays that pass through the measurement object (electrolyte solution), and the total light transmittance excluding parallel components. It is obtained by the following formula from the diffused light transmittance (diffused transmittance: Td). As a measuring device, a haze meter (Model: HZ-V3 manufactured by Suga Test Instruments Co., Ltd.) can be used.
Haze (%) = (Td/Tt) x 100
 被覆活物質を浸漬する電解液としては、EC(エチレンカーボネート)、EMC(エチルメチルカーボネート)及びDEC(ジエチルカーボネート)を1:1:1(体積比)の割合で混合した溶媒に1MのLiPFを溶解したものを使用する。 As the electrolytic solution in which the coated active material is immersed, 1M LiPF 6 was added to a solvent in which EC (ethylene carbonate), EMC (ethyl methyl carbonate) and DEC (diethyl carbonate) were mixed at a ratio of 1:1:1 (volume ratio). used in a dissolved form.
 上記電解液(25ml)を直径27.6 mmのPFAボトルに入れ、被覆活物質を電解液に浸漬する。電極の量は、被覆活物質に含まれる被覆材の質量が10mgとなるように調整する。
 被覆活物質を電解液に浸漬した状態で、50℃の恒温槽内に24時間静置する。その後、電解液のヘーズを上記方法により算出する。
 被覆活物質の代わりに被覆材のみを電解液に浸漬してヘーズを測定してもよい。
The electrolytic solution (25 ml) is placed in a PFA bottle with a diameter of 27.6 mm, and the coated active material is immersed in the electrolytic solution. The amount of electrode is adjusted so that the mass of the coating material contained in the coated active material is 10 mg.
The coated active material immersed in the electrolyte is allowed to stand in a constant temperature bath at 50° C. for 24 hours. After that, the haze of the electrolytic solution is calculated by the method described above.
The haze may be measured by immersing only the coating material in the electrolytic solution instead of the coated active material.
 初期特性の観点からは、被覆活物質を浸漬した電解液のヘーズは低いほど好ましい。したがって、ヘーズの好ましい下限値は0%である。 From the viewpoint of initial characteristics, the lower the haze of the electrolyte in which the coated active material is immersed, the better. Therefore, the preferred lower limit of haze is 0%.
(被覆材)
 被覆材は、環化ポリアクリロニトリルを含む。本開示において環化ポリアクリロニトリルとは、ポリアクリロニトリルに含まれるニトリル基の環化反応を生じさせて得られる材料を意味する。
(Covering material)
The coating material comprises cyclized polyacrylonitrile. In the present disclosure, cyclized polyacrylonitrile means a material obtained by causing a cyclization reaction of nitrile groups contained in polyacrylonitrile.
 環化ポリアクリロニトリルは、原料となるポリアクリロニトリルの環化処理工程において、-C≡N(ニトリル)基が閉環して-C=N-基になるだけでなく、脱水素化反応により、たとえば主鎖を構成する-CH-CH-基が-CH=C-基等に変化して二重結合を形成することが好ましい。環化反応と脱水素化反応の双方が生じることで、共役系の二重結合が形成され、電子伝導性が向上する傾向にある。 Cyclized polyacrylonitrile can be obtained not only by ring closure of -C≡N (nitrile) group to become -C=N- group in the cyclization treatment step of raw material polyacrylonitrile, but also by dehydrogenation reaction, for example, It is preferable that the -CH 2 -CH- group constituting the chain is changed to -CH=C- group or the like to form a double bond. Both the cyclization reaction and the dehydrogenation reaction tend to form a conjugated double bond and improve the electron conductivity.
 上記反応のキャラクタリゼーションは、赤外分光法で行うことができる。赤外分光法は透過法であっても反射法であってもよい。
 赤外分光法において、-C≡N(ニトリル)基は2240cm-1~2243cm-1におけるピークとして、閉環した-C=N-基は1577cm-1~1604cm-1におけるピークとして、脱水素化により二重結合になる前の-CH-は2939cm-1におけるピークとして、脱水素化により二重結合になった後の-CH=C-基は806cm-1におけるピークとして、それぞれ確認できる。
 閉環した-C=N-基は、1577cm-1~1604cm-1の範囲で、形成される六員環の構造によってシフトする。具体的には、六員環構造に含まれる二重結合の数が多いほど、-C=N-の結合距離が短くなり、低波数側にシフトする傾向にある。
Characterization of the above reaction can be done with infrared spectroscopy. Infrared spectroscopy may be transmission or reflection.
In infrared spectroscopy, the -C≡N (nitrile) group as a peak at 2240 cm -1 to 2243 cm -1 and the ring-closed -C=N- group as a peak at 1577 cm -1 to 1604 cm -1 by dehydrogenation A peak at 2939 cm −1 for —CH 2 — before forming a double bond, and a peak at 806 cm −1 for a —CH═C— group after forming a double bond by dehydrogenation can be confirmed.
The ring-closed —C═N— group shifts in the range of 1577 cm −1 to 1604 cm −1 depending on the structure of the 6-membered ring formed. Specifically, the larger the number of double bonds contained in the six-membered ring structure, the shorter the bond distance of -C=N-, which tends to shift to the lower wavenumber side.
 上記ピークの帰属は、The influence of thermal stabilization stage on the molecular structure of polyacrylonitrile fibers prior to the carbonization stage(Fibers and Polymers 2012, Vol.13, No.3, 295-302)、Structural transformation of polyacrylonitrile fibers during stabilization and low temperature carbonization(Polymer Degradation and Stability,Volume 128, June 2016, 39-45)等を参考にできる。 The above peaks are assigned to The influence of thermal stabilization stage on the molecular structure of polyacrylonitrile fibers prior to the carbonization stage (Fibers and Polymers 2012, Vol.13, No.3, 295-302), Structural transformation of polyacrylonitrile fibers during stabilization and low temperature carbonization (Polymer Degradation and Stability, Volume 128, June 2016, 39-45).
 環化ポリアクリロニトリルは、炭素とポリマーの中間の性質を有するということができ、ニトリル基の閉環の度合いが大きいほど、その環化ポリアクリロニトリルは炭素に近い性質を有するということができる。
 環化ポリアクリロニトリルにおけるニトリル基と閉環した-C=N-基の比率は、-C≡N(ニトリル)基に対応するピークにおける吸光度と閉環した-C=N-基に対応するピークにおける吸光度との比(ニトリル基/閉環した-C=N-基)で表すことができ、この比の値が大きいほど、環化ポリアクリロニトリルはポリマーに近い性質を有するということができる。以下、この吸光度比を吸光度比Aともいう。
 吸光度比Aは、0.01以上であることが好ましく、0.02以上であることがより好ましく、0.03以上であることがさらに好ましい。
 吸光度比Aが0.01以上であると、得られる被覆材が適度な柔軟性を有し、活物質粒子の膨張収縮に追従しやすい。
 吸光度比Aは、6以下であることが好ましく、3以下であることがより好ましく、1以下であることがさらに好ましい。
 吸光度比Aが6以下であると、ニトリル基が充分に閉環して得られる被覆材の構造が強固になる。
The cyclized polyacrylonitrile can be said to have properties intermediate between those of carbon and polymers, and the greater the degree of ring closure of the nitrile groups, the more similar the properties of the cyclized polyacrylonitrile to those of carbon.
The ratio of the nitrile group and the ring-closed -C=N- group in the cyclized polyacrylonitrile is the absorbance at the peak corresponding to the -C≡N (nitrile) group and the absorbance at the peak corresponding to the ring-closed -C=N- group. (nitrile group/ring-closed -C=N- group), and it can be said that the larger the value of this ratio, the closer the properties of the cyclized polyacrylonitrile to those of polymers. Hereinafter, this absorbance ratio is also referred to as absorbance ratio A.
The absorbance ratio A is preferably 0.01 or more, more preferably 0.02 or more, and even more preferably 0.03 or more.
When the absorbance ratio A is 0.01 or more, the obtained coating material has appropriate flexibility and easily follows the expansion and contraction of the active material particles.
The absorbance ratio A is preferably 6 or less, more preferably 3 or less, and even more preferably 1 or less.
When the absorbance ratio A is 6 or less, the structure of the coating material obtained by sufficiently ring-closing the nitrile groups becomes strong.
 環化ポリアクリロニトリルは、環化反応によって電子伝導性が付与されたポリマーということができる。
 環化ポリアクリロニトリルの電子伝導性の度合いは、脱水素化により二重結合になった後の-CH=C-基に対応するピークにおける吸光度と閉環した-C=N-基に対応するピークにおける吸光度との比(二重結合になった後の-CH=C-基/閉環した-C=N-基)で表すことができ、この比の値が大きいほど、環化ポリアクリロニトリルの電子伝導性が大きいということができる。以下、この吸光度比を吸光度比Bともいう。
 吸光度比Bは、0.01以上であることが好ましく、0.02以上であることがより好ましく、0.03以上であることが更に好ましい。
 吸光度比Bが0.01以上であると、得られる被覆材が充分な電子伝導性を示す。
 吸光度比Bの上限は特に制限されないが、例えば、1以下であってもよい。
Cyclized polyacrylonitrile can be said to be a polymer imparted with electronic conductivity by a cyclization reaction.
The degree of electronic conductivity of the cyclized polyacrylonitrile is determined by the absorbance at the peak corresponding to the -CH=C- group after dehydrogenation to double bonds and at the peak corresponding to the ring-closed -C=N- group. It can be expressed by the ratio of the absorbance (-CH=C-group after double bond formation/-C=N-group after ring closure), and the larger the value of this ratio, the better the electron conduction of the cyclized polyacrylonitrile. It can be said that the sex is great. Hereinafter, this absorbance ratio is also referred to as absorbance ratio B.
The absorbance ratio B is preferably 0.01 or more, more preferably 0.02 or more, and even more preferably 0.03 or more.
When the absorbance ratio B is 0.01 or more, the obtained coating material exhibits sufficient electronic conductivity.
Although the upper limit of the absorbance ratio B is not particularly limited, it may be 1 or less, for example.
 赤外分光分析を実施する際は、環化ポリアクリロニトリル自体が種々の結合種を持つために、それぞれのピークが他のピークと重なりやすいため、ベースラインを引いて算出することが好ましい。ベースラインの引き方に特に制限はないが、対象のピークの両端の裾をつなげて引く方法を例示することができる。 When performing infrared spectroscopic analysis, the cyclized polyacrylonitrile itself has various bonding species, so each peak tends to overlap with other peaks, so it is preferable to draw a baseline for calculation. There is no particular limitation on how to draw the baseline, but a method of drawing by connecting the tails of both ends of the target peak can be exemplified.
 赤外分光法における吸光度比は、測定対象が環化ポリアクリロニトリルのみであっても、環化ポリアクリロニトリルと活物質との混合物(ただし、活物質がポリアクリロニトリルの環化及び分解反応に対して触媒的作用がある場合を除く)であっても、集電体と組み合わせた電極の状態であっても同様の傾向が確認される。したがって、測定対象が環化ポリアクリロニトリルと活物質の混合物又は集電体と組み合わせた電極の状態で吸光度比の算出を行ってもよい。 The absorbance ratio in infrared spectroscopy is a mixture of cyclized polyacrylonitrile and an active material (provided that the active material is a catalyst for the cyclization and decomposition reactions of polyacrylonitrile) even if the measurement target is only cyclized polyacrylonitrile. A similar tendency is confirmed even in the state of the electrode combined with the current collector. Therefore, the absorbance ratio may be calculated in the state where the object to be measured is a mixture of cyclized polyacrylonitrile and an active material or an electrode in combination with a current collector.
 環化ポリアクリロニトリルは、アクリドン構造を含むことが好ましい。アクリドン構造は、ポリアクリロニトリルの環化反応過程で生じる、下記に示す環構造(波線は結合部位を示す)である。 The cyclized polyacrylonitrile preferably contains an acridone structure. The acridone structure is the ring structure shown below (the wavy line indicates the binding site) generated during the cyclization reaction of polyacrylonitrile.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 アクリドン構造を含む環化ポリアクリロニトリルは、アクリドン構造が酸素原子を含むことからわかるように、ポリアクリロニトリルの環化反応を生じさせる熱処理を酸素を含む環境で行うことにより得られる。 As can be seen from the fact that the acridone structure contains oxygen atoms, the cyclized polyacrylonitrile containing the acridone structure can be obtained by performing a heat treatment that causes a cyclization reaction of the polyacrylonitrile in an oxygen-containing environment.
 環化ポリアクリロニトリルがアクリドン構造を有することは、熱分解GC/MS分析(Pyrolysis Gas Chromatography Mass Spectrometry)、X線光電子スペクトル分析用の公知の手法によって確認することができる。アクリドン構造の存在は、熱分解GC/MS分析では質量177のフラグメントで確認でき、X線光電子スペクトル分析では532eV付近のピークで確認できる。 The fact that the cyclized polyacrylonitrile has an acridone structure can be confirmed by pyrolysis GC/MS analysis (Pyrolysis Gas Chromatography Mass Spectrometry) and known techniques for X-ray photoelectron spectrum analysis. The presence of the acridone structure can be confirmed by a fragment of mass 177 in pyrolysis GC/MS analysis and by a peak around 532 eV in X-ray photoelectron spectroscopy.
 環化ポリアクリロニトリルの前駆体となるポリアクリロニトリルの分子量に特に制限はないが、重量平均分子量で5000~300万であることが好ましく、1万~100万であることがより好ましく、2万~60万であることがさらに好ましい。ポリアクリロニトリルの重量平均分子量が5000以上であると、良質な被覆材を得ることができ、ポリアクリロニトリルの重量平均分子量が300万以下であると、粘度が低く活物質粒子との混合が容易になる。さらに、ポリアクリロニトリルの重量平均分子量が500以上であると、環化処理による質量減少が抑制されて環化ポリアクリロニトリルの残存量が増大する傾向にある。 The molecular weight of the polyacrylonitrile to be the precursor of the cyclized polyacrylonitrile is not particularly limited, but the weight average molecular weight is preferably 5,000 to 3,000,000, more preferably 10,000 to 1,000,000, and 20,000 to 60,000. 10,000 is more preferable. When the weight average molecular weight of polyacrylonitrile is 5,000 or more, a good coating material can be obtained, and when the weight average molecular weight of polyacrylonitrile is 3,000,000 or less, the viscosity is low and mixing with the active material particles becomes easy. . Furthermore, when the weight-average molecular weight of the polyacrylonitrile is 500 or more, the mass reduction due to the cyclization treatment is suppressed, and the residual amount of the cyclized polyacrylonitrile tends to increase.
 環化ポリアクリロニトリルの前駆体となるポリアクリロニトリルの分子量分布に特に制限はないが、1~3であることが好ましく、1~2であることがより好ましく、1~1.5であることがさらに好ましい。
 ポリアクリロニトリルの分子量分布が1に近いほど、ポリアクリロニトリルの分子量のバラつきが小さい。ポリアクリロニトリルの分子量のバラつきが小さいと、環化処理による質量減少が抑制されて環化ポリアクリロニトリルの残存量が増大する傾向にある。
Although there is no particular limitation on the molecular weight distribution of the polyacrylonitrile that is the precursor of the cyclized polyacrylonitrile, it is preferably 1 to 3, more preferably 1 to 2, and further preferably 1 to 1.5. preferable.
The closer the molecular weight distribution of polyacrylonitrile is to 1, the smaller the variation in molecular weight of polyacrylonitrile. If the variation in molecular weight of polyacrylonitrile is small, the reduction in mass due to cyclization treatment is suppressed, and the residual amount of cyclized polyacrylonitrile tends to increase.
 本開示においてポリアクリロニトリルの分子量分布は、ポリアクリロニトリルの重量平均分子量(Mw)を数平均分子量(Mn)で除して得られる値(Mw/Mn)である。
 本開示においてポリアクリロニトリルの重量平均分子量(Mw)及び数平均分子量(Mn)は、ゲル浸透クロマトグラフィー(Gel Permeation Chromatography)により測定される。
In the present disclosure, the molecular weight distribution of polyacrylonitrile is the value (Mw/Mn) obtained by dividing the weight average molecular weight (Mw) of polyacrylonitrile by the number average molecular weight (Mn).
The weight average molecular weight (Mw) and number average molecular weight (Mn) of polyacrylonitrile in this disclosure are measured by Gel Permeation Chromatography.
 ポリアクリロニトリルはアクリロニトリルの単独重合体であっても、アクリロニトリルとアクリロニトリル以外の重合成分との共重合体(以下、アクリロニトリル共重合体ともいう)であってもよい。
 アクリロニトリル共重合体の環化処理物である環化ポリアクリロニトリルを被覆材として含む被覆活物質は、優れた特性を示す傾向にある。その理由は、例えば、下記のように考えられる。
Polyacrylonitrile may be a homopolymer of acrylonitrile or a copolymer of acrylonitrile and a polymerizable component other than acrylonitrile (hereinafter also referred to as an acrylonitrile copolymer).
A coated active material containing cyclized polyacrylonitrile, which is a cyclized acrylonitrile copolymer, as a coating material tends to exhibit excellent properties. The reason is considered as follows, for example.
 ポリアクリロニトリルに含まれる隣接するニトリル基同士の閉環反応は発熱反応である。この発熱反応は293℃付近を境に急激に進むため、293℃付近において反応系内の温度の急激な上昇を伴う。このため、ポリアクリロニトリルの分子鎖の切断による低分子副生成物の生成及び揮発が急激に進む。一方、ポリアクリロニトリルに共重合成分が導入されていると、ニトリル基の量が相対的に減少して閉環反応がより低温(例えば、278℃付近)で起き、急激な発熱も抑えられる。その結果、低分子副生成物の生成及び揮発が抑制されて環化ポリアクリロニトリルの残存量が増大する。 The ring closure reaction between adjacent nitrile groups contained in polyacrylonitrile is an exothermic reaction. Since this exothermic reaction progresses abruptly at around 293°C, the temperature in the reaction system rises sharply at around 293°C. As a result, the formation and volatilization of low-molecular-weight by-products due to scission of the molecular chains of polyacrylonitrile rapidly proceed. On the other hand, when a copolymerization component is introduced into polyacrylonitrile, the amount of nitrile groups is relatively reduced and the ring closure reaction occurs at a lower temperature (for example, around 278° C.), suppressing rapid heat generation. As a result, the formation and volatilization of low-molecular-weight by-products are suppressed, and the residual amount of cyclized polyacrylonitrile increases.
 さらに、ニトリル基の閉環反応には分子内で生じるものと分子間で生じるものとがある。ポリアクリロニトリルに共重合成分が導入されていると、分子内で生じるニトリル基の閉環反応が相対的に減少し、分子間で生じるニトリル基の閉環反応が相対的に増大する。その結果、環化ポリアクリロニトリルの3次元的な架橋構造の形成が促進される。 Furthermore, the ring closure reaction of nitrile groups includes those that occur intramolecularly and those that occur intermolecularly. When a copolymer component is introduced into polyacrylonitrile, the intramolecular ring-closure reaction of nitrile groups is relatively reduced, and the intermolecular ring-closure reaction of nitrile groups is relatively increased. As a result, formation of a three-dimensional crosslinked structure of the cyclized polyacrylonitrile is promoted.
 あるいは、ポリアクリロニトリルにイオン性の官能基を有する共重合成分が導入されていると、隣接するニトリル基間のラジカル重合反応に加えてイオン性の官能基とニトリル基との間でもイオン重合反応が生じ、分子鎖の結合が生じる。イオン重合反応は、ラジカル重合反応よりも低い温度で進行する。その結果、低分子副生成物の生成及び揮発が抑制されて環化ポリアクリロニトリルの残存量が増大する。 Alternatively, when a copolymerization component having an ionic functional group is introduced into polyacrylonitrile, in addition to the radical polymerization reaction between adjacent nitrile groups, an ionic polymerization reaction also occurs between the ionic functional group and the nitrile group. resulting in binding of the molecular chains. Ionic polymerization reactions proceed at lower temperatures than radical polymerization reactions. As a result, the formation and volatilization of low-molecular-weight by-products are suppressed, and the residual amount of cyclized polyacrylonitrile increases.
 以上の理由から、得られる被覆活物質の強度が向上し、優れた特性を示すと考えられる。 For the above reasons, it is believed that the resulting coated active material has improved strength and exhibits excellent properties.
 アクリロニトリル共重合体を構成するアクリロニトリル以外の重合成分は、特に制限されない。例えば、スルホ基、カルボキシ基、アミノ基及びアルキルエステル基からなる群より選択される少なくとも1種の官能基を有する重合成分から選択してもよい。 The polymerization components other than acrylonitrile that constitute the acrylonitrile copolymer are not particularly limited. For example, it may be selected from polymer components having at least one functional group selected from the group consisting of a sulfo group, a carboxy group, an amino group and an alkyl ester group.
 本開示においてスルホ基は、-SOHで示される1価の基である。スルホ基は、ナトリウム等のアルカリ金属と塩を形成していてもよい。 A sulfo group in the present disclosure is a monovalent group represented by —SO 3 H. The sulfo group may form a salt with an alkali metal such as sodium.
 本開示においてカルボキシ基は、-COOHで示される1価の基である。 A carboxy group in the present disclosure is a monovalent group represented by —COOH.
 本開示においてアミノ基は、-NRで示される1価の基であり、R及びRはそれぞれ独立に水素原子又は1価の有機基である。 In the present disclosure, an amino group is a monovalent group represented by —NR 1 R 2 , where R 1 and R 2 are each independently a hydrogen atom or a monovalent organic group.
 本開示においてアルキルエステル基は、-COORで示される1価の基であり、Rはアルキル基である。アルキル基の炭素数は、1~15が好ましく、1~5がより好ましく、1~3がさらに好ましい。 In the present disclosure, an alkyl ester group is a monovalent group represented by -COOR, and R is an alkyl group. The number of carbon atoms in the alkyl group is preferably 1-15, more preferably 1-5, even more preferably 1-3.
 スルホ基を含む重合成分としては、アリルスルホン酸、メタリルスルホン酸、ビニルベンゼンスルホン酸、これらのアルカリ金属塩(ナトリウム塩等)などが挙げられる。 Polymerization components containing a sulfo group include allylsulfonic acid, methallylsulfonic acid, vinylbenzenesulfonic acid, and alkali metal salts (sodium salts, etc.) thereof.
 カルボキシ基を含む重合成分としては、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、マレイン酸、フマル酸、これらのアルカリ金属塩(ナトリウム塩等)などが挙げられる。 Polymerization components containing a carboxy group include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, and alkali metal salts (sodium salts, etc.) thereof.
 アミノ基を含む重合成分としては、アクリルアミド、メタクリルアミド、ジメチルアミノプロピルアクリルアミド、ジメチルアミノプロピルメタクリルアミド等が挙げられる。 Polymerization components containing amino groups include acrylamide, methacrylamide, dimethylaminopropyl acrylamide, dimethylaminopropyl methacrylamide, and the like.
 アルキルエステル基を含む重合成分としては、アクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸2-エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸n-ヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ラウリル等が挙げられる。 Examples of polymerizable components containing an alkyl ester group include methyl acrylate, ethyl acrylate, isopropyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, and n-methacrylate. butyl, n-hexyl methacrylate, cyclohexyl methacrylate, lauryl methacrylate and the like.
 上記以外の重合成分としては、酢酸ビニル、スチレン、塩化ビニリデン、塩化ビニル等が挙げられる。 Polymerization components other than the above include vinyl acetate, styrene, vinylidene chloride, and vinyl chloride.
 電極及びエネルギー貯蔵デバイスの特性の観点からは、アクリロニトリル共重合体はスルホ基、カルボキシ基、アミノ基等のイオン性基を含むことが好ましく、スルホ基、カルボキシ基等のアニオン性基を含むことがより好ましく、スルホ基又はカルボキシ基を含むことがさらに好ましい。 From the viewpoint of the properties of electrodes and energy storage devices, the acrylonitrile copolymer preferably contains an ionic group such as a sulfo group, a carboxyl group and an amino group, and may contain an anionic group such as a sulfo group and a carboxyl group. More preferably, it contains a sulfo group or a carboxy group.
 イオン性基を含むアクリロニトリル共重合体は、アクリロニトリル以外の重合成分としてイオン性基を含む重合成分を用いることで得られる。 An acrylonitrile copolymer containing an ionic group can be obtained by using a polymerization component containing an ionic group as a polymerization component other than acrylonitrile.
 被覆活物質及びエネルギー貯蔵デバイスの特性の観点からは、アクリロニトリル共重合体におけるアクリロニトリル以外の重合成分の全重合成分に占める割合は0.1質量%以上であることが好ましく、0.2質量%以上であることがより好ましく、0.5質量%以上であることがさらに好ましい。 From the viewpoint of the properties of the coated active material and the energy storage device, the ratio of the polymerized components other than acrylonitrile in the acrylonitrile copolymer to the total polymerized components is preferably 0.1% by mass or more, and 0.2% by mass or more. and more preferably 0.5% by mass or more.
 環化ポリアクリロニトリルの特性を充分に発揮する観点からは、アクリロニトリル共重合体におけるアクリロニトリル以外の重合成分の全重合成分に占める割合は20質量%以下であることが好ましく、15質量%以下であることがより好ましく、10質量%以下であることがさらに好ましい。 From the viewpoint of fully exhibiting the properties of the cyclized polyacrylonitrile, the ratio of the polymer components other than acrylonitrile in the acrylonitrile copolymer to the total polymer components is preferably 20% by mass or less, and is 15% by mass or less. is more preferable, and 10% by mass or less is even more preferable.
 ポリアクリロニトリルがアクリロニトリル共重合体である場合、重合成分全体に占めるアクリロニトリルの割合は80質量%以上であることが好ましく、85質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。 When the polyacrylonitrile is an acrylonitrile copolymer, the proportion of acrylonitrile in the total polymerization components is preferably 80% by mass or more, more preferably 85% by mass or more, and more preferably 90% by mass or more. preferable.
 本開示の電極は、被覆材として環化ポリアクリロニトリル以外の被覆材を含んでもよい。
 環化ポリアクリロニトリル以外の被覆材としては、ポリアクリル酸、ポリ酢酸ビニル、ポリスチレン、ポリ塩化ビニリデン、ポリ塩化ビニル、ポリメタクリル酸等が挙げられる。
 被覆材全体に占める環化ポリアクリロニトリルの割合は、70質量%~100質量%であることが好ましく、80質量%~100質量%であることがより好ましく、90質量%~100質量%であることがさらに好ましい。
The electrodes of the present disclosure may include coating materials other than cyclized polyacrylonitrile as the coating material.
Coating materials other than cyclized polyacrylonitrile include polyacrylic acid, polyvinyl acetate, polystyrene, polyvinylidene chloride, polyvinyl chloride, and polymethacrylic acid.
The proportion of the cyclized polyacrylonitrile in the entire coating material is preferably 70% by mass to 100% by mass, more preferably 80% by mass to 100% by mass, and 90% by mass to 100% by mass. is more preferred.
 被覆活物質全体(活物質粒子及び被覆材の合計)に占める被覆材の割合は、0.1質量%~50質量%であることが好ましく、1質量%~20質量%であることがより好ましく、5質量%~10質量%であることがさらに好ましい。
 被覆材の割合が被覆活物質全体の0.1質量%以上であると、充分な初期特性の向上効果が得られる。被覆材の割合が被覆活物質全体の50質量%以上であると、エネルギー貯蔵デバイスの容量が充分に確保される。
 被覆活物質全体に占める被覆材の割合は、被覆活物質を被覆材が熱分解する温度で熱処理したときの熱処理前後の質量変化から算出できる。
The proportion of the coating material in the entire coated active material (total of active material particles and coating material) is preferably 0.1% by mass to 50% by mass, more preferably 1% by mass to 20% by mass. , and more preferably 5 to 10% by mass.
When the ratio of the coating material is 0.1% by mass or more of the entire coated active material, a sufficient effect of improving the initial characteristics can be obtained. When the ratio of the coating material is 50% by mass or more of the entire coated active material, the capacity of the energy storage device is sufficiently secured.
The ratio of the coating material to the entire coated active material can be calculated from the change in mass before and after the heat treatment when the coated active material is heat-treated at a temperature at which the coating material thermally decomposes.
 必要に応じ、被覆材は導電助剤を含んでもよい。導電助剤としては、カーボンブラック、カーボンナノチューブ、カーボンナノファイバー、フラーレン、カーボンナノホーン等の炭素材料、導電性を示す酸化物、導電性を示す窒化物等が挙げられる。 If necessary, the coating material may contain a conductive aid. Examples of conductive aids include carbon materials such as carbon black, carbon nanotubes, carbon nanofibers, fullerenes and carbon nanohorns, conductive oxides, and conductive nitrides.
 被覆材が導電助剤を含む場合、その含有率は特に制限されず、被覆材全体の1質量%~20質量%であってもよい。 When the coating material contains a conductive aid, the content is not particularly limited, and may be 1% by mass to 20% by mass of the entire coating material.
(活物質粒子)
 本開示の被覆活物質に含まれる活物質粒子は、アルカリ金属イオンを吸蔵及び放出可能な物質(活物質)を含む粒子であれば特に制限されない。
 アルカリ金属イオンとしては、リチウムイオン、カリウムイオン、ナトリウムイオン等が挙げられる。これらの中でもリチウムイオンが好ましい。
 活物質粒子に含まれる活物質は、1種のみでも2種以上の組み合わせであってもよい。
(Active material particles)
The active material particles contained in the coated active material of the present disclosure are not particularly limited as long as they contain a material (active material) that can occlude and release alkali metal ions.
Alkali metal ions include lithium ions, potassium ions, sodium ions, and the like. Among these, lithium ion is preferred.
The active material contained in the active material particles may be of one type or a combination of two or more types.
 正極の活物質としては、リチウム遷移金属酸化物、リチウム遷移金属リン酸塩等のリチウム遷移金属化合物が挙げられる。
 リチウム遷移金属酸化物としては、Mn、Ni、Co等の遷移金属の1種又は2種以上を含む化合物、及びこれらの化合物に含まれる遷移金属の一部を、1種若しくは2種以上の他の遷移金属又はMg、Al等の金属元素(典型元素)で置換したリチウム遷移金属酸化物が挙げられる。
 負極の活物質としては、炭素材料、ケイ素原子を含む活物質等が挙げられる。
 炭素材料としては、黒鉛、ハードカーボン、ソフトカーボン等が挙げられる。
 ケイ素原子を含む活物質としては、Si(金属シリコン)、SiOx(0.8≦x≦1.5)で表されるケイ素酸化物等が挙げられる。
 ケイ素酸化物は、不均化反応によりナノシリコンが酸化ケイ素マトリックスに分散された構造であってもよい。
 ケイ素原子を含む活物質は、ホウ素、リン等がドープされて半導体化されていてもよい。
Examples of positive electrode active materials include lithium transition metal compounds such as lithium transition metal oxides and lithium transition metal phosphates.
Lithium transition metal oxides include compounds containing one or more of transition metals such as Mn, Ni, Co, etc., and some of the transition metals contained in these compounds, one or more of them or a lithium transition metal oxide substituted with a metal element (typical element) such as Mg or Al.
Examples of active materials for the negative electrode include carbon materials and active materials containing silicon atoms.
Carbon materials include graphite, hard carbon, soft carbon, and the like.
Examples of active materials containing silicon atoms include Si (metallic silicon) and silicon oxides represented by SiOx (0.8≦x≦1.5).
The silicon oxide may have a structure in which nano-silicon is dispersed in a silicon oxide matrix by a disproportionation reaction.
The active material containing silicon atoms may be doped with boron, phosphorus, or the like to make it a semiconductor.
 活物質粒子は、炭素材料からなる活物質粒子の表面にケイ素が存在する状態であってもよい。
 炭素材料からなる活物質粒子の表面にケイ素を存在させる方法としては、蒸着法、プラズマCVD(Chemical Vapor Deposition)法等が挙げられる。プラズマCVD法はシラン、クロロシラン等の原料を分解して行ってもよい。
The active material particles may be in a state in which silicon is present on the surfaces of the active material particles made of a carbon material.
As a method for making silicon exist on the surface of the active material particles made of a carbon material, a vapor deposition method, a plasma CVD (Chemical Vapor Deposition) method, and the like can be mentioned. The plasma CVD method may be performed by decomposing raw materials such as silane and chlorosilane.
 ケイ素原子を含む活物質は理論容量が大きく、エネルギー貯蔵デバイスの高容量化への寄与が期待される一方で、充放電の際の体積変化が大きく、劣化しやすい。さらに、ケイ素原子を含む活物質はそれ自体に電子伝導性がない。
 本開示の被覆活物質に被覆材として用いられる環化ポリアクリロニトリルは、活物質の体積変化に対応しうる充分な柔軟性と電子伝導性とを併せもつ。このため、ケイ素原子を含む活物質粒子の被覆材として特に好適に使用できる。
Active materials containing silicon atoms have a large theoretical capacity and are expected to contribute to increasing the capacity of energy storage devices. In addition, active materials containing silicon atoms themselves are not electronically conductive.
The cyclized polyacrylonitrile used as a coating material for the coated active material of the present disclosure has both sufficient flexibility and electronic conductivity to accommodate changes in volume of the active material. Therefore, it can be particularly suitably used as a coating material for active material particles containing silicon atoms.
 活物質粒子は、環化ポリアクリロニトリル以外の材料でさらに被覆されてもよい。この場合、環化ポリアクリロニトリルを含む被覆は活物質粒子と環化ポリアクリロニトリル以外の材料からなる被覆との間に位置していても、環化ポリアクリロニトリル以外の材料からなる被覆の上に位置していても、環化ポリアクリロニトリルを含む被覆と環化ポリアクリロニトリル以外の材料からなる被覆とが混在した状態であってもよい。
 活物質粒子は、例えば、炭素材料からなる被覆(炭素被覆)を有していてもよい。活物質粒子の表面を炭素材料で被覆することで、例えば、導電性を持たない活物質粒子に電子伝導性を付与することができる。例えば、ケイ素を含む活物質粒子を炭素材料で被覆することで、ケイ素を含む活物質粒子に電子伝導性を付与することができる。
 ケイ素を含む活物質粒子を炭素材料で被覆する場合、炭素材料の材質は特に制限されず、黒鉛又は非晶質炭素であってもよい。
 炭素材料は、有機化合物を炭化して得られるものであってもよい。有機化合物としてはタール、ピッチ、有機高分子化合物等が挙げられる。有機高分子化合物としてはポリアクリロニトリル、ポリ塩化ビニル、ポリビニルアルコール、ポリ酢酸ビニル、ポリビニルブチラール、デンプン、セルロース等が挙げられる。
The active material particles may be further coated with a material other than cyclized polyacrylonitrile. In this case, even if the coating containing the cyclized polyacrylonitrile is located between the active material particles and the coating made of the material other than the cyclized polyacrylonitrile, it is located above the coating made of the material other than the cyclized polyacrylonitrile. Alternatively, a coating containing a cyclized polyacrylonitrile and a coating made of a material other than the cyclized polyacrylonitrile may be mixed.
The active material particles may have, for example, a coating (carbon coating) made of a carbon material. By coating the surface of the active material particles with a carbon material, for example, electronic conductivity can be imparted to active material particles that do not have electrical conductivity. For example, electron conductivity can be imparted to the silicon-containing active material particles by coating the silicon-containing active material particles with a carbon material.
When the active material particles containing silicon are coated with a carbon material, the material of the carbon material is not particularly limited, and may be graphite or amorphous carbon.
The carbon material may be obtained by carbonizing an organic compound. Examples of organic compounds include tar, pitch, and organic polymer compounds. Examples of organic polymer compounds include polyacrylonitrile, polyvinyl chloride, polyvinyl alcohol, polyvinyl acetate, polyvinyl butyral, starch, and cellulose.
 被覆活物質(又は活物質粒子)の形状は、特に制限されない。例えば、球状粒子、ワイヤ状粒子、鱗片状粒子、塊状粒子、複数の粒子からなる複合粒子等であってよい。 The shape of the coated active material (or active material particles) is not particularly limited. For example, it may be spherical particles, wire-like particles, scale-like particles, massive particles, composite particles composed of a plurality of particles, or the like.
 被覆活物質(又は活物質粒子)は、体積平均粒子径(D50)が1μm~50μmであることが好ましく、3μm~30μmであることがより好ましい(ワイヤ状粒子である場合を除く)。被覆活物質(又は活物質粒子)の体積平均粒子径が1μm以上であると、電極を形成するためのスラリーの調製が容易になる。被覆活物質(又は活物質粒子)の体積平均粒子径が50μm以下であると、電極の薄膜化がしやすく、エネルギー貯蔵デバイスの入出力特性を向上させやすい。 The volume average particle diameter (D50) of the coated active material (or active material particles) is preferably 1 μm to 50 μm, more preferably 3 μm to 30 μm (except for wire-shaped particles). When the volume-average particle size of the coated active material (or active material particles) is 1 μm or more, it becomes easier to prepare a slurry for forming an electrode. When the volume-average particle size of the coated active material (or active material particles) is 50 μm or less, the electrode can be easily formed into a thin film, and the input/output characteristics of the energy storage device can be easily improved.
 被覆活物質(又は活物質粒子)の体積平均粒子径は、レーザー散乱回折法によって測定される。具体的には、レーザー散乱回折法によって得られる体積基準の粒子径分布において小径側からの累積が50%となるときの粒子径を体積平均粒子径とする。 The volume average particle size of the coated active material (or active material particles) is measured by a laser scattering diffraction method. Specifically, the volume-average particle diameter is defined as the particle diameter when the accumulation from the small diameter side is 50% in the volume-based particle diameter distribution obtained by the laser scattering diffraction method.
 被覆活物質(又は活物質粒子)が二次粒子である場合、上記体積平均粒子径は二次粒子の体積平均粒子径である。
 本開示において「二次粒子」とは、複数個の一次粒子が凝集して形成された通常挙動する上での最小単位の粒子を意味し、「一次粒子」とは、単独で存在することができる最小単位の粒子を意味する。
When the coated active material (or active material particles) are secondary particles, the volume average particle size is the volume average particle size of the secondary particles.
In the present disclosure, the term "secondary particle" means a particle that is the smallest unit of normal behavior formed by agglomeration of a plurality of primary particles, and the term "primary particle" means that it can exist alone. It means the smallest unit particle that can be made.
 被覆活物質(又は活物質粒子)が二次粒子である場合、二次粒子を構成する一次粒子の粒子径は、特に制限されない。例えば、平均一次粒子径は10nm~50μmであることが好ましく。30nm~10μmであることがより好ましい。被覆活物質の平均一次粒子径が10nm以上であると、表面に形成される自然酸化膜の影響を抑えることができる。被覆活物質の平均一次粒子径が50μm以下であると、充放電に伴う劣化が抑制される。 When the coated active material (or active material particles) are secondary particles, the particle size of the primary particles that make up the secondary particles is not particularly limited. For example, the average primary particle size is preferably 10 nm to 50 μm. More preferably, it is 30 nm to 10 μm. When the average primary particle size of the coated active material is 10 nm or more, the influence of the natural oxide film formed on the surface can be suppressed. When the average primary particle size of the coated active material is 50 μm or less, deterioration due to charging and discharging is suppressed.
 本開示において被覆活物質(又は活物質粒子)の一次粒子径は、走査型電子顕微鏡で観察される一次粒子の長径を意味する。具体的には、一次粒子が球状である場合はその最大直径を意味し、一次粒子が板状である場合はその厚み方向から観察した粒子の投影像における最大直径または最大対角線長を意味する。「平均一次粒子径」は、走査型電子顕微鏡で観察される300個以上の一次粒子の長径の測定値の算術平均値である。 In the present disclosure, the primary particle diameter of the coated active material (or active material particles) means the major diameter of the primary particles observed with a scanning electron microscope. Specifically, when the primary particles are spherical, it means the maximum diameter, and when the primary particles are tabular, it means the maximum diameter or maximum diagonal length in the projected image of the particles observed from the thickness direction. "Average primary particle diameter" is the arithmetic mean value of the measured values of the major diameters of 300 or more primary particles observed with a scanning electron microscope.
 被覆活物質(又は活物質粒子)がワイヤ状である場合、その長さに特に制限はない。例えば、10nm~10μmであることが好ましい。ワイヤ状の被覆活物質(又は活物質粒子)の長さを10nm以上とすることでハンドリング性が向上し、10μm以下とすることで被覆活物質の膨張時の応力が分散されやすい傾向にある。
 ワイヤ状の粒子の径に特に制限はない。例えば、1nm~5μmであることが好ましい。ワイヤ状の粒子の径を1nm以上とすることで、ワイヤ状の粒子の自立強度が向上し、5μm以下とすることで被覆活物質の膨張時の径方向への応力が抑えられ、長さ方向に応力を逃がすことができる。ワイヤ状の被覆活物質(又は活物質粒子)は、活物質をワイヤ状に形成するための触媒成分を含んでいてもよい。ワイヤ状の被覆活物質(又は活物質粒子)として具体的には、金属シリコンを含む被覆活物質(又は活物質粒子)が挙げられる。
When the coated active material (or active material particles) is wire-shaped, there is no particular limitation on its length. For example, it is preferably 10 nm to 10 μm. When the length of the wire-shaped coated active material (or active material particles) is 10 nm or more, the handleability is improved, and when the length is 10 μm or less, the stress during expansion of the coated active material tends to be easily dispersed.
There is no particular limitation on the diameter of the wire-like particles. For example, it is preferably 1 nm to 5 μm. By setting the diameter of the wire-shaped particles to 1 nm or more, the self-supporting strength of the wire-shaped particles is improved, and by setting the diameter to 5 μm or less, the stress in the radial direction when the coated active material expands is suppressed, and the length direction is reduced. can relieve stress. The wire-shaped coated active material (or active material particles) may contain a catalyst component for forming the active material into a wire-like shape. A specific example of the wire-shaped coated active material (or active material particles) is a coated active material (or active material particles) containing metallic silicon.
 被覆活物質(又は活物質粒子)の粒子径を調節する方法は、特に制限されない。例えば、原料を選択する方法、粉砕条件を調節する方法、蒸着、プラズマ法、シラン等の表面処理を行う方法などが挙げられる。 The method for adjusting the particle size of the coated active material (or active material particles) is not particularly limited. Examples thereof include a method of selecting raw materials, a method of adjusting pulverization conditions, a vapor deposition method, a plasma method, and a method of surface treatment with silane or the like.
 被覆活物質(又は活物質粒子)のBET比表面積は、0.5m/g~100m/gであることが好ましく、1m/g~30m/gであることがより好ましい。被覆活物質(又は活物質粒子)のBET比表面積が0.5m/g以上であると、十分な放電容量が得られやすくなる。被覆活物質(又は活物質粒子)のBET比表面積が100m/g以下であると、電極作製の際のハンドリング性に優れる。
 被覆活物質のBET比表面積(又は活物質粒子)は、-196℃における窒素の吸着等温線から算出できる。
The BET specific surface area of the coated active material (or active material particles) is preferably 0.5 m 2 /g to 100 m 2 /g, more preferably 1 m 2 /g to 30 m 2 /g. When the BET specific surface area of the coated active material (or active material particles) is 0.5 m 2 /g or more, sufficient discharge capacity can be easily obtained. When the BET specific surface area of the coated active material (or active material particles) is 100 m 2 /g or less, the handleability during electrode production is excellent.
The BET specific surface area (or active material particles) of the coated active material can be calculated from the nitrogen adsorption isotherm at -196°C.
 本開示の被覆活物質は、別の活物質と併用してもよい。例えば、本開示の被覆活物質において活物質粒子がケイ素原子を含む場合、本開示の被覆活物質と炭素材料からなる活物質粒子とを併用してもよい。 The coated active material of the present disclosure may be used in combination with another active material. For example, when the active material particles in the coated active material of the present disclosure contain silicon atoms, the coated active material of the present disclosure and active material particles made of a carbon material may be used together.
 本開示の被覆活物質の構成の例を、図面に基づいて説明する。
 図1に示す被覆活物質10は、活物質粒子1の表面(活物質粒子の表面に形成される自然酸化膜は省略する)に、環化ポリアクリロニトリルを含む被覆2が形成された状態である。
 図2に示す被覆活物質11は、図1に示す被覆活物質10の変形例であり、活物質粒子1の表面と環化ポリアクリロニトリルを含む被覆2との間に炭素材料等からなる被覆3が形成された状態である。
 図3に示す被覆活物質12は、図1に示す被覆活物質10の変形例であり、環化ポリアクリロニトリルを含む被覆2の上に炭素材料等からなる被覆3が形成された状態である。
 図4に示す被覆活物質13、図1に示す被覆活物質10の変形例であり、環化ポリアクリロニトリルを含む被覆2が導電助剤4を含んだ状態である。
 図5に示す被覆活物質14は、図1に示す被覆活物質10の変形例であり、活物質粒子1が複数の一次粒子からなる二次粒子の状態である。
An example of the configuration of the coated active material of the present disclosure will be described based on the drawings.
The coated active material 10 shown in FIG. 1 is in a state in which a coating 2 containing cyclized polyacrylonitrile is formed on the surface of the active material particle 1 (a natural oxide film formed on the surface of the active material particle is omitted). .
The coated active material 11 shown in FIG. 2 is a modified example of the coated active material 10 shown in FIG. is formed.
A coated active material 12 shown in FIG. 3 is a modification of the coated active material 10 shown in FIG. 1, and is in a state in which a coating 3 made of a carbon material or the like is formed on a coating 2 containing cyclized polyacrylonitrile.
It is a modification of the coated active material 13 shown in FIG. 4 and the coated active material 10 shown in FIG.
The coated active material 14 shown in FIG. 5 is a modified example of the coated active material 10 shown in FIG. 1, and the active material particles 1 are in the state of secondary particles composed of a plurality of primary particles.
<エネルギー貯蔵デバイス用電極>
 本開示のエネルギー貯蔵デバイス用電極(以下、電極ともいう)は、上述した本開示の被覆活物質と、結着材とを含む。
<Energy storage device electrodes>
An energy storage device electrode (hereinafter also referred to as an electrode) of the present disclosure includes the above-described coated active material of the present disclosure and a binder.
 結着材の種類は特に制限されず、ポリアクリロニトリル、カルボキシメチルセルロース(CMC)、CMC/スチレンブタジエンゴム(SBR)、ポリフッ化ビニリデン等から選択できる。
 ポリアクリロニトリルを結着材として用いる場合、ポリアクリロニトリルは環化した状態であってもよい。
The type of binder is not particularly limited, and can be selected from polyacrylonitrile, carboxymethylcellulose (CMC), CMC/styrene-butadiene rubber (SBR), polyvinylidene fluoride, and the like.
When polyacrylonitrile is used as the binder, the polyacrylonitrile may be in a cyclized state.
 電極は、本開示の被覆活物質のみを活物質として含んでもよく、本開示の被覆活物質と、本開示の被覆活物質以外の活物質とを活物質として含んでもよい。
 本開示の被覆活物質以外の活物質の種類は特に制限されず、上述した活物質粒子から選択してもよい。
The electrode may contain only the coated active material of the present disclosure as an active material, or may contain the coated active material of the present disclosure and an active material other than the coated active material of the present disclosure as active materials.
The type of active material other than the coated active material of the present disclosure is not particularly limited, and may be selected from the active material particles described above.
 エネルギー貯蔵デバイスの高容量化の観点からは、電極に含まれる活物質粒子の含有率は、電極全体(集電体を除く)の50質量%以上であることが好ましく、55質量%以上であることがより好ましく、60質量%以上であることがさらに好ましい。 From the viewpoint of increasing the capacity of the energy storage device, the content of the active material particles contained in the electrode is preferably 50% by mass or more of the entire electrode (excluding the current collector), and is 55% by mass or more. is more preferable, and 60% by mass or more is even more preferable.
 結着材による電極の強度維持効果の観点からは、電極に含まれる活物質の含有率(本開示の被覆活物質以外の活物質も含む含有率)は、電極全体(集電体を除く)の95質量%以下であることが好ましく、90質量%以下であることがより好ましく、80質量%以下であることがさらに好ましい。 From the viewpoint of the strength maintenance effect of the electrode by the binder, the content rate of the active material contained in the electrode (the content rate including the active material other than the coated active material of the present disclosure) is the total electrode (excluding the current collector) is preferably 95% by mass or less, more preferably 90% by mass or less, and even more preferably 80% by mass or less.
(導電助剤)
 必要に応じ、電極は導電助剤を含んでもよい。導電助剤としては、カーボンブラック、カーボンナノチューブ、カーボンナノファイバー、フラーレン、カーボンナノホーン等の炭素材料、導電性を示す酸化物、導電性を示す窒化物等が挙げられる。
(Conductivity aid)
If necessary, the electrodes may contain a conductive aid. Examples of conductive aids include carbon materials such as carbon black, carbon nanotubes, carbon nanofibers, fullerenes and carbon nanohorns, conductive oxides, and conductive nitrides.
 電極が導電助剤を含む場合、その含有率は特に制限されず、電極全体(集電体を除く)の1質量%~20質量%であってもよい。 When the electrode contains a conductive aid, the content is not particularly limited, and may be 1% by mass to 20% by mass of the entire electrode (excluding the current collector).
(集電体)
 電極は、集電体の上に活物質、結着材及び必要に応じて含まれる導電助剤を含む層が形成された状態であってもよい。
 集電体の種類は特に制限されず、アルミニウム、銅、ニッケル、チタン、ステンレス鋼等の金属又は合金が挙げられる。集電体はカーボンコート、表面粗化等が施された状態であってもよい。
(current collector)
The electrode may be in a state in which a layer containing an active material, a binder, and optionally a conductive aid is formed on a current collector.
The type of current collector is not particularly limited, and metals or alloys such as aluminum, copper, nickel, titanium, and stainless steel can be used. The current collector may be carbon-coated, surface-roughened, or the like.
<エネルギー貯蔵デバイス>
 本開示のエネルギー貯蔵デバイスは、上述した本開示の電極を備える。
 エネルギー貯蔵デバイスの種類は特に制限されない。例えば、リチウムイオン電池、ナトリウムイオン電池、カリウムイオン電池等の、アルカリ金属イオンの電極間の移動を充放電に利用するデバイスが挙げられる。
<Energy storage device>
The energy storage device of the present disclosure comprises the electrodes of the present disclosure as described above.
The type of energy storage device is not particularly limited. Examples thereof include devices such as lithium-ion batteries, sodium-ion batteries, and potassium-ion batteries, which utilize movement of alkali metal ions between electrodes for charging and discharging.
 本開示のエネルギー貯蔵デバイスは、正極、負極、電解液等から構成される。上述したエネルギー貯蔵デバイス用電極は正極であっても負極であってもよいが、負極であることが好ましい。 The energy storage device of the present disclosure is composed of a positive electrode, a negative electrode, an electrolytic solution, and the like. The energy storage device electrode described above may be a positive electrode or a negative electrode, but is preferably a negative electrode.
 エネルギー貯蔵デバイスに使用される電解液としては、電解質を溶解させた有機溶媒、イオン液体等を使用できる。イオン液体としては、170℃未満の温度で液状のイオン液体、溶媒和イオン液体等が挙げられる。 As the electrolyte used in energy storage devices, organic solvents, ionic liquids, etc., in which electrolytes are dissolved can be used. Examples of the ionic liquid include ionic liquids that are liquid at a temperature of less than 170° C., solvated ionic liquids, and the like.
 電解質塩として具体的には、LiPF、LiClO、LiBF、LiClF、LiAsF、LiSbF、LiAlO、LiAlCl、LiN(FSO、LiN(CFSO、LiN(CSO、LiC(CFSO、LiCl、LiI等の溶媒和しにくいアニオンを生成するリチウム塩が挙げられる。
 電解質塩は、1種のみを用いても2種以上を用いてもよい。
Specific examples of electrolyte salts include LiPF 6 , LiClO 4 , LiBF 4 , LiClF 4 , LiAsF 6 , LiSbF 6 , LiAlO 4 , LiAlCl 4 , LiN(FSO 2 ) 2 , LiN(CF 3 SO 2 ) 2 , LiN( Lithium salts that generate poorly solvated anions such as C 2 F 5 SO 2 ) 2 , LiC(CF 3 SO 2 ) 3 , LiCl, and LiI are included.
Only one electrolyte salt may be used, or two or more electrolyte salts may be used.
 電解液中の電解質塩濃度は、例えば、電解液1Lあたり好ましくは0.3モル以上、より好ましくは0.5モル以上、さらに好ましくは0.8モル以上である。
 電解液中の電解質塩濃度は、例えば、電解液1Lあたり好ましくは5モル以下、より好ましくは3モル以下、さらに好ましくは1.5モル以下である。
The electrolyte salt concentration in the electrolytic solution is, for example, preferably 0.3 mol or more, more preferably 0.5 mol or more, and even more preferably 0.8 mol or more per 1 L of the electrolytic solution.
The electrolyte salt concentration in the electrolytic solution is, for example, preferably 5 mol or less, more preferably 3 mol or less, and even more preferably 1.5 mol or less per liter of the electrolytic solution.
 有機溶媒として具体的には、カーボネート類(プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート等)、ラクトン類(γ-ブチロラクトン等)、鎖状エーテル類(1,2-ジメトキシエタン、ジメチルエーテル、ジエチルエーテル等)、環状エーテル類(テトラヒドロフラン、2-メチルテトラヒドロフラン、ジオキソラン、4-メチルジオキソラン、ジグライム、トリグライム、テトラグライム等)、スルホラン類(スルホラン等)、スルホキシド類(ジメチルスルホキシド等)、ニトリル類(アセトニトリル、プロピオニトリル、ベンゾニトリル等)、アミド類(N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等)、ポリオキシアルキレングリコール類(ジエチレングリコール等)などの非プロトン性溶媒が挙げられる。
 有機溶媒は、1種のみを用いても2種以上を用いてもよい。
Specific examples of organic solvents include carbonates (propylene carbonate, ethylene carbonate, diethyl carbonate, etc.), lactones (γ-butyrolactone, etc.), chain ethers (1,2-dimethoxyethane, dimethyl ether, diethyl ether, etc.), Cyclic ethers (tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, 4-methyldioxolane, diglyme, triglyme, tetraglyme, etc.), sulfolanes (sulfolane, etc.), sulfoxides (dimethylsulfoxide, etc.), nitriles (acetonitrile, propionitrile, etc.) , benzonitrile, etc.), amides (N,N-dimethylformamide, N,N-dimethylacetamide, etc.), polyoxyalkylene glycols (diethylene glycol, etc.), and other aprotic solvents.
Only one kind of organic solvent may be used, or two or more kinds thereof may be used.
 イオン液体を構成するカチオン部は、有機カチオン及び無機カチオンのいずれでもよいが、有機カチオンであることが好ましい。
 イオン液体を構成する有機カチオンとして具体的には、イミダゾリウムカチオン、ピリジニウムカチオン、ピロリジニウムカチオン、ホスホニウムカチオン、アンモニウムカチオン、スルホニウムカチオン等が挙げられる。
The cation moiety constituting the ionic liquid may be either an organic cation or an inorganic cation, but is preferably an organic cation.
Specific examples of organic cations constituting the ionic liquid include imidazolium cations, pyridinium cations, pyrrolidinium cations, phosphonium cations, ammonium cations, and sulfonium cations.
 イオン液体を構成するアニオン部は、有機アニオン及び無機アニオンのいずれでもよい。
 イオン液体を構成する有機アニオンとして具体的には、メチルサルフェートアニオン(CHSO )、エチルサルフェートアニオン(CSO )等のアルキルサルフェートアニオン;トシレートアニオン(CHSO );メタンスルホネートアニオン(CHSO )、エタンスルホネートアニオン(CSO )、ブタンスルホネートアニオン(CSO )等のアルカンスルホネートアニオン;トリフルオロメタンスルホネートアニオン(CFSO )、ペンタフルオロエタンスルホネートアニオン(CSO )、ヘプタフルオロプロパンスルホネートアニオン(CSO )、ノナフルオロブタンスルホネートアニオン(CSO )等のパーフルオロアルカンスルホネートアニオン;ビス(トリフルオロメタンスルホニル)イミドアニオン((CFSO)N)、ビス(ノナフルオロブタンスルホニル)イミドアニオン((CSO)N)、ノナフルオロ-N-[(トリフルオロメタン)スルホニル]ブタンスルホニルイミドアニオン((CFSO)(CSO)N)、N,N-ヘキサフルオロ-1,3-ジスルホニルイミドアニオン(SOCFCFCFSO)等のパーフルオロアルカンスルホニルイミドアニオン;アセテートアニオン(CHCOO);ハイドロジェンサルフェートアニオン(HSO );などが挙げられる。
 イオン液体を構成する無機アニオンとして具体的には、ビス(フルオロスルホニル)イミドアニオン(N(SOF) );ビス(トリフルオロスルホニル)イミドアニオン(N(SOCF3 );ヘキサフルオロホスフェートアニオン(PF );テトラフルオロボレートアニオン(BF );塩化物イオン(Cl)、臭化物イオン(Br)、ヨウ化物イオン(I)等のハライドアニオン;テトラクロロアルミネートアニオン(AlCl );チオシアネートアニオン(SCN);などが挙げられる。
The anion part constituting the ionic liquid may be either an organic anion or an inorganic anion.
Specific examples of organic anions constituting the ionic liquid include alkyl sulfate anions such as methyl sulfate anion (CH 3 SO 4 ) and ethyl sulfate anion (C 2 H 5 SO 4 ); tosylate anion (CH 3 C 6 H 4 SO 3 ); alkanesulfonate anions such as methanesulfonate anion (CH 3 SO 3 ), ethanesulfonate anion (C 2 H 5 SO 3 ), butanesulfonate anion (C 4 H 9 SO 3 ); romethanesulfonate anion (CF 3 SO 3 ), pentafluoroethanesulfonate anion (C 2 F 5 SO 3 ), heptafluoropropanesulfonate anion (C 3 H 7 SO 3 ), nonafluorobutanesulfonate anion (C 4 H 9 SO 3 ) and other perfluoroalkanesulfonate anions ; N ), nonafluoro-N-[(trifluoromethane)sulfonyl]butanesulfonylimide anion ((CF 3 SO 2 )(C 4 F 9 SO 2 )N ), N,N-hexafluoro-1,3-di perfluoroalkanesulfonylimide anions such as sulfonylimide anions (SO 2 CF 2 CF 2 CF 2 SO 2 N ); acetate anions (CH 3 COO ); hydrogen sulfate anions (HSO 4 );
Specific inorganic anions constituting the ionic liquid include bis(fluorosulfonyl)imide anion (N(SO 2 F) 2 ); bis(trifluorosulfonyl)imide anion (N(SO 2 CF 3 ) 2 ). hexafluorophosphate anion (PF 6 ); tetrafluoroborate anion (BF 4 ); halide anions such as chloride ion (Cl ), bromide ion (Br ), iodide ion (I ); tetrachloro aluminate anion (AlCl 4 ); thiocyanate anion (SCN ); and the like.
 イオン液体としては、例えば、上記のいずれかのカチオン部と、上記のいずれかのアニオン部と、の組み合わせで構成されたものが挙げられる。 Examples of ionic liquids include those composed of a combination of any of the above cation moieties and any of the above anion moieties.
 カチオン部がイミダゾリウムカチオンであるイオン液体として具体的には、1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド、1-ブチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド、1-メチル-3-プロピルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド、1-ヘキシル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド、1-エチル-3-メチルイミダゾリウムクロライド、1-ブチル-3-メチルイミダゾリウムクロライド、1-エチル-3-メチルイミダゾリウムメタンスルホネート、1-ブチル-3-メチルイミダゾリウムメタンスルホネート、1,2,3-トリメチルイミダゾリウムメチルサルフェート、メチルイミダゾリウムクロライド、メチルイミダゾリウムハイドロジェンサルフェート、1-エチル-3-メチルイミダゾリウムハイドロジェンサルフェート、1-ブチル-3-メチルイミダゾリウムハイドロジェンサルフェート、1-ブチル-3-メチルイミダゾリウムハイドロジェンサルフェート、1-エチル-3-メチルイミダゾリウムテトラクロロアルミネート、1-ブチル-3-メチルイミダゾリウムテトラクロロアルミネート、1-エチル-3-メチルイミダゾリウムアセテート、1-ブチル-3-メチルイミダゾリウムアセテート、1-エチル-3-メチルイミダゾリウムエチルサルフェート、1-ブチル-3-メチルイミダゾリウムメチルサルフェート、1-エチル-3-メチルイミダゾリウムチオシアネート、1-ブチル-3-メチルイミダゾリウムチオシアネート、1-エチル-2,3-ジメチルイミダゾリウムエチルサルフェート等が挙げられる。 Specific examples of the ionic liquid whose cation moiety is an imidazolium cation include 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, 1-methyl-3-propylimidazolium bis(trifluoromethanesulfonyl)imide, 1-hexyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, 1-ethyl-3-methylimidazolium chloride, 1-butyl-3 -methylimidazolium chloride, 1-ethyl-3-methylimidazolium methanesulfonate, 1-butyl-3-methylimidazolium methanesulfonate, 1,2,3-trimethylimidazolium methylsulfate, methylimidazolium chloride, methylimidazolium Hydrogen sulfate, 1-ethyl-3-methylimidazolium hydrogen sulfate, 1-butyl-3-methylimidazolium hydrogen sulfate, 1-butyl-3-methylimidazolium hydrogen sulfate, 1-ethyl-3-methyl imidazolium tetrachloroaluminate, 1-butyl-3-methylimidazolium tetrachloroaluminate, 1-ethyl-3-methylimidazolium acetate, 1-butyl-3-methylimidazolium acetate, 1-ethyl-3-methyl imidazolium ethylsulfate, 1-butyl-3-methylimidazolium methylsulfate, 1-ethyl-3-methylimidazolium thiocyanate, 1-butyl-3-methylimidazolium thiocyanate, 1-ethyl-2,3-dimethylimidazolium Ethyl sulfate etc. are mentioned.
 カチオン部がピロリジニウムカチオンであるイオン液体として具体的には、1-メチル-1-プロピルピロリジニウムビス(トリフルオロメタンスルホニル)イミド、1-ブチル-1-メチルピロリジニウムビス(トリフルオロメタンスルホニル)イミド等が挙げられる。 Specific examples of ionic liquids in which the cation portion is a pyrrolidinium cation include 1-methyl-1-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide, 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl) ) imide and the like.
 溶媒和イオン液体としては、グライム-リチウム塩錯体等が挙げられる。
 グライム-リチウム塩錯体におけるリチウム塩として具体的には、リチウムビス(フルオロスルホニル)イミド(LiN(SOF)、本開示においては、「LiFSI」と略記することがある)、リチウムビス(トリフルオロメタンスルホニル)イミド(LiN(SOCF、本開示においては、「LiTFSI」と略記することがある)等が挙げられる。
 グライム-リチウム塩錯体におけるグライムとして具体的には、トリエチレングリコールジメチルエーテル(CH(OCHCHOCH、トリグライム)、テトラエチレングリコールジメチルエーテル(CH(OCHCHOCH、テトラグライム)等が挙げられる。
 グライム-リチウム塩錯体は、例えば、リチウム塩とグライムとを、リチウム塩:グライム(モル比)が、好ましくは10:90~90:10となるように、混合することで作製できる。
Solvated ionic liquids include glyme-lithium salt complexes and the like.
Specific examples of the lithium salt in the glyme-lithium salt complex include lithium bis(fluorosulfonyl)imide (LiN(SO 2 F) 2 , sometimes abbreviated as “LiFSI” in the present disclosure), lithium bis(trifluoro romethanesulfonyl)imide (LiN(SO 2 CF 3 ) 2 , sometimes abbreviated as “LiTFSI” in the present disclosure), and the like.
Specific examples of glyme in the glyme-lithium salt complex include triethylene glycol dimethyl ether (CH 3 (OCH 2 CH 2 ) 3 OCH 3 , triglyme), tetraethylene glycol dimethyl ether (CH 3 (OCH 2 CH 2 ) 4 OCH 3 , tetraglyme) and the like.
A glyme-lithium salt complex can be prepared, for example, by mixing a lithium salt and glyme such that the lithium salt:glyme (molar ratio) is preferably from 10:90 to 90:10.
 電解液は、添加剤を含んでもよい。添加剤として具体的には、フルオロエチレンカーボネート、プロパンスルトン、ビニレンカーボネート、メタンスルホン酸、シクロヘキシルベンゼン、tert-アミルベンゼン、アジポニトリル、スクシノニトリル等が挙げられる。
 電解液中の添加剤の量は、例えば、電解液全体の0.1質量%~30質量%であることが好ましく、0.5質量%~10質量%であることが好ましい。
The electrolytic solution may contain additives. Specific examples of additives include fluoroethylene carbonate, propanesultone, vinylene carbonate, methanesulfonic acid, cyclohexylbenzene, tert-amylbenzene, adiponitrile, and succinonitrile.
The amount of the additive in the electrolytic solution is, for example, preferably 0.1% by mass to 30% by mass, preferably 0.5% by mass to 10% by mass, based on the total amount of the electrolytic solution.
 エネルギー貯蔵デバイスは、電極及び電解液に加え、通常使用されるセパレータ、ガスケット、封口板、ケース等の部材をさらに備えていてもよい。 The energy storage device may further comprise commonly used members such as separators, gaskets, sealing plates, and cases in addition to the electrodes and electrolyte.
 エネルギー貯蔵デバイスに使用されるセパレータは特に制限されず、多孔質ポリプロピレン製不織布、多孔質ポリエチレン製不織布等のポリオレフィン系の多孔質膜などが挙げられる。 The separator used in the energy storage device is not particularly limited, and examples include polyolefin-based porous membranes such as porous polypropylene nonwoven fabrics and porous polyethylene nonwoven fabrics.
 エネルギー貯蔵デバイスの形状は、円筒型、角型、ボタン型等の任意の形態とすることができる。 The shape of the energy storage device can be any shape, such as cylindrical, square, and button.
 エネルギー貯蔵デバイスの用途は特に制限されない。例えば、分散型又は可搬性の電池として、電子機器、電気機器、自動車、電力貯蔵等の電源又は補助電源として利用できる。 There are no particular restrictions on the uses of the energy storage device. For example, as a distributed or portable battery, it can be used as a power source or auxiliary power source for electronic devices, electrical devices, automobiles, power storage, and the like.
<エネルギー貯蔵デバイス用被覆活物質の製造方法>
 本開示のエネルギー貯蔵デバイス用被覆活物質の製造方法は、アルカリ金属イオンを吸蔵及び放出可能な物質を含む粒子と、ポリアクリロニトリルと、を含む組成物を、150℃以上278℃未満かつ酸素濃度5体積%~30体積%雰囲気中で熱処理する工程と、前記組成物を278℃~600℃かつ酸素濃度4ppm~100ppmの雰囲気中で熱処理する工程と、をこの順に含む、エネルギー貯蔵デバイス用被覆活物質の製造方法である。
<Method for producing coated active material for energy storage device>
A method for producing a coated active material for an energy storage device of the present disclosure comprises heating a composition containing polyacrylonitrile and particles containing a substance capable of occluding and releasing alkali metal ions at a temperature of 150° C. or more and less than 278° C. and an oxygen concentration of 5. A coated active material for an energy storage device, comprising, in this order, a step of heat-treating in an atmosphere of vol% to 30% by volume, and a step of heat-treating the composition in an atmosphere of 278°C to 600°C and an oxygen concentration of 4ppm to 100ppm. is a manufacturing method.
 上記方法によれば、環化ポリアクリロニトリルを含む被覆を有し、かつ上述した(1)又は(2)を満たす被覆活物質を効率的に製造することができる。
 以下、150℃以上278℃未満の雰囲気中で組成物を熱処理する工程を「前処理」ともいい、278℃~600℃の雰囲気中で組成物を熱処理する工程を「環化処理」ともいう。
According to the above method, it is possible to efficiently produce a coated active material that has a coating containing cyclized polyacrylonitrile and that satisfies the above (1) or (2).
Hereinafter, the step of heat-treating the composition in an atmosphere of 150° C. or more and less than 278° C. is also referred to as “pretreatment”, and the step of heat-treating the composition in an atmosphere of 278° C. to 600° C. is also referred to as “cyclization treatment”.
 熱重量-示差熱分析において、ポリアクリロニトリルは278℃に大きな発熱ピークを示す。したがって、ポリアクリロニトリルを278℃以上で熱処理することで、ポリアクリロニトリルの環化反応が進行するとともに脱水素化反応が進行して二重結合が形成され、得られる環化ポリアクリロニトリルの電子伝導性が向上する。
 環化処理を実施する際の温度は278℃以上であり、280℃以上であることが好ましく、290℃以上であることがより好ましく、300℃以上であることがさらに好ましい。
In thermogravimetric-differential thermal analysis, polyacrylonitrile exhibits a large exothermic peak at 278°C. Therefore, by heat-treating polyacrylonitrile at 278 ° C. or higher, the cyclization reaction of polyacrylonitrile proceeds and the dehydrogenation reaction proceeds to form double bonds, and the electron conductivity of the obtained cyclized polyacrylonitrile increases. improves.
The temperature at which the cyclization treatment is performed is 278° C. or higher, preferably 280° C. or higher, more preferably 290° C. or higher, and even more preferably 300° C. or higher.
 環化処理を実施する際の温度は600℃以下であり、500℃以下であることが好ましく、450℃以下であることがより好ましく、400℃以下であることがさらに好ましい。環化処理を実施する温度を600℃以下とすることで、ポリアクリロニトリルの炭化が抑制され、得られる環化ポリアクリロニトリルの柔軟性が維持される。 The temperature at which the cyclization treatment is performed is 600°C or lower, preferably 500°C or lower, more preferably 450°C or lower, and even more preferably 400°C or lower. By setting the temperature at which the cyclization treatment is carried out to 600° C. or lower, carbonization of polyacrylonitrile is suppressed, and flexibility of the obtained cyclized polyacrylonitrile is maintained.
 (1)又は(2)を満たす被覆活物質を得る観点からは、環化処理を実施する際の酸素濃度は4ppm以上であり、7.5ppm以上であることがより好ましく、10ppm以上であることがさらに好ましく、15ppm以上であることがさらにより好ましい。 From the viewpoint of obtaining a coated active material that satisfies (1) or (2), the oxygen concentration during cyclization is 4 ppm or more, preferably 7.5 ppm or more, and 10 ppm or more. is more preferable, and 15 ppm or more is even more preferable.
 ポリアクリロニトリルの分解を抑制する観点からは、環化処理を実施する際の酸素濃度は100ppm以下であることが好ましく、80ppm以下であることがより好ましく、60ppm以下であることがさらに好ましく、40ppm以下であることがさらにより好ましい。
 環化処理を実施する雰囲気の酸素以外の成分は特に制限されず、窒素、アルゴン等の不活性ガス又はこれらの混合物であってもよい。
From the viewpoint of suppressing the decomposition of polyacrylonitrile, the oxygen concentration when performing the cyclization treatment is preferably 100 ppm or less, more preferably 80 ppm or less, further preferably 60 ppm or less, and 40 ppm or less. is even more preferred.
Components other than oxygen in the atmosphere in which the cyclization treatment is performed are not particularly limited, and may be nitrogen, an inert gas such as argon, or a mixture thereof.
 環化処理を実施する時間は特に制限されず、例えば、3時間~15時間の間から選択できる。
 本開示において環化処理を実施する時間は、組成物の温度が278℃~600℃である間の時間を意味する。
The time for performing the cyclization treatment is not particularly limited, and can be selected, for example, from 3 hours to 15 hours.
The time for performing the cyclization treatment in the present disclosure means the time during which the temperature of the composition is between 278°C and 600°C.
 本開示の方法は、環化処理の前に、150℃以上278℃未満の温度で組成物を熱処理する工程を含む。
 熱重量-示差熱分析結果から、ポリアクリロニトリルは278℃に大きな発熱ピークを示す。278℃よりも低い温度で前処理を行うことで、ポリアクリロニトリルの環化反応の収率を上げることができる。これは、前処理を行わないで環化処理を行う場合に比べ、ポリアクリロニトリルの急激な反応が生じてポリアクリロニトリルの主鎖が切断することによる低分子量成分の生成が抑制されるためである。
The method of the present disclosure includes heat treating the composition at a temperature of 150° C. or more and less than 278° C. prior to the cyclization treatment.
From the results of thermogravimetric-differential thermal analysis, polyacrylonitrile shows a large exothermic peak at 278°C. By performing the pretreatment at a temperature lower than 278°C, the yield of the cyclization reaction of polyacrylonitrile can be increased. This is because the polyacrylonitrile undergoes a rapid reaction and the main chain of polyacrylonitrile is cleaved, thereby suppressing the production of low-molecular-weight components, as compared with the case where the cyclization treatment is performed without pretreatment.
 前処理を実施する時間は特に制限されず、例えば、3時間~15時間の間から選択できる。
 本開示において前処理を実施する時間は、組成物の温度が150℃以上278℃未満である間の時間を意味する。
The time for performing the pretreatment is not particularly limited, and can be selected, for example, from 3 hours to 15 hours.
The time during which the pretreatment is performed in the present disclosure means the time during which the temperature of the composition is 150°C or higher and lower than 278°C.
 前処理を行う際の雰囲気は、酸素を5体積%~30体積%含むものであれば特に制限されない。例えば、空気中で前処理を行ってもよい。 The atmosphere during the pretreatment is not particularly limited as long as it contains 5% to 30% by volume of oxygen. For example, pretreatment may be performed in air.
 前処理と環化処理とをこの順に行う場合、前処理と環化処理とを連続して行っても、連続せずに行ってもよい。例えば、前処理と環化処理との間で組成物を冷却する工程を行ってもよい。 When the pretreatment and the cyclization treatment are performed in this order, the pretreatment and the cyclization treatment may or may not be performed consecutively. For example, a step of cooling the composition may be performed between the pretreatment and the cyclization treatment.
 必要に応じ、組成物は導電助剤、溶剤等を含んでもよい。溶媒としては、N-メチル-2-ピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド等のポリアクリロニトリルを溶解可能な溶媒が挙げられる。 If necessary, the composition may contain a conductive aid, solvent, etc. Solvents include those capable of dissolving polyacrylonitrile, such as N-methyl-2-pyrrolidone, dimethylformamide, dimethylacetamide, and dimethylsulfoxide.
 組成物は、活物質粒子とポリアクリロニトリルとの混合物であっても、活物質粒子とポリアクリロニトリルの原料となるモノマーとを混合した状態でモノマーを重合させて得られるものであってもよい。
 ポリアクリロニトリル(単独重合体又は共重合体)の原料となるモノマーとしては、アクリロニトリル及び上述したアクリロニトリル共重合体の重合成分が挙げられる。
The composition may be a mixture of active material particles and polyacrylonitrile, or may be obtained by polymerizing a monomer in a state in which the active material particles and a monomer that is a raw material of polyacrylonitrile are mixed.
Examples of monomers that are raw materials for polyacrylonitrile (homopolymer or copolymer) include acrylonitrile and polymerized components of the acrylonitrile copolymer described above.
 組成物は、環化処理を行う際に粒子状であっても粒子状でなくてもよい。
 組成物が環化処理の際に粒子状でない場合は、環化処理後の組成物に対して解砕、粉砕等の処理を行うことで、粒子状の被覆活物質を得ることができる。解砕又は粉砕の方法は特に制限されず、乳鉢、ボールミル、ビーズミル、ジェットミル、振動ミル、ミキサー等の公知の手段を採用できる。解砕又は粉砕の後、必要に応じて分級処理を行ってもよい。
The composition may or may not be particulate when subjected to cyclization.
If the composition is not particulate at the time of cyclization, a particulate coated active material can be obtained by subjecting the composition after cyclization to pulverization, pulverization, or the like. The method of pulverization or pulverization is not particularly limited, and known means such as a mortar, ball mill, bead mill, jet mill, vibrating mill, and mixer can be employed. After pulverization or pulverization, classification treatment may be performed as necessary.
 組成物は、加圧されてもよい。組成物を加圧することで、ポリアクリロニトリルの分子が配向した状態で環化反応が生じ、分子がスタッキングすることで結晶性が高まる。ポリアクリロニトリルが高結晶化すると、得られる環化ポリアクリロニトリルの強度が向上し、電子伝導度も向上する傾向にある。
 組成物に圧力を加える方法に特に制限はないが、耐圧容器、オートクレーブ用容器等の内部にガス又は液体を封入し、加熱したてこれらを気化させて圧力を高める方法、組成物を板状の部材で挟み、面圧(たとえば0.1MPa~10MPa)をかける方法などが挙げられる。加圧処理は環化処理の前に行っても、環化処理の間に行っても、環化処理の後に行ってもよい。
The composition may be pressurized. By pressurizing the composition, a cyclization reaction occurs in a state where the polyacrylonitrile molecules are oriented, and the molecules stack to increase the crystallinity. When polyacrylonitrile is highly crystallized, the strength of the obtained cyclized polyacrylonitrile tends to improve, and the electron conductivity also tends to improve.
The method of applying pressure to the composition is not particularly limited. A method of sandwiching between members and applying surface pressure (for example, 0.1 MPa to 10 MPa) can be used. The pressure treatment may be performed before the cyclization treatment, during the cyclization treatment, or after the cyclization treatment.
<被覆材>
 本開示の被覆材は、エネルギー貯蔵デバイス用の活物質粒子を被覆するための被覆材であって、環化ポリアクリロニトリルを含み、下記(1)又は(2)のいずれか又は両方を満たす、被覆材である。
(1)被覆材を浸漬した電解液のJIS K 7373:2006に規定される黄色度が100以下である。
(2)被覆材を浸漬した電解液のJIS K 7136:2000に規定されるヘーズが2.5%以下である。
<Covering material>
The coating material of the present disclosure is a coating material for coating active material particles for an energy storage device, comprising cyclized polyacrylonitrile and satisfying either or both of the following (1) or (2): It is wood.
(1) The yellowness of the electrolytic solution in which the coating material is immersed is 100 or less as defined in JIS K 7373:2006.
(2) The haze defined by JIS K 7136:2000 of the electrolytic solution in which the coating material is immersed is 2.5% or less.
 環化ポリアクリロニトリルを含み、かつ(1)又は(2)の条件を満たす被覆材を含む被覆活物質を用いて作製したエネルギー貯蔵デバイスは、優れた初期特性を示す。 An energy storage device produced using a coated active material containing a coating material that contains cyclized polyacrylonitrile and satisfies the conditions of (1) or (2) exhibits excellent initial characteristics.
 被覆材の黄色度及びヘーズは、上述した被覆活物質の黄色度及びヘーズの測定方法と同様にして測定できる。
 すなわち、電解液に浸漬する被覆活物質に含まれる被覆材の質量と同じ質量の被覆材を電解液に浸漬することで、被覆材の黄色度及びヘーズを測定できる。
The yellowness and haze of the coating material can be measured in the same manner as the yellowness and haze of the coated active material described above.
That is, the yellowness and haze of the coating material can be measured by immersing in the electrolyte solution a coating material having the same mass as that of the coating material contained in the coated active material to be immersed in the electrolyte solution.
 被覆材の詳細及び好ましい態様は、上述した被覆活物質に含まれる被覆材の詳細及び好ましい態様と同様である。 The details and preferred aspects of the coating material are the same as the details and preferred aspects of the coating material contained in the coated active material described above.
 以下、実施例に基づいて本開示をより具体的に説明するが、本開示は下記の実施例に制限されるものではない。 The present disclosure will be described in more detail below based on examples, but the present disclosure is not limited to the following examples.
<実施例1>
 ポリアクリロニトリル(PAN)としてアクリロニトリルの単独重合体(アルドリッチ製、Mw15万、分子量分布2.21、アタクチック型)をN-メチル-2-ピロリドン(NMP)へ加え、室温で混合してPANを溶解し、PAN/NMP溶液(PAN含有率:10質量%)を調製した。
 活物質粒子としては、Si粒子(北京大地製、平均二次粒子径:約5μm)を用いた。
<Example 1>
As polyacrylonitrile (PAN), an acrylonitrile homopolymer (manufactured by Aldrich, Mw 150,000, molecular weight distribution 2.21, atactic type) was added to N-methyl-2-pyrrolidone (NMP) and mixed at room temperature to dissolve PAN. , a PAN/NMP solution (PAN content: 10% by mass) was prepared.
As the active material particles, Si particles (manufactured by Beijing Dadi, average secondary particle diameter: about 5 μm) were used.
(被覆活物質の作製)
 Si粒子とPANの質量比率(Si:PAN)が70:30となるようにSi粒子とPAN/NMP溶液とを混合し、スラリーAを得た。スラリーAをガラスシャーレに入れ、80℃で2時間乾燥した。
 スラリーの乾燥物をアルミナるつぼに入れ、空気中で220℃、7時間の熱処理(前処理)を行った。次いで、酸素濃度が20ppmの窒素雰囲気中で350℃、5時間の熱処理(環化処理)を行った。
 環化処理後の処理物をメノウ乳鉢で解砕し、390メッシュの篩でふるいにかけ、Si粒子が環化ポリアクリロニトリルで被覆された状態の被覆活物質を得た。被覆活物質の体積平均粒子径(D50)は18.1μmであり、BET比表面積は5.1m/gであった。
(Preparation of coated active material)
The Si particles and the PAN/NMP solution were mixed so that the mass ratio of the Si particles and the PAN (Si:PAN) was 70:30, and a slurry A was obtained. Slurry A was placed in a glass petri dish and dried at 80° C. for 2 hours.
The dried slurry was placed in an alumina crucible and subjected to heat treatment (pretreatment) in the air at 220° C. for 7 hours. Then, heat treatment (cyclization treatment) was performed at 350° C. for 5 hours in a nitrogen atmosphere with an oxygen concentration of 20 ppm.
The cyclized material was pulverized in an agate mortar and sieved through a 390-mesh sieve to obtain a coated active material in which Si particles were coated with cyclized polyacrylonitrile. The volume average particle diameter (D50) of the coated active material was 18.1 μm, and the BET specific surface area was 5.1 m 2 /g.
(電解液の黄色度)
 作製した被覆活物質(被覆材の質量:10mg)を電解液に浸漬し、上述した方法で電解液の黄色度を測定した。結果を表1に示す。
(Yellowness of electrolyte)
The prepared coated active material (mass of coating material: 10 mg) was immersed in the electrolytic solution, and the yellowness of the electrolytic solution was measured by the method described above. Table 1 shows the results.
(電解液のヘーズ)
 作製した被覆活物質(結着材の質量:10mg)を電解液に浸漬し、上述した方法で電解液のヘーズを測定した。結果を表1に示す。
(Electrolyte haze)
The prepared coated active material (mass of binder: 10 mg) was immersed in the electrolytic solution, and the haze of the electrolytic solution was measured by the method described above. Table 1 shows the results.
(電池の作製及び評価)
 被覆活物質、導電助剤としてのアセチレンブラック(デンカ製、Li400)、及び結着材としてのポリフッ化ビニリデンを、85:5:10(被覆活物質:導電助剤:結着材)の質量比で混合した。具体的には、自転公転ミキサーで1000rpm(回転/分)、2分間の混合を5回行った。粘度調整のため、適宜、Nーメチル-2-ピロリドンを添加し、スラリー化した。
(Production and evaluation of battery)
The coating active material, acetylene black (Li400 manufactured by Denka) as a conductive aid, and polyvinylidene fluoride as a binder were mixed at a mass ratio of 85:5:10 (coating active material: conductive aid: binder). mixed with. Specifically, mixing was performed 5 times for 2 minutes at 1000 rpm (rotation/minute) using a rotation/revolution mixer. In order to adjust the viscosity, N-methyl-2-pyrrolidone was appropriately added and slurried.
 得られたスラリーを集電体である銅箔(厚さ20μm)に塗布、乾燥して、電極を得た。電極の厚さは、容量換算で3.1mAh/cmであった(Siの容量を3600mAh/gとして計算)。電極をロールプレスでプレスし、電極密度を1.6g/cmとした。 The resulting slurry was applied to a copper foil (20 μm thick) as a current collector and dried to obtain an electrode. The thickness of the electrode was 3.1 mAh/cm 2 in terms of capacity (calculated with the capacity of Si being 3600 mAh/g). The electrodes were pressed with a roll press to an electrode density of 1.6 g/cm 3 .
 正極の活物質としてLiCo1/3Ni1/3Mn1/3、導電助剤としてアセチレンブラック、結着材としてポリフッ化ビニリデンを94:3:3(活物質:導電助剤:結着材)の質量比で混合した組成物を集電体に塗布し、正極電極を作製した。組成物層の厚さは、容量換算で2.9mAh/cm(LiCo1/3Ni1/3Mn1/3の容量を152mAh/gとして計算)とした。正極電極をロールプレスでプレスし、電極密度を2.8g/cmとした。
 負極電極として上記で作製した電極と、正極電極とを用い、ラミネート型の電池を作製した。セパレータにはポリプロピレン多孔質膜、電解液には1MのLiPFをEC、EMC及びDECを1:1:1(体積比)の割合で含む混合溶媒に溶解したものを用いた。
LiCo 1/3 Ni 1/3 Mn 1/3 O 2 as a positive electrode active material, acetylene black as a conductive agent, and polyvinylidene fluoride as a binder at a ratio of 94:3:3 (active material: conductive agent: binding agent). Material) was mixed at a mass ratio, and the composition was applied to a current collector to prepare a positive electrode. The thickness of the composition layer was 2.9 mAh/cm 2 in terms of capacity (calculated based on the capacity of LiCo 1/3 Ni 1/3 Mn 1/3 O 2 being 152 mAh/g). The positive electrode was pressed with a roll press to an electrode density of 2.8 g/cm 3 .
Using the electrode prepared above as the negative electrode and the positive electrode, a laminate type battery was prepared. A porous polypropylene film was used as the separator, and 1M LiPF 6 dissolved in a mixed solvent containing EC, EMC and DEC in a ratio of 1:1:1 (volume ratio) was used as the electrolyte.
 作製した電池に対し、0.1C(10時間かけてフル充電及びフル放電される電流)のレートで3サイクルの充放電を行った後、0.5C(2時間かけてフル充電及びフル放電される電流)のレートで100サイクルの充放電を行った。0.5Cでの1サイクル後の放電容量(正極側の容量換算)と、100サイクル後の容量維持率(100サイクル後の放電容量を1サイクル後の放電容量で除した値×100)を表1に示す。 After performing 3 cycles of charging and discharging at a rate of 0.1 C (current for full charge and full discharge over 10 hours) for the produced battery, 0.5 C (full charge and full discharge for 2 hours) 100 cycles of charging and discharging were performed at a rate of 100 cycles. The discharge capacity after one cycle at 0.5 C (capacity conversion on the positive electrode side) and the capacity retention rate after 100 cycles (the value obtained by dividing the discharge capacity after 100 cycles by the discharge capacity after one cycle x 100) are shown. 1.
<実施例2>
 前処理の条件を空気中で220℃、10時間とし、環化処理の条件を酸素濃度が20ppmの窒素雰囲気中で300℃、8時間としたこと以外は実施例1と同様にして被覆活物質を作製し、評価を実施した。結果を表1に示す。
<Example 2>
The coated active material was prepared in the same manner as in Example 1 except that the pretreatment conditions were 220° C. for 10 hours in air, and the cyclization treatment conditions were 300° C. for 8 hours in a nitrogen atmosphere with an oxygen concentration of 20 ppm. was produced and evaluated. Table 1 shows the results.
<実施例3>
 PANとしてアクリロニトリルの単独重合体(Mw5158、分子量分布1.92)を用いたこと以外は実施例1と同様にしてPAN/NMP溶液(PAN含有率:10質量%)を調製した。このPAN/NMP溶液を用いたこと以外は実施例1と同様にして被覆活物質を作製し、評価を実施した。結果を表1に示す。
<Example 3>
A PAN/NMP solution (PAN content: 10% by mass) was prepared in the same manner as in Example 1 except that an acrylonitrile homopolymer (Mw 5158, molecular weight distribution 1.92) was used as PAN. A coated active material was prepared and evaluated in the same manner as in Example 1, except that this PAN/NMP solution was used. Table 1 shows the results.
<実施例4>
 PANとしてアクリロニトリル(97質量%)とイタコン酸(3質量%)との共重合体(Mw21000、分子量分布4.9)を用いたこと以外は実施例1と同様にしてPAN/NMP溶液(PAN含有率:10質量%)を調製した。このPAN/NMP溶液を用いたこと以外は実施例1と同様にして被覆活物質を作製し、評価を実施した。結果を表1に示す。
<Example 4>
A PAN/NMP solution (PAN-containing rate: 10% by mass) was prepared. A coated active material was prepared and evaluated in the same manner as in Example 1, except that this PAN/NMP solution was used. Table 1 shows the results.
<実施例5>
 PANとしてアクリロニトリル(99.5質量%)とアクリル酸メチル(0.5質量%)との共重合体(Mw484713、分子量分布2.094)を用いたこと以外は実施例1と同様にしてPAN/NMP溶液(PAN含有率:10質量%)を調製した。このPAN/NMP溶液を用いたこと以外は実施例1と同様にして被覆活物質を作製し、評価を実施した。結果を表1に示す。
<Example 5>
PAN/ An NMP solution (PAN content: 10% by mass) was prepared. A coated active material was prepared and evaluated in the same manner as in Example 1, except that this PAN/NMP solution was used. Table 1 shows the results.
<実施例6>
 PANとしてアクリロニトリル(93.9質量%)、アクリル酸メチル(5.8質量%)及びメタリルスルホン酸ナトリウム(0.3質量%)の共重合体(Mw272353、分子量分布2.18)を用いたこと以外は実施例1と同様にしてPAN/NMP溶液(PAN含有率:10質量%)を調製した。このPAN/NMP溶液を用いたこと以外は実施例1と同様にして被覆活物質を作製し、評価を実施した。結果を表1に示す。
<Example 6>
A copolymer (Mw 272353, molecular weight distribution 2.18) of acrylonitrile (93.9% by mass), methyl acrylate (5.8% by mass) and sodium methallylsulfonate (0.3% by mass) was used as PAN. A PAN/NMP solution (PAN content: 10% by mass) was prepared in the same manner as in Example 1 except that. A coated active material was prepared and evaluated in the same manner as in Example 1, except that this PAN/NMP solution was used. Table 1 shows the results.
<実施例7>
 PANとしてアクリロニトリルの単独重合体(Mw728949、分子量分布1.704)を用いたこと以外は実施例1と同様にしてPAN/NMP溶液(PAN含有率:10質量%)を調製した。このPAN/NMP溶液を用いたこと以外は実施例1と同様にして被覆活物質を作製し、評価を実施した。結果を表1に示す。
<Example 7>
A PAN/NMP solution (PAN content: 10% by mass) was prepared in the same manner as in Example 1 except that an acrylonitrile homopolymer (Mw 728949, molecular weight distribution 1.704) was used as PAN. A coated active material was prepared and evaluated in the same manner as in Example 1, except that this PAN/NMP solution was used. Table 1 shows the results.
<比較例1>
 前処理の条件をアルゴン雰囲気中で220℃、7時間としたこと以外は実施例1と同様にして被覆活物質を作製し、評価を実施した。結果を表1に示す。
<Comparative Example 1>
A coated active material was prepared and evaluated in the same manner as in Example 1, except that the pretreatment conditions were 220° C. for 7 hours in an argon atmosphere. Table 1 shows the results.
<比較例2>
 前処理を行わず、環化処理の条件を酸素濃度が1ppmの窒素雰囲気中で300℃、10時間としたこと以外は実施例1と同様にして被覆活物質を作製し、評価を実施した。結果を表1に示す。
<Comparative Example 2>
A coated active material was prepared and evaluated in the same manner as in Example 1 except that no pretreatment was performed and the cyclization treatment conditions were 300° C. for 10 hours in a nitrogen atmosphere with an oxygen concentration of 1 ppm. Table 1 shows the results.
<比較例3>
 前処理を行わず、環化処理の条件を真空中で300℃、4時間としたこと以外は実施例1と同様にして被覆活物質を作製し、評価を実施した。結果を表1に示す。
<Comparative Example 3>
A coated active material was prepared and evaluated in the same manner as in Example 1, except that the pretreatment was not performed and the conditions for the cyclization treatment were 300° C. and 4 hours in vacuum. Table 1 shows the results.
<比較例4>
 前処理及び環化処理を行わない(80℃での乾燥のみを行った)こと以外は実施例1と同様にして被覆活物質を作製し、評価を実施した。結果を表1に示す。
<Comparative Example 4>
A coated active material was prepared and evaluated in the same manner as in Example 1, except that pretreatment and cyclization treatment were not performed (only drying at 80° C. was performed). Table 1 shows the results.
<比較例5>
 前処理を行わず、環化処理の条件を酸素濃度が1ppmの窒素雰囲気中で300℃、8時間としたこと以外は実施例1と同様にして被覆活物質を作製し、評価を実施した。結果を表1に示す。
<Comparative Example 5>
A coated active material was prepared and evaluated in the same manner as in Example 1 except that no pretreatment was performed and the cyclization treatment was performed in a nitrogen atmosphere with an oxygen concentration of 1 ppm at 300° C. for 8 hours. Table 1 shows the results.
<比較例6>
 前処理を行わず、環化処理の条件を真空中で300℃、8時間としたこと以外は実施例1と同様にして被覆活物質を作製し、評価を実施した。結果を表1に示す。
<Comparative Example 6>
A coated active material was produced and evaluated in the same manner as in Example 1, except that no pretreatment was performed and the conditions for cyclization treatment were 300° C. and 8 hours in vacuum. Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000002

 
Figure JPOXMLDOC01-appb-T000002

 
 表1中の「OK」は、黄色度又はヘーズが(1)又は(2)の条件を満たすことを意味する。
 表1に示すように、環化ポリアクリロニトリルを含み、かつ(1)又は(2)の条件を満たす被覆活物質を用いた実施例は、100サイクル後の容量維持率が高く、サイクル特性の評価が良好である。
"OK" in Table 1 means that the yellowness or haze satisfies the condition (1) or (2).
As shown in Table 1, the examples using the coated active material containing cyclized polyacrylonitrile and satisfying the condition (1) or (2) had a high capacity retention rate after 100 cycles, and the cycle characteristics were evaluated. is good.
 国際出願PCT/JP2021/019461号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に援用されて取り込まれる。
The disclosure of International Application No. PCT/JP2021/019461 is hereby incorporated by reference in its entirety.
All publications, patent applications and technical standards mentioned herein are to the same extent as if each individual publication, patent application and technical standard were specifically and individually noted to be incorporated by reference. incorporated herein by reference.

Claims (14)

  1.  アルカリ金属イオンを吸蔵及び放出可能な物質を含む粒子と、環化ポリアクリロニトリルを含む被覆材と、を含み、下記(1)を満たす、エネルギー貯蔵デバイス用被覆活物質。
    (1)前記被覆活物質を浸漬した電解液のJIS K 7373:2006に規定される黄色度が100以下である。
    A coated active material for an energy storage device, comprising particles containing a substance capable of absorbing and releasing alkali metal ions, and a coating material containing cyclized polyacrylonitrile, and satisfying the following (1).
    (1) The yellowness of the electrolytic solution in which the coated active material is immersed is 100 or less as defined in JIS K 7373:2006.
  2.  アルカリ金属イオンを吸蔵及び放出可能な物質を含む粒子と、環化ポリアクリロニトリルを含む被覆材と、を含み、下記(2)を満たす、エネルギー貯蔵デバイス用被覆活物質。
    (2)前記被覆活物質を浸漬した電解液のJIS K 7136:2000に規定されるヘーズが2.5%以下である。
    A coated active material for an energy storage device, comprising particles containing a substance capable of absorbing and releasing alkali metal ions, and a coating material containing cyclized polyacrylonitrile, and satisfying the following (2).
    (2) The haze defined by JIS K 7136:2000 of the electrolytic solution in which the coated active material is immersed is 2.5% or less.
  3.  前記アルカリ金属イオンを吸蔵及び放出可能な物質はケイ素原子を含む、請求項1又は請求項2に記載のエネルギー貯蔵デバイス用被覆活物質。 The coated active material for an energy storage device according to claim 1 or 2, wherein the substance capable of absorbing and releasing alkali metal ions contains silicon atoms.
  4.  体積平均粒子径(D50)が1μm~50μmである、請求項1~請求項3のいずれか1項に記載のエネルギー貯蔵デバイス用被覆活物質。 The coated active material for energy storage devices according to any one of claims 1 to 3, which has a volume average particle diameter (D50) of 1 μm to 50 μm.
  5.  BET比表面積が0.5m/g~100m/gである、請求項1~請求項4のいずれか1項に記載のエネルギー貯蔵デバイス用被覆活物質。 The coated active material for an energy storage device according to any one of claims 1 to 4, which has a BET specific surface area of 0.5 m 2 /g to 100 m 2 /g.
  6.  前記被覆活物質全体に占める前記被覆材の割合は0.1質量%~50質量%である、請求項1~請求項5のいずれか1項に記載のエネルギー貯蔵デバイス用被覆活物質。 The coated active material for an energy storage device according to any one of claims 1 to 5, wherein the coating material accounts for 0.1% by mass to 50% by mass of the entire coated active material.
  7.  炭素材料からなる被覆をさらに有する、請求項1~請求項6のいずれか1項に記載のエネルギー貯蔵デバイス用被覆活物質。 The coated active material for an energy storage device according to any one of claims 1 to 6, further comprising a coating made of a carbon material.
  8.  請求項1~請求項7のいずれか1項に記載のエネルギー貯蔵デバイス用被覆活物質を含む、エネルギー貯蔵デバイス。 An energy storage device comprising the coated active material for an energy storage device according to any one of claims 1 to 7.
  9.  電解液を含み、前記電解液は溶媒としてイオン液体を含む、請求項8に記載のエネルギー貯蔵デバイス。 The energy storage device according to claim 8, comprising an electrolytic solution, the electrolytic solution containing an ionic liquid as a solvent.
  10.  前記電解液の電解質塩の濃度が3mol/L以上である、請求項8に記載のエネルギー貯蔵デバイス。 The energy storage device according to claim 8, wherein the concentration of electrolyte salt in the electrolytic solution is 3 mol/L or more.
  11.  アルカリ金属イオンを吸蔵及び放出可能な物質を含む粒子と、ポリアクリロニトリルと、を含む組成物を、150℃以上278℃未満かつ酸素濃度5体積%~30体積%の雰囲気中で熱処理する工程と、前記組成物を278℃~600℃かつ酸素濃度4ppm~100ppmの雰囲気中で熱処理する工程と、をこの順に含む、エネルギー貯蔵デバイス用被覆活物質の製造方法。 a step of heat-treating a composition containing particles containing a substance capable of absorbing and releasing alkali metal ions and polyacrylonitrile in an atmosphere of 150° C. or more and less than 278° C. and an oxygen concentration of 5% by volume to 30% by volume; and heat-treating the composition in an atmosphere of 278° C. to 600° C. and an oxygen concentration of 4 ppm to 100 ppm, in this order.
  12.  前記熱処理はそれぞれ3時間~15時間行う、請求項11に記載のエネルギー貯蔵デバイス用被覆活物質の製造方法。 The method for producing a coated active material for an energy storage device according to claim 11, wherein each of the heat treatments is performed for 3 to 15 hours.
  13.  エネルギー貯蔵デバイス用の活物質粒子を被覆するための被覆材であって、環化ポリアクリロニトリルを含み、前記被覆材を浸漬した電解液のJIS K 7373:2006に規定される黄色度が30%以下である、被覆材。 A coating material for coating active material particles for an energy storage device, comprising cyclized polyacrylonitrile, wherein the electrolytic solution in which the coating material is immersed has a yellowness of 30% or less as defined in JIS K 7373:2006. , covering material.
  14.  エネルギー貯蔵デバイス用の活物質粒子を被覆するための被覆材であって、環化ポリアクリロニトリルを含み、前記被覆材を浸漬した電解液のJIS K 7136:2000に規定されるヘーズが0.3%以下である、被覆材。 A coating material for coating active material particles for an energy storage device, which contains cyclized polyacrylonitrile, and the electrolyte in which the coating material is immersed has a haze of 0.3% as defined in JIS K 7136:2000. A coating that is:
PCT/JP2022/021028 2021-05-21 2022-05-20 Coated active material for energy storage device, energy storage device, method for manufacturing coated active material for energy storage device, and coating material WO2022244885A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023522747A JPWO2022244885A1 (en) 2021-05-21 2022-05-20

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2021/019461 2021-05-21
PCT/JP2021/019461 WO2022244272A1 (en) 2021-05-21 2021-05-21 Coated active material for energy storage devices, energy storage device, production method for coated active material for energy storage devices, and coating material

Publications (1)

Publication Number Publication Date
WO2022244885A1 true WO2022244885A1 (en) 2022-11-24

Family

ID=84140427

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2021/019461 WO2022244272A1 (en) 2021-05-21 2021-05-21 Coated active material for energy storage devices, energy storage device, production method for coated active material for energy storage devices, and coating material
PCT/JP2022/021028 WO2022244885A1 (en) 2021-05-21 2022-05-20 Coated active material for energy storage device, energy storage device, method for manufacturing coated active material for energy storage device, and coating material

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019461 WO2022244272A1 (en) 2021-05-21 2021-05-21 Coated active material for energy storage devices, energy storage device, production method for coated active material for energy storage devices, and coating material

Country Status (3)

Country Link
JP (1) JPWO2022244885A1 (en)
TW (1) TW202304042A (en)
WO (2) WO2022244272A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014179179A (en) * 2013-03-13 2014-09-25 National Institute Of Advanced Industrial & Technology Sulfur-modified nitrile group-containing copolymer resin, and application thereof
JP2017539051A (en) * 2014-10-30 2017-12-28 ザ リージェンツ オブ ザ ユニバーシティ オブ コロラド,ア ボディー コーポレイトTHE REGENTS OF THE UNIVERSITY OF COLORADO,a body corporate Stable silicon ionic liquid interface lithium ion battery
JP2019535116A (en) * 2016-10-13 2019-12-05 シリオン, インク.Sillion, Inc. Large format battery anode containing silicon particles
JP2020504453A (en) * 2016-12-27 2020-02-06 フィートー エンフィ Process of manufacturing porous carbon electrode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014179179A (en) * 2013-03-13 2014-09-25 National Institute Of Advanced Industrial & Technology Sulfur-modified nitrile group-containing copolymer resin, and application thereof
JP2017539051A (en) * 2014-10-30 2017-12-28 ザ リージェンツ オブ ザ ユニバーシティ オブ コロラド,ア ボディー コーポレイトTHE REGENTS OF THE UNIVERSITY OF COLORADO,a body corporate Stable silicon ionic liquid interface lithium ion battery
JP2021022580A (en) * 2014-10-30 2021-02-18 ザ リージェンツ オブ ザ ユニバーシティ オブ コロラド,ア ボディー コーポレイトTHE REGENTS OF THE UNIVERSITY OF COLORADO,a body corporate Lithium-ion battery with stable silicon ionic liquid interface
JP2019535116A (en) * 2016-10-13 2019-12-05 シリオン, インク.Sillion, Inc. Large format battery anode containing silicon particles
JP2020504453A (en) * 2016-12-27 2020-02-06 フィートー エンフィ Process of manufacturing porous carbon electrode

Also Published As

Publication number Publication date
WO2022244272A1 (en) 2022-11-24
JPWO2022244885A1 (en) 2022-11-24
TW202304042A (en) 2023-01-16

Similar Documents

Publication Publication Date Title
KR101902071B1 (en) Negative electrode active particle and method for manufacturing the same
KR101995373B1 (en) Negative electrode for secondary battery
US11165063B2 (en) Process for making cathode materials for lithium ion batteries
JP6458808B2 (en) Novel fluorinated unsaturated cyclic carbonate and method for producing the same
CN111357137B (en) Negative active material for lithium secondary battery and method for preparing same
JP2022536290A (en) In-situ polymerized polymer electrolyte for lithium-ion batteries
US10622674B2 (en) Polymer gel electrolyte, lithium ion battery and method for producing same
KR20160007366A (en) Binder for rechargeable lithium battery, separator for rechargeable lithium battery and rechargeable lithium battery
JP6970890B2 (en) Negative electrode active material for non-water secondary batteries and non-water secondary batteries
JP5482115B2 (en) Non-aqueous secondary battery active material and non-aqueous secondary battery
WO2022244885A1 (en) Coated active material for energy storage device, energy storage device, method for manufacturing coated active material for energy storage device, and coating material
WO2022244884A1 (en) Electrode for energy storage devices, energy storage device, method for producing electrode for energy storage devices, and binder material
WO2023037556A1 (en) Electrode for energy storage devices, energy storage device, production method for electrode for energy storage devices, and material for forming electrode
WO2023037555A1 (en) Energy storage device electrode, energy storage device, production method for energy storage device electrode, and material for forming electrode
JP2018125219A (en) Electrolyte solution for lithium ion secondary battery
KR102244952B1 (en) Negative electrode active material, negative electrode comprising the negative electrode active material, lithium secondarty battery comprising the negative electrode, and method for prepareing the negative electrode active material
EP4165699B1 (en) Process for making an electrode, and electrode active materials
KR102659769B1 (en) Negative electrode active material, negative electrode comprising the negative electrode active material, secondary battery comprising the negative electrode, and method for preparing the negative electrode active material
EP4345944A2 (en) Anode active material for a lithium secondary battery, method of preparing the same and lithium secondary battery including the same
KR20240015245A (en) Positive electrode and manufacturing method of the same
KR20230025313A (en) Negative electrode active material, negative electrode comprising the negative electrode active material, secondary battery comprising the negative electrode, and method for preparing the negative electrode active material
KR20230107017A (en) Cathode for lithium secondary battery and lithium secondary battery including the same
KR20150025563A (en) Cathode active material comprising lithium transition metal oxide particles, and preparation method thereof
KR20240053968A (en) Negative electrode active material, negative electrode comprising same, secondary battery comprising same, and method for preparing negative electrode active material
KR20230077639A (en) Negative electrode active material, manufacturing method of negative electrode active material, negative electrode slurry, negative electrode and secondarty battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22804792

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023522747

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22804792

Country of ref document: EP

Kind code of ref document: A1